xref: /openbmc/linux/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c (revision 9a87ffc99ec8eb8d35eed7c4f816d75f5cc9662e)
1  /*
2   * Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20   * DEALINGS IN THE SOFTWARE.
21   */
22  
23  /*
24   * GK20A does not have dedicated video memory, and to accurately represent this
25   * fact Nouveau will not create a RAM device for it. Therefore its instmem
26   * implementation must be done directly on top of system memory, while
27   * preserving coherency for read and write operations.
28   *
29   * Instmem can be allocated through two means:
30   * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
31   *    pages contiguous to the GPU. This is the preferred way.
32   * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
33   *    contiguous memory.
34   *
35   * In both cases CPU read and writes are performed by creating a write-combined
36   * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
37   * be conservative we do this every time we acquire or release an instobj, but
38   * ideally L2 management should be handled at a higher level.
39   *
40   * To improve performance, CPU mappings are not removed upon instobj release.
41   * Instead they are placed into a LRU list to be recycled when the mapped space
42   * goes beyond a certain threshold. At the moment this limit is 1MB.
43   */
44  #include "priv.h"
45  
46  #include <core/memory.h>
47  #include <core/tegra.h>
48  #include <subdev/ltc.h>
49  #include <subdev/mmu.h>
50  
51  struct gk20a_instobj {
52  	struct nvkm_memory memory;
53  	struct nvkm_mm_node *mn;
54  	struct gk20a_instmem *imem;
55  
56  	/* CPU mapping */
57  	u32 *vaddr;
58  };
59  #define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
60  
61  /*
62   * Used for objects allocated using the DMA API
63   */
64  struct gk20a_instobj_dma {
65  	struct gk20a_instobj base;
66  
67  	dma_addr_t handle;
68  	struct nvkm_mm_node r;
69  };
70  #define gk20a_instobj_dma(p) \
71  	container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
72  
73  /*
74   * Used for objects flattened using the IOMMU API
75   */
76  struct gk20a_instobj_iommu {
77  	struct gk20a_instobj base;
78  
79  	/* to link into gk20a_instmem::vaddr_lru */
80  	struct list_head vaddr_node;
81  	/* how many clients are using vaddr? */
82  	u32 use_cpt;
83  
84  	/* will point to the higher half of pages */
85  	dma_addr_t *dma_addrs;
86  	/* array of base.mem->size pages (+ dma_addr_ts) */
87  	struct page *pages[];
88  };
89  #define gk20a_instobj_iommu(p) \
90  	container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
91  
92  struct gk20a_instmem {
93  	struct nvkm_instmem base;
94  
95  	/* protects vaddr_* and gk20a_instobj::vaddr* */
96  	struct mutex lock;
97  
98  	/* CPU mappings LRU */
99  	unsigned int vaddr_use;
100  	unsigned int vaddr_max;
101  	struct list_head vaddr_lru;
102  
103  	/* Only used if IOMMU if present */
104  	struct mutex *mm_mutex;
105  	struct nvkm_mm *mm;
106  	struct iommu_domain *domain;
107  	unsigned long iommu_pgshift;
108  	u16 iommu_bit;
109  
110  	/* Only used by DMA API */
111  	unsigned long attrs;
112  };
113  #define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
114  
115  static enum nvkm_memory_target
gk20a_instobj_target(struct nvkm_memory * memory)116  gk20a_instobj_target(struct nvkm_memory *memory)
117  {
118  	return NVKM_MEM_TARGET_NCOH;
119  }
120  
121  static u8
gk20a_instobj_page(struct nvkm_memory * memory)122  gk20a_instobj_page(struct nvkm_memory *memory)
123  {
124  	return 12;
125  }
126  
127  static u64
gk20a_instobj_addr(struct nvkm_memory * memory)128  gk20a_instobj_addr(struct nvkm_memory *memory)
129  {
130  	return (u64)gk20a_instobj(memory)->mn->offset << 12;
131  }
132  
133  static u64
gk20a_instobj_size(struct nvkm_memory * memory)134  gk20a_instobj_size(struct nvkm_memory *memory)
135  {
136  	return (u64)gk20a_instobj(memory)->mn->length << 12;
137  }
138  
139  /*
140   * Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
141   */
142  static void
gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu * obj)143  gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
144  {
145  	struct gk20a_instmem *imem = obj->base.imem;
146  	/* there should not be any user left... */
147  	WARN_ON(obj->use_cpt);
148  	list_del(&obj->vaddr_node);
149  	vunmap(obj->base.vaddr);
150  	obj->base.vaddr = NULL;
151  	imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
152  	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
153  		   imem->vaddr_max);
154  }
155  
156  /*
157   * Must be called while holding gk20a_instmem::lock
158   */
159  static void
gk20a_instmem_vaddr_gc(struct gk20a_instmem * imem,const u64 size)160  gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
161  {
162  	while (imem->vaddr_use + size > imem->vaddr_max) {
163  		/* no candidate that can be unmapped, abort... */
164  		if (list_empty(&imem->vaddr_lru))
165  			break;
166  
167  		gk20a_instobj_iommu_recycle_vaddr(
168  				list_first_entry(&imem->vaddr_lru,
169  				struct gk20a_instobj_iommu, vaddr_node));
170  	}
171  }
172  
173  static void __iomem *
gk20a_instobj_acquire_dma(struct nvkm_memory * memory)174  gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
175  {
176  	struct gk20a_instobj *node = gk20a_instobj(memory);
177  	struct gk20a_instmem *imem = node->imem;
178  	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
179  
180  	nvkm_ltc_flush(ltc);
181  
182  	return node->vaddr;
183  }
184  
185  static void __iomem *
gk20a_instobj_acquire_iommu(struct nvkm_memory * memory)186  gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
187  {
188  	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
189  	struct gk20a_instmem *imem = node->base.imem;
190  	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
191  	const u64 size = nvkm_memory_size(memory);
192  
193  	nvkm_ltc_flush(ltc);
194  
195  	mutex_lock(&imem->lock);
196  
197  	if (node->base.vaddr) {
198  		if (!node->use_cpt) {
199  			/* remove from LRU list since mapping in use again */
200  			list_del(&node->vaddr_node);
201  		}
202  		goto out;
203  	}
204  
205  	/* try to free some address space if we reached the limit */
206  	gk20a_instmem_vaddr_gc(imem, size);
207  
208  	/* map the pages */
209  	node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
210  				pgprot_writecombine(PAGE_KERNEL));
211  	if (!node->base.vaddr) {
212  		nvkm_error(&imem->base.subdev, "cannot map instobj - "
213  			   "this is not going to end well...\n");
214  		goto out;
215  	}
216  
217  	imem->vaddr_use += size;
218  	nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
219  		   imem->vaddr_use, imem->vaddr_max);
220  
221  out:
222  	node->use_cpt++;
223  	mutex_unlock(&imem->lock);
224  
225  	return node->base.vaddr;
226  }
227  
228  static void
gk20a_instobj_release_dma(struct nvkm_memory * memory)229  gk20a_instobj_release_dma(struct nvkm_memory *memory)
230  {
231  	struct gk20a_instobj *node = gk20a_instobj(memory);
232  	struct gk20a_instmem *imem = node->imem;
233  	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
234  
235  	/* in case we got a write-combined mapping */
236  	wmb();
237  	nvkm_ltc_invalidate(ltc);
238  }
239  
240  static void
gk20a_instobj_release_iommu(struct nvkm_memory * memory)241  gk20a_instobj_release_iommu(struct nvkm_memory *memory)
242  {
243  	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
244  	struct gk20a_instmem *imem = node->base.imem;
245  	struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
246  
247  	mutex_lock(&imem->lock);
248  
249  	/* we should at least have one user to release... */
250  	if (WARN_ON(node->use_cpt == 0))
251  		goto out;
252  
253  	/* add unused objs to the LRU list to recycle their mapping */
254  	if (--node->use_cpt == 0)
255  		list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
256  
257  out:
258  	mutex_unlock(&imem->lock);
259  
260  	wmb();
261  	nvkm_ltc_invalidate(ltc);
262  }
263  
264  static u32
gk20a_instobj_rd32(struct nvkm_memory * memory,u64 offset)265  gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
266  {
267  	struct gk20a_instobj *node = gk20a_instobj(memory);
268  
269  	return node->vaddr[offset / 4];
270  }
271  
272  static void
gk20a_instobj_wr32(struct nvkm_memory * memory,u64 offset,u32 data)273  gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
274  {
275  	struct gk20a_instobj *node = gk20a_instobj(memory);
276  
277  	node->vaddr[offset / 4] = data;
278  }
279  
280  static int
gk20a_instobj_map(struct nvkm_memory * memory,u64 offset,struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc)281  gk20a_instobj_map(struct nvkm_memory *memory, u64 offset, struct nvkm_vmm *vmm,
282  		  struct nvkm_vma *vma, void *argv, u32 argc)
283  {
284  	struct gk20a_instobj *node = gk20a_instobj(memory);
285  	struct nvkm_vmm_map map = {
286  		.memory = &node->memory,
287  		.offset = offset,
288  		.mem = node->mn,
289  	};
290  
291  	return nvkm_vmm_map(vmm, vma, argv, argc, &map);
292  }
293  
294  static void *
gk20a_instobj_dtor_dma(struct nvkm_memory * memory)295  gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
296  {
297  	struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
298  	struct gk20a_instmem *imem = node->base.imem;
299  	struct device *dev = imem->base.subdev.device->dev;
300  
301  	if (unlikely(!node->base.vaddr))
302  		goto out;
303  
304  	dma_free_attrs(dev, (u64)node->base.mn->length << PAGE_SHIFT,
305  		       node->base.vaddr, node->handle, imem->attrs);
306  
307  out:
308  	return node;
309  }
310  
311  static void *
gk20a_instobj_dtor_iommu(struct nvkm_memory * memory)312  gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
313  {
314  	struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
315  	struct gk20a_instmem *imem = node->base.imem;
316  	struct device *dev = imem->base.subdev.device->dev;
317  	struct nvkm_mm_node *r = node->base.mn;
318  	int i;
319  
320  	if (unlikely(!r))
321  		goto out;
322  
323  	mutex_lock(&imem->lock);
324  
325  	/* vaddr has already been recycled */
326  	if (node->base.vaddr)
327  		gk20a_instobj_iommu_recycle_vaddr(node);
328  
329  	mutex_unlock(&imem->lock);
330  
331  	/* clear IOMMU bit to unmap pages */
332  	r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
333  
334  	/* Unmap pages from GPU address space and free them */
335  	for (i = 0; i < node->base.mn->length; i++) {
336  		iommu_unmap(imem->domain,
337  			    (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
338  		dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
339  			       DMA_BIDIRECTIONAL);
340  		__free_page(node->pages[i]);
341  	}
342  
343  	/* Release area from GPU address space */
344  	mutex_lock(imem->mm_mutex);
345  	nvkm_mm_free(imem->mm, &r);
346  	mutex_unlock(imem->mm_mutex);
347  
348  out:
349  	return node;
350  }
351  
352  static const struct nvkm_memory_func
353  gk20a_instobj_func_dma = {
354  	.dtor = gk20a_instobj_dtor_dma,
355  	.target = gk20a_instobj_target,
356  	.page = gk20a_instobj_page,
357  	.addr = gk20a_instobj_addr,
358  	.size = gk20a_instobj_size,
359  	.acquire = gk20a_instobj_acquire_dma,
360  	.release = gk20a_instobj_release_dma,
361  	.map = gk20a_instobj_map,
362  };
363  
364  static const struct nvkm_memory_func
365  gk20a_instobj_func_iommu = {
366  	.dtor = gk20a_instobj_dtor_iommu,
367  	.target = gk20a_instobj_target,
368  	.page = gk20a_instobj_page,
369  	.addr = gk20a_instobj_addr,
370  	.size = gk20a_instobj_size,
371  	.acquire = gk20a_instobj_acquire_iommu,
372  	.release = gk20a_instobj_release_iommu,
373  	.map = gk20a_instobj_map,
374  };
375  
376  static const struct nvkm_memory_ptrs
377  gk20a_instobj_ptrs = {
378  	.rd32 = gk20a_instobj_rd32,
379  	.wr32 = gk20a_instobj_wr32,
380  };
381  
382  static int
gk20a_instobj_ctor_dma(struct gk20a_instmem * imem,u32 npages,u32 align,struct gk20a_instobj ** _node)383  gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
384  		       struct gk20a_instobj **_node)
385  {
386  	struct gk20a_instobj_dma *node;
387  	struct nvkm_subdev *subdev = &imem->base.subdev;
388  	struct device *dev = subdev->device->dev;
389  
390  	if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
391  		return -ENOMEM;
392  	*_node = &node->base;
393  
394  	nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
395  	node->base.memory.ptrs = &gk20a_instobj_ptrs;
396  
397  	node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
398  					   &node->handle, GFP_KERNEL,
399  					   imem->attrs);
400  	if (!node->base.vaddr) {
401  		nvkm_error(subdev, "cannot allocate DMA memory\n");
402  		return -ENOMEM;
403  	}
404  
405  	/* alignment check */
406  	if (unlikely(node->handle & (align - 1)))
407  		nvkm_warn(subdev,
408  			  "memory not aligned as requested: %pad (0x%x)\n",
409  			  &node->handle, align);
410  
411  	/* present memory for being mapped using small pages */
412  	node->r.type = 12;
413  	node->r.offset = node->handle >> 12;
414  	node->r.length = (npages << PAGE_SHIFT) >> 12;
415  
416  	node->base.mn = &node->r;
417  	return 0;
418  }
419  
420  static int
gk20a_instobj_ctor_iommu(struct gk20a_instmem * imem,u32 npages,u32 align,struct gk20a_instobj ** _node)421  gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
422  			 struct gk20a_instobj **_node)
423  {
424  	struct gk20a_instobj_iommu *node;
425  	struct nvkm_subdev *subdev = &imem->base.subdev;
426  	struct device *dev = subdev->device->dev;
427  	struct nvkm_mm_node *r;
428  	int ret;
429  	int i;
430  
431  	/*
432  	 * despite their variable size, instmem allocations are small enough
433  	 * (< 1 page) to be handled by kzalloc
434  	 */
435  	if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
436  			     sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
437  		return -ENOMEM;
438  	*_node = &node->base;
439  	node->dma_addrs = (void *)(node->pages + npages);
440  
441  	nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
442  	node->base.memory.ptrs = &gk20a_instobj_ptrs;
443  
444  	/* Allocate backing memory */
445  	for (i = 0; i < npages; i++) {
446  		struct page *p = alloc_page(GFP_KERNEL);
447  		dma_addr_t dma_adr;
448  
449  		if (p == NULL) {
450  			ret = -ENOMEM;
451  			goto free_pages;
452  		}
453  		node->pages[i] = p;
454  		dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
455  		if (dma_mapping_error(dev, dma_adr)) {
456  			nvkm_error(subdev, "DMA mapping error!\n");
457  			ret = -ENOMEM;
458  			goto free_pages;
459  		}
460  		node->dma_addrs[i] = dma_adr;
461  	}
462  
463  	mutex_lock(imem->mm_mutex);
464  	/* Reserve area from GPU address space */
465  	ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
466  			   align >> imem->iommu_pgshift, &r);
467  	mutex_unlock(imem->mm_mutex);
468  	if (ret) {
469  		nvkm_error(subdev, "IOMMU space is full!\n");
470  		goto free_pages;
471  	}
472  
473  	/* Map into GPU address space */
474  	for (i = 0; i < npages; i++) {
475  		u32 offset = (r->offset + i) << imem->iommu_pgshift;
476  
477  		ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
478  				PAGE_SIZE, IOMMU_READ | IOMMU_WRITE,
479  				GFP_KERNEL);
480  		if (ret < 0) {
481  			nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
482  
483  			while (i-- > 0) {
484  				offset -= PAGE_SIZE;
485  				iommu_unmap(imem->domain, offset, PAGE_SIZE);
486  			}
487  			goto release_area;
488  		}
489  	}
490  
491  	/* IOMMU bit tells that an address is to be resolved through the IOMMU */
492  	r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
493  
494  	node->base.mn = r;
495  	return 0;
496  
497  release_area:
498  	mutex_lock(imem->mm_mutex);
499  	nvkm_mm_free(imem->mm, &r);
500  	mutex_unlock(imem->mm_mutex);
501  
502  free_pages:
503  	for (i = 0; i < npages && node->pages[i] != NULL; i++) {
504  		dma_addr_t dma_addr = node->dma_addrs[i];
505  		if (dma_addr)
506  			dma_unmap_page(dev, dma_addr, PAGE_SIZE,
507  				       DMA_BIDIRECTIONAL);
508  		__free_page(node->pages[i]);
509  	}
510  
511  	return ret;
512  }
513  
514  static int
gk20a_instobj_new(struct nvkm_instmem * base,u32 size,u32 align,bool zero,struct nvkm_memory ** pmemory)515  gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
516  		  struct nvkm_memory **pmemory)
517  {
518  	struct gk20a_instmem *imem = gk20a_instmem(base);
519  	struct nvkm_subdev *subdev = &imem->base.subdev;
520  	struct gk20a_instobj *node = NULL;
521  	int ret;
522  
523  	nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
524  		   imem->domain ? "IOMMU" : "DMA", size, align);
525  
526  	/* Round size and align to page bounds */
527  	size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
528  	align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
529  
530  	if (imem->domain)
531  		ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
532  					       align, &node);
533  	else
534  		ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
535  					     align, &node);
536  	*pmemory = node ? &node->memory : NULL;
537  	if (ret)
538  		return ret;
539  
540  	node->imem = imem;
541  
542  	nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
543  		   size, align, (u64)node->mn->offset << 12);
544  
545  	return 0;
546  }
547  
548  static void *
gk20a_instmem_dtor(struct nvkm_instmem * base)549  gk20a_instmem_dtor(struct nvkm_instmem *base)
550  {
551  	struct gk20a_instmem *imem = gk20a_instmem(base);
552  
553  	/* perform some sanity checks... */
554  	if (!list_empty(&imem->vaddr_lru))
555  		nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
556  
557  	if (imem->vaddr_use != 0)
558  		nvkm_warn(&base->subdev, "instobj vmap area not empty! "
559  			  "0x%x bytes still mapped\n", imem->vaddr_use);
560  
561  	return imem;
562  }
563  
564  static const struct nvkm_instmem_func
565  gk20a_instmem = {
566  	.dtor = gk20a_instmem_dtor,
567  	.memory_new = gk20a_instobj_new,
568  	.zero = false,
569  };
570  
571  int
gk20a_instmem_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_instmem ** pimem)572  gk20a_instmem_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
573  		  struct nvkm_instmem **pimem)
574  {
575  	struct nvkm_device_tegra *tdev = device->func->tegra(device);
576  	struct gk20a_instmem *imem;
577  
578  	if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
579  		return -ENOMEM;
580  	nvkm_instmem_ctor(&gk20a_instmem, device, type, inst, &imem->base);
581  	mutex_init(&imem->lock);
582  	*pimem = &imem->base;
583  
584  	/* do not allow more than 1MB of CPU-mapped instmem */
585  	imem->vaddr_use = 0;
586  	imem->vaddr_max = 0x100000;
587  	INIT_LIST_HEAD(&imem->vaddr_lru);
588  
589  	if (tdev->iommu.domain) {
590  		imem->mm_mutex = &tdev->iommu.mutex;
591  		imem->mm = &tdev->iommu.mm;
592  		imem->domain = tdev->iommu.domain;
593  		imem->iommu_pgshift = tdev->iommu.pgshift;
594  		imem->iommu_bit = tdev->func->iommu_bit;
595  
596  		nvkm_info(&imem->base.subdev, "using IOMMU\n");
597  	} else {
598  		imem->attrs = DMA_ATTR_WEAK_ORDERING |
599  			      DMA_ATTR_WRITE_COMBINE;
600  
601  		nvkm_info(&imem->base.subdev, "using DMA API\n");
602  	}
603  
604  	return 0;
605  }
606