xref: /openbmc/linux/drivers/hwmon/w83627ehf.c (revision ca2478a7d974f38d29d27acb42a952c7f168916e)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *  w83627ehf - Driver for the hardware monitoring functionality of
4   *		the Winbond W83627EHF Super-I/O chip
5   *  Copyright (C) 2005-2012  Jean Delvare <jdelvare@suse.de>
6   *  Copyright (C) 2006  Yuan Mu (Winbond),
7   *			Rudolf Marek <r.marek@assembler.cz>
8   *			David Hubbard <david.c.hubbard@gmail.com>
9   *			Daniel J Blueman <daniel.blueman@gmail.com>
10   *  Copyright (C) 2010  Sheng-Yuan Huang (Nuvoton) (PS00)
11   *
12   *  Shamelessly ripped from the w83627hf driver
13   *  Copyright (C) 2003  Mark Studebaker
14   *
15   *  Thanks to Leon Moonen, Steve Cliffe and Grant Coady for their help
16   *  in testing and debugging this driver.
17   *
18   *  This driver also supports the W83627EHG, which is the lead-free
19   *  version of the W83627EHF.
20   *
21   *  Supports the following chips:
22   *
23   *  Chip        #vin    #fan    #pwm    #temp  chip IDs       man ID
24   *  w83627ehf   10      5       4       3      0x8850 0x88    0x5ca3
25   *					       0x8860 0xa1
26   *  w83627dhg    9      5       4       3      0xa020 0xc1    0x5ca3
27   *  w83627dhg-p  9      5       4       3      0xb070 0xc1    0x5ca3
28   *  w83627uhg    8      2       2       3      0xa230 0xc1    0x5ca3
29   *  w83667hg     9      5       3       3      0xa510 0xc1    0x5ca3
30   *  w83667hg-b   9      5       3       4      0xb350 0xc1    0x5ca3
31   */
32  
33  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34  
35  #include <linux/module.h>
36  #include <linux/init.h>
37  #include <linux/slab.h>
38  #include <linux/jiffies.h>
39  #include <linux/platform_device.h>
40  #include <linux/hwmon.h>
41  #include <linux/hwmon-sysfs.h>
42  #include <linux/hwmon-vid.h>
43  #include <linux/err.h>
44  #include <linux/mutex.h>
45  #include <linux/acpi.h>
46  #include <linux/io.h>
47  #include "lm75.h"
48  
49  enum kinds {
50  	w83627ehf, w83627dhg, w83627dhg_p, w83627uhg,
51  	w83667hg, w83667hg_b,
52  };
53  
54  /* used to set data->name = w83627ehf_device_names[data->sio_kind] */
55  static const char * const w83627ehf_device_names[] = {
56  	"w83627ehf",
57  	"w83627dhg",
58  	"w83627dhg",
59  	"w83627uhg",
60  	"w83667hg",
61  	"w83667hg",
62  };
63  
64  static unsigned short force_id;
65  module_param(force_id, ushort, 0);
66  MODULE_PARM_DESC(force_id, "Override the detected device ID");
67  
68  #define DRVNAME "w83627ehf"
69  
70  /*
71   * Super-I/O constants and functions
72   */
73  
74  #define W83627EHF_LD_HWM	0x0b
75  #define W83667HG_LD_VID		0x0d
76  
77  #define SIO_REG_LDSEL		0x07	/* Logical device select */
78  #define SIO_REG_DEVID		0x20	/* Device ID (2 bytes) */
79  #define SIO_REG_EN_VRM10	0x2C	/* GPIO3, GPIO4 selection */
80  #define SIO_REG_ENABLE		0x30	/* Logical device enable */
81  #define SIO_REG_ADDR		0x60	/* Logical device address (2 bytes) */
82  #define SIO_REG_VID_CTRL	0xF0	/* VID control */
83  #define SIO_REG_VID_DATA	0xF1	/* VID data */
84  
85  #define SIO_W83627EHF_ID	0x8850
86  #define SIO_W83627EHG_ID	0x8860
87  #define SIO_W83627DHG_ID	0xa020
88  #define SIO_W83627DHG_P_ID	0xb070
89  #define SIO_W83627UHG_ID	0xa230
90  #define SIO_W83667HG_ID		0xa510
91  #define SIO_W83667HG_B_ID	0xb350
92  #define SIO_ID_MASK		0xFFF0
93  
94  static inline void
superio_outb(int ioreg,int reg,int val)95  superio_outb(int ioreg, int reg, int val)
96  {
97  	outb(reg, ioreg);
98  	outb(val, ioreg + 1);
99  }
100  
101  static inline int
superio_inb(int ioreg,int reg)102  superio_inb(int ioreg, int reg)
103  {
104  	outb(reg, ioreg);
105  	return inb(ioreg + 1);
106  }
107  
108  static inline void
superio_select(int ioreg,int ld)109  superio_select(int ioreg, int ld)
110  {
111  	outb(SIO_REG_LDSEL, ioreg);
112  	outb(ld, ioreg + 1);
113  }
114  
115  static inline int
superio_enter(int ioreg)116  superio_enter(int ioreg)
117  {
118  	if (!request_muxed_region(ioreg, 2, DRVNAME))
119  		return -EBUSY;
120  
121  	outb(0x87, ioreg);
122  	outb(0x87, ioreg);
123  
124  	return 0;
125  }
126  
127  static inline void
superio_exit(int ioreg)128  superio_exit(int ioreg)
129  {
130  	outb(0xaa, ioreg);
131  	outb(0x02, ioreg);
132  	outb(0x02, ioreg + 1);
133  	release_region(ioreg, 2);
134  }
135  
136  /*
137   * ISA constants
138   */
139  
140  #define IOREGION_ALIGNMENT	(~7)
141  #define IOREGION_OFFSET		5
142  #define IOREGION_LENGTH		2
143  #define ADDR_REG_OFFSET		0
144  #define DATA_REG_OFFSET		1
145  
146  #define W83627EHF_REG_BANK		0x4E
147  #define W83627EHF_REG_CONFIG		0x40
148  
149  /*
150   * Not currently used:
151   * REG_MAN_ID has the value 0x5ca3 for all supported chips.
152   * REG_CHIP_ID == 0x88/0xa1/0xc1 depending on chip model.
153   * REG_MAN_ID is at port 0x4f
154   * REG_CHIP_ID is at port 0x58
155   */
156  
157  static const u16 W83627EHF_REG_FAN[] = { 0x28, 0x29, 0x2a, 0x3f, 0x553 };
158  static const u16 W83627EHF_REG_FAN_MIN[] = { 0x3b, 0x3c, 0x3d, 0x3e, 0x55c };
159  
160  /* The W83627EHF registers for nr=7,8,9 are in bank 5 */
161  #define W83627EHF_REG_IN_MAX(nr)	((nr < 7) ? (0x2b + (nr) * 2) : \
162  					 (0x554 + (((nr) - 7) * 2)))
163  #define W83627EHF_REG_IN_MIN(nr)	((nr < 7) ? (0x2c + (nr) * 2) : \
164  					 (0x555 + (((nr) - 7) * 2)))
165  #define W83627EHF_REG_IN(nr)		((nr < 7) ? (0x20 + (nr)) : \
166  					 (0x550 + (nr) - 7))
167  
168  static const u16 W83627EHF_REG_TEMP[] = { 0x27, 0x150, 0x250, 0x7e };
169  static const u16 W83627EHF_REG_TEMP_HYST[] = { 0x3a, 0x153, 0x253, 0 };
170  static const u16 W83627EHF_REG_TEMP_OVER[] = { 0x39, 0x155, 0x255, 0 };
171  static const u16 W83627EHF_REG_TEMP_CONFIG[] = { 0, 0x152, 0x252, 0 };
172  
173  /* Fan clock dividers are spread over the following five registers */
174  #define W83627EHF_REG_FANDIV1		0x47
175  #define W83627EHF_REG_FANDIV2		0x4B
176  #define W83627EHF_REG_VBAT		0x5D
177  #define W83627EHF_REG_DIODE		0x59
178  #define W83627EHF_REG_SMI_OVT		0x4C
179  
180  #define W83627EHF_REG_ALARM1		0x459
181  #define W83627EHF_REG_ALARM2		0x45A
182  #define W83627EHF_REG_ALARM3		0x45B
183  
184  #define W83627EHF_REG_CASEOPEN_DET	0x42 /* SMI STATUS #2 */
185  #define W83627EHF_REG_CASEOPEN_CLR	0x46 /* SMI MASK #3 */
186  
187  /* SmartFan registers */
188  #define W83627EHF_REG_FAN_STEPUP_TIME 0x0f
189  #define W83627EHF_REG_FAN_STEPDOWN_TIME 0x0e
190  
191  /* DC or PWM output fan configuration */
192  static const u8 W83627EHF_REG_PWM_ENABLE[] = {
193  	0x04,			/* SYS FAN0 output mode and PWM mode */
194  	0x04,			/* CPU FAN0 output mode and PWM mode */
195  	0x12,			/* AUX FAN mode */
196  	0x62,			/* CPU FAN1 mode */
197  };
198  
199  static const u8 W83627EHF_PWM_MODE_SHIFT[] = { 0, 1, 0, 6 };
200  static const u8 W83627EHF_PWM_ENABLE_SHIFT[] = { 2, 4, 1, 4 };
201  
202  /* FAN Duty Cycle, be used to control */
203  static const u16 W83627EHF_REG_PWM[] = { 0x01, 0x03, 0x11, 0x61 };
204  static const u16 W83627EHF_REG_TARGET[] = { 0x05, 0x06, 0x13, 0x63 };
205  static const u8 W83627EHF_REG_TOLERANCE[] = { 0x07, 0x07, 0x14, 0x62 };
206  
207  /* Advanced Fan control, some values are common for all fans */
208  static const u16 W83627EHF_REG_FAN_START_OUTPUT[] = { 0x0a, 0x0b, 0x16, 0x65 };
209  static const u16 W83627EHF_REG_FAN_STOP_OUTPUT[] = { 0x08, 0x09, 0x15, 0x64 };
210  static const u16 W83627EHF_REG_FAN_STOP_TIME[] = { 0x0c, 0x0d, 0x17, 0x66 };
211  
212  static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_COMMON[]
213  						= { 0xff, 0x67, 0xff, 0x69 };
214  static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_COMMON[]
215  						= { 0xff, 0x68, 0xff, 0x6a };
216  
217  static const u16 W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B[] = { 0x67, 0x69, 0x6b };
218  static const u16 W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B[]
219  						= { 0x68, 0x6a, 0x6c };
220  
221  static const u16 W83627EHF_REG_TEMP_OFFSET[] = { 0x454, 0x455, 0x456 };
222  
223  static const char *const w83667hg_b_temp_label[] = {
224  	"SYSTIN",
225  	"CPUTIN",
226  	"AUXTIN",
227  	"AMDTSI",
228  	"PECI Agent 1",
229  	"PECI Agent 2",
230  	"PECI Agent 3",
231  	"PECI Agent 4"
232  };
233  
234  #define NUM_REG_TEMP	ARRAY_SIZE(W83627EHF_REG_TEMP)
235  
is_word_sized(u16 reg)236  static int is_word_sized(u16 reg)
237  {
238  	return ((((reg & 0xff00) == 0x100
239  	      || (reg & 0xff00) == 0x200)
240  	     && ((reg & 0x00ff) == 0x50
241  	      || (reg & 0x00ff) == 0x53
242  	      || (reg & 0x00ff) == 0x55))
243  	     || (reg & 0xfff0) == 0x630
244  	     || reg == 0x640 || reg == 0x642
245  	     || ((reg & 0xfff0) == 0x650
246  		 && (reg & 0x000f) >= 0x06)
247  	     || reg == 0x73 || reg == 0x75 || reg == 0x77
248  		);
249  }
250  
251  /*
252   * Conversions
253   */
254  
255  /* 1 is PWM mode, output in ms */
step_time_from_reg(u8 reg,u8 mode)256  static inline unsigned int step_time_from_reg(u8 reg, u8 mode)
257  {
258  	return mode ? 100 * reg : 400 * reg;
259  }
260  
step_time_to_reg(unsigned int msec,u8 mode)261  static inline u8 step_time_to_reg(unsigned int msec, u8 mode)
262  {
263  	return clamp_val((mode ? (msec + 50) / 100 : (msec + 200) / 400),
264  			 1, 255);
265  }
266  
fan_from_reg8(u16 reg,unsigned int divreg)267  static unsigned int fan_from_reg8(u16 reg, unsigned int divreg)
268  {
269  	if (reg == 0 || reg == 255)
270  		return 0;
271  	return 1350000U / (reg << divreg);
272  }
273  
274  static inline unsigned int
div_from_reg(u8 reg)275  div_from_reg(u8 reg)
276  {
277  	return 1 << reg;
278  }
279  
280  /*
281   * Some of the voltage inputs have internal scaling, the tables below
282   * contain 8 (the ADC LSB in mV) * scaling factor * 100
283   */
284  static const u16 scale_in_common[10] = {
285  	800, 800, 1600, 1600, 800, 800, 800, 1600, 1600, 800
286  };
287  static const u16 scale_in_w83627uhg[9] = {
288  	800, 800, 3328, 3424, 800, 800, 0, 3328, 3400
289  };
290  
in_from_reg(u8 reg,u8 nr,const u16 * scale_in)291  static inline long in_from_reg(u8 reg, u8 nr, const u16 *scale_in)
292  {
293  	return DIV_ROUND_CLOSEST(reg * scale_in[nr], 100);
294  }
295  
in_to_reg(u32 val,u8 nr,const u16 * scale_in)296  static inline u8 in_to_reg(u32 val, u8 nr, const u16 *scale_in)
297  {
298  	return clamp_val(DIV_ROUND_CLOSEST(val * 100, scale_in[nr]), 0, 255);
299  }
300  
301  /*
302   * Data structures and manipulation thereof
303   */
304  
305  struct w83627ehf_data {
306  	int addr;	/* IO base of hw monitor block */
307  	const char *name;
308  
309  	struct mutex lock;
310  
311  	u16 reg_temp[NUM_REG_TEMP];
312  	u16 reg_temp_over[NUM_REG_TEMP];
313  	u16 reg_temp_hyst[NUM_REG_TEMP];
314  	u16 reg_temp_config[NUM_REG_TEMP];
315  	u8 temp_src[NUM_REG_TEMP];
316  	const char * const *temp_label;
317  
318  	const u16 *REG_FAN_MAX_OUTPUT;
319  	const u16 *REG_FAN_STEP_OUTPUT;
320  	const u16 *scale_in;
321  
322  	struct mutex update_lock;
323  	bool valid;		/* true if following fields are valid */
324  	unsigned long last_updated;	/* In jiffies */
325  
326  	/* Register values */
327  	u8 bank;		/* current register bank */
328  	u8 in_num;		/* number of in inputs we have */
329  	u8 in[10];		/* Register value */
330  	u8 in_max[10];		/* Register value */
331  	u8 in_min[10];		/* Register value */
332  	unsigned int rpm[5];
333  	u16 fan_min[5];
334  	u8 fan_div[5];
335  	u8 has_fan;		/* some fan inputs can be disabled */
336  	u8 has_fan_min;		/* some fans don't have min register */
337  	u8 temp_type[3];
338  	s8 temp_offset[3];
339  	s16 temp[9];
340  	s16 temp_max[9];
341  	s16 temp_max_hyst[9];
342  	u32 alarms;
343  	u8 caseopen;
344  
345  	u8 pwm_mode[4]; /* 0->DC variable voltage, 1->PWM variable duty cycle */
346  	u8 pwm_enable[4]; /* 1->manual
347  			   * 2->thermal cruise mode (also called SmartFan I)
348  			   * 3->fan speed cruise mode
349  			   * 4->variable thermal cruise (also called
350  			   * SmartFan III)
351  			   * 5->enhanced variable thermal cruise (also called
352  			   * SmartFan IV)
353  			   */
354  	u8 pwm_enable_orig[4];	/* original value of pwm_enable */
355  	u8 pwm_num;		/* number of pwm */
356  	u8 pwm[4];
357  	u8 target_temp[4];
358  	u8 tolerance[4];
359  
360  	u8 fan_start_output[4]; /* minimum fan speed when spinning up */
361  	u8 fan_stop_output[4]; /* minimum fan speed when spinning down */
362  	u8 fan_stop_time[4]; /* time at minimum before disabling fan */
363  	u8 fan_max_output[4]; /* maximum fan speed */
364  	u8 fan_step_output[4]; /* rate of change output value */
365  
366  	u8 vid;
367  	u8 vrm;
368  
369  	u16 have_temp;
370  	u16 have_temp_offset;
371  	u8 in6_skip:1;
372  	u8 temp3_val_only:1;
373  	u8 have_vid:1;
374  
375  	/* Remember extra register values over suspend/resume */
376  	u8 vbat;
377  	u8 fandiv1;
378  	u8 fandiv2;
379  };
380  
381  struct w83627ehf_sio_data {
382  	int sioreg;
383  	enum kinds kind;
384  };
385  
386  /*
387   * On older chips, only registers 0x50-0x5f are banked.
388   * On more recent chips, all registers are banked.
389   * Assume that is the case and set the bank number for each access.
390   * Cache the bank number so it only needs to be set if it changes.
391   */
w83627ehf_set_bank(struct w83627ehf_data * data,u16 reg)392  static inline void w83627ehf_set_bank(struct w83627ehf_data *data, u16 reg)
393  {
394  	u8 bank = reg >> 8;
395  	if (data->bank != bank) {
396  		outb_p(W83627EHF_REG_BANK, data->addr + ADDR_REG_OFFSET);
397  		outb_p(bank, data->addr + DATA_REG_OFFSET);
398  		data->bank = bank;
399  	}
400  }
401  
w83627ehf_read_value(struct w83627ehf_data * data,u16 reg)402  static u16 w83627ehf_read_value(struct w83627ehf_data *data, u16 reg)
403  {
404  	int res, word_sized = is_word_sized(reg);
405  
406  	mutex_lock(&data->lock);
407  
408  	w83627ehf_set_bank(data, reg);
409  	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
410  	res = inb_p(data->addr + DATA_REG_OFFSET);
411  	if (word_sized) {
412  		outb_p((reg & 0xff) + 1,
413  		       data->addr + ADDR_REG_OFFSET);
414  		res = (res << 8) + inb_p(data->addr + DATA_REG_OFFSET);
415  	}
416  
417  	mutex_unlock(&data->lock);
418  	return res;
419  }
420  
w83627ehf_write_value(struct w83627ehf_data * data,u16 reg,u16 value)421  static int w83627ehf_write_value(struct w83627ehf_data *data, u16 reg,
422  				 u16 value)
423  {
424  	int word_sized = is_word_sized(reg);
425  
426  	mutex_lock(&data->lock);
427  
428  	w83627ehf_set_bank(data, reg);
429  	outb_p(reg & 0xff, data->addr + ADDR_REG_OFFSET);
430  	if (word_sized) {
431  		outb_p(value >> 8, data->addr + DATA_REG_OFFSET);
432  		outb_p((reg & 0xff) + 1,
433  		       data->addr + ADDR_REG_OFFSET);
434  	}
435  	outb_p(value & 0xff, data->addr + DATA_REG_OFFSET);
436  
437  	mutex_unlock(&data->lock);
438  	return 0;
439  }
440  
441  /* We left-align 8-bit temperature values to make the code simpler */
w83627ehf_read_temp(struct w83627ehf_data * data,u16 reg)442  static u16 w83627ehf_read_temp(struct w83627ehf_data *data, u16 reg)
443  {
444  	u16 res;
445  
446  	res = w83627ehf_read_value(data, reg);
447  	if (!is_word_sized(reg))
448  		res <<= 8;
449  
450  	return res;
451  }
452  
w83627ehf_write_temp(struct w83627ehf_data * data,u16 reg,u16 value)453  static int w83627ehf_write_temp(struct w83627ehf_data *data, u16 reg,
454  				       u16 value)
455  {
456  	if (!is_word_sized(reg))
457  		value >>= 8;
458  	return w83627ehf_write_value(data, reg, value);
459  }
460  
461  /* This function assumes that the caller holds data->update_lock */
w83627ehf_write_fan_div(struct w83627ehf_data * data,int nr)462  static void w83627ehf_write_fan_div(struct w83627ehf_data *data, int nr)
463  {
464  	u8 reg;
465  
466  	switch (nr) {
467  	case 0:
468  		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0xcf)
469  		    | ((data->fan_div[0] & 0x03) << 4);
470  		/* fan5 input control bit is write only, compute the value */
471  		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
472  		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
473  		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xdf)
474  		    | ((data->fan_div[0] & 0x04) << 3);
475  		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
476  		break;
477  	case 1:
478  		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV1) & 0x3f)
479  		    | ((data->fan_div[1] & 0x03) << 6);
480  		/* fan5 input control bit is write only, compute the value */
481  		reg |= (data->has_fan & (1 << 4)) ? 1 : 0;
482  		w83627ehf_write_value(data, W83627EHF_REG_FANDIV1, reg);
483  		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0xbf)
484  		    | ((data->fan_div[1] & 0x04) << 4);
485  		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
486  		break;
487  	case 2:
488  		reg = (w83627ehf_read_value(data, W83627EHF_REG_FANDIV2) & 0x3f)
489  		    | ((data->fan_div[2] & 0x03) << 6);
490  		w83627ehf_write_value(data, W83627EHF_REG_FANDIV2, reg);
491  		reg = (w83627ehf_read_value(data, W83627EHF_REG_VBAT) & 0x7f)
492  		    | ((data->fan_div[2] & 0x04) << 5);
493  		w83627ehf_write_value(data, W83627EHF_REG_VBAT, reg);
494  		break;
495  	case 3:
496  		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0xfc)
497  		    | (data->fan_div[3] & 0x03);
498  		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
499  		reg = (w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT) & 0x7f)
500  		    | ((data->fan_div[3] & 0x04) << 5);
501  		w83627ehf_write_value(data, W83627EHF_REG_SMI_OVT, reg);
502  		break;
503  	case 4:
504  		reg = (w83627ehf_read_value(data, W83627EHF_REG_DIODE) & 0x73)
505  		    | ((data->fan_div[4] & 0x03) << 2)
506  		    | ((data->fan_div[4] & 0x04) << 5);
507  		w83627ehf_write_value(data, W83627EHF_REG_DIODE, reg);
508  		break;
509  	}
510  }
511  
w83627ehf_update_fan_div(struct w83627ehf_data * data)512  static void w83627ehf_update_fan_div(struct w83627ehf_data *data)
513  {
514  	int i;
515  
516  	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
517  	data->fan_div[0] = (i >> 4) & 0x03;
518  	data->fan_div[1] = (i >> 6) & 0x03;
519  	i = w83627ehf_read_value(data, W83627EHF_REG_FANDIV2);
520  	data->fan_div[2] = (i >> 6) & 0x03;
521  	i = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
522  	data->fan_div[0] |= (i >> 3) & 0x04;
523  	data->fan_div[1] |= (i >> 4) & 0x04;
524  	data->fan_div[2] |= (i >> 5) & 0x04;
525  	if (data->has_fan & ((1 << 3) | (1 << 4))) {
526  		i = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
527  		data->fan_div[3] = i & 0x03;
528  		data->fan_div[4] = ((i >> 2) & 0x03)
529  				 | ((i >> 5) & 0x04);
530  	}
531  	if (data->has_fan & (1 << 3)) {
532  		i = w83627ehf_read_value(data, W83627EHF_REG_SMI_OVT);
533  		data->fan_div[3] |= (i >> 5) & 0x04;
534  	}
535  }
536  
w83627ehf_update_pwm(struct w83627ehf_data * data)537  static void w83627ehf_update_pwm(struct w83627ehf_data *data)
538  {
539  	int i;
540  	int pwmcfg = 0, tolerance = 0; /* shut up the compiler */
541  
542  	for (i = 0; i < data->pwm_num; i++) {
543  		if (!(data->has_fan & (1 << i)))
544  			continue;
545  
546  		/* pwmcfg, tolerance mapped for i=0, i=1 to same reg */
547  		if (i != 1) {
548  			pwmcfg = w83627ehf_read_value(data,
549  					W83627EHF_REG_PWM_ENABLE[i]);
550  			tolerance = w83627ehf_read_value(data,
551  					W83627EHF_REG_TOLERANCE[i]);
552  		}
553  		data->pwm_mode[i] =
554  			((pwmcfg >> W83627EHF_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1;
555  		data->pwm_enable[i] = ((pwmcfg >> W83627EHF_PWM_ENABLE_SHIFT[i])
556  				       & 3) + 1;
557  		data->pwm[i] = w83627ehf_read_value(data, W83627EHF_REG_PWM[i]);
558  
559  		data->tolerance[i] = (tolerance >> (i == 1 ? 4 : 0)) & 0x0f;
560  	}
561  }
562  
w83627ehf_update_device(struct device * dev)563  static struct w83627ehf_data *w83627ehf_update_device(struct device *dev)
564  {
565  	struct w83627ehf_data *data = dev_get_drvdata(dev);
566  	int i;
567  
568  	mutex_lock(&data->update_lock);
569  
570  	if (time_after(jiffies, data->last_updated + HZ + HZ/2)
571  	 || !data->valid) {
572  		/* Fan clock dividers */
573  		w83627ehf_update_fan_div(data);
574  
575  		/* Measured voltages and limits */
576  		for (i = 0; i < data->in_num; i++) {
577  			if ((i == 6) && data->in6_skip)
578  				continue;
579  
580  			data->in[i] = w83627ehf_read_value(data,
581  				      W83627EHF_REG_IN(i));
582  			data->in_min[i] = w83627ehf_read_value(data,
583  					  W83627EHF_REG_IN_MIN(i));
584  			data->in_max[i] = w83627ehf_read_value(data,
585  					  W83627EHF_REG_IN_MAX(i));
586  		}
587  
588  		/* Measured fan speeds and limits */
589  		for (i = 0; i < 5; i++) {
590  			u16 reg;
591  
592  			if (!(data->has_fan & (1 << i)))
593  				continue;
594  
595  			reg = w83627ehf_read_value(data, W83627EHF_REG_FAN[i]);
596  			data->rpm[i] = fan_from_reg8(reg, data->fan_div[i]);
597  
598  			if (data->has_fan_min & (1 << i))
599  				data->fan_min[i] = w83627ehf_read_value(data,
600  					   W83627EHF_REG_FAN_MIN[i]);
601  
602  			/*
603  			 * If we failed to measure the fan speed and clock
604  			 * divider can be increased, let's try that for next
605  			 * time
606  			 */
607  			if (reg >= 0xff && data->fan_div[i] < 0x07) {
608  				dev_dbg(dev,
609  					"Increasing fan%d clock divider from %u to %u\n",
610  					i + 1, div_from_reg(data->fan_div[i]),
611  					div_from_reg(data->fan_div[i] + 1));
612  				data->fan_div[i]++;
613  				w83627ehf_write_fan_div(data, i);
614  				/* Preserve min limit if possible */
615  				if ((data->has_fan_min & (1 << i))
616  				 && data->fan_min[i] >= 2
617  				 && data->fan_min[i] != 255)
618  					w83627ehf_write_value(data,
619  						W83627EHF_REG_FAN_MIN[i],
620  						(data->fan_min[i] /= 2));
621  			}
622  		}
623  
624  		w83627ehf_update_pwm(data);
625  
626  		for (i = 0; i < data->pwm_num; i++) {
627  			if (!(data->has_fan & (1 << i)))
628  				continue;
629  
630  			data->fan_start_output[i] =
631  			  w83627ehf_read_value(data,
632  					     W83627EHF_REG_FAN_START_OUTPUT[i]);
633  			data->fan_stop_output[i] =
634  			  w83627ehf_read_value(data,
635  					     W83627EHF_REG_FAN_STOP_OUTPUT[i]);
636  			data->fan_stop_time[i] =
637  			  w83627ehf_read_value(data,
638  					       W83627EHF_REG_FAN_STOP_TIME[i]);
639  
640  			if (data->REG_FAN_MAX_OUTPUT &&
641  			    data->REG_FAN_MAX_OUTPUT[i] != 0xff)
642  				data->fan_max_output[i] =
643  				  w83627ehf_read_value(data,
644  						data->REG_FAN_MAX_OUTPUT[i]);
645  
646  			if (data->REG_FAN_STEP_OUTPUT &&
647  			    data->REG_FAN_STEP_OUTPUT[i] != 0xff)
648  				data->fan_step_output[i] =
649  				  w83627ehf_read_value(data,
650  						data->REG_FAN_STEP_OUTPUT[i]);
651  
652  			data->target_temp[i] =
653  				w83627ehf_read_value(data,
654  					W83627EHF_REG_TARGET[i]) &
655  					(data->pwm_mode[i] == 1 ? 0x7f : 0xff);
656  		}
657  
658  		/* Measured temperatures and limits */
659  		for (i = 0; i < NUM_REG_TEMP; i++) {
660  			if (!(data->have_temp & (1 << i)))
661  				continue;
662  			data->temp[i] = w83627ehf_read_temp(data,
663  						data->reg_temp[i]);
664  			if (data->reg_temp_over[i])
665  				data->temp_max[i]
666  				  = w83627ehf_read_temp(data,
667  						data->reg_temp_over[i]);
668  			if (data->reg_temp_hyst[i])
669  				data->temp_max_hyst[i]
670  				  = w83627ehf_read_temp(data,
671  						data->reg_temp_hyst[i]);
672  			if (i > 2)
673  				continue;
674  			if (data->have_temp_offset & (1 << i))
675  				data->temp_offset[i]
676  				  = w83627ehf_read_value(data,
677  						W83627EHF_REG_TEMP_OFFSET[i]);
678  		}
679  
680  		data->alarms = w83627ehf_read_value(data,
681  					W83627EHF_REG_ALARM1) |
682  			       (w83627ehf_read_value(data,
683  					W83627EHF_REG_ALARM2) << 8) |
684  			       (w83627ehf_read_value(data,
685  					W83627EHF_REG_ALARM3) << 16);
686  
687  		data->caseopen = w83627ehf_read_value(data,
688  						W83627EHF_REG_CASEOPEN_DET);
689  
690  		data->last_updated = jiffies;
691  		data->valid = true;
692  	}
693  
694  	mutex_unlock(&data->update_lock);
695  	return data;
696  }
697  
698  #define store_in_reg(REG, reg) \
699  static int \
700  store_in_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
701  	       long val) \
702  { \
703  	if (val < 0) \
704  		return -EINVAL; \
705  	mutex_lock(&data->update_lock); \
706  	data->in_##reg[channel] = in_to_reg(val, channel, data->scale_in); \
707  	w83627ehf_write_value(data, W83627EHF_REG_IN_##REG(channel), \
708  			      data->in_##reg[channel]); \
709  	mutex_unlock(&data->update_lock); \
710  	return 0; \
711  }
712  
store_in_reg(MIN,min)713  store_in_reg(MIN, min)
714  store_in_reg(MAX, max)
715  
716  static int
717  store_fan_min(struct device *dev, struct w83627ehf_data *data, int channel,
718  	      long val)
719  {
720  	unsigned int reg;
721  	u8 new_div;
722  
723  	if (val < 0)
724  		return -EINVAL;
725  
726  	mutex_lock(&data->update_lock);
727  	if (!val) {
728  		/* No min limit, alarm disabled */
729  		data->fan_min[channel] = 255;
730  		new_div = data->fan_div[channel]; /* No change */
731  		dev_info(dev, "fan%u low limit and alarm disabled\n",
732  			 channel + 1);
733  	} else if ((reg = 1350000U / val) >= 128 * 255) {
734  		/*
735  		 * Speed below this value cannot possibly be represented,
736  		 * even with the highest divider (128)
737  		 */
738  		data->fan_min[channel] = 254;
739  		new_div = 7; /* 128 == (1 << 7) */
740  		dev_warn(dev,
741  			 "fan%u low limit %lu below minimum %u, set to minimum\n",
742  			 channel + 1, val, fan_from_reg8(254, 7));
743  	} else if (!reg) {
744  		/*
745  		 * Speed above this value cannot possibly be represented,
746  		 * even with the lowest divider (1)
747  		 */
748  		data->fan_min[channel] = 1;
749  		new_div = 0; /* 1 == (1 << 0) */
750  		dev_warn(dev,
751  			 "fan%u low limit %lu above maximum %u, set to maximum\n",
752  			 channel + 1, val, fan_from_reg8(1, 0));
753  	} else {
754  		/*
755  		 * Automatically pick the best divider, i.e. the one such
756  		 * that the min limit will correspond to a register value
757  		 * in the 96..192 range
758  		 */
759  		new_div = 0;
760  		while (reg > 192 && new_div < 7) {
761  			reg >>= 1;
762  			new_div++;
763  		}
764  		data->fan_min[channel] = reg;
765  	}
766  
767  	/*
768  	 * Write both the fan clock divider (if it changed) and the new
769  	 * fan min (unconditionally)
770  	 */
771  	if (new_div != data->fan_div[channel]) {
772  		dev_dbg(dev, "fan%u clock divider changed from %u to %u\n",
773  			channel + 1, div_from_reg(data->fan_div[channel]),
774  			div_from_reg(new_div));
775  		data->fan_div[channel] = new_div;
776  		w83627ehf_write_fan_div(data, channel);
777  		/* Give the chip time to sample a new speed value */
778  		data->last_updated = jiffies;
779  	}
780  
781  	w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[channel],
782  			      data->fan_min[channel]);
783  	mutex_unlock(&data->update_lock);
784  
785  	return 0;
786  }
787  
788  #define store_temp_reg(addr, reg) \
789  static int \
790  store_##reg(struct device *dev, struct w83627ehf_data *data, int channel, \
791  	    long val) \
792  { \
793  	mutex_lock(&data->update_lock); \
794  	data->reg[channel] = LM75_TEMP_TO_REG(val); \
795  	w83627ehf_write_temp(data, data->addr[channel], data->reg[channel]); \
796  	mutex_unlock(&data->update_lock); \
797  	return 0; \
798  }
799  store_temp_reg(reg_temp_over, temp_max);
800  store_temp_reg(reg_temp_hyst, temp_max_hyst);
801  
802  static int
store_temp_offset(struct device * dev,struct w83627ehf_data * data,int channel,long val)803  store_temp_offset(struct device *dev, struct w83627ehf_data *data, int channel,
804  		  long val)
805  {
806  	val = clamp_val(DIV_ROUND_CLOSEST(val, 1000), -128, 127);
807  
808  	mutex_lock(&data->update_lock);
809  	data->temp_offset[channel] = val;
810  	w83627ehf_write_value(data, W83627EHF_REG_TEMP_OFFSET[channel], val);
811  	mutex_unlock(&data->update_lock);
812  	return 0;
813  }
814  
815  static int
store_pwm_mode(struct device * dev,struct w83627ehf_data * data,int channel,long val)816  store_pwm_mode(struct device *dev, struct w83627ehf_data *data, int channel,
817  	       long val)
818  {
819  	u16 reg;
820  
821  	if (val < 0 || val > 1)
822  		return -EINVAL;
823  
824  	mutex_lock(&data->update_lock);
825  	reg = w83627ehf_read_value(data, W83627EHF_REG_PWM_ENABLE[channel]);
826  	data->pwm_mode[channel] = val;
827  	reg &= ~(1 << W83627EHF_PWM_MODE_SHIFT[channel]);
828  	if (!val)
829  		reg |= 1 << W83627EHF_PWM_MODE_SHIFT[channel];
830  	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel], reg);
831  	mutex_unlock(&data->update_lock);
832  	return 0;
833  }
834  
835  static int
store_pwm(struct device * dev,struct w83627ehf_data * data,int channel,long val)836  store_pwm(struct device *dev, struct w83627ehf_data *data, int channel,
837  	  long val)
838  {
839  	val = clamp_val(val, 0, 255);
840  
841  	mutex_lock(&data->update_lock);
842  	data->pwm[channel] = val;
843  	w83627ehf_write_value(data, W83627EHF_REG_PWM[channel], val);
844  	mutex_unlock(&data->update_lock);
845  	return 0;
846  }
847  
848  static int
store_pwm_enable(struct device * dev,struct w83627ehf_data * data,int channel,long val)849  store_pwm_enable(struct device *dev, struct w83627ehf_data *data, int channel,
850  		 long val)
851  {
852  	u16 reg;
853  
854  	if (!val || val < 0 ||
855  	    (val > 4 && val != data->pwm_enable_orig[channel]))
856  		return -EINVAL;
857  
858  	mutex_lock(&data->update_lock);
859  	data->pwm_enable[channel] = val;
860  	reg = w83627ehf_read_value(data,
861  				   W83627EHF_REG_PWM_ENABLE[channel]);
862  	reg &= ~(0x03 << W83627EHF_PWM_ENABLE_SHIFT[channel]);
863  	reg |= (val - 1) << W83627EHF_PWM_ENABLE_SHIFT[channel];
864  	w83627ehf_write_value(data, W83627EHF_REG_PWM_ENABLE[channel],
865  			      reg);
866  	mutex_unlock(&data->update_lock);
867  	return 0;
868  }
869  
870  #define show_tol_temp(reg) \
871  static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
872  				char *buf) \
873  { \
874  	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
875  	struct sensor_device_attribute *sensor_attr = \
876  		to_sensor_dev_attr(attr); \
877  	int nr = sensor_attr->index; \
878  	return sprintf(buf, "%d\n", data->reg[nr] * 1000); \
879  }
880  
881  show_tol_temp(tolerance)
show_tol_temp(target_temp)882  show_tol_temp(target_temp)
883  
884  static ssize_t
885  store_target_temp(struct device *dev, struct device_attribute *attr,
886  			const char *buf, size_t count)
887  {
888  	struct w83627ehf_data *data = dev_get_drvdata(dev);
889  	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
890  	int nr = sensor_attr->index;
891  	long val;
892  	int err;
893  
894  	err = kstrtol(buf, 10, &val);
895  	if (err < 0)
896  		return err;
897  
898  	val = DIV_ROUND_CLOSEST(clamp_val(val, 0, 127000), 1000);
899  
900  	mutex_lock(&data->update_lock);
901  	data->target_temp[nr] = val;
902  	w83627ehf_write_value(data, W83627EHF_REG_TARGET[nr], val);
903  	mutex_unlock(&data->update_lock);
904  	return count;
905  }
906  
907  static ssize_t
store_tolerance(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)908  store_tolerance(struct device *dev, struct device_attribute *attr,
909  			const char *buf, size_t count)
910  {
911  	struct w83627ehf_data *data = dev_get_drvdata(dev);
912  	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
913  	int nr = sensor_attr->index;
914  	u16 reg;
915  	long val;
916  	int err;
917  
918  	err = kstrtol(buf, 10, &val);
919  	if (err < 0)
920  		return err;
921  
922  	/* Limit the temp to 0C - 15C */
923  	val = DIV_ROUND_CLOSEST(clamp_val(val, 0, 15000), 1000);
924  
925  	mutex_lock(&data->update_lock);
926  	reg = w83627ehf_read_value(data, W83627EHF_REG_TOLERANCE[nr]);
927  	if (nr == 1)
928  		reg = (reg & 0x0f) | (val << 4);
929  	else
930  		reg = (reg & 0xf0) | val;
931  	w83627ehf_write_value(data, W83627EHF_REG_TOLERANCE[nr], reg);
932  	data->tolerance[nr] = val;
933  	mutex_unlock(&data->update_lock);
934  	return count;
935  }
936  
937  static SENSOR_DEVICE_ATTR(pwm1_target, 0644, show_target_temp,
938  	    store_target_temp, 0);
939  static SENSOR_DEVICE_ATTR(pwm2_target, 0644, show_target_temp,
940  	    store_target_temp, 1);
941  static SENSOR_DEVICE_ATTR(pwm3_target, 0644, show_target_temp,
942  	    store_target_temp, 2);
943  static SENSOR_DEVICE_ATTR(pwm4_target, 0644, show_target_temp,
944  	    store_target_temp, 3);
945  
946  static SENSOR_DEVICE_ATTR(pwm1_tolerance, 0644, show_tolerance,
947  	    store_tolerance, 0);
948  static SENSOR_DEVICE_ATTR(pwm2_tolerance, 0644, show_tolerance,
949  	    store_tolerance, 1);
950  static SENSOR_DEVICE_ATTR(pwm3_tolerance, 0644, show_tolerance,
951  	    store_tolerance, 2);
952  static SENSOR_DEVICE_ATTR(pwm4_tolerance, 0644, show_tolerance,
953  	    store_tolerance, 3);
954  
955  /* Smart Fan registers */
956  
957  #define fan_functions(reg, REG) \
958  static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
959  		       char *buf) \
960  { \
961  	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
962  	struct sensor_device_attribute *sensor_attr = \
963  		to_sensor_dev_attr(attr); \
964  	int nr = sensor_attr->index; \
965  	return sprintf(buf, "%d\n", data->reg[nr]); \
966  } \
967  static ssize_t \
968  store_##reg(struct device *dev, struct device_attribute *attr, \
969  			    const char *buf, size_t count) \
970  { \
971  	struct w83627ehf_data *data = dev_get_drvdata(dev); \
972  	struct sensor_device_attribute *sensor_attr = \
973  		to_sensor_dev_attr(attr); \
974  	int nr = sensor_attr->index; \
975  	unsigned long val; \
976  	int err; \
977  	err = kstrtoul(buf, 10, &val); \
978  	if (err < 0) \
979  		return err; \
980  	val = clamp_val(val, 1, 255); \
981  	mutex_lock(&data->update_lock); \
982  	data->reg[nr] = val; \
983  	w83627ehf_write_value(data, REG[nr], val); \
984  	mutex_unlock(&data->update_lock); \
985  	return count; \
986  }
987  
988  fan_functions(fan_start_output, W83627EHF_REG_FAN_START_OUTPUT)
989  fan_functions(fan_stop_output, W83627EHF_REG_FAN_STOP_OUTPUT)
990  fan_functions(fan_max_output, data->REG_FAN_MAX_OUTPUT)
991  fan_functions(fan_step_output, data->REG_FAN_STEP_OUTPUT)
992  
993  #define fan_time_functions(reg, REG) \
994  static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
995  				char *buf) \
996  { \
997  	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent); \
998  	struct sensor_device_attribute *sensor_attr = \
999  		to_sensor_dev_attr(attr); \
1000  	int nr = sensor_attr->index; \
1001  	return sprintf(buf, "%d\n", \
1002  			step_time_from_reg(data->reg[nr], \
1003  					   data->pwm_mode[nr])); \
1004  } \
1005  \
1006  static ssize_t \
1007  store_##reg(struct device *dev, struct device_attribute *attr, \
1008  			const char *buf, size_t count) \
1009  { \
1010  	struct w83627ehf_data *data = dev_get_drvdata(dev); \
1011  	struct sensor_device_attribute *sensor_attr = \
1012  		to_sensor_dev_attr(attr); \
1013  	int nr = sensor_attr->index; \
1014  	unsigned long val; \
1015  	int err; \
1016  	err = kstrtoul(buf, 10, &val); \
1017  	if (err < 0) \
1018  		return err; \
1019  	val = step_time_to_reg(val, data->pwm_mode[nr]); \
1020  	mutex_lock(&data->update_lock); \
1021  	data->reg[nr] = val; \
1022  	w83627ehf_write_value(data, REG[nr], val); \
1023  	mutex_unlock(&data->update_lock); \
1024  	return count; \
1025  } \
1026  
1027  fan_time_functions(fan_stop_time, W83627EHF_REG_FAN_STOP_TIME)
1028  
1029  static SENSOR_DEVICE_ATTR(pwm4_stop_time, 0644, show_fan_stop_time,
1030  	    store_fan_stop_time, 3);
1031  static SENSOR_DEVICE_ATTR(pwm4_start_output, 0644, show_fan_start_output,
1032  	    store_fan_start_output, 3);
1033  static SENSOR_DEVICE_ATTR(pwm4_stop_output, 0644, show_fan_stop_output,
1034  	    store_fan_stop_output, 3);
1035  static SENSOR_DEVICE_ATTR(pwm4_max_output, 0644, show_fan_max_output,
1036  	    store_fan_max_output, 3);
1037  static SENSOR_DEVICE_ATTR(pwm4_step_output, 0644, show_fan_step_output,
1038  	    store_fan_step_output, 3);
1039  
1040  static SENSOR_DEVICE_ATTR(pwm3_stop_time, 0644, show_fan_stop_time,
1041  	    store_fan_stop_time, 2);
1042  static SENSOR_DEVICE_ATTR(pwm3_start_output, 0644, show_fan_start_output,
1043  	    store_fan_start_output, 2);
1044  static SENSOR_DEVICE_ATTR(pwm3_stop_output, 0644, show_fan_stop_output,
1045  		    store_fan_stop_output, 2);
1046  
1047  static SENSOR_DEVICE_ATTR(pwm1_stop_time, 0644, show_fan_stop_time,
1048  	    store_fan_stop_time, 0);
1049  static SENSOR_DEVICE_ATTR(pwm2_stop_time, 0644, show_fan_stop_time,
1050  	    store_fan_stop_time, 1);
1051  static SENSOR_DEVICE_ATTR(pwm1_start_output, 0644, show_fan_start_output,
1052  	    store_fan_start_output, 0);
1053  static SENSOR_DEVICE_ATTR(pwm2_start_output, 0644, show_fan_start_output,
1054  	    store_fan_start_output, 1);
1055  static SENSOR_DEVICE_ATTR(pwm1_stop_output, 0644, show_fan_stop_output,
1056  	    store_fan_stop_output, 0);
1057  static SENSOR_DEVICE_ATTR(pwm2_stop_output, 0644, show_fan_stop_output,
1058  	    store_fan_stop_output, 1);
1059  
1060  
1061  /*
1062   * pwm1 and pwm3 don't support max and step settings on all chips.
1063   * Need to check support while generating/removing attribute files.
1064   */
1065  static SENSOR_DEVICE_ATTR(pwm1_max_output, 0644, show_fan_max_output,
1066  	    store_fan_max_output, 0);
1067  static SENSOR_DEVICE_ATTR(pwm1_step_output, 0644, show_fan_step_output,
1068  	    store_fan_step_output, 0);
1069  static SENSOR_DEVICE_ATTR(pwm2_max_output, 0644, show_fan_max_output,
1070  	    store_fan_max_output, 1);
1071  static SENSOR_DEVICE_ATTR(pwm2_step_output, 0644, show_fan_step_output,
1072  	    store_fan_step_output, 1);
1073  static SENSOR_DEVICE_ATTR(pwm3_max_output, 0644, show_fan_max_output,
1074  	    store_fan_max_output, 2);
1075  static SENSOR_DEVICE_ATTR(pwm3_step_output, 0644, show_fan_step_output,
1076  	    store_fan_step_output, 2);
1077  
1078  static ssize_t
cpu0_vid_show(struct device * dev,struct device_attribute * attr,char * buf)1079  cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
1080  {
1081  	struct w83627ehf_data *data = dev_get_drvdata(dev);
1082  	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1083  }
1084  static DEVICE_ATTR_RO(cpu0_vid);
1085  
1086  
1087  /* Case open detection */
1088  static int
clear_caseopen(struct device * dev,struct w83627ehf_data * data,int channel,long val)1089  clear_caseopen(struct device *dev, struct w83627ehf_data *data, int channel,
1090  	       long val)
1091  {
1092  	const u16 mask = 0x80;
1093  	u16 reg;
1094  
1095  	if (val != 0 || channel != 0)
1096  		return -EINVAL;
1097  
1098  	mutex_lock(&data->update_lock);
1099  	reg = w83627ehf_read_value(data, W83627EHF_REG_CASEOPEN_CLR);
1100  	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg | mask);
1101  	w83627ehf_write_value(data, W83627EHF_REG_CASEOPEN_CLR, reg & ~mask);
1102  	data->valid = false;	/* Force cache refresh */
1103  	mutex_unlock(&data->update_lock);
1104  
1105  	return 0;
1106  }
1107  
w83627ehf_attrs_visible(struct kobject * kobj,struct attribute * a,int n)1108  static umode_t w83627ehf_attrs_visible(struct kobject *kobj,
1109  				       struct attribute *a, int n)
1110  {
1111  	struct device *dev = kobj_to_dev(kobj);
1112  	struct w83627ehf_data *data = dev_get_drvdata(dev);
1113  	struct device_attribute *devattr;
1114  	struct sensor_device_attribute *sda;
1115  
1116  	devattr = container_of(a, struct device_attribute, attr);
1117  
1118  	/* Not sensor */
1119  	if (devattr->show == cpu0_vid_show && data->have_vid)
1120  		return a->mode;
1121  
1122  	sda = (struct sensor_device_attribute *)devattr;
1123  
1124  	if (sda->index < 2 &&
1125  		(devattr->show == show_fan_stop_time ||
1126  		 devattr->show == show_fan_start_output ||
1127  		 devattr->show == show_fan_stop_output))
1128  		return a->mode;
1129  
1130  	if (sda->index < 3 &&
1131  		(devattr->show == show_fan_max_output ||
1132  		 devattr->show == show_fan_step_output) &&
1133  		data->REG_FAN_STEP_OUTPUT &&
1134  		data->REG_FAN_STEP_OUTPUT[sda->index] != 0xff)
1135  		return a->mode;
1136  
1137  	/* if fan3 and fan4 are enabled create the files for them */
1138  	if (sda->index == 2 &&
1139  		(data->has_fan & (1 << 2)) && data->pwm_num >= 3 &&
1140  		(devattr->show == show_fan_stop_time ||
1141  		 devattr->show == show_fan_start_output ||
1142  		 devattr->show == show_fan_stop_output))
1143  		return a->mode;
1144  
1145  	if (sda->index == 3 &&
1146  		(data->has_fan & (1 << 3)) && data->pwm_num >= 4 &&
1147  		(devattr->show == show_fan_stop_time ||
1148  		 devattr->show == show_fan_start_output ||
1149  		 devattr->show == show_fan_stop_output ||
1150  		 devattr->show == show_fan_max_output ||
1151  		 devattr->show == show_fan_step_output))
1152  		return a->mode;
1153  
1154  	if ((devattr->show == show_target_temp ||
1155  	    devattr->show == show_tolerance) &&
1156  	    (data->has_fan & (1 << sda->index)) &&
1157  	    sda->index < data->pwm_num)
1158  		return a->mode;
1159  
1160  	return 0;
1161  }
1162  
1163  /* These groups handle non-standard attributes used in this device */
1164  static struct attribute *w83627ehf_attrs[] = {
1165  
1166  	&sensor_dev_attr_pwm1_stop_time.dev_attr.attr,
1167  	&sensor_dev_attr_pwm1_start_output.dev_attr.attr,
1168  	&sensor_dev_attr_pwm1_stop_output.dev_attr.attr,
1169  	&sensor_dev_attr_pwm1_max_output.dev_attr.attr,
1170  	&sensor_dev_attr_pwm1_step_output.dev_attr.attr,
1171  	&sensor_dev_attr_pwm1_target.dev_attr.attr,
1172  	&sensor_dev_attr_pwm1_tolerance.dev_attr.attr,
1173  
1174  	&sensor_dev_attr_pwm2_stop_time.dev_attr.attr,
1175  	&sensor_dev_attr_pwm2_start_output.dev_attr.attr,
1176  	&sensor_dev_attr_pwm2_stop_output.dev_attr.attr,
1177  	&sensor_dev_attr_pwm2_max_output.dev_attr.attr,
1178  	&sensor_dev_attr_pwm2_step_output.dev_attr.attr,
1179  	&sensor_dev_attr_pwm2_target.dev_attr.attr,
1180  	&sensor_dev_attr_pwm2_tolerance.dev_attr.attr,
1181  
1182  	&sensor_dev_attr_pwm3_stop_time.dev_attr.attr,
1183  	&sensor_dev_attr_pwm3_start_output.dev_attr.attr,
1184  	&sensor_dev_attr_pwm3_stop_output.dev_attr.attr,
1185  	&sensor_dev_attr_pwm3_max_output.dev_attr.attr,
1186  	&sensor_dev_attr_pwm3_step_output.dev_attr.attr,
1187  	&sensor_dev_attr_pwm3_target.dev_attr.attr,
1188  	&sensor_dev_attr_pwm3_tolerance.dev_attr.attr,
1189  
1190  	&sensor_dev_attr_pwm4_stop_time.dev_attr.attr,
1191  	&sensor_dev_attr_pwm4_start_output.dev_attr.attr,
1192  	&sensor_dev_attr_pwm4_stop_output.dev_attr.attr,
1193  	&sensor_dev_attr_pwm4_max_output.dev_attr.attr,
1194  	&sensor_dev_attr_pwm4_step_output.dev_attr.attr,
1195  	&sensor_dev_attr_pwm4_target.dev_attr.attr,
1196  	&sensor_dev_attr_pwm4_tolerance.dev_attr.attr,
1197  
1198  	&dev_attr_cpu0_vid.attr,
1199  	NULL
1200  };
1201  
1202  static const struct attribute_group w83627ehf_group = {
1203  	.attrs = w83627ehf_attrs,
1204  	.is_visible = w83627ehf_attrs_visible,
1205  };
1206  
1207  static const struct attribute_group *w83627ehf_groups[] = {
1208  	&w83627ehf_group,
1209  	NULL
1210  };
1211  
1212  /*
1213   * Driver and device management
1214   */
1215  
1216  /* Get the monitoring functions started */
w83627ehf_init_device(struct w83627ehf_data * data,enum kinds kind)1217  static inline void w83627ehf_init_device(struct w83627ehf_data *data,
1218  						   enum kinds kind)
1219  {
1220  	int i;
1221  	u8 tmp, diode;
1222  
1223  	/* Start monitoring is needed */
1224  	tmp = w83627ehf_read_value(data, W83627EHF_REG_CONFIG);
1225  	if (!(tmp & 0x01))
1226  		w83627ehf_write_value(data, W83627EHF_REG_CONFIG,
1227  				      tmp | 0x01);
1228  
1229  	/* Enable temperature sensors if needed */
1230  	for (i = 0; i < NUM_REG_TEMP; i++) {
1231  		if (!(data->have_temp & (1 << i)))
1232  			continue;
1233  		if (!data->reg_temp_config[i])
1234  			continue;
1235  		tmp = w83627ehf_read_value(data,
1236  					   data->reg_temp_config[i]);
1237  		if (tmp & 0x01)
1238  			w83627ehf_write_value(data,
1239  					      data->reg_temp_config[i],
1240  					      tmp & 0xfe);
1241  	}
1242  
1243  	/* Enable VBAT monitoring if needed */
1244  	tmp = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1245  	if (!(tmp & 0x01))
1246  		w83627ehf_write_value(data, W83627EHF_REG_VBAT, tmp | 0x01);
1247  
1248  	/* Get thermal sensor types */
1249  	switch (kind) {
1250  	case w83627ehf:
1251  		diode = w83627ehf_read_value(data, W83627EHF_REG_DIODE);
1252  		break;
1253  	case w83627uhg:
1254  		diode = 0x00;
1255  		break;
1256  	default:
1257  		diode = 0x70;
1258  	}
1259  	for (i = 0; i < 3; i++) {
1260  		const char *label = NULL;
1261  
1262  		if (data->temp_label)
1263  			label = data->temp_label[data->temp_src[i]];
1264  
1265  		/* Digital source overrides analog type */
1266  		if (label && strncmp(label, "PECI", 4) == 0)
1267  			data->temp_type[i] = 6;
1268  		else if (label && strncmp(label, "AMD", 3) == 0)
1269  			data->temp_type[i] = 5;
1270  		else if ((tmp & (0x02 << i)))
1271  			data->temp_type[i] = (diode & (0x10 << i)) ? 1 : 3;
1272  		else
1273  			data->temp_type[i] = 4; /* thermistor */
1274  	}
1275  }
1276  
1277  static void
w83627ehf_set_temp_reg_ehf(struct w83627ehf_data * data,int n_temp)1278  w83627ehf_set_temp_reg_ehf(struct w83627ehf_data *data, int n_temp)
1279  {
1280  	int i;
1281  
1282  	for (i = 0; i < n_temp; i++) {
1283  		data->reg_temp[i] = W83627EHF_REG_TEMP[i];
1284  		data->reg_temp_over[i] = W83627EHF_REG_TEMP_OVER[i];
1285  		data->reg_temp_hyst[i] = W83627EHF_REG_TEMP_HYST[i];
1286  		data->reg_temp_config[i] = W83627EHF_REG_TEMP_CONFIG[i];
1287  	}
1288  }
1289  
1290  static void
w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data * sio_data,struct w83627ehf_data * data)1291  w83627ehf_check_fan_inputs(const struct w83627ehf_sio_data *sio_data,
1292  			   struct w83627ehf_data *data)
1293  {
1294  	int fan3pin, fan4pin, fan5pin, regval;
1295  
1296  	/* The W83627UHG is simple, only two fan inputs, no config */
1297  	if (sio_data->kind == w83627uhg) {
1298  		data->has_fan = 0x03; /* fan1 and fan2 */
1299  		data->has_fan_min = 0x03;
1300  		return;
1301  	}
1302  
1303  	/* fan4 and fan5 share some pins with the GPIO and serial flash */
1304  	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1305  		fan3pin = 1;
1306  		fan4pin = superio_inb(sio_data->sioreg, 0x27) & 0x40;
1307  		fan5pin = superio_inb(sio_data->sioreg, 0x27) & 0x20;
1308  	} else {
1309  		fan3pin = 1;
1310  		fan4pin = !(superio_inb(sio_data->sioreg, 0x29) & 0x06);
1311  		fan5pin = !(superio_inb(sio_data->sioreg, 0x24) & 0x02);
1312  	}
1313  
1314  	data->has_fan = data->has_fan_min = 0x03; /* fan1 and fan2 */
1315  	data->has_fan |= (fan3pin << 2);
1316  	data->has_fan_min |= (fan3pin << 2);
1317  
1318  	/*
1319  	 * It looks like fan4 and fan5 pins can be alternatively used
1320  	 * as fan on/off switches, but fan5 control is write only :/
1321  	 * We assume that if the serial interface is disabled, designers
1322  	 * connected fan5 as input unless they are emitting log 1, which
1323  	 * is not the default.
1324  	 */
1325  	regval = w83627ehf_read_value(data, W83627EHF_REG_FANDIV1);
1326  	if ((regval & (1 << 2)) && fan4pin) {
1327  		data->has_fan |= (1 << 3);
1328  		data->has_fan_min |= (1 << 3);
1329  	}
1330  	if (!(regval & (1 << 1)) && fan5pin) {
1331  		data->has_fan |= (1 << 4);
1332  		data->has_fan_min |= (1 << 4);
1333  	}
1334  }
1335  
1336  static umode_t
w83627ehf_is_visible(const void * drvdata,enum hwmon_sensor_types type,u32 attr,int channel)1337  w83627ehf_is_visible(const void *drvdata, enum hwmon_sensor_types type,
1338  		     u32 attr, int channel)
1339  {
1340  	const struct w83627ehf_data *data = drvdata;
1341  
1342  	switch (type) {
1343  	case hwmon_temp:
1344  		/* channel 0.., name 1.. */
1345  		if (!(data->have_temp & (1 << channel)))
1346  			return 0;
1347  		if (attr == hwmon_temp_input)
1348  			return 0444;
1349  		if (attr == hwmon_temp_label) {
1350  			if (data->temp_label)
1351  				return 0444;
1352  			return 0;
1353  		}
1354  		if (channel == 2 && data->temp3_val_only)
1355  			return 0;
1356  		if (attr == hwmon_temp_max) {
1357  			if (data->reg_temp_over[channel])
1358  				return 0644;
1359  			else
1360  				return 0;
1361  		}
1362  		if (attr == hwmon_temp_max_hyst) {
1363  			if (data->reg_temp_hyst[channel])
1364  				return 0644;
1365  			else
1366  				return 0;
1367  		}
1368  		if (channel > 2)
1369  			return 0;
1370  		if (attr == hwmon_temp_alarm || attr == hwmon_temp_type)
1371  			return 0444;
1372  		if (attr == hwmon_temp_offset) {
1373  			if (data->have_temp_offset & (1 << channel))
1374  				return 0644;
1375  			else
1376  				return 0;
1377  		}
1378  		break;
1379  
1380  	case hwmon_fan:
1381  		/* channel 0.., name 1.. */
1382  		if (!(data->has_fan & (1 << channel)))
1383  			return 0;
1384  		if (attr == hwmon_fan_input || attr == hwmon_fan_alarm)
1385  			return 0444;
1386  		if (attr == hwmon_fan_div) {
1387  			return 0444;
1388  		}
1389  		if (attr == hwmon_fan_min) {
1390  			if (data->has_fan_min & (1 << channel))
1391  				return 0644;
1392  			else
1393  				return 0;
1394  		}
1395  		break;
1396  
1397  	case hwmon_in:
1398  		/* channel 0.., name 0.. */
1399  		if (channel >= data->in_num)
1400  			return 0;
1401  		if (channel == 6 && data->in6_skip)
1402  			return 0;
1403  		if (attr == hwmon_in_alarm || attr == hwmon_in_input)
1404  			return 0444;
1405  		if (attr == hwmon_in_min || attr == hwmon_in_max)
1406  			return 0644;
1407  		break;
1408  
1409  	case hwmon_pwm:
1410  		/* channel 0.., name 1.. */
1411  		if (!(data->has_fan & (1 << channel)) ||
1412  		    channel >= data->pwm_num)
1413  			return 0;
1414  		if (attr == hwmon_pwm_mode || attr == hwmon_pwm_enable ||
1415  		    attr == hwmon_pwm_input)
1416  			return 0644;
1417  		break;
1418  
1419  	case hwmon_intrusion:
1420  		return 0644;
1421  
1422  	default: /* Shouldn't happen */
1423  		return 0;
1424  	}
1425  
1426  	return 0; /* Shouldn't happen */
1427  }
1428  
1429  static int
w83627ehf_do_read_temp(struct w83627ehf_data * data,u32 attr,int channel,long * val)1430  w83627ehf_do_read_temp(struct w83627ehf_data *data, u32 attr,
1431  		       int channel, long *val)
1432  {
1433  	switch (attr) {
1434  	case hwmon_temp_input:
1435  		*val = LM75_TEMP_FROM_REG(data->temp[channel]);
1436  		return 0;
1437  	case hwmon_temp_max:
1438  		*val = LM75_TEMP_FROM_REG(data->temp_max[channel]);
1439  		return 0;
1440  	case hwmon_temp_max_hyst:
1441  		*val = LM75_TEMP_FROM_REG(data->temp_max_hyst[channel]);
1442  		return 0;
1443  	case hwmon_temp_offset:
1444  		*val = data->temp_offset[channel] * 1000;
1445  		return 0;
1446  	case hwmon_temp_type:
1447  		*val = (int)data->temp_type[channel];
1448  		return 0;
1449  	case hwmon_temp_alarm:
1450  		if (channel < 3) {
1451  			int bit[] = { 4, 5, 13 };
1452  			*val = (data->alarms >> bit[channel]) & 1;
1453  			return 0;
1454  		}
1455  		break;
1456  
1457  	default:
1458  		break;
1459  	}
1460  
1461  	return -EOPNOTSUPP;
1462  }
1463  
1464  static int
w83627ehf_do_read_in(struct w83627ehf_data * data,u32 attr,int channel,long * val)1465  w83627ehf_do_read_in(struct w83627ehf_data *data, u32 attr,
1466  		     int channel, long *val)
1467  {
1468  	switch (attr) {
1469  	case hwmon_in_input:
1470  		*val = in_from_reg(data->in[channel], channel, data->scale_in);
1471  		return 0;
1472  	case hwmon_in_min:
1473  		*val = in_from_reg(data->in_min[channel], channel,
1474  				   data->scale_in);
1475  		return 0;
1476  	case hwmon_in_max:
1477  		*val = in_from_reg(data->in_max[channel], channel,
1478  				   data->scale_in);
1479  		return 0;
1480  	case hwmon_in_alarm:
1481  		if (channel < 10) {
1482  			int bit[] = { 0, 1, 2, 3, 8, 21, 20, 16, 17, 19 };
1483  			*val = (data->alarms >> bit[channel]) & 1;
1484  			return 0;
1485  		}
1486  		break;
1487  	default:
1488  		break;
1489  	}
1490  	return -EOPNOTSUPP;
1491  }
1492  
1493  static int
w83627ehf_do_read_fan(struct w83627ehf_data * data,u32 attr,int channel,long * val)1494  w83627ehf_do_read_fan(struct w83627ehf_data *data, u32 attr,
1495  		      int channel, long *val)
1496  {
1497  	switch (attr) {
1498  	case hwmon_fan_input:
1499  		*val = data->rpm[channel];
1500  		return 0;
1501  	case hwmon_fan_min:
1502  		*val = fan_from_reg8(data->fan_min[channel],
1503  				     data->fan_div[channel]);
1504  		return 0;
1505  	case hwmon_fan_div:
1506  		*val = div_from_reg(data->fan_div[channel]);
1507  		return 0;
1508  	case hwmon_fan_alarm:
1509  		if (channel < 5) {
1510  			int bit[] = { 6, 7, 11, 10, 23 };
1511  			*val = (data->alarms >> bit[channel]) & 1;
1512  			return 0;
1513  		}
1514  		break;
1515  	default:
1516  		break;
1517  	}
1518  	return -EOPNOTSUPP;
1519  }
1520  
1521  static int
w83627ehf_do_read_pwm(struct w83627ehf_data * data,u32 attr,int channel,long * val)1522  w83627ehf_do_read_pwm(struct w83627ehf_data *data, u32 attr,
1523  		      int channel, long *val)
1524  {
1525  	switch (attr) {
1526  	case hwmon_pwm_input:
1527  		*val = data->pwm[channel];
1528  		return 0;
1529  	case hwmon_pwm_enable:
1530  		*val = data->pwm_enable[channel];
1531  		return 0;
1532  	case hwmon_pwm_mode:
1533  		*val = data->pwm_enable[channel];
1534  		return 0;
1535  	default:
1536  		break;
1537  	}
1538  	return -EOPNOTSUPP;
1539  }
1540  
1541  static int
w83627ehf_do_read_intrusion(struct w83627ehf_data * data,u32 attr,int channel,long * val)1542  w83627ehf_do_read_intrusion(struct w83627ehf_data *data, u32 attr,
1543  			    int channel, long *val)
1544  {
1545  	if (attr != hwmon_intrusion_alarm || channel != 0)
1546  		return -EOPNOTSUPP; /* shouldn't happen */
1547  
1548  	*val = !!(data->caseopen & 0x10);
1549  	return 0;
1550  }
1551  
1552  static int
w83627ehf_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * val)1553  w83627ehf_read(struct device *dev, enum hwmon_sensor_types type,
1554  			u32 attr, int channel, long *val)
1555  {
1556  	struct w83627ehf_data *data = w83627ehf_update_device(dev->parent);
1557  
1558  	switch (type) {
1559  	case hwmon_fan:
1560  		return w83627ehf_do_read_fan(data, attr, channel, val);
1561  
1562  	case hwmon_in:
1563  		return w83627ehf_do_read_in(data, attr, channel, val);
1564  
1565  	case hwmon_pwm:
1566  		return w83627ehf_do_read_pwm(data, attr, channel, val);
1567  
1568  	case hwmon_temp:
1569  		return w83627ehf_do_read_temp(data, attr, channel, val);
1570  
1571  	case hwmon_intrusion:
1572  		return w83627ehf_do_read_intrusion(data, attr, channel, val);
1573  
1574  	default:
1575  		break;
1576  	}
1577  
1578  	return -EOPNOTSUPP;
1579  }
1580  
1581  static int
w83627ehf_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1582  w83627ehf_read_string(struct device *dev, enum hwmon_sensor_types type,
1583  		      u32 attr, int channel, const char **str)
1584  {
1585  	struct w83627ehf_data *data = dev_get_drvdata(dev);
1586  
1587  	switch (type) {
1588  	case hwmon_temp:
1589  		if (attr == hwmon_temp_label) {
1590  			*str = data->temp_label[data->temp_src[channel]];
1591  			return 0;
1592  		}
1593  		break;
1594  
1595  	default:
1596  		break;
1597  	}
1598  	/* Nothing else should be read as a string */
1599  	return -EOPNOTSUPP;
1600  }
1601  
1602  static int
w83627ehf_write(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long val)1603  w83627ehf_write(struct device *dev, enum hwmon_sensor_types type,
1604  			u32 attr, int channel, long val)
1605  {
1606  	struct w83627ehf_data *data = dev_get_drvdata(dev);
1607  
1608  	if (type == hwmon_in && attr == hwmon_in_min)
1609  		return store_in_min(dev, data, channel, val);
1610  	if (type == hwmon_in && attr == hwmon_in_max)
1611  		return store_in_max(dev, data, channel, val);
1612  
1613  	if (type == hwmon_fan && attr == hwmon_fan_min)
1614  		return store_fan_min(dev, data, channel, val);
1615  
1616  	if (type == hwmon_temp && attr == hwmon_temp_max)
1617  		return store_temp_max(dev, data, channel, val);
1618  	if (type == hwmon_temp && attr == hwmon_temp_max_hyst)
1619  		return store_temp_max_hyst(dev, data, channel, val);
1620  	if (type == hwmon_temp && attr == hwmon_temp_offset)
1621  		return store_temp_offset(dev, data, channel, val);
1622  
1623  	if (type == hwmon_pwm && attr == hwmon_pwm_mode)
1624  		return store_pwm_mode(dev, data, channel, val);
1625  	if (type == hwmon_pwm && attr == hwmon_pwm_enable)
1626  		return store_pwm_enable(dev, data, channel, val);
1627  	if (type == hwmon_pwm && attr == hwmon_pwm_input)
1628  		return store_pwm(dev, data, channel, val);
1629  
1630  	if (type == hwmon_intrusion && attr == hwmon_intrusion_alarm)
1631  		return clear_caseopen(dev, data, channel, val);
1632  
1633  	return -EOPNOTSUPP;
1634  }
1635  
1636  static const struct hwmon_ops w83627ehf_ops = {
1637  	.is_visible = w83627ehf_is_visible,
1638  	.read = w83627ehf_read,
1639  	.read_string = w83627ehf_read_string,
1640  	.write = w83627ehf_write,
1641  };
1642  
1643  static const struct hwmon_channel_info * const w83627ehf_info[] = {
1644  	HWMON_CHANNEL_INFO(fan,
1645  		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1646  		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1647  		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1648  		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN,
1649  		HWMON_F_ALARM | HWMON_F_DIV | HWMON_F_INPUT | HWMON_F_MIN),
1650  	HWMON_CHANNEL_INFO(in,
1651  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1652  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1653  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1654  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1655  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1656  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1657  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1658  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1659  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN,
1660  		HWMON_I_ALARM | HWMON_I_INPUT | HWMON_I_MAX | HWMON_I_MIN),
1661  	HWMON_CHANNEL_INFO(pwm,
1662  		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1663  		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1664  		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE,
1665  		HWMON_PWM_ENABLE | HWMON_PWM_INPUT | HWMON_PWM_MODE),
1666  	HWMON_CHANNEL_INFO(temp,
1667  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1668  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1669  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1670  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1671  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1672  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1673  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1674  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1675  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1676  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1677  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1678  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1679  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1680  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1681  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1682  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE,
1683  		HWMON_T_ALARM | HWMON_T_INPUT | HWMON_T_LABEL | HWMON_T_MAX |
1684  			HWMON_T_MAX_HYST | HWMON_T_OFFSET | HWMON_T_TYPE),
1685  	HWMON_CHANNEL_INFO(intrusion,
1686  		HWMON_INTRUSION_ALARM),
1687  	NULL
1688  };
1689  
1690  static const struct hwmon_chip_info w83627ehf_chip_info = {
1691  	.ops = &w83627ehf_ops,
1692  	.info = w83627ehf_info,
1693  };
1694  
w83627ehf_probe(struct platform_device * pdev)1695  static int __init w83627ehf_probe(struct platform_device *pdev)
1696  {
1697  	struct device *dev = &pdev->dev;
1698  	struct w83627ehf_sio_data *sio_data = dev_get_platdata(dev);
1699  	struct w83627ehf_data *data;
1700  	struct resource *res;
1701  	u8 en_vrm10;
1702  	int i, err = 0;
1703  	struct device *hwmon_dev;
1704  
1705  	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
1706  	if (!devm_request_region(dev, res->start, IOREGION_LENGTH, DRVNAME))
1707  		return -EBUSY;
1708  
1709  	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1710  	if (!data)
1711  		return -ENOMEM;
1712  
1713  	data->addr = res->start;
1714  	mutex_init(&data->lock);
1715  	mutex_init(&data->update_lock);
1716  	data->name = w83627ehf_device_names[sio_data->kind];
1717  	data->bank = 0xff;		/* Force initial bank selection */
1718  	platform_set_drvdata(pdev, data);
1719  
1720  	/* 627EHG and 627EHF have 10 voltage inputs; 627DHG and 667HG have 9 */
1721  	data->in_num = (sio_data->kind == w83627ehf) ? 10 : 9;
1722  	/* 667HG has 3 pwms, and 627UHG has only 2 */
1723  	switch (sio_data->kind) {
1724  	default:
1725  		data->pwm_num = 4;
1726  		break;
1727  	case w83667hg:
1728  	case w83667hg_b:
1729  		data->pwm_num = 3;
1730  		break;
1731  	case w83627uhg:
1732  		data->pwm_num = 2;
1733  		break;
1734  	}
1735  
1736  	/* Default to 3 temperature inputs, code below will adjust as needed */
1737  	data->have_temp = 0x07;
1738  
1739  	/* Deal with temperature register setup first. */
1740  	if (sio_data->kind == w83667hg_b) {
1741  		u8 reg;
1742  
1743  		w83627ehf_set_temp_reg_ehf(data, 4);
1744  
1745  		/*
1746  		 * Temperature sources are selected with bank 0, registers 0x49
1747  		 * and 0x4a.
1748  		 */
1749  		reg = w83627ehf_read_value(data, 0x4a);
1750  		data->temp_src[0] = reg >> 5;
1751  		reg = w83627ehf_read_value(data, 0x49);
1752  		data->temp_src[1] = reg & 0x07;
1753  		data->temp_src[2] = (reg >> 4) & 0x07;
1754  
1755  		/*
1756  		 * W83667HG-B has another temperature register at 0x7e.
1757  		 * The temperature source is selected with register 0x7d.
1758  		 * Support it if the source differs from already reported
1759  		 * sources.
1760  		 */
1761  		reg = w83627ehf_read_value(data, 0x7d);
1762  		reg &= 0x07;
1763  		if (reg != data->temp_src[0] && reg != data->temp_src[1]
1764  		    && reg != data->temp_src[2]) {
1765  			data->temp_src[3] = reg;
1766  			data->have_temp |= 1 << 3;
1767  		}
1768  
1769  		/*
1770  		 * Chip supports either AUXTIN or VIN3. Try to find out which
1771  		 * one.
1772  		 */
1773  		reg = w83627ehf_read_value(data, W83627EHF_REG_TEMP_CONFIG[2]);
1774  		if (data->temp_src[2] == 2 && (reg & 0x01))
1775  			data->have_temp &= ~(1 << 2);
1776  
1777  		if ((data->temp_src[2] == 2 && (data->have_temp & (1 << 2)))
1778  		    || (data->temp_src[3] == 2 && (data->have_temp & (1 << 3))))
1779  			data->in6_skip = 1;
1780  
1781  		data->temp_label = w83667hg_b_temp_label;
1782  		data->have_temp_offset = data->have_temp & 0x07;
1783  		for (i = 0; i < 3; i++) {
1784  			if (data->temp_src[i] > 2)
1785  				data->have_temp_offset &= ~(1 << i);
1786  		}
1787  	} else if (sio_data->kind == w83627uhg) {
1788  		u8 reg;
1789  
1790  		w83627ehf_set_temp_reg_ehf(data, 3);
1791  
1792  		/*
1793  		 * Temperature sources for temp2 and temp3 are selected with
1794  		 * bank 0, registers 0x49 and 0x4a.
1795  		 */
1796  		data->temp_src[0] = 0;	/* SYSTIN */
1797  		reg = w83627ehf_read_value(data, 0x49) & 0x07;
1798  		/* Adjust to have the same mapping as other source registers */
1799  		if (reg == 0)
1800  			data->temp_src[1] = 1;
1801  		else if (reg >= 2 && reg <= 5)
1802  			data->temp_src[1] = reg + 2;
1803  		else	/* should never happen */
1804  			data->have_temp &= ~(1 << 1);
1805  		reg = w83627ehf_read_value(data, 0x4a);
1806  		data->temp_src[2] = reg >> 5;
1807  
1808  		/*
1809  		 * Skip temp3 if source is invalid or the same as temp1
1810  		 * or temp2.
1811  		 */
1812  		if (data->temp_src[2] == 2 || data->temp_src[2] == 3 ||
1813  		    data->temp_src[2] == data->temp_src[0] ||
1814  		    ((data->have_temp & (1 << 1)) &&
1815  		     data->temp_src[2] == data->temp_src[1]))
1816  			data->have_temp &= ~(1 << 2);
1817  		else
1818  			data->temp3_val_only = 1;	/* No limit regs */
1819  
1820  		data->in6_skip = 1;			/* No VIN3 */
1821  
1822  		data->temp_label = w83667hg_b_temp_label;
1823  		data->have_temp_offset = data->have_temp & 0x03;
1824  		for (i = 0; i < 3; i++) {
1825  			if (data->temp_src[i] > 1)
1826  				data->have_temp_offset &= ~(1 << i);
1827  		}
1828  	} else {
1829  		w83627ehf_set_temp_reg_ehf(data, 3);
1830  
1831  		/* Temperature sources are fixed */
1832  
1833  		if (sio_data->kind == w83667hg) {
1834  			u8 reg;
1835  
1836  			/*
1837  			 * Chip supports either AUXTIN or VIN3. Try to find
1838  			 * out which one.
1839  			 */
1840  			reg = w83627ehf_read_value(data,
1841  						W83627EHF_REG_TEMP_CONFIG[2]);
1842  			if (reg & 0x01)
1843  				data->have_temp &= ~(1 << 2);
1844  			else
1845  				data->in6_skip = 1;
1846  		}
1847  		data->have_temp_offset = data->have_temp & 0x07;
1848  	}
1849  
1850  	if (sio_data->kind == w83667hg_b) {
1851  		data->REG_FAN_MAX_OUTPUT =
1852  		  W83627EHF_REG_FAN_MAX_OUTPUT_W83667_B;
1853  		data->REG_FAN_STEP_OUTPUT =
1854  		  W83627EHF_REG_FAN_STEP_OUTPUT_W83667_B;
1855  	} else {
1856  		data->REG_FAN_MAX_OUTPUT =
1857  		  W83627EHF_REG_FAN_MAX_OUTPUT_COMMON;
1858  		data->REG_FAN_STEP_OUTPUT =
1859  		  W83627EHF_REG_FAN_STEP_OUTPUT_COMMON;
1860  	}
1861  
1862  	/* Setup input voltage scaling factors */
1863  	if (sio_data->kind == w83627uhg)
1864  		data->scale_in = scale_in_w83627uhg;
1865  	else
1866  		data->scale_in = scale_in_common;
1867  
1868  	/* Initialize the chip */
1869  	w83627ehf_init_device(data, sio_data->kind);
1870  
1871  	data->vrm = vid_which_vrm();
1872  
1873  	err = superio_enter(sio_data->sioreg);
1874  	if (err)
1875  		return err;
1876  
1877  	/* Read VID value */
1878  	if (sio_data->kind == w83667hg || sio_data->kind == w83667hg_b) {
1879  		/*
1880  		 * W83667HG has different pins for VID input and output, so
1881  		 * we can get the VID input values directly at logical device D
1882  		 * 0xe3.
1883  		 */
1884  		superio_select(sio_data->sioreg, W83667HG_LD_VID);
1885  		data->vid = superio_inb(sio_data->sioreg, 0xe3);
1886  		data->have_vid = true;
1887  	} else if (sio_data->kind != w83627uhg) {
1888  		superio_select(sio_data->sioreg, W83627EHF_LD_HWM);
1889  		if (superio_inb(sio_data->sioreg, SIO_REG_VID_CTRL) & 0x80) {
1890  			/*
1891  			 * Set VID input sensibility if needed. In theory the
1892  			 * BIOS should have set it, but in practice it's not
1893  			 * always the case. We only do it for the W83627EHF/EHG
1894  			 * because the W83627DHG is more complex in this
1895  			 * respect.
1896  			 */
1897  			if (sio_data->kind == w83627ehf) {
1898  				en_vrm10 = superio_inb(sio_data->sioreg,
1899  						       SIO_REG_EN_VRM10);
1900  				if ((en_vrm10 & 0x08) && data->vrm == 90) {
1901  					dev_warn(dev,
1902  						 "Setting VID input voltage to TTL\n");
1903  					superio_outb(sio_data->sioreg,
1904  						     SIO_REG_EN_VRM10,
1905  						     en_vrm10 & ~0x08);
1906  				} else if (!(en_vrm10 & 0x08)
1907  					   && data->vrm == 100) {
1908  					dev_warn(dev,
1909  						 "Setting VID input voltage to VRM10\n");
1910  					superio_outb(sio_data->sioreg,
1911  						     SIO_REG_EN_VRM10,
1912  						     en_vrm10 | 0x08);
1913  				}
1914  			}
1915  
1916  			data->vid = superio_inb(sio_data->sioreg,
1917  						SIO_REG_VID_DATA);
1918  			if (sio_data->kind == w83627ehf) /* 6 VID pins only */
1919  				data->vid &= 0x3f;
1920  			data->have_vid = true;
1921  		} else {
1922  			dev_info(dev,
1923  				 "VID pins in output mode, CPU VID not available\n");
1924  		}
1925  	}
1926  
1927  	w83627ehf_check_fan_inputs(sio_data, data);
1928  
1929  	superio_exit(sio_data->sioreg);
1930  
1931  	/* Read fan clock dividers immediately */
1932  	w83627ehf_update_fan_div(data);
1933  
1934  	/* Read pwm data to save original values */
1935  	w83627ehf_update_pwm(data);
1936  	for (i = 0; i < data->pwm_num; i++)
1937  		data->pwm_enable_orig[i] = data->pwm_enable[i];
1938  
1939  	hwmon_dev = devm_hwmon_device_register_with_info(&pdev->dev,
1940  							 data->name,
1941  							 data,
1942  							 &w83627ehf_chip_info,
1943  							 w83627ehf_groups);
1944  	return PTR_ERR_OR_ZERO(hwmon_dev);
1945  }
1946  
w83627ehf_suspend(struct device * dev)1947  static int w83627ehf_suspend(struct device *dev)
1948  {
1949  	struct w83627ehf_data *data = w83627ehf_update_device(dev);
1950  
1951  	mutex_lock(&data->update_lock);
1952  	data->vbat = w83627ehf_read_value(data, W83627EHF_REG_VBAT);
1953  	mutex_unlock(&data->update_lock);
1954  
1955  	return 0;
1956  }
1957  
w83627ehf_resume(struct device * dev)1958  static int w83627ehf_resume(struct device *dev)
1959  {
1960  	struct w83627ehf_data *data = dev_get_drvdata(dev);
1961  	int i;
1962  
1963  	mutex_lock(&data->update_lock);
1964  	data->bank = 0xff;		/* Force initial bank selection */
1965  
1966  	/* Restore limits */
1967  	for (i = 0; i < data->in_num; i++) {
1968  		if ((i == 6) && data->in6_skip)
1969  			continue;
1970  
1971  		w83627ehf_write_value(data, W83627EHF_REG_IN_MIN(i),
1972  				      data->in_min[i]);
1973  		w83627ehf_write_value(data, W83627EHF_REG_IN_MAX(i),
1974  				      data->in_max[i]);
1975  	}
1976  
1977  	for (i = 0; i < 5; i++) {
1978  		if (!(data->has_fan_min & (1 << i)))
1979  			continue;
1980  
1981  		w83627ehf_write_value(data, W83627EHF_REG_FAN_MIN[i],
1982  				      data->fan_min[i]);
1983  	}
1984  
1985  	for (i = 0; i < NUM_REG_TEMP; i++) {
1986  		if (!(data->have_temp & (1 << i)))
1987  			continue;
1988  
1989  		if (data->reg_temp_over[i])
1990  			w83627ehf_write_temp(data, data->reg_temp_over[i],
1991  					     data->temp_max[i]);
1992  		if (data->reg_temp_hyst[i])
1993  			w83627ehf_write_temp(data, data->reg_temp_hyst[i],
1994  					     data->temp_max_hyst[i]);
1995  		if (i > 2)
1996  			continue;
1997  		if (data->have_temp_offset & (1 << i))
1998  			w83627ehf_write_value(data,
1999  					      W83627EHF_REG_TEMP_OFFSET[i],
2000  					      data->temp_offset[i]);
2001  	}
2002  
2003  	/* Restore other settings */
2004  	w83627ehf_write_value(data, W83627EHF_REG_VBAT, data->vbat);
2005  
2006  	/* Force re-reading all values */
2007  	data->valid = false;
2008  	mutex_unlock(&data->update_lock);
2009  
2010  	return 0;
2011  }
2012  
2013  static DEFINE_SIMPLE_DEV_PM_OPS(w83627ehf_dev_pm_ops, w83627ehf_suspend, w83627ehf_resume);
2014  
2015  static struct platform_driver w83627ehf_driver = {
2016  	.driver = {
2017  		.name	= DRVNAME,
2018  		.pm	= pm_sleep_ptr(&w83627ehf_dev_pm_ops),
2019  	},
2020  };
2021  
2022  /* w83627ehf_find() looks for a '627 in the Super-I/O config space */
w83627ehf_find(int sioaddr,unsigned short * addr,struct w83627ehf_sio_data * sio_data)2023  static int __init w83627ehf_find(int sioaddr, unsigned short *addr,
2024  				 struct w83627ehf_sio_data *sio_data)
2025  {
2026  	static const char sio_name_W83627EHF[] __initconst = "W83627EHF";
2027  	static const char sio_name_W83627EHG[] __initconst = "W83627EHG";
2028  	static const char sio_name_W83627DHG[] __initconst = "W83627DHG";
2029  	static const char sio_name_W83627DHG_P[] __initconst = "W83627DHG-P";
2030  	static const char sio_name_W83627UHG[] __initconst = "W83627UHG";
2031  	static const char sio_name_W83667HG[] __initconst = "W83667HG";
2032  	static const char sio_name_W83667HG_B[] __initconst = "W83667HG-B";
2033  
2034  	u16 val;
2035  	const char *sio_name;
2036  	int err;
2037  
2038  	err = superio_enter(sioaddr);
2039  	if (err)
2040  		return err;
2041  
2042  	if (force_id)
2043  		val = force_id;
2044  	else
2045  		val = (superio_inb(sioaddr, SIO_REG_DEVID) << 8)
2046  		    | superio_inb(sioaddr, SIO_REG_DEVID + 1);
2047  	switch (val & SIO_ID_MASK) {
2048  	case SIO_W83627EHF_ID:
2049  		sio_data->kind = w83627ehf;
2050  		sio_name = sio_name_W83627EHF;
2051  		break;
2052  	case SIO_W83627EHG_ID:
2053  		sio_data->kind = w83627ehf;
2054  		sio_name = sio_name_W83627EHG;
2055  		break;
2056  	case SIO_W83627DHG_ID:
2057  		sio_data->kind = w83627dhg;
2058  		sio_name = sio_name_W83627DHG;
2059  		break;
2060  	case SIO_W83627DHG_P_ID:
2061  		sio_data->kind = w83627dhg_p;
2062  		sio_name = sio_name_W83627DHG_P;
2063  		break;
2064  	case SIO_W83627UHG_ID:
2065  		sio_data->kind = w83627uhg;
2066  		sio_name = sio_name_W83627UHG;
2067  		break;
2068  	case SIO_W83667HG_ID:
2069  		sio_data->kind = w83667hg;
2070  		sio_name = sio_name_W83667HG;
2071  		break;
2072  	case SIO_W83667HG_B_ID:
2073  		sio_data->kind = w83667hg_b;
2074  		sio_name = sio_name_W83667HG_B;
2075  		break;
2076  	default:
2077  		if (val != 0xffff)
2078  			pr_debug("unsupported chip ID: 0x%04x\n", val);
2079  		superio_exit(sioaddr);
2080  		return -ENODEV;
2081  	}
2082  
2083  	/* We have a known chip, find the HWM I/O address */
2084  	superio_select(sioaddr, W83627EHF_LD_HWM);
2085  	val = (superio_inb(sioaddr, SIO_REG_ADDR) << 8)
2086  	    | superio_inb(sioaddr, SIO_REG_ADDR + 1);
2087  	*addr = val & IOREGION_ALIGNMENT;
2088  	if (*addr == 0) {
2089  		pr_err("Refusing to enable a Super-I/O device with a base I/O port 0\n");
2090  		superio_exit(sioaddr);
2091  		return -ENODEV;
2092  	}
2093  
2094  	/* Activate logical device if needed */
2095  	val = superio_inb(sioaddr, SIO_REG_ENABLE);
2096  	if (!(val & 0x01)) {
2097  		pr_warn("Forcibly enabling Super-I/O. Sensor is probably unusable.\n");
2098  		superio_outb(sioaddr, SIO_REG_ENABLE, val | 0x01);
2099  	}
2100  
2101  	superio_exit(sioaddr);
2102  	pr_info("Found %s chip at %#x\n", sio_name, *addr);
2103  	sio_data->sioreg = sioaddr;
2104  
2105  	return 0;
2106  }
2107  
2108  /*
2109   * when Super-I/O functions move to a separate file, the Super-I/O
2110   * bus will manage the lifetime of the device and this module will only keep
2111   * track of the w83627ehf driver.
2112   */
2113  static struct platform_device *pdev;
2114  
sensors_w83627ehf_init(void)2115  static int __init sensors_w83627ehf_init(void)
2116  {
2117  	int err;
2118  	unsigned short address;
2119  	struct resource res = {
2120  		.name	= DRVNAME,
2121  		.flags	= IORESOURCE_IO,
2122  	};
2123  	struct w83627ehf_sio_data sio_data;
2124  
2125  	/*
2126  	 * initialize sio_data->kind and sio_data->sioreg.
2127  	 *
2128  	 * when Super-I/O functions move to a separate file, the Super-I/O
2129  	 * driver will probe 0x2e and 0x4e and auto-detect the presence of a
2130  	 * w83627ehf hardware monitor, and call probe()
2131  	 */
2132  	if (w83627ehf_find(0x2e, &address, &sio_data) &&
2133  	    w83627ehf_find(0x4e, &address, &sio_data))
2134  		return -ENODEV;
2135  
2136  	res.start = address + IOREGION_OFFSET;
2137  	res.end = address + IOREGION_OFFSET + IOREGION_LENGTH - 1;
2138  
2139  	err = acpi_check_resource_conflict(&res);
2140  	if (err)
2141  		return err;
2142  
2143  	pdev = platform_create_bundle(&w83627ehf_driver, w83627ehf_probe, &res, 1, &sio_data,
2144  				      sizeof(struct w83627ehf_sio_data));
2145  
2146  	return PTR_ERR_OR_ZERO(pdev);
2147  }
2148  
sensors_w83627ehf_exit(void)2149  static void __exit sensors_w83627ehf_exit(void)
2150  {
2151  	platform_device_unregister(pdev);
2152  	platform_driver_unregister(&w83627ehf_driver);
2153  }
2154  
2155  MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2156  MODULE_DESCRIPTION("W83627EHF driver");
2157  MODULE_LICENSE("GPL");
2158  
2159  module_init(sensors_w83627ehf_init);
2160  module_exit(sensors_w83627ehf_exit);
2161