xref: /openbmc/u-boot/drivers/mtd/nand/raw/nand_util.c (revision 592cd5defd4f71d34ffcbd8dd3326bc10f662e20)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * drivers/mtd/nand/raw/nand_util.c
4   *
5   * Copyright (C) 2006 by Weiss-Electronic GmbH.
6   * All rights reserved.
7   *
8   * @author:	Guido Classen <clagix@gmail.com>
9   * @descr:	NAND Flash support
10   * @references: borrowed heavily from Linux mtd-utils code:
11   *		flash_eraseall.c by Arcom Control System Ltd
12   *		nandwrite.c by Steven J. Hill (sjhill@realitydiluted.com)
13   *			       and Thomas Gleixner (tglx@linutronix.de)
14   *
15   * Copyright (C) 2008 Nokia Corporation: drop_ffs() function by
16   * Artem Bityutskiy <dedekind1@gmail.com> from mtd-utils
17   *
18   * Copyright 2010 Freescale Semiconductor
19   */
20  
21  #include <common.h>
22  #include <command.h>
23  #include <watchdog.h>
24  #include <malloc.h>
25  #include <memalign.h>
26  #include <div64.h>
27  
28  #include <linux/errno.h>
29  #include <linux/mtd/mtd.h>
30  #include <nand.h>
31  #include <jffs2/jffs2.h>
32  
33  typedef struct erase_info	erase_info_t;
34  typedef struct mtd_info		mtd_info_t;
35  
36  /* support only for native endian JFFS2 */
37  #define cpu_to_je16(x) (x)
38  #define cpu_to_je32(x) (x)
39  
40  /**
41   * nand_erase_opts: - erase NAND flash with support for various options
42   *		      (jffs2 formatting)
43   *
44   * @param mtd		nand mtd instance to erase
45   * @param opts		options,  @see struct nand_erase_options
46   * @return		0 in case of success
47   *
48   * This code is ported from flash_eraseall.c from Linux mtd utils by
49   * Arcom Control System Ltd.
50   */
nand_erase_opts(struct mtd_info * mtd,const nand_erase_options_t * opts)51  int nand_erase_opts(struct mtd_info *mtd,
52  		    const nand_erase_options_t *opts)
53  {
54  	struct jffs2_unknown_node cleanmarker;
55  	erase_info_t erase;
56  	unsigned long erase_length, erased_length; /* in blocks */
57  	int result;
58  	int percent_complete = -1;
59  	const char *mtd_device = mtd->name;
60  	struct mtd_oob_ops oob_opts;
61  	struct nand_chip *chip = mtd_to_nand(mtd);
62  
63  	if ((opts->offset & (mtd->erasesize - 1)) != 0) {
64  		printf("Attempt to erase non block-aligned data\n");
65  		return -1;
66  	}
67  
68  	memset(&erase, 0, sizeof(erase));
69  	memset(&oob_opts, 0, sizeof(oob_opts));
70  
71  	erase.mtd = mtd;
72  	erase.len = mtd->erasesize;
73  	erase.addr = opts->offset;
74  	erase_length = lldiv(opts->length + mtd->erasesize - 1,
75  			     mtd->erasesize);
76  
77  	cleanmarker.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
78  	cleanmarker.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
79  	cleanmarker.totlen = cpu_to_je32(8);
80  
81  	/* scrub option allows to erase badblock. To prevent internal
82  	 * check from erase() method, set block check method to dummy
83  	 * and disable bad block table while erasing.
84  	 */
85  	if (opts->scrub) {
86  		erase.scrub = opts->scrub;
87  		/*
88  		 * We don't need the bad block table anymore...
89  		 * after scrub, there are no bad blocks left!
90  		 */
91  		if (chip->bbt) {
92  			kfree(chip->bbt);
93  		}
94  		chip->bbt = NULL;
95  		chip->options &= ~NAND_BBT_SCANNED;
96  	}
97  
98  	for (erased_length = 0;
99  	     erased_length < erase_length;
100  	     erase.addr += mtd->erasesize) {
101  
102  		WATCHDOG_RESET();
103  
104  		if (opts->lim && (erase.addr >= (opts->offset + opts->lim))) {
105  			puts("Size of erase exceeds limit\n");
106  			return -EFBIG;
107  		}
108  		if (!opts->scrub) {
109  			int ret = mtd_block_isbad(mtd, erase.addr);
110  			if (ret > 0) {
111  				if (!opts->quiet)
112  					printf("\rSkipping bad block at  "
113  					       "0x%08llx                 "
114  					       "                         \n",
115  					       erase.addr);
116  
117  				if (!opts->spread)
118  					erased_length++;
119  
120  				continue;
121  
122  			} else if (ret < 0) {
123  				printf("\n%s: MTD get bad block failed: %d\n",
124  				       mtd_device,
125  				       ret);
126  				return -1;
127  			}
128  		}
129  
130  		erased_length++;
131  
132  		result = mtd_erase(mtd, &erase);
133  		if (result != 0) {
134  			printf("\n%s: MTD Erase failure: %d\n",
135  			       mtd_device, result);
136  			continue;
137  		}
138  
139  		/* format for JFFS2 ? */
140  		if (opts->jffs2 && chip->ecc.layout->oobavail >= 8) {
141  			struct mtd_oob_ops ops;
142  			ops.ooblen = 8;
143  			ops.datbuf = NULL;
144  			ops.oobbuf = (uint8_t *)&cleanmarker;
145  			ops.ooboffs = 0;
146  			ops.mode = MTD_OPS_AUTO_OOB;
147  
148  			result = mtd_write_oob(mtd, erase.addr, &ops);
149  			if (result != 0) {
150  				printf("\n%s: MTD writeoob failure: %d\n",
151  				       mtd_device, result);
152  				continue;
153  			}
154  		}
155  
156  		if (!opts->quiet) {
157  			unsigned long long n = erased_length * 100ULL;
158  			int percent;
159  
160  			do_div(n, erase_length);
161  			percent = (int)n;
162  
163  			/* output progress message only at whole percent
164  			 * steps to reduce the number of messages printed
165  			 * on (slow) serial consoles
166  			 */
167  			if (percent != percent_complete) {
168  				percent_complete = percent;
169  
170  				printf("\rErasing at 0x%llx -- %3d%% complete.",
171  				       erase.addr, percent);
172  
173  				if (opts->jffs2 && result == 0)
174  					printf(" Cleanmarker written at 0x%llx.",
175  					       erase.addr);
176  			}
177  		}
178  	}
179  	if (!opts->quiet)
180  		printf("\n");
181  
182  	return 0;
183  }
184  
185  #ifdef CONFIG_CMD_NAND_LOCK_UNLOCK
186  
187  #define NAND_CMD_LOCK_TIGHT     0x2c
188  #define NAND_CMD_LOCK_STATUS    0x7a
189  
190  /******************************************************************************
191   * Support for locking / unlocking operations of some NAND devices
192   *****************************************************************************/
193  
194  /**
195   * nand_lock: Set all pages of NAND flash chip to the LOCK or LOCK-TIGHT
196   *	      state
197   *
198   * @param mtd		nand mtd instance
199   * @param tight		bring device in lock tight mode
200   *
201   * @return		0 on success, -1 in case of error
202   *
203   * The lock / lock-tight command only applies to the whole chip. To get some
204   * parts of the chip lock and others unlocked use the following sequence:
205   *
206   * - Lock all pages of the chip using nand_lock(mtd, 0) (or the lockpre pin)
207   * - Call nand_unlock() once for each consecutive area to be unlocked
208   * - If desired: Bring the chip to the lock-tight state using nand_lock(mtd, 1)
209   *
210   *   If the device is in lock-tight state software can't change the
211   *   current active lock/unlock state of all pages. nand_lock() / nand_unlock()
212   *   calls will fail. It is only posible to leave lock-tight state by
213   *   an hardware signal (low pulse on _WP pin) or by power down.
214   */
nand_lock(struct mtd_info * mtd,int tight)215  int nand_lock(struct mtd_info *mtd, int tight)
216  {
217  	int ret = 0;
218  	int status;
219  	struct nand_chip *chip = mtd_to_nand(mtd);
220  
221  	/* select the NAND device */
222  	chip->select_chip(mtd, 0);
223  
224  	/* check the Lock Tight Status */
225  	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, 0);
226  	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
227  		printf("nand_lock: Device is locked tight!\n");
228  		ret = -1;
229  		goto out;
230  	}
231  
232  	chip->cmdfunc(mtd,
233  		      (tight ? NAND_CMD_LOCK_TIGHT : NAND_CMD_LOCK),
234  		      -1, -1);
235  
236  	/* call wait ready function */
237  	status = chip->waitfunc(mtd, chip);
238  
239  	/* see if device thinks it succeeded */
240  	if (status & 0x01) {
241  		ret = -1;
242  	}
243  
244   out:
245  	/* de-select the NAND device */
246  	chip->select_chip(mtd, -1);
247  	return ret;
248  }
249  
250  /**
251   * nand_get_lock_status: - query current lock state from one page of NAND
252   *			   flash
253   *
254   * @param mtd		nand mtd instance
255   * @param offset	page address to query (must be page-aligned!)
256   *
257   * @return		-1 in case of error
258   *			>0 lock status:
259   *			  bitfield with the following combinations:
260   *			  NAND_LOCK_STATUS_TIGHT: page in tight state
261   *			  NAND_LOCK_STATUS_UNLOCK: page unlocked
262   *
263   */
nand_get_lock_status(struct mtd_info * mtd,loff_t offset)264  int nand_get_lock_status(struct mtd_info *mtd, loff_t offset)
265  {
266  	int ret = 0;
267  	int chipnr;
268  	int page;
269  	struct nand_chip *chip = mtd_to_nand(mtd);
270  
271  	/* select the NAND device */
272  	chipnr = (int)(offset >> chip->chip_shift);
273  	chip->select_chip(mtd, chipnr);
274  
275  
276  	if ((offset & (mtd->writesize - 1)) != 0) {
277  		printf("nand_get_lock_status: "
278  			"Start address must be beginning of "
279  			"nand page!\n");
280  		ret = -1;
281  		goto out;
282  	}
283  
284  	/* check the Lock Status */
285  	page = (int)(offset >> chip->page_shift);
286  	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
287  
288  	ret = chip->read_byte(mtd) & (NAND_LOCK_STATUS_TIGHT
289  					  | NAND_LOCK_STATUS_UNLOCK);
290  
291   out:
292  	/* de-select the NAND device */
293  	chip->select_chip(mtd, -1);
294  	return ret;
295  }
296  
297  /**
298   * nand_unlock: - Unlock area of NAND pages
299   *		  only one consecutive area can be unlocked at one time!
300   *
301   * @param mtd		nand mtd instance
302   * @param start		start byte address
303   * @param length	number of bytes to unlock (must be a multiple of
304   *			page size mtd->writesize)
305   * @param allexcept	if set, unlock everything not selected
306   *
307   * @return		0 on success, -1 in case of error
308   */
nand_unlock(struct mtd_info * mtd,loff_t start,size_t length,int allexcept)309  int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
310  	int allexcept)
311  {
312  	int ret = 0;
313  	int chipnr;
314  	int status;
315  	int page;
316  	struct nand_chip *chip = mtd_to_nand(mtd);
317  
318  	debug("nand_unlock%s: start: %08llx, length: %zd!\n",
319  		allexcept ? " (allexcept)" : "", start, length);
320  
321  	/* select the NAND device */
322  	chipnr = (int)(start >> chip->chip_shift);
323  	chip->select_chip(mtd, chipnr);
324  
325  	/* check the WP bit */
326  	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
327  	if (!(chip->read_byte(mtd) & NAND_STATUS_WP)) {
328  		printf("nand_unlock: Device is write protected!\n");
329  		ret = -1;
330  		goto out;
331  	}
332  
333  	/* check the Lock Tight Status */
334  	page = (int)(start >> chip->page_shift);
335  	chip->cmdfunc(mtd, NAND_CMD_LOCK_STATUS, -1, page & chip->pagemask);
336  	if (chip->read_byte(mtd) & NAND_LOCK_STATUS_TIGHT) {
337  		printf("nand_unlock: Device is locked tight!\n");
338  		ret = -1;
339  		goto out;
340  	}
341  
342  	if ((start & (mtd->erasesize - 1)) != 0) {
343  		printf("nand_unlock: Start address must be beginning of "
344  			"nand block!\n");
345  		ret = -1;
346  		goto out;
347  	}
348  
349  	if (length == 0 || (length & (mtd->erasesize - 1)) != 0) {
350  		printf("nand_unlock: Length must be a multiple of nand block "
351  			"size %08x!\n", mtd->erasesize);
352  		ret = -1;
353  		goto out;
354  	}
355  
356  	/*
357  	 * Set length so that the last address is set to the
358  	 * starting address of the last block
359  	 */
360  	length -= mtd->erasesize;
361  
362  	/* submit address of first page to unlock */
363  	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
364  
365  	/* submit ADDRESS of LAST page to unlock */
366  	page += (int)(length >> chip->page_shift);
367  
368  	/*
369  	 * Page addresses for unlocking are supposed to be block-aligned.
370  	 * At least some NAND chips use the low bit to indicate that the
371  	 * page range should be inverted.
372  	 */
373  	if (allexcept)
374  		page |= 1;
375  
376  	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1, page & chip->pagemask);
377  
378  	/* call wait ready function */
379  	status = chip->waitfunc(mtd, chip);
380  	/* see if device thinks it succeeded */
381  	if (status & 0x01) {
382  		/* there was an error */
383  		ret = -1;
384  		goto out;
385  	}
386  
387   out:
388  	/* de-select the NAND device */
389  	chip->select_chip(mtd, -1);
390  	return ret;
391  }
392  #endif
393  
394  /**
395   * check_skip_len
396   *
397   * Check if there are any bad blocks, and whether length including bad
398   * blocks fits into device
399   *
400   * @param mtd nand mtd instance
401   * @param offset offset in flash
402   * @param length image length
403   * @param used length of flash needed for the requested length
404   * @return 0 if the image fits and there are no bad blocks
405   *         1 if the image fits, but there are bad blocks
406   *        -1 if the image does not fit
407   */
check_skip_len(struct mtd_info * mtd,loff_t offset,size_t length,size_t * used)408  static int check_skip_len(struct mtd_info *mtd, loff_t offset, size_t length,
409  			  size_t *used)
410  {
411  	size_t len_excl_bad = 0;
412  	int ret = 0;
413  
414  	while (len_excl_bad < length) {
415  		size_t block_len, block_off;
416  		loff_t block_start;
417  
418  		if (offset >= mtd->size)
419  			return -1;
420  
421  		block_start = offset & ~(loff_t)(mtd->erasesize - 1);
422  		block_off = offset & (mtd->erasesize - 1);
423  		block_len = mtd->erasesize - block_off;
424  
425  		if (!nand_block_isbad(mtd, block_start))
426  			len_excl_bad += block_len;
427  		else
428  			ret = 1;
429  
430  		offset += block_len;
431  		*used += block_len;
432  	}
433  
434  	/* If the length is not a multiple of block_len, adjust. */
435  	if (len_excl_bad > length)
436  		*used -= (len_excl_bad - length);
437  
438  	return ret;
439  }
440  
441  #ifdef CONFIG_CMD_NAND_TRIMFFS
drop_ffs(const struct mtd_info * mtd,const u_char * buf,const size_t * len)442  static size_t drop_ffs(const struct mtd_info *mtd, const u_char *buf,
443  			const size_t *len)
444  {
445  	size_t l = *len;
446  	ssize_t i;
447  
448  	for (i = l - 1; i >= 0; i--)
449  		if (buf[i] != 0xFF)
450  			break;
451  
452  	/* The resulting length must be aligned to the minimum flash I/O size */
453  	l = i + 1;
454  	l = (l + mtd->writesize - 1) / mtd->writesize;
455  	l *=  mtd->writesize;
456  
457  	/*
458  	 * since the input length may be unaligned, prevent access past the end
459  	 * of the buffer
460  	 */
461  	return min(l, *len);
462  }
463  #endif
464  
465  /**
466   * nand_verify_page_oob:
467   *
468   * Verify a page of NAND flash, including the OOB.
469   * Reads page of NAND and verifies the contents and OOB against the
470   * values in ops.
471   *
472   * @param mtd		nand mtd instance
473   * @param ops		MTD operations, including data to verify
474   * @param ofs		offset in flash
475   * @return		0 in case of success
476   */
nand_verify_page_oob(struct mtd_info * mtd,struct mtd_oob_ops * ops,loff_t ofs)477  int nand_verify_page_oob(struct mtd_info *mtd, struct mtd_oob_ops *ops,
478  			 loff_t ofs)
479  {
480  	int rval;
481  	struct mtd_oob_ops vops;
482  	size_t verlen = mtd->writesize + mtd->oobsize;
483  
484  	memcpy(&vops, ops, sizeof(vops));
485  
486  	vops.datbuf = memalign(ARCH_DMA_MINALIGN, verlen);
487  
488  	if (!vops.datbuf)
489  		return -ENOMEM;
490  
491  	vops.oobbuf = vops.datbuf + mtd->writesize;
492  
493  	rval = mtd_read_oob(mtd, ofs, &vops);
494  	if (!rval)
495  		rval = memcmp(ops->datbuf, vops.datbuf, vops.len);
496  	if (!rval)
497  		rval = memcmp(ops->oobbuf, vops.oobbuf, vops.ooblen);
498  
499  	free(vops.datbuf);
500  
501  	return rval ? -EIO : 0;
502  }
503  
504  /**
505   * nand_verify:
506   *
507   * Verify a region of NAND flash.
508   * Reads NAND in page-sized chunks and verifies the contents against
509   * the contents of a buffer.  The offset into the NAND must be
510   * page-aligned, and the function doesn't handle skipping bad blocks.
511   *
512   * @param mtd		nand mtd instance
513   * @param ofs		offset in flash
514   * @param len		buffer length
515   * @param buf		buffer to read from
516   * @return		0 in case of success
517   */
nand_verify(struct mtd_info * mtd,loff_t ofs,size_t len,u_char * buf)518  int nand_verify(struct mtd_info *mtd, loff_t ofs, size_t len, u_char *buf)
519  {
520  	int rval = 0;
521  	size_t verofs;
522  	size_t verlen = mtd->writesize;
523  	uint8_t *verbuf = memalign(ARCH_DMA_MINALIGN, verlen);
524  
525  	if (!verbuf)
526  		return -ENOMEM;
527  
528  	/* Read the NAND back in page-size groups to limit malloc size */
529  	for (verofs = ofs; verofs < ofs + len;
530  	     verofs += verlen, buf += verlen) {
531  		verlen = min(mtd->writesize, (uint32_t)(ofs + len - verofs));
532  		rval = nand_read(mtd, verofs, &verlen, verbuf);
533  		if (!rval || (rval == -EUCLEAN))
534  			rval = memcmp(buf, verbuf, verlen);
535  
536  		if (rval)
537  			break;
538  	}
539  
540  	free(verbuf);
541  
542  	return rval ? -EIO : 0;
543  }
544  
545  
546  
547  /**
548   * nand_write_skip_bad:
549   *
550   * Write image to NAND flash.
551   * Blocks that are marked bad are skipped and the is written to the next
552   * block instead as long as the image is short enough to fit even after
553   * skipping the bad blocks.  Due to bad blocks we may not be able to
554   * perform the requested write.  In the case where the write would
555   * extend beyond the end of the NAND device, both length and actual (if
556   * not NULL) are set to 0.  In the case where the write would extend
557   * beyond the limit we are passed, length is set to 0 and actual is set
558   * to the required length.
559   *
560   * @param mtd		nand mtd instance
561   * @param offset	offset in flash
562   * @param length	buffer length
563   * @param actual	set to size required to write length worth of
564   *			buffer or 0 on error, if not NULL
565   * @param lim		maximum size that actual may be in order to not
566   *			exceed the buffer
567   * @param buffer        buffer to read from
568   * @param flags		flags modifying the behaviour of the write to NAND
569   * @return		0 in case of success
570   */
nand_write_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer,int flags)571  int nand_write_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
572  			size_t *actual, loff_t lim, u_char *buffer, int flags)
573  {
574  	int rval = 0, blocksize;
575  	size_t left_to_write = *length;
576  	size_t used_for_write = 0;
577  	u_char *p_buffer = buffer;
578  	int need_skip;
579  
580  	if (actual)
581  		*actual = 0;
582  
583  	blocksize = mtd->erasesize;
584  
585  	/*
586  	 * nand_write() handles unaligned, partial page writes.
587  	 *
588  	 * We allow length to be unaligned, for convenience in
589  	 * using the $filesize variable.
590  	 *
591  	 * However, starting at an unaligned offset makes the
592  	 * semantics of bad block skipping ambiguous (really,
593  	 * you should only start a block skipping access at a
594  	 * partition boundary).  So don't try to handle that.
595  	 */
596  	if ((offset & (mtd->writesize - 1)) != 0) {
597  		printf("Attempt to write non page-aligned data\n");
598  		*length = 0;
599  		return -EINVAL;
600  	}
601  
602  	need_skip = check_skip_len(mtd, offset, *length, &used_for_write);
603  
604  	if (actual)
605  		*actual = used_for_write;
606  
607  	if (need_skip < 0) {
608  		printf("Attempt to write outside the flash area\n");
609  		*length = 0;
610  		return -EINVAL;
611  	}
612  
613  	if (used_for_write > lim) {
614  		puts("Size of write exceeds partition or device limit\n");
615  		*length = 0;
616  		return -EFBIG;
617  	}
618  
619  	if (!need_skip && !(flags & WITH_DROP_FFS)) {
620  		rval = nand_write(mtd, offset, length, buffer);
621  
622  		if ((flags & WITH_WR_VERIFY) && !rval)
623  			rval = nand_verify(mtd, offset, *length, buffer);
624  
625  		if (rval == 0)
626  			return 0;
627  
628  		*length = 0;
629  		printf("NAND write to offset %llx failed %d\n",
630  			offset, rval);
631  		return rval;
632  	}
633  
634  	while (left_to_write > 0) {
635  		size_t block_offset = offset & (mtd->erasesize - 1);
636  		size_t write_size, truncated_write_size;
637  
638  		WATCHDOG_RESET();
639  
640  		if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
641  			printf("Skip bad block 0x%08llx\n",
642  				offset & ~(mtd->erasesize - 1));
643  			offset += mtd->erasesize - block_offset;
644  			continue;
645  		}
646  
647  		if (left_to_write < (blocksize - block_offset))
648  			write_size = left_to_write;
649  		else
650  			write_size = blocksize - block_offset;
651  
652  		truncated_write_size = write_size;
653  #ifdef CONFIG_CMD_NAND_TRIMFFS
654  		if (flags & WITH_DROP_FFS)
655  			truncated_write_size = drop_ffs(mtd, p_buffer,
656  					&write_size);
657  #endif
658  
659  		rval = nand_write(mtd, offset, &truncated_write_size,
660  				p_buffer);
661  
662  		if ((flags & WITH_WR_VERIFY) && !rval)
663  			rval = nand_verify(mtd, offset,
664  				truncated_write_size, p_buffer);
665  
666  		offset += write_size;
667  		p_buffer += write_size;
668  
669  		if (rval != 0) {
670  			printf("NAND write to offset %llx failed %d\n",
671  				offset, rval);
672  			*length -= left_to_write;
673  			return rval;
674  		}
675  
676  		left_to_write -= write_size;
677  	}
678  
679  	return 0;
680  }
681  
682  /**
683   * nand_read_skip_bad:
684   *
685   * Read image from NAND flash.
686   * Blocks that are marked bad are skipped and the next block is read
687   * instead as long as the image is short enough to fit even after
688   * skipping the bad blocks.  Due to bad blocks we may not be able to
689   * perform the requested read.  In the case where the read would extend
690   * beyond the end of the NAND device, both length and actual (if not
691   * NULL) are set to 0.  In the case where the read would extend beyond
692   * the limit we are passed, length is set to 0 and actual is set to the
693   * required length.
694   *
695   * @param mtd nand mtd instance
696   * @param offset offset in flash
697   * @param length buffer length, on return holds number of read bytes
698   * @param actual set to size required to read length worth of buffer or 0
699   * on error, if not NULL
700   * @param lim maximum size that actual may be in order to not exceed the
701   * buffer
702   * @param buffer buffer to write to
703   * @return 0 in case of success
704   */
nand_read_skip_bad(struct mtd_info * mtd,loff_t offset,size_t * length,size_t * actual,loff_t lim,u_char * buffer)705  int nand_read_skip_bad(struct mtd_info *mtd, loff_t offset, size_t *length,
706  		       size_t *actual, loff_t lim, u_char *buffer)
707  {
708  	int rval;
709  	size_t left_to_read = *length;
710  	size_t used_for_read = 0;
711  	u_char *p_buffer = buffer;
712  	int need_skip;
713  
714  	if ((offset & (mtd->writesize - 1)) != 0) {
715  		printf("Attempt to read non page-aligned data\n");
716  		*length = 0;
717  		if (actual)
718  			*actual = 0;
719  		return -EINVAL;
720  	}
721  
722  	need_skip = check_skip_len(mtd, offset, *length, &used_for_read);
723  
724  	if (actual)
725  		*actual = used_for_read;
726  
727  	if (need_skip < 0) {
728  		printf("Attempt to read outside the flash area\n");
729  		*length = 0;
730  		return -EINVAL;
731  	}
732  
733  	if (used_for_read > lim) {
734  		puts("Size of read exceeds partition or device limit\n");
735  		*length = 0;
736  		return -EFBIG;
737  	}
738  
739  	if (!need_skip) {
740  		rval = nand_read(mtd, offset, length, buffer);
741  		if (!rval || rval == -EUCLEAN)
742  			return 0;
743  
744  		*length = 0;
745  		printf("NAND read from offset %llx failed %d\n",
746  			offset, rval);
747  		return rval;
748  	}
749  
750  	while (left_to_read > 0) {
751  		size_t block_offset = offset & (mtd->erasesize - 1);
752  		size_t read_length;
753  
754  		WATCHDOG_RESET();
755  
756  		if (nand_block_isbad(mtd, offset & ~(mtd->erasesize - 1))) {
757  			printf("Skipping bad block 0x%08llx\n",
758  				offset & ~(mtd->erasesize - 1));
759  			offset += mtd->erasesize - block_offset;
760  			continue;
761  		}
762  
763  		if (left_to_read < (mtd->erasesize - block_offset))
764  			read_length = left_to_read;
765  		else
766  			read_length = mtd->erasesize - block_offset;
767  
768  		rval = nand_read(mtd, offset, &read_length, p_buffer);
769  		if (rval && rval != -EUCLEAN) {
770  			printf("NAND read from offset %llx failed %d\n",
771  				offset, rval);
772  			*length -= left_to_read;
773  			return rval;
774  		}
775  
776  		left_to_read -= read_length;
777  		offset       += read_length;
778  		p_buffer     += read_length;
779  	}
780  
781  	return 0;
782  }
783  
784  #ifdef CONFIG_CMD_NAND_TORTURE
785  
786  /**
787   * check_pattern:
788   *
789   * Check if buffer contains only a certain byte pattern.
790   *
791   * @param buf buffer to check
792   * @param patt the pattern to check
793   * @param size buffer size in bytes
794   * @return 1 if there are only patt bytes in buf
795   *         0 if something else was found
796   */
check_pattern(const u_char * buf,u_char patt,int size)797  static int check_pattern(const u_char *buf, u_char patt, int size)
798  {
799  	int i;
800  
801  	for (i = 0; i < size; i++)
802  		if (buf[i] != patt)
803  			return 0;
804  	return 1;
805  }
806  
807  /**
808   * nand_torture:
809   *
810   * Torture a block of NAND flash.
811   * This is useful to determine if a block that caused a write error is still
812   * good or should be marked as bad.
813   *
814   * @param mtd nand mtd instance
815   * @param offset offset in flash
816   * @return 0 if the block is still good
817   */
nand_torture(struct mtd_info * mtd,loff_t offset)818  int nand_torture(struct mtd_info *mtd, loff_t offset)
819  {
820  	u_char patterns[] = {0xa5, 0x5a, 0x00};
821  	struct erase_info instr = {
822  		.mtd = mtd,
823  		.addr = offset,
824  		.len = mtd->erasesize,
825  	};
826  	size_t retlen;
827  	int err, ret = -1, i, patt_count;
828  	u_char *buf;
829  
830  	if ((offset & (mtd->erasesize - 1)) != 0) {
831  		puts("Attempt to torture a block at a non block-aligned offset\n");
832  		return -EINVAL;
833  	}
834  
835  	if (offset + mtd->erasesize > mtd->size) {
836  		puts("Attempt to torture a block outside the flash area\n");
837  		return -EINVAL;
838  	}
839  
840  	patt_count = ARRAY_SIZE(patterns);
841  
842  	buf = malloc_cache_aligned(mtd->erasesize);
843  	if (buf == NULL) {
844  		puts("Out of memory for erase block buffer\n");
845  		return -ENOMEM;
846  	}
847  
848  	for (i = 0; i < patt_count; i++) {
849  		err = mtd_erase(mtd, &instr);
850  		if (err) {
851  			printf("%s: erase() failed for block at 0x%llx: %d\n",
852  				mtd->name, instr.addr, err);
853  			goto out;
854  		}
855  
856  		/* Make sure the block contains only 0xff bytes */
857  		err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
858  		if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
859  			printf("%s: read() failed for block at 0x%llx: %d\n",
860  				mtd->name, instr.addr, err);
861  			goto out;
862  		}
863  
864  		err = check_pattern(buf, 0xff, mtd->erasesize);
865  		if (!err) {
866  			printf("Erased block at 0x%llx, but a non-0xff byte was found\n",
867  				offset);
868  			ret = -EIO;
869  			goto out;
870  		}
871  
872  		/* Write a pattern and check it */
873  		memset(buf, patterns[i], mtd->erasesize);
874  		err = mtd_write(mtd, offset, mtd->erasesize, &retlen, buf);
875  		if (err || retlen != mtd->erasesize) {
876  			printf("%s: write() failed for block at 0x%llx: %d\n",
877  				mtd->name, instr.addr, err);
878  			goto out;
879  		}
880  
881  		err = mtd_read(mtd, offset, mtd->erasesize, &retlen, buf);
882  		if ((err && err != -EUCLEAN) || retlen != mtd->erasesize) {
883  			printf("%s: read() failed for block at 0x%llx: %d\n",
884  				mtd->name, instr.addr, err);
885  			goto out;
886  		}
887  
888  		err = check_pattern(buf, patterns[i], mtd->erasesize);
889  		if (!err) {
890  			printf("Pattern 0x%.2x checking failed for block at "
891  					"0x%llx\n", patterns[i], offset);
892  			ret = -EIO;
893  			goto out;
894  		}
895  	}
896  
897  	ret = 0;
898  
899  out:
900  	free(buf);
901  	return ret;
902  }
903  
904  #endif
905