1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * ppc64 code to implement the kexec_file_load syscall
4 *
5 * Copyright (C) 2004 Adam Litke (agl@us.ibm.com)
6 * Copyright (C) 2004 IBM Corp.
7 * Copyright (C) 2004,2005 Milton D Miller II, IBM Corporation
8 * Copyright (C) 2005 R Sharada (sharada@in.ibm.com)
9 * Copyright (C) 2006 Mohan Kumar M (mohan@in.ibm.com)
10 * Copyright (C) 2020 IBM Corporation
11 *
12 * Based on kexec-tools' kexec-ppc64.c, kexec-elf-rel-ppc64.c, fs2dt.c.
13 * Heavily modified for the kernel by
14 * Hari Bathini, IBM Corporation.
15 */
16
17 #include <linux/kexec.h>
18 #include <linux/of_fdt.h>
19 #include <linux/libfdt.h>
20 #include <linux/of.h>
21 #include <linux/memblock.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <asm/setup.h>
25 #include <asm/drmem.h>
26 #include <asm/firmware.h>
27 #include <asm/kexec_ranges.h>
28 #include <asm/crashdump-ppc64.h>
29 #include <asm/mmzone.h>
30 #include <asm/iommu.h>
31 #include <asm/prom.h>
32 #include <asm/plpks.h>
33
34 struct umem_info {
35 u64 *buf; /* data buffer for usable-memory property */
36 u32 size; /* size allocated for the data buffer */
37 u32 max_entries; /* maximum no. of entries */
38 u32 idx; /* index of current entry */
39
40 /* usable memory ranges to look up */
41 unsigned int nr_ranges;
42 const struct range *ranges;
43 };
44
45 const struct kexec_file_ops * const kexec_file_loaders[] = {
46 &kexec_elf64_ops,
47 NULL
48 };
49
50 /**
51 * get_exclude_memory_ranges - Get exclude memory ranges. This list includes
52 * regions like opal/rtas, tce-table, initrd,
53 * kernel, htab which should be avoided while
54 * setting up kexec load segments.
55 * @mem_ranges: Range list to add the memory ranges to.
56 *
57 * Returns 0 on success, negative errno on error.
58 */
get_exclude_memory_ranges(struct crash_mem ** mem_ranges)59 static int get_exclude_memory_ranges(struct crash_mem **mem_ranges)
60 {
61 int ret;
62
63 ret = add_tce_mem_ranges(mem_ranges);
64 if (ret)
65 goto out;
66
67 ret = add_initrd_mem_range(mem_ranges);
68 if (ret)
69 goto out;
70
71 ret = add_htab_mem_range(mem_ranges);
72 if (ret)
73 goto out;
74
75 ret = add_kernel_mem_range(mem_ranges);
76 if (ret)
77 goto out;
78
79 ret = add_rtas_mem_range(mem_ranges);
80 if (ret)
81 goto out;
82
83 ret = add_opal_mem_range(mem_ranges);
84 if (ret)
85 goto out;
86
87 ret = add_reserved_mem_ranges(mem_ranges);
88 if (ret)
89 goto out;
90
91 /* exclude memory ranges should be sorted for easy lookup */
92 sort_memory_ranges(*mem_ranges, true);
93 out:
94 if (ret)
95 pr_err("Failed to setup exclude memory ranges\n");
96 return ret;
97 }
98
99 /**
100 * get_usable_memory_ranges - Get usable memory ranges. This list includes
101 * regions like crashkernel, opal/rtas & tce-table,
102 * that kdump kernel could use.
103 * @mem_ranges: Range list to add the memory ranges to.
104 *
105 * Returns 0 on success, negative errno on error.
106 */
get_usable_memory_ranges(struct crash_mem ** mem_ranges)107 static int get_usable_memory_ranges(struct crash_mem **mem_ranges)
108 {
109 int ret;
110
111 /*
112 * Early boot failure observed on guests when low memory (first memory
113 * block?) is not added to usable memory. So, add [0, crashk_res.end]
114 * instead of [crashk_res.start, crashk_res.end] to workaround it.
115 * Also, crashed kernel's memory must be added to reserve map to
116 * avoid kdump kernel from using it.
117 */
118 ret = add_mem_range(mem_ranges, 0, crashk_res.end + 1);
119 if (ret)
120 goto out;
121
122 ret = add_rtas_mem_range(mem_ranges);
123 if (ret)
124 goto out;
125
126 ret = add_opal_mem_range(mem_ranges);
127 if (ret)
128 goto out;
129
130 ret = add_tce_mem_ranges(mem_ranges);
131 out:
132 if (ret)
133 pr_err("Failed to setup usable memory ranges\n");
134 return ret;
135 }
136
137 /**
138 * get_crash_memory_ranges - Get crash memory ranges. This list includes
139 * first/crashing kernel's memory regions that
140 * would be exported via an elfcore.
141 * @mem_ranges: Range list to add the memory ranges to.
142 *
143 * Returns 0 on success, negative errno on error.
144 */
get_crash_memory_ranges(struct crash_mem ** mem_ranges)145 static int get_crash_memory_ranges(struct crash_mem **mem_ranges)
146 {
147 phys_addr_t base, end;
148 struct crash_mem *tmem;
149 u64 i;
150 int ret;
151
152 for_each_mem_range(i, &base, &end) {
153 u64 size = end - base;
154
155 /* Skip backup memory region, which needs a separate entry */
156 if (base == BACKUP_SRC_START) {
157 if (size > BACKUP_SRC_SIZE) {
158 base = BACKUP_SRC_END + 1;
159 size -= BACKUP_SRC_SIZE;
160 } else
161 continue;
162 }
163
164 ret = add_mem_range(mem_ranges, base, size);
165 if (ret)
166 goto out;
167
168 /* Try merging adjacent ranges before reallocation attempt */
169 if ((*mem_ranges)->nr_ranges == (*mem_ranges)->max_nr_ranges)
170 sort_memory_ranges(*mem_ranges, true);
171 }
172
173 /* Reallocate memory ranges if there is no space to split ranges */
174 tmem = *mem_ranges;
175 if (tmem && (tmem->nr_ranges == tmem->max_nr_ranges)) {
176 tmem = realloc_mem_ranges(mem_ranges);
177 if (!tmem)
178 goto out;
179 }
180
181 /* Exclude crashkernel region */
182 ret = crash_exclude_mem_range(tmem, crashk_res.start, crashk_res.end);
183 if (ret)
184 goto out;
185
186 /*
187 * FIXME: For now, stay in parity with kexec-tools but if RTAS/OPAL
188 * regions are exported to save their context at the time of
189 * crash, they should actually be backed up just like the
190 * first 64K bytes of memory.
191 */
192 ret = add_rtas_mem_range(mem_ranges);
193 if (ret)
194 goto out;
195
196 ret = add_opal_mem_range(mem_ranges);
197 if (ret)
198 goto out;
199
200 /* create a separate program header for the backup region */
201 ret = add_mem_range(mem_ranges, BACKUP_SRC_START, BACKUP_SRC_SIZE);
202 if (ret)
203 goto out;
204
205 sort_memory_ranges(*mem_ranges, false);
206 out:
207 if (ret)
208 pr_err("Failed to setup crash memory ranges\n");
209 return ret;
210 }
211
212 /**
213 * get_reserved_memory_ranges - Get reserve memory ranges. This list includes
214 * memory regions that should be added to the
215 * memory reserve map to ensure the region is
216 * protected from any mischief.
217 * @mem_ranges: Range list to add the memory ranges to.
218 *
219 * Returns 0 on success, negative errno on error.
220 */
get_reserved_memory_ranges(struct crash_mem ** mem_ranges)221 static int get_reserved_memory_ranges(struct crash_mem **mem_ranges)
222 {
223 int ret;
224
225 ret = add_rtas_mem_range(mem_ranges);
226 if (ret)
227 goto out;
228
229 ret = add_tce_mem_ranges(mem_ranges);
230 if (ret)
231 goto out;
232
233 ret = add_reserved_mem_ranges(mem_ranges);
234 out:
235 if (ret)
236 pr_err("Failed to setup reserved memory ranges\n");
237 return ret;
238 }
239
240 /**
241 * __locate_mem_hole_top_down - Looks top down for a large enough memory hole
242 * in the memory regions between buf_min & buf_max
243 * for the buffer. If found, sets kbuf->mem.
244 * @kbuf: Buffer contents and memory parameters.
245 * @buf_min: Minimum address for the buffer.
246 * @buf_max: Maximum address for the buffer.
247 *
248 * Returns 0 on success, negative errno on error.
249 */
__locate_mem_hole_top_down(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)250 static int __locate_mem_hole_top_down(struct kexec_buf *kbuf,
251 u64 buf_min, u64 buf_max)
252 {
253 int ret = -EADDRNOTAVAIL;
254 phys_addr_t start, end;
255 u64 i;
256
257 for_each_mem_range_rev(i, &start, &end) {
258 /*
259 * memblock uses [start, end) convention while it is
260 * [start, end] here. Fix the off-by-one to have the
261 * same convention.
262 */
263 end -= 1;
264
265 if (start > buf_max)
266 continue;
267
268 /* Memory hole not found */
269 if (end < buf_min)
270 break;
271
272 /* Adjust memory region based on the given range */
273 if (start < buf_min)
274 start = buf_min;
275 if (end > buf_max)
276 end = buf_max;
277
278 start = ALIGN(start, kbuf->buf_align);
279 if (start < end && (end - start + 1) >= kbuf->memsz) {
280 /* Suitable memory range found. Set kbuf->mem */
281 kbuf->mem = ALIGN_DOWN(end - kbuf->memsz + 1,
282 kbuf->buf_align);
283 ret = 0;
284 break;
285 }
286 }
287
288 return ret;
289 }
290
291 /**
292 * locate_mem_hole_top_down_ppc64 - Skip special memory regions to find a
293 * suitable buffer with top down approach.
294 * @kbuf: Buffer contents and memory parameters.
295 * @buf_min: Minimum address for the buffer.
296 * @buf_max: Maximum address for the buffer.
297 * @emem: Exclude memory ranges.
298 *
299 * Returns 0 on success, negative errno on error.
300 */
locate_mem_hole_top_down_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)301 static int locate_mem_hole_top_down_ppc64(struct kexec_buf *kbuf,
302 u64 buf_min, u64 buf_max,
303 const struct crash_mem *emem)
304 {
305 int i, ret = 0, err = -EADDRNOTAVAIL;
306 u64 start, end, tmin, tmax;
307
308 tmax = buf_max;
309 for (i = (emem->nr_ranges - 1); i >= 0; i--) {
310 start = emem->ranges[i].start;
311 end = emem->ranges[i].end;
312
313 if (start > tmax)
314 continue;
315
316 if (end < tmax) {
317 tmin = (end < buf_min ? buf_min : end + 1);
318 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
319 if (!ret)
320 return 0;
321 }
322
323 tmax = start - 1;
324
325 if (tmax < buf_min) {
326 ret = err;
327 break;
328 }
329 ret = 0;
330 }
331
332 if (!ret) {
333 tmin = buf_min;
334 ret = __locate_mem_hole_top_down(kbuf, tmin, tmax);
335 }
336 return ret;
337 }
338
339 /**
340 * __locate_mem_hole_bottom_up - Looks bottom up for a large enough memory hole
341 * in the memory regions between buf_min & buf_max
342 * for the buffer. If found, sets kbuf->mem.
343 * @kbuf: Buffer contents and memory parameters.
344 * @buf_min: Minimum address for the buffer.
345 * @buf_max: Maximum address for the buffer.
346 *
347 * Returns 0 on success, negative errno on error.
348 */
__locate_mem_hole_bottom_up(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max)349 static int __locate_mem_hole_bottom_up(struct kexec_buf *kbuf,
350 u64 buf_min, u64 buf_max)
351 {
352 int ret = -EADDRNOTAVAIL;
353 phys_addr_t start, end;
354 u64 i;
355
356 for_each_mem_range(i, &start, &end) {
357 /*
358 * memblock uses [start, end) convention while it is
359 * [start, end] here. Fix the off-by-one to have the
360 * same convention.
361 */
362 end -= 1;
363
364 if (end < buf_min)
365 continue;
366
367 /* Memory hole not found */
368 if (start > buf_max)
369 break;
370
371 /* Adjust memory region based on the given range */
372 if (start < buf_min)
373 start = buf_min;
374 if (end > buf_max)
375 end = buf_max;
376
377 start = ALIGN(start, kbuf->buf_align);
378 if (start < end && (end - start + 1) >= kbuf->memsz) {
379 /* Suitable memory range found. Set kbuf->mem */
380 kbuf->mem = start;
381 ret = 0;
382 break;
383 }
384 }
385
386 return ret;
387 }
388
389 /**
390 * locate_mem_hole_bottom_up_ppc64 - Skip special memory regions to find a
391 * suitable buffer with bottom up approach.
392 * @kbuf: Buffer contents and memory parameters.
393 * @buf_min: Minimum address for the buffer.
394 * @buf_max: Maximum address for the buffer.
395 * @emem: Exclude memory ranges.
396 *
397 * Returns 0 on success, negative errno on error.
398 */
locate_mem_hole_bottom_up_ppc64(struct kexec_buf * kbuf,u64 buf_min,u64 buf_max,const struct crash_mem * emem)399 static int locate_mem_hole_bottom_up_ppc64(struct kexec_buf *kbuf,
400 u64 buf_min, u64 buf_max,
401 const struct crash_mem *emem)
402 {
403 int i, ret = 0, err = -EADDRNOTAVAIL;
404 u64 start, end, tmin, tmax;
405
406 tmin = buf_min;
407 for (i = 0; i < emem->nr_ranges; i++) {
408 start = emem->ranges[i].start;
409 end = emem->ranges[i].end;
410
411 if (end < tmin)
412 continue;
413
414 if (start > tmin) {
415 tmax = (start > buf_max ? buf_max : start - 1);
416 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
417 if (!ret)
418 return 0;
419 }
420
421 tmin = end + 1;
422
423 if (tmin > buf_max) {
424 ret = err;
425 break;
426 }
427 ret = 0;
428 }
429
430 if (!ret) {
431 tmax = buf_max;
432 ret = __locate_mem_hole_bottom_up(kbuf, tmin, tmax);
433 }
434 return ret;
435 }
436
437 /**
438 * check_realloc_usable_mem - Reallocate buffer if it can't accommodate entries
439 * @um_info: Usable memory buffer and ranges info.
440 * @cnt: No. of entries to accommodate.
441 *
442 * Frees up the old buffer if memory reallocation fails.
443 *
444 * Returns buffer on success, NULL on error.
445 */
check_realloc_usable_mem(struct umem_info * um_info,int cnt)446 static u64 *check_realloc_usable_mem(struct umem_info *um_info, int cnt)
447 {
448 u32 new_size;
449 u64 *tbuf;
450
451 if ((um_info->idx + cnt) <= um_info->max_entries)
452 return um_info->buf;
453
454 new_size = um_info->size + MEM_RANGE_CHUNK_SZ;
455 tbuf = krealloc(um_info->buf, new_size, GFP_KERNEL);
456 if (tbuf) {
457 um_info->buf = tbuf;
458 um_info->size = new_size;
459 um_info->max_entries = (um_info->size / sizeof(u64));
460 }
461
462 return tbuf;
463 }
464
465 /**
466 * add_usable_mem - Add the usable memory ranges within the given memory range
467 * to the buffer
468 * @um_info: Usable memory buffer and ranges info.
469 * @base: Base address of memory range to look for.
470 * @end: End address of memory range to look for.
471 *
472 * Returns 0 on success, negative errno on error.
473 */
add_usable_mem(struct umem_info * um_info,u64 base,u64 end)474 static int add_usable_mem(struct umem_info *um_info, u64 base, u64 end)
475 {
476 u64 loc_base, loc_end;
477 bool add;
478 int i;
479
480 for (i = 0; i < um_info->nr_ranges; i++) {
481 add = false;
482 loc_base = um_info->ranges[i].start;
483 loc_end = um_info->ranges[i].end;
484 if (loc_base >= base && loc_end <= end)
485 add = true;
486 else if (base < loc_end && end > loc_base) {
487 if (loc_base < base)
488 loc_base = base;
489 if (loc_end > end)
490 loc_end = end;
491 add = true;
492 }
493
494 if (add) {
495 if (!check_realloc_usable_mem(um_info, 2))
496 return -ENOMEM;
497
498 um_info->buf[um_info->idx++] = cpu_to_be64(loc_base);
499 um_info->buf[um_info->idx++] =
500 cpu_to_be64(loc_end - loc_base + 1);
501 }
502 }
503
504 return 0;
505 }
506
507 /**
508 * kdump_setup_usable_lmb - This is a callback function that gets called by
509 * walk_drmem_lmbs for every LMB to set its
510 * usable memory ranges.
511 * @lmb: LMB info.
512 * @usm: linux,drconf-usable-memory property value.
513 * @data: Pointer to usable memory buffer and ranges info.
514 *
515 * Returns 0 on success, negative errno on error.
516 */
kdump_setup_usable_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)517 static int kdump_setup_usable_lmb(struct drmem_lmb *lmb, const __be32 **usm,
518 void *data)
519 {
520 struct umem_info *um_info;
521 int tmp_idx, ret;
522 u64 base, end;
523
524 /*
525 * kdump load isn't supported on kernels already booted with
526 * linux,drconf-usable-memory property.
527 */
528 if (*usm) {
529 pr_err("linux,drconf-usable-memory property already exists!");
530 return -EINVAL;
531 }
532
533 um_info = data;
534 tmp_idx = um_info->idx;
535 if (!check_realloc_usable_mem(um_info, 1))
536 return -ENOMEM;
537
538 um_info->idx++;
539 base = lmb->base_addr;
540 end = base + drmem_lmb_size() - 1;
541 ret = add_usable_mem(um_info, base, end);
542 if (!ret) {
543 /*
544 * Update the no. of ranges added. Two entries (base & size)
545 * for every range added.
546 */
547 um_info->buf[tmp_idx] =
548 cpu_to_be64((um_info->idx - tmp_idx - 1) / 2);
549 }
550
551 return ret;
552 }
553
554 #define NODE_PATH_LEN 256
555 /**
556 * add_usable_mem_property - Add usable memory property for the given
557 * memory node.
558 * @fdt: Flattened device tree for the kdump kernel.
559 * @dn: Memory node.
560 * @um_info: Usable memory buffer and ranges info.
561 *
562 * Returns 0 on success, negative errno on error.
563 */
add_usable_mem_property(void * fdt,struct device_node * dn,struct umem_info * um_info)564 static int add_usable_mem_property(void *fdt, struct device_node *dn,
565 struct umem_info *um_info)
566 {
567 int n_mem_addr_cells, n_mem_size_cells, node;
568 char path[NODE_PATH_LEN];
569 int i, len, ranges, ret;
570 const __be32 *prop;
571 u64 base, end;
572
573 of_node_get(dn);
574
575 if (snprintf(path, NODE_PATH_LEN, "%pOF", dn) > (NODE_PATH_LEN - 1)) {
576 pr_err("Buffer (%d) too small for memory node: %pOF\n",
577 NODE_PATH_LEN, dn);
578 return -EOVERFLOW;
579 }
580 pr_debug("Memory node path: %s\n", path);
581
582 /* Now that we know the path, find its offset in kdump kernel's fdt */
583 node = fdt_path_offset(fdt, path);
584 if (node < 0) {
585 pr_err("Malformed device tree: error reading %s\n", path);
586 ret = -EINVAL;
587 goto out;
588 }
589
590 /* Get the address & size cells */
591 n_mem_addr_cells = of_n_addr_cells(dn);
592 n_mem_size_cells = of_n_size_cells(dn);
593 pr_debug("address cells: %d, size cells: %d\n", n_mem_addr_cells,
594 n_mem_size_cells);
595
596 um_info->idx = 0;
597 if (!check_realloc_usable_mem(um_info, 2)) {
598 ret = -ENOMEM;
599 goto out;
600 }
601
602 prop = of_get_property(dn, "reg", &len);
603 if (!prop || len <= 0) {
604 ret = 0;
605 goto out;
606 }
607
608 /*
609 * "reg" property represents sequence of (addr,size) tuples
610 * each representing a memory range.
611 */
612 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
613
614 for (i = 0; i < ranges; i++) {
615 base = of_read_number(prop, n_mem_addr_cells);
616 prop += n_mem_addr_cells;
617 end = base + of_read_number(prop, n_mem_size_cells) - 1;
618 prop += n_mem_size_cells;
619
620 ret = add_usable_mem(um_info, base, end);
621 if (ret)
622 goto out;
623 }
624
625 /*
626 * No kdump kernel usable memory found in this memory node.
627 * Write (0,0) tuple in linux,usable-memory property for
628 * this region to be ignored.
629 */
630 if (um_info->idx == 0) {
631 um_info->buf[0] = 0;
632 um_info->buf[1] = 0;
633 um_info->idx = 2;
634 }
635
636 ret = fdt_setprop(fdt, node, "linux,usable-memory", um_info->buf,
637 (um_info->idx * sizeof(u64)));
638
639 out:
640 of_node_put(dn);
641 return ret;
642 }
643
644
645 /**
646 * update_usable_mem_fdt - Updates kdump kernel's fdt with linux,usable-memory
647 * and linux,drconf-usable-memory DT properties as
648 * appropriate to restrict its memory usage.
649 * @fdt: Flattened device tree for the kdump kernel.
650 * @usable_mem: Usable memory ranges for kdump kernel.
651 *
652 * Returns 0 on success, negative errno on error.
653 */
update_usable_mem_fdt(void * fdt,struct crash_mem * usable_mem)654 static int update_usable_mem_fdt(void *fdt, struct crash_mem *usable_mem)
655 {
656 struct umem_info um_info;
657 struct device_node *dn;
658 int node, ret = 0;
659
660 if (!usable_mem) {
661 pr_err("Usable memory ranges for kdump kernel not found\n");
662 return -ENOENT;
663 }
664
665 node = fdt_path_offset(fdt, "/ibm,dynamic-reconfiguration-memory");
666 if (node == -FDT_ERR_NOTFOUND)
667 pr_debug("No dynamic reconfiguration memory found\n");
668 else if (node < 0) {
669 pr_err("Malformed device tree: error reading /ibm,dynamic-reconfiguration-memory.\n");
670 return -EINVAL;
671 }
672
673 um_info.buf = NULL;
674 um_info.size = 0;
675 um_info.max_entries = 0;
676 um_info.idx = 0;
677 /* Memory ranges to look up */
678 um_info.ranges = &(usable_mem->ranges[0]);
679 um_info.nr_ranges = usable_mem->nr_ranges;
680
681 dn = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
682 if (dn) {
683 ret = walk_drmem_lmbs(dn, &um_info, kdump_setup_usable_lmb);
684 of_node_put(dn);
685
686 if (ret) {
687 pr_err("Could not setup linux,drconf-usable-memory property for kdump\n");
688 goto out;
689 }
690
691 ret = fdt_setprop(fdt, node, "linux,drconf-usable-memory",
692 um_info.buf, (um_info.idx * sizeof(u64)));
693 if (ret) {
694 pr_err("Failed to update fdt with linux,drconf-usable-memory property: %s",
695 fdt_strerror(ret));
696 goto out;
697 }
698 }
699
700 /*
701 * Walk through each memory node and set linux,usable-memory property
702 * for the corresponding node in kdump kernel's fdt.
703 */
704 for_each_node_by_type(dn, "memory") {
705 ret = add_usable_mem_property(fdt, dn, &um_info);
706 if (ret) {
707 pr_err("Failed to set linux,usable-memory property for %s node",
708 dn->full_name);
709 of_node_put(dn);
710 goto out;
711 }
712 }
713
714 out:
715 kfree(um_info.buf);
716 return ret;
717 }
718
719 /**
720 * load_backup_segment - Locate a memory hole to place the backup region.
721 * @image: Kexec image.
722 * @kbuf: Buffer contents and memory parameters.
723 *
724 * Returns 0 on success, negative errno on error.
725 */
load_backup_segment(struct kimage * image,struct kexec_buf * kbuf)726 static int load_backup_segment(struct kimage *image, struct kexec_buf *kbuf)
727 {
728 void *buf;
729 int ret;
730
731 /*
732 * Setup a source buffer for backup segment.
733 *
734 * A source buffer has no meaning for backup region as data will
735 * be copied from backup source, after crash, in the purgatory.
736 * But as load segment code doesn't recognize such segments,
737 * setup a dummy source buffer to keep it happy for now.
738 */
739 buf = vzalloc(BACKUP_SRC_SIZE);
740 if (!buf)
741 return -ENOMEM;
742
743 kbuf->buffer = buf;
744 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
745 kbuf->bufsz = kbuf->memsz = BACKUP_SRC_SIZE;
746 kbuf->top_down = false;
747
748 ret = kexec_add_buffer(kbuf);
749 if (ret) {
750 vfree(buf);
751 return ret;
752 }
753
754 image->arch.backup_buf = buf;
755 image->arch.backup_start = kbuf->mem;
756 return 0;
757 }
758
759 /**
760 * update_backup_region_phdr - Update backup region's offset for the core to
761 * export the region appropriately.
762 * @image: Kexec image.
763 * @ehdr: ELF core header.
764 *
765 * Assumes an exclusive program header is setup for the backup region
766 * in the ELF headers
767 *
768 * Returns nothing.
769 */
update_backup_region_phdr(struct kimage * image,Elf64_Ehdr * ehdr)770 static void update_backup_region_phdr(struct kimage *image, Elf64_Ehdr *ehdr)
771 {
772 Elf64_Phdr *phdr;
773 unsigned int i;
774
775 phdr = (Elf64_Phdr *)(ehdr + 1);
776 for (i = 0; i < ehdr->e_phnum; i++) {
777 if (phdr->p_paddr == BACKUP_SRC_START) {
778 phdr->p_offset = image->arch.backup_start;
779 pr_debug("Backup region offset updated to 0x%lx\n",
780 image->arch.backup_start);
781 return;
782 }
783 }
784 }
785
786 /**
787 * load_elfcorehdr_segment - Setup crash memory ranges and initialize elfcorehdr
788 * segment needed to load kdump kernel.
789 * @image: Kexec image.
790 * @kbuf: Buffer contents and memory parameters.
791 *
792 * Returns 0 on success, negative errno on error.
793 */
load_elfcorehdr_segment(struct kimage * image,struct kexec_buf * kbuf)794 static int load_elfcorehdr_segment(struct kimage *image, struct kexec_buf *kbuf)
795 {
796 struct crash_mem *cmem = NULL;
797 unsigned long headers_sz;
798 void *headers = NULL;
799 int ret;
800
801 ret = get_crash_memory_ranges(&cmem);
802 if (ret)
803 goto out;
804
805 /* Setup elfcorehdr segment */
806 ret = crash_prepare_elf64_headers(cmem, false, &headers, &headers_sz);
807 if (ret) {
808 pr_err("Failed to prepare elf headers for the core\n");
809 goto out;
810 }
811
812 /* Fix the offset for backup region in the ELF header */
813 update_backup_region_phdr(image, headers);
814
815 kbuf->buffer = headers;
816 kbuf->mem = KEXEC_BUF_MEM_UNKNOWN;
817 kbuf->bufsz = kbuf->memsz = headers_sz;
818 kbuf->top_down = false;
819
820 ret = kexec_add_buffer(kbuf);
821 if (ret) {
822 vfree(headers);
823 goto out;
824 }
825
826 image->elf_load_addr = kbuf->mem;
827 image->elf_headers_sz = headers_sz;
828 image->elf_headers = headers;
829 out:
830 kfree(cmem);
831 return ret;
832 }
833
834 /**
835 * load_crashdump_segments_ppc64 - Initialize the additional segements needed
836 * to load kdump kernel.
837 * @image: Kexec image.
838 * @kbuf: Buffer contents and memory parameters.
839 *
840 * Returns 0 on success, negative errno on error.
841 */
load_crashdump_segments_ppc64(struct kimage * image,struct kexec_buf * kbuf)842 int load_crashdump_segments_ppc64(struct kimage *image,
843 struct kexec_buf *kbuf)
844 {
845 int ret;
846
847 /* Load backup segment - first 64K bytes of the crashing kernel */
848 ret = load_backup_segment(image, kbuf);
849 if (ret) {
850 pr_err("Failed to load backup segment\n");
851 return ret;
852 }
853 pr_debug("Loaded the backup region at 0x%lx\n", kbuf->mem);
854
855 /* Load elfcorehdr segment - to export crashing kernel's vmcore */
856 ret = load_elfcorehdr_segment(image, kbuf);
857 if (ret) {
858 pr_err("Failed to load elfcorehdr segment\n");
859 return ret;
860 }
861 pr_debug("Loaded elf core header at 0x%lx, bufsz=0x%lx memsz=0x%lx\n",
862 image->elf_load_addr, kbuf->bufsz, kbuf->memsz);
863
864 return 0;
865 }
866
867 /**
868 * setup_purgatory_ppc64 - initialize PPC64 specific purgatory's global
869 * variables and call setup_purgatory() to initialize
870 * common global variable.
871 * @image: kexec image.
872 * @slave_code: Slave code for the purgatory.
873 * @fdt: Flattened device tree for the next kernel.
874 * @kernel_load_addr: Address where the kernel is loaded.
875 * @fdt_load_addr: Address where the flattened device tree is loaded.
876 *
877 * Returns 0 on success, negative errno on error.
878 */
setup_purgatory_ppc64(struct kimage * image,const void * slave_code,const void * fdt,unsigned long kernel_load_addr,unsigned long fdt_load_addr)879 int setup_purgatory_ppc64(struct kimage *image, const void *slave_code,
880 const void *fdt, unsigned long kernel_load_addr,
881 unsigned long fdt_load_addr)
882 {
883 struct device_node *dn = NULL;
884 int ret;
885
886 ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
887 fdt_load_addr);
888 if (ret)
889 goto out;
890
891 if (image->type == KEXEC_TYPE_CRASH) {
892 u32 my_run_at_load = 1;
893
894 /*
895 * Tell relocatable kernel to run at load address
896 * via the word meant for that at 0x5c.
897 */
898 ret = kexec_purgatory_get_set_symbol(image, "run_at_load",
899 &my_run_at_load,
900 sizeof(my_run_at_load),
901 false);
902 if (ret)
903 goto out;
904 }
905
906 /* Tell purgatory where to look for backup region */
907 ret = kexec_purgatory_get_set_symbol(image, "backup_start",
908 &image->arch.backup_start,
909 sizeof(image->arch.backup_start),
910 false);
911 if (ret)
912 goto out;
913
914 /* Setup OPAL base & entry values */
915 dn = of_find_node_by_path("/ibm,opal");
916 if (dn) {
917 u64 val;
918
919 ret = of_property_read_u64(dn, "opal-base-address", &val);
920 if (ret)
921 goto out;
922
923 ret = kexec_purgatory_get_set_symbol(image, "opal_base", &val,
924 sizeof(val), false);
925 if (ret)
926 goto out;
927
928 ret = of_property_read_u64(dn, "opal-entry-address", &val);
929 if (ret)
930 goto out;
931 ret = kexec_purgatory_get_set_symbol(image, "opal_entry", &val,
932 sizeof(val), false);
933 }
934 out:
935 if (ret)
936 pr_err("Failed to setup purgatory symbols");
937 of_node_put(dn);
938 return ret;
939 }
940
941 /**
942 * cpu_node_size - Compute the size of a CPU node in the FDT.
943 * This should be done only once and the value is stored in
944 * a static variable.
945 * Returns the max size of a CPU node in the FDT.
946 */
cpu_node_size(void)947 static unsigned int cpu_node_size(void)
948 {
949 static unsigned int size;
950 struct device_node *dn;
951 struct property *pp;
952
953 /*
954 * Don't compute it twice, we are assuming that the per CPU node size
955 * doesn't change during the system's life.
956 */
957 if (size)
958 return size;
959
960 dn = of_find_node_by_type(NULL, "cpu");
961 if (WARN_ON_ONCE(!dn)) {
962 // Unlikely to happen
963 return 0;
964 }
965
966 /*
967 * We compute the sub node size for a CPU node, assuming it
968 * will be the same for all.
969 */
970 size += strlen(dn->name) + 5;
971 for_each_property_of_node(dn, pp) {
972 size += strlen(pp->name);
973 size += pp->length;
974 }
975
976 of_node_put(dn);
977 return size;
978 }
979
980 /**
981 * kexec_extra_fdt_size_ppc64 - Return the estimated additional size needed to
982 * setup FDT for kexec/kdump kernel.
983 * @image: kexec image being loaded.
984 *
985 * Returns the estimated extra size needed for kexec/kdump kernel FDT.
986 */
kexec_extra_fdt_size_ppc64(struct kimage * image)987 unsigned int kexec_extra_fdt_size_ppc64(struct kimage *image)
988 {
989 unsigned int cpu_nodes, extra_size = 0;
990 struct device_node *dn;
991 u64 usm_entries;
992
993 // Budget some space for the password blob. There's already extra space
994 // for the key name
995 if (plpks_is_available())
996 extra_size += (unsigned int)plpks_get_passwordlen();
997
998 if (image->type != KEXEC_TYPE_CRASH)
999 return extra_size;
1000
1001 /*
1002 * For kdump kernel, account for linux,usable-memory and
1003 * linux,drconf-usable-memory properties. Get an approximate on the
1004 * number of usable memory entries and use for FDT size estimation.
1005 */
1006 if (drmem_lmb_size()) {
1007 usm_entries = ((memory_hotplug_max() / drmem_lmb_size()) +
1008 (2 * (resource_size(&crashk_res) / drmem_lmb_size())));
1009 extra_size += (unsigned int)(usm_entries * sizeof(u64));
1010 }
1011
1012 /*
1013 * Get the number of CPU nodes in the current DT. This allows to
1014 * reserve places for CPU nodes added since the boot time.
1015 */
1016 cpu_nodes = 0;
1017 for_each_node_by_type(dn, "cpu") {
1018 cpu_nodes++;
1019 }
1020
1021 if (cpu_nodes > boot_cpu_node_count)
1022 extra_size += (cpu_nodes - boot_cpu_node_count) * cpu_node_size();
1023
1024 return extra_size;
1025 }
1026
1027 /**
1028 * add_node_props - Reads node properties from device node structure and add
1029 * them to fdt.
1030 * @fdt: Flattened device tree of the kernel
1031 * @node_offset: offset of the node to add a property at
1032 * @dn: device node pointer
1033 *
1034 * Returns 0 on success, negative errno on error.
1035 */
add_node_props(void * fdt,int node_offset,const struct device_node * dn)1036 static int add_node_props(void *fdt, int node_offset, const struct device_node *dn)
1037 {
1038 int ret = 0;
1039 struct property *pp;
1040
1041 if (!dn)
1042 return -EINVAL;
1043
1044 for_each_property_of_node(dn, pp) {
1045 ret = fdt_setprop(fdt, node_offset, pp->name, pp->value, pp->length);
1046 if (ret < 0) {
1047 pr_err("Unable to add %s property: %s\n", pp->name, fdt_strerror(ret));
1048 return ret;
1049 }
1050 }
1051 return ret;
1052 }
1053
1054 /**
1055 * update_cpus_node - Update cpus node of flattened device tree using of_root
1056 * device node.
1057 * @fdt: Flattened device tree of the kernel.
1058 *
1059 * Returns 0 on success, negative errno on error.
1060 */
update_cpus_node(void * fdt)1061 static int update_cpus_node(void *fdt)
1062 {
1063 struct device_node *cpus_node, *dn;
1064 int cpus_offset, cpus_subnode_offset, ret = 0;
1065
1066 cpus_offset = fdt_path_offset(fdt, "/cpus");
1067 if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) {
1068 pr_err("Malformed device tree: error reading /cpus node: %s\n",
1069 fdt_strerror(cpus_offset));
1070 return cpus_offset;
1071 }
1072
1073 if (cpus_offset > 0) {
1074 ret = fdt_del_node(fdt, cpus_offset);
1075 if (ret < 0) {
1076 pr_err("Error deleting /cpus node: %s\n", fdt_strerror(ret));
1077 return -EINVAL;
1078 }
1079 }
1080
1081 /* Add cpus node to fdt */
1082 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"), "cpus");
1083 if (cpus_offset < 0) {
1084 pr_err("Error creating /cpus node: %s\n", fdt_strerror(cpus_offset));
1085 return -EINVAL;
1086 }
1087
1088 /* Add cpus node properties */
1089 cpus_node = of_find_node_by_path("/cpus");
1090 ret = add_node_props(fdt, cpus_offset, cpus_node);
1091 of_node_put(cpus_node);
1092 if (ret < 0)
1093 return ret;
1094
1095 /* Loop through all subnodes of cpus and add them to fdt */
1096 for_each_node_by_type(dn, "cpu") {
1097 cpus_subnode_offset = fdt_add_subnode(fdt, cpus_offset, dn->full_name);
1098 if (cpus_subnode_offset < 0) {
1099 pr_err("Unable to add %s subnode: %s\n", dn->full_name,
1100 fdt_strerror(cpus_subnode_offset));
1101 ret = cpus_subnode_offset;
1102 goto out;
1103 }
1104
1105 ret = add_node_props(fdt, cpus_subnode_offset, dn);
1106 if (ret < 0)
1107 goto out;
1108 }
1109 out:
1110 of_node_put(dn);
1111 return ret;
1112 }
1113
copy_property(void * fdt,int node_offset,const struct device_node * dn,const char * propname)1114 static int copy_property(void *fdt, int node_offset, const struct device_node *dn,
1115 const char *propname)
1116 {
1117 const void *prop, *fdtprop;
1118 int len = 0, fdtlen = 0;
1119
1120 prop = of_get_property(dn, propname, &len);
1121 fdtprop = fdt_getprop(fdt, node_offset, propname, &fdtlen);
1122
1123 if (fdtprop && !prop)
1124 return fdt_delprop(fdt, node_offset, propname);
1125 else if (prop)
1126 return fdt_setprop(fdt, node_offset, propname, prop, len);
1127 else
1128 return -FDT_ERR_NOTFOUND;
1129 }
1130
update_pci_dma_nodes(void * fdt,const char * dmapropname)1131 static int update_pci_dma_nodes(void *fdt, const char *dmapropname)
1132 {
1133 struct device_node *dn;
1134 int pci_offset, root_offset, ret = 0;
1135
1136 if (!firmware_has_feature(FW_FEATURE_LPAR))
1137 return 0;
1138
1139 root_offset = fdt_path_offset(fdt, "/");
1140 for_each_node_with_property(dn, dmapropname) {
1141 pci_offset = fdt_subnode_offset(fdt, root_offset, of_node_full_name(dn));
1142 if (pci_offset < 0)
1143 continue;
1144
1145 ret = copy_property(fdt, pci_offset, dn, "ibm,dma-window");
1146 if (ret < 0)
1147 break;
1148 ret = copy_property(fdt, pci_offset, dn, dmapropname);
1149 if (ret < 0)
1150 break;
1151 }
1152
1153 return ret;
1154 }
1155
1156 /**
1157 * setup_new_fdt_ppc64 - Update the flattend device-tree of the kernel
1158 * being loaded.
1159 * @image: kexec image being loaded.
1160 * @fdt: Flattened device tree for the next kernel.
1161 * @initrd_load_addr: Address where the next initrd will be loaded.
1162 * @initrd_len: Size of the next initrd, or 0 if there will be none.
1163 * @cmdline: Command line for the next kernel, or NULL if there will
1164 * be none.
1165 *
1166 * Returns 0 on success, negative errno on error.
1167 */
setup_new_fdt_ppc64(const struct kimage * image,void * fdt,unsigned long initrd_load_addr,unsigned long initrd_len,const char * cmdline)1168 int setup_new_fdt_ppc64(const struct kimage *image, void *fdt,
1169 unsigned long initrd_load_addr,
1170 unsigned long initrd_len, const char *cmdline)
1171 {
1172 struct crash_mem *umem = NULL, *rmem = NULL;
1173 int i, nr_ranges, ret;
1174
1175 /*
1176 * Restrict memory usage for kdump kernel by setting up
1177 * usable memory ranges and memory reserve map.
1178 */
1179 if (image->type == KEXEC_TYPE_CRASH) {
1180 ret = get_usable_memory_ranges(&umem);
1181 if (ret)
1182 goto out;
1183
1184 ret = update_usable_mem_fdt(fdt, umem);
1185 if (ret) {
1186 pr_err("Error setting up usable-memory property for kdump kernel\n");
1187 goto out;
1188 }
1189
1190 /*
1191 * Ensure we don't touch crashed kernel's memory except the
1192 * first 64K of RAM, which will be backed up.
1193 */
1194 ret = fdt_add_mem_rsv(fdt, BACKUP_SRC_END + 1,
1195 crashk_res.start - BACKUP_SRC_SIZE);
1196 if (ret) {
1197 pr_err("Error reserving crash memory: %s\n",
1198 fdt_strerror(ret));
1199 goto out;
1200 }
1201
1202 /* Ensure backup region is not used by kdump/capture kernel */
1203 ret = fdt_add_mem_rsv(fdt, image->arch.backup_start,
1204 BACKUP_SRC_SIZE);
1205 if (ret) {
1206 pr_err("Error reserving memory for backup: %s\n",
1207 fdt_strerror(ret));
1208 goto out;
1209 }
1210 }
1211
1212 /* Update cpus nodes information to account hotplug CPUs. */
1213 ret = update_cpus_node(fdt);
1214 if (ret < 0)
1215 goto out;
1216
1217 ret = update_pci_dma_nodes(fdt, DIRECT64_PROPNAME);
1218 if (ret < 0)
1219 goto out;
1220
1221 ret = update_pci_dma_nodes(fdt, DMA64_PROPNAME);
1222 if (ret < 0)
1223 goto out;
1224
1225 /* Update memory reserve map */
1226 ret = get_reserved_memory_ranges(&rmem);
1227 if (ret)
1228 goto out;
1229
1230 nr_ranges = rmem ? rmem->nr_ranges : 0;
1231 for (i = 0; i < nr_ranges; i++) {
1232 u64 base, size;
1233
1234 base = rmem->ranges[i].start;
1235 size = rmem->ranges[i].end - base + 1;
1236 ret = fdt_add_mem_rsv(fdt, base, size);
1237 if (ret) {
1238 pr_err("Error updating memory reserve map: %s\n",
1239 fdt_strerror(ret));
1240 goto out;
1241 }
1242 }
1243
1244 // If we have PLPKS active, we need to provide the password to the new kernel
1245 if (plpks_is_available())
1246 ret = plpks_populate_fdt(fdt);
1247
1248 out:
1249 kfree(rmem);
1250 kfree(umem);
1251 return ret;
1252 }
1253
1254 /**
1255 * arch_kexec_locate_mem_hole - Skip special memory regions like rtas, opal,
1256 * tce-table, reserved-ranges & such (exclude
1257 * memory ranges) as they can't be used for kexec
1258 * segment buffer. Sets kbuf->mem when a suitable
1259 * memory hole is found.
1260 * @kbuf: Buffer contents and memory parameters.
1261 *
1262 * Assumes minimum of PAGE_SIZE alignment for kbuf->memsz & kbuf->buf_align.
1263 *
1264 * Returns 0 on success, negative errno on error.
1265 */
arch_kexec_locate_mem_hole(struct kexec_buf * kbuf)1266 int arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
1267 {
1268 struct crash_mem **emem;
1269 u64 buf_min, buf_max;
1270 int ret;
1271
1272 /* Look up the exclude ranges list while locating the memory hole */
1273 emem = &(kbuf->image->arch.exclude_ranges);
1274 if (!(*emem) || ((*emem)->nr_ranges == 0)) {
1275 pr_warn("No exclude range list. Using the default locate mem hole method\n");
1276 return kexec_locate_mem_hole(kbuf);
1277 }
1278
1279 buf_min = kbuf->buf_min;
1280 buf_max = kbuf->buf_max;
1281 /* Segments for kdump kernel should be within crashkernel region */
1282 if (kbuf->image->type == KEXEC_TYPE_CRASH) {
1283 buf_min = (buf_min < crashk_res.start ?
1284 crashk_res.start : buf_min);
1285 buf_max = (buf_max > crashk_res.end ?
1286 crashk_res.end : buf_max);
1287 }
1288
1289 if (buf_min > buf_max) {
1290 pr_err("Invalid buffer min and/or max values\n");
1291 return -EINVAL;
1292 }
1293
1294 if (kbuf->top_down)
1295 ret = locate_mem_hole_top_down_ppc64(kbuf, buf_min, buf_max,
1296 *emem);
1297 else
1298 ret = locate_mem_hole_bottom_up_ppc64(kbuf, buf_min, buf_max,
1299 *emem);
1300
1301 /* Add the buffer allocated to the exclude list for the next lookup */
1302 if (!ret) {
1303 add_mem_range(emem, kbuf->mem, kbuf->memsz);
1304 sort_memory_ranges(*emem, true);
1305 } else {
1306 pr_err("Failed to locate memory buffer of size %lu\n",
1307 kbuf->memsz);
1308 }
1309 return ret;
1310 }
1311
1312 /**
1313 * arch_kexec_kernel_image_probe - Does additional handling needed to setup
1314 * kexec segments.
1315 * @image: kexec image being loaded.
1316 * @buf: Buffer pointing to elf data.
1317 * @buf_len: Length of the buffer.
1318 *
1319 * Returns 0 on success, negative errno on error.
1320 */
arch_kexec_kernel_image_probe(struct kimage * image,void * buf,unsigned long buf_len)1321 int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
1322 unsigned long buf_len)
1323 {
1324 int ret;
1325
1326 /* Get exclude memory ranges needed for setting up kexec segments */
1327 ret = get_exclude_memory_ranges(&(image->arch.exclude_ranges));
1328 if (ret) {
1329 pr_err("Failed to setup exclude memory ranges for buffer lookup\n");
1330 return ret;
1331 }
1332
1333 return kexec_image_probe_default(image, buf, buf_len);
1334 }
1335
1336 /**
1337 * arch_kimage_file_post_load_cleanup - Frees up all the allocations done
1338 * while loading the image.
1339 * @image: kexec image being loaded.
1340 *
1341 * Returns 0 on success, negative errno on error.
1342 */
arch_kimage_file_post_load_cleanup(struct kimage * image)1343 int arch_kimage_file_post_load_cleanup(struct kimage *image)
1344 {
1345 kfree(image->arch.exclude_ranges);
1346 image->arch.exclude_ranges = NULL;
1347
1348 vfree(image->arch.backup_buf);
1349 image->arch.backup_buf = NULL;
1350
1351 vfree(image->elf_headers);
1352 image->elf_headers = NULL;
1353 image->elf_headers_sz = 0;
1354
1355 kvfree(image->arch.fdt);
1356 image->arch.fdt = NULL;
1357
1358 return kexec_image_post_load_cleanup_default(image);
1359 }
1360