1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/objtool.h>
5 #include <linux/percpu.h>
6
7 #include <asm/debugreg.h>
8 #include <asm/mmu_context.h>
9
10 #include "cpuid.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "posted_intr.h"
16 #include "sgx.h"
17 #include "trace.h"
18 #include "vmx.h"
19 #include "x86.h"
20 #include "smm.h"
21
22 static bool __read_mostly enable_shadow_vmcs = 1;
23 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24
25 static bool __read_mostly nested_early_check = 0;
26 module_param(nested_early_check, bool, S_IRUGO);
27
28 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29
30 /*
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
33 */
34 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42 enum {
43 VMX_VMREAD_BITMAP,
44 VMX_VMWRITE_BITMAP,
45 VMX_BITMAP_NR
46 };
47 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49 #define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50 #define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
52 struct shadow_vmcs_field {
53 u16 encoding;
54 u16 offset;
55 };
56 static struct shadow_vmcs_field shadow_read_only_fields[] = {
57 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58 #include "vmcs_shadow_fields.h"
59 };
60 static int max_shadow_read_only_fields =
61 ARRAY_SIZE(shadow_read_only_fields);
62
63 static struct shadow_vmcs_field shadow_read_write_fields[] = {
64 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65 #include "vmcs_shadow_fields.h"
66 };
67 static int max_shadow_read_write_fields =
68 ARRAY_SIZE(shadow_read_write_fields);
69
init_vmcs_shadow_fields(void)70 static void init_vmcs_shadow_fields(void)
71 {
72 int i, j;
73
74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 u16 field = entry.encoding;
80
81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 (i + 1 == max_shadow_read_only_fields ||
83 shadow_read_only_fields[i + 1].encoding != field + 1))
84 pr_err("Missing field from shadow_read_only_field %x\n",
85 field + 1);
86
87 clear_bit(field, vmx_vmread_bitmap);
88 if (field & 1)
89 #ifdef CONFIG_X86_64
90 continue;
91 #else
92 entry.offset += sizeof(u32);
93 #endif
94 shadow_read_only_fields[j++] = entry;
95 }
96 max_shadow_read_only_fields = j;
97
98 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 u16 field = entry.encoding;
101
102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 (i + 1 == max_shadow_read_write_fields ||
104 shadow_read_write_fields[i + 1].encoding != field + 1))
105 pr_err("Missing field from shadow_read_write_field %x\n",
106 field + 1);
107
108 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 field <= GUEST_TR_AR_BYTES,
110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111
112 /*
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
115 * on bare metal.
116 */
117 switch (field) {
118 case GUEST_PML_INDEX:
119 if (!cpu_has_vmx_pml())
120 continue;
121 break;
122 case VMX_PREEMPTION_TIMER_VALUE:
123 if (!cpu_has_vmx_preemption_timer())
124 continue;
125 break;
126 case GUEST_INTR_STATUS:
127 if (!cpu_has_vmx_apicv())
128 continue;
129 break;
130 default:
131 break;
132 }
133
134 clear_bit(field, vmx_vmwrite_bitmap);
135 clear_bit(field, vmx_vmread_bitmap);
136 if (field & 1)
137 #ifdef CONFIG_X86_64
138 continue;
139 #else
140 entry.offset += sizeof(u32);
141 #endif
142 shadow_read_write_fields[j++] = entry;
143 }
144 max_shadow_read_write_fields = j;
145 }
146
147 /*
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151 * instruction.
152 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)153 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154 {
155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 return kvm_skip_emulated_instruction(vcpu);
159 }
160
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)161 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162 {
163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 | X86_EFLAGS_CF);
167 return kvm_skip_emulated_instruction(vcpu);
168 }
169
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)170 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 u32 vm_instruction_error)
172 {
173 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175 X86_EFLAGS_SF | X86_EFLAGS_OF))
176 | X86_EFLAGS_ZF);
177 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178 /*
179 * We don't need to force sync to shadow VMCS because
180 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181 * fields and thus must be synced.
182 */
183 if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
184 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185
186 return kvm_skip_emulated_instruction(vcpu);
187 }
188
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)189 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190 {
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 /*
194 * failValid writes the error number to the current VMCS, which
195 * can't be done if there isn't a current VMCS.
196 */
197 if (vmx->nested.current_vmptr == INVALID_GPA &&
198 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
199 return nested_vmx_failInvalid(vcpu);
200
201 return nested_vmx_failValid(vcpu, vm_instruction_error);
202 }
203
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)204 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205 {
206 /* TODO: not to reset guest simply here. */
207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209 }
210
vmx_control_verify(u32 control,u32 low,u32 high)211 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212 {
213 return fixed_bits_valid(control, low, high);
214 }
215
vmx_control_msr(u32 low,u32 high)216 static inline u64 vmx_control_msr(u32 low, u32 high)
217 {
218 return low | ((u64)high << 32);
219 }
220
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)221 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222 {
223 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225 vmx->nested.need_vmcs12_to_shadow_sync = false;
226 }
227
nested_release_evmcs(struct kvm_vcpu * vcpu)228 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229 {
230 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231 struct vcpu_vmx *vmx = to_vmx(vcpu);
232
233 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
234 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
235 vmx->nested.hv_evmcs = NULL;
236 }
237
238 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239
240 if (hv_vcpu) {
241 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242 hv_vcpu->nested.vm_id = 0;
243 hv_vcpu->nested.vp_id = 0;
244 }
245 }
246
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)247 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
248 struct loaded_vmcs *prev)
249 {
250 struct vmcs_host_state *dest, *src;
251
252 if (unlikely(!vmx->guest_state_loaded))
253 return;
254
255 src = &prev->host_state;
256 dest = &vmx->loaded_vmcs->host_state;
257
258 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
259 dest->ldt_sel = src->ldt_sel;
260 #ifdef CONFIG_X86_64
261 dest->ds_sel = src->ds_sel;
262 dest->es_sel = src->es_sel;
263 #endif
264 }
265
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)266 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
267 {
268 struct vcpu_vmx *vmx = to_vmx(vcpu);
269 struct loaded_vmcs *prev;
270 int cpu;
271
272 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
273 return;
274
275 cpu = get_cpu();
276 prev = vmx->loaded_vmcs;
277 vmx->loaded_vmcs = vmcs;
278 vmx_vcpu_load_vmcs(vcpu, cpu, prev);
279 vmx_sync_vmcs_host_state(vmx, prev);
280 put_cpu();
281
282 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
283
284 /*
285 * All lazily updated registers will be reloaded from VMCS12 on both
286 * vmentry and vmexit.
287 */
288 vcpu->arch.regs_dirty = 0;
289 }
290
291 /*
292 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
293 * just stops using VMX.
294 */
free_nested(struct kvm_vcpu * vcpu)295 static void free_nested(struct kvm_vcpu *vcpu)
296 {
297 struct vcpu_vmx *vmx = to_vmx(vcpu);
298
299 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
300 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
301
302 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
303 return;
304
305 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
306
307 vmx->nested.vmxon = false;
308 vmx->nested.smm.vmxon = false;
309 vmx->nested.vmxon_ptr = INVALID_GPA;
310 free_vpid(vmx->nested.vpid02);
311 vmx->nested.posted_intr_nv = -1;
312 vmx->nested.current_vmptr = INVALID_GPA;
313 if (enable_shadow_vmcs) {
314 vmx_disable_shadow_vmcs(vmx);
315 vmcs_clear(vmx->vmcs01.shadow_vmcs);
316 free_vmcs(vmx->vmcs01.shadow_vmcs);
317 vmx->vmcs01.shadow_vmcs = NULL;
318 }
319 kfree(vmx->nested.cached_vmcs12);
320 vmx->nested.cached_vmcs12 = NULL;
321 kfree(vmx->nested.cached_shadow_vmcs12);
322 vmx->nested.cached_shadow_vmcs12 = NULL;
323 /*
324 * Unpin physical memory we referred to in the vmcs02. The APIC access
325 * page's backing page (yeah, confusing) shouldn't actually be accessed,
326 * and if it is written, the contents are irrelevant.
327 */
328 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
329 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
330 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
331 vmx->nested.pi_desc = NULL;
332
333 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
334
335 nested_release_evmcs(vcpu);
336
337 free_loaded_vmcs(&vmx->nested.vmcs02);
338 }
339
340 /*
341 * Ensure that the current vmcs of the logical processor is the
342 * vmcs01 of the vcpu before calling free_nested().
343 */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)344 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
345 {
346 vcpu_load(vcpu);
347 vmx_leave_nested(vcpu);
348 vcpu_put(vcpu);
349 }
350
351 #define EPTP_PA_MASK GENMASK_ULL(51, 12)
352
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)353 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
354 {
355 return VALID_PAGE(root_hpa) &&
356 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
357 }
358
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)359 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
360 gpa_t addr)
361 {
362 unsigned long roots = 0;
363 uint i;
364 struct kvm_mmu_root_info *cached_root;
365
366 WARN_ON_ONCE(!mmu_is_nested(vcpu));
367
368 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
369 cached_root = &vcpu->arch.mmu->prev_roots[i];
370
371 if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
372 eptp))
373 roots |= KVM_MMU_ROOT_PREVIOUS(i);
374 }
375 if (roots)
376 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
377 }
378
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)379 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
380 struct x86_exception *fault)
381 {
382 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
383 struct vcpu_vmx *vmx = to_vmx(vcpu);
384 u32 vm_exit_reason;
385 unsigned long exit_qualification = vcpu->arch.exit_qualification;
386
387 if (vmx->nested.pml_full) {
388 vm_exit_reason = EXIT_REASON_PML_FULL;
389 vmx->nested.pml_full = false;
390 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
391 } else {
392 if (fault->error_code & PFERR_RSVD_MASK)
393 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
394 else
395 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
396
397 /*
398 * Although the caller (kvm_inject_emulated_page_fault) would
399 * have already synced the faulting address in the shadow EPT
400 * tables for the current EPTP12, we also need to sync it for
401 * any other cached EPTP02s based on the same EP4TA, since the
402 * TLB associates mappings to the EP4TA rather than the full EPTP.
403 */
404 nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
405 fault->address);
406 }
407
408 nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
409 vmcs12->guest_physical_address = fault->address;
410 }
411
nested_ept_new_eptp(struct kvm_vcpu * vcpu)412 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
413 {
414 struct vcpu_vmx *vmx = to_vmx(vcpu);
415 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
416 int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
417
418 kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
419 nested_ept_ad_enabled(vcpu),
420 nested_ept_get_eptp(vcpu));
421 }
422
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)423 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
424 {
425 WARN_ON(mmu_is_nested(vcpu));
426
427 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
428 nested_ept_new_eptp(vcpu);
429 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
430 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
431 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
432
433 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
434 }
435
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)436 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
437 {
438 vcpu->arch.mmu = &vcpu->arch.root_mmu;
439 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
440 }
441
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)442 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
443 u16 error_code)
444 {
445 bool inequality, bit;
446
447 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
448 inequality =
449 (error_code & vmcs12->page_fault_error_code_mask) !=
450 vmcs12->page_fault_error_code_match;
451 return inequality ^ bit;
452 }
453
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)454 static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
455 u32 error_code)
456 {
457 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
458
459 /*
460 * Drop bits 31:16 of the error code when performing the #PF mask+match
461 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
462 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
463 * error code. Including the to-be-dropped bits in the check might
464 * result in an "impossible" or missed exit from L1's perspective.
465 */
466 if (vector == PF_VECTOR)
467 return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
468
469 return (vmcs12->exception_bitmap & (1u << vector));
470 }
471
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)472 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
473 struct vmcs12 *vmcs12)
474 {
475 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
476 return 0;
477
478 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
479 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
480 return -EINVAL;
481
482 return 0;
483 }
484
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)485 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
486 struct vmcs12 *vmcs12)
487 {
488 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
489 return 0;
490
491 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
492 return -EINVAL;
493
494 return 0;
495 }
496
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)497 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
498 struct vmcs12 *vmcs12)
499 {
500 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
501 return 0;
502
503 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
504 return -EINVAL;
505
506 return 0;
507 }
508
509 /*
510 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
511 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
512 * only the "disable intercept" case needs to be handled.
513 */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)514 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
515 unsigned long *msr_bitmap_l0,
516 u32 msr, int type)
517 {
518 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
519 vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
520
521 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
522 vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
523 }
524
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)525 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
526 {
527 int msr;
528
529 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
530 unsigned word = msr / BITS_PER_LONG;
531
532 msr_bitmap[word] = ~0;
533 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
534 }
535 }
536
537 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
538 static inline \
539 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
540 unsigned long *msr_bitmap_l1, \
541 unsigned long *msr_bitmap_l0, u32 msr) \
542 { \
543 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
544 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
545 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
546 else \
547 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
548 }
549 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)550 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
551
552 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
553 unsigned long *msr_bitmap_l1,
554 unsigned long *msr_bitmap_l0,
555 u32 msr, int types)
556 {
557 if (types & MSR_TYPE_R)
558 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
559 msr_bitmap_l0, msr);
560 if (types & MSR_TYPE_W)
561 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
562 msr_bitmap_l0, msr);
563 }
564
565 /*
566 * Merge L0's and L1's MSR bitmap, return false to indicate that
567 * we do not use the hardware.
568 */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)569 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
570 struct vmcs12 *vmcs12)
571 {
572 struct vcpu_vmx *vmx = to_vmx(vcpu);
573 int msr;
574 unsigned long *msr_bitmap_l1;
575 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
576 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
577 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
578
579 /* Nothing to do if the MSR bitmap is not in use. */
580 if (!cpu_has_vmx_msr_bitmap() ||
581 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
582 return false;
583
584 /*
585 * MSR bitmap update can be skipped when:
586 * - MSR bitmap for L1 hasn't changed.
587 * - Nested hypervisor (L1) is attempting to launch the same L2 as
588 * before.
589 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
590 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
591 */
592 if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
593 evmcs->hv_enlightenments_control.msr_bitmap &&
594 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
595 return true;
596
597 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
598 return false;
599
600 msr_bitmap_l1 = (unsigned long *)map->hva;
601
602 /*
603 * To keep the control flow simple, pay eight 8-byte writes (sixteen
604 * 4-byte writes on 32-bit systems) up front to enable intercepts for
605 * the x2APIC MSR range and selectively toggle those relevant to L2.
606 */
607 enable_x2apic_msr_intercepts(msr_bitmap_l0);
608
609 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
610 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
611 /*
612 * L0 need not intercept reads for MSRs between 0x800
613 * and 0x8ff, it just lets the processor take the value
614 * from the virtual-APIC page; take those 256 bits
615 * directly from the L1 bitmap.
616 */
617 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
618 unsigned word = msr / BITS_PER_LONG;
619
620 msr_bitmap_l0[word] = msr_bitmap_l1[word];
621 }
622 }
623
624 nested_vmx_disable_intercept_for_x2apic_msr(
625 msr_bitmap_l1, msr_bitmap_l0,
626 X2APIC_MSR(APIC_TASKPRI),
627 MSR_TYPE_R | MSR_TYPE_W);
628
629 if (nested_cpu_has_vid(vmcs12)) {
630 nested_vmx_disable_intercept_for_x2apic_msr(
631 msr_bitmap_l1, msr_bitmap_l0,
632 X2APIC_MSR(APIC_EOI),
633 MSR_TYPE_W);
634 nested_vmx_disable_intercept_for_x2apic_msr(
635 msr_bitmap_l1, msr_bitmap_l0,
636 X2APIC_MSR(APIC_SELF_IPI),
637 MSR_TYPE_W);
638 }
639 }
640
641 /*
642 * Always check vmcs01's bitmap to honor userspace MSR filters and any
643 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
644 */
645 #ifdef CONFIG_X86_64
646 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
647 MSR_FS_BASE, MSR_TYPE_RW);
648
649 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
650 MSR_GS_BASE, MSR_TYPE_RW);
651
652 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
653 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
654 #endif
655 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
656 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
657
658 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
659 MSR_IA32_PRED_CMD, MSR_TYPE_W);
660
661 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
662 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
663
664 kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
665
666 vmx->nested.force_msr_bitmap_recalc = false;
667
668 return true;
669 }
670
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)671 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
672 struct vmcs12 *vmcs12)
673 {
674 struct vcpu_vmx *vmx = to_vmx(vcpu);
675 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
676
677 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
678 vmcs12->vmcs_link_pointer == INVALID_GPA)
679 return;
680
681 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
682 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
683 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
684 return;
685
686 kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
687 VMCS12_SIZE);
688 }
689
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)690 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
691 struct vmcs12 *vmcs12)
692 {
693 struct vcpu_vmx *vmx = to_vmx(vcpu);
694 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
695
696 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
697 vmcs12->vmcs_link_pointer == INVALID_GPA)
698 return;
699
700 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
701 kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
702 vmcs12->vmcs_link_pointer, VMCS12_SIZE))
703 return;
704
705 kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
706 VMCS12_SIZE);
707 }
708
709 /*
710 * In nested virtualization, check if L1 has set
711 * VM_EXIT_ACK_INTR_ON_EXIT
712 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)713 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
714 {
715 return get_vmcs12(vcpu)->vm_exit_controls &
716 VM_EXIT_ACK_INTR_ON_EXIT;
717 }
718
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)719 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
720 struct vmcs12 *vmcs12)
721 {
722 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
723 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
724 return -EINVAL;
725 else
726 return 0;
727 }
728
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)729 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
730 struct vmcs12 *vmcs12)
731 {
732 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
733 !nested_cpu_has_apic_reg_virt(vmcs12) &&
734 !nested_cpu_has_vid(vmcs12) &&
735 !nested_cpu_has_posted_intr(vmcs12))
736 return 0;
737
738 /*
739 * If virtualize x2apic mode is enabled,
740 * virtualize apic access must be disabled.
741 */
742 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
743 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
744 return -EINVAL;
745
746 /*
747 * If virtual interrupt delivery is enabled,
748 * we must exit on external interrupts.
749 */
750 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
751 return -EINVAL;
752
753 /*
754 * bits 15:8 should be zero in posted_intr_nv,
755 * the descriptor address has been already checked
756 * in nested_get_vmcs12_pages.
757 *
758 * bits 5:0 of posted_intr_desc_addr should be zero.
759 */
760 if (nested_cpu_has_posted_intr(vmcs12) &&
761 (CC(!nested_cpu_has_vid(vmcs12)) ||
762 CC(!nested_exit_intr_ack_set(vcpu)) ||
763 CC((vmcs12->posted_intr_nv & 0xff00)) ||
764 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
765 return -EINVAL;
766
767 /* tpr shadow is needed by all apicv features. */
768 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
769 return -EINVAL;
770
771 return 0;
772 }
773
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)774 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
775 u32 count, u64 addr)
776 {
777 if (count == 0)
778 return 0;
779
780 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
781 !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
782 return -EINVAL;
783
784 return 0;
785 }
786
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)787 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
788 struct vmcs12 *vmcs12)
789 {
790 if (CC(nested_vmx_check_msr_switch(vcpu,
791 vmcs12->vm_exit_msr_load_count,
792 vmcs12->vm_exit_msr_load_addr)) ||
793 CC(nested_vmx_check_msr_switch(vcpu,
794 vmcs12->vm_exit_msr_store_count,
795 vmcs12->vm_exit_msr_store_addr)))
796 return -EINVAL;
797
798 return 0;
799 }
800
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)801 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
802 struct vmcs12 *vmcs12)
803 {
804 if (CC(nested_vmx_check_msr_switch(vcpu,
805 vmcs12->vm_entry_msr_load_count,
806 vmcs12->vm_entry_msr_load_addr)))
807 return -EINVAL;
808
809 return 0;
810 }
811
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)812 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
813 struct vmcs12 *vmcs12)
814 {
815 if (!nested_cpu_has_pml(vmcs12))
816 return 0;
817
818 if (CC(!nested_cpu_has_ept(vmcs12)) ||
819 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
820 return -EINVAL;
821
822 return 0;
823 }
824
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)825 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
826 struct vmcs12 *vmcs12)
827 {
828 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
829 !nested_cpu_has_ept(vmcs12)))
830 return -EINVAL;
831 return 0;
832 }
833
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)834 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
835 struct vmcs12 *vmcs12)
836 {
837 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
838 !nested_cpu_has_ept(vmcs12)))
839 return -EINVAL;
840 return 0;
841 }
842
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)843 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
844 struct vmcs12 *vmcs12)
845 {
846 if (!nested_cpu_has_shadow_vmcs(vmcs12))
847 return 0;
848
849 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
850 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
851 return -EINVAL;
852
853 return 0;
854 }
855
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)856 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
857 struct vmx_msr_entry *e)
858 {
859 /* x2APIC MSR accesses are not allowed */
860 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
861 return -EINVAL;
862 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
863 CC(e->index == MSR_IA32_UCODE_REV))
864 return -EINVAL;
865 if (CC(e->reserved != 0))
866 return -EINVAL;
867 return 0;
868 }
869
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)870 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
871 struct vmx_msr_entry *e)
872 {
873 if (CC(e->index == MSR_FS_BASE) ||
874 CC(e->index == MSR_GS_BASE) ||
875 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
876 nested_vmx_msr_check_common(vcpu, e))
877 return -EINVAL;
878 return 0;
879 }
880
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)881 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
882 struct vmx_msr_entry *e)
883 {
884 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
885 nested_vmx_msr_check_common(vcpu, e))
886 return -EINVAL;
887 return 0;
888 }
889
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)890 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
891 {
892 struct vcpu_vmx *vmx = to_vmx(vcpu);
893 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
894 vmx->nested.msrs.misc_high);
895
896 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
897 }
898
899 /*
900 * Load guest's/host's msr at nested entry/exit.
901 * return 0 for success, entry index for failure.
902 *
903 * One of the failure modes for MSR load/store is when a list exceeds the
904 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
905 * as possible, process all valid entries before failing rather than precheck
906 * for a capacity violation.
907 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)908 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
909 {
910 u32 i;
911 struct vmx_msr_entry e;
912 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
913
914 for (i = 0; i < count; i++) {
915 if (unlikely(i >= max_msr_list_size))
916 goto fail;
917
918 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
919 &e, sizeof(e))) {
920 pr_debug_ratelimited(
921 "%s cannot read MSR entry (%u, 0x%08llx)\n",
922 __func__, i, gpa + i * sizeof(e));
923 goto fail;
924 }
925 if (nested_vmx_load_msr_check(vcpu, &e)) {
926 pr_debug_ratelimited(
927 "%s check failed (%u, 0x%x, 0x%x)\n",
928 __func__, i, e.index, e.reserved);
929 goto fail;
930 }
931 if (kvm_set_msr(vcpu, e.index, e.value)) {
932 pr_debug_ratelimited(
933 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
934 __func__, i, e.index, e.value);
935 goto fail;
936 }
937 }
938 return 0;
939 fail:
940 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
941 return i + 1;
942 }
943
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)944 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
945 u32 msr_index,
946 u64 *data)
947 {
948 struct vcpu_vmx *vmx = to_vmx(vcpu);
949
950 /*
951 * If the L0 hypervisor stored a more accurate value for the TSC that
952 * does not include the time taken for emulation of the L2->L1
953 * VM-exit in L0, use the more accurate value.
954 */
955 if (msr_index == MSR_IA32_TSC) {
956 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
957 MSR_IA32_TSC);
958
959 if (i >= 0) {
960 u64 val = vmx->msr_autostore.guest.val[i].value;
961
962 *data = kvm_read_l1_tsc(vcpu, val);
963 return true;
964 }
965 }
966
967 if (kvm_get_msr(vcpu, msr_index, data)) {
968 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
969 msr_index);
970 return false;
971 }
972 return true;
973 }
974
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)975 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
976 struct vmx_msr_entry *e)
977 {
978 if (kvm_vcpu_read_guest(vcpu,
979 gpa + i * sizeof(*e),
980 e, 2 * sizeof(u32))) {
981 pr_debug_ratelimited(
982 "%s cannot read MSR entry (%u, 0x%08llx)\n",
983 __func__, i, gpa + i * sizeof(*e));
984 return false;
985 }
986 if (nested_vmx_store_msr_check(vcpu, e)) {
987 pr_debug_ratelimited(
988 "%s check failed (%u, 0x%x, 0x%x)\n",
989 __func__, i, e->index, e->reserved);
990 return false;
991 }
992 return true;
993 }
994
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)995 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
996 {
997 u64 data;
998 u32 i;
999 struct vmx_msr_entry e;
1000 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1001
1002 for (i = 0; i < count; i++) {
1003 if (unlikely(i >= max_msr_list_size))
1004 return -EINVAL;
1005
1006 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1007 return -EINVAL;
1008
1009 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1010 return -EINVAL;
1011
1012 if (kvm_vcpu_write_guest(vcpu,
1013 gpa + i * sizeof(e) +
1014 offsetof(struct vmx_msr_entry, value),
1015 &data, sizeof(data))) {
1016 pr_debug_ratelimited(
1017 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1018 __func__, i, e.index, data);
1019 return -EINVAL;
1020 }
1021 }
1022 return 0;
1023 }
1024
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1025 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1026 {
1027 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1028 u32 count = vmcs12->vm_exit_msr_store_count;
1029 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1030 struct vmx_msr_entry e;
1031 u32 i;
1032
1033 for (i = 0; i < count; i++) {
1034 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1035 return false;
1036
1037 if (e.index == msr_index)
1038 return true;
1039 }
1040 return false;
1041 }
1042
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1043 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1044 u32 msr_index)
1045 {
1046 struct vcpu_vmx *vmx = to_vmx(vcpu);
1047 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1048 bool in_vmcs12_store_list;
1049 int msr_autostore_slot;
1050 bool in_autostore_list;
1051 int last;
1052
1053 msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1054 in_autostore_list = msr_autostore_slot >= 0;
1055 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1056
1057 if (in_vmcs12_store_list && !in_autostore_list) {
1058 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1059 /*
1060 * Emulated VMEntry does not fail here. Instead a less
1061 * accurate value will be returned by
1062 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1063 * instead of reading the value from the vmcs02 VMExit
1064 * MSR-store area.
1065 */
1066 pr_warn_ratelimited(
1067 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1068 msr_index);
1069 return;
1070 }
1071 last = autostore->nr++;
1072 autostore->val[last].index = msr_index;
1073 } else if (!in_vmcs12_store_list && in_autostore_list) {
1074 last = --autostore->nr;
1075 autostore->val[msr_autostore_slot] = autostore->val[last];
1076 }
1077 }
1078
1079 /*
1080 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1081 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1082 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1083 * @entry_failure_code.
1084 */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1085 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1086 bool nested_ept, bool reload_pdptrs,
1087 enum vm_entry_failure_code *entry_failure_code)
1088 {
1089 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1090 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1091 return -EINVAL;
1092 }
1093
1094 /*
1095 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1096 * must not be dereferenced.
1097 */
1098 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1099 CC(!load_pdptrs(vcpu, cr3))) {
1100 *entry_failure_code = ENTRY_FAIL_PDPTE;
1101 return -EINVAL;
1102 }
1103
1104 vcpu->arch.cr3 = cr3;
1105 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1106
1107 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1108 kvm_init_mmu(vcpu);
1109
1110 if (!nested_ept)
1111 kvm_mmu_new_pgd(vcpu, cr3);
1112
1113 return 0;
1114 }
1115
1116 /*
1117 * Returns if KVM is able to config CPU to tag TLB entries
1118 * populated by L2 differently than TLB entries populated
1119 * by L1.
1120 *
1121 * If L0 uses EPT, L1 and L2 run with different EPTP because
1122 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1123 * are tagged with different EPTP.
1124 *
1125 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1126 * with different VPID (L1 entries are tagged with vmx->vpid
1127 * while L2 entries are tagged with vmx->nested.vpid02).
1128 */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1129 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1130 {
1131 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1132
1133 return enable_ept ||
1134 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1135 }
1136
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1137 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1138 struct vmcs12 *vmcs12,
1139 bool is_vmenter)
1140 {
1141 struct vcpu_vmx *vmx = to_vmx(vcpu);
1142
1143 /*
1144 * KVM_REQ_HV_TLB_FLUSH flushes entries from either L1's VP_ID or
1145 * L2's VP_ID upon request from the guest. Make sure we check for
1146 * pending entries in the right FIFO upon L1/L2 transition as these
1147 * requests are put by other vCPUs asynchronously.
1148 */
1149 if (to_hv_vcpu(vcpu) && enable_ept)
1150 kvm_make_request(KVM_REQ_HV_TLB_FLUSH, vcpu);
1151
1152 /*
1153 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1154 * same VPID as the host, and so architecturally, linear and combined
1155 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit. KVM
1156 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1157 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01. This
1158 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1159 * VPIDs) still occurs from L1's perspective, and KVM may need to
1160 * synchronize the MMU in response to the guest TLB flush.
1161 *
1162 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1163 * EPT is a special snowflake, as guest-physical mappings aren't
1164 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1165 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1166 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1167 * those mappings.
1168 */
1169 if (!nested_cpu_has_vpid(vmcs12)) {
1170 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1171 return;
1172 }
1173
1174 /* L2 should never have a VPID if VPID is disabled. */
1175 WARN_ON(!enable_vpid);
1176
1177 /*
1178 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1179 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1180 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1181 * that the new vpid12 has never been used and thus represents a new
1182 * guest ASID that cannot have entries in the TLB.
1183 */
1184 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1185 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1186 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1187 return;
1188 }
1189
1190 /*
1191 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1192 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1193 * KVM was unable to allocate a VPID for L2, flush the current context
1194 * as the effective ASID is common to both L1 and L2.
1195 */
1196 if (!nested_has_guest_tlb_tag(vcpu))
1197 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1198 }
1199
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1200 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1201 {
1202 superset &= mask;
1203 subset &= mask;
1204
1205 return (superset | subset) == superset;
1206 }
1207
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1208 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1209 {
1210 const u64 feature_and_reserved =
1211 /* feature (except bit 48; see below) */
1212 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1213 /* reserved */
1214 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1215 u64 vmx_basic = vmcs_config.nested.basic;
1216
1217 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1218 return -EINVAL;
1219
1220 /*
1221 * KVM does not emulate a version of VMX that constrains physical
1222 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1223 */
1224 if (data & BIT_ULL(48))
1225 return -EINVAL;
1226
1227 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1228 vmx_basic_vmcs_revision_id(data))
1229 return -EINVAL;
1230
1231 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1232 return -EINVAL;
1233
1234 vmx->nested.msrs.basic = data;
1235 return 0;
1236 }
1237
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1238 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1239 u32 **low, u32 **high)
1240 {
1241 switch (msr_index) {
1242 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1243 *low = &msrs->pinbased_ctls_low;
1244 *high = &msrs->pinbased_ctls_high;
1245 break;
1246 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1247 *low = &msrs->procbased_ctls_low;
1248 *high = &msrs->procbased_ctls_high;
1249 break;
1250 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1251 *low = &msrs->exit_ctls_low;
1252 *high = &msrs->exit_ctls_high;
1253 break;
1254 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1255 *low = &msrs->entry_ctls_low;
1256 *high = &msrs->entry_ctls_high;
1257 break;
1258 case MSR_IA32_VMX_PROCBASED_CTLS2:
1259 *low = &msrs->secondary_ctls_low;
1260 *high = &msrs->secondary_ctls_high;
1261 break;
1262 default:
1263 BUG();
1264 }
1265 }
1266
1267 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1268 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1269 {
1270 u32 *lowp, *highp;
1271 u64 supported;
1272
1273 vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1274
1275 supported = vmx_control_msr(*lowp, *highp);
1276
1277 /* Check must-be-1 bits are still 1. */
1278 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1279 return -EINVAL;
1280
1281 /* Check must-be-0 bits are still 0. */
1282 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1283 return -EINVAL;
1284
1285 vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1286 *lowp = data;
1287 *highp = data >> 32;
1288 return 0;
1289 }
1290
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1291 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1292 {
1293 const u64 feature_and_reserved_bits =
1294 /* feature */
1295 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1296 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1297 /* reserved */
1298 GENMASK_ULL(13, 9) | BIT_ULL(31);
1299 u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1300 vmcs_config.nested.misc_high);
1301
1302 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1303 return -EINVAL;
1304
1305 if ((vmx->nested.msrs.pinbased_ctls_high &
1306 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1307 vmx_misc_preemption_timer_rate(data) !=
1308 vmx_misc_preemption_timer_rate(vmx_misc))
1309 return -EINVAL;
1310
1311 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1312 return -EINVAL;
1313
1314 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1315 return -EINVAL;
1316
1317 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1318 return -EINVAL;
1319
1320 vmx->nested.msrs.misc_low = data;
1321 vmx->nested.msrs.misc_high = data >> 32;
1322
1323 return 0;
1324 }
1325
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1326 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1327 {
1328 u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1329 vmcs_config.nested.vpid_caps);
1330
1331 /* Every bit is either reserved or a feature bit. */
1332 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1333 return -EINVAL;
1334
1335 vmx->nested.msrs.ept_caps = data;
1336 vmx->nested.msrs.vpid_caps = data >> 32;
1337 return 0;
1338 }
1339
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1340 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1341 {
1342 switch (msr_index) {
1343 case MSR_IA32_VMX_CR0_FIXED0:
1344 return &msrs->cr0_fixed0;
1345 case MSR_IA32_VMX_CR4_FIXED0:
1346 return &msrs->cr4_fixed0;
1347 default:
1348 BUG();
1349 }
1350 }
1351
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1352 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1353 {
1354 const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1355
1356 /*
1357 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1358 * must be 1 in the restored value.
1359 */
1360 if (!is_bitwise_subset(data, *msr, -1ULL))
1361 return -EINVAL;
1362
1363 *vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1364 return 0;
1365 }
1366
1367 /*
1368 * Called when userspace is restoring VMX MSRs.
1369 *
1370 * Returns 0 on success, non-0 otherwise.
1371 */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1372 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1373 {
1374 struct vcpu_vmx *vmx = to_vmx(vcpu);
1375
1376 /*
1377 * Don't allow changes to the VMX capability MSRs while the vCPU
1378 * is in VMX operation.
1379 */
1380 if (vmx->nested.vmxon)
1381 return -EBUSY;
1382
1383 switch (msr_index) {
1384 case MSR_IA32_VMX_BASIC:
1385 return vmx_restore_vmx_basic(vmx, data);
1386 case MSR_IA32_VMX_PINBASED_CTLS:
1387 case MSR_IA32_VMX_PROCBASED_CTLS:
1388 case MSR_IA32_VMX_EXIT_CTLS:
1389 case MSR_IA32_VMX_ENTRY_CTLS:
1390 /*
1391 * The "non-true" VMX capability MSRs are generated from the
1392 * "true" MSRs, so we do not support restoring them directly.
1393 *
1394 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1395 * should restore the "true" MSRs with the must-be-1 bits
1396 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1397 * DEFAULT SETTINGS".
1398 */
1399 return -EINVAL;
1400 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1401 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1402 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1403 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1404 case MSR_IA32_VMX_PROCBASED_CTLS2:
1405 return vmx_restore_control_msr(vmx, msr_index, data);
1406 case MSR_IA32_VMX_MISC:
1407 return vmx_restore_vmx_misc(vmx, data);
1408 case MSR_IA32_VMX_CR0_FIXED0:
1409 case MSR_IA32_VMX_CR4_FIXED0:
1410 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1411 case MSR_IA32_VMX_CR0_FIXED1:
1412 case MSR_IA32_VMX_CR4_FIXED1:
1413 /*
1414 * These MSRs are generated based on the vCPU's CPUID, so we
1415 * do not support restoring them directly.
1416 */
1417 return -EINVAL;
1418 case MSR_IA32_VMX_EPT_VPID_CAP:
1419 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1420 case MSR_IA32_VMX_VMCS_ENUM:
1421 vmx->nested.msrs.vmcs_enum = data;
1422 return 0;
1423 case MSR_IA32_VMX_VMFUNC:
1424 if (data & ~vmcs_config.nested.vmfunc_controls)
1425 return -EINVAL;
1426 vmx->nested.msrs.vmfunc_controls = data;
1427 return 0;
1428 default:
1429 /*
1430 * The rest of the VMX capability MSRs do not support restore.
1431 */
1432 return -EINVAL;
1433 }
1434 }
1435
1436 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1437 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1438 {
1439 switch (msr_index) {
1440 case MSR_IA32_VMX_BASIC:
1441 *pdata = msrs->basic;
1442 break;
1443 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1444 case MSR_IA32_VMX_PINBASED_CTLS:
1445 *pdata = vmx_control_msr(
1446 msrs->pinbased_ctls_low,
1447 msrs->pinbased_ctls_high);
1448 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1449 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1450 break;
1451 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1452 case MSR_IA32_VMX_PROCBASED_CTLS:
1453 *pdata = vmx_control_msr(
1454 msrs->procbased_ctls_low,
1455 msrs->procbased_ctls_high);
1456 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1457 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1458 break;
1459 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1460 case MSR_IA32_VMX_EXIT_CTLS:
1461 *pdata = vmx_control_msr(
1462 msrs->exit_ctls_low,
1463 msrs->exit_ctls_high);
1464 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1465 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1466 break;
1467 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1468 case MSR_IA32_VMX_ENTRY_CTLS:
1469 *pdata = vmx_control_msr(
1470 msrs->entry_ctls_low,
1471 msrs->entry_ctls_high);
1472 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1473 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1474 break;
1475 case MSR_IA32_VMX_MISC:
1476 *pdata = vmx_control_msr(
1477 msrs->misc_low,
1478 msrs->misc_high);
1479 break;
1480 case MSR_IA32_VMX_CR0_FIXED0:
1481 *pdata = msrs->cr0_fixed0;
1482 break;
1483 case MSR_IA32_VMX_CR0_FIXED1:
1484 *pdata = msrs->cr0_fixed1;
1485 break;
1486 case MSR_IA32_VMX_CR4_FIXED0:
1487 *pdata = msrs->cr4_fixed0;
1488 break;
1489 case MSR_IA32_VMX_CR4_FIXED1:
1490 *pdata = msrs->cr4_fixed1;
1491 break;
1492 case MSR_IA32_VMX_VMCS_ENUM:
1493 *pdata = msrs->vmcs_enum;
1494 break;
1495 case MSR_IA32_VMX_PROCBASED_CTLS2:
1496 *pdata = vmx_control_msr(
1497 msrs->secondary_ctls_low,
1498 msrs->secondary_ctls_high);
1499 break;
1500 case MSR_IA32_VMX_EPT_VPID_CAP:
1501 *pdata = msrs->ept_caps |
1502 ((u64)msrs->vpid_caps << 32);
1503 break;
1504 case MSR_IA32_VMX_VMFUNC:
1505 *pdata = msrs->vmfunc_controls;
1506 break;
1507 default:
1508 return 1;
1509 }
1510
1511 return 0;
1512 }
1513
1514 /*
1515 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1516 * been modified by the L1 guest. Note, "writable" in this context means
1517 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1518 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1519 * VM-exit information fields (which are actually writable if the vCPU is
1520 * configured to support "VMWRITE to any supported field in the VMCS").
1521 */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1522 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1523 {
1524 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1525 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1526 struct shadow_vmcs_field field;
1527 unsigned long val;
1528 int i;
1529
1530 if (WARN_ON(!shadow_vmcs))
1531 return;
1532
1533 preempt_disable();
1534
1535 vmcs_load(shadow_vmcs);
1536
1537 for (i = 0; i < max_shadow_read_write_fields; i++) {
1538 field = shadow_read_write_fields[i];
1539 val = __vmcs_readl(field.encoding);
1540 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1541 }
1542
1543 vmcs_clear(shadow_vmcs);
1544 vmcs_load(vmx->loaded_vmcs->vmcs);
1545
1546 preempt_enable();
1547 }
1548
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1549 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1550 {
1551 const struct shadow_vmcs_field *fields[] = {
1552 shadow_read_write_fields,
1553 shadow_read_only_fields
1554 };
1555 const int max_fields[] = {
1556 max_shadow_read_write_fields,
1557 max_shadow_read_only_fields
1558 };
1559 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1560 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1561 struct shadow_vmcs_field field;
1562 unsigned long val;
1563 int i, q;
1564
1565 if (WARN_ON(!shadow_vmcs))
1566 return;
1567
1568 vmcs_load(shadow_vmcs);
1569
1570 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1571 for (i = 0; i < max_fields[q]; i++) {
1572 field = fields[q][i];
1573 val = vmcs12_read_any(vmcs12, field.encoding,
1574 field.offset);
1575 __vmcs_writel(field.encoding, val);
1576 }
1577 }
1578
1579 vmcs_clear(shadow_vmcs);
1580 vmcs_load(vmx->loaded_vmcs->vmcs);
1581 }
1582
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1583 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1584 {
1585 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1586 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1587 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1588
1589 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1590 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1591 vmcs12->guest_rip = evmcs->guest_rip;
1592
1593 if (unlikely(!(hv_clean_fields &
1594 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1595 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1596 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1597 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1598 }
1599
1600 if (unlikely(!(hv_clean_fields &
1601 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1602 vmcs12->guest_rsp = evmcs->guest_rsp;
1603 vmcs12->guest_rflags = evmcs->guest_rflags;
1604 vmcs12->guest_interruptibility_info =
1605 evmcs->guest_interruptibility_info;
1606 /*
1607 * Not present in struct vmcs12:
1608 * vmcs12->guest_ssp = evmcs->guest_ssp;
1609 */
1610 }
1611
1612 if (unlikely(!(hv_clean_fields &
1613 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1614 vmcs12->cpu_based_vm_exec_control =
1615 evmcs->cpu_based_vm_exec_control;
1616 }
1617
1618 if (unlikely(!(hv_clean_fields &
1619 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1620 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1621 }
1622
1623 if (unlikely(!(hv_clean_fields &
1624 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1625 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1626 }
1627
1628 if (unlikely(!(hv_clean_fields &
1629 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1630 vmcs12->vm_entry_intr_info_field =
1631 evmcs->vm_entry_intr_info_field;
1632 vmcs12->vm_entry_exception_error_code =
1633 evmcs->vm_entry_exception_error_code;
1634 vmcs12->vm_entry_instruction_len =
1635 evmcs->vm_entry_instruction_len;
1636 }
1637
1638 if (unlikely(!(hv_clean_fields &
1639 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1640 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1641 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1642 vmcs12->host_cr0 = evmcs->host_cr0;
1643 vmcs12->host_cr3 = evmcs->host_cr3;
1644 vmcs12->host_cr4 = evmcs->host_cr4;
1645 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1646 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1647 vmcs12->host_rip = evmcs->host_rip;
1648 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1649 vmcs12->host_es_selector = evmcs->host_es_selector;
1650 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1651 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1652 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1653 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1654 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1655 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1656 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1657 /*
1658 * Not present in struct vmcs12:
1659 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1660 * vmcs12->host_ssp = evmcs->host_ssp;
1661 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1662 */
1663 }
1664
1665 if (unlikely(!(hv_clean_fields &
1666 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1667 vmcs12->pin_based_vm_exec_control =
1668 evmcs->pin_based_vm_exec_control;
1669 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1670 vmcs12->secondary_vm_exec_control =
1671 evmcs->secondary_vm_exec_control;
1672 }
1673
1674 if (unlikely(!(hv_clean_fields &
1675 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1676 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1677 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1678 }
1679
1680 if (unlikely(!(hv_clean_fields &
1681 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1682 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1683 }
1684
1685 if (unlikely(!(hv_clean_fields &
1686 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1687 vmcs12->guest_es_base = evmcs->guest_es_base;
1688 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1689 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1690 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1691 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1692 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1693 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1694 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1695 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1696 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1697 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1698 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1699 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1700 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1701 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1702 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1703 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1704 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1705 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1706 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1707 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1708 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1709 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1710 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1711 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1712 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1713 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1714 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1715 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1716 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1717 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1718 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1719 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1720 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1721 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1722 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1723 }
1724
1725 if (unlikely(!(hv_clean_fields &
1726 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1727 vmcs12->tsc_offset = evmcs->tsc_offset;
1728 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1729 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1730 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1731 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1732 }
1733
1734 if (unlikely(!(hv_clean_fields &
1735 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1736 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1737 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1738 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1739 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1740 vmcs12->guest_cr0 = evmcs->guest_cr0;
1741 vmcs12->guest_cr3 = evmcs->guest_cr3;
1742 vmcs12->guest_cr4 = evmcs->guest_cr4;
1743 vmcs12->guest_dr7 = evmcs->guest_dr7;
1744 }
1745
1746 if (unlikely(!(hv_clean_fields &
1747 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1748 vmcs12->host_fs_base = evmcs->host_fs_base;
1749 vmcs12->host_gs_base = evmcs->host_gs_base;
1750 vmcs12->host_tr_base = evmcs->host_tr_base;
1751 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1752 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1753 vmcs12->host_rsp = evmcs->host_rsp;
1754 }
1755
1756 if (unlikely(!(hv_clean_fields &
1757 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1758 vmcs12->ept_pointer = evmcs->ept_pointer;
1759 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1760 }
1761
1762 if (unlikely(!(hv_clean_fields &
1763 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1764 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1765 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1766 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1767 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1768 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1769 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1770 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1771 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1772 vmcs12->guest_pending_dbg_exceptions =
1773 evmcs->guest_pending_dbg_exceptions;
1774 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1775 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1776 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1777 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1778 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1779 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1780 /*
1781 * Not present in struct vmcs12:
1782 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1783 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1784 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1785 */
1786 }
1787
1788 /*
1789 * Not used?
1790 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1791 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1792 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1793 * vmcs12->page_fault_error_code_mask =
1794 * evmcs->page_fault_error_code_mask;
1795 * vmcs12->page_fault_error_code_match =
1796 * evmcs->page_fault_error_code_match;
1797 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1798 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1799 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1800 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1801 */
1802
1803 /*
1804 * Read only fields:
1805 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1806 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1807 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1808 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1809 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1810 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1811 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1812 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1813 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1814 * vmcs12->exit_qualification = evmcs->exit_qualification;
1815 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1816 *
1817 * Not present in struct vmcs12:
1818 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1819 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1820 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1821 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1822 */
1823
1824 return;
1825 }
1826
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1827 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1828 {
1829 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1830 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1831
1832 /*
1833 * Should not be changed by KVM:
1834 *
1835 * evmcs->host_es_selector = vmcs12->host_es_selector;
1836 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1837 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1838 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1839 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1840 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1841 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1842 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1843 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1844 * evmcs->host_cr0 = vmcs12->host_cr0;
1845 * evmcs->host_cr3 = vmcs12->host_cr3;
1846 * evmcs->host_cr4 = vmcs12->host_cr4;
1847 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1848 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1849 * evmcs->host_rip = vmcs12->host_rip;
1850 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1851 * evmcs->host_fs_base = vmcs12->host_fs_base;
1852 * evmcs->host_gs_base = vmcs12->host_gs_base;
1853 * evmcs->host_tr_base = vmcs12->host_tr_base;
1854 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1855 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1856 * evmcs->host_rsp = vmcs12->host_rsp;
1857 * sync_vmcs02_to_vmcs12() doesn't read these:
1858 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1859 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1860 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1861 * evmcs->ept_pointer = vmcs12->ept_pointer;
1862 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1863 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1864 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1865 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1866 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1867 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1868 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1869 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1870 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1871 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1872 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1873 * evmcs->page_fault_error_code_mask =
1874 * vmcs12->page_fault_error_code_mask;
1875 * evmcs->page_fault_error_code_match =
1876 * vmcs12->page_fault_error_code_match;
1877 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1878 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1879 * evmcs->tsc_offset = vmcs12->tsc_offset;
1880 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1881 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1882 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1883 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1884 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1885 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1886 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1887 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1888 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1889 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1890 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1891 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1892 *
1893 * Not present in struct vmcs12:
1894 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1895 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1896 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1897 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1898 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1899 * evmcs->host_ssp = vmcs12->host_ssp;
1900 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1901 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1902 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1903 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1904 * evmcs->guest_ssp = vmcs12->guest_ssp;
1905 */
1906
1907 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1908 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1909 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1910 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1911 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1912 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1913 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1914 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1915
1916 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1917 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1918 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1919 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1920 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1921 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1922 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1923 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1924 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1925 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1926
1927 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1928 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1929 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1930 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1931 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1932 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1933 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1934 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1935
1936 evmcs->guest_es_base = vmcs12->guest_es_base;
1937 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1938 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1939 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1940 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1941 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1942 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1943 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1944 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1945 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1946
1947 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1948 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1949
1950 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1951 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1952 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1953 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1954
1955 evmcs->guest_pending_dbg_exceptions =
1956 vmcs12->guest_pending_dbg_exceptions;
1957 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1958 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1959
1960 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1961 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1962
1963 evmcs->guest_cr0 = vmcs12->guest_cr0;
1964 evmcs->guest_cr3 = vmcs12->guest_cr3;
1965 evmcs->guest_cr4 = vmcs12->guest_cr4;
1966 evmcs->guest_dr7 = vmcs12->guest_dr7;
1967
1968 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1969
1970 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1971 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1972 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1973 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1974 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1975 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1976 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1977 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1978
1979 evmcs->exit_qualification = vmcs12->exit_qualification;
1980
1981 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1982 evmcs->guest_rsp = vmcs12->guest_rsp;
1983 evmcs->guest_rflags = vmcs12->guest_rflags;
1984
1985 evmcs->guest_interruptibility_info =
1986 vmcs12->guest_interruptibility_info;
1987 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1988 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1989 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1990 evmcs->vm_entry_exception_error_code =
1991 vmcs12->vm_entry_exception_error_code;
1992 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1993
1994 evmcs->guest_rip = vmcs12->guest_rip;
1995
1996 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1997
1998 return;
1999 }
2000
2001 /*
2002 * This is an equivalent of the nested hypervisor executing the vmptrld
2003 * instruction.
2004 */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2005 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2006 struct kvm_vcpu *vcpu, bool from_launch)
2007 {
2008 struct vcpu_vmx *vmx = to_vmx(vcpu);
2009 bool evmcs_gpa_changed = false;
2010 u64 evmcs_gpa;
2011
2012 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2013 return EVMPTRLD_DISABLED;
2014
2015 evmcs_gpa = nested_get_evmptr(vcpu);
2016 if (!evmptr_is_valid(evmcs_gpa)) {
2017 nested_release_evmcs(vcpu);
2018 return EVMPTRLD_DISABLED;
2019 }
2020
2021 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2022 vmx->nested.current_vmptr = INVALID_GPA;
2023
2024 nested_release_evmcs(vcpu);
2025
2026 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2027 &vmx->nested.hv_evmcs_map))
2028 return EVMPTRLD_ERROR;
2029
2030 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2031
2032 /*
2033 * Currently, KVM only supports eVMCS version 1
2034 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2035 * value to first u32 field of eVMCS which should specify eVMCS
2036 * VersionNumber.
2037 *
2038 * Guest should be aware of supported eVMCS versions by host by
2039 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2040 * expected to set this CPUID leaf according to the value
2041 * returned in vmcs_version from nested_enable_evmcs().
2042 *
2043 * However, it turns out that Microsoft Hyper-V fails to comply
2044 * to their own invented interface: When Hyper-V use eVMCS, it
2045 * just sets first u32 field of eVMCS to revision_id specified
2046 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2047 * which is one of the supported versions specified in
2048 * CPUID.0x4000000A.EAX[0:15].
2049 *
2050 * To overcome Hyper-V bug, we accept here either a supported
2051 * eVMCS version or VMCS12 revision_id as valid values for first
2052 * u32 field of eVMCS.
2053 */
2054 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2055 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2056 nested_release_evmcs(vcpu);
2057 return EVMPTRLD_VMFAIL;
2058 }
2059
2060 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2061
2062 evmcs_gpa_changed = true;
2063 /*
2064 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2065 * reloaded from guest's memory (read only fields, fields not
2066 * present in struct hv_enlightened_vmcs, ...). Make sure there
2067 * are no leftovers.
2068 */
2069 if (from_launch) {
2070 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2071 memset(vmcs12, 0, sizeof(*vmcs12));
2072 vmcs12->hdr.revision_id = VMCS12_REVISION;
2073 }
2074
2075 }
2076
2077 /*
2078 * Clean fields data can't be used on VMLAUNCH and when we switch
2079 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2080 */
2081 if (from_launch || evmcs_gpa_changed) {
2082 vmx->nested.hv_evmcs->hv_clean_fields &=
2083 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2084
2085 vmx->nested.force_msr_bitmap_recalc = true;
2086 }
2087
2088 return EVMPTRLD_SUCCEEDED;
2089 }
2090
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2091 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2092 {
2093 struct vcpu_vmx *vmx = to_vmx(vcpu);
2094
2095 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2096 copy_vmcs12_to_enlightened(vmx);
2097 else
2098 copy_vmcs12_to_shadow(vmx);
2099
2100 vmx->nested.need_vmcs12_to_shadow_sync = false;
2101 }
2102
vmx_preemption_timer_fn(struct hrtimer * timer)2103 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2104 {
2105 struct vcpu_vmx *vmx =
2106 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2107
2108 vmx->nested.preemption_timer_expired = true;
2109 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2110 kvm_vcpu_kick(&vmx->vcpu);
2111
2112 return HRTIMER_NORESTART;
2113 }
2114
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2115 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2116 {
2117 struct vcpu_vmx *vmx = to_vmx(vcpu);
2118 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2119
2120 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2121 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2122
2123 if (!vmx->nested.has_preemption_timer_deadline) {
2124 vmx->nested.preemption_timer_deadline =
2125 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2126 vmx->nested.has_preemption_timer_deadline = true;
2127 }
2128 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2129 }
2130
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2131 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2132 u64 preemption_timeout)
2133 {
2134 struct vcpu_vmx *vmx = to_vmx(vcpu);
2135
2136 /*
2137 * A timer value of zero is architecturally guaranteed to cause
2138 * a VMExit prior to executing any instructions in the guest.
2139 */
2140 if (preemption_timeout == 0) {
2141 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2142 return;
2143 }
2144
2145 if (vcpu->arch.virtual_tsc_khz == 0)
2146 return;
2147
2148 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2149 preemption_timeout *= 1000000;
2150 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2151 hrtimer_start(&vmx->nested.preemption_timer,
2152 ktime_add_ns(ktime_get(), preemption_timeout),
2153 HRTIMER_MODE_ABS_PINNED);
2154 }
2155
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2156 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2157 {
2158 if (vmx->nested.nested_run_pending &&
2159 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2160 return vmcs12->guest_ia32_efer;
2161 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2162 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2163 else
2164 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2165 }
2166
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2167 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2168 {
2169 struct kvm *kvm = vmx->vcpu.kvm;
2170
2171 /*
2172 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2173 * according to L0's settings (vmcs12 is irrelevant here). Host
2174 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2175 * will be set as needed prior to VMLAUNCH/VMRESUME.
2176 */
2177 if (vmx->nested.vmcs02_initialized)
2178 return;
2179 vmx->nested.vmcs02_initialized = true;
2180
2181 /*
2182 * We don't care what the EPTP value is we just need to guarantee
2183 * it's valid so we don't get a false positive when doing early
2184 * consistency checks.
2185 */
2186 if (enable_ept && nested_early_check)
2187 vmcs_write64(EPT_POINTER,
2188 construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2189
2190 /* All VMFUNCs are currently emulated through L0 vmexits. */
2191 if (cpu_has_vmx_vmfunc())
2192 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2193
2194 if (cpu_has_vmx_posted_intr())
2195 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2196
2197 if (cpu_has_vmx_msr_bitmap())
2198 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2199
2200 /*
2201 * PML is emulated for L2, but never enabled in hardware as the MMU
2202 * handles A/D emulation. Disabling PML for L2 also avoids having to
2203 * deal with filtering out L2 GPAs from the buffer.
2204 */
2205 if (enable_pml) {
2206 vmcs_write64(PML_ADDRESS, 0);
2207 vmcs_write16(GUEST_PML_INDEX, -1);
2208 }
2209
2210 if (cpu_has_vmx_encls_vmexit())
2211 vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2212
2213 if (kvm_notify_vmexit_enabled(kvm))
2214 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2215
2216 /*
2217 * Set the MSR load/store lists to match L0's settings. Only the
2218 * addresses are constant (for vmcs02), the counts can change based
2219 * on L2's behavior, e.g. switching to/from long mode.
2220 */
2221 vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2222 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2223 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2224
2225 vmx_set_constant_host_state(vmx);
2226 }
2227
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2228 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2229 struct vmcs12 *vmcs12)
2230 {
2231 prepare_vmcs02_constant_state(vmx);
2232
2233 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2234
2235 /*
2236 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2237 * same VPID as the host. Emulate this behavior by using vpid01 for L2
2238 * if VPID is disabled in vmcs12. Note, if VPID is disabled, VM-Enter
2239 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2240 * VPID=0. I.e. using vpid02 would be ok (so long as KVM emulates the
2241 * required flushes), but doing so would cause KVM to over-flush. E.g.
2242 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2243 * and then runs L2 X again, then KVM can and should retain TLB entries
2244 * for VPID12=1.
2245 */
2246 if (enable_vpid) {
2247 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2248 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2249 else
2250 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2251 }
2252 }
2253
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2254 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2255 struct vmcs12 *vmcs12)
2256 {
2257 u32 exec_control;
2258 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2259
2260 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2261 prepare_vmcs02_early_rare(vmx, vmcs12);
2262
2263 /*
2264 * PIN CONTROLS
2265 */
2266 exec_control = __pin_controls_get(vmcs01);
2267 exec_control |= (vmcs12->pin_based_vm_exec_control &
2268 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2269
2270 /* Posted interrupts setting is only taken from vmcs12. */
2271 vmx->nested.pi_pending = false;
2272 if (nested_cpu_has_posted_intr(vmcs12))
2273 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2274 else
2275 exec_control &= ~PIN_BASED_POSTED_INTR;
2276 pin_controls_set(vmx, exec_control);
2277
2278 /*
2279 * EXEC CONTROLS
2280 */
2281 exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2282 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2283 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2284 exec_control &= ~CPU_BASED_TPR_SHADOW;
2285 exec_control |= vmcs12->cpu_based_vm_exec_control;
2286
2287 vmx->nested.l1_tpr_threshold = -1;
2288 if (exec_control & CPU_BASED_TPR_SHADOW)
2289 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2290 #ifdef CONFIG_X86_64
2291 else
2292 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2293 CPU_BASED_CR8_STORE_EXITING;
2294 #endif
2295
2296 /*
2297 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2298 * for I/O port accesses.
2299 */
2300 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2301 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2302
2303 /*
2304 * This bit will be computed in nested_get_vmcs12_pages, because
2305 * we do not have access to L1's MSR bitmap yet. For now, keep
2306 * the same bit as before, hoping to avoid multiple VMWRITEs that
2307 * only set/clear this bit.
2308 */
2309 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2310 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2311
2312 exec_controls_set(vmx, exec_control);
2313
2314 /*
2315 * SECONDARY EXEC CONTROLS
2316 */
2317 if (cpu_has_secondary_exec_ctrls()) {
2318 exec_control = __secondary_exec_controls_get(vmcs01);
2319
2320 /* Take the following fields only from vmcs12 */
2321 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2322 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2323 SECONDARY_EXEC_ENABLE_INVPCID |
2324 SECONDARY_EXEC_ENABLE_RDTSCP |
2325 SECONDARY_EXEC_ENABLE_XSAVES |
2326 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2327 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2328 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2329 SECONDARY_EXEC_ENABLE_VMFUNC |
2330 SECONDARY_EXEC_DESC);
2331
2332 if (nested_cpu_has(vmcs12,
2333 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2334 exec_control |= vmcs12->secondary_vm_exec_control;
2335
2336 /* PML is emulated and never enabled in hardware for L2. */
2337 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2338
2339 /* VMCS shadowing for L2 is emulated for now */
2340 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2341
2342 /*
2343 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2344 * will not have to rewrite the controls just for this bit.
2345 */
2346 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2347 exec_control |= SECONDARY_EXEC_DESC;
2348
2349 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2350 vmcs_write16(GUEST_INTR_STATUS,
2351 vmcs12->guest_intr_status);
2352
2353 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2354 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2355
2356 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2357 vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2358
2359 secondary_exec_controls_set(vmx, exec_control);
2360 }
2361
2362 /*
2363 * ENTRY CONTROLS
2364 *
2365 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2366 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2367 * on the related bits (if supported by the CPU) in the hope that
2368 * we can avoid VMWrites during vmx_set_efer().
2369 *
2370 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2371 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2372 * do the same for L2.
2373 */
2374 exec_control = __vm_entry_controls_get(vmcs01);
2375 exec_control |= (vmcs12->vm_entry_controls &
2376 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2377 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2378 if (cpu_has_load_ia32_efer()) {
2379 if (guest_efer & EFER_LMA)
2380 exec_control |= VM_ENTRY_IA32E_MODE;
2381 if (guest_efer != host_efer)
2382 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2383 }
2384 vm_entry_controls_set(vmx, exec_control);
2385
2386 /*
2387 * EXIT CONTROLS
2388 *
2389 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2390 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2391 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2392 */
2393 exec_control = __vm_exit_controls_get(vmcs01);
2394 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2395 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2396 else
2397 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2398 vm_exit_controls_set(vmx, exec_control);
2399
2400 /*
2401 * Interrupt/Exception Fields
2402 */
2403 if (vmx->nested.nested_run_pending) {
2404 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2405 vmcs12->vm_entry_intr_info_field);
2406 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2407 vmcs12->vm_entry_exception_error_code);
2408 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2409 vmcs12->vm_entry_instruction_len);
2410 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2411 vmcs12->guest_interruptibility_info);
2412 vmx->loaded_vmcs->nmi_known_unmasked =
2413 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2414 } else {
2415 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2416 }
2417 }
2418
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2419 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2420 {
2421 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2422
2423 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2424 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2425 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2426 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2427 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2428 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2429 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2430 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2431 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2432 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2433 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2434 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2435 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2436 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2437 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2438 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2439 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2440 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2441 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2442 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2443 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2444 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2445 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2446 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2447 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2448 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2449 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2450 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2451 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2452 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2453 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2454 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2455 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2456 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2457 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2458 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2459 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2460 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2461
2462 vmx->segment_cache.bitmask = 0;
2463 }
2464
2465 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2466 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2467 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2468 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2469 vmcs12->guest_pending_dbg_exceptions);
2470 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2471 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2472
2473 /*
2474 * L1 may access the L2's PDPTR, so save them to construct
2475 * vmcs12
2476 */
2477 if (enable_ept) {
2478 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2479 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2480 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2481 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2482 }
2483
2484 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2485 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2486 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2487 }
2488
2489 if (nested_cpu_has_xsaves(vmcs12))
2490 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2491
2492 /*
2493 * Whether page-faults are trapped is determined by a combination of
2494 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2495 * doesn't care about page faults then we should set all of these to
2496 * L1's desires. However, if L0 does care about (some) page faults, it
2497 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2498 * simply ask to exit on each and every L2 page fault. This is done by
2499 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2500 * Note that below we don't need special code to set EB.PF beyond the
2501 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2502 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2503 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2504 */
2505 if (vmx_need_pf_intercept(&vmx->vcpu)) {
2506 /*
2507 * TODO: if both L0 and L1 need the same MASK and MATCH,
2508 * go ahead and use it?
2509 */
2510 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2511 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2512 } else {
2513 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2514 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2515 }
2516
2517 if (cpu_has_vmx_apicv()) {
2518 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2519 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2520 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2521 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2522 }
2523
2524 /*
2525 * Make sure the msr_autostore list is up to date before we set the
2526 * count in the vmcs02.
2527 */
2528 prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2529
2530 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2531 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2532 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2533
2534 set_cr4_guest_host_mask(vmx);
2535 }
2536
2537 /*
2538 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2539 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2540 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2541 * guest in a way that will both be appropriate to L1's requests, and our
2542 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2543 * function also has additional necessary side-effects, like setting various
2544 * vcpu->arch fields.
2545 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2546 * is assigned to entry_failure_code on failure.
2547 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2548 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2549 bool from_vmentry,
2550 enum vm_entry_failure_code *entry_failure_code)
2551 {
2552 struct vcpu_vmx *vmx = to_vmx(vcpu);
2553 bool load_guest_pdptrs_vmcs12 = false;
2554
2555 if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2556 prepare_vmcs02_rare(vmx, vmcs12);
2557 vmx->nested.dirty_vmcs12 = false;
2558
2559 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2560 !(vmx->nested.hv_evmcs->hv_clean_fields &
2561 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2562 }
2563
2564 if (vmx->nested.nested_run_pending &&
2565 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2566 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2567 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2568 } else {
2569 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2570 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2571 }
2572 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2573 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2574 vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2575 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2576
2577 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2578 * bitwise-or of what L1 wants to trap for L2, and what we want to
2579 * trap. Note that CR0.TS also needs updating - we do this later.
2580 */
2581 vmx_update_exception_bitmap(vcpu);
2582 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2583 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2584
2585 if (vmx->nested.nested_run_pending &&
2586 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2587 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2588 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2589 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2590 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2591 }
2592
2593 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2594 vcpu->arch.l1_tsc_offset,
2595 vmx_get_l2_tsc_offset(vcpu),
2596 vmx_get_l2_tsc_multiplier(vcpu));
2597
2598 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2599 vcpu->arch.l1_tsc_scaling_ratio,
2600 vmx_get_l2_tsc_multiplier(vcpu));
2601
2602 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2603 if (kvm_caps.has_tsc_control)
2604 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2605
2606 nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2607
2608 if (nested_cpu_has_ept(vmcs12))
2609 nested_ept_init_mmu_context(vcpu);
2610
2611 /*
2612 * Override the CR0/CR4 read shadows after setting the effective guest
2613 * CR0/CR4. The common helpers also set the shadows, but they don't
2614 * account for vmcs12's cr0/4_guest_host_mask.
2615 */
2616 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2617 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2618
2619 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2620 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2621
2622 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2623 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2624 vmx_set_efer(vcpu, vcpu->arch.efer);
2625
2626 /*
2627 * Guest state is invalid and unrestricted guest is disabled,
2628 * which means L1 attempted VMEntry to L2 with invalid state.
2629 * Fail the VMEntry.
2630 *
2631 * However when force loading the guest state (SMM exit or
2632 * loading nested state after migration, it is possible to
2633 * have invalid guest state now, which will be later fixed by
2634 * restoring L2 register state
2635 */
2636 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2637 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2638 return -EINVAL;
2639 }
2640
2641 /* Shadow page tables on either EPT or shadow page tables. */
2642 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2643 from_vmentry, entry_failure_code))
2644 return -EINVAL;
2645
2646 /*
2647 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2648 * on nested VM-Exit, which can occur without actually running L2 and
2649 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2650 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2651 * transition to HLT instead of running L2.
2652 */
2653 if (enable_ept)
2654 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2655
2656 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2657 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2658 is_pae_paging(vcpu)) {
2659 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2660 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2661 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2662 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2663 }
2664
2665 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2666 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2667 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2668 vmcs12->guest_ia32_perf_global_ctrl))) {
2669 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2670 return -EINVAL;
2671 }
2672
2673 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2674 kvm_rip_write(vcpu, vmcs12->guest_rip);
2675
2676 /*
2677 * It was observed that genuine Hyper-V running in L1 doesn't reset
2678 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2679 * bits when it changes a field in eVMCS. Mark all fields as clean
2680 * here.
2681 */
2682 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2683 vmx->nested.hv_evmcs->hv_clean_fields |=
2684 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2685
2686 return 0;
2687 }
2688
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2689 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2690 {
2691 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2692 nested_cpu_has_virtual_nmis(vmcs12)))
2693 return -EINVAL;
2694
2695 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2696 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2697 return -EINVAL;
2698
2699 return 0;
2700 }
2701
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2702 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2703 {
2704 struct vcpu_vmx *vmx = to_vmx(vcpu);
2705
2706 /* Check for memory type validity */
2707 switch (new_eptp & VMX_EPTP_MT_MASK) {
2708 case VMX_EPTP_MT_UC:
2709 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2710 return false;
2711 break;
2712 case VMX_EPTP_MT_WB:
2713 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2714 return false;
2715 break;
2716 default:
2717 return false;
2718 }
2719
2720 /* Page-walk levels validity. */
2721 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2722 case VMX_EPTP_PWL_5:
2723 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2724 return false;
2725 break;
2726 case VMX_EPTP_PWL_4:
2727 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2728 return false;
2729 break;
2730 default:
2731 return false;
2732 }
2733
2734 /* Reserved bits should not be set */
2735 if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2736 return false;
2737
2738 /* AD, if set, should be supported */
2739 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2740 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2741 return false;
2742 }
2743
2744 return true;
2745 }
2746
2747 /*
2748 * Checks related to VM-Execution Control Fields
2749 */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2750 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2751 struct vmcs12 *vmcs12)
2752 {
2753 struct vcpu_vmx *vmx = to_vmx(vcpu);
2754
2755 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2756 vmx->nested.msrs.pinbased_ctls_low,
2757 vmx->nested.msrs.pinbased_ctls_high)) ||
2758 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2759 vmx->nested.msrs.procbased_ctls_low,
2760 vmx->nested.msrs.procbased_ctls_high)))
2761 return -EINVAL;
2762
2763 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2764 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2765 vmx->nested.msrs.secondary_ctls_low,
2766 vmx->nested.msrs.secondary_ctls_high)))
2767 return -EINVAL;
2768
2769 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2770 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2771 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2772 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2773 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2774 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2775 nested_vmx_check_nmi_controls(vmcs12) ||
2776 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2777 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2778 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2779 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2780 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2781 return -EINVAL;
2782
2783 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2784 nested_cpu_has_save_preemption_timer(vmcs12))
2785 return -EINVAL;
2786
2787 if (nested_cpu_has_ept(vmcs12) &&
2788 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2789 return -EINVAL;
2790
2791 if (nested_cpu_has_vmfunc(vmcs12)) {
2792 if (CC(vmcs12->vm_function_control &
2793 ~vmx->nested.msrs.vmfunc_controls))
2794 return -EINVAL;
2795
2796 if (nested_cpu_has_eptp_switching(vmcs12)) {
2797 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2798 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2799 return -EINVAL;
2800 }
2801 }
2802
2803 return 0;
2804 }
2805
2806 /*
2807 * Checks related to VM-Exit Control Fields
2808 */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2809 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2810 struct vmcs12 *vmcs12)
2811 {
2812 struct vcpu_vmx *vmx = to_vmx(vcpu);
2813
2814 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2815 vmx->nested.msrs.exit_ctls_low,
2816 vmx->nested.msrs.exit_ctls_high)) ||
2817 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2818 return -EINVAL;
2819
2820 return 0;
2821 }
2822
2823 /*
2824 * Checks related to VM-Entry Control Fields
2825 */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2826 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2827 struct vmcs12 *vmcs12)
2828 {
2829 struct vcpu_vmx *vmx = to_vmx(vcpu);
2830
2831 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2832 vmx->nested.msrs.entry_ctls_low,
2833 vmx->nested.msrs.entry_ctls_high)))
2834 return -EINVAL;
2835
2836 /*
2837 * From the Intel SDM, volume 3:
2838 * Fields relevant to VM-entry event injection must be set properly.
2839 * These fields are the VM-entry interruption-information field, the
2840 * VM-entry exception error code, and the VM-entry instruction length.
2841 */
2842 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2843 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2844 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2845 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2846 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2847 bool should_have_error_code;
2848 bool urg = nested_cpu_has2(vmcs12,
2849 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2850 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2851
2852 /* VM-entry interruption-info field: interruption type */
2853 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2854 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2855 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2856 return -EINVAL;
2857
2858 /* VM-entry interruption-info field: vector */
2859 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2860 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2861 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2862 return -EINVAL;
2863
2864 /* VM-entry interruption-info field: deliver error code */
2865 should_have_error_code =
2866 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2867 x86_exception_has_error_code(vector);
2868 if (CC(has_error_code != should_have_error_code))
2869 return -EINVAL;
2870
2871 /* VM-entry exception error code */
2872 if (CC(has_error_code &&
2873 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2874 return -EINVAL;
2875
2876 /* VM-entry interruption-info field: reserved bits */
2877 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2878 return -EINVAL;
2879
2880 /* VM-entry instruction length */
2881 switch (intr_type) {
2882 case INTR_TYPE_SOFT_EXCEPTION:
2883 case INTR_TYPE_SOFT_INTR:
2884 case INTR_TYPE_PRIV_SW_EXCEPTION:
2885 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2886 CC(vmcs12->vm_entry_instruction_len == 0 &&
2887 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2888 return -EINVAL;
2889 }
2890 }
2891
2892 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2893 return -EINVAL;
2894
2895 return 0;
2896 }
2897
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2898 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2899 struct vmcs12 *vmcs12)
2900 {
2901 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2902 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2903 nested_check_vm_entry_controls(vcpu, vmcs12))
2904 return -EINVAL;
2905
2906 if (guest_cpuid_has_evmcs(vcpu))
2907 return nested_evmcs_check_controls(vmcs12);
2908
2909 return 0;
2910 }
2911
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2912 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2913 struct vmcs12 *vmcs12)
2914 {
2915 #ifdef CONFIG_X86_64
2916 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2917 !!(vcpu->arch.efer & EFER_LMA)))
2918 return -EINVAL;
2919 #endif
2920 return 0;
2921 }
2922
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2923 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2924 struct vmcs12 *vmcs12)
2925 {
2926 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2927
2928 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2929 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2930 CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2931 return -EINVAL;
2932
2933 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2934 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2935 return -EINVAL;
2936
2937 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2938 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2939 return -EINVAL;
2940
2941 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2942 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2943 vmcs12->host_ia32_perf_global_ctrl)))
2944 return -EINVAL;
2945
2946 if (ia32e) {
2947 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2948 return -EINVAL;
2949 } else {
2950 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2951 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2952 CC((vmcs12->host_rip) >> 32))
2953 return -EINVAL;
2954 }
2955
2956 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2957 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2958 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2959 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2960 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2961 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2962 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2963 CC(vmcs12->host_cs_selector == 0) ||
2964 CC(vmcs12->host_tr_selector == 0) ||
2965 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2966 return -EINVAL;
2967
2968 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2969 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2970 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2971 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2972 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2973 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2974 return -EINVAL;
2975
2976 /*
2977 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2978 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2979 * the values of the LMA and LME bits in the field must each be that of
2980 * the host address-space size VM-exit control.
2981 */
2982 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2983 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2984 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2985 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2986 return -EINVAL;
2987 }
2988
2989 return 0;
2990 }
2991
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2992 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2993 struct vmcs12 *vmcs12)
2994 {
2995 struct vcpu_vmx *vmx = to_vmx(vcpu);
2996 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2997 struct vmcs_hdr hdr;
2998
2999 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3000 return 0;
3001
3002 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3003 return -EINVAL;
3004
3005 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3006 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3007 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3008 return -EINVAL;
3009
3010 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3011 offsetof(struct vmcs12, hdr),
3012 sizeof(hdr))))
3013 return -EINVAL;
3014
3015 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3016 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3017 return -EINVAL;
3018
3019 return 0;
3020 }
3021
3022 /*
3023 * Checks related to Guest Non-register State
3024 */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3025 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3026 {
3027 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3028 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3029 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3030 return -EINVAL;
3031
3032 return 0;
3033 }
3034
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3035 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3036 struct vmcs12 *vmcs12,
3037 enum vm_entry_failure_code *entry_failure_code)
3038 {
3039 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3040
3041 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3042
3043 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3044 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3045 return -EINVAL;
3046
3047 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3048 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3049 return -EINVAL;
3050
3051 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3052 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3053 return -EINVAL;
3054
3055 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3056 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3057 return -EINVAL;
3058 }
3059
3060 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3061 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3062 vmcs12->guest_ia32_perf_global_ctrl)))
3063 return -EINVAL;
3064
3065 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3066 return -EINVAL;
3067
3068 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3069 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3070 return -EINVAL;
3071
3072 /*
3073 * If the load IA32_EFER VM-entry control is 1, the following checks
3074 * are performed on the field for the IA32_EFER MSR:
3075 * - Bits reserved in the IA32_EFER MSR must be 0.
3076 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3077 * the IA-32e mode guest VM-exit control. It must also be identical
3078 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3079 * CR0.PG) is 1.
3080 */
3081 if (to_vmx(vcpu)->nested.nested_run_pending &&
3082 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3083 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3084 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3085 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3086 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3087 return -EINVAL;
3088 }
3089
3090 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3091 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3092 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3093 return -EINVAL;
3094
3095 if (nested_check_guest_non_reg_state(vmcs12))
3096 return -EINVAL;
3097
3098 return 0;
3099 }
3100
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3101 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3102 {
3103 struct vcpu_vmx *vmx = to_vmx(vcpu);
3104 unsigned long cr3, cr4;
3105 bool vm_fail;
3106
3107 if (!nested_early_check)
3108 return 0;
3109
3110 if (vmx->msr_autoload.host.nr)
3111 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3112 if (vmx->msr_autoload.guest.nr)
3113 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3114
3115 preempt_disable();
3116
3117 vmx_prepare_switch_to_guest(vcpu);
3118
3119 /*
3120 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3121 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3122 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3123 * there is no need to preserve other bits or save/restore the field.
3124 */
3125 vmcs_writel(GUEST_RFLAGS, 0);
3126
3127 cr3 = __get_current_cr3_fast();
3128 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3129 vmcs_writel(HOST_CR3, cr3);
3130 vmx->loaded_vmcs->host_state.cr3 = cr3;
3131 }
3132
3133 cr4 = cr4_read_shadow();
3134 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3135 vmcs_writel(HOST_CR4, cr4);
3136 vmx->loaded_vmcs->host_state.cr4 = cr4;
3137 }
3138
3139 vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3140 __vmx_vcpu_run_flags(vmx));
3141
3142 if (vmx->msr_autoload.host.nr)
3143 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3144 if (vmx->msr_autoload.guest.nr)
3145 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3146
3147 if (vm_fail) {
3148 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3149
3150 preempt_enable();
3151
3152 trace_kvm_nested_vmenter_failed(
3153 "early hardware check VM-instruction error: ", error);
3154 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3155 return 1;
3156 }
3157
3158 /*
3159 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3160 */
3161 if (hw_breakpoint_active())
3162 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3163 local_irq_enable();
3164 preempt_enable();
3165
3166 /*
3167 * A non-failing VMEntry means we somehow entered guest mode with
3168 * an illegal RIP, and that's just the tip of the iceberg. There
3169 * is no telling what memory has been modified or what state has
3170 * been exposed to unknown code. Hitting this all but guarantees
3171 * a (very critical) hardware issue.
3172 */
3173 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3174 VMX_EXIT_REASONS_FAILED_VMENTRY));
3175
3176 return 0;
3177 }
3178
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3179 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3180 {
3181 struct vcpu_vmx *vmx = to_vmx(vcpu);
3182
3183 /*
3184 * hv_evmcs may end up being not mapped after migration (when
3185 * L2 was running), map it here to make sure vmcs12 changes are
3186 * properly reflected.
3187 */
3188 if (guest_cpuid_has_evmcs(vcpu) &&
3189 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3190 enum nested_evmptrld_status evmptrld_status =
3191 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3192
3193 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3194 evmptrld_status == EVMPTRLD_ERROR)
3195 return false;
3196
3197 /*
3198 * Post migration VMCS12 always provides the most actual
3199 * information, copy it to eVMCS upon entry.
3200 */
3201 vmx->nested.need_vmcs12_to_shadow_sync = true;
3202 }
3203
3204 return true;
3205 }
3206
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3207 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3208 {
3209 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3210 struct vcpu_vmx *vmx = to_vmx(vcpu);
3211 struct kvm_host_map *map;
3212
3213 if (!vcpu->arch.pdptrs_from_userspace &&
3214 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3215 /*
3216 * Reload the guest's PDPTRs since after a migration
3217 * the guest CR3 might be restored prior to setting the nested
3218 * state which can lead to a load of wrong PDPTRs.
3219 */
3220 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3221 return false;
3222 }
3223
3224
3225 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3226 map = &vmx->nested.apic_access_page_map;
3227
3228 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3229 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3230 } else {
3231 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3232 __func__);
3233 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3234 vcpu->run->internal.suberror =
3235 KVM_INTERNAL_ERROR_EMULATION;
3236 vcpu->run->internal.ndata = 0;
3237 return false;
3238 }
3239 }
3240
3241 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3242 map = &vmx->nested.virtual_apic_map;
3243
3244 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3245 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3246 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3247 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3248 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3249 /*
3250 * The processor will never use the TPR shadow, simply
3251 * clear the bit from the execution control. Such a
3252 * configuration is useless, but it happens in tests.
3253 * For any other configuration, failing the vm entry is
3254 * _not_ what the processor does but it's basically the
3255 * only possibility we have.
3256 */
3257 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3258 } else {
3259 /*
3260 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3261 * force VM-Entry to fail.
3262 */
3263 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3264 }
3265 }
3266
3267 if (nested_cpu_has_posted_intr(vmcs12)) {
3268 map = &vmx->nested.pi_desc_map;
3269
3270 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3271 vmx->nested.pi_desc =
3272 (struct pi_desc *)(((void *)map->hva) +
3273 offset_in_page(vmcs12->posted_intr_desc_addr));
3274 vmcs_write64(POSTED_INTR_DESC_ADDR,
3275 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3276 } else {
3277 /*
3278 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3279 * access the contents of the VMCS12 posted interrupt
3280 * descriptor. (Note that KVM may do this when it
3281 * should not, per the architectural specification.)
3282 */
3283 vmx->nested.pi_desc = NULL;
3284 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3285 }
3286 }
3287 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3288 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3289 else
3290 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3291
3292 return true;
3293 }
3294
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3295 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3296 {
3297 /*
3298 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3299 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3300 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3301 * migration.
3302 */
3303 if (!nested_get_evmcs_page(vcpu)) {
3304 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3305 __func__);
3306 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3307 vcpu->run->internal.suberror =
3308 KVM_INTERNAL_ERROR_EMULATION;
3309 vcpu->run->internal.ndata = 0;
3310
3311 return false;
3312 }
3313
3314 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3315 return false;
3316
3317 return true;
3318 }
3319
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3320 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3321 {
3322 struct vmcs12 *vmcs12;
3323 struct vcpu_vmx *vmx = to_vmx(vcpu);
3324 gpa_t dst;
3325
3326 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3327 return 0;
3328
3329 if (WARN_ON_ONCE(vmx->nested.pml_full))
3330 return 1;
3331
3332 /*
3333 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3334 * set is already checked as part of A/D emulation.
3335 */
3336 vmcs12 = get_vmcs12(vcpu);
3337 if (!nested_cpu_has_pml(vmcs12))
3338 return 0;
3339
3340 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3341 vmx->nested.pml_full = true;
3342 return 1;
3343 }
3344
3345 gpa &= ~0xFFFull;
3346 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3347
3348 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3349 offset_in_page(dst), sizeof(gpa)))
3350 return 0;
3351
3352 vmcs12->guest_pml_index--;
3353
3354 return 0;
3355 }
3356
3357 /*
3358 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3359 * for running VMX instructions (except VMXON, whose prerequisites are
3360 * slightly different). It also specifies what exception to inject otherwise.
3361 * Note that many of these exceptions have priority over VM exits, so they
3362 * don't have to be checked again here.
3363 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3364 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3365 {
3366 if (!to_vmx(vcpu)->nested.vmxon) {
3367 kvm_queue_exception(vcpu, UD_VECTOR);
3368 return 0;
3369 }
3370
3371 if (vmx_get_cpl(vcpu)) {
3372 kvm_inject_gp(vcpu, 0);
3373 return 0;
3374 }
3375
3376 return 1;
3377 }
3378
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3379 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3380 {
3381 u8 rvi = vmx_get_rvi();
3382 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3383
3384 return ((rvi & 0xf0) > (vppr & 0xf0));
3385 }
3386
3387 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3388 struct vmcs12 *vmcs12);
3389
3390 /*
3391 * If from_vmentry is false, this is being called from state restore (either RSM
3392 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3393 *
3394 * Returns:
3395 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3396 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3397 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3398 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3399 */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3400 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3401 bool from_vmentry)
3402 {
3403 struct vcpu_vmx *vmx = to_vmx(vcpu);
3404 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3405 enum vm_entry_failure_code entry_failure_code;
3406 bool evaluate_pending_interrupts;
3407 union vmx_exit_reason exit_reason = {
3408 .basic = EXIT_REASON_INVALID_STATE,
3409 .failed_vmentry = 1,
3410 };
3411 u32 failed_index;
3412
3413 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3414 vmx->nested.current_vmptr,
3415 vmcs12->guest_rip,
3416 vmcs12->guest_intr_status,
3417 vmcs12->vm_entry_intr_info_field,
3418 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3419 vmcs12->ept_pointer,
3420 vmcs12->guest_cr3,
3421 KVM_ISA_VMX);
3422
3423 kvm_service_local_tlb_flush_requests(vcpu);
3424
3425 evaluate_pending_interrupts = exec_controls_get(vmx) &
3426 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3427 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3428 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3429 if (!evaluate_pending_interrupts)
3430 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3431
3432 if (!vmx->nested.nested_run_pending ||
3433 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3434 vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3435 if (kvm_mpx_supported() &&
3436 (!vmx->nested.nested_run_pending ||
3437 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3438 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3439
3440 /*
3441 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3442 * nested early checks are disabled. In the event of a "late" VM-Fail,
3443 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3444 * software model to the pre-VMEntry host state. When EPT is disabled,
3445 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3446 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3447 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3448 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3449 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3450 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3451 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3452 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3453 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3454 * path would need to manually save/restore vmcs01.GUEST_CR3.
3455 */
3456 if (!enable_ept && !nested_early_check)
3457 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3458
3459 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3460
3461 prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3462
3463 if (from_vmentry) {
3464 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3465 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3466 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3467 }
3468
3469 if (nested_vmx_check_vmentry_hw(vcpu)) {
3470 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3471 return NVMX_VMENTRY_VMFAIL;
3472 }
3473
3474 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3475 &entry_failure_code)) {
3476 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3477 vmcs12->exit_qualification = entry_failure_code;
3478 goto vmentry_fail_vmexit;
3479 }
3480 }
3481
3482 enter_guest_mode(vcpu);
3483
3484 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3485 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3486 vmcs12->exit_qualification = entry_failure_code;
3487 goto vmentry_fail_vmexit_guest_mode;
3488 }
3489
3490 if (from_vmentry) {
3491 failed_index = nested_vmx_load_msr(vcpu,
3492 vmcs12->vm_entry_msr_load_addr,
3493 vmcs12->vm_entry_msr_load_count);
3494 if (failed_index) {
3495 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3496 vmcs12->exit_qualification = failed_index;
3497 goto vmentry_fail_vmexit_guest_mode;
3498 }
3499 } else {
3500 /*
3501 * The MMU is not initialized to point at the right entities yet and
3502 * "get pages" would need to read data from the guest (i.e. we will
3503 * need to perform gpa to hpa translation). Request a call
3504 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3505 * have already been set at vmentry time and should not be reset.
3506 */
3507 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3508 }
3509
3510 /*
3511 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3512 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3513 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3514 * unconditionally.
3515 */
3516 if (unlikely(evaluate_pending_interrupts))
3517 kvm_make_request(KVM_REQ_EVENT, vcpu);
3518
3519 /*
3520 * Do not start the preemption timer hrtimer until after we know
3521 * we are successful, so that only nested_vmx_vmexit needs to cancel
3522 * the timer.
3523 */
3524 vmx->nested.preemption_timer_expired = false;
3525 if (nested_cpu_has_preemption_timer(vmcs12)) {
3526 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3527 vmx_start_preemption_timer(vcpu, timer_value);
3528 }
3529
3530 /*
3531 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3532 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3533 * returned as far as L1 is concerned. It will only return (and set
3534 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3535 */
3536 return NVMX_VMENTRY_SUCCESS;
3537
3538 /*
3539 * A failed consistency check that leads to a VMExit during L1's
3540 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3541 * 26.7 "VM-entry failures during or after loading guest state".
3542 */
3543 vmentry_fail_vmexit_guest_mode:
3544 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3545 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3546 leave_guest_mode(vcpu);
3547
3548 vmentry_fail_vmexit:
3549 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3550
3551 if (!from_vmentry)
3552 return NVMX_VMENTRY_VMEXIT;
3553
3554 load_vmcs12_host_state(vcpu, vmcs12);
3555 vmcs12->vm_exit_reason = exit_reason.full;
3556 if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3557 vmx->nested.need_vmcs12_to_shadow_sync = true;
3558 return NVMX_VMENTRY_VMEXIT;
3559 }
3560
3561 /*
3562 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3563 * for running an L2 nested guest.
3564 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3565 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3566 {
3567 struct vmcs12 *vmcs12;
3568 enum nvmx_vmentry_status status;
3569 struct vcpu_vmx *vmx = to_vmx(vcpu);
3570 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3571 enum nested_evmptrld_status evmptrld_status;
3572
3573 if (!nested_vmx_check_permission(vcpu))
3574 return 1;
3575
3576 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3577 if (evmptrld_status == EVMPTRLD_ERROR) {
3578 kvm_queue_exception(vcpu, UD_VECTOR);
3579 return 1;
3580 }
3581
3582 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3583
3584 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3585 return nested_vmx_failInvalid(vcpu);
3586
3587 if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3588 vmx->nested.current_vmptr == INVALID_GPA))
3589 return nested_vmx_failInvalid(vcpu);
3590
3591 vmcs12 = get_vmcs12(vcpu);
3592
3593 /*
3594 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3595 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3596 * rather than RFLAGS.ZF, and no error number is stored to the
3597 * VM-instruction error field.
3598 */
3599 if (CC(vmcs12->hdr.shadow_vmcs))
3600 return nested_vmx_failInvalid(vcpu);
3601
3602 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3603 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3604 /* Enlightened VMCS doesn't have launch state */
3605 vmcs12->launch_state = !launch;
3606 } else if (enable_shadow_vmcs) {
3607 copy_shadow_to_vmcs12(vmx);
3608 }
3609
3610 /*
3611 * The nested entry process starts with enforcing various prerequisites
3612 * on vmcs12 as required by the Intel SDM, and act appropriately when
3613 * they fail: As the SDM explains, some conditions should cause the
3614 * instruction to fail, while others will cause the instruction to seem
3615 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3616 * To speed up the normal (success) code path, we should avoid checking
3617 * for misconfigurations which will anyway be caught by the processor
3618 * when using the merged vmcs02.
3619 */
3620 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3621 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3622
3623 if (CC(vmcs12->launch_state == launch))
3624 return nested_vmx_fail(vcpu,
3625 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3626 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3627
3628 if (nested_vmx_check_controls(vcpu, vmcs12))
3629 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3630
3631 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3632 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3633
3634 if (nested_vmx_check_host_state(vcpu, vmcs12))
3635 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3636
3637 /*
3638 * We're finally done with prerequisite checking, and can start with
3639 * the nested entry.
3640 */
3641 vmx->nested.nested_run_pending = 1;
3642 vmx->nested.has_preemption_timer_deadline = false;
3643 status = nested_vmx_enter_non_root_mode(vcpu, true);
3644 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3645 goto vmentry_failed;
3646
3647 /* Emulate processing of posted interrupts on VM-Enter. */
3648 if (nested_cpu_has_posted_intr(vmcs12) &&
3649 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3650 vmx->nested.pi_pending = true;
3651 kvm_make_request(KVM_REQ_EVENT, vcpu);
3652 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3653 }
3654
3655 /* Hide L1D cache contents from the nested guest. */
3656 vmx->vcpu.arch.l1tf_flush_l1d = true;
3657
3658 /*
3659 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3660 * also be used as part of restoring nVMX state for
3661 * snapshot restore (migration).
3662 *
3663 * In this flow, it is assumed that vmcs12 cache was
3664 * transferred as part of captured nVMX state and should
3665 * therefore not be read from guest memory (which may not
3666 * exist on destination host yet).
3667 */
3668 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3669
3670 switch (vmcs12->guest_activity_state) {
3671 case GUEST_ACTIVITY_HLT:
3672 /*
3673 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3674 * awakened by event injection or by an NMI-window VM-exit or
3675 * by an interrupt-window VM-exit, halt the vcpu.
3676 */
3677 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3678 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3679 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3680 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3681 vmx->nested.nested_run_pending = 0;
3682 return kvm_emulate_halt_noskip(vcpu);
3683 }
3684 break;
3685 case GUEST_ACTIVITY_WAIT_SIPI:
3686 vmx->nested.nested_run_pending = 0;
3687 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3688 break;
3689 default:
3690 break;
3691 }
3692
3693 return 1;
3694
3695 vmentry_failed:
3696 vmx->nested.nested_run_pending = 0;
3697 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3698 return 0;
3699 if (status == NVMX_VMENTRY_VMEXIT)
3700 return 1;
3701 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3702 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3703 }
3704
3705 /*
3706 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3707 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3708 * This function returns the new value we should put in vmcs12.guest_cr0.
3709 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3710 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3711 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3712 * didn't trap the bit, because if L1 did, so would L0).
3713 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3714 * been modified by L2, and L1 knows it. So just leave the old value of
3715 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3716 * isn't relevant, because if L0 traps this bit it can set it to anything.
3717 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3718 * changed these bits, and therefore they need to be updated, but L0
3719 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3720 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3721 */
3722 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3723 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3724 {
3725 return
3726 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3727 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3728 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3729 vcpu->arch.cr0_guest_owned_bits));
3730 }
3731
3732 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3733 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3734 {
3735 return
3736 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3737 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3738 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3739 vcpu->arch.cr4_guest_owned_bits));
3740 }
3741
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3742 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3743 struct vmcs12 *vmcs12,
3744 u32 vm_exit_reason, u32 exit_intr_info)
3745 {
3746 u32 idt_vectoring;
3747 unsigned int nr;
3748
3749 /*
3750 * Per the SDM, VM-Exits due to double and triple faults are never
3751 * considered to occur during event delivery, even if the double/triple
3752 * fault is the result of an escalating vectoring issue.
3753 *
3754 * Note, the SDM qualifies the double fault behavior with "The original
3755 * event results in a double-fault exception". It's unclear why the
3756 * qualification exists since exits due to double fault can occur only
3757 * while vectoring a different exception (injected events are never
3758 * subject to interception), i.e. there's _always_ an original event.
3759 *
3760 * The SDM also uses NMI as a confusing example for the "original event
3761 * causes the VM exit directly" clause. NMI isn't special in any way,
3762 * the same rule applies to all events that cause an exit directly.
3763 * NMI is an odd choice for the example because NMIs can only occur on
3764 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3765 */
3766 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3767 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3768 is_double_fault(exit_intr_info))) {
3769 vmcs12->idt_vectoring_info_field = 0;
3770 } else if (vcpu->arch.exception.injected) {
3771 nr = vcpu->arch.exception.vector;
3772 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3773
3774 if (kvm_exception_is_soft(nr)) {
3775 vmcs12->vm_exit_instruction_len =
3776 vcpu->arch.event_exit_inst_len;
3777 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3778 } else
3779 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3780
3781 if (vcpu->arch.exception.has_error_code) {
3782 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3783 vmcs12->idt_vectoring_error_code =
3784 vcpu->arch.exception.error_code;
3785 }
3786
3787 vmcs12->idt_vectoring_info_field = idt_vectoring;
3788 } else if (vcpu->arch.nmi_injected) {
3789 vmcs12->idt_vectoring_info_field =
3790 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3791 } else if (vcpu->arch.interrupt.injected) {
3792 nr = vcpu->arch.interrupt.nr;
3793 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3794
3795 if (vcpu->arch.interrupt.soft) {
3796 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3797 vmcs12->vm_entry_instruction_len =
3798 vcpu->arch.event_exit_inst_len;
3799 } else
3800 idt_vectoring |= INTR_TYPE_EXT_INTR;
3801
3802 vmcs12->idt_vectoring_info_field = idt_vectoring;
3803 } else {
3804 vmcs12->idt_vectoring_info_field = 0;
3805 }
3806 }
3807
3808
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3809 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3810 {
3811 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3812 gfn_t gfn;
3813
3814 /*
3815 * Don't need to mark the APIC access page dirty; it is never
3816 * written to by the CPU during APIC virtualization.
3817 */
3818
3819 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3820 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3821 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3822 }
3823
3824 if (nested_cpu_has_posted_intr(vmcs12)) {
3825 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3826 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3827 }
3828 }
3829
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3830 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3831 {
3832 struct vcpu_vmx *vmx = to_vmx(vcpu);
3833 int max_irr;
3834 void *vapic_page;
3835 u16 status;
3836
3837 if (!vmx->nested.pi_pending)
3838 return 0;
3839
3840 if (!vmx->nested.pi_desc)
3841 goto mmio_needed;
3842
3843 vmx->nested.pi_pending = false;
3844
3845 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3846 return 0;
3847
3848 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3849 if (max_irr > 0) {
3850 vapic_page = vmx->nested.virtual_apic_map.hva;
3851 if (!vapic_page)
3852 goto mmio_needed;
3853
3854 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3855 vapic_page, &max_irr);
3856 status = vmcs_read16(GUEST_INTR_STATUS);
3857 if ((u8)max_irr > ((u8)status & 0xff)) {
3858 status &= ~0xff;
3859 status |= (u8)max_irr;
3860 vmcs_write16(GUEST_INTR_STATUS, status);
3861 }
3862 }
3863
3864 nested_mark_vmcs12_pages_dirty(vcpu);
3865 return 0;
3866
3867 mmio_needed:
3868 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3869 return -ENXIO;
3870 }
3871
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3872 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3873 {
3874 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3875 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3876 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3877 unsigned long exit_qual;
3878
3879 if (ex->has_payload) {
3880 exit_qual = ex->payload;
3881 } else if (ex->vector == PF_VECTOR) {
3882 exit_qual = vcpu->arch.cr2;
3883 } else if (ex->vector == DB_VECTOR) {
3884 exit_qual = vcpu->arch.dr6;
3885 exit_qual &= ~DR6_BT;
3886 exit_qual ^= DR6_ACTIVE_LOW;
3887 } else {
3888 exit_qual = 0;
3889 }
3890
3891 /*
3892 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3893 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3894 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3895 */
3896 if (ex->has_error_code && is_protmode(vcpu)) {
3897 /*
3898 * Intel CPUs do not generate error codes with bits 31:16 set,
3899 * and more importantly VMX disallows setting bits 31:16 in the
3900 * injected error code for VM-Entry. Drop the bits to mimic
3901 * hardware and avoid inducing failure on nested VM-Entry if L1
3902 * chooses to inject the exception back to L2. AMD CPUs _do_
3903 * generate "full" 32-bit error codes, so KVM allows userspace
3904 * to inject exception error codes with bits 31:16 set.
3905 */
3906 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3907 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3908 }
3909
3910 if (kvm_exception_is_soft(ex->vector))
3911 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3912 else
3913 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3914
3915 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3916 vmx_get_nmi_mask(vcpu))
3917 intr_info |= INTR_INFO_UNBLOCK_NMI;
3918
3919 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3920 }
3921
3922 /*
3923 * Returns true if a debug trap is (likely) pending delivery. Infer the class
3924 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3925 * Using the payload is flawed because code breakpoints (fault-like) and data
3926 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3927 * this will return false positives if a to-be-injected code breakpoint #DB is
3928 * pending (from KVM's perspective, but not "pending" across an instruction
3929 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
3930 * too is trap-like.
3931 *
3932 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3933 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3934 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3935 * from the emulator (because such #DBs are fault-like and thus don't trigger
3936 * actions that fire on instruction retire).
3937 */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)3938 static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3939 {
3940 if (!ex->pending || ex->vector != DB_VECTOR)
3941 return 0;
3942
3943 /* General Detect #DBs are always fault-like. */
3944 return ex->payload & ~DR6_BD;
3945 }
3946
3947 /*
3948 * Returns true if there's a pending #DB exception that is lower priority than
3949 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
3950 * KVM, but could theoretically be injected by userspace. Note, this code is
3951 * imperfect, see above.
3952 */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)3953 static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3954 {
3955 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3956 }
3957
3958 /*
3959 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3960 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3961 * represents these debug traps with a payload that is said to be compatible
3962 * with the 'pending debug exceptions' field, write the payload to the VMCS
3963 * field if a VM-exit is delivered before the debug trap.
3964 */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3965 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3966 {
3967 unsigned long pending_dbg;
3968
3969 pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
3970 if (pending_dbg)
3971 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
3972 }
3973
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3974 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3975 {
3976 return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3977 to_vmx(vcpu)->nested.preemption_timer_expired;
3978 }
3979
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)3980 static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
3981 {
3982 struct vcpu_vmx *vmx = to_vmx(vcpu);
3983 void *vapic = vmx->nested.virtual_apic_map.hva;
3984 int max_irr, vppr;
3985
3986 if (nested_vmx_preemption_timer_pending(vcpu) ||
3987 vmx->nested.mtf_pending)
3988 return true;
3989
3990 /*
3991 * Virtual Interrupt Delivery doesn't require manual injection. Either
3992 * the interrupt is already in GUEST_RVI and will be recognized by CPU
3993 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
3994 * the interrupt from the PIR to RVI prior to entering the guest.
3995 */
3996 if (for_injection)
3997 return false;
3998
3999 if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4000 __vmx_interrupt_blocked(vcpu))
4001 return false;
4002
4003 if (!vapic)
4004 return false;
4005
4006 vppr = *((u32 *)(vapic + APIC_PROCPRI));
4007
4008 if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4009 pi_test_on(vmx->nested.pi_desc)) {
4010 max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4011 if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4012 return true;
4013 }
4014
4015 return false;
4016 }
4017
4018 /*
4019 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4020 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4021 * and less minor edits to splice in the priority of VMX Non-Root specific
4022 * events, e.g. MTF and NMI/INTR-window exiting.
4023 *
4024 * 1 Hardware Reset and Machine Checks
4025 * - RESET
4026 * - Machine Check
4027 *
4028 * 2 Trap on Task Switch
4029 * - T flag in TSS is set (on task switch)
4030 *
4031 * 3 External Hardware Interventions
4032 * - FLUSH
4033 * - STOPCLK
4034 * - SMI
4035 * - INIT
4036 *
4037 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4038 *
4039 * 4 Traps on Previous Instruction
4040 * - Breakpoints
4041 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4042 * breakpoint, or #DB due to a split-lock access)
4043 *
4044 * 4.3 VMX-preemption timer expired VM-exit
4045 *
4046 * 4.6 NMI-window exiting VM-exit[2]
4047 *
4048 * 5 Nonmaskable Interrupts (NMI)
4049 *
4050 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4051 *
4052 * 6 Maskable Hardware Interrupts
4053 *
4054 * 7 Code Breakpoint Fault
4055 *
4056 * 8 Faults from Fetching Next Instruction
4057 * - Code-Segment Limit Violation
4058 * - Code Page Fault
4059 * - Control protection exception (missing ENDBRANCH at target of indirect
4060 * call or jump)
4061 *
4062 * 9 Faults from Decoding Next Instruction
4063 * - Instruction length > 15 bytes
4064 * - Invalid Opcode
4065 * - Coprocessor Not Available
4066 *
4067 *10 Faults on Executing Instruction
4068 * - Overflow
4069 * - Bound error
4070 * - Invalid TSS
4071 * - Segment Not Present
4072 * - Stack fault
4073 * - General Protection
4074 * - Data Page Fault
4075 * - Alignment Check
4076 * - x86 FPU Floating-point exception
4077 * - SIMD floating-point exception
4078 * - Virtualization exception
4079 * - Control protection exception
4080 *
4081 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4082 * INIT signals, and higher priority events take priority over MTF VM exits.
4083 * MTF VM exits take priority over debug-trap exceptions and lower priority
4084 * events.
4085 *
4086 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4087 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4088 * timer take priority over VM exits caused by the "NMI-window exiting"
4089 * VM-execution control and lower priority events.
4090 *
4091 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4092 * caused by "NMI-window exiting". VM exits caused by this control take
4093 * priority over non-maskable interrupts (NMIs) and lower priority events.
4094 *
4095 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4096 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4097 * non-maskable interrupts (NMIs) and higher priority events take priority over
4098 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4099 * priority over external interrupts and lower priority events.
4100 */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4101 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4102 {
4103 struct kvm_lapic *apic = vcpu->arch.apic;
4104 struct vcpu_vmx *vmx = to_vmx(vcpu);
4105 /*
4106 * Only a pending nested run blocks a pending exception. If there is a
4107 * previously injected event, the pending exception occurred while said
4108 * event was being delivered and thus needs to be handled.
4109 */
4110 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4111 /*
4112 * New events (not exceptions) are only recognized at instruction
4113 * boundaries. If an event needs reinjection, then KVM is handling a
4114 * VM-Exit that occurred _during_ instruction execution; new events are
4115 * blocked until the instruction completes.
4116 */
4117 bool block_nested_events = block_nested_exceptions ||
4118 kvm_event_needs_reinjection(vcpu);
4119
4120 if (lapic_in_kernel(vcpu) &&
4121 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4122 if (block_nested_events)
4123 return -EBUSY;
4124 nested_vmx_update_pending_dbg(vcpu);
4125 clear_bit(KVM_APIC_INIT, &apic->pending_events);
4126 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4127 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4128
4129 /* MTF is discarded if the vCPU is in WFS. */
4130 vmx->nested.mtf_pending = false;
4131 return 0;
4132 }
4133
4134 if (lapic_in_kernel(vcpu) &&
4135 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4136 if (block_nested_events)
4137 return -EBUSY;
4138
4139 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4140 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4141 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4142 apic->sipi_vector & 0xFFUL);
4143 return 0;
4144 }
4145 /* Fallthrough, the SIPI is completely ignored. */
4146 }
4147
4148 /*
4149 * Process exceptions that are higher priority than Monitor Trap Flag:
4150 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4151 * could theoretically come in from userspace), and ICEBP (INT1).
4152 *
4153 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4154 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4155 * across SMI/RSM as it should; that needs to be addressed in order to
4156 * prioritize SMI over MTF and trap-like #DBs.
4157 */
4158 if (vcpu->arch.exception_vmexit.pending &&
4159 !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4160 if (block_nested_exceptions)
4161 return -EBUSY;
4162
4163 nested_vmx_inject_exception_vmexit(vcpu);
4164 return 0;
4165 }
4166
4167 if (vcpu->arch.exception.pending &&
4168 !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4169 if (block_nested_exceptions)
4170 return -EBUSY;
4171 goto no_vmexit;
4172 }
4173
4174 if (vmx->nested.mtf_pending) {
4175 if (block_nested_events)
4176 return -EBUSY;
4177 nested_vmx_update_pending_dbg(vcpu);
4178 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4179 return 0;
4180 }
4181
4182 if (vcpu->arch.exception_vmexit.pending) {
4183 if (block_nested_exceptions)
4184 return -EBUSY;
4185
4186 nested_vmx_inject_exception_vmexit(vcpu);
4187 return 0;
4188 }
4189
4190 if (vcpu->arch.exception.pending) {
4191 if (block_nested_exceptions)
4192 return -EBUSY;
4193 goto no_vmexit;
4194 }
4195
4196 if (nested_vmx_preemption_timer_pending(vcpu)) {
4197 if (block_nested_events)
4198 return -EBUSY;
4199 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4200 return 0;
4201 }
4202
4203 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4204 if (block_nested_events)
4205 return -EBUSY;
4206 goto no_vmexit;
4207 }
4208
4209 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4210 if (block_nested_events)
4211 return -EBUSY;
4212 if (!nested_exit_on_nmi(vcpu))
4213 goto no_vmexit;
4214
4215 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4216 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4217 INTR_INFO_VALID_MASK, 0);
4218 /*
4219 * The NMI-triggered VM exit counts as injection:
4220 * clear this one and block further NMIs.
4221 */
4222 vcpu->arch.nmi_pending = 0;
4223 vmx_set_nmi_mask(vcpu, true);
4224 return 0;
4225 }
4226
4227 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4228 if (block_nested_events)
4229 return -EBUSY;
4230 if (!nested_exit_on_intr(vcpu))
4231 goto no_vmexit;
4232 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4233 return 0;
4234 }
4235
4236 no_vmexit:
4237 return vmx_complete_nested_posted_interrupt(vcpu);
4238 }
4239
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4240 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4241 {
4242 ktime_t remaining =
4243 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4244 u64 value;
4245
4246 if (ktime_to_ns(remaining) <= 0)
4247 return 0;
4248
4249 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4250 do_div(value, 1000000);
4251 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4252 }
4253
is_vmcs12_ext_field(unsigned long field)4254 static bool is_vmcs12_ext_field(unsigned long field)
4255 {
4256 switch (field) {
4257 case GUEST_ES_SELECTOR:
4258 case GUEST_CS_SELECTOR:
4259 case GUEST_SS_SELECTOR:
4260 case GUEST_DS_SELECTOR:
4261 case GUEST_FS_SELECTOR:
4262 case GUEST_GS_SELECTOR:
4263 case GUEST_LDTR_SELECTOR:
4264 case GUEST_TR_SELECTOR:
4265 case GUEST_ES_LIMIT:
4266 case GUEST_CS_LIMIT:
4267 case GUEST_SS_LIMIT:
4268 case GUEST_DS_LIMIT:
4269 case GUEST_FS_LIMIT:
4270 case GUEST_GS_LIMIT:
4271 case GUEST_LDTR_LIMIT:
4272 case GUEST_TR_LIMIT:
4273 case GUEST_GDTR_LIMIT:
4274 case GUEST_IDTR_LIMIT:
4275 case GUEST_ES_AR_BYTES:
4276 case GUEST_DS_AR_BYTES:
4277 case GUEST_FS_AR_BYTES:
4278 case GUEST_GS_AR_BYTES:
4279 case GUEST_LDTR_AR_BYTES:
4280 case GUEST_TR_AR_BYTES:
4281 case GUEST_ES_BASE:
4282 case GUEST_CS_BASE:
4283 case GUEST_SS_BASE:
4284 case GUEST_DS_BASE:
4285 case GUEST_FS_BASE:
4286 case GUEST_GS_BASE:
4287 case GUEST_LDTR_BASE:
4288 case GUEST_TR_BASE:
4289 case GUEST_GDTR_BASE:
4290 case GUEST_IDTR_BASE:
4291 case GUEST_PENDING_DBG_EXCEPTIONS:
4292 case GUEST_BNDCFGS:
4293 return true;
4294 default:
4295 break;
4296 }
4297
4298 return false;
4299 }
4300
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4301 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4302 struct vmcs12 *vmcs12)
4303 {
4304 struct vcpu_vmx *vmx = to_vmx(vcpu);
4305
4306 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4307 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4308 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4309 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4310 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4311 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4312 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4313 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4314 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4315 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4316 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4317 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4318 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4319 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4320 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4321 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4322 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4323 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4324 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4325 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4326 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4327 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4328 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4329 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4330 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4331 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4332 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4333 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4334 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4335 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4336 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4337 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4338 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4339 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4340 vmcs12->guest_pending_dbg_exceptions =
4341 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4342
4343 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4344 }
4345
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4346 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4347 struct vmcs12 *vmcs12)
4348 {
4349 struct vcpu_vmx *vmx = to_vmx(vcpu);
4350 int cpu;
4351
4352 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4353 return;
4354
4355
4356 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4357
4358 cpu = get_cpu();
4359 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4360 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4361
4362 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4363
4364 vmx->loaded_vmcs = &vmx->vmcs01;
4365 vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4366 put_cpu();
4367 }
4368
4369 /*
4370 * Update the guest state fields of vmcs12 to reflect changes that
4371 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4372 * VM-entry controls is also updated, since this is really a guest
4373 * state bit.)
4374 */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4375 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4376 {
4377 struct vcpu_vmx *vmx = to_vmx(vcpu);
4378
4379 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4380 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4381
4382 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4383 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4384
4385 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4386 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4387
4388 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4389 vmcs12->guest_rip = kvm_rip_read(vcpu);
4390 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4391
4392 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4393 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4394
4395 vmcs12->guest_interruptibility_info =
4396 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4397
4398 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4399 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4400 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4401 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4402 else
4403 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4404
4405 if (nested_cpu_has_preemption_timer(vmcs12) &&
4406 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4407 !vmx->nested.nested_run_pending)
4408 vmcs12->vmx_preemption_timer_value =
4409 vmx_get_preemption_timer_value(vcpu);
4410
4411 /*
4412 * In some cases (usually, nested EPT), L2 is allowed to change its
4413 * own CR3 without exiting. If it has changed it, we must keep it.
4414 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4415 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4416 *
4417 * Additionally, restore L2's PDPTR to vmcs12.
4418 */
4419 if (enable_ept) {
4420 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4421 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4422 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4423 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4424 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4425 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4426 }
4427 }
4428
4429 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4430
4431 if (nested_cpu_has_vid(vmcs12))
4432 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4433
4434 vmcs12->vm_entry_controls =
4435 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4436 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4437
4438 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4439 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4440
4441 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4442 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4443 }
4444
4445 /*
4446 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4447 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4448 * and this function updates it to reflect the changes to the guest state while
4449 * L2 was running (and perhaps made some exits which were handled directly by L0
4450 * without going back to L1), and to reflect the exit reason.
4451 * Note that we do not have to copy here all VMCS fields, just those that
4452 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4453 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4454 * which already writes to vmcs12 directly.
4455 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4456 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4457 u32 vm_exit_reason, u32 exit_intr_info,
4458 unsigned long exit_qualification)
4459 {
4460 /* update exit information fields: */
4461 vmcs12->vm_exit_reason = vm_exit_reason;
4462 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4463 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4464 vmcs12->exit_qualification = exit_qualification;
4465
4466 /*
4467 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4468 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4469 * exit info fields are unmodified.
4470 */
4471 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4472 vmcs12->launch_state = 1;
4473
4474 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4475 * instead of reading the real value. */
4476 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4477
4478 /*
4479 * Transfer the event that L0 or L1 may wanted to inject into
4480 * L2 to IDT_VECTORING_INFO_FIELD.
4481 */
4482 vmcs12_save_pending_event(vcpu, vmcs12,
4483 vm_exit_reason, exit_intr_info);
4484
4485 vmcs12->vm_exit_intr_info = exit_intr_info;
4486 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4487 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4488
4489 /*
4490 * According to spec, there's no need to store the guest's
4491 * MSRs if the exit is due to a VM-entry failure that occurs
4492 * during or after loading the guest state. Since this exit
4493 * does not fall in that category, we need to save the MSRs.
4494 */
4495 if (nested_vmx_store_msr(vcpu,
4496 vmcs12->vm_exit_msr_store_addr,
4497 vmcs12->vm_exit_msr_store_count))
4498 nested_vmx_abort(vcpu,
4499 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4500 }
4501 }
4502
4503 /*
4504 * A part of what we need to when the nested L2 guest exits and we want to
4505 * run its L1 parent, is to reset L1's guest state to the host state specified
4506 * in vmcs12.
4507 * This function is to be called not only on normal nested exit, but also on
4508 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4509 * Failures During or After Loading Guest State").
4510 * This function should be called when the active VMCS is L1's (vmcs01).
4511 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4512 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4513 struct vmcs12 *vmcs12)
4514 {
4515 enum vm_entry_failure_code ignored;
4516 struct kvm_segment seg;
4517
4518 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4519 vcpu->arch.efer = vmcs12->host_ia32_efer;
4520 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4521 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4522 else
4523 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4524 vmx_set_efer(vcpu, vcpu->arch.efer);
4525
4526 kvm_rsp_write(vcpu, vmcs12->host_rsp);
4527 kvm_rip_write(vcpu, vmcs12->host_rip);
4528 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4529 vmx_set_interrupt_shadow(vcpu, 0);
4530
4531 /*
4532 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4533 * actually changed, because vmx_set_cr0 refers to efer set above.
4534 *
4535 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4536 * (KVM doesn't change it);
4537 */
4538 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4539 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4540
4541 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4542 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4543 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4544
4545 nested_ept_uninit_mmu_context(vcpu);
4546
4547 /*
4548 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4549 * couldn't have changed.
4550 */
4551 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4552 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4553
4554 nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4555
4556 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4557 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4558 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4559 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4560 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4561 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4562 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4563
4564 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4565 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4566 vmcs_write64(GUEST_BNDCFGS, 0);
4567
4568 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4569 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4570 vcpu->arch.pat = vmcs12->host_ia32_pat;
4571 }
4572 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4573 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4574 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4575 vmcs12->host_ia32_perf_global_ctrl));
4576
4577 /* Set L1 segment info according to Intel SDM
4578 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4579 seg = (struct kvm_segment) {
4580 .base = 0,
4581 .limit = 0xFFFFFFFF,
4582 .selector = vmcs12->host_cs_selector,
4583 .type = 11,
4584 .present = 1,
4585 .s = 1,
4586 .g = 1
4587 };
4588 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4589 seg.l = 1;
4590 else
4591 seg.db = 1;
4592 __vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4593 seg = (struct kvm_segment) {
4594 .base = 0,
4595 .limit = 0xFFFFFFFF,
4596 .type = 3,
4597 .present = 1,
4598 .s = 1,
4599 .db = 1,
4600 .g = 1
4601 };
4602 seg.selector = vmcs12->host_ds_selector;
4603 __vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4604 seg.selector = vmcs12->host_es_selector;
4605 __vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4606 seg.selector = vmcs12->host_ss_selector;
4607 __vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4608 seg.selector = vmcs12->host_fs_selector;
4609 seg.base = vmcs12->host_fs_base;
4610 __vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4611 seg.selector = vmcs12->host_gs_selector;
4612 seg.base = vmcs12->host_gs_base;
4613 __vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4614 seg = (struct kvm_segment) {
4615 .base = vmcs12->host_tr_base,
4616 .limit = 0x67,
4617 .selector = vmcs12->host_tr_selector,
4618 .type = 11,
4619 .present = 1
4620 };
4621 __vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4622
4623 memset(&seg, 0, sizeof(seg));
4624 seg.unusable = 1;
4625 __vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4626
4627 kvm_set_dr(vcpu, 7, 0x400);
4628 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4629
4630 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4631 vmcs12->vm_exit_msr_load_count))
4632 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4633
4634 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4635 }
4636
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4637 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4638 {
4639 struct vmx_uret_msr *efer_msr;
4640 unsigned int i;
4641
4642 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4643 return vmcs_read64(GUEST_IA32_EFER);
4644
4645 if (cpu_has_load_ia32_efer())
4646 return host_efer;
4647
4648 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4649 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4650 return vmx->msr_autoload.guest.val[i].value;
4651 }
4652
4653 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4654 if (efer_msr)
4655 return efer_msr->data;
4656
4657 return host_efer;
4658 }
4659
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4660 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4661 {
4662 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4663 struct vcpu_vmx *vmx = to_vmx(vcpu);
4664 struct vmx_msr_entry g, h;
4665 gpa_t gpa;
4666 u32 i, j;
4667
4668 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4669
4670 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4671 /*
4672 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4673 * as vmcs01.GUEST_DR7 contains a userspace defined value
4674 * and vcpu->arch.dr7 is not squirreled away before the
4675 * nested VMENTER (not worth adding a variable in nested_vmx).
4676 */
4677 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4678 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4679 else
4680 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4681 }
4682
4683 /*
4684 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4685 * handle a variety of side effects to KVM's software model.
4686 */
4687 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4688
4689 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4690 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4691
4692 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4693 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4694
4695 nested_ept_uninit_mmu_context(vcpu);
4696 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4697 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4698
4699 /*
4700 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4701 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4702 * VMFail, like everything else we just need to ensure our
4703 * software model is up-to-date.
4704 */
4705 if (enable_ept && is_pae_paging(vcpu))
4706 ept_save_pdptrs(vcpu);
4707
4708 kvm_mmu_reset_context(vcpu);
4709
4710 /*
4711 * This nasty bit of open coding is a compromise between blindly
4712 * loading L1's MSRs using the exit load lists (incorrect emulation
4713 * of VMFail), leaving the nested VM's MSRs in the software model
4714 * (incorrect behavior) and snapshotting the modified MSRs (too
4715 * expensive since the lists are unbound by hardware). For each
4716 * MSR that was (prematurely) loaded from the nested VMEntry load
4717 * list, reload it from the exit load list if it exists and differs
4718 * from the guest value. The intent is to stuff host state as
4719 * silently as possible, not to fully process the exit load list.
4720 */
4721 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4722 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4723 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4724 pr_debug_ratelimited(
4725 "%s read MSR index failed (%u, 0x%08llx)\n",
4726 __func__, i, gpa);
4727 goto vmabort;
4728 }
4729
4730 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4731 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4732 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4733 pr_debug_ratelimited(
4734 "%s read MSR failed (%u, 0x%08llx)\n",
4735 __func__, j, gpa);
4736 goto vmabort;
4737 }
4738 if (h.index != g.index)
4739 continue;
4740 if (h.value == g.value)
4741 break;
4742
4743 if (nested_vmx_load_msr_check(vcpu, &h)) {
4744 pr_debug_ratelimited(
4745 "%s check failed (%u, 0x%x, 0x%x)\n",
4746 __func__, j, h.index, h.reserved);
4747 goto vmabort;
4748 }
4749
4750 if (kvm_set_msr(vcpu, h.index, h.value)) {
4751 pr_debug_ratelimited(
4752 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4753 __func__, j, h.index, h.value);
4754 goto vmabort;
4755 }
4756 }
4757 }
4758
4759 return;
4760
4761 vmabort:
4762 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4763 }
4764
4765 /*
4766 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4767 * and modify vmcs12 to make it see what it would expect to see there if
4768 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4769 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4770 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4771 u32 exit_intr_info, unsigned long exit_qualification)
4772 {
4773 struct vcpu_vmx *vmx = to_vmx(vcpu);
4774 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4775
4776 /* Pending MTF traps are discarded on VM-Exit. */
4777 vmx->nested.mtf_pending = false;
4778
4779 /* trying to cancel vmlaunch/vmresume is a bug */
4780 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4781
4782 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4783 /*
4784 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4785 * Enlightened VMCS after migration and we still need to
4786 * do that when something is forcing L2->L1 exit prior to
4787 * the first L2 run.
4788 */
4789 (void)nested_get_evmcs_page(vcpu);
4790 }
4791
4792 /* Service pending TLB flush requests for L2 before switching to L1. */
4793 kvm_service_local_tlb_flush_requests(vcpu);
4794
4795 /*
4796 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4797 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4798 * up-to-date before switching to L1.
4799 */
4800 if (enable_ept && is_pae_paging(vcpu))
4801 vmx_ept_load_pdptrs(vcpu);
4802
4803 leave_guest_mode(vcpu);
4804
4805 if (nested_cpu_has_preemption_timer(vmcs12))
4806 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4807
4808 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4809 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4810 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4811 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4812 }
4813
4814 if (likely(!vmx->fail)) {
4815 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4816
4817 if (vm_exit_reason != -1)
4818 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4819 exit_intr_info, exit_qualification);
4820
4821 /*
4822 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4823 * also be used to capture vmcs12 cache as part of
4824 * capturing nVMX state for snapshot (migration).
4825 *
4826 * Otherwise, this flush will dirty guest memory at a
4827 * point it is already assumed by user-space to be
4828 * immutable.
4829 */
4830 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4831 } else {
4832 /*
4833 * The only expected VM-instruction error is "VM entry with
4834 * invalid control field(s)." Anything else indicates a
4835 * problem with L0. And we should never get here with a
4836 * VMFail of any type if early consistency checks are enabled.
4837 */
4838 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4839 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4840 WARN_ON_ONCE(nested_early_check);
4841 }
4842
4843 /*
4844 * Drop events/exceptions that were queued for re-injection to L2
4845 * (picked up via vmx_complete_interrupts()), as well as exceptions
4846 * that were pending for L2. Note, this must NOT be hoisted above
4847 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4848 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4849 */
4850 vcpu->arch.nmi_injected = false;
4851 kvm_clear_exception_queue(vcpu);
4852 kvm_clear_interrupt_queue(vcpu);
4853
4854 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4855
4856 /*
4857 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4858 * branch predictors when transitioning from L2 to L1, as L1 expects
4859 * hardware (KVM in this case) to provide separate predictor modes.
4860 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4861 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4862 * separate modes for L2 vs L1.
4863 */
4864 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4865 indirect_branch_prediction_barrier();
4866
4867 /* Update any VMCS fields that might have changed while L2 ran */
4868 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4869 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4870 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4871 if (kvm_caps.has_tsc_control)
4872 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4873
4874 if (vmx->nested.l1_tpr_threshold != -1)
4875 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4876
4877 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4878 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4879 vmx_set_virtual_apic_mode(vcpu);
4880 }
4881
4882 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4883 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4884 vmx_update_cpu_dirty_logging(vcpu);
4885 }
4886
4887 /* Unpin physical memory we referred to in vmcs02 */
4888 kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map, false);
4889 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4890 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4891 vmx->nested.pi_desc = NULL;
4892
4893 if (vmx->nested.reload_vmcs01_apic_access_page) {
4894 vmx->nested.reload_vmcs01_apic_access_page = false;
4895 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4896 }
4897
4898 if (vmx->nested.update_vmcs01_apicv_status) {
4899 vmx->nested.update_vmcs01_apicv_status = false;
4900 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4901 }
4902
4903 if ((vm_exit_reason != -1) &&
4904 (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4905 vmx->nested.need_vmcs12_to_shadow_sync = true;
4906
4907 /* in case we halted in L2 */
4908 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4909
4910 if (likely(!vmx->fail)) {
4911 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4912 nested_exit_intr_ack_set(vcpu)) {
4913 int irq = kvm_cpu_get_interrupt(vcpu);
4914 WARN_ON(irq < 0);
4915 vmcs12->vm_exit_intr_info = irq |
4916 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4917 }
4918
4919 if (vm_exit_reason != -1)
4920 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4921 vmcs12->exit_qualification,
4922 vmcs12->idt_vectoring_info_field,
4923 vmcs12->vm_exit_intr_info,
4924 vmcs12->vm_exit_intr_error_code,
4925 KVM_ISA_VMX);
4926
4927 load_vmcs12_host_state(vcpu, vmcs12);
4928
4929 return;
4930 }
4931
4932 /*
4933 * After an early L2 VM-entry failure, we're now back
4934 * in L1 which thinks it just finished a VMLAUNCH or
4935 * VMRESUME instruction, so we need to set the failure
4936 * flag and the VM-instruction error field of the VMCS
4937 * accordingly, and skip the emulated instruction.
4938 */
4939 (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4940
4941 /*
4942 * Restore L1's host state to KVM's software model. We're here
4943 * because a consistency check was caught by hardware, which
4944 * means some amount of guest state has been propagated to KVM's
4945 * model and needs to be unwound to the host's state.
4946 */
4947 nested_vmx_restore_host_state(vcpu);
4948
4949 vmx->fail = 0;
4950 }
4951
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4952 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4953 {
4954 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4955 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4956 }
4957
4958 /*
4959 * Decode the memory-address operand of a vmx instruction, as recorded on an
4960 * exit caused by such an instruction (run by a guest hypervisor).
4961 * On success, returns 0. When the operand is invalid, returns 1 and throws
4962 * #UD, #GP, or #SS.
4963 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4964 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4965 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4966 {
4967 gva_t off;
4968 bool exn;
4969 struct kvm_segment s;
4970
4971 /*
4972 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4973 * Execution", on an exit, vmx_instruction_info holds most of the
4974 * addressing components of the operand. Only the displacement part
4975 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4976 * For how an actual address is calculated from all these components,
4977 * refer to Vol. 1, "Operand Addressing".
4978 */
4979 int scaling = vmx_instruction_info & 3;
4980 int addr_size = (vmx_instruction_info >> 7) & 7;
4981 bool is_reg = vmx_instruction_info & (1u << 10);
4982 int seg_reg = (vmx_instruction_info >> 15) & 7;
4983 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4984 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4985 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4986 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4987
4988 if (is_reg) {
4989 kvm_queue_exception(vcpu, UD_VECTOR);
4990 return 1;
4991 }
4992
4993 /* Addr = segment_base + offset */
4994 /* offset = base + [index * scale] + displacement */
4995 off = exit_qualification; /* holds the displacement */
4996 if (addr_size == 1)
4997 off = (gva_t)sign_extend64(off, 31);
4998 else if (addr_size == 0)
4999 off = (gva_t)sign_extend64(off, 15);
5000 if (base_is_valid)
5001 off += kvm_register_read(vcpu, base_reg);
5002 if (index_is_valid)
5003 off += kvm_register_read(vcpu, index_reg) << scaling;
5004 vmx_get_segment(vcpu, &s, seg_reg);
5005
5006 /*
5007 * The effective address, i.e. @off, of a memory operand is truncated
5008 * based on the address size of the instruction. Note that this is
5009 * the *effective address*, i.e. the address prior to accounting for
5010 * the segment's base.
5011 */
5012 if (addr_size == 1) /* 32 bit */
5013 off &= 0xffffffff;
5014 else if (addr_size == 0) /* 16 bit */
5015 off &= 0xffff;
5016
5017 /* Checks for #GP/#SS exceptions. */
5018 exn = false;
5019 if (is_long_mode(vcpu)) {
5020 /*
5021 * The virtual/linear address is never truncated in 64-bit
5022 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5023 * address when using FS/GS with a non-zero base.
5024 */
5025 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5026 *ret = s.base + off;
5027 else
5028 *ret = off;
5029
5030 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5031 * non-canonical form. This is the only check on the memory
5032 * destination for long mode!
5033 */
5034 exn = is_noncanonical_address(*ret, vcpu);
5035 } else {
5036 /*
5037 * When not in long mode, the virtual/linear address is
5038 * unconditionally truncated to 32 bits regardless of the
5039 * address size.
5040 */
5041 *ret = (s.base + off) & 0xffffffff;
5042
5043 /* Protected mode: apply checks for segment validity in the
5044 * following order:
5045 * - segment type check (#GP(0) may be thrown)
5046 * - usability check (#GP(0)/#SS(0))
5047 * - limit check (#GP(0)/#SS(0))
5048 */
5049 if (wr)
5050 /* #GP(0) if the destination operand is located in a
5051 * read-only data segment or any code segment.
5052 */
5053 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5054 else
5055 /* #GP(0) if the source operand is located in an
5056 * execute-only code segment
5057 */
5058 exn = ((s.type & 0xa) == 8);
5059 if (exn) {
5060 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5061 return 1;
5062 }
5063 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5064 */
5065 exn = (s.unusable != 0);
5066
5067 /*
5068 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5069 * outside the segment limit. All CPUs that support VMX ignore
5070 * limit checks for flat segments, i.e. segments with base==0,
5071 * limit==0xffffffff and of type expand-up data or code.
5072 */
5073 if (!(s.base == 0 && s.limit == 0xffffffff &&
5074 ((s.type & 8) || !(s.type & 4))))
5075 exn = exn || ((u64)off + len - 1 > s.limit);
5076 }
5077 if (exn) {
5078 kvm_queue_exception_e(vcpu,
5079 seg_reg == VCPU_SREG_SS ?
5080 SS_VECTOR : GP_VECTOR,
5081 0);
5082 return 1;
5083 }
5084
5085 return 0;
5086 }
5087
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5088 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5089 int *ret)
5090 {
5091 gva_t gva;
5092 struct x86_exception e;
5093 int r;
5094
5095 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5096 vmcs_read32(VMX_INSTRUCTION_INFO), false,
5097 sizeof(*vmpointer), &gva)) {
5098 *ret = 1;
5099 return -EINVAL;
5100 }
5101
5102 r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5103 if (r != X86EMUL_CONTINUE) {
5104 *ret = kvm_handle_memory_failure(vcpu, r, &e);
5105 return -EINVAL;
5106 }
5107
5108 return 0;
5109 }
5110
5111 /*
5112 * Allocate a shadow VMCS and associate it with the currently loaded
5113 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5114 * VMCS is also VMCLEARed, so that it is ready for use.
5115 */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5116 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5117 {
5118 struct vcpu_vmx *vmx = to_vmx(vcpu);
5119 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5120
5121 /*
5122 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5123 * when L1 executes VMXOFF or the vCPU is forced out of nested
5124 * operation. VMXON faults if the CPU is already post-VMXON, so it
5125 * should be impossible to already have an allocated shadow VMCS. KVM
5126 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5127 * always be the loaded VMCS.
5128 */
5129 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5130 return loaded_vmcs->shadow_vmcs;
5131
5132 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5133 if (loaded_vmcs->shadow_vmcs)
5134 vmcs_clear(loaded_vmcs->shadow_vmcs);
5135
5136 return loaded_vmcs->shadow_vmcs;
5137 }
5138
enter_vmx_operation(struct kvm_vcpu * vcpu)5139 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5140 {
5141 struct vcpu_vmx *vmx = to_vmx(vcpu);
5142 int r;
5143
5144 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5145 if (r < 0)
5146 goto out_vmcs02;
5147
5148 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5149 if (!vmx->nested.cached_vmcs12)
5150 goto out_cached_vmcs12;
5151
5152 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5153 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5154 if (!vmx->nested.cached_shadow_vmcs12)
5155 goto out_cached_shadow_vmcs12;
5156
5157 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5158 goto out_shadow_vmcs;
5159
5160 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5161 HRTIMER_MODE_ABS_PINNED);
5162 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5163
5164 vmx->nested.vpid02 = allocate_vpid();
5165
5166 vmx->nested.vmcs02_initialized = false;
5167 vmx->nested.vmxon = true;
5168
5169 if (vmx_pt_mode_is_host_guest()) {
5170 vmx->pt_desc.guest.ctl = 0;
5171 pt_update_intercept_for_msr(vcpu);
5172 }
5173
5174 return 0;
5175
5176 out_shadow_vmcs:
5177 kfree(vmx->nested.cached_shadow_vmcs12);
5178
5179 out_cached_shadow_vmcs12:
5180 kfree(vmx->nested.cached_vmcs12);
5181
5182 out_cached_vmcs12:
5183 free_loaded_vmcs(&vmx->nested.vmcs02);
5184
5185 out_vmcs02:
5186 return -ENOMEM;
5187 }
5188
5189 /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5190 static int handle_vmxon(struct kvm_vcpu *vcpu)
5191 {
5192 int ret;
5193 gpa_t vmptr;
5194 uint32_t revision;
5195 struct vcpu_vmx *vmx = to_vmx(vcpu);
5196 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5197 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5198
5199 /*
5200 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5201 * the guest and so cannot rely on hardware to perform the check,
5202 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5203 * for VMXON).
5204 *
5205 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5206 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5207 * force any of the relevant guest state. For a restricted guest, KVM
5208 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5209 * Real Mode, and so there's no need to check CR0.PE manually.
5210 */
5211 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5212 kvm_queue_exception(vcpu, UD_VECTOR);
5213 return 1;
5214 }
5215
5216 /*
5217 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5218 * and has higher priority than the VM-Fail due to being post-VMXON,
5219 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5220 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5221 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5222 * VMX non-root.
5223 *
5224 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5225 * #UD checks (see above), is functionally ok because KVM doesn't allow
5226 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5227 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5228 * missed by hardware due to shadowing CR0 and/or CR4.
5229 */
5230 if (vmx_get_cpl(vcpu)) {
5231 kvm_inject_gp(vcpu, 0);
5232 return 1;
5233 }
5234
5235 if (vmx->nested.vmxon)
5236 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5237
5238 /*
5239 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5240 * only if the vCPU isn't already in VMX operation, i.e. effectively
5241 * have lower priority than the VM-Fail above.
5242 */
5243 if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5244 !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5245 kvm_inject_gp(vcpu, 0);
5246 return 1;
5247 }
5248
5249 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5250 != VMXON_NEEDED_FEATURES) {
5251 kvm_inject_gp(vcpu, 0);
5252 return 1;
5253 }
5254
5255 if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5256 return ret;
5257
5258 /*
5259 * SDM 3: 24.11.5
5260 * The first 4 bytes of VMXON region contain the supported
5261 * VMCS revision identifier
5262 *
5263 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5264 * which replaces physical address width with 32
5265 */
5266 if (!page_address_valid(vcpu, vmptr))
5267 return nested_vmx_failInvalid(vcpu);
5268
5269 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5270 revision != VMCS12_REVISION)
5271 return nested_vmx_failInvalid(vcpu);
5272
5273 vmx->nested.vmxon_ptr = vmptr;
5274 ret = enter_vmx_operation(vcpu);
5275 if (ret)
5276 return ret;
5277
5278 return nested_vmx_succeed(vcpu);
5279 }
5280
nested_release_vmcs12(struct kvm_vcpu * vcpu)5281 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5282 {
5283 struct vcpu_vmx *vmx = to_vmx(vcpu);
5284
5285 if (vmx->nested.current_vmptr == INVALID_GPA)
5286 return;
5287
5288 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5289
5290 if (enable_shadow_vmcs) {
5291 /* copy to memory all shadowed fields in case
5292 they were modified */
5293 copy_shadow_to_vmcs12(vmx);
5294 vmx_disable_shadow_vmcs(vmx);
5295 }
5296 vmx->nested.posted_intr_nv = -1;
5297
5298 /* Flush VMCS12 to guest memory */
5299 kvm_vcpu_write_guest_page(vcpu,
5300 vmx->nested.current_vmptr >> PAGE_SHIFT,
5301 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5302
5303 kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5304
5305 vmx->nested.current_vmptr = INVALID_GPA;
5306 }
5307
5308 /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5309 static int handle_vmxoff(struct kvm_vcpu *vcpu)
5310 {
5311 if (!nested_vmx_check_permission(vcpu))
5312 return 1;
5313
5314 free_nested(vcpu);
5315
5316 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5317 kvm_make_request(KVM_REQ_EVENT, vcpu);
5318
5319 return nested_vmx_succeed(vcpu);
5320 }
5321
5322 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5323 static int handle_vmclear(struct kvm_vcpu *vcpu)
5324 {
5325 struct vcpu_vmx *vmx = to_vmx(vcpu);
5326 u32 zero = 0;
5327 gpa_t vmptr;
5328 int r;
5329
5330 if (!nested_vmx_check_permission(vcpu))
5331 return 1;
5332
5333 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5334 return r;
5335
5336 if (!page_address_valid(vcpu, vmptr))
5337 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5338
5339 if (vmptr == vmx->nested.vmxon_ptr)
5340 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5341
5342 /*
5343 * When Enlightened VMEntry is enabled on the calling CPU we treat
5344 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5345 * way to distinguish it from VMCS12) and we must not corrupt it by
5346 * writing to the non-existent 'launch_state' field. The area doesn't
5347 * have to be the currently active EVMCS on the calling CPU and there's
5348 * nothing KVM has to do to transition it from 'active' to 'non-active'
5349 * state. It is possible that the area will stay mapped as
5350 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5351 */
5352 if (likely(!guest_cpuid_has_evmcs(vcpu) ||
5353 !evmptr_is_valid(nested_get_evmptr(vcpu)))) {
5354 if (vmptr == vmx->nested.current_vmptr)
5355 nested_release_vmcs12(vcpu);
5356
5357 /*
5358 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5359 * for VMCLEAR includes a "ensure that data for VMCS referenced
5360 * by the operand is in memory" clause that guards writes to
5361 * memory, i.e. doing nothing for I/O is architecturally valid.
5362 *
5363 * FIXME: Suppress failures if and only if no memslot is found,
5364 * i.e. exit to userspace if __copy_to_user() fails.
5365 */
5366 (void)kvm_vcpu_write_guest(vcpu,
5367 vmptr + offsetof(struct vmcs12,
5368 launch_state),
5369 &zero, sizeof(zero));
5370 } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5371 nested_release_evmcs(vcpu);
5372 }
5373
5374 return nested_vmx_succeed(vcpu);
5375 }
5376
5377 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5378 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5379 {
5380 return nested_vmx_run(vcpu, true);
5381 }
5382
5383 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5384 static int handle_vmresume(struct kvm_vcpu *vcpu)
5385 {
5386
5387 return nested_vmx_run(vcpu, false);
5388 }
5389
handle_vmread(struct kvm_vcpu * vcpu)5390 static int handle_vmread(struct kvm_vcpu *vcpu)
5391 {
5392 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5393 : get_vmcs12(vcpu);
5394 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5395 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5396 struct vcpu_vmx *vmx = to_vmx(vcpu);
5397 struct x86_exception e;
5398 unsigned long field;
5399 u64 value;
5400 gva_t gva = 0;
5401 short offset;
5402 int len, r;
5403
5404 if (!nested_vmx_check_permission(vcpu))
5405 return 1;
5406
5407 /* Decode instruction info and find the field to read */
5408 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5409
5410 if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5411 /*
5412 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5413 * any VMREAD sets the ALU flags for VMfailInvalid.
5414 */
5415 if (vmx->nested.current_vmptr == INVALID_GPA ||
5416 (is_guest_mode(vcpu) &&
5417 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5418 return nested_vmx_failInvalid(vcpu);
5419
5420 offset = get_vmcs12_field_offset(field);
5421 if (offset < 0)
5422 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5423
5424 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5425 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5426
5427 /* Read the field, zero-extended to a u64 value */
5428 value = vmcs12_read_any(vmcs12, field, offset);
5429 } else {
5430 /*
5431 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5432 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5433 * unsupported. Unfortunately, certain versions of Windows 11
5434 * don't comply with this requirement which is not enforced in
5435 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5436 * workaround, as misbehaving guests will panic on VM-Fail.
5437 * Note, enlightened VMCS is incompatible with shadow VMCS so
5438 * all VMREADs from L2 should go to L1.
5439 */
5440 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5441 return nested_vmx_failInvalid(vcpu);
5442
5443 offset = evmcs_field_offset(field, NULL);
5444 if (offset < 0)
5445 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5446
5447 /* Read the field, zero-extended to a u64 value */
5448 value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5449 }
5450
5451 /*
5452 * Now copy part of this value to register or memory, as requested.
5453 * Note that the number of bits actually copied is 32 or 64 depending
5454 * on the guest's mode (32 or 64 bit), not on the given field's length.
5455 */
5456 if (instr_info & BIT(10)) {
5457 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5458 } else {
5459 len = is_64_bit_mode(vcpu) ? 8 : 4;
5460 if (get_vmx_mem_address(vcpu, exit_qualification,
5461 instr_info, true, len, &gva))
5462 return 1;
5463 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5464 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5465 if (r != X86EMUL_CONTINUE)
5466 return kvm_handle_memory_failure(vcpu, r, &e);
5467 }
5468
5469 return nested_vmx_succeed(vcpu);
5470 }
5471
is_shadow_field_rw(unsigned long field)5472 static bool is_shadow_field_rw(unsigned long field)
5473 {
5474 switch (field) {
5475 #define SHADOW_FIELD_RW(x, y) case x:
5476 #include "vmcs_shadow_fields.h"
5477 return true;
5478 default:
5479 break;
5480 }
5481 return false;
5482 }
5483
is_shadow_field_ro(unsigned long field)5484 static bool is_shadow_field_ro(unsigned long field)
5485 {
5486 switch (field) {
5487 #define SHADOW_FIELD_RO(x, y) case x:
5488 #include "vmcs_shadow_fields.h"
5489 return true;
5490 default:
5491 break;
5492 }
5493 return false;
5494 }
5495
handle_vmwrite(struct kvm_vcpu * vcpu)5496 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5497 {
5498 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5499 : get_vmcs12(vcpu);
5500 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5501 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5502 struct vcpu_vmx *vmx = to_vmx(vcpu);
5503 struct x86_exception e;
5504 unsigned long field;
5505 short offset;
5506 gva_t gva;
5507 int len, r;
5508
5509 /*
5510 * The value to write might be 32 or 64 bits, depending on L1's long
5511 * mode, and eventually we need to write that into a field of several
5512 * possible lengths. The code below first zero-extends the value to 64
5513 * bit (value), and then copies only the appropriate number of
5514 * bits into the vmcs12 field.
5515 */
5516 u64 value = 0;
5517
5518 if (!nested_vmx_check_permission(vcpu))
5519 return 1;
5520
5521 /*
5522 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5523 * any VMWRITE sets the ALU flags for VMfailInvalid.
5524 */
5525 if (vmx->nested.current_vmptr == INVALID_GPA ||
5526 (is_guest_mode(vcpu) &&
5527 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5528 return nested_vmx_failInvalid(vcpu);
5529
5530 if (instr_info & BIT(10))
5531 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5532 else {
5533 len = is_64_bit_mode(vcpu) ? 8 : 4;
5534 if (get_vmx_mem_address(vcpu, exit_qualification,
5535 instr_info, false, len, &gva))
5536 return 1;
5537 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5538 if (r != X86EMUL_CONTINUE)
5539 return kvm_handle_memory_failure(vcpu, r, &e);
5540 }
5541
5542 field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5543
5544 offset = get_vmcs12_field_offset(field);
5545 if (offset < 0)
5546 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5547
5548 /*
5549 * If the vCPU supports "VMWRITE to any supported field in the
5550 * VMCS," then the "read-only" fields are actually read/write.
5551 */
5552 if (vmcs_field_readonly(field) &&
5553 !nested_cpu_has_vmwrite_any_field(vcpu))
5554 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5555
5556 /*
5557 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5558 * vmcs12, else we may crush a field or consume a stale value.
5559 */
5560 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5561 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5562
5563 /*
5564 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5565 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5566 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5567 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5568 * from L1 will return a different value than VMREAD from L2 (L1 sees
5569 * the stripped down value, L2 sees the full value as stored by KVM).
5570 */
5571 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5572 value &= 0x1f0ff;
5573
5574 vmcs12_write_any(vmcs12, field, offset, value);
5575
5576 /*
5577 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5578 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5579 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5580 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5581 */
5582 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5583 /*
5584 * L1 can read these fields without exiting, ensure the
5585 * shadow VMCS is up-to-date.
5586 */
5587 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5588 preempt_disable();
5589 vmcs_load(vmx->vmcs01.shadow_vmcs);
5590
5591 __vmcs_writel(field, value);
5592
5593 vmcs_clear(vmx->vmcs01.shadow_vmcs);
5594 vmcs_load(vmx->loaded_vmcs->vmcs);
5595 preempt_enable();
5596 }
5597 vmx->nested.dirty_vmcs12 = true;
5598 }
5599
5600 return nested_vmx_succeed(vcpu);
5601 }
5602
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5603 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5604 {
5605 vmx->nested.current_vmptr = vmptr;
5606 if (enable_shadow_vmcs) {
5607 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5608 vmcs_write64(VMCS_LINK_POINTER,
5609 __pa(vmx->vmcs01.shadow_vmcs));
5610 vmx->nested.need_vmcs12_to_shadow_sync = true;
5611 }
5612 vmx->nested.dirty_vmcs12 = true;
5613 vmx->nested.force_msr_bitmap_recalc = true;
5614 }
5615
5616 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5617 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5618 {
5619 struct vcpu_vmx *vmx = to_vmx(vcpu);
5620 gpa_t vmptr;
5621 int r;
5622
5623 if (!nested_vmx_check_permission(vcpu))
5624 return 1;
5625
5626 if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5627 return r;
5628
5629 if (!page_address_valid(vcpu, vmptr))
5630 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5631
5632 if (vmptr == vmx->nested.vmxon_ptr)
5633 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5634
5635 /* Forbid normal VMPTRLD if Enlightened version was used */
5636 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5637 return 1;
5638
5639 if (vmx->nested.current_vmptr != vmptr) {
5640 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5641 struct vmcs_hdr hdr;
5642
5643 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5644 /*
5645 * Reads from an unbacked page return all 1s,
5646 * which means that the 32 bits located at the
5647 * given physical address won't match the required
5648 * VMCS12_REVISION identifier.
5649 */
5650 return nested_vmx_fail(vcpu,
5651 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5652 }
5653
5654 if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5655 offsetof(struct vmcs12, hdr),
5656 sizeof(hdr))) {
5657 return nested_vmx_fail(vcpu,
5658 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5659 }
5660
5661 if (hdr.revision_id != VMCS12_REVISION ||
5662 (hdr.shadow_vmcs &&
5663 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5664 return nested_vmx_fail(vcpu,
5665 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5666 }
5667
5668 nested_release_vmcs12(vcpu);
5669
5670 /*
5671 * Load VMCS12 from guest memory since it is not already
5672 * cached.
5673 */
5674 if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5675 VMCS12_SIZE)) {
5676 return nested_vmx_fail(vcpu,
5677 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5678 }
5679
5680 set_current_vmptr(vmx, vmptr);
5681 }
5682
5683 return nested_vmx_succeed(vcpu);
5684 }
5685
5686 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5687 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5688 {
5689 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5690 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5691 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5692 struct x86_exception e;
5693 gva_t gva;
5694 int r;
5695
5696 if (!nested_vmx_check_permission(vcpu))
5697 return 1;
5698
5699 if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5700 return 1;
5701
5702 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5703 true, sizeof(gpa_t), &gva))
5704 return 1;
5705 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5706 r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
5707 sizeof(gpa_t), &e);
5708 if (r != X86EMUL_CONTINUE)
5709 return kvm_handle_memory_failure(vcpu, r, &e);
5710
5711 return nested_vmx_succeed(vcpu);
5712 }
5713
5714 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5715 static int handle_invept(struct kvm_vcpu *vcpu)
5716 {
5717 struct vcpu_vmx *vmx = to_vmx(vcpu);
5718 u32 vmx_instruction_info, types;
5719 unsigned long type, roots_to_free;
5720 struct kvm_mmu *mmu;
5721 gva_t gva;
5722 struct x86_exception e;
5723 struct {
5724 u64 eptp, gpa;
5725 } operand;
5726 int i, r, gpr_index;
5727
5728 if (!(vmx->nested.msrs.secondary_ctls_high &
5729 SECONDARY_EXEC_ENABLE_EPT) ||
5730 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5731 kvm_queue_exception(vcpu, UD_VECTOR);
5732 return 1;
5733 }
5734
5735 if (!nested_vmx_check_permission(vcpu))
5736 return 1;
5737
5738 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5739 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5740 type = kvm_register_read(vcpu, gpr_index);
5741
5742 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5743
5744 if (type >= 32 || !(types & (1 << type)))
5745 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5746
5747 /* According to the Intel VMX instruction reference, the memory
5748 * operand is read even if it isn't needed (e.g., for type==global)
5749 */
5750 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5751 vmx_instruction_info, false, sizeof(operand), &gva))
5752 return 1;
5753 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5754 if (r != X86EMUL_CONTINUE)
5755 return kvm_handle_memory_failure(vcpu, r, &e);
5756
5757 /*
5758 * Nested EPT roots are always held through guest_mmu,
5759 * not root_mmu.
5760 */
5761 mmu = &vcpu->arch.guest_mmu;
5762
5763 switch (type) {
5764 case VMX_EPT_EXTENT_CONTEXT:
5765 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5766 return nested_vmx_fail(vcpu,
5767 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5768
5769 roots_to_free = 0;
5770 if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5771 operand.eptp))
5772 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5773
5774 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5775 if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5776 mmu->prev_roots[i].pgd,
5777 operand.eptp))
5778 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5779 }
5780 break;
5781 case VMX_EPT_EXTENT_GLOBAL:
5782 roots_to_free = KVM_MMU_ROOTS_ALL;
5783 break;
5784 default:
5785 BUG();
5786 break;
5787 }
5788
5789 if (roots_to_free)
5790 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5791
5792 return nested_vmx_succeed(vcpu);
5793 }
5794
handle_invvpid(struct kvm_vcpu * vcpu)5795 static int handle_invvpid(struct kvm_vcpu *vcpu)
5796 {
5797 struct vcpu_vmx *vmx = to_vmx(vcpu);
5798 u32 vmx_instruction_info;
5799 unsigned long type, types;
5800 gva_t gva;
5801 struct x86_exception e;
5802 struct {
5803 u64 vpid;
5804 u64 gla;
5805 } operand;
5806 u16 vpid02;
5807 int r, gpr_index;
5808
5809 if (!(vmx->nested.msrs.secondary_ctls_high &
5810 SECONDARY_EXEC_ENABLE_VPID) ||
5811 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5812 kvm_queue_exception(vcpu, UD_VECTOR);
5813 return 1;
5814 }
5815
5816 if (!nested_vmx_check_permission(vcpu))
5817 return 1;
5818
5819 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5820 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5821 type = kvm_register_read(vcpu, gpr_index);
5822
5823 types = (vmx->nested.msrs.vpid_caps &
5824 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5825
5826 if (type >= 32 || !(types & (1 << type)))
5827 return nested_vmx_fail(vcpu,
5828 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5829
5830 /* according to the intel vmx instruction reference, the memory
5831 * operand is read even if it isn't needed (e.g., for type==global)
5832 */
5833 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5834 vmx_instruction_info, false, sizeof(operand), &gva))
5835 return 1;
5836 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5837 if (r != X86EMUL_CONTINUE)
5838 return kvm_handle_memory_failure(vcpu, r, &e);
5839
5840 if (operand.vpid >> 16)
5841 return nested_vmx_fail(vcpu,
5842 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5843
5844 /*
5845 * Always flush the effective vpid02, i.e. never flush the current VPID
5846 * and never explicitly flush vpid01. INVVPID targets a VPID, not a
5847 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
5848 * irrelevant (and there may not be a loaded vmcs12).
5849 */
5850 vpid02 = nested_get_vpid02(vcpu);
5851 switch (type) {
5852 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5853 if (!operand.vpid ||
5854 is_noncanonical_address(operand.gla, vcpu))
5855 return nested_vmx_fail(vcpu,
5856 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5857 vpid_sync_vcpu_addr(vpid02, operand.gla);
5858 break;
5859 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5860 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5861 if (!operand.vpid)
5862 return nested_vmx_fail(vcpu,
5863 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5864 vpid_sync_context(vpid02);
5865 break;
5866 case VMX_VPID_EXTENT_ALL_CONTEXT:
5867 vpid_sync_context(vpid02);
5868 break;
5869 default:
5870 WARN_ON_ONCE(1);
5871 return kvm_skip_emulated_instruction(vcpu);
5872 }
5873
5874 /*
5875 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5876 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5877 * roots as VPIDs are not tracked in the MMU role.
5878 *
5879 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5880 * an MMU when EPT is disabled.
5881 *
5882 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5883 */
5884 if (!enable_ept)
5885 kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5886
5887 return nested_vmx_succeed(vcpu);
5888 }
5889
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5890 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5891 struct vmcs12 *vmcs12)
5892 {
5893 u32 index = kvm_rcx_read(vcpu);
5894 u64 new_eptp;
5895
5896 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5897 return 1;
5898 if (index >= VMFUNC_EPTP_ENTRIES)
5899 return 1;
5900
5901 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5902 &new_eptp, index * 8, 8))
5903 return 1;
5904
5905 /*
5906 * If the (L2) guest does a vmfunc to the currently
5907 * active ept pointer, we don't have to do anything else
5908 */
5909 if (vmcs12->ept_pointer != new_eptp) {
5910 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5911 return 1;
5912
5913 vmcs12->ept_pointer = new_eptp;
5914 nested_ept_new_eptp(vcpu);
5915
5916 if (!nested_cpu_has_vpid(vmcs12))
5917 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5918 }
5919
5920 return 0;
5921 }
5922
handle_vmfunc(struct kvm_vcpu * vcpu)5923 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5924 {
5925 struct vcpu_vmx *vmx = to_vmx(vcpu);
5926 struct vmcs12 *vmcs12;
5927 u32 function = kvm_rax_read(vcpu);
5928
5929 /*
5930 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5931 * VMFUNC for nested VMs, but not for L1.
5932 */
5933 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5934 kvm_queue_exception(vcpu, UD_VECTOR);
5935 return 1;
5936 }
5937
5938 vmcs12 = get_vmcs12(vcpu);
5939
5940 /*
5941 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5942 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5943 */
5944 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5945 kvm_queue_exception(vcpu, UD_VECTOR);
5946 return 1;
5947 }
5948
5949 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5950 goto fail;
5951
5952 switch (function) {
5953 case 0:
5954 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5955 goto fail;
5956 break;
5957 default:
5958 goto fail;
5959 }
5960 return kvm_skip_emulated_instruction(vcpu);
5961
5962 fail:
5963 /*
5964 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5965 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5966 * EXIT_REASON_VMFUNC as the exit reason.
5967 */
5968 nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5969 vmx_get_intr_info(vcpu),
5970 vmx_get_exit_qual(vcpu));
5971 return 1;
5972 }
5973
5974 /*
5975 * Return true if an IO instruction with the specified port and size should cause
5976 * a VM-exit into L1.
5977 */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5978 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5979 int size)
5980 {
5981 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5982 gpa_t bitmap, last_bitmap;
5983 u8 b;
5984
5985 last_bitmap = INVALID_GPA;
5986 b = -1;
5987
5988 while (size > 0) {
5989 if (port < 0x8000)
5990 bitmap = vmcs12->io_bitmap_a;
5991 else if (port < 0x10000)
5992 bitmap = vmcs12->io_bitmap_b;
5993 else
5994 return true;
5995 bitmap += (port & 0x7fff) / 8;
5996
5997 if (last_bitmap != bitmap)
5998 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5999 return true;
6000 if (b & (1 << (port & 7)))
6001 return true;
6002
6003 port++;
6004 size--;
6005 last_bitmap = bitmap;
6006 }
6007
6008 return false;
6009 }
6010
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6011 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6012 struct vmcs12 *vmcs12)
6013 {
6014 unsigned long exit_qualification;
6015 unsigned short port;
6016 int size;
6017
6018 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6019 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6020
6021 exit_qualification = vmx_get_exit_qual(vcpu);
6022
6023 port = exit_qualification >> 16;
6024 size = (exit_qualification & 7) + 1;
6025
6026 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6027 }
6028
6029 /*
6030 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6031 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6032 * disinterest in the current event (read or write a specific MSR) by using an
6033 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6034 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6035 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6036 struct vmcs12 *vmcs12,
6037 union vmx_exit_reason exit_reason)
6038 {
6039 u32 msr_index = kvm_rcx_read(vcpu);
6040 gpa_t bitmap;
6041
6042 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6043 return true;
6044
6045 /*
6046 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6047 * for the four combinations of read/write and low/high MSR numbers.
6048 * First we need to figure out which of the four to use:
6049 */
6050 bitmap = vmcs12->msr_bitmap;
6051 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6052 bitmap += 2048;
6053 if (msr_index >= 0xc0000000) {
6054 msr_index -= 0xc0000000;
6055 bitmap += 1024;
6056 }
6057
6058 /* Then read the msr_index'th bit from this bitmap: */
6059 if (msr_index < 1024*8) {
6060 unsigned char b;
6061 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6062 return true;
6063 return 1 & (b >> (msr_index & 7));
6064 } else
6065 return true; /* let L1 handle the wrong parameter */
6066 }
6067
6068 /*
6069 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6070 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6071 * intercept (via guest_host_mask etc.) the current event.
6072 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6073 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6074 struct vmcs12 *vmcs12)
6075 {
6076 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6077 int cr = exit_qualification & 15;
6078 int reg;
6079 unsigned long val;
6080
6081 switch ((exit_qualification >> 4) & 3) {
6082 case 0: /* mov to cr */
6083 reg = (exit_qualification >> 8) & 15;
6084 val = kvm_register_read(vcpu, reg);
6085 switch (cr) {
6086 case 0:
6087 if (vmcs12->cr0_guest_host_mask &
6088 (val ^ vmcs12->cr0_read_shadow))
6089 return true;
6090 break;
6091 case 3:
6092 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6093 return true;
6094 break;
6095 case 4:
6096 if (vmcs12->cr4_guest_host_mask &
6097 (vmcs12->cr4_read_shadow ^ val))
6098 return true;
6099 break;
6100 case 8:
6101 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6102 return true;
6103 break;
6104 }
6105 break;
6106 case 2: /* clts */
6107 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6108 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6109 return true;
6110 break;
6111 case 1: /* mov from cr */
6112 switch (cr) {
6113 case 3:
6114 if (vmcs12->cpu_based_vm_exec_control &
6115 CPU_BASED_CR3_STORE_EXITING)
6116 return true;
6117 break;
6118 case 8:
6119 if (vmcs12->cpu_based_vm_exec_control &
6120 CPU_BASED_CR8_STORE_EXITING)
6121 return true;
6122 break;
6123 }
6124 break;
6125 case 3: /* lmsw */
6126 /*
6127 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6128 * cr0. Other attempted changes are ignored, with no exit.
6129 */
6130 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6131 if (vmcs12->cr0_guest_host_mask & 0xe &
6132 (val ^ vmcs12->cr0_read_shadow))
6133 return true;
6134 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6135 !(vmcs12->cr0_read_shadow & 0x1) &&
6136 (val & 0x1))
6137 return true;
6138 break;
6139 }
6140 return false;
6141 }
6142
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6143 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6144 struct vmcs12 *vmcs12)
6145 {
6146 u32 encls_leaf;
6147
6148 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6149 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6150 return false;
6151
6152 encls_leaf = kvm_rax_read(vcpu);
6153 if (encls_leaf > 62)
6154 encls_leaf = 63;
6155 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6156 }
6157
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6158 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6159 struct vmcs12 *vmcs12, gpa_t bitmap)
6160 {
6161 u32 vmx_instruction_info;
6162 unsigned long field;
6163 u8 b;
6164
6165 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6166 return true;
6167
6168 /* Decode instruction info and find the field to access */
6169 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6170 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6171
6172 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6173 if (field >> 15)
6174 return true;
6175
6176 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6177 return true;
6178
6179 return 1 & (b >> (field & 7));
6180 }
6181
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6182 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6183 {
6184 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6185
6186 if (nested_cpu_has_mtf(vmcs12))
6187 return true;
6188
6189 /*
6190 * An MTF VM-exit may be injected into the guest by setting the
6191 * interruption-type to 7 (other event) and the vector field to 0. Such
6192 * is the case regardless of the 'monitor trap flag' VM-execution
6193 * control.
6194 */
6195 return entry_intr_info == (INTR_INFO_VALID_MASK
6196 | INTR_TYPE_OTHER_EVENT);
6197 }
6198
6199 /*
6200 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6201 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6202 */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6203 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6204 union vmx_exit_reason exit_reason)
6205 {
6206 u32 intr_info;
6207
6208 switch ((u16)exit_reason.basic) {
6209 case EXIT_REASON_EXCEPTION_NMI:
6210 intr_info = vmx_get_intr_info(vcpu);
6211 if (is_nmi(intr_info))
6212 return true;
6213 else if (is_page_fault(intr_info))
6214 return vcpu->arch.apf.host_apf_flags ||
6215 vmx_need_pf_intercept(vcpu);
6216 else if (is_debug(intr_info) &&
6217 vcpu->guest_debug &
6218 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6219 return true;
6220 else if (is_breakpoint(intr_info) &&
6221 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6222 return true;
6223 else if (is_alignment_check(intr_info) &&
6224 !vmx_guest_inject_ac(vcpu))
6225 return true;
6226 return false;
6227 case EXIT_REASON_EXTERNAL_INTERRUPT:
6228 return true;
6229 case EXIT_REASON_MCE_DURING_VMENTRY:
6230 return true;
6231 case EXIT_REASON_EPT_VIOLATION:
6232 /*
6233 * L0 always deals with the EPT violation. If nested EPT is
6234 * used, and the nested mmu code discovers that the address is
6235 * missing in the guest EPT table (EPT12), the EPT violation
6236 * will be injected with nested_ept_inject_page_fault()
6237 */
6238 return true;
6239 case EXIT_REASON_EPT_MISCONFIG:
6240 /*
6241 * L2 never uses directly L1's EPT, but rather L0's own EPT
6242 * table (shadow on EPT) or a merged EPT table that L0 built
6243 * (EPT on EPT). So any problems with the structure of the
6244 * table is L0's fault.
6245 */
6246 return true;
6247 case EXIT_REASON_PREEMPTION_TIMER:
6248 return true;
6249 case EXIT_REASON_PML_FULL:
6250 /*
6251 * PML is emulated for an L1 VMM and should never be enabled in
6252 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6253 */
6254 return true;
6255 case EXIT_REASON_VMFUNC:
6256 /* VM functions are emulated through L2->L0 vmexits. */
6257 return true;
6258 case EXIT_REASON_BUS_LOCK:
6259 /*
6260 * At present, bus lock VM exit is never exposed to L1.
6261 * Handle L2's bus locks in L0 directly.
6262 */
6263 return true;
6264 case EXIT_REASON_VMCALL:
6265 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6266 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6267 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6268 kvm_hv_is_tlb_flush_hcall(vcpu);
6269 default:
6270 break;
6271 }
6272 return false;
6273 }
6274
6275 /*
6276 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6277 * is_guest_mode (L2).
6278 */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6279 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6280 union vmx_exit_reason exit_reason)
6281 {
6282 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6283 u32 intr_info;
6284
6285 switch ((u16)exit_reason.basic) {
6286 case EXIT_REASON_EXCEPTION_NMI:
6287 intr_info = vmx_get_intr_info(vcpu);
6288 if (is_nmi(intr_info))
6289 return true;
6290 else if (is_page_fault(intr_info))
6291 return true;
6292 return vmcs12->exception_bitmap &
6293 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6294 case EXIT_REASON_EXTERNAL_INTERRUPT:
6295 return nested_exit_on_intr(vcpu);
6296 case EXIT_REASON_TRIPLE_FAULT:
6297 return true;
6298 case EXIT_REASON_INTERRUPT_WINDOW:
6299 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6300 case EXIT_REASON_NMI_WINDOW:
6301 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6302 case EXIT_REASON_TASK_SWITCH:
6303 return true;
6304 case EXIT_REASON_CPUID:
6305 return true;
6306 case EXIT_REASON_HLT:
6307 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6308 case EXIT_REASON_INVD:
6309 return true;
6310 case EXIT_REASON_INVLPG:
6311 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6312 case EXIT_REASON_RDPMC:
6313 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6314 case EXIT_REASON_RDRAND:
6315 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6316 case EXIT_REASON_RDSEED:
6317 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6318 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6319 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6320 case EXIT_REASON_VMREAD:
6321 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6322 vmcs12->vmread_bitmap);
6323 case EXIT_REASON_VMWRITE:
6324 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6325 vmcs12->vmwrite_bitmap);
6326 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6327 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6328 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6329 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6330 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6331 /*
6332 * VMX instructions trap unconditionally. This allows L1 to
6333 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6334 */
6335 return true;
6336 case EXIT_REASON_CR_ACCESS:
6337 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6338 case EXIT_REASON_DR_ACCESS:
6339 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6340 case EXIT_REASON_IO_INSTRUCTION:
6341 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6342 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6343 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6344 case EXIT_REASON_MSR_READ:
6345 case EXIT_REASON_MSR_WRITE:
6346 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6347 case EXIT_REASON_INVALID_STATE:
6348 return true;
6349 case EXIT_REASON_MWAIT_INSTRUCTION:
6350 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6351 case EXIT_REASON_MONITOR_TRAP_FLAG:
6352 return nested_vmx_exit_handled_mtf(vmcs12);
6353 case EXIT_REASON_MONITOR_INSTRUCTION:
6354 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6355 case EXIT_REASON_PAUSE_INSTRUCTION:
6356 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6357 nested_cpu_has2(vmcs12,
6358 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6359 case EXIT_REASON_MCE_DURING_VMENTRY:
6360 return true;
6361 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6362 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6363 case EXIT_REASON_APIC_ACCESS:
6364 case EXIT_REASON_APIC_WRITE:
6365 case EXIT_REASON_EOI_INDUCED:
6366 /*
6367 * The controls for "virtualize APIC accesses," "APIC-
6368 * register virtualization," and "virtual-interrupt
6369 * delivery" only come from vmcs12.
6370 */
6371 return true;
6372 case EXIT_REASON_INVPCID:
6373 return
6374 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6375 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6376 case EXIT_REASON_WBINVD:
6377 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6378 case EXIT_REASON_XSETBV:
6379 return true;
6380 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6381 /*
6382 * This should never happen, since it is not possible to
6383 * set XSS to a non-zero value---neither in L1 nor in L2.
6384 * If if it were, XSS would have to be checked against
6385 * the XSS exit bitmap in vmcs12.
6386 */
6387 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6388 case EXIT_REASON_UMWAIT:
6389 case EXIT_REASON_TPAUSE:
6390 return nested_cpu_has2(vmcs12,
6391 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6392 case EXIT_REASON_ENCLS:
6393 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6394 case EXIT_REASON_NOTIFY:
6395 /* Notify VM exit is not exposed to L1 */
6396 return false;
6397 default:
6398 return true;
6399 }
6400 }
6401
6402 /*
6403 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6404 * reflected into L1.
6405 */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6406 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6407 {
6408 struct vcpu_vmx *vmx = to_vmx(vcpu);
6409 union vmx_exit_reason exit_reason = vmx->exit_reason;
6410 unsigned long exit_qual;
6411 u32 exit_intr_info;
6412
6413 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6414
6415 /*
6416 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6417 * has already loaded L2's state.
6418 */
6419 if (unlikely(vmx->fail)) {
6420 trace_kvm_nested_vmenter_failed(
6421 "hardware VM-instruction error: ",
6422 vmcs_read32(VM_INSTRUCTION_ERROR));
6423 exit_intr_info = 0;
6424 exit_qual = 0;
6425 goto reflect_vmexit;
6426 }
6427
6428 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6429
6430 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6431 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6432 return false;
6433
6434 /* If L1 doesn't want the exit, handle it in L0. */
6435 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6436 return false;
6437
6438 /*
6439 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6440 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6441 * need to be synthesized by querying the in-kernel LAPIC, but external
6442 * interrupts are never reflected to L1 so it's a non-issue.
6443 */
6444 exit_intr_info = vmx_get_intr_info(vcpu);
6445 if (is_exception_with_error_code(exit_intr_info)) {
6446 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6447
6448 vmcs12->vm_exit_intr_error_code =
6449 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6450 }
6451 exit_qual = vmx_get_exit_qual(vcpu);
6452
6453 reflect_vmexit:
6454 nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6455 return true;
6456 }
6457
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6458 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6459 struct kvm_nested_state __user *user_kvm_nested_state,
6460 u32 user_data_size)
6461 {
6462 struct vcpu_vmx *vmx;
6463 struct vmcs12 *vmcs12;
6464 struct kvm_nested_state kvm_state = {
6465 .flags = 0,
6466 .format = KVM_STATE_NESTED_FORMAT_VMX,
6467 .size = sizeof(kvm_state),
6468 .hdr.vmx.flags = 0,
6469 .hdr.vmx.vmxon_pa = INVALID_GPA,
6470 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6471 .hdr.vmx.preemption_timer_deadline = 0,
6472 };
6473 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6474 &user_kvm_nested_state->data.vmx[0];
6475
6476 if (!vcpu)
6477 return kvm_state.size + sizeof(*user_vmx_nested_state);
6478
6479 vmx = to_vmx(vcpu);
6480 vmcs12 = get_vmcs12(vcpu);
6481
6482 if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6483 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6484 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6485 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6486
6487 if (vmx_has_valid_vmcs12(vcpu)) {
6488 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6489
6490 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6491 if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6492 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6493
6494 if (is_guest_mode(vcpu) &&
6495 nested_cpu_has_shadow_vmcs(vmcs12) &&
6496 vmcs12->vmcs_link_pointer != INVALID_GPA)
6497 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6498 }
6499
6500 if (vmx->nested.smm.vmxon)
6501 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6502
6503 if (vmx->nested.smm.guest_mode)
6504 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6505
6506 if (is_guest_mode(vcpu)) {
6507 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6508
6509 if (vmx->nested.nested_run_pending)
6510 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6511
6512 if (vmx->nested.mtf_pending)
6513 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6514
6515 if (nested_cpu_has_preemption_timer(vmcs12) &&
6516 vmx->nested.has_preemption_timer_deadline) {
6517 kvm_state.hdr.vmx.flags |=
6518 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6519 kvm_state.hdr.vmx.preemption_timer_deadline =
6520 vmx->nested.preemption_timer_deadline;
6521 }
6522 }
6523 }
6524
6525 if (user_data_size < kvm_state.size)
6526 goto out;
6527
6528 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6529 return -EFAULT;
6530
6531 if (!vmx_has_valid_vmcs12(vcpu))
6532 goto out;
6533
6534 /*
6535 * When running L2, the authoritative vmcs12 state is in the
6536 * vmcs02. When running L1, the authoritative vmcs12 state is
6537 * in the shadow or enlightened vmcs linked to vmcs01, unless
6538 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6539 * vmcs12 state is in the vmcs12 already.
6540 */
6541 if (is_guest_mode(vcpu)) {
6542 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6543 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6544 } else {
6545 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6546 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6547 if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6548 /*
6549 * L1 hypervisor is not obliged to keep eVMCS
6550 * clean fields data always up-to-date while
6551 * not in guest mode, 'hv_clean_fields' is only
6552 * supposed to be actual upon vmentry so we need
6553 * to ignore it here and do full copy.
6554 */
6555 copy_enlightened_to_vmcs12(vmx, 0);
6556 else if (enable_shadow_vmcs)
6557 copy_shadow_to_vmcs12(vmx);
6558 }
6559 }
6560
6561 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6562 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6563
6564 /*
6565 * Copy over the full allocated size of vmcs12 rather than just the size
6566 * of the struct.
6567 */
6568 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6569 return -EFAULT;
6570
6571 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6572 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6573 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6574 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6575 return -EFAULT;
6576 }
6577 out:
6578 return kvm_state.size;
6579 }
6580
vmx_leave_nested(struct kvm_vcpu * vcpu)6581 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6582 {
6583 if (is_guest_mode(vcpu)) {
6584 to_vmx(vcpu)->nested.nested_run_pending = 0;
6585 nested_vmx_vmexit(vcpu, -1, 0, 0);
6586 }
6587 free_nested(vcpu);
6588 }
6589
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6590 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6591 struct kvm_nested_state __user *user_kvm_nested_state,
6592 struct kvm_nested_state *kvm_state)
6593 {
6594 struct vcpu_vmx *vmx = to_vmx(vcpu);
6595 struct vmcs12 *vmcs12;
6596 enum vm_entry_failure_code ignored;
6597 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6598 &user_kvm_nested_state->data.vmx[0];
6599 int ret;
6600
6601 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6602 return -EINVAL;
6603
6604 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6605 if (kvm_state->hdr.vmx.smm.flags)
6606 return -EINVAL;
6607
6608 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6609 return -EINVAL;
6610
6611 /*
6612 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6613 * enable eVMCS capability on vCPU. However, since then
6614 * code was changed such that flag signals vmcs12 should
6615 * be copied into eVMCS in guest memory.
6616 *
6617 * To preserve backwards compatability, allow user
6618 * to set this flag even when there is no VMXON region.
6619 */
6620 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6621 return -EINVAL;
6622 } else {
6623 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6624 return -EINVAL;
6625
6626 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6627 return -EINVAL;
6628 }
6629
6630 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6631 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6632 return -EINVAL;
6633
6634 if (kvm_state->hdr.vmx.smm.flags &
6635 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6636 return -EINVAL;
6637
6638 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6639 return -EINVAL;
6640
6641 /*
6642 * SMM temporarily disables VMX, so we cannot be in guest mode,
6643 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6644 * must be zero.
6645 */
6646 if (is_smm(vcpu) ?
6647 (kvm_state->flags &
6648 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6649 : kvm_state->hdr.vmx.smm.flags)
6650 return -EINVAL;
6651
6652 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6653 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6654 return -EINVAL;
6655
6656 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6657 (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6658 !vmx->nested.enlightened_vmcs_enabled))
6659 return -EINVAL;
6660
6661 vmx_leave_nested(vcpu);
6662
6663 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6664 return 0;
6665
6666 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6667 ret = enter_vmx_operation(vcpu);
6668 if (ret)
6669 return ret;
6670
6671 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6672 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6673 /* See vmx_has_valid_vmcs12. */
6674 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6675 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6676 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6677 return -EINVAL;
6678 else
6679 return 0;
6680 }
6681
6682 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6683 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6684 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6685 return -EINVAL;
6686
6687 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6688 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6689 /*
6690 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6691 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6692 * restored yet. EVMCS will be mapped from
6693 * nested_get_vmcs12_pages().
6694 */
6695 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6696 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6697 } else {
6698 return -EINVAL;
6699 }
6700
6701 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6702 vmx->nested.smm.vmxon = true;
6703 vmx->nested.vmxon = false;
6704
6705 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6706 vmx->nested.smm.guest_mode = true;
6707 }
6708
6709 vmcs12 = get_vmcs12(vcpu);
6710 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6711 return -EFAULT;
6712
6713 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6714 return -EINVAL;
6715
6716 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6717 return 0;
6718
6719 vmx->nested.nested_run_pending =
6720 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6721
6722 vmx->nested.mtf_pending =
6723 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6724
6725 ret = -EINVAL;
6726 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6727 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6728 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6729
6730 if (kvm_state->size <
6731 sizeof(*kvm_state) +
6732 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6733 goto error_guest_mode;
6734
6735 if (copy_from_user(shadow_vmcs12,
6736 user_vmx_nested_state->shadow_vmcs12,
6737 sizeof(*shadow_vmcs12))) {
6738 ret = -EFAULT;
6739 goto error_guest_mode;
6740 }
6741
6742 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6743 !shadow_vmcs12->hdr.shadow_vmcs)
6744 goto error_guest_mode;
6745 }
6746
6747 vmx->nested.has_preemption_timer_deadline = false;
6748 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6749 vmx->nested.has_preemption_timer_deadline = true;
6750 vmx->nested.preemption_timer_deadline =
6751 kvm_state->hdr.vmx.preemption_timer_deadline;
6752 }
6753
6754 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6755 nested_vmx_check_host_state(vcpu, vmcs12) ||
6756 nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6757 goto error_guest_mode;
6758
6759 vmx->nested.dirty_vmcs12 = true;
6760 vmx->nested.force_msr_bitmap_recalc = true;
6761 ret = nested_vmx_enter_non_root_mode(vcpu, false);
6762 if (ret)
6763 goto error_guest_mode;
6764
6765 if (vmx->nested.mtf_pending)
6766 kvm_make_request(KVM_REQ_EVENT, vcpu);
6767
6768 return 0;
6769
6770 error_guest_mode:
6771 vmx->nested.nested_run_pending = 0;
6772 return ret;
6773 }
6774
nested_vmx_set_vmcs_shadowing_bitmap(void)6775 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6776 {
6777 if (enable_shadow_vmcs) {
6778 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6779 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6780 }
6781 }
6782
6783 /*
6784 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6785 * that madness to get the encoding for comparison.
6786 */
6787 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6788
nested_vmx_calc_vmcs_enum_msr(void)6789 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6790 {
6791 /*
6792 * Note these are the so called "index" of the VMCS field encoding, not
6793 * the index into vmcs12.
6794 */
6795 unsigned int max_idx, idx;
6796 int i;
6797
6798 /*
6799 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6800 * vmcs12, regardless of whether or not the associated feature is
6801 * exposed to L1. Simply find the field with the highest index.
6802 */
6803 max_idx = 0;
6804 for (i = 0; i < nr_vmcs12_fields; i++) {
6805 /* The vmcs12 table is very, very sparsely populated. */
6806 if (!vmcs12_field_offsets[i])
6807 continue;
6808
6809 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6810 if (idx > max_idx)
6811 max_idx = idx;
6812 }
6813
6814 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6815 }
6816
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6817 static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6818 struct nested_vmx_msrs *msrs)
6819 {
6820 msrs->pinbased_ctls_low =
6821 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6822
6823 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6824 msrs->pinbased_ctls_high &=
6825 PIN_BASED_EXT_INTR_MASK |
6826 PIN_BASED_NMI_EXITING |
6827 PIN_BASED_VIRTUAL_NMIS |
6828 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6829 msrs->pinbased_ctls_high |=
6830 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6831 PIN_BASED_VMX_PREEMPTION_TIMER;
6832 }
6833
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6834 static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6835 struct nested_vmx_msrs *msrs)
6836 {
6837 msrs->exit_ctls_low =
6838 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6839
6840 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6841 msrs->exit_ctls_high &=
6842 #ifdef CONFIG_X86_64
6843 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6844 #endif
6845 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6846 VM_EXIT_CLEAR_BNDCFGS;
6847 msrs->exit_ctls_high |=
6848 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6849 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6850 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6851 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6852
6853 /* We support free control of debug control saving. */
6854 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6855 }
6856
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6857 static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6858 struct nested_vmx_msrs *msrs)
6859 {
6860 msrs->entry_ctls_low =
6861 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6862
6863 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6864 msrs->entry_ctls_high &=
6865 #ifdef CONFIG_X86_64
6866 VM_ENTRY_IA32E_MODE |
6867 #endif
6868 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6869 msrs->entry_ctls_high |=
6870 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6871 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6872
6873 /* We support free control of debug control loading. */
6874 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6875 }
6876
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6877 static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6878 struct nested_vmx_msrs *msrs)
6879 {
6880 msrs->procbased_ctls_low =
6881 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6882
6883 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6884 msrs->procbased_ctls_high &=
6885 CPU_BASED_INTR_WINDOW_EXITING |
6886 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6887 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6888 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6889 CPU_BASED_CR3_STORE_EXITING |
6890 #ifdef CONFIG_X86_64
6891 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6892 #endif
6893 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6894 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6895 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6896 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6897 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6898 /*
6899 * We can allow some features even when not supported by the
6900 * hardware. For example, L1 can specify an MSR bitmap - and we
6901 * can use it to avoid exits to L1 - even when L0 runs L2
6902 * without MSR bitmaps.
6903 */
6904 msrs->procbased_ctls_high |=
6905 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6906 CPU_BASED_USE_MSR_BITMAPS;
6907
6908 /* We support free control of CR3 access interception. */
6909 msrs->procbased_ctls_low &=
6910 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6911 }
6912
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6913 static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6914 struct vmcs_config *vmcs_conf,
6915 struct nested_vmx_msrs *msrs)
6916 {
6917 msrs->secondary_ctls_low = 0;
6918
6919 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6920 msrs->secondary_ctls_high &=
6921 SECONDARY_EXEC_DESC |
6922 SECONDARY_EXEC_ENABLE_RDTSCP |
6923 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6924 SECONDARY_EXEC_WBINVD_EXITING |
6925 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6926 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6927 SECONDARY_EXEC_RDRAND_EXITING |
6928 SECONDARY_EXEC_ENABLE_INVPCID |
6929 SECONDARY_EXEC_ENABLE_VMFUNC |
6930 SECONDARY_EXEC_RDSEED_EXITING |
6931 SECONDARY_EXEC_ENABLE_XSAVES |
6932 SECONDARY_EXEC_TSC_SCALING |
6933 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6934
6935 /*
6936 * We can emulate "VMCS shadowing," even if the hardware
6937 * doesn't support it.
6938 */
6939 msrs->secondary_ctls_high |=
6940 SECONDARY_EXEC_SHADOW_VMCS;
6941
6942 if (enable_ept) {
6943 /* nested EPT: emulate EPT also to L1 */
6944 msrs->secondary_ctls_high |=
6945 SECONDARY_EXEC_ENABLE_EPT;
6946 msrs->ept_caps =
6947 VMX_EPT_PAGE_WALK_4_BIT |
6948 VMX_EPT_PAGE_WALK_5_BIT |
6949 VMX_EPTP_WB_BIT |
6950 VMX_EPT_INVEPT_BIT |
6951 VMX_EPT_EXECUTE_ONLY_BIT;
6952
6953 msrs->ept_caps &= ept_caps;
6954 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6955 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6956 VMX_EPT_1GB_PAGE_BIT;
6957 if (enable_ept_ad_bits) {
6958 msrs->secondary_ctls_high |=
6959 SECONDARY_EXEC_ENABLE_PML;
6960 msrs->ept_caps |= VMX_EPT_AD_BIT;
6961 }
6962
6963 /*
6964 * Advertise EPTP switching irrespective of hardware support,
6965 * KVM emulates it in software so long as VMFUNC is supported.
6966 */
6967 if (cpu_has_vmx_vmfunc())
6968 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6969 }
6970
6971 /*
6972 * Old versions of KVM use the single-context version without
6973 * checking for support, so declare that it is supported even
6974 * though it is treated as global context. The alternative is
6975 * not failing the single-context invvpid, and it is worse.
6976 */
6977 if (enable_vpid) {
6978 msrs->secondary_ctls_high |=
6979 SECONDARY_EXEC_ENABLE_VPID;
6980 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6981 VMX_VPID_EXTENT_SUPPORTED_MASK;
6982 }
6983
6984 if (enable_unrestricted_guest)
6985 msrs->secondary_ctls_high |=
6986 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6987
6988 if (flexpriority_enabled)
6989 msrs->secondary_ctls_high |=
6990 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6991
6992 if (enable_sgx)
6993 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6994 }
6995
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6996 static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6997 struct nested_vmx_msrs *msrs)
6998 {
6999 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7000 msrs->misc_low |=
7001 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7002 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7003 VMX_MISC_ACTIVITY_HLT |
7004 VMX_MISC_ACTIVITY_WAIT_SIPI;
7005 msrs->misc_high = 0;
7006 }
7007
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7008 static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7009 {
7010 /*
7011 * This MSR reports some information about VMX support. We
7012 * should return information about the VMX we emulate for the
7013 * guest, and the VMCS structure we give it - not about the
7014 * VMX support of the underlying hardware.
7015 */
7016 msrs->basic =
7017 VMCS12_REVISION |
7018 VMX_BASIC_TRUE_CTLS |
7019 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7020 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7021
7022 if (cpu_has_vmx_basic_inout())
7023 msrs->basic |= VMX_BASIC_INOUT;
7024 }
7025
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7026 static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7027 {
7028 /*
7029 * These MSRs specify bits which the guest must keep fixed on
7030 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7031 * We picked the standard core2 setting.
7032 */
7033 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7034 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7035 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7036 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7037
7038 /* These MSRs specify bits which the guest must keep fixed off. */
7039 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7040 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7041
7042 if (vmx_umip_emulated())
7043 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7044 }
7045
7046 /*
7047 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7048 * returned for the various VMX controls MSRs when nested VMX is enabled.
7049 * The same values should also be used to verify that vmcs12 control fields are
7050 * valid during nested entry from L1 to L2.
7051 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7052 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7053 * bit in the high half is on if the corresponding bit in the control field
7054 * may be on. See also vmx_control_verify().
7055 */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7056 void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7057 {
7058 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7059
7060 /*
7061 * Note that as a general rule, the high half of the MSRs (bits in
7062 * the control fields which may be 1) should be initialized by the
7063 * intersection of the underlying hardware's MSR (i.e., features which
7064 * can be supported) and the list of features we want to expose -
7065 * because they are known to be properly supported in our code.
7066 * Also, usually, the low half of the MSRs (bits which must be 1) can
7067 * be set to 0, meaning that L1 may turn off any of these bits. The
7068 * reason is that if one of these bits is necessary, it will appear
7069 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7070 * fields of vmcs01 and vmcs02, will turn these bits off - and
7071 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7072 * These rules have exceptions below.
7073 */
7074 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7075
7076 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7077
7078 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7079
7080 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7081
7082 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7083
7084 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7085
7086 nested_vmx_setup_basic(msrs);
7087
7088 nested_vmx_setup_cr_fixed(msrs);
7089
7090 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7091 }
7092
nested_vmx_hardware_unsetup(void)7093 void nested_vmx_hardware_unsetup(void)
7094 {
7095 int i;
7096
7097 if (enable_shadow_vmcs) {
7098 for (i = 0; i < VMX_BITMAP_NR; i++)
7099 free_page((unsigned long)vmx_bitmap[i]);
7100 }
7101 }
7102
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7103 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7104 {
7105 int i;
7106
7107 if (!cpu_has_vmx_shadow_vmcs())
7108 enable_shadow_vmcs = 0;
7109 if (enable_shadow_vmcs) {
7110 for (i = 0; i < VMX_BITMAP_NR; i++) {
7111 /*
7112 * The vmx_bitmap is not tied to a VM and so should
7113 * not be charged to a memcg.
7114 */
7115 vmx_bitmap[i] = (unsigned long *)
7116 __get_free_page(GFP_KERNEL);
7117 if (!vmx_bitmap[i]) {
7118 nested_vmx_hardware_unsetup();
7119 return -ENOMEM;
7120 }
7121 }
7122
7123 init_vmcs_shadow_fields();
7124 }
7125
7126 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7127 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7128 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7129 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7130 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7131 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7132 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7133 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7134 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7135 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7136 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7137 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7138
7139 return 0;
7140 }
7141
7142 struct kvm_x86_nested_ops vmx_nested_ops = {
7143 .leave_nested = vmx_leave_nested,
7144 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7145 .check_events = vmx_check_nested_events,
7146 .has_events = vmx_has_nested_events,
7147 .triple_fault = nested_vmx_triple_fault,
7148 .get_state = vmx_get_nested_state,
7149 .set_state = vmx_set_nested_state,
7150 .get_nested_state_pages = vmx_get_nested_state_pages,
7151 .write_log_dirty = nested_vmx_write_pml_buffer,
7152 .enable_evmcs = nested_enable_evmcs,
7153 .get_evmcs_version = nested_get_evmcs_version,
7154 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7155 };
7156