1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40
41 #define DRV_NAME "vrf"
42 #define DRV_VERSION "1.1"
43
44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45
46 #define HT_MAP_BITS 4
47 #define HASH_INITVAL ((u32)0xcafef00d)
48
49 struct vrf_map {
50 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 spinlock_t vmap_lock;
52
53 /* shared_tables:
54 * count how many distinct tables do not comply with the strict mode
55 * requirement.
56 * shared_tables value must be 0 in order to enable the strict mode.
57 *
58 * example of the evolution of shared_tables:
59 * | time
60 * add vrf0 --> table 100 shared_tables = 0 | t0
61 * add vrf1 --> table 101 shared_tables = 0 | t1
62 * add vrf2 --> table 100 shared_tables = 1 | t2
63 * add vrf3 --> table 100 shared_tables = 1 | t3
64 * add vrf4 --> table 101 shared_tables = 2 v t4
65 *
66 * shared_tables is a "step function" (or "staircase function")
67 * and it is increased by one when the second vrf is associated to a
68 * table.
69 *
70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 *
72 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 * value of shared_tables is still 1.
74 * This means that no matter how many new vrfs will register on the
75 * table 100, the shared_tables will not increase (considering only
76 * table 100).
77 *
78 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 *
80 * Looking at the value of shared_tables we can immediately know if
81 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 * can be enforced iff shared_tables = 0.
83 *
84 * Conversely, shared_tables is decreased when a vrf is de-associated
85 * from a table with exactly two associated vrfs.
86 */
87 u32 shared_tables;
88
89 bool strict_mode;
90 };
91
92 struct vrf_map_elem {
93 struct hlist_node hnode;
94 struct list_head vrf_list; /* VRFs registered to this table */
95
96 u32 table_id;
97 int users;
98 int ifindex;
99 };
100
101 static unsigned int vrf_net_id;
102
103 /* per netns vrf data */
104 struct netns_vrf {
105 /* protected by rtnl lock */
106 bool add_fib_rules;
107
108 struct vrf_map vmap;
109 struct ctl_table_header *ctl_hdr;
110 };
111
112 struct net_vrf {
113 struct rtable __rcu *rth;
114 struct rt6_info __rcu *rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 struct fib6_table *fib6_table;
117 #endif
118 u32 tb_id;
119
120 struct list_head me_list; /* entry in vrf_map_elem */
121 int ifindex;
122 };
123
vrf_rx_stats(struct net_device * dev,int len)124 static void vrf_rx_stats(struct net_device *dev, int len)
125 {
126 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
127
128 u64_stats_update_begin(&dstats->syncp);
129 dstats->rx_packets++;
130 dstats->rx_bytes += len;
131 u64_stats_update_end(&dstats->syncp);
132 }
133
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
135 {
136 vrf_dev->stats.tx_errors++;
137 kfree_skb(skb);
138 }
139
vrf_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)140 static void vrf_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats)
142 {
143 int i;
144
145 for_each_possible_cpu(i) {
146 const struct pcpu_dstats *dstats;
147 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
148 unsigned int start;
149
150 dstats = per_cpu_ptr(dev->dstats, i);
151 do {
152 start = u64_stats_fetch_begin(&dstats->syncp);
153 tbytes = dstats->tx_bytes;
154 tpkts = dstats->tx_packets;
155 tdrops = dstats->tx_drops;
156 rbytes = dstats->rx_bytes;
157 rpkts = dstats->rx_packets;
158 } while (u64_stats_fetch_retry(&dstats->syncp, start));
159 stats->tx_bytes += tbytes;
160 stats->tx_packets += tpkts;
161 stats->tx_dropped += tdrops;
162 stats->rx_bytes += rbytes;
163 stats->rx_packets += rpkts;
164 }
165 }
166
netns_vrf_map(struct net * net)167 static struct vrf_map *netns_vrf_map(struct net *net)
168 {
169 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
170
171 return &nn_vrf->vmap;
172 }
173
netns_vrf_map_by_dev(struct net_device * dev)174 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
175 {
176 return netns_vrf_map(dev_net(dev));
177 }
178
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)179 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
180 {
181 struct list_head *me_head = &me->vrf_list;
182 struct net_vrf *vrf;
183
184 if (list_empty(me_head))
185 return -ENODEV;
186
187 vrf = list_first_entry(me_head, struct net_vrf, me_list);
188
189 return vrf->ifindex;
190 }
191
vrf_map_elem_alloc(gfp_t flags)192 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
193 {
194 struct vrf_map_elem *me;
195
196 me = kmalloc(sizeof(*me), flags);
197 if (!me)
198 return NULL;
199
200 return me;
201 }
202
vrf_map_elem_free(struct vrf_map_elem * me)203 static void vrf_map_elem_free(struct vrf_map_elem *me)
204 {
205 kfree(me);
206 }
207
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)208 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
209 int ifindex, int users)
210 {
211 me->table_id = table_id;
212 me->ifindex = ifindex;
213 me->users = users;
214 INIT_LIST_HEAD(&me->vrf_list);
215 }
216
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)217 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
218 u32 table_id)
219 {
220 struct vrf_map_elem *me;
221 u32 key;
222
223 key = jhash_1word(table_id, HASH_INITVAL);
224 hash_for_each_possible(vmap->ht, me, hnode, key) {
225 if (me->table_id == table_id)
226 return me;
227 }
228
229 return NULL;
230 }
231
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)232 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
233 {
234 u32 table_id = me->table_id;
235 u32 key;
236
237 key = jhash_1word(table_id, HASH_INITVAL);
238 hash_add(vmap->ht, &me->hnode, key);
239 }
240
vrf_map_del_elem(struct vrf_map_elem * me)241 static void vrf_map_del_elem(struct vrf_map_elem *me)
242 {
243 hash_del(&me->hnode);
244 }
245
vrf_map_lock(struct vrf_map * vmap)246 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
247 {
248 spin_lock(&vmap->vmap_lock);
249 }
250
vrf_map_unlock(struct vrf_map * vmap)251 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
252 {
253 spin_unlock(&vmap->vmap_lock);
254 }
255
256 /* called with rtnl lock held */
257 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)258 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
259 {
260 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
261 struct net_vrf *vrf = netdev_priv(dev);
262 struct vrf_map_elem *new_me, *me;
263 u32 table_id = vrf->tb_id;
264 bool free_new_me = false;
265 int users;
266 int res;
267
268 /* we pre-allocate elements used in the spin-locked section (so that we
269 * keep the spinlock as short as possible).
270 */
271 new_me = vrf_map_elem_alloc(GFP_KERNEL);
272 if (!new_me)
273 return -ENOMEM;
274
275 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
276
277 vrf_map_lock(vmap);
278
279 me = vrf_map_lookup_elem(vmap, table_id);
280 if (!me) {
281 me = new_me;
282 vrf_map_add_elem(vmap, me);
283 goto link_vrf;
284 }
285
286 /* we already have an entry in the vrf_map, so it means there is (at
287 * least) a vrf registered on the specific table.
288 */
289 free_new_me = true;
290 if (vmap->strict_mode) {
291 /* vrfs cannot share the same table */
292 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
293 res = -EBUSY;
294 goto unlock;
295 }
296
297 link_vrf:
298 users = ++me->users;
299 if (users == 2)
300 ++vmap->shared_tables;
301
302 list_add(&vrf->me_list, &me->vrf_list);
303
304 res = 0;
305
306 unlock:
307 vrf_map_unlock(vmap);
308
309 /* clean-up, if needed */
310 if (free_new_me)
311 vrf_map_elem_free(new_me);
312
313 return res;
314 }
315
316 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)317 static void vrf_map_unregister_dev(struct net_device *dev)
318 {
319 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
320 struct net_vrf *vrf = netdev_priv(dev);
321 u32 table_id = vrf->tb_id;
322 struct vrf_map_elem *me;
323 int users;
324
325 vrf_map_lock(vmap);
326
327 me = vrf_map_lookup_elem(vmap, table_id);
328 if (!me)
329 goto unlock;
330
331 list_del(&vrf->me_list);
332
333 users = --me->users;
334 if (users == 1) {
335 --vmap->shared_tables;
336 } else if (users == 0) {
337 vrf_map_del_elem(me);
338
339 /* no one will refer to this element anymore */
340 vrf_map_elem_free(me);
341 }
342
343 unlock:
344 vrf_map_unlock(vmap);
345 }
346
347 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)348 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
349 {
350 struct vrf_map *vmap = netns_vrf_map(net);
351 struct vrf_map_elem *me;
352 int ifindex;
353
354 vrf_map_lock(vmap);
355
356 if (!vmap->strict_mode) {
357 ifindex = -EPERM;
358 goto unlock;
359 }
360
361 me = vrf_map_lookup_elem(vmap, table_id);
362 if (!me) {
363 ifindex = -ENODEV;
364 goto unlock;
365 }
366
367 ifindex = vrf_map_elem_get_vrf_ifindex(me);
368
369 unlock:
370 vrf_map_unlock(vmap);
371
372 return ifindex;
373 }
374
375 /* by default VRF devices do not have a qdisc and are expected
376 * to be created with only a single queue.
377 */
qdisc_tx_is_default(const struct net_device * dev)378 static bool qdisc_tx_is_default(const struct net_device *dev)
379 {
380 struct netdev_queue *txq;
381 struct Qdisc *qdisc;
382
383 if (dev->num_tx_queues > 1)
384 return false;
385
386 txq = netdev_get_tx_queue(dev, 0);
387 qdisc = rcu_access_pointer(txq->qdisc);
388
389 return !qdisc->enqueue;
390 }
391
392 /* Local traffic destined to local address. Reinsert the packet to rx
393 * path, similar to loopback handling.
394 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)395 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
396 struct dst_entry *dst)
397 {
398 int len = skb->len;
399
400 skb_orphan(skb);
401
402 skb_dst_set(skb, dst);
403
404 /* set pkt_type to avoid skb hitting packet taps twice -
405 * once on Tx and again in Rx processing
406 */
407 skb->pkt_type = PACKET_LOOPBACK;
408
409 skb->protocol = eth_type_trans(skb, dev);
410
411 if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
412 vrf_rx_stats(dev, len);
413 else
414 this_cpu_inc(dev->dstats->rx_drops);
415
416 return NETDEV_TX_OK;
417 }
418
vrf_nf_set_untracked(struct sk_buff * skb)419 static void vrf_nf_set_untracked(struct sk_buff *skb)
420 {
421 if (skb_get_nfct(skb) == 0)
422 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
423 }
424
vrf_nf_reset_ct(struct sk_buff * skb)425 static void vrf_nf_reset_ct(struct sk_buff *skb)
426 {
427 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
428 nf_reset_ct(skb);
429 }
430
431 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)432 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
433 struct sk_buff *skb)
434 {
435 int err;
436
437 vrf_nf_reset_ct(skb);
438
439 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
440 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
441
442 if (likely(err == 1))
443 err = dst_output(net, sk, skb);
444
445 return err;
446 }
447
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)448 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
449 struct net_device *dev)
450 {
451 const struct ipv6hdr *iph;
452 struct net *net = dev_net(skb->dev);
453 struct flowi6 fl6;
454 int ret = NET_XMIT_DROP;
455 struct dst_entry *dst;
456 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
457
458 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
459 goto err;
460
461 iph = ipv6_hdr(skb);
462
463 memset(&fl6, 0, sizeof(fl6));
464 /* needed to match OIF rule */
465 fl6.flowi6_l3mdev = dev->ifindex;
466 fl6.flowi6_iif = LOOPBACK_IFINDEX;
467 fl6.daddr = iph->daddr;
468 fl6.saddr = iph->saddr;
469 fl6.flowlabel = ip6_flowinfo(iph);
470 fl6.flowi6_mark = skb->mark;
471 fl6.flowi6_proto = iph->nexthdr;
472
473 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
474 if (IS_ERR(dst) || dst == dst_null)
475 goto err;
476
477 skb_dst_drop(skb);
478
479 /* if dst.dev is the VRF device again this is locally originated traffic
480 * destined to a local address. Short circuit to Rx path.
481 */
482 if (dst->dev == dev)
483 return vrf_local_xmit(skb, dev, dst);
484
485 skb_dst_set(skb, dst);
486
487 /* strip the ethernet header added for pass through VRF device */
488 __skb_pull(skb, skb_network_offset(skb));
489
490 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
491 ret = vrf_ip6_local_out(net, skb->sk, skb);
492 if (unlikely(net_xmit_eval(ret)))
493 dev->stats.tx_errors++;
494 else
495 ret = NET_XMIT_SUCCESS;
496
497 return ret;
498 err:
499 vrf_tx_error(dev, skb);
500 return NET_XMIT_DROP;
501 }
502 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)503 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
504 struct net_device *dev)
505 {
506 vrf_tx_error(dev, skb);
507 return NET_XMIT_DROP;
508 }
509 #endif
510
511 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)512 static int vrf_ip_local_out(struct net *net, struct sock *sk,
513 struct sk_buff *skb)
514 {
515 int err;
516
517 vrf_nf_reset_ct(skb);
518
519 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
520 skb, NULL, skb_dst(skb)->dev, dst_output);
521 if (likely(err == 1))
522 err = dst_output(net, sk, skb);
523
524 return err;
525 }
526
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)527 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
528 struct net_device *vrf_dev)
529 {
530 struct iphdr *ip4h;
531 int ret = NET_XMIT_DROP;
532 struct flowi4 fl4;
533 struct net *net = dev_net(vrf_dev);
534 struct rtable *rt;
535
536 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
537 goto err;
538
539 ip4h = ip_hdr(skb);
540
541 memset(&fl4, 0, sizeof(fl4));
542 /* needed to match OIF rule */
543 fl4.flowi4_l3mdev = vrf_dev->ifindex;
544 fl4.flowi4_iif = LOOPBACK_IFINDEX;
545 fl4.flowi4_tos = RT_TOS(ip4h->tos);
546 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
547 fl4.flowi4_proto = ip4h->protocol;
548 fl4.daddr = ip4h->daddr;
549 fl4.saddr = ip4h->saddr;
550
551 rt = ip_route_output_flow(net, &fl4, NULL);
552 if (IS_ERR(rt))
553 goto err;
554
555 skb_dst_drop(skb);
556
557 /* if dst.dev is the VRF device again this is locally originated traffic
558 * destined to a local address. Short circuit to Rx path.
559 */
560 if (rt->dst.dev == vrf_dev)
561 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
562
563 skb_dst_set(skb, &rt->dst);
564
565 /* strip the ethernet header added for pass through VRF device */
566 __skb_pull(skb, skb_network_offset(skb));
567
568 if (!ip4h->saddr) {
569 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
570 RT_SCOPE_LINK);
571 }
572
573 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
574 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
575 if (unlikely(net_xmit_eval(ret)))
576 vrf_dev->stats.tx_errors++;
577 else
578 ret = NET_XMIT_SUCCESS;
579
580 out:
581 return ret;
582 err:
583 vrf_tx_error(vrf_dev, skb);
584 goto out;
585 }
586
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)587 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
588 {
589 switch (skb->protocol) {
590 case htons(ETH_P_IP):
591 return vrf_process_v4_outbound(skb, dev);
592 case htons(ETH_P_IPV6):
593 return vrf_process_v6_outbound(skb, dev);
594 default:
595 vrf_tx_error(dev, skb);
596 return NET_XMIT_DROP;
597 }
598 }
599
vrf_xmit(struct sk_buff * skb,struct net_device * dev)600 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
601 {
602 int len = skb->len;
603 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
604
605 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
606 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
607
608 u64_stats_update_begin(&dstats->syncp);
609 dstats->tx_packets++;
610 dstats->tx_bytes += len;
611 u64_stats_update_end(&dstats->syncp);
612 } else {
613 this_cpu_inc(dev->dstats->tx_drops);
614 }
615
616 return ret;
617 }
618
vrf_finish_direct(struct sk_buff * skb)619 static void vrf_finish_direct(struct sk_buff *skb)
620 {
621 struct net_device *vrf_dev = skb->dev;
622
623 if (!list_empty(&vrf_dev->ptype_all) &&
624 likely(skb_headroom(skb) >= ETH_HLEN)) {
625 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
626
627 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
628 eth_zero_addr(eth->h_dest);
629 eth->h_proto = skb->protocol;
630
631 rcu_read_lock_bh();
632 dev_queue_xmit_nit(skb, vrf_dev);
633 rcu_read_unlock_bh();
634
635 skb_pull(skb, ETH_HLEN);
636 }
637
638 vrf_nf_reset_ct(skb);
639 }
640
641 #if IS_ENABLED(CONFIG_IPV6)
642 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)643 static int vrf_finish_output6(struct net *net, struct sock *sk,
644 struct sk_buff *skb)
645 {
646 struct dst_entry *dst = skb_dst(skb);
647 struct net_device *dev = dst->dev;
648 const struct in6_addr *nexthop;
649 struct neighbour *neigh;
650 int ret;
651
652 vrf_nf_reset_ct(skb);
653
654 skb->protocol = htons(ETH_P_IPV6);
655 skb->dev = dev;
656
657 rcu_read_lock();
658 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
659 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
660 if (unlikely(!neigh))
661 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
662 if (!IS_ERR(neigh)) {
663 sock_confirm_neigh(skb, neigh);
664 ret = neigh_output(neigh, skb, false);
665 rcu_read_unlock();
666 return ret;
667 }
668 rcu_read_unlock();
669
670 IP6_INC_STATS(dev_net(dst->dev),
671 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
672 kfree_skb(skb);
673 return -EINVAL;
674 }
675
676 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)677 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
678 {
679 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
680 net, sk, skb, NULL, skb_dst(skb)->dev,
681 vrf_finish_output6,
682 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
683 }
684
685 /* set dst on skb to send packet to us via dev_xmit path. Allows
686 * packet to go through device based features such as qdisc, netfilter
687 * hooks and packet sockets with skb->dev set to vrf device.
688 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)689 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
690 struct sk_buff *skb)
691 {
692 struct net_vrf *vrf = netdev_priv(vrf_dev);
693 struct dst_entry *dst = NULL;
694 struct rt6_info *rt6;
695
696 rcu_read_lock();
697
698 rt6 = rcu_dereference(vrf->rt6);
699 if (likely(rt6)) {
700 dst = &rt6->dst;
701 dst_hold(dst);
702 }
703
704 rcu_read_unlock();
705
706 if (unlikely(!dst)) {
707 vrf_tx_error(vrf_dev, skb);
708 return NULL;
709 }
710
711 skb_dst_drop(skb);
712 skb_dst_set(skb, dst);
713
714 return skb;
715 }
716
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)717 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
718 struct sk_buff *skb)
719 {
720 vrf_finish_direct(skb);
721
722 return vrf_ip6_local_out(net, sk, skb);
723 }
724
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)725 static int vrf_output6_direct(struct net *net, struct sock *sk,
726 struct sk_buff *skb)
727 {
728 int err = 1;
729
730 skb->protocol = htons(ETH_P_IPV6);
731
732 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
733 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
734 NULL, skb->dev, vrf_output6_direct_finish);
735
736 if (likely(err == 1))
737 vrf_finish_direct(skb);
738
739 return err;
740 }
741
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)742 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
743 struct sk_buff *skb)
744 {
745 int err;
746
747 err = vrf_output6_direct(net, sk, skb);
748 if (likely(err == 1))
749 err = vrf_ip6_local_out(net, sk, skb);
750
751 return err;
752 }
753
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)754 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
755 struct sock *sk,
756 struct sk_buff *skb)
757 {
758 struct net *net = dev_net(vrf_dev);
759 int err;
760
761 skb->dev = vrf_dev;
762
763 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
764 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
765
766 if (likely(err == 1))
767 err = vrf_output6_direct(net, sk, skb);
768
769 if (likely(err == 1))
770 return skb;
771
772 return NULL;
773 }
774
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)775 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
776 struct sock *sk,
777 struct sk_buff *skb)
778 {
779 /* don't divert link scope packets */
780 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
781 return skb;
782
783 vrf_nf_set_untracked(skb);
784
785 if (qdisc_tx_is_default(vrf_dev) ||
786 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
787 return vrf_ip6_out_direct(vrf_dev, sk, skb);
788
789 return vrf_ip6_out_redirect(vrf_dev, skb);
790 }
791
792 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)793 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
794 {
795 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
796 struct net *net = dev_net(dev);
797 struct dst_entry *dst;
798
799 RCU_INIT_POINTER(vrf->rt6, NULL);
800 synchronize_rcu();
801
802 /* move dev in dst's to loopback so this VRF device can be deleted
803 * - based on dst_ifdown
804 */
805 if (rt6) {
806 dst = &rt6->dst;
807 netdev_ref_replace(dst->dev, net->loopback_dev,
808 &dst->dev_tracker, GFP_KERNEL);
809 dst->dev = net->loopback_dev;
810 dst_release(dst);
811 }
812 }
813
vrf_rt6_create(struct net_device * dev)814 static int vrf_rt6_create(struct net_device *dev)
815 {
816 int flags = DST_NOPOLICY | DST_NOXFRM;
817 struct net_vrf *vrf = netdev_priv(dev);
818 struct net *net = dev_net(dev);
819 struct rt6_info *rt6;
820 int rc = -ENOMEM;
821
822 /* IPv6 can be CONFIG enabled and then disabled runtime */
823 if (!ipv6_mod_enabled())
824 return 0;
825
826 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
827 if (!vrf->fib6_table)
828 goto out;
829
830 /* create a dst for routing packets out a VRF device */
831 rt6 = ip6_dst_alloc(net, dev, flags);
832 if (!rt6)
833 goto out;
834
835 rt6->dst.output = vrf_output6;
836
837 rcu_assign_pointer(vrf->rt6, rt6);
838
839 rc = 0;
840 out:
841 return rc;
842 }
843 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)844 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
845 struct sock *sk,
846 struct sk_buff *skb)
847 {
848 return skb;
849 }
850
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)851 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
852 {
853 }
854
vrf_rt6_create(struct net_device * dev)855 static int vrf_rt6_create(struct net_device *dev)
856 {
857 return 0;
858 }
859 #endif
860
861 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)862 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
863 {
864 struct dst_entry *dst = skb_dst(skb);
865 struct rtable *rt = (struct rtable *)dst;
866 struct net_device *dev = dst->dev;
867 unsigned int hh_len = LL_RESERVED_SPACE(dev);
868 struct neighbour *neigh;
869 bool is_v6gw = false;
870
871 vrf_nf_reset_ct(skb);
872
873 /* Be paranoid, rather than too clever. */
874 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
875 skb = skb_expand_head(skb, hh_len);
876 if (!skb) {
877 dev->stats.tx_errors++;
878 return -ENOMEM;
879 }
880 }
881
882 rcu_read_lock();
883
884 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
885 if (!IS_ERR(neigh)) {
886 int ret;
887
888 sock_confirm_neigh(skb, neigh);
889 /* if crossing protocols, can not use the cached header */
890 ret = neigh_output(neigh, skb, is_v6gw);
891 rcu_read_unlock();
892 return ret;
893 }
894
895 rcu_read_unlock();
896 vrf_tx_error(skb->dev, skb);
897 return -EINVAL;
898 }
899
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)900 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
901 {
902 struct net_device *dev = skb_dst(skb)->dev;
903
904 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
905
906 skb->dev = dev;
907 skb->protocol = htons(ETH_P_IP);
908
909 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
910 net, sk, skb, NULL, dev,
911 vrf_finish_output,
912 !(IPCB(skb)->flags & IPSKB_REROUTED));
913 }
914
915 /* set dst on skb to send packet to us via dev_xmit path. Allows
916 * packet to go through device based features such as qdisc, netfilter
917 * hooks and packet sockets with skb->dev set to vrf device.
918 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)919 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
920 struct sk_buff *skb)
921 {
922 struct net_vrf *vrf = netdev_priv(vrf_dev);
923 struct dst_entry *dst = NULL;
924 struct rtable *rth;
925
926 rcu_read_lock();
927
928 rth = rcu_dereference(vrf->rth);
929 if (likely(rth)) {
930 dst = &rth->dst;
931 dst_hold(dst);
932 }
933
934 rcu_read_unlock();
935
936 if (unlikely(!dst)) {
937 vrf_tx_error(vrf_dev, skb);
938 return NULL;
939 }
940
941 skb_dst_drop(skb);
942 skb_dst_set(skb, dst);
943
944 return skb;
945 }
946
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)947 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
948 struct sk_buff *skb)
949 {
950 vrf_finish_direct(skb);
951
952 return vrf_ip_local_out(net, sk, skb);
953 }
954
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)955 static int vrf_output_direct(struct net *net, struct sock *sk,
956 struct sk_buff *skb)
957 {
958 int err = 1;
959
960 skb->protocol = htons(ETH_P_IP);
961
962 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
963 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
964 NULL, skb->dev, vrf_output_direct_finish);
965
966 if (likely(err == 1))
967 vrf_finish_direct(skb);
968
969 return err;
970 }
971
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)972 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
973 struct sk_buff *skb)
974 {
975 int err;
976
977 err = vrf_output_direct(net, sk, skb);
978 if (likely(err == 1))
979 err = vrf_ip_local_out(net, sk, skb);
980
981 return err;
982 }
983
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)984 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
985 struct sock *sk,
986 struct sk_buff *skb)
987 {
988 struct net *net = dev_net(vrf_dev);
989 int err;
990
991 skb->dev = vrf_dev;
992
993 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
994 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
995
996 if (likely(err == 1))
997 err = vrf_output_direct(net, sk, skb);
998
999 if (likely(err == 1))
1000 return skb;
1001
1002 return NULL;
1003 }
1004
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)1005 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1006 struct sock *sk,
1007 struct sk_buff *skb)
1008 {
1009 /* don't divert multicast or local broadcast */
1010 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1011 ipv4_is_lbcast(ip_hdr(skb)->daddr))
1012 return skb;
1013
1014 vrf_nf_set_untracked(skb);
1015
1016 if (qdisc_tx_is_default(vrf_dev) ||
1017 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1018 return vrf_ip_out_direct(vrf_dev, sk, skb);
1019
1020 return vrf_ip_out_redirect(vrf_dev, skb);
1021 }
1022
1023 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)1024 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1025 struct sock *sk,
1026 struct sk_buff *skb,
1027 u16 proto)
1028 {
1029 switch (proto) {
1030 case AF_INET:
1031 return vrf_ip_out(vrf_dev, sk, skb);
1032 case AF_INET6:
1033 return vrf_ip6_out(vrf_dev, sk, skb);
1034 }
1035
1036 return skb;
1037 }
1038
1039 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)1040 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1041 {
1042 struct rtable *rth = rtnl_dereference(vrf->rth);
1043 struct net *net = dev_net(dev);
1044 struct dst_entry *dst;
1045
1046 RCU_INIT_POINTER(vrf->rth, NULL);
1047 synchronize_rcu();
1048
1049 /* move dev in dst's to loopback so this VRF device can be deleted
1050 * - based on dst_ifdown
1051 */
1052 if (rth) {
1053 dst = &rth->dst;
1054 netdev_ref_replace(dst->dev, net->loopback_dev,
1055 &dst->dev_tracker, GFP_KERNEL);
1056 dst->dev = net->loopback_dev;
1057 dst_release(dst);
1058 }
1059 }
1060
vrf_rtable_create(struct net_device * dev)1061 static int vrf_rtable_create(struct net_device *dev)
1062 {
1063 struct net_vrf *vrf = netdev_priv(dev);
1064 struct rtable *rth;
1065
1066 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1067 return -ENOMEM;
1068
1069 /* create a dst for routing packets out through a VRF device */
1070 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1071 if (!rth)
1072 return -ENOMEM;
1073
1074 rth->dst.output = vrf_output;
1075
1076 rcu_assign_pointer(vrf->rth, rth);
1077
1078 return 0;
1079 }
1080
1081 /**************************** device handling ********************/
1082
1083 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1084 static void cycle_netdev(struct net_device *dev,
1085 struct netlink_ext_ack *extack)
1086 {
1087 unsigned int flags = dev->flags;
1088 int ret;
1089
1090 if (!netif_running(dev))
1091 return;
1092
1093 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1094 if (ret >= 0)
1095 ret = dev_change_flags(dev, flags, extack);
1096
1097 if (ret < 0) {
1098 netdev_err(dev,
1099 "Failed to cycle device %s; route tables might be wrong!\n",
1100 dev->name);
1101 }
1102 }
1103
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1104 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1105 struct netlink_ext_ack *extack)
1106 {
1107 int ret;
1108
1109 /* do not allow loopback device to be enslaved to a VRF.
1110 * The vrf device acts as the loopback for the vrf.
1111 */
1112 if (port_dev == dev_net(dev)->loopback_dev) {
1113 NL_SET_ERR_MSG(extack,
1114 "Can not enslave loopback device to a VRF");
1115 return -EOPNOTSUPP;
1116 }
1117
1118 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1119 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1120 if (ret < 0)
1121 goto err;
1122
1123 cycle_netdev(port_dev, extack);
1124
1125 return 0;
1126
1127 err:
1128 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1129 return ret;
1130 }
1131
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1132 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1133 struct netlink_ext_ack *extack)
1134 {
1135 if (netif_is_l3_master(port_dev)) {
1136 NL_SET_ERR_MSG(extack,
1137 "Can not enslave an L3 master device to a VRF");
1138 return -EINVAL;
1139 }
1140
1141 if (netif_is_l3_slave(port_dev))
1142 return -EINVAL;
1143
1144 return do_vrf_add_slave(dev, port_dev, extack);
1145 }
1146
1147 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1148 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1149 {
1150 netdev_upper_dev_unlink(port_dev, dev);
1151 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1152
1153 cycle_netdev(port_dev, NULL);
1154
1155 return 0;
1156 }
1157
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1158 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1159 {
1160 return do_vrf_del_slave(dev, port_dev);
1161 }
1162
vrf_dev_uninit(struct net_device * dev)1163 static void vrf_dev_uninit(struct net_device *dev)
1164 {
1165 struct net_vrf *vrf = netdev_priv(dev);
1166
1167 vrf_rtable_release(dev, vrf);
1168 vrf_rt6_release(dev, vrf);
1169 }
1170
vrf_dev_init(struct net_device * dev)1171 static int vrf_dev_init(struct net_device *dev)
1172 {
1173 struct net_vrf *vrf = netdev_priv(dev);
1174
1175 /* create the default dst which points back to us */
1176 if (vrf_rtable_create(dev) != 0)
1177 goto out_nomem;
1178
1179 if (vrf_rt6_create(dev) != 0)
1180 goto out_rth;
1181
1182 dev->flags = IFF_MASTER | IFF_NOARP;
1183
1184 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1185 dev->operstate = IF_OPER_UP;
1186 netdev_lockdep_set_classes(dev);
1187 return 0;
1188
1189 out_rth:
1190 vrf_rtable_release(dev, vrf);
1191 out_nomem:
1192 return -ENOMEM;
1193 }
1194
1195 static const struct net_device_ops vrf_netdev_ops = {
1196 .ndo_init = vrf_dev_init,
1197 .ndo_uninit = vrf_dev_uninit,
1198 .ndo_start_xmit = vrf_xmit,
1199 .ndo_set_mac_address = eth_mac_addr,
1200 .ndo_get_stats64 = vrf_get_stats64,
1201 .ndo_add_slave = vrf_add_slave,
1202 .ndo_del_slave = vrf_del_slave,
1203 };
1204
vrf_fib_table(const struct net_device * dev)1205 static u32 vrf_fib_table(const struct net_device *dev)
1206 {
1207 struct net_vrf *vrf = netdev_priv(dev);
1208
1209 return vrf->tb_id;
1210 }
1211
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1212 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1213 {
1214 kfree_skb(skb);
1215 return 0;
1216 }
1217
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1218 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1219 struct sk_buff *skb,
1220 struct net_device *dev)
1221 {
1222 struct net *net = dev_net(dev);
1223
1224 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1225 skb = NULL; /* kfree_skb(skb) handled by nf code */
1226
1227 return skb;
1228 }
1229
vrf_prepare_mac_header(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1230 static int vrf_prepare_mac_header(struct sk_buff *skb,
1231 struct net_device *vrf_dev, u16 proto)
1232 {
1233 struct ethhdr *eth;
1234 int err;
1235
1236 /* in general, we do not know if there is enough space in the head of
1237 * the packet for hosting the mac header.
1238 */
1239 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1240 if (unlikely(err))
1241 /* no space in the skb head */
1242 return -ENOBUFS;
1243
1244 __skb_push(skb, ETH_HLEN);
1245 eth = (struct ethhdr *)skb->data;
1246
1247 skb_reset_mac_header(skb);
1248 skb_reset_mac_len(skb);
1249
1250 /* we set the ethernet destination and the source addresses to the
1251 * address of the VRF device.
1252 */
1253 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1254 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1255 eth->h_proto = htons(proto);
1256
1257 /* the destination address of the Ethernet frame corresponds to the
1258 * address set on the VRF interface; therefore, the packet is intended
1259 * to be processed locally.
1260 */
1261 skb->protocol = eth->h_proto;
1262 skb->pkt_type = PACKET_HOST;
1263
1264 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1265
1266 skb_pull_inline(skb, ETH_HLEN);
1267
1268 return 0;
1269 }
1270
1271 /* prepare and add the mac header to the packet if it was not set previously.
1272 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1273 * If the mac header was already set, the original mac header is left
1274 * untouched and the function returns immediately.
1275 */
vrf_add_mac_header_if_unset(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto,struct net_device * orig_dev)1276 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1277 struct net_device *vrf_dev,
1278 u16 proto, struct net_device *orig_dev)
1279 {
1280 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1281 return 0;
1282
1283 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1284 }
1285
1286 #if IS_ENABLED(CONFIG_IPV6)
1287 /* neighbor handling is done with actual device; do not want
1288 * to flip skb->dev for those ndisc packets. This really fails
1289 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1290 * a start.
1291 */
ipv6_ndisc_frame(const struct sk_buff * skb)1292 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1293 {
1294 const struct ipv6hdr *iph = ipv6_hdr(skb);
1295 bool rc = false;
1296
1297 if (iph->nexthdr == NEXTHDR_ICMP) {
1298 const struct icmp6hdr *icmph;
1299 struct icmp6hdr _icmph;
1300
1301 icmph = skb_header_pointer(skb, sizeof(*iph),
1302 sizeof(_icmph), &_icmph);
1303 if (!icmph)
1304 goto out;
1305
1306 switch (icmph->icmp6_type) {
1307 case NDISC_ROUTER_SOLICITATION:
1308 case NDISC_ROUTER_ADVERTISEMENT:
1309 case NDISC_NEIGHBOUR_SOLICITATION:
1310 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1311 case NDISC_REDIRECT:
1312 rc = true;
1313 break;
1314 }
1315 }
1316
1317 out:
1318 return rc;
1319 }
1320
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1321 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1322 const struct net_device *dev,
1323 struct flowi6 *fl6,
1324 int ifindex,
1325 const struct sk_buff *skb,
1326 int flags)
1327 {
1328 struct net_vrf *vrf = netdev_priv(dev);
1329
1330 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1331 }
1332
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1333 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1334 int ifindex)
1335 {
1336 const struct ipv6hdr *iph = ipv6_hdr(skb);
1337 struct flowi6 fl6 = {
1338 .flowi6_iif = ifindex,
1339 .flowi6_mark = skb->mark,
1340 .flowi6_proto = iph->nexthdr,
1341 .daddr = iph->daddr,
1342 .saddr = iph->saddr,
1343 .flowlabel = ip6_flowinfo(iph),
1344 };
1345 struct net *net = dev_net(vrf_dev);
1346 struct rt6_info *rt6;
1347
1348 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1349 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1350 if (unlikely(!rt6))
1351 return;
1352
1353 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1354 return;
1355
1356 skb_dst_set(skb, &rt6->dst);
1357 }
1358
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1359 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1360 struct sk_buff *skb)
1361 {
1362 int orig_iif = skb->skb_iif;
1363 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1364 bool is_ndisc = ipv6_ndisc_frame(skb);
1365
1366 /* loopback, multicast & non-ND link-local traffic; do not push through
1367 * packet taps again. Reset pkt_type for upper layers to process skb.
1368 * For non-loopback strict packets, determine the dst using the original
1369 * ifindex.
1370 */
1371 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1372 skb->dev = vrf_dev;
1373 skb->skb_iif = vrf_dev->ifindex;
1374 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1375
1376 if (skb->pkt_type == PACKET_LOOPBACK)
1377 skb->pkt_type = PACKET_HOST;
1378 else
1379 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1380
1381 goto out;
1382 }
1383
1384 /* if packet is NDISC then keep the ingress interface */
1385 if (!is_ndisc) {
1386 struct net_device *orig_dev = skb->dev;
1387
1388 vrf_rx_stats(vrf_dev, skb->len);
1389 skb->dev = vrf_dev;
1390 skb->skb_iif = vrf_dev->ifindex;
1391
1392 if (!list_empty(&vrf_dev->ptype_all)) {
1393 int err;
1394
1395 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1396 ETH_P_IPV6,
1397 orig_dev);
1398 if (likely(!err)) {
1399 skb_push(skb, skb->mac_len);
1400 dev_queue_xmit_nit(skb, vrf_dev);
1401 skb_pull(skb, skb->mac_len);
1402 }
1403 }
1404
1405 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1406 }
1407
1408 if (need_strict)
1409 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1410
1411 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1412 out:
1413 return skb;
1414 }
1415
1416 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1417 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1418 struct sk_buff *skb)
1419 {
1420 return skb;
1421 }
1422 #endif
1423
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1424 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1425 struct sk_buff *skb)
1426 {
1427 struct net_device *orig_dev = skb->dev;
1428
1429 skb->dev = vrf_dev;
1430 skb->skb_iif = vrf_dev->ifindex;
1431 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1432
1433 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1434 goto out;
1435
1436 /* loopback traffic; do not push through packet taps again.
1437 * Reset pkt_type for upper layers to process skb
1438 */
1439 if (skb->pkt_type == PACKET_LOOPBACK) {
1440 skb->pkt_type = PACKET_HOST;
1441 goto out;
1442 }
1443
1444 vrf_rx_stats(vrf_dev, skb->len);
1445
1446 if (!list_empty(&vrf_dev->ptype_all)) {
1447 int err;
1448
1449 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1450 orig_dev);
1451 if (likely(!err)) {
1452 skb_push(skb, skb->mac_len);
1453 dev_queue_xmit_nit(skb, vrf_dev);
1454 skb_pull(skb, skb->mac_len);
1455 }
1456 }
1457
1458 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1459 out:
1460 return skb;
1461 }
1462
1463 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1464 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1465 struct sk_buff *skb,
1466 u16 proto)
1467 {
1468 switch (proto) {
1469 case AF_INET:
1470 return vrf_ip_rcv(vrf_dev, skb);
1471 case AF_INET6:
1472 return vrf_ip6_rcv(vrf_dev, skb);
1473 }
1474
1475 return skb;
1476 }
1477
1478 #if IS_ENABLED(CONFIG_IPV6)
1479 /* send to link-local or multicast address via interface enslaved to
1480 * VRF device. Force lookup to VRF table without changing flow struct
1481 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1482 * is taken on the dst by this function.
1483 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1484 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1485 struct flowi6 *fl6)
1486 {
1487 struct net *net = dev_net(dev);
1488 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1489 struct dst_entry *dst = NULL;
1490 struct rt6_info *rt;
1491
1492 /* VRF device does not have a link-local address and
1493 * sending packets to link-local or mcast addresses over
1494 * a VRF device does not make sense
1495 */
1496 if (fl6->flowi6_oif == dev->ifindex) {
1497 dst = &net->ipv6.ip6_null_entry->dst;
1498 return dst;
1499 }
1500
1501 if (!ipv6_addr_any(&fl6->saddr))
1502 flags |= RT6_LOOKUP_F_HAS_SADDR;
1503
1504 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1505 if (rt)
1506 dst = &rt->dst;
1507
1508 return dst;
1509 }
1510 #endif
1511
1512 static const struct l3mdev_ops vrf_l3mdev_ops = {
1513 .l3mdev_fib_table = vrf_fib_table,
1514 .l3mdev_l3_rcv = vrf_l3_rcv,
1515 .l3mdev_l3_out = vrf_l3_out,
1516 #if IS_ENABLED(CONFIG_IPV6)
1517 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1518 #endif
1519 };
1520
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1521 static void vrf_get_drvinfo(struct net_device *dev,
1522 struct ethtool_drvinfo *info)
1523 {
1524 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1525 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1526 }
1527
1528 static const struct ethtool_ops vrf_ethtool_ops = {
1529 .get_drvinfo = vrf_get_drvinfo,
1530 };
1531
vrf_fib_rule_nl_size(void)1532 static inline size_t vrf_fib_rule_nl_size(void)
1533 {
1534 size_t sz;
1535
1536 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1537 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1538 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1539 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1540
1541 return sz;
1542 }
1543
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1544 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1545 {
1546 struct fib_rule_hdr *frh;
1547 struct nlmsghdr *nlh;
1548 struct sk_buff *skb;
1549 int err;
1550
1551 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1552 !ipv6_mod_enabled())
1553 return 0;
1554
1555 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1556 if (!skb)
1557 return -ENOMEM;
1558
1559 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1560 if (!nlh)
1561 goto nla_put_failure;
1562
1563 /* rule only needs to appear once */
1564 nlh->nlmsg_flags |= NLM_F_EXCL;
1565
1566 frh = nlmsg_data(nlh);
1567 memset(frh, 0, sizeof(*frh));
1568 frh->family = family;
1569 frh->action = FR_ACT_TO_TBL;
1570
1571 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1572 goto nla_put_failure;
1573
1574 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1575 goto nla_put_failure;
1576
1577 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1578 goto nla_put_failure;
1579
1580 nlmsg_end(skb, nlh);
1581
1582 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1583 skb->sk = dev_net(dev)->rtnl;
1584 if (add_it) {
1585 err = fib_nl_newrule(skb, nlh, NULL);
1586 if (err == -EEXIST)
1587 err = 0;
1588 } else {
1589 err = fib_nl_delrule(skb, nlh, NULL);
1590 if (err == -ENOENT)
1591 err = 0;
1592 }
1593 nlmsg_free(skb);
1594
1595 return err;
1596
1597 nla_put_failure:
1598 nlmsg_free(skb);
1599
1600 return -EMSGSIZE;
1601 }
1602
vrf_add_fib_rules(const struct net_device * dev)1603 static int vrf_add_fib_rules(const struct net_device *dev)
1604 {
1605 int err;
1606
1607 err = vrf_fib_rule(dev, AF_INET, true);
1608 if (err < 0)
1609 goto out_err;
1610
1611 err = vrf_fib_rule(dev, AF_INET6, true);
1612 if (err < 0)
1613 goto ipv6_err;
1614
1615 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1616 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1617 if (err < 0)
1618 goto ipmr_err;
1619 #endif
1620
1621 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1622 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1623 if (err < 0)
1624 goto ip6mr_err;
1625 #endif
1626
1627 return 0;
1628
1629 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1630 ip6mr_err:
1631 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1632 #endif
1633
1634 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1635 ipmr_err:
1636 vrf_fib_rule(dev, AF_INET6, false);
1637 #endif
1638
1639 ipv6_err:
1640 vrf_fib_rule(dev, AF_INET, false);
1641
1642 out_err:
1643 netdev_err(dev, "Failed to add FIB rules.\n");
1644 return err;
1645 }
1646
vrf_setup(struct net_device * dev)1647 static void vrf_setup(struct net_device *dev)
1648 {
1649 ether_setup(dev);
1650
1651 /* Initialize the device structure. */
1652 dev->netdev_ops = &vrf_netdev_ops;
1653 dev->l3mdev_ops = &vrf_l3mdev_ops;
1654 dev->ethtool_ops = &vrf_ethtool_ops;
1655 dev->needs_free_netdev = true;
1656
1657 /* Fill in device structure with ethernet-generic values. */
1658 eth_hw_addr_random(dev);
1659
1660 /* don't acquire vrf device's netif_tx_lock when transmitting */
1661 dev->features |= NETIF_F_LLTX;
1662
1663 /* don't allow vrf devices to change network namespaces. */
1664 dev->features |= NETIF_F_NETNS_LOCAL;
1665
1666 /* does not make sense for a VLAN to be added to a vrf device */
1667 dev->features |= NETIF_F_VLAN_CHALLENGED;
1668
1669 /* enable offload features */
1670 dev->features |= NETIF_F_GSO_SOFTWARE;
1671 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1672 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1673
1674 dev->hw_features = dev->features;
1675 dev->hw_enc_features = dev->features;
1676
1677 /* default to no qdisc; user can add if desired */
1678 dev->priv_flags |= IFF_NO_QUEUE;
1679 dev->priv_flags |= IFF_NO_RX_HANDLER;
1680 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1681
1682 /* VRF devices do not care about MTU, but if the MTU is set
1683 * too low then the ipv4 and ipv6 protocols are disabled
1684 * which breaks networking.
1685 */
1686 dev->min_mtu = IPV6_MIN_MTU;
1687 dev->max_mtu = IP6_MAX_MTU;
1688 dev->mtu = dev->max_mtu;
1689
1690 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1691 }
1692
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1693 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1694 struct netlink_ext_ack *extack)
1695 {
1696 if (tb[IFLA_ADDRESS]) {
1697 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1698 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1699 return -EINVAL;
1700 }
1701 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1702 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1703 return -EADDRNOTAVAIL;
1704 }
1705 }
1706 return 0;
1707 }
1708
vrf_dellink(struct net_device * dev,struct list_head * head)1709 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1710 {
1711 struct net_device *port_dev;
1712 struct list_head *iter;
1713
1714 netdev_for_each_lower_dev(dev, port_dev, iter)
1715 vrf_del_slave(dev, port_dev);
1716
1717 vrf_map_unregister_dev(dev);
1718
1719 unregister_netdevice_queue(dev, head);
1720 }
1721
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1722 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1723 struct nlattr *tb[], struct nlattr *data[],
1724 struct netlink_ext_ack *extack)
1725 {
1726 struct net_vrf *vrf = netdev_priv(dev);
1727 struct netns_vrf *nn_vrf;
1728 bool *add_fib_rules;
1729 struct net *net;
1730 int err;
1731
1732 if (!data || !data[IFLA_VRF_TABLE]) {
1733 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1734 return -EINVAL;
1735 }
1736
1737 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1738 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1739 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1740 "Invalid VRF table id");
1741 return -EINVAL;
1742 }
1743
1744 dev->priv_flags |= IFF_L3MDEV_MASTER;
1745
1746 err = register_netdevice(dev);
1747 if (err)
1748 goto out;
1749
1750 /* mapping between table_id and vrf;
1751 * note: such binding could not be done in the dev init function
1752 * because dev->ifindex id is not available yet.
1753 */
1754 vrf->ifindex = dev->ifindex;
1755
1756 err = vrf_map_register_dev(dev, extack);
1757 if (err) {
1758 unregister_netdevice(dev);
1759 goto out;
1760 }
1761
1762 net = dev_net(dev);
1763 nn_vrf = net_generic(net, vrf_net_id);
1764
1765 add_fib_rules = &nn_vrf->add_fib_rules;
1766 if (*add_fib_rules) {
1767 err = vrf_add_fib_rules(dev);
1768 if (err) {
1769 vrf_map_unregister_dev(dev);
1770 unregister_netdevice(dev);
1771 goto out;
1772 }
1773 *add_fib_rules = false;
1774 }
1775
1776 out:
1777 return err;
1778 }
1779
vrf_nl_getsize(const struct net_device * dev)1780 static size_t vrf_nl_getsize(const struct net_device *dev)
1781 {
1782 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1783 }
1784
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1785 static int vrf_fillinfo(struct sk_buff *skb,
1786 const struct net_device *dev)
1787 {
1788 struct net_vrf *vrf = netdev_priv(dev);
1789
1790 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1791 }
1792
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1793 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1794 const struct net_device *slave_dev)
1795 {
1796 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1797 }
1798
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1799 static int vrf_fill_slave_info(struct sk_buff *skb,
1800 const struct net_device *vrf_dev,
1801 const struct net_device *slave_dev)
1802 {
1803 struct net_vrf *vrf = netdev_priv(vrf_dev);
1804
1805 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1806 return -EMSGSIZE;
1807
1808 return 0;
1809 }
1810
1811 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1812 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1813 };
1814
1815 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1816 .kind = DRV_NAME,
1817 .priv_size = sizeof(struct net_vrf),
1818
1819 .get_size = vrf_nl_getsize,
1820 .policy = vrf_nl_policy,
1821 .validate = vrf_validate,
1822 .fill_info = vrf_fillinfo,
1823
1824 .get_slave_size = vrf_get_slave_size,
1825 .fill_slave_info = vrf_fill_slave_info,
1826
1827 .newlink = vrf_newlink,
1828 .dellink = vrf_dellink,
1829 .setup = vrf_setup,
1830 .maxtype = IFLA_VRF_MAX,
1831 };
1832
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1833 static int vrf_device_event(struct notifier_block *unused,
1834 unsigned long event, void *ptr)
1835 {
1836 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1837
1838 /* only care about unregister events to drop slave references */
1839 if (event == NETDEV_UNREGISTER) {
1840 struct net_device *vrf_dev;
1841
1842 if (!netif_is_l3_slave(dev))
1843 goto out;
1844
1845 vrf_dev = netdev_master_upper_dev_get(dev);
1846 vrf_del_slave(vrf_dev, dev);
1847 }
1848 out:
1849 return NOTIFY_DONE;
1850 }
1851
1852 static struct notifier_block vrf_notifier_block __read_mostly = {
1853 .notifier_call = vrf_device_event,
1854 };
1855
vrf_map_init(struct vrf_map * vmap)1856 static int vrf_map_init(struct vrf_map *vmap)
1857 {
1858 spin_lock_init(&vmap->vmap_lock);
1859 hash_init(vmap->ht);
1860
1861 vmap->strict_mode = false;
1862
1863 return 0;
1864 }
1865
1866 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1867 static bool vrf_strict_mode(struct vrf_map *vmap)
1868 {
1869 bool strict_mode;
1870
1871 vrf_map_lock(vmap);
1872 strict_mode = vmap->strict_mode;
1873 vrf_map_unlock(vmap);
1874
1875 return strict_mode;
1876 }
1877
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1878 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1879 {
1880 bool *cur_mode;
1881 int res = 0;
1882
1883 vrf_map_lock(vmap);
1884
1885 cur_mode = &vmap->strict_mode;
1886 if (*cur_mode == new_mode)
1887 goto unlock;
1888
1889 if (*cur_mode) {
1890 /* disable strict mode */
1891 *cur_mode = false;
1892 } else {
1893 if (vmap->shared_tables) {
1894 /* we cannot allow strict_mode because there are some
1895 * vrfs that share one or more tables.
1896 */
1897 res = -EBUSY;
1898 goto unlock;
1899 }
1900
1901 /* no tables are shared among vrfs, so we can go back
1902 * to 1:1 association between a vrf with its table.
1903 */
1904 *cur_mode = true;
1905 }
1906
1907 unlock:
1908 vrf_map_unlock(vmap);
1909
1910 return res;
1911 }
1912
vrf_shared_table_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1913 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1914 void *buffer, size_t *lenp, loff_t *ppos)
1915 {
1916 struct net *net = (struct net *)table->extra1;
1917 struct vrf_map *vmap = netns_vrf_map(net);
1918 int proc_strict_mode = 0;
1919 struct ctl_table tmp = {
1920 .procname = table->procname,
1921 .data = &proc_strict_mode,
1922 .maxlen = sizeof(int),
1923 .mode = table->mode,
1924 .extra1 = SYSCTL_ZERO,
1925 .extra2 = SYSCTL_ONE,
1926 };
1927 int ret;
1928
1929 if (!write)
1930 proc_strict_mode = vrf_strict_mode(vmap);
1931
1932 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1933
1934 if (write && ret == 0)
1935 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1936
1937 return ret;
1938 }
1939
1940 static const struct ctl_table vrf_table[] = {
1941 {
1942 .procname = "strict_mode",
1943 .data = NULL,
1944 .maxlen = sizeof(int),
1945 .mode = 0644,
1946 .proc_handler = vrf_shared_table_handler,
1947 /* set by the vrf_netns_init */
1948 .extra1 = NULL,
1949 },
1950 { },
1951 };
1952
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1953 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1954 {
1955 struct ctl_table *table;
1956
1957 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1958 if (!table)
1959 return -ENOMEM;
1960
1961 /* init the extra1 parameter with the reference to current netns */
1962 table[0].extra1 = net;
1963
1964 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1965 ARRAY_SIZE(vrf_table));
1966 if (!nn_vrf->ctl_hdr) {
1967 kfree(table);
1968 return -ENOMEM;
1969 }
1970
1971 return 0;
1972 }
1973
vrf_netns_exit_sysctl(struct net * net)1974 static void vrf_netns_exit_sysctl(struct net *net)
1975 {
1976 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1977 struct ctl_table *table;
1978
1979 table = nn_vrf->ctl_hdr->ctl_table_arg;
1980 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1981 kfree(table);
1982 }
1983 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1984 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1985 {
1986 return 0;
1987 }
1988
vrf_netns_exit_sysctl(struct net * net)1989 static void vrf_netns_exit_sysctl(struct net *net)
1990 {
1991 }
1992 #endif
1993
1994 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1995 static int __net_init vrf_netns_init(struct net *net)
1996 {
1997 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1998
1999 nn_vrf->add_fib_rules = true;
2000 vrf_map_init(&nn_vrf->vmap);
2001
2002 return vrf_netns_init_sysctl(net, nn_vrf);
2003 }
2004
vrf_netns_exit(struct net * net)2005 static void __net_exit vrf_netns_exit(struct net *net)
2006 {
2007 vrf_netns_exit_sysctl(net);
2008 }
2009
2010 static struct pernet_operations vrf_net_ops __net_initdata = {
2011 .init = vrf_netns_init,
2012 .exit = vrf_netns_exit,
2013 .id = &vrf_net_id,
2014 .size = sizeof(struct netns_vrf),
2015 };
2016
vrf_init_module(void)2017 static int __init vrf_init_module(void)
2018 {
2019 int rc;
2020
2021 register_netdevice_notifier(&vrf_notifier_block);
2022
2023 rc = register_pernet_subsys(&vrf_net_ops);
2024 if (rc < 0)
2025 goto error;
2026
2027 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2028 vrf_ifindex_lookup_by_table_id);
2029 if (rc < 0)
2030 goto unreg_pernet;
2031
2032 rc = rtnl_link_register(&vrf_link_ops);
2033 if (rc < 0)
2034 goto table_lookup_unreg;
2035
2036 return 0;
2037
2038 table_lookup_unreg:
2039 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2040 vrf_ifindex_lookup_by_table_id);
2041
2042 unreg_pernet:
2043 unregister_pernet_subsys(&vrf_net_ops);
2044
2045 error:
2046 unregister_netdevice_notifier(&vrf_notifier_block);
2047 return rc;
2048 }
2049
2050 module_init(vrf_init_module);
2051 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2052 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2053 MODULE_LICENSE("GPL");
2054 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2055 MODULE_VERSION(DRV_VERSION);
2056