xref: /openbmc/qemu/target/arm/tcg/mve_helper.c (revision 23901b2b721c0576007ab7580da8aa855d6042a9)
1  /*
2   * M-profile MVE Operations
3   *
4   * Copyright (c) 2021 Linaro, Ltd.
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "cpu.h"
22  #include "internals.h"
23  #include "vec_internal.h"
24  #include "exec/helper-proto.h"
25  #include "exec/cpu_ldst.h"
26  #include "exec/exec-all.h"
27  #include "tcg/tcg.h"
28  #include "fpu/softfloat.h"
29  #include "crypto/clmul.h"
30  
mve_eci_mask(CPUARMState * env)31  static uint16_t mve_eci_mask(CPUARMState *env)
32  {
33      /*
34       * Return the mask of which elements in the MVE vector correspond
35       * to beats being executed. The mask has 1 bits for executed lanes
36       * and 0 bits where ECI says this beat was already executed.
37       */
38      int eci;
39  
40      if ((env->condexec_bits & 0xf) != 0) {
41          return 0xffff;
42      }
43  
44      eci = env->condexec_bits >> 4;
45      switch (eci) {
46      case ECI_NONE:
47          return 0xffff;
48      case ECI_A0:
49          return 0xfff0;
50      case ECI_A0A1:
51          return 0xff00;
52      case ECI_A0A1A2:
53      case ECI_A0A1A2B0:
54          return 0xf000;
55      default:
56          g_assert_not_reached();
57      }
58  }
59  
mve_element_mask(CPUARMState * env)60  static uint16_t mve_element_mask(CPUARMState *env)
61  {
62      /*
63       * Return the mask of which elements in the MVE vector should be
64       * updated. This is a combination of multiple things:
65       *  (1) by default, we update every lane in the vector
66       *  (2) VPT predication stores its state in the VPR register;
67       *  (3) low-overhead-branch tail predication will mask out part
68       *      the vector on the final iteration of the loop
69       *  (4) if EPSR.ECI is set then we must execute only some beats
70       *      of the insn
71       * We combine all these into a 16-bit result with the same semantics
72       * as VPR.P0: 0 to mask the lane, 1 if it is active.
73       * 8-bit vector ops will look at all bits of the result;
74       * 16-bit ops will look at bits 0, 2, 4, ...;
75       * 32-bit ops will look at bits 0, 4, 8 and 12.
76       * Compare pseudocode GetCurInstrBeat(), though that only returns
77       * the 4-bit slice of the mask corresponding to a single beat.
78       */
79      uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
80  
81      if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
82          mask |= 0xff;
83      }
84      if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
85          mask |= 0xff00;
86      }
87  
88      if (env->v7m.ltpsize < 4 &&
89          env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
90          /*
91           * Tail predication active, and this is the last loop iteration.
92           * The element size is (1 << ltpsize), and we only want to process
93           * loopcount elements, so we want to retain the least significant
94           * (loopcount * esize) predicate bits and zero out bits above that.
95           */
96          int masklen = env->regs[14] << env->v7m.ltpsize;
97          assert(masklen <= 16);
98          uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
99          mask &= ltpmask;
100      }
101  
102      /*
103       * ECI bits indicate which beats are already executed;
104       * we handle this by effectively predicating them out.
105       */
106      mask &= mve_eci_mask(env);
107      return mask;
108  }
109  
mve_advance_vpt(CPUARMState * env)110  static void mve_advance_vpt(CPUARMState *env)
111  {
112      /* Advance the VPT and ECI state if necessary */
113      uint32_t vpr = env->v7m.vpr;
114      unsigned mask01, mask23;
115      uint16_t inv_mask;
116      uint16_t eci_mask = mve_eci_mask(env);
117  
118      if ((env->condexec_bits & 0xf) == 0) {
119          env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
120              (ECI_A0 << 4) : (ECI_NONE << 4);
121      }
122  
123      if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
124          /* VPT not enabled, nothing to do */
125          return;
126      }
127  
128      /* Invert P0 bits if needed, but only for beats we actually executed */
129      mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
130      mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
131      /* Start by assuming we invert all bits corresponding to executed beats */
132      inv_mask = eci_mask;
133      if (mask01 <= 8) {
134          /* MASK01 says don't invert low half of P0 */
135          inv_mask &= ~0xff;
136      }
137      if (mask23 <= 8) {
138          /* MASK23 says don't invert high half of P0 */
139          inv_mask &= ~0xff00;
140      }
141      vpr ^= inv_mask;
142      /* Only update MASK01 if beat 1 executed */
143      if (eci_mask & 0xf0) {
144          vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
145      }
146      /* Beat 3 always executes, so update MASK23 */
147      vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
148      env->v7m.vpr = vpr;
149  }
150  
151  /* For loads, predicated lanes are zeroed instead of keeping their old values */
152  #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE)                         \
153      void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
154      {                                                                   \
155          TYPE *d = vd;                                                   \
156          uint16_t mask = mve_element_mask(env);                          \
157          uint16_t eci_mask = mve_eci_mask(env);                          \
158          unsigned b, e;                                                  \
159          /*                                                              \
160           * R_SXTM allows the dest reg to become UNKNOWN for abandoned   \
161           * beats so we don't care if we update part of the dest and     \
162           * then take an exception.                                      \
163           */                                                             \
164          for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
165              if (eci_mask & (1 << b)) {                                  \
166                  d[H##ESIZE(e)] = (mask & (1 << b)) ?                    \
167                      cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;     \
168              }                                                           \
169              addr += MSIZE;                                              \
170          }                                                               \
171          mve_advance_vpt(env);                                           \
172      }
173  
174  #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE)                         \
175      void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr)    \
176      {                                                                   \
177          TYPE *d = vd;                                                   \
178          uint16_t mask = mve_element_mask(env);                          \
179          unsigned b, e;                                                  \
180          for (b = 0, e = 0; b < 16; b += ESIZE, e++) {                   \
181              if (mask & (1 << b)) {                                      \
182                  cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
183              }                                                           \
184              addr += MSIZE;                                              \
185          }                                                               \
186          mve_advance_vpt(env);                                           \
187      }
188  
189  DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
190  DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
191  DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
192  
193  DO_VSTR(vstrb, 1, stb, 1, uint8_t)
194  DO_VSTR(vstrh, 2, stw, 2, uint16_t)
195  DO_VSTR(vstrw, 4, stl, 4, uint32_t)
196  
197  DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
198  DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
199  DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
200  DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
201  DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
202  DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
203  
204  DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
205  DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
206  DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
207  
208  #undef DO_VLDR
209  #undef DO_VSTR
210  
211  /*
212   * Gather loads/scatter stores. Here each element of Qm specifies
213   * an offset to use from the base register Rm. In the _os_ versions
214   * that offset is scaled by the element size.
215   * For loads, predicated lanes are zeroed instead of retaining
216   * their previous values.
217   */
218  #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB)        \
219      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
220                            uint32_t base)                                \
221      {                                                                   \
222          TYPE *d = vd;                                                   \
223          OFFTYPE *m = vm;                                                \
224          uint16_t mask = mve_element_mask(env);                          \
225          uint16_t eci_mask = mve_eci_mask(env);                          \
226          unsigned e;                                                     \
227          uint32_t addr;                                                  \
228          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
229              if (!(eci_mask & 1)) {                                      \
230                  continue;                                               \
231              }                                                           \
232              addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
233              d[H##ESIZE(e)] = (mask & 1) ?                               \
234                  cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0;         \
235              if (WB) {                                                   \
236                  m[H##ESIZE(e)] = addr;                                  \
237              }                                                           \
238          }                                                               \
239          mve_advance_vpt(env);                                           \
240      }
241  
242  /* We know here TYPE is unsigned so always the same as the offset type */
243  #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB)                 \
244      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
245                            uint32_t base)                                \
246      {                                                                   \
247          TYPE *d = vd;                                                   \
248          TYPE *m = vm;                                                   \
249          uint16_t mask = mve_element_mask(env);                          \
250          uint16_t eci_mask = mve_eci_mask(env);                          \
251          unsigned e;                                                     \
252          uint32_t addr;                                                  \
253          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
254              if (!(eci_mask & 1)) {                                      \
255                  continue;                                               \
256              }                                                           \
257              addr = ADDRFN(base, m[H##ESIZE(e)]);                        \
258              if (mask & 1) {                                             \
259                  cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
260              }                                                           \
261              if (WB) {                                                   \
262                  m[H##ESIZE(e)] = addr;                                  \
263              }                                                           \
264          }                                                               \
265          mve_advance_vpt(env);                                           \
266      }
267  
268  /*
269   * 64-bit accesses are slightly different: they are done as two 32-bit
270   * accesses, controlled by the predicate mask for the relevant beat,
271   * and with a single 32-bit offset in the first of the two Qm elements.
272   * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
273   * Address writeback happens on the odd beats and updates the address
274   * stored in the even-beat element.
275   */
276  #define DO_VLDR64_SG(OP, ADDRFN, WB)                                    \
277      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
278                            uint32_t base)                                \
279      {                                                                   \
280          uint32_t *d = vd;                                               \
281          uint32_t *m = vm;                                               \
282          uint16_t mask = mve_element_mask(env);                          \
283          uint16_t eci_mask = mve_eci_mask(env);                          \
284          unsigned e;                                                     \
285          uint32_t addr;                                                  \
286          for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
287              if (!(eci_mask & 1)) {                                      \
288                  continue;                                               \
289              }                                                           \
290              addr = ADDRFN(base, m[H4(e & ~1)]);                         \
291              addr += 4 * (e & 1);                                        \
292              d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
293              if (WB && (e & 1)) {                                        \
294                  m[H4(e & ~1)] = addr - 4;                               \
295              }                                                           \
296          }                                                               \
297          mve_advance_vpt(env);                                           \
298      }
299  
300  #define DO_VSTR64_SG(OP, ADDRFN, WB)                                    \
301      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm,         \
302                            uint32_t base)                                \
303      {                                                                   \
304          uint32_t *d = vd;                                               \
305          uint32_t *m = vm;                                               \
306          uint16_t mask = mve_element_mask(env);                          \
307          uint16_t eci_mask = mve_eci_mask(env);                          \
308          unsigned e;                                                     \
309          uint32_t addr;                                                  \
310          for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) {      \
311              if (!(eci_mask & 1)) {                                      \
312                  continue;                                               \
313              }                                                           \
314              addr = ADDRFN(base, m[H4(e & ~1)]);                         \
315              addr += 4 * (e & 1);                                        \
316              if (mask & 1) {                                             \
317                  cpu_stl_data_ra(env, addr, d[H4(e)], GETPC());          \
318              }                                                           \
319              if (WB && (e & 1)) {                                        \
320                  m[H4(e & ~1)] = addr - 4;                               \
321              }                                                           \
322          }                                                               \
323          mve_advance_vpt(env);                                           \
324      }
325  
326  #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
327  #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
328  #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
329  #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
330  
331  DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
332  DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
333  DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
334  
335  DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
336  DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
337  DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
338  DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
339  DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
340  DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
DO_VLDR64_SG(vldrd_sg_ud,ADDR_ADD,false)341  DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
342  
343  DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
344  DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
345  DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
346  DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
347  DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
348  
349  DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
350  DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
351  DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
352  DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
353  DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
354  DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
355  DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
356  
357  DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
358  DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
359  DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
360  DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
361  
362  DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
363  DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
364  DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
365  DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
366  
367  /*
368   * Deinterleaving loads/interleaving stores.
369   *
370   * For these helpers we are passed the index of the first Qreg
371   * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
372   * and the value of the base address register Rn.
373   * The helpers are specialized for pattern and element size, so
374   * for instance vld42h is VLD4 with pattern 2, element size MO_16.
375   *
376   * These insns are beatwise but not predicated, so we must honour ECI,
377   * but need not look at mve_element_mask().
378   *
379   * The pseudocode implements these insns with multiple memory accesses
380   * of the element size, but rules R_VVVG and R_FXDM permit us to make
381   * one 32-bit memory access per beat.
382   */
383  #define DO_VLD4B(OP, O1, O2, O3, O4)                                    \
384      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
385                            uint32_t base)                                \
386      {                                                                   \
387          int beat, e;                                                    \
388          uint16_t mask = mve_eci_mask(env);                              \
389          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
390          uint32_t addr, data;                                            \
391          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
392              if ((mask & 1) == 0) {                                      \
393                  /* ECI says skip this beat */                           \
394                  continue;                                               \
395              }                                                           \
396              addr = base + off[beat] * 4;                                \
397              data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
398              for (e = 0; e < 4; e++, data >>= 8) {                       \
399                  uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
400                  qd[H1(off[beat])] = data;                               \
401              }                                                           \
402          }                                                               \
403      }
404  
405  #define DO_VLD4H(OP, O1, O2)                                            \
406      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
407                            uint32_t base)                                \
408      {                                                                   \
409          int beat;                                                       \
410          uint16_t mask = mve_eci_mask(env);                              \
411          static const uint8_t off[4] = { O1, O1, O2, O2 };               \
412          uint32_t addr, data;                                            \
413          int y; /* y counts 0 2 0 2 */                                   \
414          uint16_t *qd;                                                   \
415          for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
416              if ((mask & 1) == 0) {                                      \
417                  /* ECI says skip this beat */                           \
418                  continue;                                               \
419              }                                                           \
420              addr = base + off[beat] * 8 + (beat & 1) * 4;               \
421              data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
422              qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
423              qd[H2(off[beat])] = data;                                   \
424              data >>= 16;                                                \
425              qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
426              qd[H2(off[beat])] = data;                                   \
427          }                                                               \
428      }
429  
430  #define DO_VLD4W(OP, O1, O2, O3, O4)                                    \
431      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
432                            uint32_t base)                                \
433      {                                                                   \
434          int beat;                                                       \
435          uint16_t mask = mve_eci_mask(env);                              \
436          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
437          uint32_t addr, data;                                            \
438          uint32_t *qd;                                                   \
439          int y;                                                          \
440          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
441              if ((mask & 1) == 0) {                                      \
442                  /* ECI says skip this beat */                           \
443                  continue;                                               \
444              }                                                           \
445              addr = base + off[beat] * 4;                                \
446              data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
447              y = (beat + (O1 & 2)) & 3;                                  \
448              qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
449              qd[H4(off[beat] >> 2)] = data;                              \
450          }                                                               \
451      }
452  
453  DO_VLD4B(vld40b, 0, 1, 10, 11)
454  DO_VLD4B(vld41b, 2, 3, 12, 13)
455  DO_VLD4B(vld42b, 4, 5, 14, 15)
456  DO_VLD4B(vld43b, 6, 7, 8, 9)
457  
458  DO_VLD4H(vld40h, 0, 5)
459  DO_VLD4H(vld41h, 1, 6)
460  DO_VLD4H(vld42h, 2, 7)
461  DO_VLD4H(vld43h, 3, 4)
462  
463  DO_VLD4W(vld40w, 0, 1, 10, 11)
464  DO_VLD4W(vld41w, 2, 3, 12, 13)
465  DO_VLD4W(vld42w, 4, 5, 14, 15)
466  DO_VLD4W(vld43w, 6, 7, 8, 9)
467  
468  #define DO_VLD2B(OP, O1, O2, O3, O4)                                    \
469      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
470                            uint32_t base)                                \
471      {                                                                   \
472          int beat, e;                                                    \
473          uint16_t mask = mve_eci_mask(env);                              \
474          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
475          uint32_t addr, data;                                            \
476          uint8_t *qd;                                                    \
477          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
478              if ((mask & 1) == 0) {                                      \
479                  /* ECI says skip this beat */                           \
480                  continue;                                               \
481              }                                                           \
482              addr = base + off[beat] * 2;                                \
483              data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
484              for (e = 0; e < 4; e++, data >>= 8) {                       \
485                  qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
486                  qd[H1(off[beat] + (e >> 1))] = data;                    \
487              }                                                           \
488          }                                                               \
489      }
490  
491  #define DO_VLD2H(OP, O1, O2, O3, O4)                                    \
492      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
493                            uint32_t base)                                \
494      {                                                                   \
495          int beat;                                                       \
496          uint16_t mask = mve_eci_mask(env);                              \
497          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
498          uint32_t addr, data;                                            \
499          int e;                                                          \
500          uint16_t *qd;                                                   \
501          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
502              if ((mask & 1) == 0) {                                      \
503                  /* ECI says skip this beat */                           \
504                  continue;                                               \
505              }                                                           \
506              addr = base + off[beat] * 4;                                \
507              data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
508              for (e = 0; e < 2; e++, data >>= 16) {                      \
509                  qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
510                  qd[H2(off[beat])] = data;                               \
511              }                                                           \
512          }                                                               \
513      }
514  
515  #define DO_VLD2W(OP, O1, O2, O3, O4)                                    \
516      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
517                            uint32_t base)                                \
518      {                                                                   \
519          int beat;                                                       \
520          uint16_t mask = mve_eci_mask(env);                              \
521          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
522          uint32_t addr, data;                                            \
523          uint32_t *qd;                                                   \
524          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
525              if ((mask & 1) == 0) {                                      \
526                  /* ECI says skip this beat */                           \
527                  continue;                                               \
528              }                                                           \
529              addr = base + off[beat];                                    \
530              data = cpu_ldl_le_data_ra(env, addr, GETPC());              \
531              qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
532              qd[H4(off[beat] >> 3)] = data;                              \
533          }                                                               \
534      }
535  
536  DO_VLD2B(vld20b, 0, 2, 12, 14)
537  DO_VLD2B(vld21b, 4, 6, 8, 10)
538  
539  DO_VLD2H(vld20h, 0, 1, 6, 7)
540  DO_VLD2H(vld21h, 2, 3, 4, 5)
541  
542  DO_VLD2W(vld20w, 0, 4, 24, 28)
543  DO_VLD2W(vld21w, 8, 12, 16, 20)
544  
545  #define DO_VST4B(OP, O1, O2, O3, O4)                                    \
546      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
547                            uint32_t base)                                \
548      {                                                                   \
549          int beat, e;                                                    \
550          uint16_t mask = mve_eci_mask(env);                              \
551          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
552          uint32_t addr, data;                                            \
553          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
554              if ((mask & 1) == 0) {                                      \
555                  /* ECI says skip this beat */                           \
556                  continue;                                               \
557              }                                                           \
558              addr = base + off[beat] * 4;                                \
559              data = 0;                                                   \
560              for (e = 3; e >= 0; e--) {                                  \
561                  uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
562                  data = (data << 8) | qd[H1(off[beat])];                 \
563              }                                                           \
564              cpu_stl_le_data_ra(env, addr, data, GETPC());               \
565          }                                                               \
566      }
567  
568  #define DO_VST4H(OP, O1, O2)                                            \
569      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
570                            uint32_t base)                                \
571      {                                                                   \
572          int beat;                                                       \
573          uint16_t mask = mve_eci_mask(env);                              \
574          static const uint8_t off[4] = { O1, O1, O2, O2 };               \
575          uint32_t addr, data;                                            \
576          int y; /* y counts 0 2 0 2 */                                   \
577          uint16_t *qd;                                                   \
578          for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) {   \
579              if ((mask & 1) == 0) {                                      \
580                  /* ECI says skip this beat */                           \
581                  continue;                                               \
582              }                                                           \
583              addr = base + off[beat] * 8 + (beat & 1) * 4;               \
584              qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y);             \
585              data = qd[H2(off[beat])];                                   \
586              qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1);         \
587              data |= qd[H2(off[beat])] << 16;                            \
588              cpu_stl_le_data_ra(env, addr, data, GETPC());               \
589          }                                                               \
590      }
591  
592  #define DO_VST4W(OP, O1, O2, O3, O4)                                    \
593      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
594                            uint32_t base)                                \
595      {                                                                   \
596          int beat;                                                       \
597          uint16_t mask = mve_eci_mask(env);                              \
598          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
599          uint32_t addr, data;                                            \
600          uint32_t *qd;                                                   \
601          int y;                                                          \
602          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
603              if ((mask & 1) == 0) {                                      \
604                  /* ECI says skip this beat */                           \
605                  continue;                                               \
606              }                                                           \
607              addr = base + off[beat] * 4;                                \
608              y = (beat + (O1 & 2)) & 3;                                  \
609              qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y);             \
610              data = qd[H4(off[beat] >> 2)];                              \
611              cpu_stl_le_data_ra(env, addr, data, GETPC());               \
612          }                                                               \
613      }
614  
615  DO_VST4B(vst40b, 0, 1, 10, 11)
616  DO_VST4B(vst41b, 2, 3, 12, 13)
617  DO_VST4B(vst42b, 4, 5, 14, 15)
618  DO_VST4B(vst43b, 6, 7, 8, 9)
619  
620  DO_VST4H(vst40h, 0, 5)
621  DO_VST4H(vst41h, 1, 6)
622  DO_VST4H(vst42h, 2, 7)
623  DO_VST4H(vst43h, 3, 4)
624  
625  DO_VST4W(vst40w, 0, 1, 10, 11)
626  DO_VST4W(vst41w, 2, 3, 12, 13)
627  DO_VST4W(vst42w, 4, 5, 14, 15)
628  DO_VST4W(vst43w, 6, 7, 8, 9)
629  
630  #define DO_VST2B(OP, O1, O2, O3, O4)                                    \
631      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
632                            uint32_t base)                                \
633      {                                                                   \
634          int beat, e;                                                    \
635          uint16_t mask = mve_eci_mask(env);                              \
636          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
637          uint32_t addr, data;                                            \
638          uint8_t *qd;                                                    \
639          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
640              if ((mask & 1) == 0) {                                      \
641                  /* ECI says skip this beat */                           \
642                  continue;                                               \
643              }                                                           \
644              addr = base + off[beat] * 2;                                \
645              data = 0;                                                   \
646              for (e = 3; e >= 0; e--) {                                  \
647                  qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1));    \
648                  data = (data << 8) | qd[H1(off[beat] + (e >> 1))];      \
649              }                                                           \
650              cpu_stl_le_data_ra(env, addr, data, GETPC());               \
651          }                                                               \
652      }
653  
654  #define DO_VST2H(OP, O1, O2, O3, O4)                                    \
655      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
656                            uint32_t base)                                \
657      {                                                                   \
658          int beat;                                                       \
659          uint16_t mask = mve_eci_mask(env);                              \
660          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
661          uint32_t addr, data;                                            \
662          int e;                                                          \
663          uint16_t *qd;                                                   \
664          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
665              if ((mask & 1) == 0) {                                      \
666                  /* ECI says skip this beat */                           \
667                  continue;                                               \
668              }                                                           \
669              addr = base + off[beat] * 4;                                \
670              data = 0;                                                   \
671              for (e = 1; e >= 0; e--) {                                  \
672                  qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e);         \
673                  data = (data << 16) | qd[H2(off[beat])];                \
674              }                                                           \
675              cpu_stl_le_data_ra(env, addr, data, GETPC());               \
676          }                                                               \
677      }
678  
679  #define DO_VST2W(OP, O1, O2, O3, O4)                                    \
680      void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx,             \
681                            uint32_t base)                                \
682      {                                                                   \
683          int beat;                                                       \
684          uint16_t mask = mve_eci_mask(env);                              \
685          static const uint8_t off[4] = { O1, O2, O3, O4 };               \
686          uint32_t addr, data;                                            \
687          uint32_t *qd;                                                   \
688          for (beat = 0; beat < 4; beat++, mask >>= 4) {                  \
689              if ((mask & 1) == 0) {                                      \
690                  /* ECI says skip this beat */                           \
691                  continue;                                               \
692              }                                                           \
693              addr = base + off[beat];                                    \
694              qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1));    \
695              data = qd[H4(off[beat] >> 3)];                              \
696              cpu_stl_le_data_ra(env, addr, data, GETPC());               \
697          }                                                               \
698      }
699  
700  DO_VST2B(vst20b, 0, 2, 12, 14)
701  DO_VST2B(vst21b, 4, 6, 8, 10)
702  
703  DO_VST2H(vst20h, 0, 1, 6, 7)
704  DO_VST2H(vst21h, 2, 3, 4, 5)
705  
706  DO_VST2W(vst20w, 0, 4, 24, 28)
707  DO_VST2W(vst21w, 8, 12, 16, 20)
708  
709  /*
710   * The mergemask(D, R, M) macro performs the operation "*D = R" but
711   * storing only the bytes which correspond to 1 bits in M,
712   * leaving other bytes in *D unchanged. We use _Generic
713   * to select the correct implementation based on the type of D.
714   */
715  
716  static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
717  {
718      if (mask & 1) {
719          *d = r;
720      }
721  }
722  
mergemask_sb(int8_t * d,int8_t r,uint16_t mask)723  static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
724  {
725      mergemask_ub((uint8_t *)d, r, mask);
726  }
727  
mergemask_uh(uint16_t * d,uint16_t r,uint16_t mask)728  static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
729  {
730      uint16_t bmask = expand_pred_b(mask);
731      *d = (*d & ~bmask) | (r & bmask);
732  }
733  
mergemask_sh(int16_t * d,int16_t r,uint16_t mask)734  static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
735  {
736      mergemask_uh((uint16_t *)d, r, mask);
737  }
738  
mergemask_uw(uint32_t * d,uint32_t r,uint16_t mask)739  static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
740  {
741      uint32_t bmask = expand_pred_b(mask);
742      *d = (*d & ~bmask) | (r & bmask);
743  }
744  
mergemask_sw(int32_t * d,int32_t r,uint16_t mask)745  static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
746  {
747      mergemask_uw((uint32_t *)d, r, mask);
748  }
749  
mergemask_uq(uint64_t * d,uint64_t r,uint16_t mask)750  static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
751  {
752      uint64_t bmask = expand_pred_b(mask);
753      *d = (*d & ~bmask) | (r & bmask);
754  }
755  
mergemask_sq(int64_t * d,int64_t r,uint16_t mask)756  static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
757  {
758      mergemask_uq((uint64_t *)d, r, mask);
759  }
760  
761  #define mergemask(D, R, M)                      \
762      _Generic(D,                                 \
763               uint8_t *: mergemask_ub,           \
764               int8_t *:  mergemask_sb,           \
765               uint16_t *: mergemask_uh,          \
766               int16_t *:  mergemask_sh,          \
767               uint32_t *: mergemask_uw,          \
768               int32_t *:  mergemask_sw,          \
769               uint64_t *: mergemask_uq,          \
770               int64_t *:  mergemask_sq)(D, R, M)
771  
HELPER(mve_vdup)772  void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
773  {
774      /*
775       * The generated code already replicated an 8 or 16 bit constant
776       * into the 32-bit value, so we only need to write the 32-bit
777       * value to all elements of the Qreg, allowing for predication.
778       */
779      uint32_t *d = vd;
780      uint16_t mask = mve_element_mask(env);
781      unsigned e;
782      for (e = 0; e < 16 / 4; e++, mask >>= 4) {
783          mergemask(&d[H4(e)], val, mask);
784      }
785      mve_advance_vpt(env);
786  }
787  
788  #define DO_1OP(OP, ESIZE, TYPE, FN)                                     \
789      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
790      {                                                                   \
791          TYPE *d = vd, *m = vm;                                          \
792          uint16_t mask = mve_element_mask(env);                          \
793          unsigned e;                                                     \
794          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
795              mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask);       \
796          }                                                               \
797          mve_advance_vpt(env);                                           \
798      }
799  
800  #define DO_CLS_B(N)   (clrsb32(N) - 24)
801  #define DO_CLS_H(N)   (clrsb32(N) - 16)
802  
803  DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
804  DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
805  DO_1OP(vclsw, 4, int32_t, clrsb32)
806  
807  #define DO_CLZ_B(N)   (clz32(N) - 24)
808  #define DO_CLZ_H(N)   (clz32(N) - 16)
809  
810  DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
811  DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
812  DO_1OP(vclzw, 4, uint32_t, clz32)
813  
814  DO_1OP(vrev16b, 2, uint16_t, bswap16)
815  DO_1OP(vrev32b, 4, uint32_t, bswap32)
816  DO_1OP(vrev32h, 4, uint32_t, hswap32)
817  DO_1OP(vrev64b, 8, uint64_t, bswap64)
818  DO_1OP(vrev64h, 8, uint64_t, hswap64)
819  DO_1OP(vrev64w, 8, uint64_t, wswap64)
820  
821  #define DO_NOT(N) (~(N))
822  
823  DO_1OP(vmvn, 8, uint64_t, DO_NOT)
824  
825  #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
826  #define DO_FABSH(N)  ((N) & dup_const(MO_16, 0x7fff))
827  #define DO_FABSS(N)  ((N) & dup_const(MO_32, 0x7fffffff))
828  
829  DO_1OP(vabsb, 1, int8_t, DO_ABS)
830  DO_1OP(vabsh, 2, int16_t, DO_ABS)
831  DO_1OP(vabsw, 4, int32_t, DO_ABS)
832  
833  /* We can do these 64 bits at a time */
834  DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
835  DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
836  
837  #define DO_NEG(N)    (-(N))
838  #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
839  #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
840  
841  DO_1OP(vnegb, 1, int8_t, DO_NEG)
842  DO_1OP(vnegh, 2, int16_t, DO_NEG)
843  DO_1OP(vnegw, 4, int32_t, DO_NEG)
844  
845  /* We can do these 64 bits at a time */
846  DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
847  DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
848  
849  /*
850   * 1 operand immediates: Vda is destination and possibly also one source.
851   * All these insns work at 64-bit widths.
852   */
853  #define DO_1OP_IMM(OP, FN)                                              \
854      void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm)    \
855      {                                                                   \
856          uint64_t *da = vda;                                             \
857          uint16_t mask = mve_element_mask(env);                          \
858          unsigned e;                                                     \
859          for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
860              mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask);            \
861          }                                                               \
862          mve_advance_vpt(env);                                           \
863      }
864  
865  #define DO_MOVI(N, I) (I)
866  #define DO_ANDI(N, I) ((N) & (I))
867  #define DO_ORRI(N, I) ((N) | (I))
868  
DO_1OP_IMM(vmovi,DO_MOVI)869  DO_1OP_IMM(vmovi, DO_MOVI)
870  DO_1OP_IMM(vandi, DO_ANDI)
871  DO_1OP_IMM(vorri, DO_ORRI)
872  
873  #define DO_2OP(OP, ESIZE, TYPE, FN)                                     \
874      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
875                                  void *vd, void *vn, void *vm)           \
876      {                                                                   \
877          TYPE *d = vd, *n = vn, *m = vm;                                 \
878          uint16_t mask = mve_element_mask(env);                          \
879          unsigned e;                                                     \
880          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
881              mergemask(&d[H##ESIZE(e)],                                  \
882                        FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask);        \
883          }                                                               \
884          mve_advance_vpt(env);                                           \
885      }
886  
887  /* provide unsigned 2-op helpers for all sizes */
888  #define DO_2OP_U(OP, FN)                        \
889      DO_2OP(OP##b, 1, uint8_t, FN)               \
890      DO_2OP(OP##h, 2, uint16_t, FN)              \
891      DO_2OP(OP##w, 4, uint32_t, FN)
892  
893  /* provide signed 2-op helpers for all sizes */
894  #define DO_2OP_S(OP, FN)                        \
895      DO_2OP(OP##b, 1, int8_t, FN)                \
896      DO_2OP(OP##h, 2, int16_t, FN)               \
897      DO_2OP(OP##w, 4, int32_t, FN)
898  
899  /*
900   * "Long" operations where two half-sized inputs (taken from either the
901   * top or the bottom of the input vector) produce a double-width result.
902   * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
903   */
904  #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)               \
905      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
906      {                                                                   \
907          LTYPE *d = vd;                                                  \
908          TYPE *n = vn, *m = vm;                                          \
909          uint16_t mask = mve_element_mask(env);                          \
910          unsigned le;                                                    \
911          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
912              LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)],              \
913                           m[H##ESIZE(le * 2 + TOP)]);                    \
914              mergemask(&d[H##LESIZE(le)], r, mask);                      \
915          }                                                               \
916          mve_advance_vpt(env);                                           \
917      }
918  
919  #define DO_2OP_SAT(OP, ESIZE, TYPE, FN)                                 \
920      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
921      {                                                                   \
922          TYPE *d = vd, *n = vn, *m = vm;                                 \
923          uint16_t mask = mve_element_mask(env);                          \
924          unsigned e;                                                     \
925          bool qc = false;                                                \
926          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
927              bool sat = false;                                           \
928              TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat);         \
929              mergemask(&d[H##ESIZE(e)], r_, mask);                       \
930              qc |= sat & mask & 1;                                       \
931          }                                                               \
932          if (qc) {                                                       \
933              env->vfp.qc[0] = qc;                                        \
934          }                                                               \
935          mve_advance_vpt(env);                                           \
936      }
937  
938  /* provide unsigned 2-op helpers for all sizes */
939  #define DO_2OP_SAT_U(OP, FN)                    \
940      DO_2OP_SAT(OP##b, 1, uint8_t, FN)           \
941      DO_2OP_SAT(OP##h, 2, uint16_t, FN)          \
942      DO_2OP_SAT(OP##w, 4, uint32_t, FN)
943  
944  /* provide signed 2-op helpers for all sizes */
945  #define DO_2OP_SAT_S(OP, FN)                    \
946      DO_2OP_SAT(OP##b, 1, int8_t, FN)            \
947      DO_2OP_SAT(OP##h, 2, int16_t, FN)           \
948      DO_2OP_SAT(OP##w, 4, int32_t, FN)
949  
950  #define DO_AND(N, M)  ((N) & (M))
951  #define DO_BIC(N, M)  ((N) & ~(M))
952  #define DO_ORR(N, M)  ((N) | (M))
953  #define DO_ORN(N, M)  ((N) | ~(M))
954  #define DO_EOR(N, M)  ((N) ^ (M))
955  
956  DO_2OP(vand, 8, uint64_t, DO_AND)
957  DO_2OP(vbic, 8, uint64_t, DO_BIC)
958  DO_2OP(vorr, 8, uint64_t, DO_ORR)
959  DO_2OP(vorn, 8, uint64_t, DO_ORN)
960  DO_2OP(veor, 8, uint64_t, DO_EOR)
961  
962  #define DO_ADD(N, M) ((N) + (M))
963  #define DO_SUB(N, M) ((N) - (M))
964  #define DO_MUL(N, M) ((N) * (M))
965  
966  DO_2OP_U(vadd, DO_ADD)
967  DO_2OP_U(vsub, DO_SUB)
968  DO_2OP_U(vmul, DO_MUL)
969  
970  DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
971  DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
972  DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
973  DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
974  DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
975  DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
976  
977  DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
978  DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
979  DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
980  DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
981  DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
982  DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
983  
984  /*
985   * Polynomial multiply. We can always do this generating 64 bits
986   * of the result at a time, so we don't need to use DO_2OP_L.
987   */
988  DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
989  DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
990  DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even)
991  DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd)
992  
993  /*
994   * Because the computation type is at least twice as large as required,
995   * these work for both signed and unsigned source types.
996   */
997  static inline uint8_t do_mulh_b(int32_t n, int32_t m)
998  {
999      return (n * m) >> 8;
1000  }
1001  
do_mulh_h(int32_t n,int32_t m)1002  static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1003  {
1004      return (n * m) >> 16;
1005  }
1006  
do_mulh_w(int64_t n,int64_t m)1007  static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1008  {
1009      return (n * m) >> 32;
1010  }
1011  
do_rmulh_b(int32_t n,int32_t m)1012  static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1013  {
1014      return (n * m + (1U << 7)) >> 8;
1015  }
1016  
do_rmulh_h(int32_t n,int32_t m)1017  static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1018  {
1019      return (n * m + (1U << 15)) >> 16;
1020  }
1021  
do_rmulh_w(int64_t n,int64_t m)1022  static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1023  {
1024      return (n * m + (1U << 31)) >> 32;
1025  }
1026  
1027  DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1028  DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1029  DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1030  DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1031  DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1032  DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1033  
1034  DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1035  DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1036  DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1037  DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1038  DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1039  DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1040  
1041  #define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
1042  #define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
1043  
DO_2OP_S(vmaxs,DO_MAX)1044  DO_2OP_S(vmaxs, DO_MAX)
1045  DO_2OP_U(vmaxu, DO_MAX)
1046  DO_2OP_S(vmins, DO_MIN)
1047  DO_2OP_U(vminu, DO_MIN)
1048  
1049  #define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
1050  
1051  DO_2OP_S(vabds, DO_ABD)
1052  DO_2OP_U(vabdu, DO_ABD)
1053  
1054  static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1055  {
1056      return ((uint64_t)n + m) >> 1;
1057  }
1058  
do_vhadd_s(int32_t n,int32_t m)1059  static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1060  {
1061      return ((int64_t)n + m) >> 1;
1062  }
1063  
do_vhsub_u(uint32_t n,uint32_t m)1064  static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1065  {
1066      return ((uint64_t)n - m) >> 1;
1067  }
1068  
do_vhsub_s(int32_t n,int32_t m)1069  static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1070  {
1071      return ((int64_t)n - m) >> 1;
1072  }
1073  
DO_2OP_S(vhadds,do_vhadd_s)1074  DO_2OP_S(vhadds, do_vhadd_s)
1075  DO_2OP_U(vhaddu, do_vhadd_u)
1076  DO_2OP_S(vhsubs, do_vhsub_s)
1077  DO_2OP_U(vhsubu, do_vhsub_u)
1078  
1079  #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1080  #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1081  #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1082  #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1083  
1084  DO_2OP_S(vshls, DO_VSHLS)
1085  DO_2OP_U(vshlu, DO_VSHLU)
1086  DO_2OP_S(vrshls, DO_VRSHLS)
1087  DO_2OP_U(vrshlu, DO_VRSHLU)
1088  
1089  #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1090  #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1091  
1092  DO_2OP_S(vrhadds, DO_RHADD_S)
1093  DO_2OP_U(vrhaddu, DO_RHADD_U)
1094  
1095  static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1096                      uint32_t inv, uint32_t carry_in, bool update_flags)
1097  {
1098      uint16_t mask = mve_element_mask(env);
1099      unsigned e;
1100  
1101      /* If any additions trigger, we will update flags. */
1102      if (mask & 0x1111) {
1103          update_flags = true;
1104      }
1105  
1106      for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1107          uint64_t r = carry_in;
1108          r += n[H4(e)];
1109          r += m[H4(e)] ^ inv;
1110          if (mask & 1) {
1111              carry_in = r >> 32;
1112          }
1113          mergemask(&d[H4(e)], r, mask);
1114      }
1115  
1116      if (update_flags) {
1117          /* Store C, clear NZV. */
1118          env->vfp.fpsr &= ~FPSR_NZCV_MASK;
1119          env->vfp.fpsr |= carry_in * FPSR_C;
1120      }
1121      mve_advance_vpt(env);
1122  }
1123  
HELPER(mve_vadc)1124  void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1125  {
1126      bool carry_in = env->vfp.fpsr & FPSR_C;
1127      do_vadc(env, vd, vn, vm, 0, carry_in, false);
1128  }
1129  
HELPER(mve_vsbc)1130  void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1131  {
1132      bool carry_in = env->vfp.fpsr & FPSR_C;
1133      do_vadc(env, vd, vn, vm, -1, carry_in, false);
1134  }
1135  
1136  
HELPER(mve_vadci)1137  void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1138  {
1139      do_vadc(env, vd, vn, vm, 0, 0, true);
1140  }
1141  
HELPER(mve_vsbci)1142  void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1143  {
1144      do_vadc(env, vd, vn, vm, -1, 1, true);
1145  }
1146  
1147  #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1)                             \
1148      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1149      {                                                                   \
1150          TYPE *d = vd, *n = vn, *m = vm;                                 \
1151          uint16_t mask = mve_element_mask(env);                          \
1152          unsigned e;                                                     \
1153          TYPE r[16 / ESIZE];                                             \
1154          /* Calculate all results first to avoid overwriting inputs */   \
1155          for (e = 0; e < 16 / ESIZE; e++) {                              \
1156              if (!(e & 1)) {                                             \
1157                  r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]);         \
1158              } else {                                                    \
1159                  r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]);         \
1160              }                                                           \
1161          }                                                               \
1162          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1163              mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
1164          }                                                               \
1165          mve_advance_vpt(env);                                           \
1166      }
1167  
1168  #define DO_VCADD_ALL(OP, FN0, FN1)              \
1169      DO_VCADD(OP##b, 1, int8_t, FN0, FN1)        \
1170      DO_VCADD(OP##h, 2, int16_t, FN0, FN1)       \
1171      DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1172  
DO_VCADD_ALL(vcadd90,DO_SUB,DO_ADD)1173  DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1174  DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1175  DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1176  DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1177  
1178  static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1179  {
1180      if (val > max) {
1181          *s = true;
1182          return max;
1183      } else if (val < min) {
1184          *s = true;
1185          return min;
1186      }
1187      return val;
1188  }
1189  
1190  #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1191  #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1192  #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1193  
1194  #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1195  #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1196  #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1197  
1198  #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1199  #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1200  #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1201  
1202  #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1203  #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1204  #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1205  
1206  /*
1207   * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1208   * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1209   */
1210  #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1211                                          INT8_MIN, INT8_MAX, s)
1212  #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1213                                          INT16_MIN, INT16_MAX, s)
1214  #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1215                                          INT32_MIN, INT32_MAX, s)
1216  
1217  #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1218                                           INT8_MIN, INT8_MAX, s)
1219  #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1220                                           INT16_MIN, INT16_MAX, s)
1221  #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1222                                           INT32_MIN, INT32_MAX, s)
1223  
1224  DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1225  DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1226  DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1227  
1228  DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1229  DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1230  DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1231  
1232  DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1233  DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1234  DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1235  DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1236  DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1237  DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1238  
1239  DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1240  DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1241  DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1242  DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1243  DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1244  DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1245  
1246  /*
1247   * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1248   * and friends wanting a uint32_t* sat and our needing a bool*.
1249   */
1250  #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp)                        \
1251      ({                                                                  \
1252          uint32_t su32 = 0;                                              \
1253          typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1254          if (su32) {                                                     \
1255              *satp = true;                                               \
1256          }                                                               \
1257          qrshl_ret;                                                      \
1258      })
1259  
1260  #define DO_SQSHL_OP(N, M, satp) \
1261      WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1262  #define DO_UQSHL_OP(N, M, satp) \
1263      WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1264  #define DO_SQRSHL_OP(N, M, satp) \
1265      WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1266  #define DO_UQRSHL_OP(N, M, satp) \
1267      WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1268  #define DO_SUQSHL_OP(N, M, satp) \
1269      WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1270  
DO_2OP_SAT_S(vqshls,DO_SQSHL_OP)1271  DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1272  DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1273  DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1274  DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1275  
1276  /*
1277   * Multiply add dual returning high half
1278   * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1279   * whether to add the rounding constant, and the pointer to the
1280   * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1281   * saturate to twice the input size and return the high half; or
1282   * (A * B - C * D) etc for VQDMLSDH.
1283   */
1284  #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN)                \
1285      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1286                                  void *vm)                               \
1287      {                                                                   \
1288          TYPE *d = vd, *n = vn, *m = vm;                                 \
1289          uint16_t mask = mve_element_mask(env);                          \
1290          unsigned e;                                                     \
1291          bool qc = false;                                                \
1292          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1293              bool sat = false;                                           \
1294              if ((e & 1) == XCHG) {                                      \
1295                  TYPE vqdmladh_ret = FN(n[H##ESIZE(e)],                  \
1296                              m[H##ESIZE(e - XCHG)],                      \
1297                              n[H##ESIZE(e + (1 - 2 * XCHG))],            \
1298                              m[H##ESIZE(e + (1 - XCHG))],                \
1299                              ROUND, &sat);                               \
1300                  mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask);         \
1301                  qc |= sat & mask & 1;                                   \
1302              }                                                           \
1303          }                                                               \
1304          if (qc) {                                                       \
1305              env->vfp.qc[0] = qc;                                        \
1306          }                                                               \
1307          mve_advance_vpt(env);                                           \
1308      }
1309  
1310  static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1311                              int round, bool *sat)
1312  {
1313      int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1314      return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1315  }
1316  
do_vqdmladh_h(int16_t a,int16_t b,int16_t c,int16_t d,int round,bool * sat)1317  static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1318                               int round, bool *sat)
1319  {
1320      int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1321      return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1322  }
1323  
do_vqdmladh_w(int32_t a,int32_t b,int32_t c,int32_t d,int round,bool * sat)1324  static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1325                               int round, bool *sat)
1326  {
1327      int64_t m1 = (int64_t)a * b;
1328      int64_t m2 = (int64_t)c * d;
1329      int64_t r;
1330      /*
1331       * Architecturally we should do the entire add, double, round
1332       * and then check for saturation. We do three saturating adds,
1333       * but we need to be careful about the order. If the first
1334       * m1 + m2 saturates then it's impossible for the *2+rc to
1335       * bring it back into the non-saturated range. However, if
1336       * m1 + m2 is negative then it's possible that doing the doubling
1337       * would take the intermediate result below INT64_MAX and the
1338       * addition of the rounding constant then brings it back in range.
1339       * So we add half the rounding constant before doubling rather
1340       * than adding the rounding constant after the doubling.
1341       */
1342      if (sadd64_overflow(m1, m2, &r) ||
1343          sadd64_overflow(r, (round << 30), &r) ||
1344          sadd64_overflow(r, r, &r)) {
1345          *sat = true;
1346          return r < 0 ? INT32_MAX : INT32_MIN;
1347      }
1348      return r >> 32;
1349  }
1350  
do_vqdmlsdh_b(int8_t a,int8_t b,int8_t c,int8_t d,int round,bool * sat)1351  static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1352                              int round, bool *sat)
1353  {
1354      int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1355      return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1356  }
1357  
do_vqdmlsdh_h(int16_t a,int16_t b,int16_t c,int16_t d,int round,bool * sat)1358  static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1359                               int round, bool *sat)
1360  {
1361      int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1362      return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1363  }
1364  
do_vqdmlsdh_w(int32_t a,int32_t b,int32_t c,int32_t d,int round,bool * sat)1365  static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1366                               int round, bool *sat)
1367  {
1368      int64_t m1 = (int64_t)a * b;
1369      int64_t m2 = (int64_t)c * d;
1370      int64_t r;
1371      /* The same ordering issue as in do_vqdmladh_w applies here too */
1372      if (ssub64_overflow(m1, m2, &r) ||
1373          sadd64_overflow(r, (round << 30), &r) ||
1374          sadd64_overflow(r, r, &r)) {
1375          *sat = true;
1376          return r < 0 ? INT32_MAX : INT32_MIN;
1377      }
1378      return r >> 32;
1379  }
1380  
1381  DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1382  DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1383  DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1384  DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1385  DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1386  DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1387  
1388  DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1389  DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1390  DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1391  DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1392  DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1393  DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1394  
1395  DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1396  DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1397  DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1398  DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1399  DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1400  DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1401  
1402  DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1403  DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1404  DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1405  DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1406  DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1407  DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1408  
1409  #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN)                              \
1410      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1411                                  uint32_t rm)                            \
1412      {                                                                   \
1413          TYPE *d = vd, *n = vn;                                          \
1414          TYPE m = rm;                                                    \
1415          uint16_t mask = mve_element_mask(env);                          \
1416          unsigned e;                                                     \
1417          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1418              mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask);    \
1419          }                                                               \
1420          mve_advance_vpt(env);                                           \
1421      }
1422  
1423  #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN)                          \
1424      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1425                                  uint32_t rm)                            \
1426      {                                                                   \
1427          TYPE *d = vd, *n = vn;                                          \
1428          TYPE m = rm;                                                    \
1429          uint16_t mask = mve_element_mask(env);                          \
1430          unsigned e;                                                     \
1431          bool qc = false;                                                \
1432          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1433              bool sat = false;                                           \
1434              mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat),     \
1435                        mask);                                            \
1436              qc |= sat & mask & 1;                                       \
1437          }                                                               \
1438          if (qc) {                                                       \
1439              env->vfp.qc[0] = qc;                                        \
1440          }                                                               \
1441          mve_advance_vpt(env);                                           \
1442      }
1443  
1444  /* "accumulating" version where FN takes d as well as n and m */
1445  #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                          \
1446      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1447                                  uint32_t rm)                            \
1448      {                                                                   \
1449          TYPE *d = vd, *n = vn;                                          \
1450          TYPE m = rm;                                                    \
1451          uint16_t mask = mve_element_mask(env);                          \
1452          unsigned e;                                                     \
1453          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1454              mergemask(&d[H##ESIZE(e)],                                  \
1455                        FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask);     \
1456          }                                                               \
1457          mve_advance_vpt(env);                                           \
1458      }
1459  
1460  #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN)                      \
1461      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1462                                  uint32_t rm)                            \
1463      {                                                                   \
1464          TYPE *d = vd, *n = vn;                                          \
1465          TYPE m = rm;                                                    \
1466          uint16_t mask = mve_element_mask(env);                          \
1467          unsigned e;                                                     \
1468          bool qc = false;                                                \
1469          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1470              bool sat = false;                                           \
1471              mergemask(&d[H##ESIZE(e)],                                  \
1472                        FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat),      \
1473                        mask);                                            \
1474              qc |= sat & mask & 1;                                       \
1475          }                                                               \
1476          if (qc) {                                                       \
1477              env->vfp.qc[0] = qc;                                        \
1478          }                                                               \
1479          mve_advance_vpt(env);                                           \
1480      }
1481  
1482  /* provide unsigned 2-op scalar helpers for all sizes */
1483  #define DO_2OP_SCALAR_U(OP, FN)                 \
1484      DO_2OP_SCALAR(OP##b, 1, uint8_t, FN)        \
1485      DO_2OP_SCALAR(OP##h, 2, uint16_t, FN)       \
1486      DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1487  #define DO_2OP_SCALAR_S(OP, FN)                 \
1488      DO_2OP_SCALAR(OP##b, 1, int8_t, FN)         \
1489      DO_2OP_SCALAR(OP##h, 2, int16_t, FN)        \
1490      DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1491  
1492  #define DO_2OP_ACC_SCALAR_U(OP, FN)             \
1493      DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN)    \
1494      DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN)   \
1495      DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1496  
DO_2OP_SCALAR_U(vadd_scalar,DO_ADD)1497  DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1498  DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1499  DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1500  DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1501  DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1502  DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1503  DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1504  
1505  DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1506  DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1507  DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1508  DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1509  DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1510  DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1511  
1512  DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1513  DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1514  DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1515  DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1516  DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1517  DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1518  
1519  DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1520  DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1521  DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1522  DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1523  DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1524  DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1525  
1526  static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1527  {
1528      int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1529      return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1530  }
1531  
do_vqdmlah_h(int16_t a,int16_t b,int16_t c,int round,bool * sat)1532  static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1533                             int round, bool *sat)
1534  {
1535      int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1536      return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1537  }
1538  
do_vqdmlah_w(int32_t a,int32_t b,int32_t c,int round,bool * sat)1539  static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1540                              int round, bool *sat)
1541  {
1542      /*
1543       * Architecturally we should do the entire add, double, round
1544       * and then check for saturation. We do three saturating adds,
1545       * but we need to be careful about the order. If the first
1546       * m1 + m2 saturates then it's impossible for the *2+rc to
1547       * bring it back into the non-saturated range. However, if
1548       * m1 + m2 is negative then it's possible that doing the doubling
1549       * would take the intermediate result below INT64_MAX and the
1550       * addition of the rounding constant then brings it back in range.
1551       * So we add half the rounding constant and half the "c << esize"
1552       * before doubling rather than adding the rounding constant after
1553       * the doubling.
1554       */
1555      int64_t m1 = (int64_t)a * b;
1556      int64_t m2 = (int64_t)c << 31;
1557      int64_t r;
1558      if (sadd64_overflow(m1, m2, &r) ||
1559          sadd64_overflow(r, (round << 30), &r) ||
1560          sadd64_overflow(r, r, &r)) {
1561          *sat = true;
1562          return r < 0 ? INT32_MAX : INT32_MIN;
1563      }
1564      return r >> 32;
1565  }
1566  
1567  /*
1568   * The *MLAH insns are vector * scalar + vector;
1569   * the *MLASH insns are vector * vector + scalar
1570   */
1571  #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1572  #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1573  #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1574  #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1575  #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1576  #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1577  
1578  #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1579  #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1580  #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1581  #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1582  #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1583  #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1584  
1585  DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1586  DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1587  DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1588  DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1589  DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1590  DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1591  
1592  DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1593  DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1594  DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1595  DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1596  DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1597  DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1598  
1599  /* Vector by scalar plus vector */
1600  #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1601  
DO_2OP_ACC_SCALAR_U(vmla,DO_VMLA)1602  DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1603  
1604  /* Vector by vector plus scalar */
1605  #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1606  
1607  DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1608  
1609  /*
1610   * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1611   * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1612   * SATMASK specifies which bits of the predicate mask matter for determining
1613   * whether to propagate a saturation indication into FPSCR.QC -- for
1614   * the 16x16->32 case we must check only the bit corresponding to the T or B
1615   * half that we used, but for the 32x32->64 case we propagate if the mask
1616   * bit is set for either half.
1617   */
1618  #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1619      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1620                                  uint32_t rm)                            \
1621      {                                                                   \
1622          LTYPE *d = vd;                                                  \
1623          TYPE *n = vn;                                                   \
1624          TYPE m = rm;                                                    \
1625          uint16_t mask = mve_element_mask(env);                          \
1626          unsigned le;                                                    \
1627          bool qc = false;                                                \
1628          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1629              bool sat = false;                                           \
1630              LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat);    \
1631              mergemask(&d[H##LESIZE(le)], r, mask);                      \
1632              qc |= sat && (mask & SATMASK);                              \
1633          }                                                               \
1634          if (qc) {                                                       \
1635              env->vfp.qc[0] = qc;                                        \
1636          }                                                               \
1637          mve_advance_vpt(env);                                           \
1638      }
1639  
1640  static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1641  {
1642      int64_t r = ((int64_t)n * m) * 2;
1643      return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1644  }
1645  
do_qdmullw(int32_t n,int32_t m,bool * sat)1646  static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1647  {
1648      /* The multiply can't overflow, but the doubling might */
1649      int64_t r = (int64_t)n * m;
1650      if (r > INT64_MAX / 2) {
1651          *sat = true;
1652          return INT64_MAX;
1653      } else if (r < INT64_MIN / 2) {
1654          *sat = true;
1655          return INT64_MIN;
1656      } else {
1657          return r * 2;
1658      }
1659  }
1660  
1661  #define SATMASK16B 1
1662  #define SATMASK16T (1 << 2)
1663  #define SATMASK32 ((1 << 4) | 1)
1664  
1665  DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1666                      do_qdmullh, SATMASK16B)
1667  DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1668                      do_qdmullw, SATMASK32)
1669  DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1670                      do_qdmullh, SATMASK16T)
1671  DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1672                      do_qdmullw, SATMASK32)
1673  
1674  /*
1675   * Long saturating ops
1676   */
1677  #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK)  \
1678      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn,   \
1679                                  void *vm)                               \
1680      {                                                                   \
1681          LTYPE *d = vd;                                                  \
1682          TYPE *n = vn, *m = vm;                                          \
1683          uint16_t mask = mve_element_mask(env);                          \
1684          unsigned le;                                                    \
1685          bool qc = false;                                                \
1686          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
1687              bool sat = false;                                           \
1688              LTYPE op1 = n[H##ESIZE(le * 2 + TOP)];                      \
1689              LTYPE op2 = m[H##ESIZE(le * 2 + TOP)];                      \
1690              mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask);     \
1691              qc |= sat && (mask & SATMASK);                              \
1692          }                                                               \
1693          if (qc) {                                                       \
1694              env->vfp.qc[0] = qc;                                        \
1695          }                                                               \
1696          mve_advance_vpt(env);                                           \
1697      }
1698  
1699  DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1700  DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1701  DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1702  DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1703  
do_vbrsrb(uint32_t n,uint32_t m)1704  static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1705  {
1706      m &= 0xff;
1707      if (m == 0) {
1708          return 0;
1709      }
1710      n = revbit8(n);
1711      if (m < 8) {
1712          n >>= 8 - m;
1713      }
1714      return n;
1715  }
1716  
do_vbrsrh(uint32_t n,uint32_t m)1717  static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1718  {
1719      m &= 0xff;
1720      if (m == 0) {
1721          return 0;
1722      }
1723      n = revbit16(n);
1724      if (m < 16) {
1725          n >>= 16 - m;
1726      }
1727      return n;
1728  }
1729  
do_vbrsrw(uint32_t n,uint32_t m)1730  static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1731  {
1732      m &= 0xff;
1733      if (m == 0) {
1734          return 0;
1735      }
1736      n = revbit32(n);
1737      if (m < 32) {
1738          n >>= 32 - m;
1739      }
1740      return n;
1741  }
1742  
1743  DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1744  DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1745  DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1746  
1747  /*
1748   * Multiply add long dual accumulate ops.
1749   */
1750  #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC)                 \
1751      uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1752                                      void *vm, uint64_t a)               \
1753      {                                                                   \
1754          uint16_t mask = mve_element_mask(env);                          \
1755          unsigned e;                                                     \
1756          TYPE *n = vn, *m = vm;                                          \
1757          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1758              if (mask & 1) {                                             \
1759                  if (e & 1) {                                            \
1760                      a ODDACC                                            \
1761                          (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1762                  } else {                                                \
1763                      a EVENACC                                           \
1764                          (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1765                  }                                                       \
1766              }                                                           \
1767          }                                                               \
1768          mve_advance_vpt(env);                                           \
1769          return a;                                                       \
1770      }
1771  
1772  DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1773  DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1774  DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1775  DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1776  
1777  DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1778  DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1779  
1780  DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1781  DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1782  DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1783  DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1784  
1785  /*
1786   * Multiply add dual accumulate ops
1787   */
1788  #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1789      uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1790                                      void *vm, uint32_t a)               \
1791      {                                                                   \
1792          uint16_t mask = mve_element_mask(env);                          \
1793          unsigned e;                                                     \
1794          TYPE *n = vn, *m = vm;                                          \
1795          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
1796              if (mask & 1) {                                             \
1797                  if (e & 1) {                                            \
1798                      a ODDACC                                            \
1799                          n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)];     \
1800                  } else {                                                \
1801                      a EVENACC                                           \
1802                          n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)];     \
1803                  }                                                       \
1804              }                                                           \
1805          }                                                               \
1806          mve_advance_vpt(env);                                           \
1807          return a;                                                       \
1808      }
1809  
1810  #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC)           \
1811      DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC)   \
1812      DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC)  \
1813      DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1814  
1815  #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC)           \
1816      DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC)  \
1817      DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1818      DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1819  
1820  DO_DAV_S(vmladavs, false, +=, +=)
1821  DO_DAV_U(vmladavu, false, +=, +=)
1822  DO_DAV_S(vmlsdav, false, +=, -=)
1823  DO_DAV_S(vmladavsx, true, +=, +=)
1824  DO_DAV_S(vmlsdavx, true, +=, -=)
1825  
1826  /*
1827   * Rounding multiply add long dual accumulate high. In the pseudocode
1828   * this is implemented with a 72-bit internal accumulator value of which
1829   * the top 64 bits are returned. We optimize this to avoid having to
1830   * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1831   * is squashed back into 64-bits after each beat.
1832   */
1833  #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB)                            \
1834      uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,         \
1835                                      void *vm, uint64_t a)               \
1836      {                                                                   \
1837          uint16_t mask = mve_element_mask(env);                          \
1838          unsigned e;                                                     \
1839          TYPE *n = vn, *m = vm;                                          \
1840          for (e = 0; e < 16 / 4; e++, mask >>= 4) {                      \
1841              if (mask & 1) {                                             \
1842                  LTYPE mul;                                              \
1843                  if (e & 1) {                                            \
1844                      mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)];        \
1845                      if (SUB) {                                          \
1846                          mul = -mul;                                     \
1847                      }                                                   \
1848                  } else {                                                \
1849                      mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)];        \
1850                  }                                                       \
1851                  mul = (mul >> 8) + ((mul >> 7) & 1);                    \
1852                  a += mul;                                               \
1853              }                                                           \
1854          }                                                               \
1855          mve_advance_vpt(env);                                           \
1856          return a;                                                       \
1857      }
1858  
DO_LDAVH(vrmlaldavhsw,int32_t,int64_t,false,false)1859  DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1860  DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1861  
1862  DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1863  
1864  DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1865  DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1866  
1867  /* Vector add across vector */
1868  #define DO_VADDV(OP, ESIZE, TYPE)                               \
1869      uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1870                                      uint32_t ra)                \
1871      {                                                           \
1872          uint16_t mask = mve_element_mask(env);                  \
1873          unsigned e;                                             \
1874          TYPE *m = vm;                                           \
1875          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1876              if (mask & 1) {                                     \
1877                  ra += m[H##ESIZE(e)];                           \
1878              }                                                   \
1879          }                                                       \
1880          mve_advance_vpt(env);                                   \
1881          return ra;                                              \
1882      }                                                           \
1883  
1884  DO_VADDV(vaddvsb, 1, int8_t)
1885  DO_VADDV(vaddvsh, 2, int16_t)
1886  DO_VADDV(vaddvsw, 4, int32_t)
1887  DO_VADDV(vaddvub, 1, uint8_t)
1888  DO_VADDV(vaddvuh, 2, uint16_t)
1889  DO_VADDV(vaddvuw, 4, uint32_t)
1890  
1891  /*
1892   * Vector max/min across vector. Unlike VADDV, we must
1893   * read ra as the element size, not its full width.
1894   * We work with int64_t internally for simplicity.
1895   */
1896  #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN)                \
1897      uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1898                                      uint32_t ra_in)             \
1899      {                                                           \
1900          uint16_t mask = mve_element_mask(env);                  \
1901          unsigned e;                                             \
1902          TYPE *m = vm;                                           \
1903          int64_t ra = (RATYPE)ra_in;                             \
1904          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1905              if (mask & 1) {                                     \
1906                  ra = FN(ra, m[H##ESIZE(e)]);                    \
1907              }                                                   \
1908          }                                                       \
1909          mve_advance_vpt(env);                                   \
1910          return ra;                                              \
1911      }                                                           \
1912  
1913  #define DO_VMAXMINV_U(INSN, FN)                         \
1914      DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN)       \
1915      DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN)     \
1916      DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1917  #define DO_VMAXMINV_S(INSN, FN)                         \
1918      DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN)         \
1919      DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN)       \
1920      DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1921  
1922  /*
1923   * Helpers for max and min of absolute values across vector:
1924   * note that we only take the absolute value of 'm', not 'n'
1925   */
1926  static int64_t do_maxa(int64_t n, int64_t m)
1927  {
1928      if (m < 0) {
1929          m = -m;
1930      }
1931      return MAX(n, m);
1932  }
1933  
do_mina(int64_t n,int64_t m)1934  static int64_t do_mina(int64_t n, int64_t m)
1935  {
1936      if (m < 0) {
1937          m = -m;
1938      }
1939      return MIN(n, m);
1940  }
1941  
DO_VMAXMINV_S(vmaxvs,DO_MAX)1942  DO_VMAXMINV_S(vmaxvs, DO_MAX)
1943  DO_VMAXMINV_U(vmaxvu, DO_MAX)
1944  DO_VMAXMINV_S(vminvs, DO_MIN)
1945  DO_VMAXMINV_U(vminvu, DO_MIN)
1946  /*
1947   * VMAXAV, VMINAV treat the general purpose input as unsigned
1948   * and the vector elements as signed.
1949   */
1950  DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1951  DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1952  DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1953  DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1954  DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1955  DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1956  
1957  #define DO_VABAV(OP, ESIZE, TYPE)                               \
1958      uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1959                                      void *vm, uint32_t ra)      \
1960      {                                                           \
1961          uint16_t mask = mve_element_mask(env);                  \
1962          unsigned e;                                             \
1963          TYPE *m = vm, *n = vn;                                  \
1964          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
1965              if (mask & 1) {                                     \
1966                  int64_t n0 = n[H##ESIZE(e)];                    \
1967                  int64_t m0 = m[H##ESIZE(e)];                    \
1968                  uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0);  \
1969                  ra += r;                                        \
1970              }                                                   \
1971          }                                                       \
1972          mve_advance_vpt(env);                                   \
1973          return ra;                                              \
1974      }
1975  
1976  DO_VABAV(vabavsb, 1, int8_t)
1977  DO_VABAV(vabavsh, 2, int16_t)
1978  DO_VABAV(vabavsw, 4, int32_t)
1979  DO_VABAV(vabavub, 1, uint8_t)
1980  DO_VABAV(vabavuh, 2, uint16_t)
1981  DO_VABAV(vabavuw, 4, uint32_t)
1982  
1983  #define DO_VADDLV(OP, TYPE, LTYPE)                              \
1984      uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1985                                      uint64_t ra)                \
1986      {                                                           \
1987          uint16_t mask = mve_element_mask(env);                  \
1988          unsigned e;                                             \
1989          TYPE *m = vm;                                           \
1990          for (e = 0; e < 16 / 4; e++, mask >>= 4) {              \
1991              if (mask & 1) {                                     \
1992                  ra += (LTYPE)m[H4(e)];                          \
1993              }                                                   \
1994          }                                                       \
1995          mve_advance_vpt(env);                                   \
1996          return ra;                                              \
1997      }                                                           \
1998  
1999  DO_VADDLV(vaddlv_s, int32_t, int64_t)
2000  DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2001  
2002  /* Shifts by immediate */
2003  #define DO_2SHIFT(OP, ESIZE, TYPE, FN)                          \
2004      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2005                                  void *vm, uint32_t shift)       \
2006      {                                                           \
2007          TYPE *d = vd, *m = vm;                                  \
2008          uint16_t mask = mve_element_mask(env);                  \
2009          unsigned e;                                             \
2010          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2011              mergemask(&d[H##ESIZE(e)],                          \
2012                        FN(m[H##ESIZE(e)], shift), mask);         \
2013          }                                                       \
2014          mve_advance_vpt(env);                                   \
2015      }
2016  
2017  #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN)                      \
2018      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2019                                  void *vm, uint32_t shift)       \
2020      {                                                           \
2021          TYPE *d = vd, *m = vm;                                  \
2022          uint16_t mask = mve_element_mask(env);                  \
2023          unsigned e;                                             \
2024          bool qc = false;                                        \
2025          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2026              bool sat = false;                                   \
2027              mergemask(&d[H##ESIZE(e)],                          \
2028                        FN(m[H##ESIZE(e)], shift, &sat), mask);   \
2029              qc |= sat & mask & 1;                               \
2030          }                                                       \
2031          if (qc) {                                               \
2032              env->vfp.qc[0] = qc;                                \
2033          }                                                       \
2034          mve_advance_vpt(env);                                   \
2035      }
2036  
2037  /* provide unsigned 2-op shift helpers for all sizes */
2038  #define DO_2SHIFT_U(OP, FN)                     \
2039      DO_2SHIFT(OP##b, 1, uint8_t, FN)            \
2040      DO_2SHIFT(OP##h, 2, uint16_t, FN)           \
2041      DO_2SHIFT(OP##w, 4, uint32_t, FN)
2042  #define DO_2SHIFT_S(OP, FN)                     \
2043      DO_2SHIFT(OP##b, 1, int8_t, FN)             \
2044      DO_2SHIFT(OP##h, 2, int16_t, FN)            \
2045      DO_2SHIFT(OP##w, 4, int32_t, FN)
2046  
2047  #define DO_2SHIFT_SAT_U(OP, FN)                 \
2048      DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN)        \
2049      DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN)       \
2050      DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2051  #define DO_2SHIFT_SAT_S(OP, FN)                 \
2052      DO_2SHIFT_SAT(OP##b, 1, int8_t, FN)         \
2053      DO_2SHIFT_SAT(OP##h, 2, int16_t, FN)        \
2054      DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2055  
2056  DO_2SHIFT_U(vshli_u, DO_VSHLU)
2057  DO_2SHIFT_S(vshli_s, DO_VSHLS)
2058  DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2059  DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2060  DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2061  DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2062  DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2063  DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2064  DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2065  
2066  /* Shift-and-insert; we always work with 64 bits at a time */
2067  #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN)                    \
2068      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2069                                  void *vm, uint32_t shift)               \
2070      {                                                                   \
2071          uint64_t *d = vd, *m = vm;                                      \
2072          uint16_t mask;                                                  \
2073          uint64_t shiftmask;                                             \
2074          unsigned e;                                                     \
2075          if (shift == ESIZE * 8) {                                       \
2076              /*                                                          \
2077               * Only VSRI can shift by <dt>; it should mean "don't       \
2078               * update the destination". The generic logic can't handle  \
2079               * this because it would try to shift by an out-of-range    \
2080               * amount, so special case it here.                         \
2081               */                                                         \
2082              goto done;                                                  \
2083          }                                                               \
2084          assert(shift < ESIZE * 8);                                      \
2085          mask = mve_element_mask(env);                                   \
2086          /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */     \
2087          shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift));     \
2088          for (e = 0; e < 16 / 8; e++, mask >>= 8) {                      \
2089              uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) |       \
2090                  (d[H8(e)] & ~shiftmask);                                \
2091              mergemask(&d[H8(e)], r, mask);                              \
2092          }                                                               \
2093  done:                                                                   \
2094          mve_advance_vpt(env);                                           \
2095      }
2096  
2097  #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2098  #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2099  #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2100  #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2101  
2102  DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2103  DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2104  DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2105  DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2106  DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2107  DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2108  
2109  /*
2110   * Long shifts taking half-sized inputs from top or bottom of the input
2111   * vector and producing a double-width result. ESIZE, TYPE are for
2112   * the input, and LESIZE, LTYPE for the output.
2113   * Unlike the normal shift helpers, we do not handle negative shift counts,
2114   * because the long shift is strictly left-only.
2115   */
2116  #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2117      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,             \
2118                                  void *vm, uint32_t shift)               \
2119      {                                                                   \
2120          LTYPE *d = vd;                                                  \
2121          TYPE *m = vm;                                                   \
2122          uint16_t mask = mve_element_mask(env);                          \
2123          unsigned le;                                                    \
2124          assert(shift <= 16);                                            \
2125          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2126              LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift;        \
2127              mergemask(&d[H##LESIZE(le)], r, mask);                      \
2128          }                                                               \
2129          mve_advance_vpt(env);                                           \
2130      }
2131  
2132  #define DO_VSHLL_ALL(OP, TOP)                                \
2133      DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t)             \
2134      DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t)           \
2135      DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t)            \
2136      DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t)          \
2137  
2138  DO_VSHLL_ALL(vshllb, false)
2139  DO_VSHLL_ALL(vshllt, true)
2140  
2141  /*
2142   * Narrowing right shifts, taking a double sized input, shifting it
2143   * and putting the result in either the top or bottom half of the output.
2144   * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2145   */
2146  #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)       \
2147      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2148                                  void *vm, uint32_t shift)       \
2149      {                                                           \
2150          LTYPE *m = vm;                                          \
2151          TYPE *d = vd;                                           \
2152          uint16_t mask = mve_element_mask(env);                  \
2153          unsigned le;                                            \
2154          mask >>= ESIZE * TOP;                                   \
2155          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2156              TYPE r = FN(m[H##LESIZE(le)], shift);               \
2157              mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2158          }                                                       \
2159          mve_advance_vpt(env);                                   \
2160      }
2161  
2162  #define DO_VSHRN_ALL(OP, FN)                                    \
2163      DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN)        \
2164      DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN)       \
2165      DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN)         \
2166      DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2167  
2168  static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2169  {
2170      if (likely(sh < 64)) {
2171          return (x >> sh) + ((x >> (sh - 1)) & 1);
2172      } else if (sh == 64) {
2173          return x >> 63;
2174      } else {
2175          return 0;
2176      }
2177  }
2178  
do_srshr(int64_t x,unsigned sh)2179  static inline int64_t do_srshr(int64_t x, unsigned sh)
2180  {
2181      if (likely(sh < 64)) {
2182          return (x >> sh) + ((x >> (sh - 1)) & 1);
2183      } else {
2184          /* Rounding the sign bit always produces 0. */
2185          return 0;
2186      }
2187  }
2188  
DO_VSHRN_ALL(vshrn,DO_SHR)2189  DO_VSHRN_ALL(vshrn, DO_SHR)
2190  DO_VSHRN_ALL(vrshrn, do_urshr)
2191  
2192  static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2193                                   bool *satp)
2194  {
2195      if (val > max) {
2196          *satp = true;
2197          return max;
2198      } else if (val < min) {
2199          *satp = true;
2200          return min;
2201      } else {
2202          return val;
2203      }
2204  }
2205  
2206  /* Saturating narrowing right shifts */
2207  #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)   \
2208      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd,     \
2209                                  void *vm, uint32_t shift)       \
2210      {                                                           \
2211          LTYPE *m = vm;                                          \
2212          TYPE *d = vd;                                           \
2213          uint16_t mask = mve_element_mask(env);                  \
2214          bool qc = false;                                        \
2215          unsigned le;                                            \
2216          mask >>= ESIZE * TOP;                                   \
2217          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2218              bool sat = false;                                   \
2219              TYPE r = FN(m[H##LESIZE(le)], shift, &sat);         \
2220              mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);     \
2221              qc |= sat & mask & 1;                               \
2222          }                                                       \
2223          if (qc) {                                               \
2224              env->vfp.qc[0] = qc;                                \
2225          }                                                       \
2226          mve_advance_vpt(env);                                   \
2227      }
2228  
2229  #define DO_VSHRN_SAT_UB(BOP, TOP, FN)                           \
2230      DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2231      DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2232  
2233  #define DO_VSHRN_SAT_UH(BOP, TOP, FN)                           \
2234      DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2235      DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2236  
2237  #define DO_VSHRN_SAT_SB(BOP, TOP, FN)                           \
2238      DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2239      DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2240  
2241  #define DO_VSHRN_SAT_SH(BOP, TOP, FN)                           \
2242      DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2243      DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2244  
2245  #define DO_SHRN_SB(N, M, SATP)                                  \
2246      do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2247  #define DO_SHRN_UB(N, M, SATP)                                  \
2248      do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2249  #define DO_SHRUN_B(N, M, SATP)                                  \
2250      do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2251  
2252  #define DO_SHRN_SH(N, M, SATP)                                  \
2253      do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2254  #define DO_SHRN_UH(N, M, SATP)                                  \
2255      do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2256  #define DO_SHRUN_H(N, M, SATP)                                  \
2257      do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2258  
2259  #define DO_RSHRN_SB(N, M, SATP)                                 \
2260      do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2261  #define DO_RSHRN_UB(N, M, SATP)                                 \
2262      do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2263  #define DO_RSHRUN_B(N, M, SATP)                                 \
2264      do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2265  
2266  #define DO_RSHRN_SH(N, M, SATP)                                 \
2267      do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2268  #define DO_RSHRN_UH(N, M, SATP)                                 \
2269      do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2270  #define DO_RSHRUN_H(N, M, SATP)                                 \
2271      do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2272  
DO_VSHRN_SAT_SB(vqshrnb_sb,vqshrnt_sb,DO_SHRN_SB)2273  DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2274  DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2275  DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2276  DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2277  DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2278  DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2279  
2280  DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2281  DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2282  DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2283  DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2284  DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2285  DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2286  
2287  #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE)                   \
2288      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2289      {                                                                   \
2290          LTYPE *m = vm;                                                  \
2291          TYPE *d = vd;                                                   \
2292          uint16_t mask = mve_element_mask(env);                          \
2293          unsigned le;                                                    \
2294          mask >>= ESIZE * TOP;                                           \
2295          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2296              mergemask(&d[H##ESIZE(le * 2 + TOP)],                       \
2297                        m[H##LESIZE(le)], mask);                          \
2298          }                                                               \
2299          mve_advance_vpt(env);                                           \
2300      }
2301  
2302  DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2303  DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2304  DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2305  DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2306  
2307  #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN)           \
2308      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2309      {                                                                   \
2310          LTYPE *m = vm;                                                  \
2311          TYPE *d = vd;                                                   \
2312          uint16_t mask = mve_element_mask(env);                          \
2313          bool qc = false;                                                \
2314          unsigned le;                                                    \
2315          mask >>= ESIZE * TOP;                                           \
2316          for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) {         \
2317              bool sat = false;                                           \
2318              TYPE r = FN(m[H##LESIZE(le)], &sat);                        \
2319              mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask);             \
2320              qc |= sat & mask & 1;                                       \
2321          }                                                               \
2322          if (qc) {                                                       \
2323              env->vfp.qc[0] = qc;                                        \
2324          }                                                               \
2325          mve_advance_vpt(env);                                           \
2326      }
2327  
2328  #define DO_VMOVN_SAT_UB(BOP, TOP, FN)                           \
2329      DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN)       \
2330      DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2331  
2332  #define DO_VMOVN_SAT_UH(BOP, TOP, FN)                           \
2333      DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN)      \
2334      DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2335  
2336  #define DO_VMOVN_SAT_SB(BOP, TOP, FN)                           \
2337      DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN)         \
2338      DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2339  
2340  #define DO_VMOVN_SAT_SH(BOP, TOP, FN)                           \
2341      DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN)        \
2342      DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2343  
2344  #define DO_VQMOVN_SB(N, SATP)                           \
2345      do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2346  #define DO_VQMOVN_UB(N, SATP)                           \
2347      do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2348  #define DO_VQMOVUN_B(N, SATP)                           \
2349      do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2350  
2351  #define DO_VQMOVN_SH(N, SATP)                           \
2352      do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2353  #define DO_VQMOVN_UH(N, SATP)                           \
2354      do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2355  #define DO_VQMOVUN_H(N, SATP)                           \
2356      do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2357  
2358  DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2359  DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2360  DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2361  DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2362  DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2363  DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2364  
2365  uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2366                             uint32_t shift)
2367  {
2368      uint32_t *d = vd;
2369      uint16_t mask = mve_element_mask(env);
2370      unsigned e;
2371      uint32_t r;
2372  
2373      /*
2374       * For each 32-bit element, we shift it left, bringing in the
2375       * low 'shift' bits of rdm at the bottom. Bits shifted out at
2376       * the top become the new rdm, if the predicate mask permits.
2377       * The final rdm value is returned to update the register.
2378       * shift == 0 here means "shift by 32 bits".
2379       */
2380      if (shift == 0) {
2381          for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2382              r = rdm;
2383              if (mask & 1) {
2384                  rdm = d[H4(e)];
2385              }
2386              mergemask(&d[H4(e)], r, mask);
2387          }
2388      } else {
2389          uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2390  
2391          for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2392              r = (d[H4(e)] << shift) | (rdm & shiftmask);
2393              if (mask & 1) {
2394                  rdm = d[H4(e)] >> (32 - shift);
2395              }
2396              mergemask(&d[H4(e)], r, mask);
2397          }
2398      }
2399      mve_advance_vpt(env);
2400      return rdm;
2401  }
2402  
HELPER(mve_sshrl)2403  uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2404  {
2405      return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2406  }
2407  
HELPER(mve_ushll)2408  uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2409  {
2410      return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2411  }
2412  
HELPER(mve_sqshll)2413  uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2414  {
2415      return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2416  }
2417  
HELPER(mve_uqshll)2418  uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2419  {
2420      return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2421  }
2422  
HELPER(mve_sqrshrl)2423  uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2424  {
2425      return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2426  }
2427  
HELPER(mve_uqrshll)2428  uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2429  {
2430      return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2431  }
2432  
2433  /* Operate on 64-bit values, but saturate at 48 bits */
do_sqrshl48_d(int64_t src,int64_t shift,bool round,uint32_t * sat)2434  static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2435                                      bool round, uint32_t *sat)
2436  {
2437      int64_t val, extval;
2438  
2439      if (shift <= -48) {
2440          /* Rounding the sign bit always produces 0. */
2441          if (round) {
2442              return 0;
2443          }
2444          return src >> 63;
2445      } else if (shift < 0) {
2446          if (round) {
2447              src >>= -shift - 1;
2448              val = (src >> 1) + (src & 1);
2449          } else {
2450              val = src >> -shift;
2451          }
2452          extval = sextract64(val, 0, 48);
2453          if (!sat || val == extval) {
2454              return extval;
2455          }
2456      } else if (shift < 48) {
2457          extval = sextract64(src << shift, 0, 48);
2458          if (!sat || src == (extval >> shift)) {
2459              return extval;
2460          }
2461      } else if (!sat || src == 0) {
2462          return 0;
2463      }
2464  
2465      *sat = 1;
2466      return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2467  }
2468  
2469  /* Operate on 64-bit values, but saturate at 48 bits */
do_uqrshl48_d(uint64_t src,int64_t shift,bool round,uint32_t * sat)2470  static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2471                                       bool round, uint32_t *sat)
2472  {
2473      uint64_t val, extval;
2474  
2475      if (shift <= -(48 + round)) {
2476          return 0;
2477      } else if (shift < 0) {
2478          if (round) {
2479              val = src >> (-shift - 1);
2480              val = (val >> 1) + (val & 1);
2481          } else {
2482              val = src >> -shift;
2483          }
2484          extval = extract64(val, 0, 48);
2485          if (!sat || val == extval) {
2486              return extval;
2487          }
2488      } else if (shift < 48) {
2489          extval = extract64(src << shift, 0, 48);
2490          if (!sat || src == (extval >> shift)) {
2491              return extval;
2492          }
2493      } else if (!sat || src == 0) {
2494          return 0;
2495      }
2496  
2497      *sat = 1;
2498      return MAKE_64BIT_MASK(0, 48);
2499  }
2500  
HELPER(mve_sqrshrl48)2501  uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2502  {
2503      return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2504  }
2505  
HELPER(mve_uqrshll48)2506  uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2507  {
2508      return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2509  }
2510  
HELPER(mve_uqshl)2511  uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2512  {
2513      return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2514  }
2515  
HELPER(mve_sqshl)2516  uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2517  {
2518      return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2519  }
2520  
HELPER(mve_uqrshl)2521  uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2522  {
2523      return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2524  }
2525  
HELPER(mve_sqrshr)2526  uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2527  {
2528      return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2529  }
2530  
2531  #define DO_VIDUP(OP, ESIZE, TYPE, FN)                           \
2532      uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2533                             uint32_t offset, uint32_t imm)       \
2534      {                                                           \
2535          TYPE *d = vd;                                           \
2536          uint16_t mask = mve_element_mask(env);                  \
2537          unsigned e;                                             \
2538          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2539              mergemask(&d[H##ESIZE(e)], offset, mask);           \
2540              offset = FN(offset, imm);                           \
2541          }                                                       \
2542          mve_advance_vpt(env);                                   \
2543          return offset;                                          \
2544      }
2545  
2546  #define DO_VIWDUP(OP, ESIZE, TYPE, FN)                          \
2547      uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd,       \
2548                                uint32_t offset, uint32_t wrap,   \
2549                                uint32_t imm)                     \
2550      {                                                           \
2551          TYPE *d = vd;                                           \
2552          uint16_t mask = mve_element_mask(env);                  \
2553          unsigned e;                                             \
2554          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
2555              mergemask(&d[H##ESIZE(e)], offset, mask);           \
2556              offset = FN(offset, wrap, imm);                     \
2557          }                                                       \
2558          mve_advance_vpt(env);                                   \
2559          return offset;                                          \
2560      }
2561  
2562  #define DO_VIDUP_ALL(OP, FN)                    \
2563      DO_VIDUP(OP##b, 1, int8_t, FN)              \
2564      DO_VIDUP(OP##h, 2, int16_t, FN)             \
2565      DO_VIDUP(OP##w, 4, int32_t, FN)
2566  
2567  #define DO_VIWDUP_ALL(OP, FN)                   \
2568      DO_VIWDUP(OP##b, 1, int8_t, FN)             \
2569      DO_VIWDUP(OP##h, 2, int16_t, FN)            \
2570      DO_VIWDUP(OP##w, 4, int32_t, FN)
2571  
do_add_wrap(uint32_t offset,uint32_t wrap,uint32_t imm)2572  static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2573  {
2574      offset += imm;
2575      if (offset == wrap) {
2576          offset = 0;
2577      }
2578      return offset;
2579  }
2580  
do_sub_wrap(uint32_t offset,uint32_t wrap,uint32_t imm)2581  static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2582  {
2583      if (offset == 0) {
2584          offset = wrap;
2585      }
2586      offset -= imm;
2587      return offset;
2588  }
2589  
DO_VIDUP_ALL(vidup,DO_ADD)2590  DO_VIDUP_ALL(vidup, DO_ADD)
2591  DO_VIWDUP_ALL(viwdup, do_add_wrap)
2592  DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2593  
2594  /*
2595   * Vector comparison.
2596   * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2597   * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2598   * P0 bits otherwise are updated with the results of the comparisons.
2599   * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2600   */
2601  #define DO_VCMP(OP, ESIZE, TYPE, FN)                                    \
2602      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
2603      {                                                                   \
2604          TYPE *n = vn, *m = vm;                                          \
2605          uint16_t mask = mve_element_mask(env);                          \
2606          uint16_t eci_mask = mve_eci_mask(env);                          \
2607          uint16_t beatpred = 0;                                          \
2608          uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2609          unsigned e;                                                     \
2610          for (e = 0; e < 16 / ESIZE; e++) {                              \
2611              bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]);                \
2612              /* Comparison sets 0/1 bits for each byte in the element */ \
2613              beatpred |= r * emask;                                      \
2614              emask <<= ESIZE;                                            \
2615          }                                                               \
2616          beatpred &= mask;                                               \
2617          env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2618              (beatpred & eci_mask);                                      \
2619          mve_advance_vpt(env);                                           \
2620      }
2621  
2622  #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN)                             \
2623      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
2624                                  uint32_t rm)                            \
2625      {                                                                   \
2626          TYPE *n = vn;                                                   \
2627          uint16_t mask = mve_element_mask(env);                          \
2628          uint16_t eci_mask = mve_eci_mask(env);                          \
2629          uint16_t beatpred = 0;                                          \
2630          uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
2631          unsigned e;                                                     \
2632          for (e = 0; e < 16 / ESIZE; e++) {                              \
2633              bool r = FN(n[H##ESIZE(e)], (TYPE)rm);                      \
2634              /* Comparison sets 0/1 bits for each byte in the element */ \
2635              beatpred |= r * emask;                                      \
2636              emask <<= ESIZE;                                            \
2637          }                                                               \
2638          beatpred &= mask;                                               \
2639          env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
2640              (beatpred & eci_mask);                                      \
2641          mve_advance_vpt(env);                                           \
2642      }
2643  
2644  #define DO_VCMP_S(OP, FN)                               \
2645      DO_VCMP(OP##b, 1, int8_t, FN)                       \
2646      DO_VCMP(OP##h, 2, int16_t, FN)                      \
2647      DO_VCMP(OP##w, 4, int32_t, FN)                      \
2648      DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN)         \
2649      DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN)        \
2650      DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2651  
2652  #define DO_VCMP_U(OP, FN)                               \
2653      DO_VCMP(OP##b, 1, uint8_t, FN)                      \
2654      DO_VCMP(OP##h, 2, uint16_t, FN)                     \
2655      DO_VCMP(OP##w, 4, uint32_t, FN)                     \
2656      DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN)        \
2657      DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN)       \
2658      DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2659  
2660  #define DO_EQ(N, M) ((N) == (M))
2661  #define DO_NE(N, M) ((N) != (M))
2662  #define DO_EQ(N, M) ((N) == (M))
2663  #define DO_EQ(N, M) ((N) == (M))
2664  #define DO_GE(N, M) ((N) >= (M))
2665  #define DO_LT(N, M) ((N) < (M))
2666  #define DO_GT(N, M) ((N) > (M))
2667  #define DO_LE(N, M) ((N) <= (M))
2668  
2669  DO_VCMP_U(vcmpeq, DO_EQ)
2670  DO_VCMP_U(vcmpne, DO_NE)
2671  DO_VCMP_U(vcmpcs, DO_GE)
2672  DO_VCMP_U(vcmphi, DO_GT)
2673  DO_VCMP_S(vcmpge, DO_GE)
2674  DO_VCMP_S(vcmplt, DO_LT)
2675  DO_VCMP_S(vcmpgt, DO_GT)
2676  DO_VCMP_S(vcmple, DO_LE)
2677  
2678  void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2679  {
2680      /*
2681       * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2682       * but note that whether bytes are written to Qd is still subject
2683       * to (all forms of) predication in the usual way.
2684       */
2685      uint64_t *d = vd, *n = vn, *m = vm;
2686      uint16_t mask = mve_element_mask(env);
2687      uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2688      unsigned e;
2689      for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2690          uint64_t r = m[H8(e)];
2691          mergemask(&r, n[H8(e)], p0);
2692          mergemask(&d[H8(e)], r, mask);
2693      }
2694      mve_advance_vpt(env);
2695  }
2696  
HELPER(mve_vpnot)2697  void HELPER(mve_vpnot)(CPUARMState *env)
2698  {
2699      /*
2700       * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2701       * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2702       * P0 bits otherwise are inverted.
2703       * (This is the same logic as VCMP.)
2704       * This insn is itself subject to predication and to beat-wise execution,
2705       * and after it executes VPT state advances in the usual way.
2706       */
2707      uint16_t mask = mve_element_mask(env);
2708      uint16_t eci_mask = mve_eci_mask(env);
2709      uint16_t beatpred = ~env->v7m.vpr & mask;
2710      env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2711      mve_advance_vpt(env);
2712  }
2713  
2714  /*
2715   * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2716   * otherwise set according to value of Rn. The calculation of
2717   * newmask here works in the same way as the calculation of the
2718   * ltpmask in mve_element_mask(), but we have pre-calculated
2719   * the masklen in the generated code.
2720   */
HELPER(mve_vctp)2721  void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2722  {
2723      uint16_t mask = mve_element_mask(env);
2724      uint16_t eci_mask = mve_eci_mask(env);
2725      uint16_t newmask;
2726  
2727      assert(masklen <= 16);
2728      newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2729      newmask &= mask;
2730      env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2731      mve_advance_vpt(env);
2732  }
2733  
2734  #define DO_1OP_SAT(OP, ESIZE, TYPE, FN)                                 \
2735      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2736      {                                                                   \
2737          TYPE *d = vd, *m = vm;                                          \
2738          uint16_t mask = mve_element_mask(env);                          \
2739          unsigned e;                                                     \
2740          bool qc = false;                                                \
2741          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2742              bool sat = false;                                           \
2743              mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2744              qc |= sat & mask & 1;                                       \
2745          }                                                               \
2746          if (qc) {                                                       \
2747              env->vfp.qc[0] = qc;                                        \
2748          }                                                               \
2749          mve_advance_vpt(env);                                           \
2750      }
2751  
2752  #define DO_VQABS_B(N, SATP) \
2753      do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2754  #define DO_VQABS_H(N, SATP) \
2755      do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2756  #define DO_VQABS_W(N, SATP) \
2757      do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2758  
2759  #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2760  #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2761  #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2762  
2763  DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2764  DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2765  DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2766  
2767  DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2768  DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2769  DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2770  
2771  /*
2772   * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2773   * absolute value; we then do an unsigned comparison.
2774   */
2775  #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN)                        \
2776      void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm)         \
2777      {                                                                   \
2778          UTYPE *d = vd;                                                  \
2779          STYPE *m = vm;                                                  \
2780          uint16_t mask = mve_element_mask(env);                          \
2781          unsigned e;                                                     \
2782          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2783              UTYPE r = DO_ABS(m[H##ESIZE(e)]);                           \
2784              r = FN(d[H##ESIZE(e)], r);                                  \
2785              mergemask(&d[H##ESIZE(e)], r, mask);                        \
2786          }                                                               \
2787          mve_advance_vpt(env);                                           \
2788      }
2789  
2790  DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2791  DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2792  DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2793  DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2794  DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2795  DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2796  
2797  /*
2798   * 2-operand floating point. Note that if an element is partially
2799   * predicated we must do the FP operation to update the non-predicated
2800   * bytes, but we must be careful to avoid updating the FP exception
2801   * state unless byte 0 of the element was unpredicated.
2802   */
2803  #define DO_2OP_FP(OP, ESIZE, TYPE, FN)                                  \
2804      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2805                                  void *vd, void *vn, void *vm)           \
2806      {                                                                   \
2807          TYPE *d = vd, *n = vn, *m = vm;                                 \
2808          TYPE r;                                                         \
2809          uint16_t mask = mve_element_mask(env);                          \
2810          unsigned e;                                                     \
2811          float_status *fpst;                                             \
2812          float_status scratch_fpst;                                      \
2813          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2814              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2815                  continue;                                               \
2816              }                                                           \
2817              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2818                  &env->vfp.standard_fp_status;                           \
2819              if (!(mask & 1)) {                                          \
2820                  /* We need the result but without updating flags */     \
2821                  scratch_fpst = *fpst;                                   \
2822                  fpst = &scratch_fpst;                                   \
2823              }                                                           \
2824              r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
2825              mergemask(&d[H##ESIZE(e)], r, mask);                        \
2826          }                                                               \
2827          mve_advance_vpt(env);                                           \
2828      }
2829  
2830  #define DO_2OP_FP_ALL(OP, FN)                  \
2831      DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2832      DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2833  
DO_2OP_FP_ALL(vfadd,add)2834  DO_2OP_FP_ALL(vfadd, add)
2835  DO_2OP_FP_ALL(vfsub, sub)
2836  DO_2OP_FP_ALL(vfmul, mul)
2837  
2838  static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2839  {
2840      return float16_abs(float16_sub(a, b, s));
2841  }
2842  
float32_abd(float32 a,float32 b,float_status * s)2843  static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2844  {
2845      return float32_abs(float32_sub(a, b, s));
2846  }
2847  
DO_2OP_FP_ALL(vfabd,abd)2848  DO_2OP_FP_ALL(vfabd, abd)
2849  DO_2OP_FP_ALL(vmaxnm, maxnum)
2850  DO_2OP_FP_ALL(vminnm, minnum)
2851  
2852  static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2853  {
2854      return float16_maxnum(float16_abs(a), float16_abs(b), s);
2855  }
2856  
float32_maxnuma(float32 a,float32 b,float_status * s)2857  static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2858  {
2859      return float32_maxnum(float32_abs(a), float32_abs(b), s);
2860  }
2861  
float16_minnuma(float16 a,float16 b,float_status * s)2862  static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2863  {
2864      return float16_minnum(float16_abs(a), float16_abs(b), s);
2865  }
2866  
float32_minnuma(float32 a,float32 b,float_status * s)2867  static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2868  {
2869      return float32_minnum(float32_abs(a), float32_abs(b), s);
2870  }
2871  
DO_2OP_FP_ALL(vmaxnma,maxnuma)2872  DO_2OP_FP_ALL(vmaxnma, maxnuma)
2873  DO_2OP_FP_ALL(vminnma, minnuma)
2874  
2875  #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1)                          \
2876      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2877                                  void *vd, void *vn, void *vm)           \
2878      {                                                                   \
2879          TYPE *d = vd, *n = vn, *m = vm;                                 \
2880          TYPE r[16 / ESIZE];                                             \
2881          uint16_t tm, mask = mve_element_mask(env);                      \
2882          unsigned e;                                                     \
2883          float_status *fpst;                                             \
2884          float_status scratch_fpst;                                      \
2885          /* Calculate all results first to avoid overwriting inputs */   \
2886          for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) {     \
2887              if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) {                \
2888                  r[e] = 0;                                               \
2889                  continue;                                               \
2890              }                                                           \
2891              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2892                  &env->vfp.standard_fp_status;                           \
2893              if (!(tm & 1)) {                                            \
2894                  /* We need the result but without updating flags */     \
2895                  scratch_fpst = *fpst;                                   \
2896                  fpst = &scratch_fpst;                                   \
2897              }                                                           \
2898              if (!(e & 1)) {                                             \
2899                  r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst);   \
2900              } else {                                                    \
2901                  r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst);   \
2902              }                                                           \
2903          }                                                               \
2904          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2905              mergemask(&d[H##ESIZE(e)], r[e], mask);                     \
2906          }                                                               \
2907          mve_advance_vpt(env);                                           \
2908      }
2909  
2910  DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2911  DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2912  DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2913  DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2914  
2915  #define DO_VFMA(OP, ESIZE, TYPE, CHS)                                   \
2916      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2917                                  void *vd, void *vn, void *vm)           \
2918      {                                                                   \
2919          TYPE *d = vd, *n = vn, *m = vm;                                 \
2920          TYPE r;                                                         \
2921          uint16_t mask = mve_element_mask(env);                          \
2922          unsigned e;                                                     \
2923          float_status *fpst;                                             \
2924          float_status scratch_fpst;                                      \
2925          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
2926              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
2927                  continue;                                               \
2928              }                                                           \
2929              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
2930                  &env->vfp.standard_fp_status;                           \
2931              if (!(mask & 1)) {                                          \
2932                  /* We need the result but without updating flags */     \
2933                  scratch_fpst = *fpst;                                   \
2934                  fpst = &scratch_fpst;                                   \
2935              }                                                           \
2936              r = n[H##ESIZE(e)];                                         \
2937              if (CHS) {                                                  \
2938                  r = TYPE##_chs(r);                                      \
2939              }                                                           \
2940              r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)],        \
2941                                0, fpst);                                 \
2942              mergemask(&d[H##ESIZE(e)], r, mask);                        \
2943          }                                                               \
2944          mve_advance_vpt(env);                                           \
2945      }
2946  
2947  DO_VFMA(vfmah, 2, float16, false)
2948  DO_VFMA(vfmas, 4, float32, false)
2949  DO_VFMA(vfmsh, 2, float16, true)
2950  DO_VFMA(vfmss, 4, float32, true)
2951  
2952  #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN)                              \
2953      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
2954                                  void *vd, void *vn, void *vm)           \
2955      {                                                                   \
2956          TYPE *d = vd, *n = vn, *m = vm;                                 \
2957          TYPE r0, r1, e1, e2, e3, e4;                                    \
2958          uint16_t mask = mve_element_mask(env);                          \
2959          unsigned e;                                                     \
2960          float_status *fpst0, *fpst1;                                    \
2961          float_status scratch_fpst;                                      \
2962          /* We loop through pairs of elements at a time */               \
2963          for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) {       \
2964              if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) {          \
2965                  continue;                                               \
2966              }                                                           \
2967              fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :   \
2968                  &env->vfp.standard_fp_status;                           \
2969              fpst1 = fpst0;                                              \
2970              if (!(mask & 1)) {                                          \
2971                  scratch_fpst = *fpst0;                                  \
2972                  fpst0 = &scratch_fpst;                                  \
2973              }                                                           \
2974              if (!(mask & (1 << ESIZE))) {                               \
2975                  scratch_fpst = *fpst1;                                  \
2976                  fpst1 = &scratch_fpst;                                  \
2977              }                                                           \
2978              switch (ROT) {                                              \
2979              case 0:                                                     \
2980                  e1 = m[H##ESIZE(e)];                                    \
2981                  e2 = n[H##ESIZE(e)];                                    \
2982                  e3 = m[H##ESIZE(e + 1)];                                \
2983                  e4 = n[H##ESIZE(e)];                                    \
2984                  break;                                                  \
2985              case 1:                                                     \
2986                  e1 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2987                  e2 = n[H##ESIZE(e + 1)];                                \
2988                  e3 = m[H##ESIZE(e)];                                    \
2989                  e4 = n[H##ESIZE(e + 1)];                                \
2990                  break;                                                  \
2991              case 2:                                                     \
2992                  e1 = TYPE##_chs(m[H##ESIZE(e)]);                        \
2993                  e2 = n[H##ESIZE(e)];                                    \
2994                  e3 = TYPE##_chs(m[H##ESIZE(e + 1)]);                    \
2995                  e4 = n[H##ESIZE(e)];                                    \
2996                  break;                                                  \
2997              case 3:                                                     \
2998                  e1 = m[H##ESIZE(e + 1)];                                \
2999                  e2 = n[H##ESIZE(e + 1)];                                \
3000                  e3 = TYPE##_chs(m[H##ESIZE(e)]);                        \
3001                  e4 = n[H##ESIZE(e + 1)];                                \
3002                  break;                                                  \
3003              default:                                                    \
3004                  g_assert_not_reached();                                 \
3005              }                                                           \
3006              r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0);                     \
3007              r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1);                 \
3008              mergemask(&d[H##ESIZE(e)], r0, mask);                       \
3009              mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE);          \
3010          }                                                               \
3011          mve_advance_vpt(env);                                           \
3012      }
3013  
3014  #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3015  #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3016  
3017  #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3018  #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3019  
3020  DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3021  DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3022  DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3023  DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3024  DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3025  DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3026  DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3027  DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3028  
3029  DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3030  DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3031  DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3032  DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3033  DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3034  DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3035  DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3036  DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3037  
3038  #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN)                           \
3039      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3040                                  void *vd, void *vn, uint32_t rm)        \
3041      {                                                                   \
3042          TYPE *d = vd, *n = vn;                                          \
3043          TYPE r, m = rm;                                                 \
3044          uint16_t mask = mve_element_mask(env);                          \
3045          unsigned e;                                                     \
3046          float_status *fpst;                                             \
3047          float_status scratch_fpst;                                      \
3048          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3049              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3050                  continue;                                               \
3051              }                                                           \
3052              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3053                  &env->vfp.standard_fp_status;                           \
3054              if (!(mask & 1)) {                                          \
3055                  /* We need the result but without updating flags */     \
3056                  scratch_fpst = *fpst;                                   \
3057                  fpst = &scratch_fpst;                                   \
3058              }                                                           \
3059              r = FN(n[H##ESIZE(e)], m, fpst);                            \
3060              mergemask(&d[H##ESIZE(e)], r, mask);                        \
3061          }                                                               \
3062          mve_advance_vpt(env);                                           \
3063      }
3064  
3065  #define DO_2OP_FP_SCALAR_ALL(OP, FN)                    \
3066      DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN)   \
3067      DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3068  
3069  DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3070  DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3071  DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3072  
3073  #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN)                       \
3074      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3075                                  void *vd, void *vn, uint32_t rm)        \
3076      {                                                                   \
3077          TYPE *d = vd, *n = vn;                                          \
3078          TYPE r, m = rm;                                                 \
3079          uint16_t mask = mve_element_mask(env);                          \
3080          unsigned e;                                                     \
3081          float_status *fpst;                                             \
3082          float_status scratch_fpst;                                      \
3083          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3084              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3085                  continue;                                               \
3086              }                                                           \
3087              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3088                  &env->vfp.standard_fp_status;                           \
3089              if (!(mask & 1)) {                                          \
3090                  /* We need the result but without updating flags */     \
3091                  scratch_fpst = *fpst;                                   \
3092                  fpst = &scratch_fpst;                                   \
3093              }                                                           \
3094              r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst);         \
3095              mergemask(&d[H##ESIZE(e)], r, mask);                        \
3096          }                                                               \
3097          mve_advance_vpt(env);                                           \
3098      }
3099  
3100  /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3101  #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3102  #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3103  
3104  /* VFMA is vector * scalar + vector */
3105  DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3106  DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3107  DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3108  DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3109  
3110  /* Floating point max/min across vector. */
3111  #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN)                \
3112      uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3113                                      uint32_t ra_in)             \
3114      {                                                           \
3115          uint16_t mask = mve_element_mask(env);                  \
3116          unsigned e;                                             \
3117          TYPE *m = vm;                                           \
3118          TYPE ra = (TYPE)ra_in;                                  \
3119          float_status *fpst = (ESIZE == 2) ?                     \
3120              &env->vfp.standard_fp_status_f16 :                  \
3121              &env->vfp.standard_fp_status;                       \
3122          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {      \
3123              if (mask & 1) {                                     \
3124                  TYPE v = m[H##ESIZE(e)];                        \
3125                  if (TYPE##_is_signaling_nan(ra, fpst)) {        \
3126                      ra = TYPE##_silence_nan(ra, fpst);          \
3127                      float_raise(float_flag_invalid, fpst);      \
3128                  }                                               \
3129                  if (TYPE##_is_signaling_nan(v, fpst)) {         \
3130                      v = TYPE##_silence_nan(v, fpst);            \
3131                      float_raise(float_flag_invalid, fpst);      \
3132                  }                                               \
3133                  if (ABS) {                                      \
3134                      v = TYPE##_abs(v);                          \
3135                  }                                               \
3136                  ra = FN(ra, v, fpst);                           \
3137              }                                                   \
3138          }                                                       \
3139          mve_advance_vpt(env);                                   \
3140          return ra;                                              \
3141      }                                                           \
3142  
3143  #define NOP(X) (X)
3144  
3145  DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3146  DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3147  DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3148  DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3149  DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3150  DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3151  DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3152  DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3153  
3154  /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3155  #define DO_VCMP_FP(OP, ESIZE, TYPE, FN)                                 \
3156      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm)   \
3157      {                                                                   \
3158          TYPE *n = vn, *m = vm;                                          \
3159          uint16_t mask = mve_element_mask(env);                          \
3160          uint16_t eci_mask = mve_eci_mask(env);                          \
3161          uint16_t beatpred = 0;                                          \
3162          uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3163          unsigned e;                                                     \
3164          float_status *fpst;                                             \
3165          float_status scratch_fpst;                                      \
3166          bool r;                                                         \
3167          for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3168              if ((mask & emask) == 0) {                                  \
3169                  continue;                                               \
3170              }                                                           \
3171              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3172                  &env->vfp.standard_fp_status;                           \
3173              if (!(mask & (1 << (e * ESIZE)))) {                         \
3174                  /* We need the result but without updating flags */     \
3175                  scratch_fpst = *fpst;                                   \
3176                  fpst = &scratch_fpst;                                   \
3177              }                                                           \
3178              r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst);               \
3179              /* Comparison sets 0/1 bits for each byte in the element */ \
3180              beatpred |= r * emask;                                      \
3181          }                                                               \
3182          beatpred &= mask;                                               \
3183          env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3184              (beatpred & eci_mask);                                      \
3185          mve_advance_vpt(env);                                           \
3186      }
3187  
3188  #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN)                          \
3189      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn,             \
3190                                  uint32_t rm)                            \
3191      {                                                                   \
3192          TYPE *n = vn;                                                   \
3193          uint16_t mask = mve_element_mask(env);                          \
3194          uint16_t eci_mask = mve_eci_mask(env);                          \
3195          uint16_t beatpred = 0;                                          \
3196          uint16_t emask = MAKE_64BIT_MASK(0, ESIZE);                     \
3197          unsigned e;                                                     \
3198          float_status *fpst;                                             \
3199          float_status scratch_fpst;                                      \
3200          bool r;                                                         \
3201          for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) {             \
3202              if ((mask & emask) == 0) {                                  \
3203                  continue;                                               \
3204              }                                                           \
3205              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3206                  &env->vfp.standard_fp_status;                           \
3207              if (!(mask & (1 << (e * ESIZE)))) {                         \
3208                  /* We need the result but without updating flags */     \
3209                  scratch_fpst = *fpst;                                   \
3210                  fpst = &scratch_fpst;                                   \
3211              }                                                           \
3212              r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst);                     \
3213              /* Comparison sets 0/1 bits for each byte in the element */ \
3214              beatpred |= r * emask;                                      \
3215          }                                                               \
3216          beatpred &= mask;                                               \
3217          env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) |           \
3218              (beatpred & eci_mask);                                      \
3219          mve_advance_vpt(env);                                           \
3220      }
3221  
3222  #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN)      \
3223      DO_VCMP_FP(VOP, ESIZE, TYPE, FN)                    \
3224      DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3225  
3226  /*
3227   * Some care is needed here to get the correct result for the unordered case.
3228   * Architecturally EQ, GE and GT are defined to be false for unordered, but
3229   * the NE, LT and LE comparisons are defined as simple logical inverses of
3230   * EQ, GE and GT and so they must return true for unordered. The softfloat
3231   * comparison functions float*_{eq,le,lt} all return false for unordered.
3232   */
3233  #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3234  #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3235  #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3236  #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3237  
3238  DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3239  DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3240  
3241  DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3242  DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3243  
3244  DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3245  DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3246  
3247  DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3248  DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3249  
3250  DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3251  DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3252  
3253  DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3254  DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3255  
3256  #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN)                              \
3257      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm,   \
3258                                  uint32_t shift)                         \
3259      {                                                                   \
3260          TYPE *d = vd, *m = vm;                                          \
3261          TYPE r;                                                         \
3262          uint16_t mask = mve_element_mask(env);                          \
3263          unsigned e;                                                     \
3264          float_status *fpst;                                             \
3265          float_status scratch_fpst;                                      \
3266          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3267              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3268                  continue;                                               \
3269              }                                                           \
3270              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3271                  &env->vfp.standard_fp_status;                           \
3272              if (!(mask & 1)) {                                          \
3273                  /* We need the result but without updating flags */     \
3274                  scratch_fpst = *fpst;                                   \
3275                  fpst = &scratch_fpst;                                   \
3276              }                                                           \
3277              r = FN(m[H##ESIZE(e)], shift, fpst);                        \
3278              mergemask(&d[H##ESIZE(e)], r, mask);                        \
3279          }                                                               \
3280          mve_advance_vpt(env);                                           \
3281      }
3282  
3283  DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3284  DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3285  DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3286  DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3287  DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3288  DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3289  DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3290  DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3291  
3292  /* VCVT with specified rmode */
3293  #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN)                              \
3294      void HELPER(glue(mve_, OP))(CPUARMState *env,                       \
3295                                  void *vd, void *vm, uint32_t rmode)     \
3296      {                                                                   \
3297          TYPE *d = vd, *m = vm;                                          \
3298          TYPE r;                                                         \
3299          uint16_t mask = mve_element_mask(env);                          \
3300          unsigned e;                                                     \
3301          float_status *fpst;                                             \
3302          float_status scratch_fpst;                                      \
3303          float_status *base_fpst = (ESIZE == 2) ?                        \
3304              &env->vfp.standard_fp_status_f16 :                          \
3305              &env->vfp.standard_fp_status;                               \
3306          uint32_t prev_rmode = get_float_rounding_mode(base_fpst);       \
3307          set_float_rounding_mode(rmode, base_fpst);                      \
3308          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3309              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3310                  continue;                                               \
3311              }                                                           \
3312              fpst = base_fpst;                                           \
3313              if (!(mask & 1)) {                                          \
3314                  /* We need the result but without updating flags */     \
3315                  scratch_fpst = *fpst;                                   \
3316                  fpst = &scratch_fpst;                                   \
3317              }                                                           \
3318              r = FN(m[H##ESIZE(e)], 0, fpst);                            \
3319              mergemask(&d[H##ESIZE(e)], r, mask);                        \
3320          }                                                               \
3321          set_float_rounding_mode(prev_rmode, base_fpst);                 \
3322          mve_advance_vpt(env);                                           \
3323      }
3324  
3325  DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3326  DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3327  DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3328  DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3329  
3330  #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3331  #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3332  
3333  DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3334  DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3335  
3336  /*
3337   * VCVT between halfprec and singleprec. As usual for halfprec
3338   * conversions, FZ16 is ignored and AHP is observed.
3339   */
3340  static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3341  {
3342      uint16_t *d = vd;
3343      uint32_t *m = vm;
3344      uint16_t r;
3345      uint16_t mask = mve_element_mask(env);
3346      bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3347      unsigned e;
3348      float_status *fpst;
3349      float_status scratch_fpst;
3350      float_status *base_fpst = &env->vfp.standard_fp_status;
3351      bool old_fz = get_flush_to_zero(base_fpst);
3352      set_flush_to_zero(false, base_fpst);
3353      for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3354          if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3355              continue;
3356          }
3357          fpst = base_fpst;
3358          if (!(mask & 1)) {
3359              /* We need the result but without updating flags */
3360              scratch_fpst = *fpst;
3361              fpst = &scratch_fpst;
3362          }
3363          r = float32_to_float16(m[H4(e)], ieee, fpst);
3364          mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3365      }
3366      set_flush_to_zero(old_fz, base_fpst);
3367      mve_advance_vpt(env);
3368  }
3369  
do_vcvt_hs(CPUARMState * env,void * vd,void * vm,int top)3370  static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3371  {
3372      uint32_t *d = vd;
3373      uint16_t *m = vm;
3374      uint32_t r;
3375      uint16_t mask = mve_element_mask(env);
3376      bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3377      unsigned e;
3378      float_status *fpst;
3379      float_status scratch_fpst;
3380      float_status *base_fpst = &env->vfp.standard_fp_status;
3381      bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3382      set_flush_inputs_to_zero(false, base_fpst);
3383      for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3384          if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3385              continue;
3386          }
3387          fpst = base_fpst;
3388          if (!(mask & (1 << (top * 2)))) {
3389              /* We need the result but without updating flags */
3390              scratch_fpst = *fpst;
3391              fpst = &scratch_fpst;
3392          }
3393          r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3394          mergemask(&d[H4(e)], r, mask);
3395      }
3396      set_flush_inputs_to_zero(old_fiz, base_fpst);
3397      mve_advance_vpt(env);
3398  }
3399  
HELPER(mve_vcvtb_sh)3400  void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3401  {
3402      do_vcvt_sh(env, vd, vm, 0);
3403  }
HELPER(mve_vcvtt_sh)3404  void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3405  {
3406      do_vcvt_sh(env, vd, vm, 1);
3407  }
HELPER(mve_vcvtb_hs)3408  void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3409  {
3410      do_vcvt_hs(env, vd, vm, 0);
3411  }
HELPER(mve_vcvtt_hs)3412  void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3413  {
3414      do_vcvt_hs(env, vd, vm, 1);
3415  }
3416  
3417  #define DO_1OP_FP(OP, ESIZE, TYPE, FN)                                  \
3418      void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm)   \
3419      {                                                                   \
3420          TYPE *d = vd, *m = vm;                                          \
3421          TYPE r;                                                         \
3422          uint16_t mask = mve_element_mask(env);                          \
3423          unsigned e;                                                     \
3424          float_status *fpst;                                             \
3425          float_status scratch_fpst;                                      \
3426          for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) {              \
3427              if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) {              \
3428                  continue;                                               \
3429              }                                                           \
3430              fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 :    \
3431                  &env->vfp.standard_fp_status;                           \
3432              if (!(mask & 1)) {                                          \
3433                  /* We need the result but without updating flags */     \
3434                  scratch_fpst = *fpst;                                   \
3435                  fpst = &scratch_fpst;                                   \
3436              }                                                           \
3437              r = FN(m[H##ESIZE(e)], fpst);                               \
3438              mergemask(&d[H##ESIZE(e)], r, mask);                        \
3439          }                                                               \
3440          mve_advance_vpt(env);                                           \
3441      }
3442  
3443  DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3444  DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)
3445