xref: /openbmc/linux/virt/kvm/kvm_main.c (revision 34d6f206a88c2651d216bd3487ac956a40b2ba8e)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * This module enables machines with Intel VT-x extensions to run virtual
6   * machines without emulation or binary translation.
7   *
8   * Copyright (C) 2006 Qumranet, Inc.
9   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10   *
11   * Authors:
12   *   Avi Kivity   <avi@qumranet.com>
13   *   Yaniv Kamay  <yaniv@qumranet.com>
14   */
15  
16  #include <kvm/iodev.h>
17  
18  #include <linux/kvm_host.h>
19  #include <linux/kvm.h>
20  #include <linux/module.h>
21  #include <linux/errno.h>
22  #include <linux/percpu.h>
23  #include <linux/mm.h>
24  #include <linux/miscdevice.h>
25  #include <linux/vmalloc.h>
26  #include <linux/reboot.h>
27  #include <linux/debugfs.h>
28  #include <linux/highmem.h>
29  #include <linux/file.h>
30  #include <linux/syscore_ops.h>
31  #include <linux/cpu.h>
32  #include <linux/sched/signal.h>
33  #include <linux/sched/mm.h>
34  #include <linux/sched/stat.h>
35  #include <linux/cpumask.h>
36  #include <linux/smp.h>
37  #include <linux/anon_inodes.h>
38  #include <linux/profile.h>
39  #include <linux/kvm_para.h>
40  #include <linux/pagemap.h>
41  #include <linux/mman.h>
42  #include <linux/swap.h>
43  #include <linux/bitops.h>
44  #include <linux/spinlock.h>
45  #include <linux/compat.h>
46  #include <linux/srcu.h>
47  #include <linux/hugetlb.h>
48  #include <linux/slab.h>
49  #include <linux/sort.h>
50  #include <linux/bsearch.h>
51  #include <linux/io.h>
52  #include <linux/lockdep.h>
53  #include <linux/kthread.h>
54  #include <linux/suspend.h>
55  
56  #include <asm/processor.h>
57  #include <asm/ioctl.h>
58  #include <linux/uaccess.h>
59  
60  #include "coalesced_mmio.h"
61  #include "async_pf.h"
62  #include "kvm_mm.h"
63  #include "vfio.h"
64  
65  #include <trace/events/ipi.h>
66  
67  #define CREATE_TRACE_POINTS
68  #include <trace/events/kvm.h>
69  
70  #include <linux/kvm_dirty_ring.h>
71  
72  
73  /* Worst case buffer size needed for holding an integer. */
74  #define ITOA_MAX_LEN 12
75  
76  MODULE_AUTHOR("Qumranet");
77  MODULE_LICENSE("GPL");
78  
79  /* Architectures should define their poll value according to the halt latency */
80  unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81  module_param(halt_poll_ns, uint, 0644);
82  EXPORT_SYMBOL_GPL(halt_poll_ns);
83  
84  /* Default doubles per-vcpu halt_poll_ns. */
85  unsigned int halt_poll_ns_grow = 2;
86  module_param(halt_poll_ns_grow, uint, 0644);
87  EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88  
89  /* The start value to grow halt_poll_ns from */
90  unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91  module_param(halt_poll_ns_grow_start, uint, 0644);
92  EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93  
94  /* Default resets per-vcpu halt_poll_ns . */
95  unsigned int halt_poll_ns_shrink;
96  module_param(halt_poll_ns_shrink, uint, 0644);
97  EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98  
99  /*
100   * Ordering of locks:
101   *
102   *	kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103   */
104  
105  DEFINE_MUTEX(kvm_lock);
106  LIST_HEAD(vm_list);
107  
108  static struct kmem_cache *kvm_vcpu_cache;
109  
110  static __read_mostly struct preempt_ops kvm_preempt_ops;
111  static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112  
113  struct dentry *kvm_debugfs_dir;
114  EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115  
116  static const struct file_operations stat_fops_per_vm;
117  
118  static struct file_operations kvm_chardev_ops;
119  
120  static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121  			   unsigned long arg);
122  #ifdef CONFIG_KVM_COMPAT
123  static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124  				  unsigned long arg);
125  #define KVM_COMPAT(c)	.compat_ioctl	= (c)
126  #else
127  /*
128   * For architectures that don't implement a compat infrastructure,
129   * adopt a double line of defense:
130   * - Prevent a compat task from opening /dev/kvm
131   * - If the open has been done by a 64bit task, and the KVM fd
132   *   passed to a compat task, let the ioctls fail.
133   */
kvm_no_compat_ioctl(struct file * file,unsigned int ioctl,unsigned long arg)134  static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135  				unsigned long arg) { return -EINVAL; }
136  
kvm_no_compat_open(struct inode * inode,struct file * file)137  static int kvm_no_compat_open(struct inode *inode, struct file *file)
138  {
139  	return is_compat_task() ? -ENODEV : 0;
140  }
141  #define KVM_COMPAT(c)	.compat_ioctl	= kvm_no_compat_ioctl,	\
142  			.open		= kvm_no_compat_open
143  #endif
144  static int hardware_enable_all(void);
145  static void hardware_disable_all(void);
146  
147  static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148  
149  #define KVM_EVENT_CREATE_VM 0
150  #define KVM_EVENT_DESTROY_VM 1
151  static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152  static unsigned long long kvm_createvm_count;
153  static unsigned long long kvm_active_vms;
154  
155  static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156  
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)157  __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
158  {
159  }
160  
kvm_is_zone_device_page(struct page * page)161  bool kvm_is_zone_device_page(struct page *page)
162  {
163  	/*
164  	 * The metadata used by is_zone_device_page() to determine whether or
165  	 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
166  	 * the device has been pinned, e.g. by get_user_pages().  WARN if the
167  	 * page_count() is zero to help detect bad usage of this helper.
168  	 */
169  	if (WARN_ON_ONCE(!page_count(page)))
170  		return false;
171  
172  	return is_zone_device_page(page);
173  }
174  
175  /*
176   * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
177   * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
178   * is likely incomplete, it has been compiled purely through people wanting to
179   * back guest with a certain type of memory and encountering issues.
180   */
kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)181  struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
182  {
183  	struct page *page;
184  
185  	if (!pfn_valid(pfn))
186  		return NULL;
187  
188  	page = pfn_to_page(pfn);
189  	if (!PageReserved(page))
190  		return page;
191  
192  	/* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
193  	if (is_zero_pfn(pfn))
194  		return page;
195  
196  	/*
197  	 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
198  	 * perspective they are "normal" pages, albeit with slightly different
199  	 * usage rules.
200  	 */
201  	if (kvm_is_zone_device_page(page))
202  		return page;
203  
204  	return NULL;
205  }
206  
207  /*
208   * Switches to specified vcpu, until a matching vcpu_put()
209   */
vcpu_load(struct kvm_vcpu * vcpu)210  void vcpu_load(struct kvm_vcpu *vcpu)
211  {
212  	int cpu = get_cpu();
213  
214  	__this_cpu_write(kvm_running_vcpu, vcpu);
215  	preempt_notifier_register(&vcpu->preempt_notifier);
216  	kvm_arch_vcpu_load(vcpu, cpu);
217  	put_cpu();
218  }
219  EXPORT_SYMBOL_GPL(vcpu_load);
220  
vcpu_put(struct kvm_vcpu * vcpu)221  void vcpu_put(struct kvm_vcpu *vcpu)
222  {
223  	preempt_disable();
224  	kvm_arch_vcpu_put(vcpu);
225  	preempt_notifier_unregister(&vcpu->preempt_notifier);
226  	__this_cpu_write(kvm_running_vcpu, NULL);
227  	preempt_enable();
228  }
229  EXPORT_SYMBOL_GPL(vcpu_put);
230  
231  /* TODO: merge with kvm_arch_vcpu_should_kick */
kvm_request_needs_ipi(struct kvm_vcpu * vcpu,unsigned req)232  static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
233  {
234  	int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235  
236  	/*
237  	 * We need to wait for the VCPU to reenable interrupts and get out of
238  	 * READING_SHADOW_PAGE_TABLES mode.
239  	 */
240  	if (req & KVM_REQUEST_WAIT)
241  		return mode != OUTSIDE_GUEST_MODE;
242  
243  	/*
244  	 * Need to kick a running VCPU, but otherwise there is nothing to do.
245  	 */
246  	return mode == IN_GUEST_MODE;
247  }
248  
ack_kick(void * _completed)249  static void ack_kick(void *_completed)
250  {
251  }
252  
kvm_kick_many_cpus(struct cpumask * cpus,bool wait)253  static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
254  {
255  	if (cpumask_empty(cpus))
256  		return false;
257  
258  	smp_call_function_many(cpus, ack_kick, NULL, wait);
259  	return true;
260  }
261  
kvm_make_vcpu_request(struct kvm_vcpu * vcpu,unsigned int req,struct cpumask * tmp,int current_cpu)262  static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
263  				  struct cpumask *tmp, int current_cpu)
264  {
265  	int cpu;
266  
267  	if (likely(!(req & KVM_REQUEST_NO_ACTION)))
268  		__kvm_make_request(req, vcpu);
269  
270  	if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
271  		return;
272  
273  	/*
274  	 * Note, the vCPU could get migrated to a different pCPU at any point
275  	 * after kvm_request_needs_ipi(), which could result in sending an IPI
276  	 * to the previous pCPU.  But, that's OK because the purpose of the IPI
277  	 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
278  	 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
279  	 * after this point is also OK, as the requirement is only that KVM wait
280  	 * for vCPUs that were reading SPTEs _before_ any changes were
281  	 * finalized. See kvm_vcpu_kick() for more details on handling requests.
282  	 */
283  	if (kvm_request_needs_ipi(vcpu, req)) {
284  		cpu = READ_ONCE(vcpu->cpu);
285  		if (cpu != -1 && cpu != current_cpu)
286  			__cpumask_set_cpu(cpu, tmp);
287  	}
288  }
289  
kvm_make_vcpus_request_mask(struct kvm * kvm,unsigned int req,unsigned long * vcpu_bitmap)290  bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
291  				 unsigned long *vcpu_bitmap)
292  {
293  	struct kvm_vcpu *vcpu;
294  	struct cpumask *cpus;
295  	int i, me;
296  	bool called;
297  
298  	me = get_cpu();
299  
300  	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301  	cpumask_clear(cpus);
302  
303  	for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
304  		vcpu = kvm_get_vcpu(kvm, i);
305  		if (!vcpu)
306  			continue;
307  		kvm_make_vcpu_request(vcpu, req, cpus, me);
308  	}
309  
310  	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
311  	put_cpu();
312  
313  	return called;
314  }
315  
kvm_make_all_cpus_request_except(struct kvm * kvm,unsigned int req,struct kvm_vcpu * except)316  bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
317  				      struct kvm_vcpu *except)
318  {
319  	struct kvm_vcpu *vcpu;
320  	struct cpumask *cpus;
321  	unsigned long i;
322  	bool called;
323  	int me;
324  
325  	me = get_cpu();
326  
327  	cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328  	cpumask_clear(cpus);
329  
330  	kvm_for_each_vcpu(i, vcpu, kvm) {
331  		if (vcpu == except)
332  			continue;
333  		kvm_make_vcpu_request(vcpu, req, cpus, me);
334  	}
335  
336  	called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
337  	put_cpu();
338  
339  	return called;
340  }
341  
kvm_make_all_cpus_request(struct kvm * kvm,unsigned int req)342  bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
343  {
344  	return kvm_make_all_cpus_request_except(kvm, req, NULL);
345  }
346  EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
347  
kvm_flush_remote_tlbs(struct kvm * kvm)348  void kvm_flush_remote_tlbs(struct kvm *kvm)
349  {
350  	++kvm->stat.generic.remote_tlb_flush_requests;
351  
352  	/*
353  	 * We want to publish modifications to the page tables before reading
354  	 * mode. Pairs with a memory barrier in arch-specific code.
355  	 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
356  	 * and smp_mb in walk_shadow_page_lockless_begin/end.
357  	 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
358  	 *
359  	 * There is already an smp_mb__after_atomic() before
360  	 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361  	 * barrier here.
362  	 */
363  	if (!kvm_arch_flush_remote_tlbs(kvm)
364  	    || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
365  		++kvm->stat.generic.remote_tlb_flush;
366  }
367  EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
368  
kvm_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)369  void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
370  {
371  	if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
372  		return;
373  
374  	/*
375  	 * Fall back to a flushing entire TLBs if the architecture range-based
376  	 * TLB invalidation is unsupported or can't be performed for whatever
377  	 * reason.
378  	 */
379  	kvm_flush_remote_tlbs(kvm);
380  }
381  
kvm_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)382  void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
383  				   const struct kvm_memory_slot *memslot)
384  {
385  	/*
386  	 * All current use cases for flushing the TLBs for a specific memslot
387  	 * are related to dirty logging, and many do the TLB flush out of
388  	 * mmu_lock. The interaction between the various operations on memslot
389  	 * must be serialized by slots_locks to ensure the TLB flush from one
390  	 * operation is observed by any other operation on the same memslot.
391  	 */
392  	lockdep_assert_held(&kvm->slots_lock);
393  	kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
394  }
395  
kvm_flush_shadow_all(struct kvm * kvm)396  static void kvm_flush_shadow_all(struct kvm *kvm)
397  {
398  	kvm_arch_flush_shadow_all(kvm);
399  	kvm_arch_guest_memory_reclaimed(kvm);
400  }
401  
402  #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache * mc,gfp_t gfp_flags)403  static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404  					       gfp_t gfp_flags)
405  {
406  	gfp_flags |= mc->gfp_zero;
407  
408  	if (mc->kmem_cache)
409  		return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
410  	else
411  		return (void *)__get_free_page(gfp_flags);
412  }
413  
__kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int capacity,int min)414  int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
415  {
416  	gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
417  	void *obj;
418  
419  	if (mc->nobjs >= min)
420  		return 0;
421  
422  	if (unlikely(!mc->objects)) {
423  		if (WARN_ON_ONCE(!capacity))
424  			return -EIO;
425  
426  		mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
427  		if (!mc->objects)
428  			return -ENOMEM;
429  
430  		mc->capacity = capacity;
431  	}
432  
433  	/* It is illegal to request a different capacity across topups. */
434  	if (WARN_ON_ONCE(mc->capacity != capacity))
435  		return -EIO;
436  
437  	while (mc->nobjs < mc->capacity) {
438  		obj = mmu_memory_cache_alloc_obj(mc, gfp);
439  		if (!obj)
440  			return mc->nobjs >= min ? 0 : -ENOMEM;
441  		mc->objects[mc->nobjs++] = obj;
442  	}
443  	return 0;
444  }
445  
kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache * mc,int min)446  int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
447  {
448  	return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449  }
450  
kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache * mc)451  int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
452  {
453  	return mc->nobjs;
454  }
455  
kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache * mc)456  void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
457  {
458  	while (mc->nobjs) {
459  		if (mc->kmem_cache)
460  			kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
461  		else
462  			free_page((unsigned long)mc->objects[--mc->nobjs]);
463  	}
464  
465  	kvfree(mc->objects);
466  
467  	mc->objects = NULL;
468  	mc->capacity = 0;
469  }
470  
kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache * mc)471  void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
472  {
473  	void *p;
474  
475  	if (WARN_ON(!mc->nobjs))
476  		p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
477  	else
478  		p = mc->objects[--mc->nobjs];
479  	BUG_ON(!p);
480  	return p;
481  }
482  #endif
483  
kvm_vcpu_init(struct kvm_vcpu * vcpu,struct kvm * kvm,unsigned id)484  static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
485  {
486  	mutex_init(&vcpu->mutex);
487  	vcpu->cpu = -1;
488  	vcpu->kvm = kvm;
489  	vcpu->vcpu_id = id;
490  	vcpu->pid = NULL;
491  #ifndef __KVM_HAVE_ARCH_WQP
492  	rcuwait_init(&vcpu->wait);
493  #endif
494  	kvm_async_pf_vcpu_init(vcpu);
495  
496  	kvm_vcpu_set_in_spin_loop(vcpu, false);
497  	kvm_vcpu_set_dy_eligible(vcpu, false);
498  	vcpu->preempted = false;
499  	vcpu->ready = false;
500  	preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
501  	vcpu->last_used_slot = NULL;
502  
503  	/* Fill the stats id string for the vcpu */
504  	snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
505  		 task_pid_nr(current), id);
506  }
507  
kvm_vcpu_destroy(struct kvm_vcpu * vcpu)508  static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
509  {
510  	kvm_arch_vcpu_destroy(vcpu);
511  	kvm_dirty_ring_free(&vcpu->dirty_ring);
512  
513  	/*
514  	 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
515  	 * the vcpu->pid pointer, and at destruction time all file descriptors
516  	 * are already gone.
517  	 */
518  	put_pid(rcu_dereference_protected(vcpu->pid, 1));
519  
520  	free_page((unsigned long)vcpu->run);
521  	kmem_cache_free(kvm_vcpu_cache, vcpu);
522  }
523  
kvm_destroy_vcpus(struct kvm * kvm)524  void kvm_destroy_vcpus(struct kvm *kvm)
525  {
526  	unsigned long i;
527  	struct kvm_vcpu *vcpu;
528  
529  	kvm_for_each_vcpu(i, vcpu, kvm) {
530  		kvm_vcpu_destroy(vcpu);
531  		xa_erase(&kvm->vcpu_array, i);
532  	}
533  
534  	atomic_set(&kvm->online_vcpus, 0);
535  }
536  EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
537  
538  #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_to_kvm(struct mmu_notifier * mn)539  static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
540  {
541  	return container_of(mn, struct kvm, mmu_notifier);
542  }
543  
544  typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
545  
546  typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
547  			     unsigned long end);
548  
549  typedef void (*on_unlock_fn_t)(struct kvm *kvm);
550  
551  struct kvm_hva_range {
552  	unsigned long start;
553  	unsigned long end;
554  	union kvm_mmu_notifier_arg arg;
555  	hva_handler_t handler;
556  	on_lock_fn_t on_lock;
557  	on_unlock_fn_t on_unlock;
558  	bool flush_on_ret;
559  	bool may_block;
560  };
561  
562  /*
563   * Use a dedicated stub instead of NULL to indicate that there is no callback
564   * function/handler.  The compiler technically can't guarantee that a real
565   * function will have a non-zero address, and so it will generate code to
566   * check for !NULL, whereas comparing against a stub will be elided at compile
567   * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
568   */
kvm_null_fn(void)569  static void kvm_null_fn(void)
570  {
571  
572  }
573  #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
574  
575  static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
576  
577  /* Iterate over each memslot intersecting [start, last] (inclusive) range */
578  #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)	     \
579  	for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
580  	     node;							     \
581  	     node = interval_tree_iter_next(node, start, last))	     \
582  
__kvm_handle_hva_range(struct kvm * kvm,const struct kvm_hva_range * range)583  static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
584  						  const struct kvm_hva_range *range)
585  {
586  	bool ret = false, locked = false;
587  	struct kvm_gfn_range gfn_range;
588  	struct kvm_memory_slot *slot;
589  	struct kvm_memslots *slots;
590  	int i, idx;
591  
592  	if (WARN_ON_ONCE(range->end <= range->start))
593  		return 0;
594  
595  	/* A null handler is allowed if and only if on_lock() is provided. */
596  	if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
597  			 IS_KVM_NULL_FN(range->handler)))
598  		return 0;
599  
600  	idx = srcu_read_lock(&kvm->srcu);
601  
602  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
603  		struct interval_tree_node *node;
604  
605  		slots = __kvm_memslots(kvm, i);
606  		kvm_for_each_memslot_in_hva_range(node, slots,
607  						  range->start, range->end - 1) {
608  			unsigned long hva_start, hva_end;
609  
610  			slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
611  			hva_start = max(range->start, slot->userspace_addr);
612  			hva_end = min(range->end, slot->userspace_addr +
613  						  (slot->npages << PAGE_SHIFT));
614  
615  			/*
616  			 * To optimize for the likely case where the address
617  			 * range is covered by zero or one memslots, don't
618  			 * bother making these conditional (to avoid writes on
619  			 * the second or later invocation of the handler).
620  			 */
621  			gfn_range.arg = range->arg;
622  			gfn_range.may_block = range->may_block;
623  
624  			/*
625  			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
626  			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
627  			 */
628  			gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
629  			gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
630  			gfn_range.slot = slot;
631  
632  			if (!locked) {
633  				locked = true;
634  				KVM_MMU_LOCK(kvm);
635  				if (!IS_KVM_NULL_FN(range->on_lock))
636  					range->on_lock(kvm, range->start, range->end);
637  				if (IS_KVM_NULL_FN(range->handler))
638  					break;
639  			}
640  			ret |= range->handler(kvm, &gfn_range);
641  		}
642  	}
643  
644  	if (range->flush_on_ret && ret)
645  		kvm_flush_remote_tlbs(kvm);
646  
647  	if (locked) {
648  		KVM_MMU_UNLOCK(kvm);
649  		if (!IS_KVM_NULL_FN(range->on_unlock))
650  			range->on_unlock(kvm);
651  	}
652  
653  	srcu_read_unlock(&kvm->srcu, idx);
654  
655  	/* The notifiers are averse to booleans. :-( */
656  	return (int)ret;
657  }
658  
kvm_handle_hva_range(struct mmu_notifier * mn,unsigned long start,unsigned long end,union kvm_mmu_notifier_arg arg,hva_handler_t handler)659  static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
660  						unsigned long start,
661  						unsigned long end,
662  						union kvm_mmu_notifier_arg arg,
663  						hva_handler_t handler)
664  {
665  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
666  	const struct kvm_hva_range range = {
667  		.start		= start,
668  		.end		= end,
669  		.arg		= arg,
670  		.handler	= handler,
671  		.on_lock	= (void *)kvm_null_fn,
672  		.on_unlock	= (void *)kvm_null_fn,
673  		.flush_on_ret	= true,
674  		.may_block	= false,
675  	};
676  
677  	return __kvm_handle_hva_range(kvm, &range);
678  }
679  
kvm_handle_hva_range_no_flush(struct mmu_notifier * mn,unsigned long start,unsigned long end,hva_handler_t handler)680  static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
681  							 unsigned long start,
682  							 unsigned long end,
683  							 hva_handler_t handler)
684  {
685  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
686  	const struct kvm_hva_range range = {
687  		.start		= start,
688  		.end		= end,
689  		.handler	= handler,
690  		.on_lock	= (void *)kvm_null_fn,
691  		.on_unlock	= (void *)kvm_null_fn,
692  		.flush_on_ret	= false,
693  		.may_block	= false,
694  	};
695  
696  	return __kvm_handle_hva_range(kvm, &range);
697  }
698  
kvm_change_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)699  static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
700  {
701  	/*
702  	 * Skipping invalid memslots is correct if and only change_pte() is
703  	 * surrounded by invalidate_range_{start,end}(), which is currently
704  	 * guaranteed by the primary MMU.  If that ever changes, KVM needs to
705  	 * unmap the memslot instead of skipping the memslot to ensure that KVM
706  	 * doesn't hold references to the old PFN.
707  	 */
708  	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
709  
710  	if (range->slot->flags & KVM_MEMSLOT_INVALID)
711  		return false;
712  
713  	return kvm_set_spte_gfn(kvm, range);
714  }
715  
kvm_mmu_notifier_change_pte(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address,pte_t pte)716  static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
717  					struct mm_struct *mm,
718  					unsigned long address,
719  					pte_t pte)
720  {
721  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
722  	const union kvm_mmu_notifier_arg arg = { .pte = pte };
723  
724  	trace_kvm_set_spte_hva(address);
725  
726  	/*
727  	 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
728  	 * If mmu_invalidate_in_progress is zero, then no in-progress
729  	 * invalidations, including this one, found a relevant memslot at
730  	 * start(); rechecking memslots here is unnecessary.  Note, a false
731  	 * positive (count elevated by a different invalidation) is sub-optimal
732  	 * but functionally ok.
733  	 */
734  	WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
735  	if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
736  		return;
737  
738  	kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
739  }
740  
kvm_mmu_invalidate_begin(struct kvm * kvm,unsigned long start,unsigned long end)741  void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
742  			      unsigned long end)
743  {
744  	/*
745  	 * The count increase must become visible at unlock time as no
746  	 * spte can be established without taking the mmu_lock and
747  	 * count is also read inside the mmu_lock critical section.
748  	 */
749  	kvm->mmu_invalidate_in_progress++;
750  	if (likely(kvm->mmu_invalidate_in_progress == 1)) {
751  		kvm->mmu_invalidate_range_start = start;
752  		kvm->mmu_invalidate_range_end = end;
753  	} else {
754  		/*
755  		 * Fully tracking multiple concurrent ranges has diminishing
756  		 * returns. Keep things simple and just find the minimal range
757  		 * which includes the current and new ranges. As there won't be
758  		 * enough information to subtract a range after its invalidate
759  		 * completes, any ranges invalidated concurrently will
760  		 * accumulate and persist until all outstanding invalidates
761  		 * complete.
762  		 */
763  		kvm->mmu_invalidate_range_start =
764  			min(kvm->mmu_invalidate_range_start, start);
765  		kvm->mmu_invalidate_range_end =
766  			max(kvm->mmu_invalidate_range_end, end);
767  	}
768  }
769  
kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier * mn,const struct mmu_notifier_range * range)770  static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
771  					const struct mmu_notifier_range *range)
772  {
773  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
774  	const struct kvm_hva_range hva_range = {
775  		.start		= range->start,
776  		.end		= range->end,
777  		.handler	= kvm_unmap_gfn_range,
778  		.on_lock	= kvm_mmu_invalidate_begin,
779  		.on_unlock	= kvm_arch_guest_memory_reclaimed,
780  		.flush_on_ret	= true,
781  		.may_block	= mmu_notifier_range_blockable(range),
782  	};
783  
784  	trace_kvm_unmap_hva_range(range->start, range->end);
785  
786  	/*
787  	 * Prevent memslot modification between range_start() and range_end()
788  	 * so that conditionally locking provides the same result in both
789  	 * functions.  Without that guarantee, the mmu_invalidate_in_progress
790  	 * adjustments will be imbalanced.
791  	 *
792  	 * Pairs with the decrement in range_end().
793  	 */
794  	spin_lock(&kvm->mn_invalidate_lock);
795  	kvm->mn_active_invalidate_count++;
796  	spin_unlock(&kvm->mn_invalidate_lock);
797  
798  	/*
799  	 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
800  	 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
801  	 * each cache's lock.  There are relatively few caches in existence at
802  	 * any given time, and the caches themselves can check for hva overlap,
803  	 * i.e. don't need to rely on memslot overlap checks for performance.
804  	 * Because this runs without holding mmu_lock, the pfn caches must use
805  	 * mn_active_invalidate_count (see above) instead of
806  	 * mmu_invalidate_in_progress.
807  	 */
808  	gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
809  					  hva_range.may_block);
810  
811  	__kvm_handle_hva_range(kvm, &hva_range);
812  
813  	return 0;
814  }
815  
kvm_mmu_invalidate_end(struct kvm * kvm,unsigned long start,unsigned long end)816  void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
817  			    unsigned long end)
818  {
819  	/*
820  	 * This sequence increase will notify the kvm page fault that
821  	 * the page that is going to be mapped in the spte could have
822  	 * been freed.
823  	 */
824  	kvm->mmu_invalidate_seq++;
825  	smp_wmb();
826  	/*
827  	 * The above sequence increase must be visible before the
828  	 * below count decrease, which is ensured by the smp_wmb above
829  	 * in conjunction with the smp_rmb in mmu_invalidate_retry().
830  	 */
831  	kvm->mmu_invalidate_in_progress--;
832  }
833  
kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier * mn,const struct mmu_notifier_range * range)834  static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
835  					const struct mmu_notifier_range *range)
836  {
837  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
838  	const struct kvm_hva_range hva_range = {
839  		.start		= range->start,
840  		.end		= range->end,
841  		.handler	= (void *)kvm_null_fn,
842  		.on_lock	= kvm_mmu_invalidate_end,
843  		.on_unlock	= (void *)kvm_null_fn,
844  		.flush_on_ret	= false,
845  		.may_block	= mmu_notifier_range_blockable(range),
846  	};
847  	bool wake;
848  
849  	__kvm_handle_hva_range(kvm, &hva_range);
850  
851  	/* Pairs with the increment in range_start(). */
852  	spin_lock(&kvm->mn_invalidate_lock);
853  	wake = (--kvm->mn_active_invalidate_count == 0);
854  	spin_unlock(&kvm->mn_invalidate_lock);
855  
856  	/*
857  	 * There can only be one waiter, since the wait happens under
858  	 * slots_lock.
859  	 */
860  	if (wake)
861  		rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
862  
863  	BUG_ON(kvm->mmu_invalidate_in_progress < 0);
864  }
865  
kvm_mmu_notifier_clear_flush_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)866  static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
867  					      struct mm_struct *mm,
868  					      unsigned long start,
869  					      unsigned long end)
870  {
871  	trace_kvm_age_hva(start, end);
872  
873  	return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
874  				    kvm_age_gfn);
875  }
876  
kvm_mmu_notifier_clear_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long start,unsigned long end)877  static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
878  					struct mm_struct *mm,
879  					unsigned long start,
880  					unsigned long end)
881  {
882  	trace_kvm_age_hva(start, end);
883  
884  	/*
885  	 * Even though we do not flush TLB, this will still adversely
886  	 * affect performance on pre-Haswell Intel EPT, where there is
887  	 * no EPT Access Bit to clear so that we have to tear down EPT
888  	 * tables instead. If we find this unacceptable, we can always
889  	 * add a parameter to kvm_age_hva so that it effectively doesn't
890  	 * do anything on clear_young.
891  	 *
892  	 * Also note that currently we never issue secondary TLB flushes
893  	 * from clear_young, leaving this job up to the regular system
894  	 * cadence. If we find this inaccurate, we might come up with a
895  	 * more sophisticated heuristic later.
896  	 */
897  	return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
898  }
899  
kvm_mmu_notifier_test_young(struct mmu_notifier * mn,struct mm_struct * mm,unsigned long address)900  static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
901  				       struct mm_struct *mm,
902  				       unsigned long address)
903  {
904  	trace_kvm_test_age_hva(address);
905  
906  	return kvm_handle_hva_range_no_flush(mn, address, address + 1,
907  					     kvm_test_age_gfn);
908  }
909  
kvm_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)910  static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
911  				     struct mm_struct *mm)
912  {
913  	struct kvm *kvm = mmu_notifier_to_kvm(mn);
914  	int idx;
915  
916  	idx = srcu_read_lock(&kvm->srcu);
917  	kvm_flush_shadow_all(kvm);
918  	srcu_read_unlock(&kvm->srcu, idx);
919  }
920  
921  static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
922  	.invalidate_range_start	= kvm_mmu_notifier_invalidate_range_start,
923  	.invalidate_range_end	= kvm_mmu_notifier_invalidate_range_end,
924  	.clear_flush_young	= kvm_mmu_notifier_clear_flush_young,
925  	.clear_young		= kvm_mmu_notifier_clear_young,
926  	.test_young		= kvm_mmu_notifier_test_young,
927  	.change_pte		= kvm_mmu_notifier_change_pte,
928  	.release		= kvm_mmu_notifier_release,
929  };
930  
kvm_init_mmu_notifier(struct kvm * kvm)931  static int kvm_init_mmu_notifier(struct kvm *kvm)
932  {
933  	kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
934  	return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
935  }
936  
937  #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
938  
kvm_init_mmu_notifier(struct kvm * kvm)939  static int kvm_init_mmu_notifier(struct kvm *kvm)
940  {
941  	return 0;
942  }
943  
944  #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
945  
946  #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_pm_notifier_call(struct notifier_block * bl,unsigned long state,void * unused)947  static int kvm_pm_notifier_call(struct notifier_block *bl,
948  				unsigned long state,
949  				void *unused)
950  {
951  	struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
952  
953  	return kvm_arch_pm_notifier(kvm, state);
954  }
955  
kvm_init_pm_notifier(struct kvm * kvm)956  static void kvm_init_pm_notifier(struct kvm *kvm)
957  {
958  	kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
959  	/* Suspend KVM before we suspend ftrace, RCU, etc. */
960  	kvm->pm_notifier.priority = INT_MAX;
961  	register_pm_notifier(&kvm->pm_notifier);
962  }
963  
kvm_destroy_pm_notifier(struct kvm * kvm)964  static void kvm_destroy_pm_notifier(struct kvm *kvm)
965  {
966  	unregister_pm_notifier(&kvm->pm_notifier);
967  }
968  #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
kvm_init_pm_notifier(struct kvm * kvm)969  static void kvm_init_pm_notifier(struct kvm *kvm)
970  {
971  }
972  
kvm_destroy_pm_notifier(struct kvm * kvm)973  static void kvm_destroy_pm_notifier(struct kvm *kvm)
974  {
975  }
976  #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
977  
kvm_destroy_dirty_bitmap(struct kvm_memory_slot * memslot)978  static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
979  {
980  	if (!memslot->dirty_bitmap)
981  		return;
982  
983  	kvfree(memslot->dirty_bitmap);
984  	memslot->dirty_bitmap = NULL;
985  }
986  
987  /* This does not remove the slot from struct kvm_memslots data structures */
kvm_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)988  static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
989  {
990  	kvm_destroy_dirty_bitmap(slot);
991  
992  	kvm_arch_free_memslot(kvm, slot);
993  
994  	kfree(slot);
995  }
996  
kvm_free_memslots(struct kvm * kvm,struct kvm_memslots * slots)997  static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
998  {
999  	struct hlist_node *idnode;
1000  	struct kvm_memory_slot *memslot;
1001  	int bkt;
1002  
1003  	/*
1004  	 * The same memslot objects live in both active and inactive sets,
1005  	 * arbitrarily free using index '1' so the second invocation of this
1006  	 * function isn't operating over a structure with dangling pointers
1007  	 * (even though this function isn't actually touching them).
1008  	 */
1009  	if (!slots->node_idx)
1010  		return;
1011  
1012  	hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1013  		kvm_free_memslot(kvm, memslot);
1014  }
1015  
kvm_stats_debugfs_mode(const struct _kvm_stats_desc * pdesc)1016  static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1017  {
1018  	switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1019  	case KVM_STATS_TYPE_INSTANT:
1020  		return 0444;
1021  	case KVM_STATS_TYPE_CUMULATIVE:
1022  	case KVM_STATS_TYPE_PEAK:
1023  	default:
1024  		return 0644;
1025  	}
1026  }
1027  
1028  
kvm_destroy_vm_debugfs(struct kvm * kvm)1029  static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1030  {
1031  	int i;
1032  	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1033  				      kvm_vcpu_stats_header.num_desc;
1034  
1035  	if (IS_ERR(kvm->debugfs_dentry))
1036  		return;
1037  
1038  	debugfs_remove_recursive(kvm->debugfs_dentry);
1039  
1040  	if (kvm->debugfs_stat_data) {
1041  		for (i = 0; i < kvm_debugfs_num_entries; i++)
1042  			kfree(kvm->debugfs_stat_data[i]);
1043  		kfree(kvm->debugfs_stat_data);
1044  	}
1045  }
1046  
kvm_create_vm_debugfs(struct kvm * kvm,const char * fdname)1047  static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1048  {
1049  	static DEFINE_MUTEX(kvm_debugfs_lock);
1050  	struct dentry *dent;
1051  	char dir_name[ITOA_MAX_LEN * 2];
1052  	struct kvm_stat_data *stat_data;
1053  	const struct _kvm_stats_desc *pdesc;
1054  	int i, ret = -ENOMEM;
1055  	int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1056  				      kvm_vcpu_stats_header.num_desc;
1057  
1058  	if (!debugfs_initialized())
1059  		return 0;
1060  
1061  	snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1062  	mutex_lock(&kvm_debugfs_lock);
1063  	dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1064  	if (dent) {
1065  		pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1066  		dput(dent);
1067  		mutex_unlock(&kvm_debugfs_lock);
1068  		return 0;
1069  	}
1070  	dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1071  	mutex_unlock(&kvm_debugfs_lock);
1072  	if (IS_ERR(dent))
1073  		return 0;
1074  
1075  	kvm->debugfs_dentry = dent;
1076  	kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1077  					 sizeof(*kvm->debugfs_stat_data),
1078  					 GFP_KERNEL_ACCOUNT);
1079  	if (!kvm->debugfs_stat_data)
1080  		goto out_err;
1081  
1082  	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1083  		pdesc = &kvm_vm_stats_desc[i];
1084  		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1085  		if (!stat_data)
1086  			goto out_err;
1087  
1088  		stat_data->kvm = kvm;
1089  		stat_data->desc = pdesc;
1090  		stat_data->kind = KVM_STAT_VM;
1091  		kvm->debugfs_stat_data[i] = stat_data;
1092  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1093  				    kvm->debugfs_dentry, stat_data,
1094  				    &stat_fops_per_vm);
1095  	}
1096  
1097  	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1098  		pdesc = &kvm_vcpu_stats_desc[i];
1099  		stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1100  		if (!stat_data)
1101  			goto out_err;
1102  
1103  		stat_data->kvm = kvm;
1104  		stat_data->desc = pdesc;
1105  		stat_data->kind = KVM_STAT_VCPU;
1106  		kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1107  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1108  				    kvm->debugfs_dentry, stat_data,
1109  				    &stat_fops_per_vm);
1110  	}
1111  
1112  	ret = kvm_arch_create_vm_debugfs(kvm);
1113  	if (ret)
1114  		goto out_err;
1115  
1116  	return 0;
1117  out_err:
1118  	kvm_destroy_vm_debugfs(kvm);
1119  	return ret;
1120  }
1121  
1122  /*
1123   * Called after the VM is otherwise initialized, but just before adding it to
1124   * the vm_list.
1125   */
kvm_arch_post_init_vm(struct kvm * kvm)1126  int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1127  {
1128  	return 0;
1129  }
1130  
1131  /*
1132   * Called just after removing the VM from the vm_list, but before doing any
1133   * other destruction.
1134   */
kvm_arch_pre_destroy_vm(struct kvm * kvm)1135  void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1136  {
1137  }
1138  
1139  /*
1140   * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1141   * be setup already, so we can create arch-specific debugfs entries under it.
1142   * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1143   * a per-arch destroy interface is not needed.
1144   */
kvm_arch_create_vm_debugfs(struct kvm * kvm)1145  int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1146  {
1147  	return 0;
1148  }
1149  
kvm_create_vm(unsigned long type,const char * fdname)1150  static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1151  {
1152  	struct kvm *kvm = kvm_arch_alloc_vm();
1153  	struct kvm_memslots *slots;
1154  	int r = -ENOMEM;
1155  	int i, j;
1156  
1157  	if (!kvm)
1158  		return ERR_PTR(-ENOMEM);
1159  
1160  	/* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1161  	__module_get(kvm_chardev_ops.owner);
1162  
1163  	KVM_MMU_LOCK_INIT(kvm);
1164  	mmgrab(current->mm);
1165  	kvm->mm = current->mm;
1166  	kvm_eventfd_init(kvm);
1167  	mutex_init(&kvm->lock);
1168  	mutex_init(&kvm->irq_lock);
1169  	mutex_init(&kvm->slots_lock);
1170  	mutex_init(&kvm->slots_arch_lock);
1171  	spin_lock_init(&kvm->mn_invalidate_lock);
1172  	rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1173  	xa_init(&kvm->vcpu_array);
1174  
1175  	INIT_LIST_HEAD(&kvm->gpc_list);
1176  	spin_lock_init(&kvm->gpc_lock);
1177  
1178  	INIT_LIST_HEAD(&kvm->devices);
1179  	kvm->max_vcpus = KVM_MAX_VCPUS;
1180  
1181  	BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1182  
1183  	/*
1184  	 * Force subsequent debugfs file creations to fail if the VM directory
1185  	 * is not created (by kvm_create_vm_debugfs()).
1186  	 */
1187  	kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1188  
1189  	snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1190  		 task_pid_nr(current));
1191  
1192  	if (init_srcu_struct(&kvm->srcu))
1193  		goto out_err_no_srcu;
1194  	if (init_srcu_struct(&kvm->irq_srcu))
1195  		goto out_err_no_irq_srcu;
1196  
1197  	refcount_set(&kvm->users_count, 1);
1198  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1199  		for (j = 0; j < 2; j++) {
1200  			slots = &kvm->__memslots[i][j];
1201  
1202  			atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1203  			slots->hva_tree = RB_ROOT_CACHED;
1204  			slots->gfn_tree = RB_ROOT;
1205  			hash_init(slots->id_hash);
1206  			slots->node_idx = j;
1207  
1208  			/* Generations must be different for each address space. */
1209  			slots->generation = i;
1210  		}
1211  
1212  		rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1213  	}
1214  
1215  	for (i = 0; i < KVM_NR_BUSES; i++) {
1216  		rcu_assign_pointer(kvm->buses[i],
1217  			kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1218  		if (!kvm->buses[i])
1219  			goto out_err_no_arch_destroy_vm;
1220  	}
1221  
1222  	r = kvm_arch_init_vm(kvm, type);
1223  	if (r)
1224  		goto out_err_no_arch_destroy_vm;
1225  
1226  	r = hardware_enable_all();
1227  	if (r)
1228  		goto out_err_no_disable;
1229  
1230  #ifdef CONFIG_HAVE_KVM_IRQFD
1231  	INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1232  #endif
1233  
1234  	r = kvm_init_mmu_notifier(kvm);
1235  	if (r)
1236  		goto out_err_no_mmu_notifier;
1237  
1238  	r = kvm_coalesced_mmio_init(kvm);
1239  	if (r < 0)
1240  		goto out_no_coalesced_mmio;
1241  
1242  	r = kvm_create_vm_debugfs(kvm, fdname);
1243  	if (r)
1244  		goto out_err_no_debugfs;
1245  
1246  	r = kvm_arch_post_init_vm(kvm);
1247  	if (r)
1248  		goto out_err;
1249  
1250  	mutex_lock(&kvm_lock);
1251  	list_add(&kvm->vm_list, &vm_list);
1252  	mutex_unlock(&kvm_lock);
1253  
1254  	preempt_notifier_inc();
1255  	kvm_init_pm_notifier(kvm);
1256  
1257  	return kvm;
1258  
1259  out_err:
1260  	kvm_destroy_vm_debugfs(kvm);
1261  out_err_no_debugfs:
1262  	kvm_coalesced_mmio_free(kvm);
1263  out_no_coalesced_mmio:
1264  #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1265  	if (kvm->mmu_notifier.ops)
1266  		mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1267  #endif
1268  out_err_no_mmu_notifier:
1269  	hardware_disable_all();
1270  out_err_no_disable:
1271  	kvm_arch_destroy_vm(kvm);
1272  out_err_no_arch_destroy_vm:
1273  	WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1274  	for (i = 0; i < KVM_NR_BUSES; i++)
1275  		kfree(kvm_get_bus(kvm, i));
1276  	cleanup_srcu_struct(&kvm->irq_srcu);
1277  out_err_no_irq_srcu:
1278  	cleanup_srcu_struct(&kvm->srcu);
1279  out_err_no_srcu:
1280  	kvm_arch_free_vm(kvm);
1281  	mmdrop(current->mm);
1282  	module_put(kvm_chardev_ops.owner);
1283  	return ERR_PTR(r);
1284  }
1285  
kvm_destroy_devices(struct kvm * kvm)1286  static void kvm_destroy_devices(struct kvm *kvm)
1287  {
1288  	struct kvm_device *dev, *tmp;
1289  
1290  	/*
1291  	 * We do not need to take the kvm->lock here, because nobody else
1292  	 * has a reference to the struct kvm at this point and therefore
1293  	 * cannot access the devices list anyhow.
1294  	 */
1295  	list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1296  		list_del(&dev->vm_node);
1297  		dev->ops->destroy(dev);
1298  	}
1299  }
1300  
kvm_destroy_vm(struct kvm * kvm)1301  static void kvm_destroy_vm(struct kvm *kvm)
1302  {
1303  	int i;
1304  	struct mm_struct *mm = kvm->mm;
1305  
1306  	kvm_destroy_pm_notifier(kvm);
1307  	kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1308  	kvm_destroy_vm_debugfs(kvm);
1309  	kvm_arch_sync_events(kvm);
1310  	mutex_lock(&kvm_lock);
1311  	list_del(&kvm->vm_list);
1312  	mutex_unlock(&kvm_lock);
1313  	kvm_arch_pre_destroy_vm(kvm);
1314  
1315  	kvm_free_irq_routing(kvm);
1316  	for (i = 0; i < KVM_NR_BUSES; i++) {
1317  		struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1318  
1319  		if (bus)
1320  			kvm_io_bus_destroy(bus);
1321  		kvm->buses[i] = NULL;
1322  	}
1323  	kvm_coalesced_mmio_free(kvm);
1324  #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1325  	mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1326  	/*
1327  	 * At this point, pending calls to invalidate_range_start()
1328  	 * have completed but no more MMU notifiers will run, so
1329  	 * mn_active_invalidate_count may remain unbalanced.
1330  	 * No threads can be waiting in kvm_swap_active_memslots() as the
1331  	 * last reference on KVM has been dropped, but freeing
1332  	 * memslots would deadlock without this manual intervention.
1333  	 */
1334  	WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1335  	kvm->mn_active_invalidate_count = 0;
1336  #else
1337  	kvm_flush_shadow_all(kvm);
1338  #endif
1339  	kvm_arch_destroy_vm(kvm);
1340  	kvm_destroy_devices(kvm);
1341  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1342  		kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1343  		kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1344  	}
1345  	cleanup_srcu_struct(&kvm->irq_srcu);
1346  	cleanup_srcu_struct(&kvm->srcu);
1347  	kvm_arch_free_vm(kvm);
1348  	preempt_notifier_dec();
1349  	hardware_disable_all();
1350  	mmdrop(mm);
1351  	module_put(kvm_chardev_ops.owner);
1352  }
1353  
kvm_get_kvm(struct kvm * kvm)1354  void kvm_get_kvm(struct kvm *kvm)
1355  {
1356  	refcount_inc(&kvm->users_count);
1357  }
1358  EXPORT_SYMBOL_GPL(kvm_get_kvm);
1359  
1360  /*
1361   * Make sure the vm is not during destruction, which is a safe version of
1362   * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1363   */
kvm_get_kvm_safe(struct kvm * kvm)1364  bool kvm_get_kvm_safe(struct kvm *kvm)
1365  {
1366  	return refcount_inc_not_zero(&kvm->users_count);
1367  }
1368  EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1369  
kvm_put_kvm(struct kvm * kvm)1370  void kvm_put_kvm(struct kvm *kvm)
1371  {
1372  	if (refcount_dec_and_test(&kvm->users_count))
1373  		kvm_destroy_vm(kvm);
1374  }
1375  EXPORT_SYMBOL_GPL(kvm_put_kvm);
1376  
1377  /*
1378   * Used to put a reference that was taken on behalf of an object associated
1379   * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1380   * of the new file descriptor fails and the reference cannot be transferred to
1381   * its final owner.  In such cases, the caller is still actively using @kvm and
1382   * will fail miserably if the refcount unexpectedly hits zero.
1383   */
kvm_put_kvm_no_destroy(struct kvm * kvm)1384  void kvm_put_kvm_no_destroy(struct kvm *kvm)
1385  {
1386  	WARN_ON(refcount_dec_and_test(&kvm->users_count));
1387  }
1388  EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1389  
kvm_vm_release(struct inode * inode,struct file * filp)1390  static int kvm_vm_release(struct inode *inode, struct file *filp)
1391  {
1392  	struct kvm *kvm = filp->private_data;
1393  
1394  	kvm_irqfd_release(kvm);
1395  
1396  	kvm_put_kvm(kvm);
1397  	return 0;
1398  }
1399  
1400  /*
1401   * Allocation size is twice as large as the actual dirty bitmap size.
1402   * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1403   */
kvm_alloc_dirty_bitmap(struct kvm_memory_slot * memslot)1404  static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1405  {
1406  	unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1407  
1408  	memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1409  	if (!memslot->dirty_bitmap)
1410  		return -ENOMEM;
1411  
1412  	return 0;
1413  }
1414  
kvm_get_inactive_memslots(struct kvm * kvm,int as_id)1415  static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1416  {
1417  	struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1418  	int node_idx_inactive = active->node_idx ^ 1;
1419  
1420  	return &kvm->__memslots[as_id][node_idx_inactive];
1421  }
1422  
1423  /*
1424   * Helper to get the address space ID when one of memslot pointers may be NULL.
1425   * This also serves as a sanity that at least one of the pointers is non-NULL,
1426   * and that their address space IDs don't diverge.
1427   */
kvm_memslots_get_as_id(struct kvm_memory_slot * a,struct kvm_memory_slot * b)1428  static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1429  				  struct kvm_memory_slot *b)
1430  {
1431  	if (WARN_ON_ONCE(!a && !b))
1432  		return 0;
1433  
1434  	if (!a)
1435  		return b->as_id;
1436  	if (!b)
1437  		return a->as_id;
1438  
1439  	WARN_ON_ONCE(a->as_id != b->as_id);
1440  	return a->as_id;
1441  }
1442  
kvm_insert_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1443  static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1444  				struct kvm_memory_slot *slot)
1445  {
1446  	struct rb_root *gfn_tree = &slots->gfn_tree;
1447  	struct rb_node **node, *parent;
1448  	int idx = slots->node_idx;
1449  
1450  	parent = NULL;
1451  	for (node = &gfn_tree->rb_node; *node; ) {
1452  		struct kvm_memory_slot *tmp;
1453  
1454  		tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1455  		parent = *node;
1456  		if (slot->base_gfn < tmp->base_gfn)
1457  			node = &(*node)->rb_left;
1458  		else if (slot->base_gfn > tmp->base_gfn)
1459  			node = &(*node)->rb_right;
1460  		else
1461  			BUG();
1462  	}
1463  
1464  	rb_link_node(&slot->gfn_node[idx], parent, node);
1465  	rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1466  }
1467  
kvm_erase_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * slot)1468  static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1469  			       struct kvm_memory_slot *slot)
1470  {
1471  	rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1472  }
1473  
kvm_replace_gfn_node(struct kvm_memslots * slots,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1474  static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1475  				 struct kvm_memory_slot *old,
1476  				 struct kvm_memory_slot *new)
1477  {
1478  	int idx = slots->node_idx;
1479  
1480  	WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1481  
1482  	rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1483  			&slots->gfn_tree);
1484  }
1485  
1486  /*
1487   * Replace @old with @new in the inactive memslots.
1488   *
1489   * With NULL @old this simply adds @new.
1490   * With NULL @new this simply removes @old.
1491   *
1492   * If @new is non-NULL its hva_node[slots_idx] range has to be set
1493   * appropriately.
1494   */
kvm_replace_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1495  static void kvm_replace_memslot(struct kvm *kvm,
1496  				struct kvm_memory_slot *old,
1497  				struct kvm_memory_slot *new)
1498  {
1499  	int as_id = kvm_memslots_get_as_id(old, new);
1500  	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1501  	int idx = slots->node_idx;
1502  
1503  	if (old) {
1504  		hash_del(&old->id_node[idx]);
1505  		interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1506  
1507  		if ((long)old == atomic_long_read(&slots->last_used_slot))
1508  			atomic_long_set(&slots->last_used_slot, (long)new);
1509  
1510  		if (!new) {
1511  			kvm_erase_gfn_node(slots, old);
1512  			return;
1513  		}
1514  	}
1515  
1516  	/*
1517  	 * Initialize @new's hva range.  Do this even when replacing an @old
1518  	 * slot, kvm_copy_memslot() deliberately does not touch node data.
1519  	 */
1520  	new->hva_node[idx].start = new->userspace_addr;
1521  	new->hva_node[idx].last = new->userspace_addr +
1522  				  (new->npages << PAGE_SHIFT) - 1;
1523  
1524  	/*
1525  	 * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1526  	 * hva_node needs to be swapped with remove+insert even though hva can't
1527  	 * change when replacing an existing slot.
1528  	 */
1529  	hash_add(slots->id_hash, &new->id_node[idx], new->id);
1530  	interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1531  
1532  	/*
1533  	 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1534  	 * switch the node in the gfn tree instead of removing the old and
1535  	 * inserting the new as two separate operations. Replacement is a
1536  	 * single O(1) operation versus two O(log(n)) operations for
1537  	 * remove+insert.
1538  	 */
1539  	if (old && old->base_gfn == new->base_gfn) {
1540  		kvm_replace_gfn_node(slots, old, new);
1541  	} else {
1542  		if (old)
1543  			kvm_erase_gfn_node(slots, old);
1544  		kvm_insert_gfn_node(slots, new);
1545  	}
1546  }
1547  
check_memory_region_flags(const struct kvm_userspace_memory_region * mem)1548  static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1549  {
1550  	u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1551  
1552  #ifdef __KVM_HAVE_READONLY_MEM
1553  	valid_flags |= KVM_MEM_READONLY;
1554  #endif
1555  
1556  	if (mem->flags & ~valid_flags)
1557  		return -EINVAL;
1558  
1559  	return 0;
1560  }
1561  
kvm_swap_active_memslots(struct kvm * kvm,int as_id)1562  static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1563  {
1564  	struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1565  
1566  	/* Grab the generation from the activate memslots. */
1567  	u64 gen = __kvm_memslots(kvm, as_id)->generation;
1568  
1569  	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1570  	slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1571  
1572  	/*
1573  	 * Do not store the new memslots while there are invalidations in
1574  	 * progress, otherwise the locking in invalidate_range_start and
1575  	 * invalidate_range_end will be unbalanced.
1576  	 */
1577  	spin_lock(&kvm->mn_invalidate_lock);
1578  	prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1579  	while (kvm->mn_active_invalidate_count) {
1580  		set_current_state(TASK_UNINTERRUPTIBLE);
1581  		spin_unlock(&kvm->mn_invalidate_lock);
1582  		schedule();
1583  		spin_lock(&kvm->mn_invalidate_lock);
1584  	}
1585  	finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1586  	rcu_assign_pointer(kvm->memslots[as_id], slots);
1587  	spin_unlock(&kvm->mn_invalidate_lock);
1588  
1589  	/*
1590  	 * Acquired in kvm_set_memslot. Must be released before synchronize
1591  	 * SRCU below in order to avoid deadlock with another thread
1592  	 * acquiring the slots_arch_lock in an srcu critical section.
1593  	 */
1594  	mutex_unlock(&kvm->slots_arch_lock);
1595  
1596  	synchronize_srcu_expedited(&kvm->srcu);
1597  
1598  	/*
1599  	 * Increment the new memslot generation a second time, dropping the
1600  	 * update in-progress flag and incrementing the generation based on
1601  	 * the number of address spaces.  This provides a unique and easily
1602  	 * identifiable generation number while the memslots are in flux.
1603  	 */
1604  	gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1605  
1606  	/*
1607  	 * Generations must be unique even across address spaces.  We do not need
1608  	 * a global counter for that, instead the generation space is evenly split
1609  	 * across address spaces.  For example, with two address spaces, address
1610  	 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1611  	 * use generations 1, 3, 5, ...
1612  	 */
1613  	gen += KVM_ADDRESS_SPACE_NUM;
1614  
1615  	kvm_arch_memslots_updated(kvm, gen);
1616  
1617  	slots->generation = gen;
1618  }
1619  
kvm_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1620  static int kvm_prepare_memory_region(struct kvm *kvm,
1621  				     const struct kvm_memory_slot *old,
1622  				     struct kvm_memory_slot *new,
1623  				     enum kvm_mr_change change)
1624  {
1625  	int r;
1626  
1627  	/*
1628  	 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1629  	 * will be freed on "commit".  If logging is enabled in both old and
1630  	 * new, reuse the existing bitmap.  If logging is enabled only in the
1631  	 * new and KVM isn't using a ring buffer, allocate and initialize a
1632  	 * new bitmap.
1633  	 */
1634  	if (change != KVM_MR_DELETE) {
1635  		if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1636  			new->dirty_bitmap = NULL;
1637  		else if (old && old->dirty_bitmap)
1638  			new->dirty_bitmap = old->dirty_bitmap;
1639  		else if (kvm_use_dirty_bitmap(kvm)) {
1640  			r = kvm_alloc_dirty_bitmap(new);
1641  			if (r)
1642  				return r;
1643  
1644  			if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1645  				bitmap_set(new->dirty_bitmap, 0, new->npages);
1646  		}
1647  	}
1648  
1649  	r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1650  
1651  	/* Free the bitmap on failure if it was allocated above. */
1652  	if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1653  		kvm_destroy_dirty_bitmap(new);
1654  
1655  	return r;
1656  }
1657  
kvm_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1658  static void kvm_commit_memory_region(struct kvm *kvm,
1659  				     struct kvm_memory_slot *old,
1660  				     const struct kvm_memory_slot *new,
1661  				     enum kvm_mr_change change)
1662  {
1663  	int old_flags = old ? old->flags : 0;
1664  	int new_flags = new ? new->flags : 0;
1665  	/*
1666  	 * Update the total number of memslot pages before calling the arch
1667  	 * hook so that architectures can consume the result directly.
1668  	 */
1669  	if (change == KVM_MR_DELETE)
1670  		kvm->nr_memslot_pages -= old->npages;
1671  	else if (change == KVM_MR_CREATE)
1672  		kvm->nr_memslot_pages += new->npages;
1673  
1674  	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1675  		int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1676  		atomic_set(&kvm->nr_memslots_dirty_logging,
1677  			   atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1678  	}
1679  
1680  	kvm_arch_commit_memory_region(kvm, old, new, change);
1681  
1682  	switch (change) {
1683  	case KVM_MR_CREATE:
1684  		/* Nothing more to do. */
1685  		break;
1686  	case KVM_MR_DELETE:
1687  		/* Free the old memslot and all its metadata. */
1688  		kvm_free_memslot(kvm, old);
1689  		break;
1690  	case KVM_MR_MOVE:
1691  	case KVM_MR_FLAGS_ONLY:
1692  		/*
1693  		 * Free the dirty bitmap as needed; the below check encompasses
1694  		 * both the flags and whether a ring buffer is being used)
1695  		 */
1696  		if (old->dirty_bitmap && !new->dirty_bitmap)
1697  			kvm_destroy_dirty_bitmap(old);
1698  
1699  		/*
1700  		 * The final quirk.  Free the detached, old slot, but only its
1701  		 * memory, not any metadata.  Metadata, including arch specific
1702  		 * data, may be reused by @new.
1703  		 */
1704  		kfree(old);
1705  		break;
1706  	default:
1707  		BUG();
1708  	}
1709  }
1710  
1711  /*
1712   * Activate @new, which must be installed in the inactive slots by the caller,
1713   * by swapping the active slots and then propagating @new to @old once @old is
1714   * unreachable and can be safely modified.
1715   *
1716   * With NULL @old this simply adds @new to @active (while swapping the sets).
1717   * With NULL @new this simply removes @old from @active and frees it
1718   * (while also swapping the sets).
1719   */
kvm_activate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1720  static void kvm_activate_memslot(struct kvm *kvm,
1721  				 struct kvm_memory_slot *old,
1722  				 struct kvm_memory_slot *new)
1723  {
1724  	int as_id = kvm_memslots_get_as_id(old, new);
1725  
1726  	kvm_swap_active_memslots(kvm, as_id);
1727  
1728  	/* Propagate the new memslot to the now inactive memslots. */
1729  	kvm_replace_memslot(kvm, old, new);
1730  }
1731  
kvm_copy_memslot(struct kvm_memory_slot * dest,const struct kvm_memory_slot * src)1732  static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1733  			     const struct kvm_memory_slot *src)
1734  {
1735  	dest->base_gfn = src->base_gfn;
1736  	dest->npages = src->npages;
1737  	dest->dirty_bitmap = src->dirty_bitmap;
1738  	dest->arch = src->arch;
1739  	dest->userspace_addr = src->userspace_addr;
1740  	dest->flags = src->flags;
1741  	dest->id = src->id;
1742  	dest->as_id = src->as_id;
1743  }
1744  
kvm_invalidate_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1745  static void kvm_invalidate_memslot(struct kvm *kvm,
1746  				   struct kvm_memory_slot *old,
1747  				   struct kvm_memory_slot *invalid_slot)
1748  {
1749  	/*
1750  	 * Mark the current slot INVALID.  As with all memslot modifications,
1751  	 * this must be done on an unreachable slot to avoid modifying the
1752  	 * current slot in the active tree.
1753  	 */
1754  	kvm_copy_memslot(invalid_slot, old);
1755  	invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1756  	kvm_replace_memslot(kvm, old, invalid_slot);
1757  
1758  	/*
1759  	 * Activate the slot that is now marked INVALID, but don't propagate
1760  	 * the slot to the now inactive slots. The slot is either going to be
1761  	 * deleted or recreated as a new slot.
1762  	 */
1763  	kvm_swap_active_memslots(kvm, old->as_id);
1764  
1765  	/*
1766  	 * From this point no new shadow pages pointing to a deleted, or moved,
1767  	 * memslot will be created.  Validation of sp->gfn happens in:
1768  	 *	- gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1769  	 *	- kvm_is_visible_gfn (mmu_check_root)
1770  	 */
1771  	kvm_arch_flush_shadow_memslot(kvm, old);
1772  	kvm_arch_guest_memory_reclaimed(kvm);
1773  
1774  	/* Was released by kvm_swap_active_memslots(), reacquire. */
1775  	mutex_lock(&kvm->slots_arch_lock);
1776  
1777  	/*
1778  	 * Copy the arch-specific field of the newly-installed slot back to the
1779  	 * old slot as the arch data could have changed between releasing
1780  	 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1781  	 * above.  Writers are required to retrieve memslots *after* acquiring
1782  	 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1783  	 */
1784  	old->arch = invalid_slot->arch;
1785  }
1786  
kvm_create_memslot(struct kvm * kvm,struct kvm_memory_slot * new)1787  static void kvm_create_memslot(struct kvm *kvm,
1788  			       struct kvm_memory_slot *new)
1789  {
1790  	/* Add the new memslot to the inactive set and activate. */
1791  	kvm_replace_memslot(kvm, NULL, new);
1792  	kvm_activate_memslot(kvm, NULL, new);
1793  }
1794  
kvm_delete_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * invalid_slot)1795  static void kvm_delete_memslot(struct kvm *kvm,
1796  			       struct kvm_memory_slot *old,
1797  			       struct kvm_memory_slot *invalid_slot)
1798  {
1799  	/*
1800  	 * Remove the old memslot (in the inactive memslots) by passing NULL as
1801  	 * the "new" slot, and for the invalid version in the active slots.
1802  	 */
1803  	kvm_replace_memslot(kvm, old, NULL);
1804  	kvm_activate_memslot(kvm, invalid_slot, NULL);
1805  }
1806  
kvm_move_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,struct kvm_memory_slot * invalid_slot)1807  static void kvm_move_memslot(struct kvm *kvm,
1808  			     struct kvm_memory_slot *old,
1809  			     struct kvm_memory_slot *new,
1810  			     struct kvm_memory_slot *invalid_slot)
1811  {
1812  	/*
1813  	 * Replace the old memslot in the inactive slots, and then swap slots
1814  	 * and replace the current INVALID with the new as well.
1815  	 */
1816  	kvm_replace_memslot(kvm, old, new);
1817  	kvm_activate_memslot(kvm, invalid_slot, new);
1818  }
1819  
kvm_update_flags_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new)1820  static void kvm_update_flags_memslot(struct kvm *kvm,
1821  				     struct kvm_memory_slot *old,
1822  				     struct kvm_memory_slot *new)
1823  {
1824  	/*
1825  	 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1826  	 * an intermediate step. Instead, the old memslot is simply replaced
1827  	 * with a new, updated copy in both memslot sets.
1828  	 */
1829  	kvm_replace_memslot(kvm, old, new);
1830  	kvm_activate_memslot(kvm, old, new);
1831  }
1832  
kvm_set_memslot(struct kvm * kvm,struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)1833  static int kvm_set_memslot(struct kvm *kvm,
1834  			   struct kvm_memory_slot *old,
1835  			   struct kvm_memory_slot *new,
1836  			   enum kvm_mr_change change)
1837  {
1838  	struct kvm_memory_slot *invalid_slot;
1839  	int r;
1840  
1841  	/*
1842  	 * Released in kvm_swap_active_memslots().
1843  	 *
1844  	 * Must be held from before the current memslots are copied until after
1845  	 * the new memslots are installed with rcu_assign_pointer, then
1846  	 * released before the synchronize srcu in kvm_swap_active_memslots().
1847  	 *
1848  	 * When modifying memslots outside of the slots_lock, must be held
1849  	 * before reading the pointer to the current memslots until after all
1850  	 * changes to those memslots are complete.
1851  	 *
1852  	 * These rules ensure that installing new memslots does not lose
1853  	 * changes made to the previous memslots.
1854  	 */
1855  	mutex_lock(&kvm->slots_arch_lock);
1856  
1857  	/*
1858  	 * Invalidate the old slot if it's being deleted or moved.  This is
1859  	 * done prior to actually deleting/moving the memslot to allow vCPUs to
1860  	 * continue running by ensuring there are no mappings or shadow pages
1861  	 * for the memslot when it is deleted/moved.  Without pre-invalidation
1862  	 * (and without a lock), a window would exist between effecting the
1863  	 * delete/move and committing the changes in arch code where KVM or a
1864  	 * guest could access a non-existent memslot.
1865  	 *
1866  	 * Modifications are done on a temporary, unreachable slot.  The old
1867  	 * slot needs to be preserved in case a later step fails and the
1868  	 * invalidation needs to be reverted.
1869  	 */
1870  	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1871  		invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1872  		if (!invalid_slot) {
1873  			mutex_unlock(&kvm->slots_arch_lock);
1874  			return -ENOMEM;
1875  		}
1876  		kvm_invalidate_memslot(kvm, old, invalid_slot);
1877  	}
1878  
1879  	r = kvm_prepare_memory_region(kvm, old, new, change);
1880  	if (r) {
1881  		/*
1882  		 * For DELETE/MOVE, revert the above INVALID change.  No
1883  		 * modifications required since the original slot was preserved
1884  		 * in the inactive slots.  Changing the active memslots also
1885  		 * release slots_arch_lock.
1886  		 */
1887  		if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1888  			kvm_activate_memslot(kvm, invalid_slot, old);
1889  			kfree(invalid_slot);
1890  		} else {
1891  			mutex_unlock(&kvm->slots_arch_lock);
1892  		}
1893  		return r;
1894  	}
1895  
1896  	/*
1897  	 * For DELETE and MOVE, the working slot is now active as the INVALID
1898  	 * version of the old slot.  MOVE is particularly special as it reuses
1899  	 * the old slot and returns a copy of the old slot (in working_slot).
1900  	 * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1901  	 * old slot is detached but otherwise preserved.
1902  	 */
1903  	if (change == KVM_MR_CREATE)
1904  		kvm_create_memslot(kvm, new);
1905  	else if (change == KVM_MR_DELETE)
1906  		kvm_delete_memslot(kvm, old, invalid_slot);
1907  	else if (change == KVM_MR_MOVE)
1908  		kvm_move_memslot(kvm, old, new, invalid_slot);
1909  	else if (change == KVM_MR_FLAGS_ONLY)
1910  		kvm_update_flags_memslot(kvm, old, new);
1911  	else
1912  		BUG();
1913  
1914  	/* Free the temporary INVALID slot used for DELETE and MOVE. */
1915  	if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1916  		kfree(invalid_slot);
1917  
1918  	/*
1919  	 * No need to refresh new->arch, changes after dropping slots_arch_lock
1920  	 * will directly hit the final, active memslot.  Architectures are
1921  	 * responsible for knowing that new->arch may be stale.
1922  	 */
1923  	kvm_commit_memory_region(kvm, old, new, change);
1924  
1925  	return 0;
1926  }
1927  
kvm_check_memslot_overlap(struct kvm_memslots * slots,int id,gfn_t start,gfn_t end)1928  static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1929  				      gfn_t start, gfn_t end)
1930  {
1931  	struct kvm_memslot_iter iter;
1932  
1933  	kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1934  		if (iter.slot->id != id)
1935  			return true;
1936  	}
1937  
1938  	return false;
1939  }
1940  
1941  /*
1942   * Allocate some memory and give it an address in the guest physical address
1943   * space.
1944   *
1945   * Discontiguous memory is allowed, mostly for framebuffers.
1946   *
1947   * Must be called holding kvm->slots_lock for write.
1948   */
__kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)1949  int __kvm_set_memory_region(struct kvm *kvm,
1950  			    const struct kvm_userspace_memory_region *mem)
1951  {
1952  	struct kvm_memory_slot *old, *new;
1953  	struct kvm_memslots *slots;
1954  	enum kvm_mr_change change;
1955  	unsigned long npages;
1956  	gfn_t base_gfn;
1957  	int as_id, id;
1958  	int r;
1959  
1960  	r = check_memory_region_flags(mem);
1961  	if (r)
1962  		return r;
1963  
1964  	as_id = mem->slot >> 16;
1965  	id = (u16)mem->slot;
1966  
1967  	/* General sanity checks */
1968  	if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1969  	    (mem->memory_size != (unsigned long)mem->memory_size))
1970  		return -EINVAL;
1971  	if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1972  		return -EINVAL;
1973  	/* We can read the guest memory with __xxx_user() later on. */
1974  	if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1975  	    (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1976  	     !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1977  			mem->memory_size))
1978  		return -EINVAL;
1979  	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1980  		return -EINVAL;
1981  	if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1982  		return -EINVAL;
1983  	if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1984  		return -EINVAL;
1985  
1986  	slots = __kvm_memslots(kvm, as_id);
1987  
1988  	/*
1989  	 * Note, the old memslot (and the pointer itself!) may be invalidated
1990  	 * and/or destroyed by kvm_set_memslot().
1991  	 */
1992  	old = id_to_memslot(slots, id);
1993  
1994  	if (!mem->memory_size) {
1995  		if (!old || !old->npages)
1996  			return -EINVAL;
1997  
1998  		if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1999  			return -EIO;
2000  
2001  		return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2002  	}
2003  
2004  	base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2005  	npages = (mem->memory_size >> PAGE_SHIFT);
2006  
2007  	if (!old || !old->npages) {
2008  		change = KVM_MR_CREATE;
2009  
2010  		/*
2011  		 * To simplify KVM internals, the total number of pages across
2012  		 * all memslots must fit in an unsigned long.
2013  		 */
2014  		if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2015  			return -EINVAL;
2016  	} else { /* Modify an existing slot. */
2017  		if ((mem->userspace_addr != old->userspace_addr) ||
2018  		    (npages != old->npages) ||
2019  		    ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2020  			return -EINVAL;
2021  
2022  		if (base_gfn != old->base_gfn)
2023  			change = KVM_MR_MOVE;
2024  		else if (mem->flags != old->flags)
2025  			change = KVM_MR_FLAGS_ONLY;
2026  		else /* Nothing to change. */
2027  			return 0;
2028  	}
2029  
2030  	if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2031  	    kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2032  		return -EEXIST;
2033  
2034  	/* Allocate a slot that will persist in the memslot. */
2035  	new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2036  	if (!new)
2037  		return -ENOMEM;
2038  
2039  	new->as_id = as_id;
2040  	new->id = id;
2041  	new->base_gfn = base_gfn;
2042  	new->npages = npages;
2043  	new->flags = mem->flags;
2044  	new->userspace_addr = mem->userspace_addr;
2045  
2046  	r = kvm_set_memslot(kvm, old, new, change);
2047  	if (r)
2048  		kfree(new);
2049  	return r;
2050  }
2051  EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2052  
kvm_set_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem)2053  int kvm_set_memory_region(struct kvm *kvm,
2054  			  const struct kvm_userspace_memory_region *mem)
2055  {
2056  	int r;
2057  
2058  	mutex_lock(&kvm->slots_lock);
2059  	r = __kvm_set_memory_region(kvm, mem);
2060  	mutex_unlock(&kvm->slots_lock);
2061  	return r;
2062  }
2063  EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2064  
kvm_vm_ioctl_set_memory_region(struct kvm * kvm,struct kvm_userspace_memory_region * mem)2065  static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2066  					  struct kvm_userspace_memory_region *mem)
2067  {
2068  	if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2069  		return -EINVAL;
2070  
2071  	return kvm_set_memory_region(kvm, mem);
2072  }
2073  
2074  #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2075  /**
2076   * kvm_get_dirty_log - get a snapshot of dirty pages
2077   * @kvm:	pointer to kvm instance
2078   * @log:	slot id and address to which we copy the log
2079   * @is_dirty:	set to '1' if any dirty pages were found
2080   * @memslot:	set to the associated memslot, always valid on success
2081   */
kvm_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log,int * is_dirty,struct kvm_memory_slot ** memslot)2082  int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2083  		      int *is_dirty, struct kvm_memory_slot **memslot)
2084  {
2085  	struct kvm_memslots *slots;
2086  	int i, as_id, id;
2087  	unsigned long n;
2088  	unsigned long any = 0;
2089  
2090  	/* Dirty ring tracking may be exclusive to dirty log tracking */
2091  	if (!kvm_use_dirty_bitmap(kvm))
2092  		return -ENXIO;
2093  
2094  	*memslot = NULL;
2095  	*is_dirty = 0;
2096  
2097  	as_id = log->slot >> 16;
2098  	id = (u16)log->slot;
2099  	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2100  		return -EINVAL;
2101  
2102  	slots = __kvm_memslots(kvm, as_id);
2103  	*memslot = id_to_memslot(slots, id);
2104  	if (!(*memslot) || !(*memslot)->dirty_bitmap)
2105  		return -ENOENT;
2106  
2107  	kvm_arch_sync_dirty_log(kvm, *memslot);
2108  
2109  	n = kvm_dirty_bitmap_bytes(*memslot);
2110  
2111  	for (i = 0; !any && i < n/sizeof(long); ++i)
2112  		any = (*memslot)->dirty_bitmap[i];
2113  
2114  	if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2115  		return -EFAULT;
2116  
2117  	if (any)
2118  		*is_dirty = 1;
2119  	return 0;
2120  }
2121  EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2122  
2123  #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2124  /**
2125   * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2126   *	and reenable dirty page tracking for the corresponding pages.
2127   * @kvm:	pointer to kvm instance
2128   * @log:	slot id and address to which we copy the log
2129   *
2130   * We need to keep it in mind that VCPU threads can write to the bitmap
2131   * concurrently. So, to avoid losing track of dirty pages we keep the
2132   * following order:
2133   *
2134   *    1. Take a snapshot of the bit and clear it if needed.
2135   *    2. Write protect the corresponding page.
2136   *    3. Copy the snapshot to the userspace.
2137   *    4. Upon return caller flushes TLB's if needed.
2138   *
2139   * Between 2 and 4, the guest may write to the page using the remaining TLB
2140   * entry.  This is not a problem because the page is reported dirty using
2141   * the snapshot taken before and step 4 ensures that writes done after
2142   * exiting to userspace will be logged for the next call.
2143   *
2144   */
kvm_get_dirty_log_protect(struct kvm * kvm,struct kvm_dirty_log * log)2145  static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2146  {
2147  	struct kvm_memslots *slots;
2148  	struct kvm_memory_slot *memslot;
2149  	int i, as_id, id;
2150  	unsigned long n;
2151  	unsigned long *dirty_bitmap;
2152  	unsigned long *dirty_bitmap_buffer;
2153  	bool flush;
2154  
2155  	/* Dirty ring tracking may be exclusive to dirty log tracking */
2156  	if (!kvm_use_dirty_bitmap(kvm))
2157  		return -ENXIO;
2158  
2159  	as_id = log->slot >> 16;
2160  	id = (u16)log->slot;
2161  	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2162  		return -EINVAL;
2163  
2164  	slots = __kvm_memslots(kvm, as_id);
2165  	memslot = id_to_memslot(slots, id);
2166  	if (!memslot || !memslot->dirty_bitmap)
2167  		return -ENOENT;
2168  
2169  	dirty_bitmap = memslot->dirty_bitmap;
2170  
2171  	kvm_arch_sync_dirty_log(kvm, memslot);
2172  
2173  	n = kvm_dirty_bitmap_bytes(memslot);
2174  	flush = false;
2175  	if (kvm->manual_dirty_log_protect) {
2176  		/*
2177  		 * Unlike kvm_get_dirty_log, we always return false in *flush,
2178  		 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2179  		 * is some code duplication between this function and
2180  		 * kvm_get_dirty_log, but hopefully all architecture
2181  		 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2182  		 * can be eliminated.
2183  		 */
2184  		dirty_bitmap_buffer = dirty_bitmap;
2185  	} else {
2186  		dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2187  		memset(dirty_bitmap_buffer, 0, n);
2188  
2189  		KVM_MMU_LOCK(kvm);
2190  		for (i = 0; i < n / sizeof(long); i++) {
2191  			unsigned long mask;
2192  			gfn_t offset;
2193  
2194  			if (!dirty_bitmap[i])
2195  				continue;
2196  
2197  			flush = true;
2198  			mask = xchg(&dirty_bitmap[i], 0);
2199  			dirty_bitmap_buffer[i] = mask;
2200  
2201  			offset = i * BITS_PER_LONG;
2202  			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2203  								offset, mask);
2204  		}
2205  		KVM_MMU_UNLOCK(kvm);
2206  	}
2207  
2208  	if (flush)
2209  		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2210  
2211  	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2212  		return -EFAULT;
2213  	return 0;
2214  }
2215  
2216  
2217  /**
2218   * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2219   * @kvm: kvm instance
2220   * @log: slot id and address to which we copy the log
2221   *
2222   * Steps 1-4 below provide general overview of dirty page logging. See
2223   * kvm_get_dirty_log_protect() function description for additional details.
2224   *
2225   * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2226   * always flush the TLB (step 4) even if previous step failed  and the dirty
2227   * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2228   * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2229   * writes will be marked dirty for next log read.
2230   *
2231   *   1. Take a snapshot of the bit and clear it if needed.
2232   *   2. Write protect the corresponding page.
2233   *   3. Copy the snapshot to the userspace.
2234   *   4. Flush TLB's if needed.
2235   */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)2236  static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2237  				      struct kvm_dirty_log *log)
2238  {
2239  	int r;
2240  
2241  	mutex_lock(&kvm->slots_lock);
2242  
2243  	r = kvm_get_dirty_log_protect(kvm, log);
2244  
2245  	mutex_unlock(&kvm->slots_lock);
2246  	return r;
2247  }
2248  
2249  /**
2250   * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2251   *	and reenable dirty page tracking for the corresponding pages.
2252   * @kvm:	pointer to kvm instance
2253   * @log:	slot id and address from which to fetch the bitmap of dirty pages
2254   */
kvm_clear_dirty_log_protect(struct kvm * kvm,struct kvm_clear_dirty_log * log)2255  static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2256  				       struct kvm_clear_dirty_log *log)
2257  {
2258  	struct kvm_memslots *slots;
2259  	struct kvm_memory_slot *memslot;
2260  	int as_id, id;
2261  	gfn_t offset;
2262  	unsigned long i, n;
2263  	unsigned long *dirty_bitmap;
2264  	unsigned long *dirty_bitmap_buffer;
2265  	bool flush;
2266  
2267  	/* Dirty ring tracking may be exclusive to dirty log tracking */
2268  	if (!kvm_use_dirty_bitmap(kvm))
2269  		return -ENXIO;
2270  
2271  	as_id = log->slot >> 16;
2272  	id = (u16)log->slot;
2273  	if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2274  		return -EINVAL;
2275  
2276  	if (log->first_page & 63)
2277  		return -EINVAL;
2278  
2279  	slots = __kvm_memslots(kvm, as_id);
2280  	memslot = id_to_memslot(slots, id);
2281  	if (!memslot || !memslot->dirty_bitmap)
2282  		return -ENOENT;
2283  
2284  	dirty_bitmap = memslot->dirty_bitmap;
2285  
2286  	n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2287  
2288  	if (log->first_page > memslot->npages ||
2289  	    log->num_pages > memslot->npages - log->first_page ||
2290  	    (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2291  	    return -EINVAL;
2292  
2293  	kvm_arch_sync_dirty_log(kvm, memslot);
2294  
2295  	flush = false;
2296  	dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2297  	if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2298  		return -EFAULT;
2299  
2300  	KVM_MMU_LOCK(kvm);
2301  	for (offset = log->first_page, i = offset / BITS_PER_LONG,
2302  		 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2303  	     i++, offset += BITS_PER_LONG) {
2304  		unsigned long mask = *dirty_bitmap_buffer++;
2305  		atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2306  		if (!mask)
2307  			continue;
2308  
2309  		mask &= atomic_long_fetch_andnot(mask, p);
2310  
2311  		/*
2312  		 * mask contains the bits that really have been cleared.  This
2313  		 * never includes any bits beyond the length of the memslot (if
2314  		 * the length is not aligned to 64 pages), therefore it is not
2315  		 * a problem if userspace sets them in log->dirty_bitmap.
2316  		*/
2317  		if (mask) {
2318  			flush = true;
2319  			kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2320  								offset, mask);
2321  		}
2322  	}
2323  	KVM_MMU_UNLOCK(kvm);
2324  
2325  	if (flush)
2326  		kvm_flush_remote_tlbs_memslot(kvm, memslot);
2327  
2328  	return 0;
2329  }
2330  
kvm_vm_ioctl_clear_dirty_log(struct kvm * kvm,struct kvm_clear_dirty_log * log)2331  static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2332  					struct kvm_clear_dirty_log *log)
2333  {
2334  	int r;
2335  
2336  	mutex_lock(&kvm->slots_lock);
2337  
2338  	r = kvm_clear_dirty_log_protect(kvm, log);
2339  
2340  	mutex_unlock(&kvm->slots_lock);
2341  	return r;
2342  }
2343  #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2344  
gfn_to_memslot(struct kvm * kvm,gfn_t gfn)2345  struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2346  {
2347  	return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2348  }
2349  EXPORT_SYMBOL_GPL(gfn_to_memslot);
2350  
kvm_vcpu_gfn_to_memslot(struct kvm_vcpu * vcpu,gfn_t gfn)2351  struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2352  {
2353  	struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2354  	u64 gen = slots->generation;
2355  	struct kvm_memory_slot *slot;
2356  
2357  	/*
2358  	 * This also protects against using a memslot from a different address space,
2359  	 * since different address spaces have different generation numbers.
2360  	 */
2361  	if (unlikely(gen != vcpu->last_used_slot_gen)) {
2362  		vcpu->last_used_slot = NULL;
2363  		vcpu->last_used_slot_gen = gen;
2364  	}
2365  
2366  	slot = try_get_memslot(vcpu->last_used_slot, gfn);
2367  	if (slot)
2368  		return slot;
2369  
2370  	/*
2371  	 * Fall back to searching all memslots. We purposely use
2372  	 * search_memslots() instead of __gfn_to_memslot() to avoid
2373  	 * thrashing the VM-wide last_used_slot in kvm_memslots.
2374  	 */
2375  	slot = search_memslots(slots, gfn, false);
2376  	if (slot) {
2377  		vcpu->last_used_slot = slot;
2378  		return slot;
2379  	}
2380  
2381  	return NULL;
2382  }
2383  
kvm_is_visible_gfn(struct kvm * kvm,gfn_t gfn)2384  bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2385  {
2386  	struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2387  
2388  	return kvm_is_visible_memslot(memslot);
2389  }
2390  EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2391  
kvm_vcpu_is_visible_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)2392  bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2393  {
2394  	struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2395  
2396  	return kvm_is_visible_memslot(memslot);
2397  }
2398  EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2399  
kvm_host_page_size(struct kvm_vcpu * vcpu,gfn_t gfn)2400  unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2401  {
2402  	struct vm_area_struct *vma;
2403  	unsigned long addr, size;
2404  
2405  	size = PAGE_SIZE;
2406  
2407  	addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2408  	if (kvm_is_error_hva(addr))
2409  		return PAGE_SIZE;
2410  
2411  	mmap_read_lock(current->mm);
2412  	vma = find_vma(current->mm, addr);
2413  	if (!vma)
2414  		goto out;
2415  
2416  	size = vma_kernel_pagesize(vma);
2417  
2418  out:
2419  	mmap_read_unlock(current->mm);
2420  
2421  	return size;
2422  }
2423  
memslot_is_readonly(const struct kvm_memory_slot * slot)2424  static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2425  {
2426  	return slot->flags & KVM_MEM_READONLY;
2427  }
2428  
__gfn_to_hva_many(const struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages,bool write)2429  static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2430  				       gfn_t *nr_pages, bool write)
2431  {
2432  	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2433  		return KVM_HVA_ERR_BAD;
2434  
2435  	if (memslot_is_readonly(slot) && write)
2436  		return KVM_HVA_ERR_RO_BAD;
2437  
2438  	if (nr_pages)
2439  		*nr_pages = slot->npages - (gfn - slot->base_gfn);
2440  
2441  	return __gfn_to_hva_memslot(slot, gfn);
2442  }
2443  
gfn_to_hva_many(struct kvm_memory_slot * slot,gfn_t gfn,gfn_t * nr_pages)2444  static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2445  				     gfn_t *nr_pages)
2446  {
2447  	return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2448  }
2449  
gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)2450  unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2451  					gfn_t gfn)
2452  {
2453  	return gfn_to_hva_many(slot, gfn, NULL);
2454  }
2455  EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2456  
gfn_to_hva(struct kvm * kvm,gfn_t gfn)2457  unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2458  {
2459  	return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2460  }
2461  EXPORT_SYMBOL_GPL(gfn_to_hva);
2462  
kvm_vcpu_gfn_to_hva(struct kvm_vcpu * vcpu,gfn_t gfn)2463  unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2464  {
2465  	return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2466  }
2467  EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2468  
2469  /*
2470   * Return the hva of a @gfn and the R/W attribute if possible.
2471   *
2472   * @slot: the kvm_memory_slot which contains @gfn
2473   * @gfn: the gfn to be translated
2474   * @writable: used to return the read/write attribute of the @slot if the hva
2475   * is valid and @writable is not NULL
2476   */
gfn_to_hva_memslot_prot(struct kvm_memory_slot * slot,gfn_t gfn,bool * writable)2477  unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2478  				      gfn_t gfn, bool *writable)
2479  {
2480  	unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2481  
2482  	if (!kvm_is_error_hva(hva) && writable)
2483  		*writable = !memslot_is_readonly(slot);
2484  
2485  	return hva;
2486  }
2487  
gfn_to_hva_prot(struct kvm * kvm,gfn_t gfn,bool * writable)2488  unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2489  {
2490  	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2491  
2492  	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2493  }
2494  
kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu * vcpu,gfn_t gfn,bool * writable)2495  unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2496  {
2497  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2498  
2499  	return gfn_to_hva_memslot_prot(slot, gfn, writable);
2500  }
2501  
check_user_page_hwpoison(unsigned long addr)2502  static inline int check_user_page_hwpoison(unsigned long addr)
2503  {
2504  	int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2505  
2506  	rc = get_user_pages(addr, 1, flags, NULL);
2507  	return rc == -EHWPOISON;
2508  }
2509  
2510  /*
2511   * The fast path to get the writable pfn which will be stored in @pfn,
2512   * true indicates success, otherwise false is returned.  It's also the
2513   * only part that runs if we can in atomic context.
2514   */
hva_to_pfn_fast(unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * pfn)2515  static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2516  			    bool *writable, kvm_pfn_t *pfn)
2517  {
2518  	struct page *page[1];
2519  
2520  	/*
2521  	 * Fast pin a writable pfn only if it is a write fault request
2522  	 * or the caller allows to map a writable pfn for a read fault
2523  	 * request.
2524  	 */
2525  	if (!(write_fault || writable))
2526  		return false;
2527  
2528  	if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2529  		*pfn = page_to_pfn(page[0]);
2530  
2531  		if (writable)
2532  			*writable = true;
2533  		return true;
2534  	}
2535  
2536  	return false;
2537  }
2538  
2539  /*
2540   * The slow path to get the pfn of the specified host virtual address,
2541   * 1 indicates success, -errno is returned if error is detected.
2542   */
hva_to_pfn_slow(unsigned long addr,bool * async,bool write_fault,bool interruptible,bool * writable,kvm_pfn_t * pfn)2543  static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2544  			   bool interruptible, bool *writable, kvm_pfn_t *pfn)
2545  {
2546  	/*
2547  	 * When a VCPU accesses a page that is not mapped into the secondary
2548  	 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2549  	 * make progress. We always want to honor NUMA hinting faults in that
2550  	 * case, because GUP usage corresponds to memory accesses from the VCPU.
2551  	 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2552  	 * mapped into the secondary MMU and gets accessed by a VCPU.
2553  	 *
2554  	 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2555  	 * implicitly honor NUMA hinting faults and don't need this flag.
2556  	 */
2557  	unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2558  	struct page *page;
2559  	int npages;
2560  
2561  	might_sleep();
2562  
2563  	if (writable)
2564  		*writable = write_fault;
2565  
2566  	if (write_fault)
2567  		flags |= FOLL_WRITE;
2568  	if (async)
2569  		flags |= FOLL_NOWAIT;
2570  	if (interruptible)
2571  		flags |= FOLL_INTERRUPTIBLE;
2572  
2573  	npages = get_user_pages_unlocked(addr, 1, &page, flags);
2574  	if (npages != 1)
2575  		return npages;
2576  
2577  	/* map read fault as writable if possible */
2578  	if (unlikely(!write_fault) && writable) {
2579  		struct page *wpage;
2580  
2581  		if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2582  			*writable = true;
2583  			put_page(page);
2584  			page = wpage;
2585  		}
2586  	}
2587  	*pfn = page_to_pfn(page);
2588  	return npages;
2589  }
2590  
vma_is_valid(struct vm_area_struct * vma,bool write_fault)2591  static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2592  {
2593  	if (unlikely(!(vma->vm_flags & VM_READ)))
2594  		return false;
2595  
2596  	if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2597  		return false;
2598  
2599  	return true;
2600  }
2601  
kvm_try_get_pfn(kvm_pfn_t pfn)2602  static int kvm_try_get_pfn(kvm_pfn_t pfn)
2603  {
2604  	struct page *page = kvm_pfn_to_refcounted_page(pfn);
2605  
2606  	if (!page)
2607  		return 1;
2608  
2609  	return get_page_unless_zero(page);
2610  }
2611  
hva_to_pfn_remapped(struct vm_area_struct * vma,unsigned long addr,bool write_fault,bool * writable,kvm_pfn_t * p_pfn)2612  static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2613  			       unsigned long addr, bool write_fault,
2614  			       bool *writable, kvm_pfn_t *p_pfn)
2615  {
2616  	kvm_pfn_t pfn;
2617  	pte_t *ptep;
2618  	pte_t pte;
2619  	spinlock_t *ptl;
2620  	int r;
2621  
2622  	r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2623  	if (r) {
2624  		/*
2625  		 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2626  		 * not call the fault handler, so do it here.
2627  		 */
2628  		bool unlocked = false;
2629  		r = fixup_user_fault(current->mm, addr,
2630  				     (write_fault ? FAULT_FLAG_WRITE : 0),
2631  				     &unlocked);
2632  		if (unlocked)
2633  			return -EAGAIN;
2634  		if (r)
2635  			return r;
2636  
2637  		r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2638  		if (r)
2639  			return r;
2640  	}
2641  
2642  	pte = ptep_get(ptep);
2643  
2644  	if (write_fault && !pte_write(pte)) {
2645  		pfn = KVM_PFN_ERR_RO_FAULT;
2646  		goto out;
2647  	}
2648  
2649  	if (writable)
2650  		*writable = pte_write(pte);
2651  	pfn = pte_pfn(pte);
2652  
2653  	/*
2654  	 * Get a reference here because callers of *hva_to_pfn* and
2655  	 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2656  	 * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2657  	 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2658  	 * simply do nothing for reserved pfns.
2659  	 *
2660  	 * Whoever called remap_pfn_range is also going to call e.g.
2661  	 * unmap_mapping_range before the underlying pages are freed,
2662  	 * causing a call to our MMU notifier.
2663  	 *
2664  	 * Certain IO or PFNMAP mappings can be backed with valid
2665  	 * struct pages, but be allocated without refcounting e.g.,
2666  	 * tail pages of non-compound higher order allocations, which
2667  	 * would then underflow the refcount when the caller does the
2668  	 * required put_page. Don't allow those pages here.
2669  	 */
2670  	if (!kvm_try_get_pfn(pfn))
2671  		r = -EFAULT;
2672  
2673  out:
2674  	pte_unmap_unlock(ptep, ptl);
2675  	*p_pfn = pfn;
2676  
2677  	return r;
2678  }
2679  
2680  /*
2681   * Pin guest page in memory and return its pfn.
2682   * @addr: host virtual address which maps memory to the guest
2683   * @atomic: whether this function can sleep
2684   * @interruptible: whether the process can be interrupted by non-fatal signals
2685   * @async: whether this function need to wait IO complete if the
2686   *         host page is not in the memory
2687   * @write_fault: whether we should get a writable host page
2688   * @writable: whether it allows to map a writable host page for !@write_fault
2689   *
2690   * The function will map a writable host page for these two cases:
2691   * 1): @write_fault = true
2692   * 2): @write_fault = false && @writable, @writable will tell the caller
2693   *     whether the mapping is writable.
2694   */
hva_to_pfn(unsigned long addr,bool atomic,bool interruptible,bool * async,bool write_fault,bool * writable)2695  kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2696  		     bool *async, bool write_fault, bool *writable)
2697  {
2698  	struct vm_area_struct *vma;
2699  	kvm_pfn_t pfn;
2700  	int npages, r;
2701  
2702  	/* we can do it either atomically or asynchronously, not both */
2703  	BUG_ON(atomic && async);
2704  
2705  	if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2706  		return pfn;
2707  
2708  	if (atomic)
2709  		return KVM_PFN_ERR_FAULT;
2710  
2711  	npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2712  				 writable, &pfn);
2713  	if (npages == 1)
2714  		return pfn;
2715  	if (npages == -EINTR)
2716  		return KVM_PFN_ERR_SIGPENDING;
2717  
2718  	mmap_read_lock(current->mm);
2719  	if (npages == -EHWPOISON ||
2720  	      (!async && check_user_page_hwpoison(addr))) {
2721  		pfn = KVM_PFN_ERR_HWPOISON;
2722  		goto exit;
2723  	}
2724  
2725  retry:
2726  	vma = vma_lookup(current->mm, addr);
2727  
2728  	if (vma == NULL)
2729  		pfn = KVM_PFN_ERR_FAULT;
2730  	else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2731  		r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2732  		if (r == -EAGAIN)
2733  			goto retry;
2734  		if (r < 0)
2735  			pfn = KVM_PFN_ERR_FAULT;
2736  	} else {
2737  		if (async && vma_is_valid(vma, write_fault))
2738  			*async = true;
2739  		pfn = KVM_PFN_ERR_FAULT;
2740  	}
2741  exit:
2742  	mmap_read_unlock(current->mm);
2743  	return pfn;
2744  }
2745  
__gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn,bool atomic,bool interruptible,bool * async,bool write_fault,bool * writable,hva_t * hva)2746  kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2747  			       bool atomic, bool interruptible, bool *async,
2748  			       bool write_fault, bool *writable, hva_t *hva)
2749  {
2750  	unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2751  
2752  	if (hva)
2753  		*hva = addr;
2754  
2755  	if (addr == KVM_HVA_ERR_RO_BAD) {
2756  		if (writable)
2757  			*writable = false;
2758  		return KVM_PFN_ERR_RO_FAULT;
2759  	}
2760  
2761  	if (kvm_is_error_hva(addr)) {
2762  		if (writable)
2763  			*writable = false;
2764  		return KVM_PFN_NOSLOT;
2765  	}
2766  
2767  	/* Do not map writable pfn in the readonly memslot. */
2768  	if (writable && memslot_is_readonly(slot)) {
2769  		*writable = false;
2770  		writable = NULL;
2771  	}
2772  
2773  	return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2774  			  writable);
2775  }
2776  EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2777  
gfn_to_pfn_prot(struct kvm * kvm,gfn_t gfn,bool write_fault,bool * writable)2778  kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2779  		      bool *writable)
2780  {
2781  	return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2782  				    NULL, write_fault, writable, NULL);
2783  }
2784  EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2785  
gfn_to_pfn_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)2786  kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2787  {
2788  	return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2789  				    NULL, NULL);
2790  }
2791  EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2792  
gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot * slot,gfn_t gfn)2793  kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2794  {
2795  	return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2796  				    NULL, NULL);
2797  }
2798  EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2799  
kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu * vcpu,gfn_t gfn)2800  kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2801  {
2802  	return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2803  }
2804  EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2805  
gfn_to_pfn(struct kvm * kvm,gfn_t gfn)2806  kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2807  {
2808  	return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2809  }
2810  EXPORT_SYMBOL_GPL(gfn_to_pfn);
2811  
kvm_vcpu_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn)2812  kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2813  {
2814  	return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2815  }
2816  EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2817  
gfn_to_page_many_atomic(struct kvm_memory_slot * slot,gfn_t gfn,struct page ** pages,int nr_pages)2818  int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2819  			    struct page **pages, int nr_pages)
2820  {
2821  	unsigned long addr;
2822  	gfn_t entry = 0;
2823  
2824  	addr = gfn_to_hva_many(slot, gfn, &entry);
2825  	if (kvm_is_error_hva(addr))
2826  		return -1;
2827  
2828  	if (entry < nr_pages)
2829  		return 0;
2830  
2831  	return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2832  }
2833  EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2834  
2835  /*
2836   * Do not use this helper unless you are absolutely certain the gfn _must_ be
2837   * backed by 'struct page'.  A valid example is if the backing memslot is
2838   * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2839   * been elevated by gfn_to_pfn().
2840   */
gfn_to_page(struct kvm * kvm,gfn_t gfn)2841  struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2842  {
2843  	struct page *page;
2844  	kvm_pfn_t pfn;
2845  
2846  	pfn = gfn_to_pfn(kvm, gfn);
2847  
2848  	if (is_error_noslot_pfn(pfn))
2849  		return KVM_ERR_PTR_BAD_PAGE;
2850  
2851  	page = kvm_pfn_to_refcounted_page(pfn);
2852  	if (!page)
2853  		return KVM_ERR_PTR_BAD_PAGE;
2854  
2855  	return page;
2856  }
2857  EXPORT_SYMBOL_GPL(gfn_to_page);
2858  
kvm_release_pfn(kvm_pfn_t pfn,bool dirty)2859  void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2860  {
2861  	if (dirty)
2862  		kvm_release_pfn_dirty(pfn);
2863  	else
2864  		kvm_release_pfn_clean(pfn);
2865  }
2866  
kvm_vcpu_map(struct kvm_vcpu * vcpu,gfn_t gfn,struct kvm_host_map * map)2867  int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2868  {
2869  	kvm_pfn_t pfn;
2870  	void *hva = NULL;
2871  	struct page *page = KVM_UNMAPPED_PAGE;
2872  
2873  	if (!map)
2874  		return -EINVAL;
2875  
2876  	pfn = gfn_to_pfn(vcpu->kvm, gfn);
2877  	if (is_error_noslot_pfn(pfn))
2878  		return -EINVAL;
2879  
2880  	if (pfn_valid(pfn)) {
2881  		page = pfn_to_page(pfn);
2882  		hva = kmap(page);
2883  #ifdef CONFIG_HAS_IOMEM
2884  	} else {
2885  		hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2886  #endif
2887  	}
2888  
2889  	if (!hva)
2890  		return -EFAULT;
2891  
2892  	map->page = page;
2893  	map->hva = hva;
2894  	map->pfn = pfn;
2895  	map->gfn = gfn;
2896  
2897  	return 0;
2898  }
2899  EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2900  
kvm_vcpu_unmap(struct kvm_vcpu * vcpu,struct kvm_host_map * map,bool dirty)2901  void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2902  {
2903  	if (!map)
2904  		return;
2905  
2906  	if (!map->hva)
2907  		return;
2908  
2909  	if (map->page != KVM_UNMAPPED_PAGE)
2910  		kunmap(map->page);
2911  #ifdef CONFIG_HAS_IOMEM
2912  	else
2913  		memunmap(map->hva);
2914  #endif
2915  
2916  	if (dirty)
2917  		kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2918  
2919  	kvm_release_pfn(map->pfn, dirty);
2920  
2921  	map->hva = NULL;
2922  	map->page = NULL;
2923  }
2924  EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2925  
kvm_is_ad_tracked_page(struct page * page)2926  static bool kvm_is_ad_tracked_page(struct page *page)
2927  {
2928  	/*
2929  	 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2930  	 * touched (e.g. set dirty) except by its owner".
2931  	 */
2932  	return !PageReserved(page);
2933  }
2934  
kvm_set_page_dirty(struct page * page)2935  static void kvm_set_page_dirty(struct page *page)
2936  {
2937  	if (kvm_is_ad_tracked_page(page))
2938  		SetPageDirty(page);
2939  }
2940  
kvm_set_page_accessed(struct page * page)2941  static void kvm_set_page_accessed(struct page *page)
2942  {
2943  	if (kvm_is_ad_tracked_page(page))
2944  		mark_page_accessed(page);
2945  }
2946  
kvm_release_page_clean(struct page * page)2947  void kvm_release_page_clean(struct page *page)
2948  {
2949  	WARN_ON(is_error_page(page));
2950  
2951  	kvm_set_page_accessed(page);
2952  	put_page(page);
2953  }
2954  EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2955  
kvm_release_pfn_clean(kvm_pfn_t pfn)2956  void kvm_release_pfn_clean(kvm_pfn_t pfn)
2957  {
2958  	struct page *page;
2959  
2960  	if (is_error_noslot_pfn(pfn))
2961  		return;
2962  
2963  	page = kvm_pfn_to_refcounted_page(pfn);
2964  	if (!page)
2965  		return;
2966  
2967  	kvm_release_page_clean(page);
2968  }
2969  EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2970  
kvm_release_page_dirty(struct page * page)2971  void kvm_release_page_dirty(struct page *page)
2972  {
2973  	WARN_ON(is_error_page(page));
2974  
2975  	kvm_set_page_dirty(page);
2976  	kvm_release_page_clean(page);
2977  }
2978  EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2979  
kvm_release_pfn_dirty(kvm_pfn_t pfn)2980  void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2981  {
2982  	struct page *page;
2983  
2984  	if (is_error_noslot_pfn(pfn))
2985  		return;
2986  
2987  	page = kvm_pfn_to_refcounted_page(pfn);
2988  	if (!page)
2989  		return;
2990  
2991  	kvm_release_page_dirty(page);
2992  }
2993  EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2994  
2995  /*
2996   * Note, checking for an error/noslot pfn is the caller's responsibility when
2997   * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2998   * "set" helpers are not to be used when the pfn might point at garbage.
2999   */
kvm_set_pfn_dirty(kvm_pfn_t pfn)3000  void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3001  {
3002  	if (WARN_ON(is_error_noslot_pfn(pfn)))
3003  		return;
3004  
3005  	if (pfn_valid(pfn))
3006  		kvm_set_page_dirty(pfn_to_page(pfn));
3007  }
3008  EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3009  
kvm_set_pfn_accessed(kvm_pfn_t pfn)3010  void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3011  {
3012  	if (WARN_ON(is_error_noslot_pfn(pfn)))
3013  		return;
3014  
3015  	if (pfn_valid(pfn))
3016  		kvm_set_page_accessed(pfn_to_page(pfn));
3017  }
3018  EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3019  
next_segment(unsigned long len,int offset)3020  static int next_segment(unsigned long len, int offset)
3021  {
3022  	if (len > PAGE_SIZE - offset)
3023  		return PAGE_SIZE - offset;
3024  	else
3025  		return len;
3026  }
3027  
__kvm_read_guest_page(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,int len)3028  static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3029  				 void *data, int offset, int len)
3030  {
3031  	int r;
3032  	unsigned long addr;
3033  
3034  	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3035  	if (kvm_is_error_hva(addr))
3036  		return -EFAULT;
3037  	r = __copy_from_user(data, (void __user *)addr + offset, len);
3038  	if (r)
3039  		return -EFAULT;
3040  	return 0;
3041  }
3042  
kvm_read_guest_page(struct kvm * kvm,gfn_t gfn,void * data,int offset,int len)3043  int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3044  			int len)
3045  {
3046  	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3047  
3048  	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3049  }
3050  EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3051  
kvm_vcpu_read_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len)3052  int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3053  			     int offset, int len)
3054  {
3055  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3056  
3057  	return __kvm_read_guest_page(slot, gfn, data, offset, len);
3058  }
3059  EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3060  
kvm_read_guest(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)3061  int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3062  {
3063  	gfn_t gfn = gpa >> PAGE_SHIFT;
3064  	int seg;
3065  	int offset = offset_in_page(gpa);
3066  	int ret;
3067  
3068  	while ((seg = next_segment(len, offset)) != 0) {
3069  		ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3070  		if (ret < 0)
3071  			return ret;
3072  		offset = 0;
3073  		len -= seg;
3074  		data += seg;
3075  		++gfn;
3076  	}
3077  	return 0;
3078  }
3079  EXPORT_SYMBOL_GPL(kvm_read_guest);
3080  
kvm_vcpu_read_guest(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3081  int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3082  {
3083  	gfn_t gfn = gpa >> PAGE_SHIFT;
3084  	int seg;
3085  	int offset = offset_in_page(gpa);
3086  	int ret;
3087  
3088  	while ((seg = next_segment(len, offset)) != 0) {
3089  		ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3090  		if (ret < 0)
3091  			return ret;
3092  		offset = 0;
3093  		len -= seg;
3094  		data += seg;
3095  		++gfn;
3096  	}
3097  	return 0;
3098  }
3099  EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3100  
__kvm_read_guest_atomic(struct kvm_memory_slot * slot,gfn_t gfn,void * data,int offset,unsigned long len)3101  static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3102  			           void *data, int offset, unsigned long len)
3103  {
3104  	int r;
3105  	unsigned long addr;
3106  
3107  	addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108  	if (kvm_is_error_hva(addr))
3109  		return -EFAULT;
3110  	pagefault_disable();
3111  	r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3112  	pagefault_enable();
3113  	if (r)
3114  		return -EFAULT;
3115  	return 0;
3116  }
3117  
kvm_vcpu_read_guest_atomic(struct kvm_vcpu * vcpu,gpa_t gpa,void * data,unsigned long len)3118  int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3119  			       void *data, unsigned long len)
3120  {
3121  	gfn_t gfn = gpa >> PAGE_SHIFT;
3122  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3123  	int offset = offset_in_page(gpa);
3124  
3125  	return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3126  }
3127  EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3128  
__kvm_write_guest_page(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t gfn,const void * data,int offset,int len)3129  static int __kvm_write_guest_page(struct kvm *kvm,
3130  				  struct kvm_memory_slot *memslot, gfn_t gfn,
3131  			          const void *data, int offset, int len)
3132  {
3133  	int r;
3134  	unsigned long addr;
3135  
3136  	addr = gfn_to_hva_memslot(memslot, gfn);
3137  	if (kvm_is_error_hva(addr))
3138  		return -EFAULT;
3139  	r = __copy_to_user((void __user *)addr + offset, data, len);
3140  	if (r)
3141  		return -EFAULT;
3142  	mark_page_dirty_in_slot(kvm, memslot, gfn);
3143  	return 0;
3144  }
3145  
kvm_write_guest_page(struct kvm * kvm,gfn_t gfn,const void * data,int offset,int len)3146  int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3147  			 const void *data, int offset, int len)
3148  {
3149  	struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3150  
3151  	return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3152  }
3153  EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3154  
kvm_vcpu_write_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,const void * data,int offset,int len)3155  int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3156  			      const void *data, int offset, int len)
3157  {
3158  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3159  
3160  	return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3161  }
3162  EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3163  
kvm_write_guest(struct kvm * kvm,gpa_t gpa,const void * data,unsigned long len)3164  int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3165  		    unsigned long len)
3166  {
3167  	gfn_t gfn = gpa >> PAGE_SHIFT;
3168  	int seg;
3169  	int offset = offset_in_page(gpa);
3170  	int ret;
3171  
3172  	while ((seg = next_segment(len, offset)) != 0) {
3173  		ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3174  		if (ret < 0)
3175  			return ret;
3176  		offset = 0;
3177  		len -= seg;
3178  		data += seg;
3179  		++gfn;
3180  	}
3181  	return 0;
3182  }
3183  EXPORT_SYMBOL_GPL(kvm_write_guest);
3184  
kvm_vcpu_write_guest(struct kvm_vcpu * vcpu,gpa_t gpa,const void * data,unsigned long len)3185  int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3186  		         unsigned long len)
3187  {
3188  	gfn_t gfn = gpa >> PAGE_SHIFT;
3189  	int seg;
3190  	int offset = offset_in_page(gpa);
3191  	int ret;
3192  
3193  	while ((seg = next_segment(len, offset)) != 0) {
3194  		ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3195  		if (ret < 0)
3196  			return ret;
3197  		offset = 0;
3198  		len -= seg;
3199  		data += seg;
3200  		++gfn;
3201  	}
3202  	return 0;
3203  }
3204  EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3205  
__kvm_gfn_to_hva_cache_init(struct kvm_memslots * slots,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3206  static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3207  				       struct gfn_to_hva_cache *ghc,
3208  				       gpa_t gpa, unsigned long len)
3209  {
3210  	int offset = offset_in_page(gpa);
3211  	gfn_t start_gfn = gpa >> PAGE_SHIFT;
3212  	gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3213  	gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3214  	gfn_t nr_pages_avail;
3215  
3216  	/* Update ghc->generation before performing any error checks. */
3217  	ghc->generation = slots->generation;
3218  
3219  	if (start_gfn > end_gfn) {
3220  		ghc->hva = KVM_HVA_ERR_BAD;
3221  		return -EINVAL;
3222  	}
3223  
3224  	/*
3225  	 * If the requested region crosses two memslots, we still
3226  	 * verify that the entire region is valid here.
3227  	 */
3228  	for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3229  		ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3230  		ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3231  					   &nr_pages_avail);
3232  		if (kvm_is_error_hva(ghc->hva))
3233  			return -EFAULT;
3234  	}
3235  
3236  	/* Use the slow path for cross page reads and writes. */
3237  	if (nr_pages_needed == 1)
3238  		ghc->hva += offset;
3239  	else
3240  		ghc->memslot = NULL;
3241  
3242  	ghc->gpa = gpa;
3243  	ghc->len = len;
3244  	return 0;
3245  }
3246  
kvm_gfn_to_hva_cache_init(struct kvm * kvm,struct gfn_to_hva_cache * ghc,gpa_t gpa,unsigned long len)3247  int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3248  			      gpa_t gpa, unsigned long len)
3249  {
3250  	struct kvm_memslots *slots = kvm_memslots(kvm);
3251  	return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3252  }
3253  EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3254  
kvm_write_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3255  int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3256  				  void *data, unsigned int offset,
3257  				  unsigned long len)
3258  {
3259  	struct kvm_memslots *slots = kvm_memslots(kvm);
3260  	int r;
3261  	gpa_t gpa = ghc->gpa + offset;
3262  
3263  	if (WARN_ON_ONCE(len + offset > ghc->len))
3264  		return -EINVAL;
3265  
3266  	if (slots->generation != ghc->generation) {
3267  		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3268  			return -EFAULT;
3269  	}
3270  
3271  	if (kvm_is_error_hva(ghc->hva))
3272  		return -EFAULT;
3273  
3274  	if (unlikely(!ghc->memslot))
3275  		return kvm_write_guest(kvm, gpa, data, len);
3276  
3277  	r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3278  	if (r)
3279  		return -EFAULT;
3280  	mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3281  
3282  	return 0;
3283  }
3284  EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3285  
kvm_write_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3286  int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3287  			   void *data, unsigned long len)
3288  {
3289  	return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3290  }
3291  EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3292  
kvm_read_guest_offset_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned int offset,unsigned long len)3293  int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3294  				 void *data, unsigned int offset,
3295  				 unsigned long len)
3296  {
3297  	struct kvm_memslots *slots = kvm_memslots(kvm);
3298  	int r;
3299  	gpa_t gpa = ghc->gpa + offset;
3300  
3301  	if (WARN_ON_ONCE(len + offset > ghc->len))
3302  		return -EINVAL;
3303  
3304  	if (slots->generation != ghc->generation) {
3305  		if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3306  			return -EFAULT;
3307  	}
3308  
3309  	if (kvm_is_error_hva(ghc->hva))
3310  		return -EFAULT;
3311  
3312  	if (unlikely(!ghc->memslot))
3313  		return kvm_read_guest(kvm, gpa, data, len);
3314  
3315  	r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3316  	if (r)
3317  		return -EFAULT;
3318  
3319  	return 0;
3320  }
3321  EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3322  
kvm_read_guest_cached(struct kvm * kvm,struct gfn_to_hva_cache * ghc,void * data,unsigned long len)3323  int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3324  			  void *data, unsigned long len)
3325  {
3326  	return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3327  }
3328  EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3329  
kvm_clear_guest(struct kvm * kvm,gpa_t gpa,unsigned long len)3330  int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3331  {
3332  	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3333  	gfn_t gfn = gpa >> PAGE_SHIFT;
3334  	int seg;
3335  	int offset = offset_in_page(gpa);
3336  	int ret;
3337  
3338  	while ((seg = next_segment(len, offset)) != 0) {
3339  		ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3340  		if (ret < 0)
3341  			return ret;
3342  		offset = 0;
3343  		len -= seg;
3344  		++gfn;
3345  	}
3346  	return 0;
3347  }
3348  EXPORT_SYMBOL_GPL(kvm_clear_guest);
3349  
mark_page_dirty_in_slot(struct kvm * kvm,const struct kvm_memory_slot * memslot,gfn_t gfn)3350  void mark_page_dirty_in_slot(struct kvm *kvm,
3351  			     const struct kvm_memory_slot *memslot,
3352  		 	     gfn_t gfn)
3353  {
3354  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3355  
3356  #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3357  	if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3358  		return;
3359  
3360  	WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3361  #endif
3362  
3363  	if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3364  		unsigned long rel_gfn = gfn - memslot->base_gfn;
3365  		u32 slot = (memslot->as_id << 16) | memslot->id;
3366  
3367  		if (kvm->dirty_ring_size && vcpu)
3368  			kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3369  		else if (memslot->dirty_bitmap)
3370  			set_bit_le(rel_gfn, memslot->dirty_bitmap);
3371  	}
3372  }
3373  EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3374  
mark_page_dirty(struct kvm * kvm,gfn_t gfn)3375  void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3376  {
3377  	struct kvm_memory_slot *memslot;
3378  
3379  	memslot = gfn_to_memslot(kvm, gfn);
3380  	mark_page_dirty_in_slot(kvm, memslot, gfn);
3381  }
3382  EXPORT_SYMBOL_GPL(mark_page_dirty);
3383  
kvm_vcpu_mark_page_dirty(struct kvm_vcpu * vcpu,gfn_t gfn)3384  void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3385  {
3386  	struct kvm_memory_slot *memslot;
3387  
3388  	memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3389  	mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3390  }
3391  EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3392  
kvm_sigset_activate(struct kvm_vcpu * vcpu)3393  void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3394  {
3395  	if (!vcpu->sigset_active)
3396  		return;
3397  
3398  	/*
3399  	 * This does a lockless modification of ->real_blocked, which is fine
3400  	 * because, only current can change ->real_blocked and all readers of
3401  	 * ->real_blocked don't care as long ->real_blocked is always a subset
3402  	 * of ->blocked.
3403  	 */
3404  	sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3405  }
3406  
kvm_sigset_deactivate(struct kvm_vcpu * vcpu)3407  void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3408  {
3409  	if (!vcpu->sigset_active)
3410  		return;
3411  
3412  	sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3413  	sigemptyset(&current->real_blocked);
3414  }
3415  
grow_halt_poll_ns(struct kvm_vcpu * vcpu)3416  static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3417  {
3418  	unsigned int old, val, grow, grow_start;
3419  
3420  	old = val = vcpu->halt_poll_ns;
3421  	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3422  	grow = READ_ONCE(halt_poll_ns_grow);
3423  	if (!grow)
3424  		goto out;
3425  
3426  	val *= grow;
3427  	if (val < grow_start)
3428  		val = grow_start;
3429  
3430  	vcpu->halt_poll_ns = val;
3431  out:
3432  	trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3433  }
3434  
shrink_halt_poll_ns(struct kvm_vcpu * vcpu)3435  static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3436  {
3437  	unsigned int old, val, shrink, grow_start;
3438  
3439  	old = val = vcpu->halt_poll_ns;
3440  	shrink = READ_ONCE(halt_poll_ns_shrink);
3441  	grow_start = READ_ONCE(halt_poll_ns_grow_start);
3442  	if (shrink == 0)
3443  		val = 0;
3444  	else
3445  		val /= shrink;
3446  
3447  	if (val < grow_start)
3448  		val = 0;
3449  
3450  	vcpu->halt_poll_ns = val;
3451  	trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3452  }
3453  
kvm_vcpu_check_block(struct kvm_vcpu * vcpu)3454  static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3455  {
3456  	int ret = -EINTR;
3457  	int idx = srcu_read_lock(&vcpu->kvm->srcu);
3458  
3459  	if (kvm_arch_vcpu_runnable(vcpu))
3460  		goto out;
3461  	if (kvm_cpu_has_pending_timer(vcpu))
3462  		goto out;
3463  	if (signal_pending(current))
3464  		goto out;
3465  	if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3466  		goto out;
3467  
3468  	ret = 0;
3469  out:
3470  	srcu_read_unlock(&vcpu->kvm->srcu, idx);
3471  	return ret;
3472  }
3473  
3474  /*
3475   * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3476   * pending.  This is mostly used when halting a vCPU, but may also be used
3477   * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3478   */
kvm_vcpu_block(struct kvm_vcpu * vcpu)3479  bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3480  {
3481  	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3482  	bool waited = false;
3483  
3484  	vcpu->stat.generic.blocking = 1;
3485  
3486  	preempt_disable();
3487  	kvm_arch_vcpu_blocking(vcpu);
3488  	prepare_to_rcuwait(wait);
3489  	preempt_enable();
3490  
3491  	for (;;) {
3492  		set_current_state(TASK_INTERRUPTIBLE);
3493  
3494  		if (kvm_vcpu_check_block(vcpu) < 0)
3495  			break;
3496  
3497  		waited = true;
3498  		schedule();
3499  	}
3500  
3501  	preempt_disable();
3502  	finish_rcuwait(wait);
3503  	kvm_arch_vcpu_unblocking(vcpu);
3504  	preempt_enable();
3505  
3506  	vcpu->stat.generic.blocking = 0;
3507  
3508  	return waited;
3509  }
3510  
update_halt_poll_stats(struct kvm_vcpu * vcpu,ktime_t start,ktime_t end,bool success)3511  static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3512  					  ktime_t end, bool success)
3513  {
3514  	struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3515  	u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3516  
3517  	++vcpu->stat.generic.halt_attempted_poll;
3518  
3519  	if (success) {
3520  		++vcpu->stat.generic.halt_successful_poll;
3521  
3522  		if (!vcpu_valid_wakeup(vcpu))
3523  			++vcpu->stat.generic.halt_poll_invalid;
3524  
3525  		stats->halt_poll_success_ns += poll_ns;
3526  		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3527  	} else {
3528  		stats->halt_poll_fail_ns += poll_ns;
3529  		KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3530  	}
3531  }
3532  
kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu * vcpu)3533  static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3534  {
3535  	struct kvm *kvm = vcpu->kvm;
3536  
3537  	if (kvm->override_halt_poll_ns) {
3538  		/*
3539  		 * Ensure kvm->max_halt_poll_ns is not read before
3540  		 * kvm->override_halt_poll_ns.
3541  		 *
3542  		 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3543  		 */
3544  		smp_rmb();
3545  		return READ_ONCE(kvm->max_halt_poll_ns);
3546  	}
3547  
3548  	return READ_ONCE(halt_poll_ns);
3549  }
3550  
3551  /*
3552   * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3553   * polling is enabled, busy wait for a short time before blocking to avoid the
3554   * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3555   * is halted.
3556   */
kvm_vcpu_halt(struct kvm_vcpu * vcpu)3557  void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3558  {
3559  	unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3560  	bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3561  	ktime_t start, cur, poll_end;
3562  	bool waited = false;
3563  	bool do_halt_poll;
3564  	u64 halt_ns;
3565  
3566  	if (vcpu->halt_poll_ns > max_halt_poll_ns)
3567  		vcpu->halt_poll_ns = max_halt_poll_ns;
3568  
3569  	do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3570  
3571  	start = cur = poll_end = ktime_get();
3572  	if (do_halt_poll) {
3573  		ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3574  
3575  		do {
3576  			if (kvm_vcpu_check_block(vcpu) < 0)
3577  				goto out;
3578  			cpu_relax();
3579  			poll_end = cur = ktime_get();
3580  		} while (kvm_vcpu_can_poll(cur, stop));
3581  	}
3582  
3583  	waited = kvm_vcpu_block(vcpu);
3584  
3585  	cur = ktime_get();
3586  	if (waited) {
3587  		vcpu->stat.generic.halt_wait_ns +=
3588  			ktime_to_ns(cur) - ktime_to_ns(poll_end);
3589  		KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3590  				ktime_to_ns(cur) - ktime_to_ns(poll_end));
3591  	}
3592  out:
3593  	/* The total time the vCPU was "halted", including polling time. */
3594  	halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3595  
3596  	/*
3597  	 * Note, halt-polling is considered successful so long as the vCPU was
3598  	 * never actually scheduled out, i.e. even if the wake event arrived
3599  	 * after of the halt-polling loop itself, but before the full wait.
3600  	 */
3601  	if (do_halt_poll)
3602  		update_halt_poll_stats(vcpu, start, poll_end, !waited);
3603  
3604  	if (halt_poll_allowed) {
3605  		/* Recompute the max halt poll time in case it changed. */
3606  		max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3607  
3608  		if (!vcpu_valid_wakeup(vcpu)) {
3609  			shrink_halt_poll_ns(vcpu);
3610  		} else if (max_halt_poll_ns) {
3611  			if (halt_ns <= vcpu->halt_poll_ns)
3612  				;
3613  			/* we had a long block, shrink polling */
3614  			else if (vcpu->halt_poll_ns &&
3615  				 halt_ns > max_halt_poll_ns)
3616  				shrink_halt_poll_ns(vcpu);
3617  			/* we had a short halt and our poll time is too small */
3618  			else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3619  				 halt_ns < max_halt_poll_ns)
3620  				grow_halt_poll_ns(vcpu);
3621  		} else {
3622  			vcpu->halt_poll_ns = 0;
3623  		}
3624  	}
3625  
3626  	trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3627  }
3628  EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3629  
kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)3630  bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3631  {
3632  	if (__kvm_vcpu_wake_up(vcpu)) {
3633  		WRITE_ONCE(vcpu->ready, true);
3634  		++vcpu->stat.generic.halt_wakeup;
3635  		return true;
3636  	}
3637  
3638  	return false;
3639  }
3640  EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3641  
3642  #ifndef CONFIG_S390
3643  /*
3644   * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3645   */
kvm_vcpu_kick(struct kvm_vcpu * vcpu)3646  void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3647  {
3648  	int me, cpu;
3649  
3650  	if (kvm_vcpu_wake_up(vcpu))
3651  		return;
3652  
3653  	me = get_cpu();
3654  	/*
3655  	 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3656  	 * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3657  	 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3658  	 * within the vCPU thread itself.
3659  	 */
3660  	if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3661  		if (vcpu->mode == IN_GUEST_MODE)
3662  			WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3663  		goto out;
3664  	}
3665  
3666  	/*
3667  	 * Note, the vCPU could get migrated to a different pCPU at any point
3668  	 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3669  	 * IPI to the previous pCPU.  But, that's ok because the purpose of the
3670  	 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3671  	 * vCPU also requires it to leave IN_GUEST_MODE.
3672  	 */
3673  	if (kvm_arch_vcpu_should_kick(vcpu)) {
3674  		cpu = READ_ONCE(vcpu->cpu);
3675  		if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3676  			smp_send_reschedule(cpu);
3677  	}
3678  out:
3679  	put_cpu();
3680  }
3681  EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3682  #endif /* !CONFIG_S390 */
3683  
kvm_vcpu_yield_to(struct kvm_vcpu * target)3684  int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3685  {
3686  	struct pid *pid;
3687  	struct task_struct *task = NULL;
3688  	int ret = 0;
3689  
3690  	rcu_read_lock();
3691  	pid = rcu_dereference(target->pid);
3692  	if (pid)
3693  		task = get_pid_task(pid, PIDTYPE_PID);
3694  	rcu_read_unlock();
3695  	if (!task)
3696  		return ret;
3697  	ret = yield_to(task, 1);
3698  	put_task_struct(task);
3699  
3700  	return ret;
3701  }
3702  EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3703  
3704  /*
3705   * Helper that checks whether a VCPU is eligible for directed yield.
3706   * Most eligible candidate to yield is decided by following heuristics:
3707   *
3708   *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3709   *  (preempted lock holder), indicated by @in_spin_loop.
3710   *  Set at the beginning and cleared at the end of interception/PLE handler.
3711   *
3712   *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3713   *  chance last time (mostly it has become eligible now since we have probably
3714   *  yielded to lockholder in last iteration. This is done by toggling
3715   *  @dy_eligible each time a VCPU checked for eligibility.)
3716   *
3717   *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3718   *  to preempted lock-holder could result in wrong VCPU selection and CPU
3719   *  burning. Giving priority for a potential lock-holder increases lock
3720   *  progress.
3721   *
3722   *  Since algorithm is based on heuristics, accessing another VCPU data without
3723   *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3724   *  and continue with next VCPU and so on.
3725   */
kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu * vcpu)3726  static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3727  {
3728  #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3729  	bool eligible;
3730  
3731  	eligible = !vcpu->spin_loop.in_spin_loop ||
3732  		    vcpu->spin_loop.dy_eligible;
3733  
3734  	if (vcpu->spin_loop.in_spin_loop)
3735  		kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3736  
3737  	return eligible;
3738  #else
3739  	return true;
3740  #endif
3741  }
3742  
3743  /*
3744   * Unlike kvm_arch_vcpu_runnable, this function is called outside
3745   * a vcpu_load/vcpu_put pair.  However, for most architectures
3746   * kvm_arch_vcpu_runnable does not require vcpu_load.
3747   */
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)3748  bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3749  {
3750  	return kvm_arch_vcpu_runnable(vcpu);
3751  }
3752  
vcpu_dy_runnable(struct kvm_vcpu * vcpu)3753  static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3754  {
3755  	if (kvm_arch_dy_runnable(vcpu))
3756  		return true;
3757  
3758  #ifdef CONFIG_KVM_ASYNC_PF
3759  	if (!list_empty_careful(&vcpu->async_pf.done))
3760  		return true;
3761  #endif
3762  
3763  	return false;
3764  }
3765  
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)3766  bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3767  {
3768  	return false;
3769  }
3770  
kvm_vcpu_on_spin(struct kvm_vcpu * me,bool yield_to_kernel_mode)3771  void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3772  {
3773  	struct kvm *kvm = me->kvm;
3774  	struct kvm_vcpu *vcpu;
3775  	int last_boosted_vcpu;
3776  	unsigned long i;
3777  	int yielded = 0;
3778  	int try = 3;
3779  	int pass;
3780  
3781  	last_boosted_vcpu = READ_ONCE(kvm->last_boosted_vcpu);
3782  	kvm_vcpu_set_in_spin_loop(me, true);
3783  	/*
3784  	 * We boost the priority of a VCPU that is runnable but not
3785  	 * currently running, because it got preempted by something
3786  	 * else and called schedule in __vcpu_run.  Hopefully that
3787  	 * VCPU is holding the lock that we need and will release it.
3788  	 * We approximate round-robin by starting at the last boosted VCPU.
3789  	 */
3790  	for (pass = 0; pass < 2 && !yielded && try; pass++) {
3791  		kvm_for_each_vcpu(i, vcpu, kvm) {
3792  			if (!pass && i <= last_boosted_vcpu) {
3793  				i = last_boosted_vcpu;
3794  				continue;
3795  			} else if (pass && i > last_boosted_vcpu)
3796  				break;
3797  			if (!READ_ONCE(vcpu->ready))
3798  				continue;
3799  			if (vcpu == me)
3800  				continue;
3801  			if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3802  				continue;
3803  			if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3804  			    !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3805  			    !kvm_arch_vcpu_in_kernel(vcpu))
3806  				continue;
3807  			if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3808  				continue;
3809  
3810  			yielded = kvm_vcpu_yield_to(vcpu);
3811  			if (yielded > 0) {
3812  				WRITE_ONCE(kvm->last_boosted_vcpu, i);
3813  				break;
3814  			} else if (yielded < 0) {
3815  				try--;
3816  				if (!try)
3817  					break;
3818  			}
3819  		}
3820  	}
3821  	kvm_vcpu_set_in_spin_loop(me, false);
3822  
3823  	/* Ensure vcpu is not eligible during next spinloop */
3824  	kvm_vcpu_set_dy_eligible(me, false);
3825  }
3826  EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3827  
kvm_page_in_dirty_ring(struct kvm * kvm,unsigned long pgoff)3828  static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3829  {
3830  #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3831  	return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3832  	    (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3833  	     kvm->dirty_ring_size / PAGE_SIZE);
3834  #else
3835  	return false;
3836  #endif
3837  }
3838  
kvm_vcpu_fault(struct vm_fault * vmf)3839  static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3840  {
3841  	struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3842  	struct page *page;
3843  
3844  	if (vmf->pgoff == 0)
3845  		page = virt_to_page(vcpu->run);
3846  #ifdef CONFIG_X86
3847  	else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3848  		page = virt_to_page(vcpu->arch.pio_data);
3849  #endif
3850  #ifdef CONFIG_KVM_MMIO
3851  	else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3852  		page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3853  #endif
3854  	else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3855  		page = kvm_dirty_ring_get_page(
3856  		    &vcpu->dirty_ring,
3857  		    vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3858  	else
3859  		return kvm_arch_vcpu_fault(vcpu, vmf);
3860  	get_page(page);
3861  	vmf->page = page;
3862  	return 0;
3863  }
3864  
3865  static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3866  	.fault = kvm_vcpu_fault,
3867  };
3868  
kvm_vcpu_mmap(struct file * file,struct vm_area_struct * vma)3869  static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3870  {
3871  	struct kvm_vcpu *vcpu = file->private_data;
3872  	unsigned long pages = vma_pages(vma);
3873  
3874  	if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3875  	     kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3876  	    ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3877  		return -EINVAL;
3878  
3879  	vma->vm_ops = &kvm_vcpu_vm_ops;
3880  	return 0;
3881  }
3882  
kvm_vcpu_release(struct inode * inode,struct file * filp)3883  static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3884  {
3885  	struct kvm_vcpu *vcpu = filp->private_data;
3886  
3887  	kvm_put_kvm(vcpu->kvm);
3888  	return 0;
3889  }
3890  
3891  static const struct file_operations kvm_vcpu_fops = {
3892  	.release        = kvm_vcpu_release,
3893  	.unlocked_ioctl = kvm_vcpu_ioctl,
3894  	.mmap           = kvm_vcpu_mmap,
3895  	.llseek		= noop_llseek,
3896  	KVM_COMPAT(kvm_vcpu_compat_ioctl),
3897  };
3898  
3899  /*
3900   * Allocates an inode for the vcpu.
3901   */
create_vcpu_fd(struct kvm_vcpu * vcpu)3902  static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3903  {
3904  	char name[8 + 1 + ITOA_MAX_LEN + 1];
3905  
3906  	snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3907  	return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3908  }
3909  
3910  #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
vcpu_get_pid(void * data,u64 * val)3911  static int vcpu_get_pid(void *data, u64 *val)
3912  {
3913  	struct kvm_vcpu *vcpu = data;
3914  
3915  	rcu_read_lock();
3916  	*val = pid_nr(rcu_dereference(vcpu->pid));
3917  	rcu_read_unlock();
3918  	return 0;
3919  }
3920  
3921  DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3922  
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)3923  static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3924  {
3925  	struct dentry *debugfs_dentry;
3926  	char dir_name[ITOA_MAX_LEN * 2];
3927  
3928  	if (!debugfs_initialized())
3929  		return;
3930  
3931  	snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3932  	debugfs_dentry = debugfs_create_dir(dir_name,
3933  					    vcpu->kvm->debugfs_dentry);
3934  	debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3935  			    &vcpu_get_pid_fops);
3936  
3937  	kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3938  }
3939  #endif
3940  
3941  /*
3942   * Creates some virtual cpus.  Good luck creating more than one.
3943   */
kvm_vm_ioctl_create_vcpu(struct kvm * kvm,u32 id)3944  static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3945  {
3946  	int r;
3947  	struct kvm_vcpu *vcpu;
3948  	struct page *page;
3949  
3950  	if (id >= KVM_MAX_VCPU_IDS)
3951  		return -EINVAL;
3952  
3953  	mutex_lock(&kvm->lock);
3954  	if (kvm->created_vcpus >= kvm->max_vcpus) {
3955  		mutex_unlock(&kvm->lock);
3956  		return -EINVAL;
3957  	}
3958  
3959  	r = kvm_arch_vcpu_precreate(kvm, id);
3960  	if (r) {
3961  		mutex_unlock(&kvm->lock);
3962  		return r;
3963  	}
3964  
3965  	kvm->created_vcpus++;
3966  	mutex_unlock(&kvm->lock);
3967  
3968  	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3969  	if (!vcpu) {
3970  		r = -ENOMEM;
3971  		goto vcpu_decrement;
3972  	}
3973  
3974  	BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3975  	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3976  	if (!page) {
3977  		r = -ENOMEM;
3978  		goto vcpu_free;
3979  	}
3980  	vcpu->run = page_address(page);
3981  
3982  	kvm_vcpu_init(vcpu, kvm, id);
3983  
3984  	r = kvm_arch_vcpu_create(vcpu);
3985  	if (r)
3986  		goto vcpu_free_run_page;
3987  
3988  	if (kvm->dirty_ring_size) {
3989  		r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3990  					 id, kvm->dirty_ring_size);
3991  		if (r)
3992  			goto arch_vcpu_destroy;
3993  	}
3994  
3995  	mutex_lock(&kvm->lock);
3996  
3997  #ifdef CONFIG_LOCKDEP
3998  	/* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3999  	mutex_lock(&vcpu->mutex);
4000  	mutex_unlock(&vcpu->mutex);
4001  #endif
4002  
4003  	if (kvm_get_vcpu_by_id(kvm, id)) {
4004  		r = -EEXIST;
4005  		goto unlock_vcpu_destroy;
4006  	}
4007  
4008  	vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4009  	r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4010  	if (r)
4011  		goto unlock_vcpu_destroy;
4012  
4013  	/* Now it's all set up, let userspace reach it */
4014  	kvm_get_kvm(kvm);
4015  	r = create_vcpu_fd(vcpu);
4016  	if (r < 0)
4017  		goto kvm_put_xa_release;
4018  
4019  	if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4020  		r = -EINVAL;
4021  		goto kvm_put_xa_release;
4022  	}
4023  
4024  	/*
4025  	 * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4026  	 * pointer before kvm->online_vcpu's incremented value.
4027  	 */
4028  	smp_wmb();
4029  	atomic_inc(&kvm->online_vcpus);
4030  
4031  	mutex_unlock(&kvm->lock);
4032  	kvm_arch_vcpu_postcreate(vcpu);
4033  	kvm_create_vcpu_debugfs(vcpu);
4034  	return r;
4035  
4036  kvm_put_xa_release:
4037  	kvm_put_kvm_no_destroy(kvm);
4038  	xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4039  unlock_vcpu_destroy:
4040  	mutex_unlock(&kvm->lock);
4041  	kvm_dirty_ring_free(&vcpu->dirty_ring);
4042  arch_vcpu_destroy:
4043  	kvm_arch_vcpu_destroy(vcpu);
4044  vcpu_free_run_page:
4045  	free_page((unsigned long)vcpu->run);
4046  vcpu_free:
4047  	kmem_cache_free(kvm_vcpu_cache, vcpu);
4048  vcpu_decrement:
4049  	mutex_lock(&kvm->lock);
4050  	kvm->created_vcpus--;
4051  	mutex_unlock(&kvm->lock);
4052  	return r;
4053  }
4054  
kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu * vcpu,sigset_t * sigset)4055  static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4056  {
4057  	if (sigset) {
4058  		sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4059  		vcpu->sigset_active = 1;
4060  		vcpu->sigset = *sigset;
4061  	} else
4062  		vcpu->sigset_active = 0;
4063  	return 0;
4064  }
4065  
kvm_vcpu_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4066  static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4067  			      size_t size, loff_t *offset)
4068  {
4069  	struct kvm_vcpu *vcpu = file->private_data;
4070  
4071  	return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4072  			&kvm_vcpu_stats_desc[0], &vcpu->stat,
4073  			sizeof(vcpu->stat), user_buffer, size, offset);
4074  }
4075  
kvm_vcpu_stats_release(struct inode * inode,struct file * file)4076  static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4077  {
4078  	struct kvm_vcpu *vcpu = file->private_data;
4079  
4080  	kvm_put_kvm(vcpu->kvm);
4081  	return 0;
4082  }
4083  
4084  static const struct file_operations kvm_vcpu_stats_fops = {
4085  	.read = kvm_vcpu_stats_read,
4086  	.release = kvm_vcpu_stats_release,
4087  	.llseek = noop_llseek,
4088  };
4089  
kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu * vcpu)4090  static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4091  {
4092  	int fd;
4093  	struct file *file;
4094  	char name[15 + ITOA_MAX_LEN + 1];
4095  
4096  	snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4097  
4098  	fd = get_unused_fd_flags(O_CLOEXEC);
4099  	if (fd < 0)
4100  		return fd;
4101  
4102  	file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4103  	if (IS_ERR(file)) {
4104  		put_unused_fd(fd);
4105  		return PTR_ERR(file);
4106  	}
4107  
4108  	kvm_get_kvm(vcpu->kvm);
4109  
4110  	file->f_mode |= FMODE_PREAD;
4111  	fd_install(fd, file);
4112  
4113  	return fd;
4114  }
4115  
kvm_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4116  static long kvm_vcpu_ioctl(struct file *filp,
4117  			   unsigned int ioctl, unsigned long arg)
4118  {
4119  	struct kvm_vcpu *vcpu = filp->private_data;
4120  	void __user *argp = (void __user *)arg;
4121  	int r;
4122  	struct kvm_fpu *fpu = NULL;
4123  	struct kvm_sregs *kvm_sregs = NULL;
4124  
4125  	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4126  		return -EIO;
4127  
4128  	if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4129  		return -EINVAL;
4130  
4131  	/*
4132  	 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4133  	 * execution; mutex_lock() would break them.
4134  	 */
4135  	r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4136  	if (r != -ENOIOCTLCMD)
4137  		return r;
4138  
4139  	if (mutex_lock_killable(&vcpu->mutex))
4140  		return -EINTR;
4141  	switch (ioctl) {
4142  	case KVM_RUN: {
4143  		struct pid *oldpid;
4144  		r = -EINVAL;
4145  		if (arg)
4146  			goto out;
4147  		oldpid = rcu_access_pointer(vcpu->pid);
4148  		if (unlikely(oldpid != task_pid(current))) {
4149  			/* The thread running this VCPU changed. */
4150  			struct pid *newpid;
4151  
4152  			r = kvm_arch_vcpu_run_pid_change(vcpu);
4153  			if (r)
4154  				break;
4155  
4156  			newpid = get_task_pid(current, PIDTYPE_PID);
4157  			rcu_assign_pointer(vcpu->pid, newpid);
4158  			if (oldpid)
4159  				synchronize_rcu();
4160  			put_pid(oldpid);
4161  		}
4162  		r = kvm_arch_vcpu_ioctl_run(vcpu);
4163  		trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4164  		break;
4165  	}
4166  	case KVM_GET_REGS: {
4167  		struct kvm_regs *kvm_regs;
4168  
4169  		r = -ENOMEM;
4170  		kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4171  		if (!kvm_regs)
4172  			goto out;
4173  		r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4174  		if (r)
4175  			goto out_free1;
4176  		r = -EFAULT;
4177  		if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4178  			goto out_free1;
4179  		r = 0;
4180  out_free1:
4181  		kfree(kvm_regs);
4182  		break;
4183  	}
4184  	case KVM_SET_REGS: {
4185  		struct kvm_regs *kvm_regs;
4186  
4187  		kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4188  		if (IS_ERR(kvm_regs)) {
4189  			r = PTR_ERR(kvm_regs);
4190  			goto out;
4191  		}
4192  		r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4193  		kfree(kvm_regs);
4194  		break;
4195  	}
4196  	case KVM_GET_SREGS: {
4197  		kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4198  				    GFP_KERNEL_ACCOUNT);
4199  		r = -ENOMEM;
4200  		if (!kvm_sregs)
4201  			goto out;
4202  		r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4203  		if (r)
4204  			goto out;
4205  		r = -EFAULT;
4206  		if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4207  			goto out;
4208  		r = 0;
4209  		break;
4210  	}
4211  	case KVM_SET_SREGS: {
4212  		kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4213  		if (IS_ERR(kvm_sregs)) {
4214  			r = PTR_ERR(kvm_sregs);
4215  			kvm_sregs = NULL;
4216  			goto out;
4217  		}
4218  		r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4219  		break;
4220  	}
4221  	case KVM_GET_MP_STATE: {
4222  		struct kvm_mp_state mp_state;
4223  
4224  		r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4225  		if (r)
4226  			goto out;
4227  		r = -EFAULT;
4228  		if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4229  			goto out;
4230  		r = 0;
4231  		break;
4232  	}
4233  	case KVM_SET_MP_STATE: {
4234  		struct kvm_mp_state mp_state;
4235  
4236  		r = -EFAULT;
4237  		if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4238  			goto out;
4239  		r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4240  		break;
4241  	}
4242  	case KVM_TRANSLATE: {
4243  		struct kvm_translation tr;
4244  
4245  		r = -EFAULT;
4246  		if (copy_from_user(&tr, argp, sizeof(tr)))
4247  			goto out;
4248  		r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4249  		if (r)
4250  			goto out;
4251  		r = -EFAULT;
4252  		if (copy_to_user(argp, &tr, sizeof(tr)))
4253  			goto out;
4254  		r = 0;
4255  		break;
4256  	}
4257  	case KVM_SET_GUEST_DEBUG: {
4258  		struct kvm_guest_debug dbg;
4259  
4260  		r = -EFAULT;
4261  		if (copy_from_user(&dbg, argp, sizeof(dbg)))
4262  			goto out;
4263  		r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4264  		break;
4265  	}
4266  	case KVM_SET_SIGNAL_MASK: {
4267  		struct kvm_signal_mask __user *sigmask_arg = argp;
4268  		struct kvm_signal_mask kvm_sigmask;
4269  		sigset_t sigset, *p;
4270  
4271  		p = NULL;
4272  		if (argp) {
4273  			r = -EFAULT;
4274  			if (copy_from_user(&kvm_sigmask, argp,
4275  					   sizeof(kvm_sigmask)))
4276  				goto out;
4277  			r = -EINVAL;
4278  			if (kvm_sigmask.len != sizeof(sigset))
4279  				goto out;
4280  			r = -EFAULT;
4281  			if (copy_from_user(&sigset, sigmask_arg->sigset,
4282  					   sizeof(sigset)))
4283  				goto out;
4284  			p = &sigset;
4285  		}
4286  		r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4287  		break;
4288  	}
4289  	case KVM_GET_FPU: {
4290  		fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4291  		r = -ENOMEM;
4292  		if (!fpu)
4293  			goto out;
4294  		r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4295  		if (r)
4296  			goto out;
4297  		r = -EFAULT;
4298  		if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4299  			goto out;
4300  		r = 0;
4301  		break;
4302  	}
4303  	case KVM_SET_FPU: {
4304  		fpu = memdup_user(argp, sizeof(*fpu));
4305  		if (IS_ERR(fpu)) {
4306  			r = PTR_ERR(fpu);
4307  			fpu = NULL;
4308  			goto out;
4309  		}
4310  		r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4311  		break;
4312  	}
4313  	case KVM_GET_STATS_FD: {
4314  		r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4315  		break;
4316  	}
4317  	default:
4318  		r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4319  	}
4320  out:
4321  	mutex_unlock(&vcpu->mutex);
4322  	kfree(fpu);
4323  	kfree(kvm_sregs);
4324  	return r;
4325  }
4326  
4327  #ifdef CONFIG_KVM_COMPAT
kvm_vcpu_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4328  static long kvm_vcpu_compat_ioctl(struct file *filp,
4329  				  unsigned int ioctl, unsigned long arg)
4330  {
4331  	struct kvm_vcpu *vcpu = filp->private_data;
4332  	void __user *argp = compat_ptr(arg);
4333  	int r;
4334  
4335  	if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4336  		return -EIO;
4337  
4338  	switch (ioctl) {
4339  	case KVM_SET_SIGNAL_MASK: {
4340  		struct kvm_signal_mask __user *sigmask_arg = argp;
4341  		struct kvm_signal_mask kvm_sigmask;
4342  		sigset_t sigset;
4343  
4344  		if (argp) {
4345  			r = -EFAULT;
4346  			if (copy_from_user(&kvm_sigmask, argp,
4347  					   sizeof(kvm_sigmask)))
4348  				goto out;
4349  			r = -EINVAL;
4350  			if (kvm_sigmask.len != sizeof(compat_sigset_t))
4351  				goto out;
4352  			r = -EFAULT;
4353  			if (get_compat_sigset(&sigset,
4354  					      (compat_sigset_t __user *)sigmask_arg->sigset))
4355  				goto out;
4356  			r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4357  		} else
4358  			r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4359  		break;
4360  	}
4361  	default:
4362  		r = kvm_vcpu_ioctl(filp, ioctl, arg);
4363  	}
4364  
4365  out:
4366  	return r;
4367  }
4368  #endif
4369  
kvm_device_mmap(struct file * filp,struct vm_area_struct * vma)4370  static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4371  {
4372  	struct kvm_device *dev = filp->private_data;
4373  
4374  	if (dev->ops->mmap)
4375  		return dev->ops->mmap(dev, vma);
4376  
4377  	return -ENODEV;
4378  }
4379  
kvm_device_ioctl_attr(struct kvm_device * dev,int (* accessor)(struct kvm_device * dev,struct kvm_device_attr * attr),unsigned long arg)4380  static int kvm_device_ioctl_attr(struct kvm_device *dev,
4381  				 int (*accessor)(struct kvm_device *dev,
4382  						 struct kvm_device_attr *attr),
4383  				 unsigned long arg)
4384  {
4385  	struct kvm_device_attr attr;
4386  
4387  	if (!accessor)
4388  		return -EPERM;
4389  
4390  	if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4391  		return -EFAULT;
4392  
4393  	return accessor(dev, &attr);
4394  }
4395  
kvm_device_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4396  static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4397  			     unsigned long arg)
4398  {
4399  	struct kvm_device *dev = filp->private_data;
4400  
4401  	if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4402  		return -EIO;
4403  
4404  	switch (ioctl) {
4405  	case KVM_SET_DEVICE_ATTR:
4406  		return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4407  	case KVM_GET_DEVICE_ATTR:
4408  		return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4409  	case KVM_HAS_DEVICE_ATTR:
4410  		return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4411  	default:
4412  		if (dev->ops->ioctl)
4413  			return dev->ops->ioctl(dev, ioctl, arg);
4414  
4415  		return -ENOTTY;
4416  	}
4417  }
4418  
kvm_device_release(struct inode * inode,struct file * filp)4419  static int kvm_device_release(struct inode *inode, struct file *filp)
4420  {
4421  	struct kvm_device *dev = filp->private_data;
4422  	struct kvm *kvm = dev->kvm;
4423  
4424  	if (dev->ops->release) {
4425  		mutex_lock(&kvm->lock);
4426  		list_del(&dev->vm_node);
4427  		dev->ops->release(dev);
4428  		mutex_unlock(&kvm->lock);
4429  	}
4430  
4431  	kvm_put_kvm(kvm);
4432  	return 0;
4433  }
4434  
4435  static const struct file_operations kvm_device_fops = {
4436  	.unlocked_ioctl = kvm_device_ioctl,
4437  	.release = kvm_device_release,
4438  	KVM_COMPAT(kvm_device_ioctl),
4439  	.mmap = kvm_device_mmap,
4440  };
4441  
kvm_device_from_filp(struct file * filp)4442  struct kvm_device *kvm_device_from_filp(struct file *filp)
4443  {
4444  	if (filp->f_op != &kvm_device_fops)
4445  		return NULL;
4446  
4447  	return filp->private_data;
4448  }
4449  
4450  static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4451  #ifdef CONFIG_KVM_MPIC
4452  	[KVM_DEV_TYPE_FSL_MPIC_20]	= &kvm_mpic_ops,
4453  	[KVM_DEV_TYPE_FSL_MPIC_42]	= &kvm_mpic_ops,
4454  #endif
4455  };
4456  
kvm_register_device_ops(const struct kvm_device_ops * ops,u32 type)4457  int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4458  {
4459  	if (type >= ARRAY_SIZE(kvm_device_ops_table))
4460  		return -ENOSPC;
4461  
4462  	if (kvm_device_ops_table[type] != NULL)
4463  		return -EEXIST;
4464  
4465  	kvm_device_ops_table[type] = ops;
4466  	return 0;
4467  }
4468  
kvm_unregister_device_ops(u32 type)4469  void kvm_unregister_device_ops(u32 type)
4470  {
4471  	if (kvm_device_ops_table[type] != NULL)
4472  		kvm_device_ops_table[type] = NULL;
4473  }
4474  
kvm_ioctl_create_device(struct kvm * kvm,struct kvm_create_device * cd)4475  static int kvm_ioctl_create_device(struct kvm *kvm,
4476  				   struct kvm_create_device *cd)
4477  {
4478  	const struct kvm_device_ops *ops;
4479  	struct kvm_device *dev;
4480  	bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4481  	int type;
4482  	int ret;
4483  
4484  	if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4485  		return -ENODEV;
4486  
4487  	type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4488  	ops = kvm_device_ops_table[type];
4489  	if (ops == NULL)
4490  		return -ENODEV;
4491  
4492  	if (test)
4493  		return 0;
4494  
4495  	dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4496  	if (!dev)
4497  		return -ENOMEM;
4498  
4499  	dev->ops = ops;
4500  	dev->kvm = kvm;
4501  
4502  	mutex_lock(&kvm->lock);
4503  	ret = ops->create(dev, type);
4504  	if (ret < 0) {
4505  		mutex_unlock(&kvm->lock);
4506  		kfree(dev);
4507  		return ret;
4508  	}
4509  	list_add(&dev->vm_node, &kvm->devices);
4510  	mutex_unlock(&kvm->lock);
4511  
4512  	if (ops->init)
4513  		ops->init(dev);
4514  
4515  	kvm_get_kvm(kvm);
4516  	ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4517  	if (ret < 0) {
4518  		kvm_put_kvm_no_destroy(kvm);
4519  		mutex_lock(&kvm->lock);
4520  		list_del(&dev->vm_node);
4521  		if (ops->release)
4522  			ops->release(dev);
4523  		mutex_unlock(&kvm->lock);
4524  		if (ops->destroy)
4525  			ops->destroy(dev);
4526  		return ret;
4527  	}
4528  
4529  	cd->fd = ret;
4530  	return 0;
4531  }
4532  
kvm_vm_ioctl_check_extension_generic(struct kvm * kvm,long arg)4533  static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4534  {
4535  	switch (arg) {
4536  	case KVM_CAP_USER_MEMORY:
4537  	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4538  	case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4539  	case KVM_CAP_INTERNAL_ERROR_DATA:
4540  #ifdef CONFIG_HAVE_KVM_MSI
4541  	case KVM_CAP_SIGNAL_MSI:
4542  #endif
4543  #ifdef CONFIG_HAVE_KVM_IRQFD
4544  	case KVM_CAP_IRQFD:
4545  #endif
4546  	case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4547  	case KVM_CAP_CHECK_EXTENSION_VM:
4548  	case KVM_CAP_ENABLE_CAP_VM:
4549  	case KVM_CAP_HALT_POLL:
4550  		return 1;
4551  #ifdef CONFIG_KVM_MMIO
4552  	case KVM_CAP_COALESCED_MMIO:
4553  		return KVM_COALESCED_MMIO_PAGE_OFFSET;
4554  	case KVM_CAP_COALESCED_PIO:
4555  		return 1;
4556  #endif
4557  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4558  	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4559  		return KVM_DIRTY_LOG_MANUAL_CAPS;
4560  #endif
4561  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4562  	case KVM_CAP_IRQ_ROUTING:
4563  		return KVM_MAX_IRQ_ROUTES;
4564  #endif
4565  #if KVM_ADDRESS_SPACE_NUM > 1
4566  	case KVM_CAP_MULTI_ADDRESS_SPACE:
4567  		return KVM_ADDRESS_SPACE_NUM;
4568  #endif
4569  	case KVM_CAP_NR_MEMSLOTS:
4570  		return KVM_USER_MEM_SLOTS;
4571  	case KVM_CAP_DIRTY_LOG_RING:
4572  #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4573  		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4574  #else
4575  		return 0;
4576  #endif
4577  	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4578  #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4579  		return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4580  #else
4581  		return 0;
4582  #endif
4583  #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4584  	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4585  #endif
4586  	case KVM_CAP_BINARY_STATS_FD:
4587  	case KVM_CAP_SYSTEM_EVENT_DATA:
4588  		return 1;
4589  	default:
4590  		break;
4591  	}
4592  	return kvm_vm_ioctl_check_extension(kvm, arg);
4593  }
4594  
kvm_vm_ioctl_enable_dirty_log_ring(struct kvm * kvm,u32 size)4595  static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4596  {
4597  	int r;
4598  
4599  	if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4600  		return -EINVAL;
4601  
4602  	/* the size should be power of 2 */
4603  	if (!size || (size & (size - 1)))
4604  		return -EINVAL;
4605  
4606  	/* Should be bigger to keep the reserved entries, or a page */
4607  	if (size < kvm_dirty_ring_get_rsvd_entries() *
4608  	    sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4609  		return -EINVAL;
4610  
4611  	if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4612  	    sizeof(struct kvm_dirty_gfn))
4613  		return -E2BIG;
4614  
4615  	/* We only allow it to set once */
4616  	if (kvm->dirty_ring_size)
4617  		return -EINVAL;
4618  
4619  	mutex_lock(&kvm->lock);
4620  
4621  	if (kvm->created_vcpus) {
4622  		/* We don't allow to change this value after vcpu created */
4623  		r = -EINVAL;
4624  	} else {
4625  		kvm->dirty_ring_size = size;
4626  		r = 0;
4627  	}
4628  
4629  	mutex_unlock(&kvm->lock);
4630  	return r;
4631  }
4632  
kvm_vm_ioctl_reset_dirty_pages(struct kvm * kvm)4633  static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4634  {
4635  	unsigned long i;
4636  	struct kvm_vcpu *vcpu;
4637  	int cleared = 0;
4638  
4639  	if (!kvm->dirty_ring_size)
4640  		return -EINVAL;
4641  
4642  	mutex_lock(&kvm->slots_lock);
4643  
4644  	kvm_for_each_vcpu(i, vcpu, kvm)
4645  		cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4646  
4647  	mutex_unlock(&kvm->slots_lock);
4648  
4649  	if (cleared)
4650  		kvm_flush_remote_tlbs(kvm);
4651  
4652  	return cleared;
4653  }
4654  
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)4655  int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4656  						  struct kvm_enable_cap *cap)
4657  {
4658  	return -EINVAL;
4659  }
4660  
kvm_are_all_memslots_empty(struct kvm * kvm)4661  bool kvm_are_all_memslots_empty(struct kvm *kvm)
4662  {
4663  	int i;
4664  
4665  	lockdep_assert_held(&kvm->slots_lock);
4666  
4667  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4668  		if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4669  			return false;
4670  	}
4671  
4672  	return true;
4673  }
4674  EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4675  
kvm_vm_ioctl_enable_cap_generic(struct kvm * kvm,struct kvm_enable_cap * cap)4676  static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4677  					   struct kvm_enable_cap *cap)
4678  {
4679  	switch (cap->cap) {
4680  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4681  	case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4682  		u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4683  
4684  		if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4685  			allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4686  
4687  		if (cap->flags || (cap->args[0] & ~allowed_options))
4688  			return -EINVAL;
4689  		kvm->manual_dirty_log_protect = cap->args[0];
4690  		return 0;
4691  	}
4692  #endif
4693  	case KVM_CAP_HALT_POLL: {
4694  		if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4695  			return -EINVAL;
4696  
4697  		kvm->max_halt_poll_ns = cap->args[0];
4698  
4699  		/*
4700  		 * Ensure kvm->override_halt_poll_ns does not become visible
4701  		 * before kvm->max_halt_poll_ns.
4702  		 *
4703  		 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4704  		 */
4705  		smp_wmb();
4706  		kvm->override_halt_poll_ns = true;
4707  
4708  		return 0;
4709  	}
4710  	case KVM_CAP_DIRTY_LOG_RING:
4711  	case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4712  		if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4713  			return -EINVAL;
4714  
4715  		return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4716  	case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4717  		int r = -EINVAL;
4718  
4719  		if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4720  		    !kvm->dirty_ring_size || cap->flags)
4721  			return r;
4722  
4723  		mutex_lock(&kvm->slots_lock);
4724  
4725  		/*
4726  		 * For simplicity, allow enabling ring+bitmap if and only if
4727  		 * there are no memslots, e.g. to ensure all memslots allocate
4728  		 * a bitmap after the capability is enabled.
4729  		 */
4730  		if (kvm_are_all_memslots_empty(kvm)) {
4731  			kvm->dirty_ring_with_bitmap = true;
4732  			r = 0;
4733  		}
4734  
4735  		mutex_unlock(&kvm->slots_lock);
4736  
4737  		return r;
4738  	}
4739  	default:
4740  		return kvm_vm_ioctl_enable_cap(kvm, cap);
4741  	}
4742  }
4743  
kvm_vm_stats_read(struct file * file,char __user * user_buffer,size_t size,loff_t * offset)4744  static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4745  			      size_t size, loff_t *offset)
4746  {
4747  	struct kvm *kvm = file->private_data;
4748  
4749  	return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4750  				&kvm_vm_stats_desc[0], &kvm->stat,
4751  				sizeof(kvm->stat), user_buffer, size, offset);
4752  }
4753  
kvm_vm_stats_release(struct inode * inode,struct file * file)4754  static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4755  {
4756  	struct kvm *kvm = file->private_data;
4757  
4758  	kvm_put_kvm(kvm);
4759  	return 0;
4760  }
4761  
4762  static const struct file_operations kvm_vm_stats_fops = {
4763  	.read = kvm_vm_stats_read,
4764  	.release = kvm_vm_stats_release,
4765  	.llseek = noop_llseek,
4766  };
4767  
kvm_vm_ioctl_get_stats_fd(struct kvm * kvm)4768  static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4769  {
4770  	int fd;
4771  	struct file *file;
4772  
4773  	fd = get_unused_fd_flags(O_CLOEXEC);
4774  	if (fd < 0)
4775  		return fd;
4776  
4777  	file = anon_inode_getfile("kvm-vm-stats",
4778  			&kvm_vm_stats_fops, kvm, O_RDONLY);
4779  	if (IS_ERR(file)) {
4780  		put_unused_fd(fd);
4781  		return PTR_ERR(file);
4782  	}
4783  
4784  	kvm_get_kvm(kvm);
4785  
4786  	file->f_mode |= FMODE_PREAD;
4787  	fd_install(fd, file);
4788  
4789  	return fd;
4790  }
4791  
kvm_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4792  static long kvm_vm_ioctl(struct file *filp,
4793  			   unsigned int ioctl, unsigned long arg)
4794  {
4795  	struct kvm *kvm = filp->private_data;
4796  	void __user *argp = (void __user *)arg;
4797  	int r;
4798  
4799  	if (kvm->mm != current->mm || kvm->vm_dead)
4800  		return -EIO;
4801  	switch (ioctl) {
4802  	case KVM_CREATE_VCPU:
4803  		r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4804  		break;
4805  	case KVM_ENABLE_CAP: {
4806  		struct kvm_enable_cap cap;
4807  
4808  		r = -EFAULT;
4809  		if (copy_from_user(&cap, argp, sizeof(cap)))
4810  			goto out;
4811  		r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4812  		break;
4813  	}
4814  	case KVM_SET_USER_MEMORY_REGION: {
4815  		struct kvm_userspace_memory_region kvm_userspace_mem;
4816  
4817  		r = -EFAULT;
4818  		if (copy_from_user(&kvm_userspace_mem, argp,
4819  						sizeof(kvm_userspace_mem)))
4820  			goto out;
4821  
4822  		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4823  		break;
4824  	}
4825  	case KVM_GET_DIRTY_LOG: {
4826  		struct kvm_dirty_log log;
4827  
4828  		r = -EFAULT;
4829  		if (copy_from_user(&log, argp, sizeof(log)))
4830  			goto out;
4831  		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4832  		break;
4833  	}
4834  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4835  	case KVM_CLEAR_DIRTY_LOG: {
4836  		struct kvm_clear_dirty_log log;
4837  
4838  		r = -EFAULT;
4839  		if (copy_from_user(&log, argp, sizeof(log)))
4840  			goto out;
4841  		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4842  		break;
4843  	}
4844  #endif
4845  #ifdef CONFIG_KVM_MMIO
4846  	case KVM_REGISTER_COALESCED_MMIO: {
4847  		struct kvm_coalesced_mmio_zone zone;
4848  
4849  		r = -EFAULT;
4850  		if (copy_from_user(&zone, argp, sizeof(zone)))
4851  			goto out;
4852  		r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4853  		break;
4854  	}
4855  	case KVM_UNREGISTER_COALESCED_MMIO: {
4856  		struct kvm_coalesced_mmio_zone zone;
4857  
4858  		r = -EFAULT;
4859  		if (copy_from_user(&zone, argp, sizeof(zone)))
4860  			goto out;
4861  		r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4862  		break;
4863  	}
4864  #endif
4865  	case KVM_IRQFD: {
4866  		struct kvm_irqfd data;
4867  
4868  		r = -EFAULT;
4869  		if (copy_from_user(&data, argp, sizeof(data)))
4870  			goto out;
4871  		r = kvm_irqfd(kvm, &data);
4872  		break;
4873  	}
4874  	case KVM_IOEVENTFD: {
4875  		struct kvm_ioeventfd data;
4876  
4877  		r = -EFAULT;
4878  		if (copy_from_user(&data, argp, sizeof(data)))
4879  			goto out;
4880  		r = kvm_ioeventfd(kvm, &data);
4881  		break;
4882  	}
4883  #ifdef CONFIG_HAVE_KVM_MSI
4884  	case KVM_SIGNAL_MSI: {
4885  		struct kvm_msi msi;
4886  
4887  		r = -EFAULT;
4888  		if (copy_from_user(&msi, argp, sizeof(msi)))
4889  			goto out;
4890  		r = kvm_send_userspace_msi(kvm, &msi);
4891  		break;
4892  	}
4893  #endif
4894  #ifdef __KVM_HAVE_IRQ_LINE
4895  	case KVM_IRQ_LINE_STATUS:
4896  	case KVM_IRQ_LINE: {
4897  		struct kvm_irq_level irq_event;
4898  
4899  		r = -EFAULT;
4900  		if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4901  			goto out;
4902  
4903  		r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4904  					ioctl == KVM_IRQ_LINE_STATUS);
4905  		if (r)
4906  			goto out;
4907  
4908  		r = -EFAULT;
4909  		if (ioctl == KVM_IRQ_LINE_STATUS) {
4910  			if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4911  				goto out;
4912  		}
4913  
4914  		r = 0;
4915  		break;
4916  	}
4917  #endif
4918  #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4919  	case KVM_SET_GSI_ROUTING: {
4920  		struct kvm_irq_routing routing;
4921  		struct kvm_irq_routing __user *urouting;
4922  		struct kvm_irq_routing_entry *entries = NULL;
4923  
4924  		r = -EFAULT;
4925  		if (copy_from_user(&routing, argp, sizeof(routing)))
4926  			goto out;
4927  		r = -EINVAL;
4928  		if (!kvm_arch_can_set_irq_routing(kvm))
4929  			goto out;
4930  		if (routing.nr > KVM_MAX_IRQ_ROUTES)
4931  			goto out;
4932  		if (routing.flags)
4933  			goto out;
4934  		if (routing.nr) {
4935  			urouting = argp;
4936  			entries = vmemdup_user(urouting->entries,
4937  					       array_size(sizeof(*entries),
4938  							  routing.nr));
4939  			if (IS_ERR(entries)) {
4940  				r = PTR_ERR(entries);
4941  				goto out;
4942  			}
4943  		}
4944  		r = kvm_set_irq_routing(kvm, entries, routing.nr,
4945  					routing.flags);
4946  		kvfree(entries);
4947  		break;
4948  	}
4949  #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4950  	case KVM_CREATE_DEVICE: {
4951  		struct kvm_create_device cd;
4952  
4953  		r = -EFAULT;
4954  		if (copy_from_user(&cd, argp, sizeof(cd)))
4955  			goto out;
4956  
4957  		r = kvm_ioctl_create_device(kvm, &cd);
4958  		if (r)
4959  			goto out;
4960  
4961  		r = -EFAULT;
4962  		if (copy_to_user(argp, &cd, sizeof(cd)))
4963  			goto out;
4964  
4965  		r = 0;
4966  		break;
4967  	}
4968  	case KVM_CHECK_EXTENSION:
4969  		r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4970  		break;
4971  	case KVM_RESET_DIRTY_RINGS:
4972  		r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4973  		break;
4974  	case KVM_GET_STATS_FD:
4975  		r = kvm_vm_ioctl_get_stats_fd(kvm);
4976  		break;
4977  	default:
4978  		r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4979  	}
4980  out:
4981  	return r;
4982  }
4983  
4984  #ifdef CONFIG_KVM_COMPAT
4985  struct compat_kvm_dirty_log {
4986  	__u32 slot;
4987  	__u32 padding1;
4988  	union {
4989  		compat_uptr_t dirty_bitmap; /* one bit per page */
4990  		__u64 padding2;
4991  	};
4992  };
4993  
4994  struct compat_kvm_clear_dirty_log {
4995  	__u32 slot;
4996  	__u32 num_pages;
4997  	__u64 first_page;
4998  	union {
4999  		compat_uptr_t dirty_bitmap; /* one bit per page */
5000  		__u64 padding2;
5001  	};
5002  };
5003  
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5004  long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5005  				     unsigned long arg)
5006  {
5007  	return -ENOTTY;
5008  }
5009  
kvm_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5010  static long kvm_vm_compat_ioctl(struct file *filp,
5011  			   unsigned int ioctl, unsigned long arg)
5012  {
5013  	struct kvm *kvm = filp->private_data;
5014  	int r;
5015  
5016  	if (kvm->mm != current->mm || kvm->vm_dead)
5017  		return -EIO;
5018  
5019  	r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5020  	if (r != -ENOTTY)
5021  		return r;
5022  
5023  	switch (ioctl) {
5024  #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5025  	case KVM_CLEAR_DIRTY_LOG: {
5026  		struct compat_kvm_clear_dirty_log compat_log;
5027  		struct kvm_clear_dirty_log log;
5028  
5029  		if (copy_from_user(&compat_log, (void __user *)arg,
5030  				   sizeof(compat_log)))
5031  			return -EFAULT;
5032  		log.slot	 = compat_log.slot;
5033  		log.num_pages	 = compat_log.num_pages;
5034  		log.first_page	 = compat_log.first_page;
5035  		log.padding2	 = compat_log.padding2;
5036  		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5037  
5038  		r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5039  		break;
5040  	}
5041  #endif
5042  	case KVM_GET_DIRTY_LOG: {
5043  		struct compat_kvm_dirty_log compat_log;
5044  		struct kvm_dirty_log log;
5045  
5046  		if (copy_from_user(&compat_log, (void __user *)arg,
5047  				   sizeof(compat_log)))
5048  			return -EFAULT;
5049  		log.slot	 = compat_log.slot;
5050  		log.padding1	 = compat_log.padding1;
5051  		log.padding2	 = compat_log.padding2;
5052  		log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5053  
5054  		r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5055  		break;
5056  	}
5057  	default:
5058  		r = kvm_vm_ioctl(filp, ioctl, arg);
5059  	}
5060  	return r;
5061  }
5062  #endif
5063  
5064  static const struct file_operations kvm_vm_fops = {
5065  	.release        = kvm_vm_release,
5066  	.unlocked_ioctl = kvm_vm_ioctl,
5067  	.llseek		= noop_llseek,
5068  	KVM_COMPAT(kvm_vm_compat_ioctl),
5069  };
5070  
file_is_kvm(struct file * file)5071  bool file_is_kvm(struct file *file)
5072  {
5073  	return file && file->f_op == &kvm_vm_fops;
5074  }
5075  EXPORT_SYMBOL_GPL(file_is_kvm);
5076  
kvm_dev_ioctl_create_vm(unsigned long type)5077  static int kvm_dev_ioctl_create_vm(unsigned long type)
5078  {
5079  	char fdname[ITOA_MAX_LEN + 1];
5080  	int r, fd;
5081  	struct kvm *kvm;
5082  	struct file *file;
5083  
5084  	fd = get_unused_fd_flags(O_CLOEXEC);
5085  	if (fd < 0)
5086  		return fd;
5087  
5088  	snprintf(fdname, sizeof(fdname), "%d", fd);
5089  
5090  	kvm = kvm_create_vm(type, fdname);
5091  	if (IS_ERR(kvm)) {
5092  		r = PTR_ERR(kvm);
5093  		goto put_fd;
5094  	}
5095  
5096  	file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5097  	if (IS_ERR(file)) {
5098  		r = PTR_ERR(file);
5099  		goto put_kvm;
5100  	}
5101  
5102  	/*
5103  	 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5104  	 * already set, with ->release() being kvm_vm_release().  In error
5105  	 * cases it will be called by the final fput(file) and will take
5106  	 * care of doing kvm_put_kvm(kvm).
5107  	 */
5108  	kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5109  
5110  	fd_install(fd, file);
5111  	return fd;
5112  
5113  put_kvm:
5114  	kvm_put_kvm(kvm);
5115  put_fd:
5116  	put_unused_fd(fd);
5117  	return r;
5118  }
5119  
kvm_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5120  static long kvm_dev_ioctl(struct file *filp,
5121  			  unsigned int ioctl, unsigned long arg)
5122  {
5123  	int r = -EINVAL;
5124  
5125  	switch (ioctl) {
5126  	case KVM_GET_API_VERSION:
5127  		if (arg)
5128  			goto out;
5129  		r = KVM_API_VERSION;
5130  		break;
5131  	case KVM_CREATE_VM:
5132  		r = kvm_dev_ioctl_create_vm(arg);
5133  		break;
5134  	case KVM_CHECK_EXTENSION:
5135  		r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5136  		break;
5137  	case KVM_GET_VCPU_MMAP_SIZE:
5138  		if (arg)
5139  			goto out;
5140  		r = PAGE_SIZE;     /* struct kvm_run */
5141  #ifdef CONFIG_X86
5142  		r += PAGE_SIZE;    /* pio data page */
5143  #endif
5144  #ifdef CONFIG_KVM_MMIO
5145  		r += PAGE_SIZE;    /* coalesced mmio ring page */
5146  #endif
5147  		break;
5148  	case KVM_TRACE_ENABLE:
5149  	case KVM_TRACE_PAUSE:
5150  	case KVM_TRACE_DISABLE:
5151  		r = -EOPNOTSUPP;
5152  		break;
5153  	default:
5154  		return kvm_arch_dev_ioctl(filp, ioctl, arg);
5155  	}
5156  out:
5157  	return r;
5158  }
5159  
5160  static struct file_operations kvm_chardev_ops = {
5161  	.unlocked_ioctl = kvm_dev_ioctl,
5162  	.llseek		= noop_llseek,
5163  	KVM_COMPAT(kvm_dev_ioctl),
5164  };
5165  
5166  static struct miscdevice kvm_dev = {
5167  	KVM_MINOR,
5168  	"kvm",
5169  	&kvm_chardev_ops,
5170  };
5171  
5172  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5173  __visible bool kvm_rebooting;
5174  EXPORT_SYMBOL_GPL(kvm_rebooting);
5175  
5176  static DEFINE_PER_CPU(bool, hardware_enabled);
5177  static DEFINE_MUTEX(kvm_usage_lock);
5178  static int kvm_usage_count;
5179  
__hardware_enable_nolock(void)5180  static int __hardware_enable_nolock(void)
5181  {
5182  	if (__this_cpu_read(hardware_enabled))
5183  		return 0;
5184  
5185  	if (kvm_arch_hardware_enable()) {
5186  		pr_info("kvm: enabling virtualization on CPU%d failed\n",
5187  			raw_smp_processor_id());
5188  		return -EIO;
5189  	}
5190  
5191  	__this_cpu_write(hardware_enabled, true);
5192  	return 0;
5193  }
5194  
hardware_enable_nolock(void * failed)5195  static void hardware_enable_nolock(void *failed)
5196  {
5197  	if (__hardware_enable_nolock())
5198  		atomic_inc(failed);
5199  }
5200  
kvm_online_cpu(unsigned int cpu)5201  static int kvm_online_cpu(unsigned int cpu)
5202  {
5203  	int ret = 0;
5204  
5205  	/*
5206  	 * Abort the CPU online process if hardware virtualization cannot
5207  	 * be enabled. Otherwise running VMs would encounter unrecoverable
5208  	 * errors when scheduled to this CPU.
5209  	 */
5210  	mutex_lock(&kvm_usage_lock);
5211  	if (kvm_usage_count)
5212  		ret = __hardware_enable_nolock();
5213  	mutex_unlock(&kvm_usage_lock);
5214  	return ret;
5215  }
5216  
hardware_disable_nolock(void * junk)5217  static void hardware_disable_nolock(void *junk)
5218  {
5219  	/*
5220  	 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5221  	 * hardware, not just CPUs that successfully enabled hardware!
5222  	 */
5223  	if (!__this_cpu_read(hardware_enabled))
5224  		return;
5225  
5226  	kvm_arch_hardware_disable();
5227  
5228  	__this_cpu_write(hardware_enabled, false);
5229  }
5230  
kvm_offline_cpu(unsigned int cpu)5231  static int kvm_offline_cpu(unsigned int cpu)
5232  {
5233  	mutex_lock(&kvm_usage_lock);
5234  	if (kvm_usage_count)
5235  		hardware_disable_nolock(NULL);
5236  	mutex_unlock(&kvm_usage_lock);
5237  	return 0;
5238  }
5239  
hardware_disable_all_nolock(void)5240  static void hardware_disable_all_nolock(void)
5241  {
5242  	BUG_ON(!kvm_usage_count);
5243  
5244  	kvm_usage_count--;
5245  	if (!kvm_usage_count)
5246  		on_each_cpu(hardware_disable_nolock, NULL, 1);
5247  }
5248  
hardware_disable_all(void)5249  static void hardware_disable_all(void)
5250  {
5251  	cpus_read_lock();
5252  	mutex_lock(&kvm_usage_lock);
5253  	hardware_disable_all_nolock();
5254  	mutex_unlock(&kvm_usage_lock);
5255  	cpus_read_unlock();
5256  }
5257  
hardware_enable_all(void)5258  static int hardware_enable_all(void)
5259  {
5260  	atomic_t failed = ATOMIC_INIT(0);
5261  	int r;
5262  
5263  	/*
5264  	 * Do not enable hardware virtualization if the system is going down.
5265  	 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5266  	 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5267  	 * after kvm_reboot() is called.  Note, this relies on system_state
5268  	 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5269  	 * hook instead of registering a dedicated reboot notifier (the latter
5270  	 * runs before system_state is updated).
5271  	 */
5272  	if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5273  	    system_state == SYSTEM_RESTART)
5274  		return -EBUSY;
5275  
5276  	/*
5277  	 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5278  	 * is called, and so on_each_cpu() between them includes the CPU that
5279  	 * is being onlined.  As a result, hardware_enable_nolock() may get
5280  	 * invoked before kvm_online_cpu(), which also enables hardware if the
5281  	 * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5282  	 * enable hardware multiple times.
5283  	 */
5284  	cpus_read_lock();
5285  	mutex_lock(&kvm_usage_lock);
5286  
5287  	r = 0;
5288  
5289  	kvm_usage_count++;
5290  	if (kvm_usage_count == 1) {
5291  		on_each_cpu(hardware_enable_nolock, &failed, 1);
5292  
5293  		if (atomic_read(&failed)) {
5294  			hardware_disable_all_nolock();
5295  			r = -EBUSY;
5296  		}
5297  	}
5298  
5299  	mutex_unlock(&kvm_usage_lock);
5300  	cpus_read_unlock();
5301  
5302  	return r;
5303  }
5304  
kvm_shutdown(void)5305  static void kvm_shutdown(void)
5306  {
5307  	/*
5308  	 * Disable hardware virtualization and set kvm_rebooting to indicate
5309  	 * that KVM has asynchronously disabled hardware virtualization, i.e.
5310  	 * that relevant errors and exceptions aren't entirely unexpected.
5311  	 * Some flavors of hardware virtualization need to be disabled before
5312  	 * transferring control to firmware (to perform shutdown/reboot), e.g.
5313  	 * on x86, virtualization can block INIT interrupts, which are used by
5314  	 * firmware to pull APs back under firmware control.  Note, this path
5315  	 * is used for both shutdown and reboot scenarios, i.e. neither name is
5316  	 * 100% comprehensive.
5317  	 */
5318  	pr_info("kvm: exiting hardware virtualization\n");
5319  	kvm_rebooting = true;
5320  	on_each_cpu(hardware_disable_nolock, NULL, 1);
5321  }
5322  
kvm_suspend(void)5323  static int kvm_suspend(void)
5324  {
5325  	/*
5326  	 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5327  	 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5328  	 * count is stable.  Assert that kvm_usage_lock is not held to ensure
5329  	 * the system isn't suspended while KVM is enabling hardware.  Hardware
5330  	 * enabling can be preempted, but the task cannot be frozen until it has
5331  	 * dropped all locks (userspace tasks are frozen via a fake signal).
5332  	 */
5333  	lockdep_assert_not_held(&kvm_usage_lock);
5334  	lockdep_assert_irqs_disabled();
5335  
5336  	if (kvm_usage_count)
5337  		hardware_disable_nolock(NULL);
5338  	return 0;
5339  }
5340  
kvm_resume(void)5341  static void kvm_resume(void)
5342  {
5343  	lockdep_assert_not_held(&kvm_usage_lock);
5344  	lockdep_assert_irqs_disabled();
5345  
5346  	if (kvm_usage_count)
5347  		WARN_ON_ONCE(__hardware_enable_nolock());
5348  }
5349  
5350  static struct syscore_ops kvm_syscore_ops = {
5351  	.suspend = kvm_suspend,
5352  	.resume = kvm_resume,
5353  	.shutdown = kvm_shutdown,
5354  };
5355  #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
hardware_enable_all(void)5356  static int hardware_enable_all(void)
5357  {
5358  	return 0;
5359  }
5360  
hardware_disable_all(void)5361  static void hardware_disable_all(void)
5362  {
5363  
5364  }
5365  #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5366  
kvm_iodevice_destructor(struct kvm_io_device * dev)5367  static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5368  {
5369  	if (dev->ops->destructor)
5370  		dev->ops->destructor(dev);
5371  }
5372  
kvm_io_bus_destroy(struct kvm_io_bus * bus)5373  static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5374  {
5375  	int i;
5376  
5377  	for (i = 0; i < bus->dev_count; i++) {
5378  		struct kvm_io_device *pos = bus->range[i].dev;
5379  
5380  		kvm_iodevice_destructor(pos);
5381  	}
5382  	kfree(bus);
5383  }
5384  
kvm_io_bus_cmp(const struct kvm_io_range * r1,const struct kvm_io_range * r2)5385  static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5386  				 const struct kvm_io_range *r2)
5387  {
5388  	gpa_t addr1 = r1->addr;
5389  	gpa_t addr2 = r2->addr;
5390  
5391  	if (addr1 < addr2)
5392  		return -1;
5393  
5394  	/* If r2->len == 0, match the exact address.  If r2->len != 0,
5395  	 * accept any overlapping write.  Any order is acceptable for
5396  	 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5397  	 * we process all of them.
5398  	 */
5399  	if (r2->len) {
5400  		addr1 += r1->len;
5401  		addr2 += r2->len;
5402  	}
5403  
5404  	if (addr1 > addr2)
5405  		return 1;
5406  
5407  	return 0;
5408  }
5409  
kvm_io_bus_sort_cmp(const void * p1,const void * p2)5410  static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5411  {
5412  	return kvm_io_bus_cmp(p1, p2);
5413  }
5414  
kvm_io_bus_get_first_dev(struct kvm_io_bus * bus,gpa_t addr,int len)5415  static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5416  			     gpa_t addr, int len)
5417  {
5418  	struct kvm_io_range *range, key;
5419  	int off;
5420  
5421  	key = (struct kvm_io_range) {
5422  		.addr = addr,
5423  		.len = len,
5424  	};
5425  
5426  	range = bsearch(&key, bus->range, bus->dev_count,
5427  			sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5428  	if (range == NULL)
5429  		return -ENOENT;
5430  
5431  	off = range - bus->range;
5432  
5433  	while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5434  		off--;
5435  
5436  	return off;
5437  }
5438  
__kvm_io_bus_write(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,const void * val)5439  static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5440  			      struct kvm_io_range *range, const void *val)
5441  {
5442  	int idx;
5443  
5444  	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5445  	if (idx < 0)
5446  		return -EOPNOTSUPP;
5447  
5448  	while (idx < bus->dev_count &&
5449  		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5450  		if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5451  					range->len, val))
5452  			return idx;
5453  		idx++;
5454  	}
5455  
5456  	return -EOPNOTSUPP;
5457  }
5458  
5459  /* kvm_io_bus_write - called under kvm->slots_lock */
kvm_io_bus_write(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val)5460  int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5461  		     int len, const void *val)
5462  {
5463  	struct kvm_io_bus *bus;
5464  	struct kvm_io_range range;
5465  	int r;
5466  
5467  	range = (struct kvm_io_range) {
5468  		.addr = addr,
5469  		.len = len,
5470  	};
5471  
5472  	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5473  	if (!bus)
5474  		return -ENOMEM;
5475  	r = __kvm_io_bus_write(vcpu, bus, &range, val);
5476  	return r < 0 ? r : 0;
5477  }
5478  EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5479  
5480  /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
kvm_io_bus_write_cookie(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,const void * val,long cookie)5481  int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5482  			    gpa_t addr, int len, const void *val, long cookie)
5483  {
5484  	struct kvm_io_bus *bus;
5485  	struct kvm_io_range range;
5486  
5487  	range = (struct kvm_io_range) {
5488  		.addr = addr,
5489  		.len = len,
5490  	};
5491  
5492  	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5493  	if (!bus)
5494  		return -ENOMEM;
5495  
5496  	/* First try the device referenced by cookie. */
5497  	if ((cookie >= 0) && (cookie < bus->dev_count) &&
5498  	    (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5499  		if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5500  					val))
5501  			return cookie;
5502  
5503  	/*
5504  	 * cookie contained garbage; fall back to search and return the
5505  	 * correct cookie value.
5506  	 */
5507  	return __kvm_io_bus_write(vcpu, bus, &range, val);
5508  }
5509  
__kvm_io_bus_read(struct kvm_vcpu * vcpu,struct kvm_io_bus * bus,struct kvm_io_range * range,void * val)5510  static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5511  			     struct kvm_io_range *range, void *val)
5512  {
5513  	int idx;
5514  
5515  	idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5516  	if (idx < 0)
5517  		return -EOPNOTSUPP;
5518  
5519  	while (idx < bus->dev_count &&
5520  		kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5521  		if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5522  				       range->len, val))
5523  			return idx;
5524  		idx++;
5525  	}
5526  
5527  	return -EOPNOTSUPP;
5528  }
5529  
5530  /* kvm_io_bus_read - called under kvm->slots_lock */
kvm_io_bus_read(struct kvm_vcpu * vcpu,enum kvm_bus bus_idx,gpa_t addr,int len,void * val)5531  int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5532  		    int len, void *val)
5533  {
5534  	struct kvm_io_bus *bus;
5535  	struct kvm_io_range range;
5536  	int r;
5537  
5538  	range = (struct kvm_io_range) {
5539  		.addr = addr,
5540  		.len = len,
5541  	};
5542  
5543  	bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5544  	if (!bus)
5545  		return -ENOMEM;
5546  	r = __kvm_io_bus_read(vcpu, bus, &range, val);
5547  	return r < 0 ? r : 0;
5548  }
5549  
5550  /* Caller must hold slots_lock. */
kvm_io_bus_register_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr,int len,struct kvm_io_device * dev)5551  int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5552  			    int len, struct kvm_io_device *dev)
5553  {
5554  	int i;
5555  	struct kvm_io_bus *new_bus, *bus;
5556  	struct kvm_io_range range;
5557  
5558  	bus = kvm_get_bus(kvm, bus_idx);
5559  	if (!bus)
5560  		return -ENOMEM;
5561  
5562  	/* exclude ioeventfd which is limited by maximum fd */
5563  	if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5564  		return -ENOSPC;
5565  
5566  	new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5567  			  GFP_KERNEL_ACCOUNT);
5568  	if (!new_bus)
5569  		return -ENOMEM;
5570  
5571  	range = (struct kvm_io_range) {
5572  		.addr = addr,
5573  		.len = len,
5574  		.dev = dev,
5575  	};
5576  
5577  	for (i = 0; i < bus->dev_count; i++)
5578  		if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5579  			break;
5580  
5581  	memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5582  	new_bus->dev_count++;
5583  	new_bus->range[i] = range;
5584  	memcpy(new_bus->range + i + 1, bus->range + i,
5585  		(bus->dev_count - i) * sizeof(struct kvm_io_range));
5586  	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5587  	synchronize_srcu_expedited(&kvm->srcu);
5588  	kfree(bus);
5589  
5590  	return 0;
5591  }
5592  
kvm_io_bus_unregister_dev(struct kvm * kvm,enum kvm_bus bus_idx,struct kvm_io_device * dev)5593  int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5594  			      struct kvm_io_device *dev)
5595  {
5596  	int i;
5597  	struct kvm_io_bus *new_bus, *bus;
5598  
5599  	lockdep_assert_held(&kvm->slots_lock);
5600  
5601  	bus = kvm_get_bus(kvm, bus_idx);
5602  	if (!bus)
5603  		return 0;
5604  
5605  	for (i = 0; i < bus->dev_count; i++) {
5606  		if (bus->range[i].dev == dev) {
5607  			break;
5608  		}
5609  	}
5610  
5611  	if (i == bus->dev_count)
5612  		return 0;
5613  
5614  	new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5615  			  GFP_KERNEL_ACCOUNT);
5616  	if (new_bus) {
5617  		memcpy(new_bus, bus, struct_size(bus, range, i));
5618  		new_bus->dev_count--;
5619  		memcpy(new_bus->range + i, bus->range + i + 1,
5620  				flex_array_size(new_bus, range, new_bus->dev_count - i));
5621  	}
5622  
5623  	rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5624  	synchronize_srcu_expedited(&kvm->srcu);
5625  
5626  	/*
5627  	 * If NULL bus is installed, destroy the old bus, including all the
5628  	 * attached devices. Otherwise, destroy the caller's device only.
5629  	 */
5630  	if (!new_bus) {
5631  		pr_err("kvm: failed to shrink bus, removing it completely\n");
5632  		kvm_io_bus_destroy(bus);
5633  		return -ENOMEM;
5634  	}
5635  
5636  	kvm_iodevice_destructor(dev);
5637  	kfree(bus);
5638  	return 0;
5639  }
5640  
kvm_io_bus_get_dev(struct kvm * kvm,enum kvm_bus bus_idx,gpa_t addr)5641  struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5642  					 gpa_t addr)
5643  {
5644  	struct kvm_io_bus *bus;
5645  	int dev_idx, srcu_idx;
5646  	struct kvm_io_device *iodev = NULL;
5647  
5648  	srcu_idx = srcu_read_lock(&kvm->srcu);
5649  
5650  	bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5651  	if (!bus)
5652  		goto out_unlock;
5653  
5654  	dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5655  	if (dev_idx < 0)
5656  		goto out_unlock;
5657  
5658  	iodev = bus->range[dev_idx].dev;
5659  
5660  out_unlock:
5661  	srcu_read_unlock(&kvm->srcu, srcu_idx);
5662  
5663  	return iodev;
5664  }
5665  EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5666  
kvm_debugfs_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)5667  static int kvm_debugfs_open(struct inode *inode, struct file *file,
5668  			   int (*get)(void *, u64 *), int (*set)(void *, u64),
5669  			   const char *fmt)
5670  {
5671  	int ret;
5672  	struct kvm_stat_data *stat_data = inode->i_private;
5673  
5674  	/*
5675  	 * The debugfs files are a reference to the kvm struct which
5676          * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5677          * avoids the race between open and the removal of the debugfs directory.
5678  	 */
5679  	if (!kvm_get_kvm_safe(stat_data->kvm))
5680  		return -ENOENT;
5681  
5682  	ret = simple_attr_open(inode, file, get,
5683  			       kvm_stats_debugfs_mode(stat_data->desc) & 0222
5684  			       ? set : NULL, fmt);
5685  	if (ret)
5686  		kvm_put_kvm(stat_data->kvm);
5687  
5688  	return ret;
5689  }
5690  
kvm_debugfs_release(struct inode * inode,struct file * file)5691  static int kvm_debugfs_release(struct inode *inode, struct file *file)
5692  {
5693  	struct kvm_stat_data *stat_data = inode->i_private;
5694  
5695  	simple_attr_release(inode, file);
5696  	kvm_put_kvm(stat_data->kvm);
5697  
5698  	return 0;
5699  }
5700  
kvm_get_stat_per_vm(struct kvm * kvm,size_t offset,u64 * val)5701  static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5702  {
5703  	*val = *(u64 *)((void *)(&kvm->stat) + offset);
5704  
5705  	return 0;
5706  }
5707  
kvm_clear_stat_per_vm(struct kvm * kvm,size_t offset)5708  static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5709  {
5710  	*(u64 *)((void *)(&kvm->stat) + offset) = 0;
5711  
5712  	return 0;
5713  }
5714  
kvm_get_stat_per_vcpu(struct kvm * kvm,size_t offset,u64 * val)5715  static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5716  {
5717  	unsigned long i;
5718  	struct kvm_vcpu *vcpu;
5719  
5720  	*val = 0;
5721  
5722  	kvm_for_each_vcpu(i, vcpu, kvm)
5723  		*val += *(u64 *)((void *)(&vcpu->stat) + offset);
5724  
5725  	return 0;
5726  }
5727  
kvm_clear_stat_per_vcpu(struct kvm * kvm,size_t offset)5728  static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5729  {
5730  	unsigned long i;
5731  	struct kvm_vcpu *vcpu;
5732  
5733  	kvm_for_each_vcpu(i, vcpu, kvm)
5734  		*(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5735  
5736  	return 0;
5737  }
5738  
kvm_stat_data_get(void * data,u64 * val)5739  static int kvm_stat_data_get(void *data, u64 *val)
5740  {
5741  	int r = -EFAULT;
5742  	struct kvm_stat_data *stat_data = data;
5743  
5744  	switch (stat_data->kind) {
5745  	case KVM_STAT_VM:
5746  		r = kvm_get_stat_per_vm(stat_data->kvm,
5747  					stat_data->desc->desc.offset, val);
5748  		break;
5749  	case KVM_STAT_VCPU:
5750  		r = kvm_get_stat_per_vcpu(stat_data->kvm,
5751  					  stat_data->desc->desc.offset, val);
5752  		break;
5753  	}
5754  
5755  	return r;
5756  }
5757  
kvm_stat_data_clear(void * data,u64 val)5758  static int kvm_stat_data_clear(void *data, u64 val)
5759  {
5760  	int r = -EFAULT;
5761  	struct kvm_stat_data *stat_data = data;
5762  
5763  	if (val)
5764  		return -EINVAL;
5765  
5766  	switch (stat_data->kind) {
5767  	case KVM_STAT_VM:
5768  		r = kvm_clear_stat_per_vm(stat_data->kvm,
5769  					  stat_data->desc->desc.offset);
5770  		break;
5771  	case KVM_STAT_VCPU:
5772  		r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5773  					    stat_data->desc->desc.offset);
5774  		break;
5775  	}
5776  
5777  	return r;
5778  }
5779  
kvm_stat_data_open(struct inode * inode,struct file * file)5780  static int kvm_stat_data_open(struct inode *inode, struct file *file)
5781  {
5782  	__simple_attr_check_format("%llu\n", 0ull);
5783  	return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5784  				kvm_stat_data_clear, "%llu\n");
5785  }
5786  
5787  static const struct file_operations stat_fops_per_vm = {
5788  	.owner = THIS_MODULE,
5789  	.open = kvm_stat_data_open,
5790  	.release = kvm_debugfs_release,
5791  	.read = simple_attr_read,
5792  	.write = simple_attr_write,
5793  	.llseek = no_llseek,
5794  };
5795  
vm_stat_get(void * _offset,u64 * val)5796  static int vm_stat_get(void *_offset, u64 *val)
5797  {
5798  	unsigned offset = (long)_offset;
5799  	struct kvm *kvm;
5800  	u64 tmp_val;
5801  
5802  	*val = 0;
5803  	mutex_lock(&kvm_lock);
5804  	list_for_each_entry(kvm, &vm_list, vm_list) {
5805  		kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5806  		*val += tmp_val;
5807  	}
5808  	mutex_unlock(&kvm_lock);
5809  	return 0;
5810  }
5811  
vm_stat_clear(void * _offset,u64 val)5812  static int vm_stat_clear(void *_offset, u64 val)
5813  {
5814  	unsigned offset = (long)_offset;
5815  	struct kvm *kvm;
5816  
5817  	if (val)
5818  		return -EINVAL;
5819  
5820  	mutex_lock(&kvm_lock);
5821  	list_for_each_entry(kvm, &vm_list, vm_list) {
5822  		kvm_clear_stat_per_vm(kvm, offset);
5823  	}
5824  	mutex_unlock(&kvm_lock);
5825  
5826  	return 0;
5827  }
5828  
5829  DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5830  DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5831  
vcpu_stat_get(void * _offset,u64 * val)5832  static int vcpu_stat_get(void *_offset, u64 *val)
5833  {
5834  	unsigned offset = (long)_offset;
5835  	struct kvm *kvm;
5836  	u64 tmp_val;
5837  
5838  	*val = 0;
5839  	mutex_lock(&kvm_lock);
5840  	list_for_each_entry(kvm, &vm_list, vm_list) {
5841  		kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5842  		*val += tmp_val;
5843  	}
5844  	mutex_unlock(&kvm_lock);
5845  	return 0;
5846  }
5847  
vcpu_stat_clear(void * _offset,u64 val)5848  static int vcpu_stat_clear(void *_offset, u64 val)
5849  {
5850  	unsigned offset = (long)_offset;
5851  	struct kvm *kvm;
5852  
5853  	if (val)
5854  		return -EINVAL;
5855  
5856  	mutex_lock(&kvm_lock);
5857  	list_for_each_entry(kvm, &vm_list, vm_list) {
5858  		kvm_clear_stat_per_vcpu(kvm, offset);
5859  	}
5860  	mutex_unlock(&kvm_lock);
5861  
5862  	return 0;
5863  }
5864  
5865  DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5866  			"%llu\n");
5867  DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5868  
kvm_uevent_notify_change(unsigned int type,struct kvm * kvm)5869  static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5870  {
5871  	struct kobj_uevent_env *env;
5872  	unsigned long long created, active;
5873  
5874  	if (!kvm_dev.this_device || !kvm)
5875  		return;
5876  
5877  	mutex_lock(&kvm_lock);
5878  	if (type == KVM_EVENT_CREATE_VM) {
5879  		kvm_createvm_count++;
5880  		kvm_active_vms++;
5881  	} else if (type == KVM_EVENT_DESTROY_VM) {
5882  		kvm_active_vms--;
5883  	}
5884  	created = kvm_createvm_count;
5885  	active = kvm_active_vms;
5886  	mutex_unlock(&kvm_lock);
5887  
5888  	env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5889  	if (!env)
5890  		return;
5891  
5892  	add_uevent_var(env, "CREATED=%llu", created);
5893  	add_uevent_var(env, "COUNT=%llu", active);
5894  
5895  	if (type == KVM_EVENT_CREATE_VM) {
5896  		add_uevent_var(env, "EVENT=create");
5897  		kvm->userspace_pid = task_pid_nr(current);
5898  	} else if (type == KVM_EVENT_DESTROY_VM) {
5899  		add_uevent_var(env, "EVENT=destroy");
5900  	}
5901  	add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5902  
5903  	if (!IS_ERR(kvm->debugfs_dentry)) {
5904  		char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5905  
5906  		if (p) {
5907  			tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5908  			if (!IS_ERR(tmp))
5909  				add_uevent_var(env, "STATS_PATH=%s", tmp);
5910  			kfree(p);
5911  		}
5912  	}
5913  	/* no need for checks, since we are adding at most only 5 keys */
5914  	env->envp[env->envp_idx++] = NULL;
5915  	kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5916  	kfree(env);
5917  }
5918  
kvm_init_debug(void)5919  static void kvm_init_debug(void)
5920  {
5921  	const struct file_operations *fops;
5922  	const struct _kvm_stats_desc *pdesc;
5923  	int i;
5924  
5925  	kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5926  
5927  	for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5928  		pdesc = &kvm_vm_stats_desc[i];
5929  		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5930  			fops = &vm_stat_fops;
5931  		else
5932  			fops = &vm_stat_readonly_fops;
5933  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5934  				kvm_debugfs_dir,
5935  				(void *)(long)pdesc->desc.offset, fops);
5936  	}
5937  
5938  	for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5939  		pdesc = &kvm_vcpu_stats_desc[i];
5940  		if (kvm_stats_debugfs_mode(pdesc) & 0222)
5941  			fops = &vcpu_stat_fops;
5942  		else
5943  			fops = &vcpu_stat_readonly_fops;
5944  		debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5945  				kvm_debugfs_dir,
5946  				(void *)(long)pdesc->desc.offset, fops);
5947  	}
5948  }
5949  
5950  static inline
preempt_notifier_to_vcpu(struct preempt_notifier * pn)5951  struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5952  {
5953  	return container_of(pn, struct kvm_vcpu, preempt_notifier);
5954  }
5955  
kvm_sched_in(struct preempt_notifier * pn,int cpu)5956  static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5957  {
5958  	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5959  
5960  	WRITE_ONCE(vcpu->preempted, false);
5961  	WRITE_ONCE(vcpu->ready, false);
5962  
5963  	__this_cpu_write(kvm_running_vcpu, vcpu);
5964  	kvm_arch_sched_in(vcpu, cpu);
5965  	kvm_arch_vcpu_load(vcpu, cpu);
5966  }
5967  
kvm_sched_out(struct preempt_notifier * pn,struct task_struct * next)5968  static void kvm_sched_out(struct preempt_notifier *pn,
5969  			  struct task_struct *next)
5970  {
5971  	struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5972  
5973  	if (current->on_rq) {
5974  		WRITE_ONCE(vcpu->preempted, true);
5975  		WRITE_ONCE(vcpu->ready, true);
5976  	}
5977  	kvm_arch_vcpu_put(vcpu);
5978  	__this_cpu_write(kvm_running_vcpu, NULL);
5979  }
5980  
5981  /**
5982   * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5983   *
5984   * We can disable preemption locally around accessing the per-CPU variable,
5985   * and use the resolved vcpu pointer after enabling preemption again,
5986   * because even if the current thread is migrated to another CPU, reading
5987   * the per-CPU value later will give us the same value as we update the
5988   * per-CPU variable in the preempt notifier handlers.
5989   */
kvm_get_running_vcpu(void)5990  struct kvm_vcpu *kvm_get_running_vcpu(void)
5991  {
5992  	struct kvm_vcpu *vcpu;
5993  
5994  	preempt_disable();
5995  	vcpu = __this_cpu_read(kvm_running_vcpu);
5996  	preempt_enable();
5997  
5998  	return vcpu;
5999  }
6000  EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6001  
6002  /**
6003   * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6004   */
kvm_get_running_vcpus(void)6005  struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6006  {
6007          return &kvm_running_vcpu;
6008  }
6009  
6010  #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_guest_state(void)6011  static unsigned int kvm_guest_state(void)
6012  {
6013  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6014  	unsigned int state;
6015  
6016  	if (!kvm_arch_pmi_in_guest(vcpu))
6017  		return 0;
6018  
6019  	state = PERF_GUEST_ACTIVE;
6020  	if (!kvm_arch_vcpu_in_kernel(vcpu))
6021  		state |= PERF_GUEST_USER;
6022  
6023  	return state;
6024  }
6025  
kvm_guest_get_ip(void)6026  static unsigned long kvm_guest_get_ip(void)
6027  {
6028  	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6029  
6030  	/* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6031  	if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6032  		return 0;
6033  
6034  	return kvm_arch_vcpu_get_ip(vcpu);
6035  }
6036  
6037  static struct perf_guest_info_callbacks kvm_guest_cbs = {
6038  	.state			= kvm_guest_state,
6039  	.get_ip			= kvm_guest_get_ip,
6040  	.handle_intel_pt_intr	= NULL,
6041  };
6042  
kvm_register_perf_callbacks(unsigned int (* pt_intr_handler)(void))6043  void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6044  {
6045  	kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6046  	perf_register_guest_info_callbacks(&kvm_guest_cbs);
6047  }
kvm_unregister_perf_callbacks(void)6048  void kvm_unregister_perf_callbacks(void)
6049  {
6050  	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6051  }
6052  #endif
6053  
kvm_init(unsigned vcpu_size,unsigned vcpu_align,struct module * module)6054  int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6055  {
6056  	int r;
6057  	int cpu;
6058  
6059  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6060  	r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6061  				      kvm_online_cpu, kvm_offline_cpu);
6062  	if (r)
6063  		return r;
6064  
6065  	register_syscore_ops(&kvm_syscore_ops);
6066  #endif
6067  
6068  	/* A kmem cache lets us meet the alignment requirements of fx_save. */
6069  	if (!vcpu_align)
6070  		vcpu_align = __alignof__(struct kvm_vcpu);
6071  	kvm_vcpu_cache =
6072  		kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6073  					   SLAB_ACCOUNT,
6074  					   offsetof(struct kvm_vcpu, arch),
6075  					   offsetofend(struct kvm_vcpu, stats_id)
6076  					   - offsetof(struct kvm_vcpu, arch),
6077  					   NULL);
6078  	if (!kvm_vcpu_cache) {
6079  		r = -ENOMEM;
6080  		goto err_vcpu_cache;
6081  	}
6082  
6083  	for_each_possible_cpu(cpu) {
6084  		if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6085  					    GFP_KERNEL, cpu_to_node(cpu))) {
6086  			r = -ENOMEM;
6087  			goto err_cpu_kick_mask;
6088  		}
6089  	}
6090  
6091  	r = kvm_irqfd_init();
6092  	if (r)
6093  		goto err_irqfd;
6094  
6095  	r = kvm_async_pf_init();
6096  	if (r)
6097  		goto err_async_pf;
6098  
6099  	kvm_chardev_ops.owner = module;
6100  
6101  	kvm_preempt_ops.sched_in = kvm_sched_in;
6102  	kvm_preempt_ops.sched_out = kvm_sched_out;
6103  
6104  	kvm_init_debug();
6105  
6106  	r = kvm_vfio_ops_init();
6107  	if (WARN_ON_ONCE(r))
6108  		goto err_vfio;
6109  
6110  	/*
6111  	 * Registration _must_ be the very last thing done, as this exposes
6112  	 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6113  	 */
6114  	r = misc_register(&kvm_dev);
6115  	if (r) {
6116  		pr_err("kvm: misc device register failed\n");
6117  		goto err_register;
6118  	}
6119  
6120  	return 0;
6121  
6122  err_register:
6123  	kvm_vfio_ops_exit();
6124  err_vfio:
6125  	kvm_async_pf_deinit();
6126  err_async_pf:
6127  	kvm_irqfd_exit();
6128  err_irqfd:
6129  err_cpu_kick_mask:
6130  	for_each_possible_cpu(cpu)
6131  		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6132  	kmem_cache_destroy(kvm_vcpu_cache);
6133  err_vcpu_cache:
6134  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6135  	unregister_syscore_ops(&kvm_syscore_ops);
6136  	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6137  #endif
6138  	return r;
6139  }
6140  EXPORT_SYMBOL_GPL(kvm_init);
6141  
kvm_exit(void)6142  void kvm_exit(void)
6143  {
6144  	int cpu;
6145  
6146  	/*
6147  	 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6148  	 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6149  	 * to KVM while the module is being stopped.
6150  	 */
6151  	misc_deregister(&kvm_dev);
6152  
6153  	debugfs_remove_recursive(kvm_debugfs_dir);
6154  	for_each_possible_cpu(cpu)
6155  		free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6156  	kmem_cache_destroy(kvm_vcpu_cache);
6157  	kvm_vfio_ops_exit();
6158  	kvm_async_pf_deinit();
6159  #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6160  	unregister_syscore_ops(&kvm_syscore_ops);
6161  	cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6162  #endif
6163  	kvm_irqfd_exit();
6164  }
6165  EXPORT_SYMBOL_GPL(kvm_exit);
6166  
6167  struct kvm_vm_worker_thread_context {
6168  	struct kvm *kvm;
6169  	struct task_struct *parent;
6170  	struct completion init_done;
6171  	kvm_vm_thread_fn_t thread_fn;
6172  	uintptr_t data;
6173  	int err;
6174  };
6175  
kvm_vm_worker_thread(void * context)6176  static int kvm_vm_worker_thread(void *context)
6177  {
6178  	/*
6179  	 * The init_context is allocated on the stack of the parent thread, so
6180  	 * we have to locally copy anything that is needed beyond initialization
6181  	 */
6182  	struct kvm_vm_worker_thread_context *init_context = context;
6183  	struct task_struct *parent;
6184  	struct kvm *kvm = init_context->kvm;
6185  	kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6186  	uintptr_t data = init_context->data;
6187  	int err;
6188  
6189  	err = kthread_park(current);
6190  	/* kthread_park(current) is never supposed to return an error */
6191  	WARN_ON(err != 0);
6192  	if (err)
6193  		goto init_complete;
6194  
6195  	err = cgroup_attach_task_all(init_context->parent, current);
6196  	if (err) {
6197  		kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6198  			__func__, err);
6199  		goto init_complete;
6200  	}
6201  
6202  	set_user_nice(current, task_nice(init_context->parent));
6203  
6204  init_complete:
6205  	init_context->err = err;
6206  	complete(&init_context->init_done);
6207  	init_context = NULL;
6208  
6209  	if (err)
6210  		goto out;
6211  
6212  	/* Wait to be woken up by the spawner before proceeding. */
6213  	kthread_parkme();
6214  
6215  	if (!kthread_should_stop())
6216  		err = thread_fn(kvm, data);
6217  
6218  out:
6219  	/*
6220  	 * Move kthread back to its original cgroup to prevent it lingering in
6221  	 * the cgroup of the VM process, after the latter finishes its
6222  	 * execution.
6223  	 *
6224  	 * kthread_stop() waits on the 'exited' completion condition which is
6225  	 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6226  	 * kthread is removed from the cgroup in the cgroup_exit() which is
6227  	 * called after the exit_mm(). This causes the kthread_stop() to return
6228  	 * before the kthread actually quits the cgroup.
6229  	 */
6230  	rcu_read_lock();
6231  	parent = rcu_dereference(current->real_parent);
6232  	get_task_struct(parent);
6233  	rcu_read_unlock();
6234  	cgroup_attach_task_all(parent, current);
6235  	put_task_struct(parent);
6236  
6237  	return err;
6238  }
6239  
kvm_vm_create_worker_thread(struct kvm * kvm,kvm_vm_thread_fn_t thread_fn,uintptr_t data,const char * name,struct task_struct ** thread_ptr)6240  int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6241  				uintptr_t data, const char *name,
6242  				struct task_struct **thread_ptr)
6243  {
6244  	struct kvm_vm_worker_thread_context init_context = {};
6245  	struct task_struct *thread;
6246  
6247  	*thread_ptr = NULL;
6248  	init_context.kvm = kvm;
6249  	init_context.parent = current;
6250  	init_context.thread_fn = thread_fn;
6251  	init_context.data = data;
6252  	init_completion(&init_context.init_done);
6253  
6254  	thread = kthread_run(kvm_vm_worker_thread, &init_context,
6255  			     "%s-%d", name, task_pid_nr(current));
6256  	if (IS_ERR(thread))
6257  		return PTR_ERR(thread);
6258  
6259  	/* kthread_run is never supposed to return NULL */
6260  	WARN_ON(thread == NULL);
6261  
6262  	wait_for_completion(&init_context.init_done);
6263  
6264  	if (!init_context.err)
6265  		*thread_ptr = thread;
6266  
6267  	return init_context.err;
6268  }
6269