1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "cpu.h"
16 #include "internals.h"
17 #include "cpu-features.h"
18 #include "idau.h"
19 #ifdef CONFIG_TCG
20 # include "tcg/oversized-guest.h"
21 #endif
22
23 typedef struct S1Translate {
24 /*
25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
26 * Together with in_space, specifies the architectural translation regime.
27 */
28 ARMMMUIdx in_mmu_idx;
29 /*
30 * in_ptw_idx: specifies which mmuidx to use for the actual
31 * page table descriptor load operations. This will be one of the
32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
34 * this field is updated accordingly.
35 */
36 ARMMMUIdx in_ptw_idx;
37 /*
38 * in_space: the security space for this walk. This plus
39 * the in_mmu_idx specify the architectural translation regime.
40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
41 * this field is updated accordingly.
42 *
43 * Note that the security space for the in_ptw_idx may be different
44 * from that for the in_mmu_idx. We do not need to explicitly track
45 * the in_ptw_idx security space because:
46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
47 * itself specifies the security space
48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
49 * space used for ptw reads is the same as that of the security
50 * space of the stage 1 translation for all cases except where
51 * stage 1 is Secure; in that case the only possibilities for
52 * the ptw read are Secure and NonSecure, and the in_ptw_idx
53 * value being Stage2 vs Stage2_S distinguishes those.
54 */
55 ARMSecuritySpace in_space;
56 /*
57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
58 * accesses will not update the guest page table access flags
59 * and will not change the state of the softmmu TLBs.
60 */
61 bool in_debug;
62 /*
63 * If this is stage 2 of a stage 1+2 page table walk, then this must
64 * be true if stage 1 is an EL0 access; otherwise this is ignored.
65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
66 */
67 bool in_s1_is_el0;
68 bool out_rw;
69 bool out_be;
70 ARMSecuritySpace out_space;
71 hwaddr out_virt;
72 hwaddr out_phys;
73 void *out_host;
74 } S1Translate;
75
76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
77 vaddr address,
78 MMUAccessType access_type,
79 GetPhysAddrResult *result,
80 ARMMMUFaultInfo *fi);
81
82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
83 vaddr address,
84 MMUAccessType access_type,
85 GetPhysAddrResult *result,
86 ARMMMUFaultInfo *fi);
87
88 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
89 static const uint8_t pamax_map[] = {
90 [0] = 32,
91 [1] = 36,
92 [2] = 40,
93 [3] = 42,
94 [4] = 44,
95 [5] = 48,
96 [6] = 52,
97 };
98
99 /*
100 * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
101 * Note that machvirt_init calls this on a CPU that is inited but not realized!
102 */
arm_pamax(ARMCPU * cpu)103 unsigned int arm_pamax(ARMCPU *cpu)
104 {
105 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
106 unsigned int parange =
107 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
108
109 /*
110 * id_aa64mmfr0 is a read-only register so values outside of the
111 * supported mappings can be considered an implementation error.
112 */
113 assert(parange < ARRAY_SIZE(pamax_map));
114 return pamax_map[parange];
115 }
116
117 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
118 /* v7 or v8 with LPAE */
119 return 40;
120 }
121 /* Anything else */
122 return 32;
123 }
124
125 /*
126 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
127 */
stage_1_mmu_idx(ARMMMUIdx mmu_idx)128 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
129 {
130 switch (mmu_idx) {
131 case ARMMMUIdx_E10_0:
132 return ARMMMUIdx_Stage1_E0;
133 case ARMMMUIdx_E10_1:
134 return ARMMMUIdx_Stage1_E1;
135 case ARMMMUIdx_E10_1_PAN:
136 return ARMMMUIdx_Stage1_E1_PAN;
137 default:
138 return mmu_idx;
139 }
140 }
141
arm_stage1_mmu_idx(CPUARMState * env)142 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
143 {
144 return stage_1_mmu_idx(arm_mmu_idx(env));
145 }
146
147 /*
148 * Return where we should do ptw loads from for a stage 2 walk.
149 * This depends on whether the address we are looking up is a
150 * Secure IPA or a NonSecure IPA, which we know from whether this is
151 * Stage2 or Stage2_S.
152 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
153 */
ptw_idx_for_stage_2(CPUARMState * env,ARMMMUIdx stage2idx)154 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
155 {
156 bool s2walk_secure;
157
158 /*
159 * We're OK to check the current state of the CPU here because
160 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
161 * changes.
162 * (2) there's no way to do a lookup that cares about Stage 2 for a
163 * different security state to the current one for AArch64, and AArch32
164 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
165 * an NS stage 1+2 lookup while the NS bit is 0.)
166 */
167 if (!arm_el_is_aa64(env, 3)) {
168 return ARMMMUIdx_Phys_NS;
169 }
170
171 switch (arm_security_space_below_el3(env)) {
172 case ARMSS_NonSecure:
173 return ARMMMUIdx_Phys_NS;
174 case ARMSS_Realm:
175 return ARMMMUIdx_Phys_Realm;
176 case ARMSS_Secure:
177 if (stage2idx == ARMMMUIdx_Stage2_S) {
178 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
179 } else {
180 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
181 }
182 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
183 default:
184 g_assert_not_reached();
185 }
186 }
187
regime_translation_big_endian(CPUARMState * env,ARMMMUIdx mmu_idx)188 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
189 {
190 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
191 }
192
193 /* Return the TTBR associated with this translation regime */
regime_ttbr(CPUARMState * env,ARMMMUIdx mmu_idx,int ttbrn)194 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
195 {
196 if (mmu_idx == ARMMMUIdx_Stage2) {
197 return env->cp15.vttbr_el2;
198 }
199 if (mmu_idx == ARMMMUIdx_Stage2_S) {
200 return env->cp15.vsttbr_el2;
201 }
202 if (ttbrn == 0) {
203 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
204 } else {
205 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
206 }
207 }
208
209 /* Return true if the specified stage of address translation is disabled */
regime_translation_disabled(CPUARMState * env,ARMMMUIdx mmu_idx,ARMSecuritySpace space)210 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
211 ARMSecuritySpace space)
212 {
213 uint64_t hcr_el2;
214
215 if (arm_feature(env, ARM_FEATURE_M)) {
216 bool is_secure = arm_space_is_secure(space);
217 switch (env->v7m.mpu_ctrl[is_secure] &
218 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
219 case R_V7M_MPU_CTRL_ENABLE_MASK:
220 /* Enabled, but not for HardFault and NMI */
221 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
222 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
223 /* Enabled for all cases */
224 return false;
225 case 0:
226 default:
227 /*
228 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
229 * we warned about that in armv7m_nvic.c when the guest set it.
230 */
231 return true;
232 }
233 }
234
235
236 switch (mmu_idx) {
237 case ARMMMUIdx_Stage2:
238 case ARMMMUIdx_Stage2_S:
239 /* HCR.DC means HCR.VM behaves as 1 */
240 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
241 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
242
243 case ARMMMUIdx_E10_0:
244 case ARMMMUIdx_E10_1:
245 case ARMMMUIdx_E10_1_PAN:
246 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
247 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
248 if (hcr_el2 & HCR_TGE) {
249 return true;
250 }
251 break;
252
253 case ARMMMUIdx_Stage1_E0:
254 case ARMMMUIdx_Stage1_E1:
255 case ARMMMUIdx_Stage1_E1_PAN:
256 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
257 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
258 if (hcr_el2 & HCR_DC) {
259 return true;
260 }
261 break;
262
263 case ARMMMUIdx_E20_0:
264 case ARMMMUIdx_E20_2:
265 case ARMMMUIdx_E20_2_PAN:
266 case ARMMMUIdx_E2:
267 case ARMMMUIdx_E3:
268 break;
269
270 case ARMMMUIdx_Phys_S:
271 case ARMMMUIdx_Phys_NS:
272 case ARMMMUIdx_Phys_Root:
273 case ARMMMUIdx_Phys_Realm:
274 /* No translation for physical address spaces. */
275 return true;
276
277 default:
278 g_assert_not_reached();
279 }
280
281 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
282 }
283
granule_protection_check(CPUARMState * env,uint64_t paddress,ARMSecuritySpace pspace,ARMMMUFaultInfo * fi)284 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
285 ARMSecuritySpace pspace,
286 ARMMMUFaultInfo *fi)
287 {
288 MemTxAttrs attrs = {
289 .secure = true,
290 .space = ARMSS_Root,
291 };
292 ARMCPU *cpu = env_archcpu(env);
293 uint64_t gpccr = env->cp15.gpccr_el3;
294 unsigned pps, pgs, l0gptsz, level = 0;
295 uint64_t tableaddr, pps_mask, align, entry, index;
296 AddressSpace *as;
297 MemTxResult result;
298 int gpi;
299
300 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
301 return true;
302 }
303
304 /*
305 * GPC Priority 1 (R_GMGRR):
306 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
307 * the access fails as GPT walk fault at level 0.
308 */
309
310 /*
311 * Configuration of PPS to a value exceeding the implemented
312 * physical address size is invalid.
313 */
314 pps = FIELD_EX64(gpccr, GPCCR, PPS);
315 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
316 goto fault_walk;
317 }
318 pps = pamax_map[pps];
319 pps_mask = MAKE_64BIT_MASK(0, pps);
320
321 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
322 case 0b10: /* outer shareable */
323 break;
324 case 0b00: /* non-shareable */
325 case 0b11: /* inner shareable */
326 /* Inner and Outer non-cacheable requires Outer shareable. */
327 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
328 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
329 goto fault_walk;
330 }
331 break;
332 default: /* reserved */
333 goto fault_walk;
334 }
335
336 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
337 case 0b00: /* 4KB */
338 pgs = 12;
339 break;
340 case 0b01: /* 64KB */
341 pgs = 16;
342 break;
343 case 0b10: /* 16KB */
344 pgs = 14;
345 break;
346 default: /* reserved */
347 goto fault_walk;
348 }
349
350 /* Note this field is read-only and fixed at reset. */
351 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
352
353 /*
354 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
355 * R_CPDSB: A NonSecure physical address input exceeding PPS
356 * does not experience any fault.
357 */
358 if (paddress & ~pps_mask) {
359 if (pspace == ARMSS_NonSecure) {
360 return true;
361 }
362 goto fault_size;
363 }
364
365 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
366 tableaddr = env->cp15.gptbr_el3 << 12;
367 if (tableaddr & ~pps_mask) {
368 goto fault_size;
369 }
370
371 /*
372 * BADDR is aligned per a function of PPS and L0GPTSZ.
373 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
374 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
375 */
376 align = MAX(pps - l0gptsz + 3, 12);
377 align = MAKE_64BIT_MASK(0, align);
378 tableaddr &= ~align;
379
380 as = arm_addressspace(env_cpu(env), attrs);
381
382 /* Level 0 lookup. */
383 index = extract64(paddress, l0gptsz, pps - l0gptsz);
384 tableaddr += index * 8;
385 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
386 if (result != MEMTX_OK) {
387 goto fault_eabt;
388 }
389
390 switch (extract32(entry, 0, 4)) {
391 case 1: /* block descriptor */
392 if (entry >> 8) {
393 goto fault_walk; /* RES0 bits not 0 */
394 }
395 gpi = extract32(entry, 4, 4);
396 goto found;
397 case 3: /* table descriptor */
398 tableaddr = entry & ~0xf;
399 align = MAX(l0gptsz - pgs - 1, 12);
400 align = MAKE_64BIT_MASK(0, align);
401 if (tableaddr & (~pps_mask | align)) {
402 goto fault_walk; /* RES0 bits not 0 */
403 }
404 break;
405 default: /* invalid */
406 goto fault_walk;
407 }
408
409 /* Level 1 lookup */
410 level = 1;
411 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
412 tableaddr += index * 8;
413 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
414 if (result != MEMTX_OK) {
415 goto fault_eabt;
416 }
417
418 switch (extract32(entry, 0, 4)) {
419 case 1: /* contiguous descriptor */
420 if (entry >> 10) {
421 goto fault_walk; /* RES0 bits not 0 */
422 }
423 /*
424 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
425 * and because we cannot invalidate by pa, and thus will always
426 * flush entire tlbs, we don't actually care about the range here
427 * and can simply extract the GPI as the result.
428 */
429 if (extract32(entry, 8, 2) == 0) {
430 goto fault_walk; /* reserved contig */
431 }
432 gpi = extract32(entry, 4, 4);
433 break;
434 default:
435 index = extract64(paddress, pgs, 4);
436 gpi = extract64(entry, index * 4, 4);
437 break;
438 }
439
440 found:
441 switch (gpi) {
442 case 0b0000: /* no access */
443 break;
444 case 0b1111: /* all access */
445 return true;
446 case 0b1000:
447 case 0b1001:
448 case 0b1010:
449 case 0b1011:
450 if (pspace == (gpi & 3)) {
451 return true;
452 }
453 break;
454 default:
455 goto fault_walk; /* reserved */
456 }
457
458 fi->gpcf = GPCF_Fail;
459 goto fault_common;
460 fault_eabt:
461 fi->gpcf = GPCF_EABT;
462 goto fault_common;
463 fault_size:
464 fi->gpcf = GPCF_AddressSize;
465 goto fault_common;
466 fault_walk:
467 fi->gpcf = GPCF_Walk;
468 fault_common:
469 fi->level = level;
470 fi->paddr = paddress;
471 fi->paddr_space = pspace;
472 return false;
473 }
474
S1_attrs_are_device(uint8_t attrs)475 static bool S1_attrs_are_device(uint8_t attrs)
476 {
477 /*
478 * This slightly under-decodes the MAIR_ELx field:
479 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
480 * 0b0000dd1x is UNPREDICTABLE.
481 */
482 return (attrs & 0xf0) == 0;
483 }
484
S2_attrs_are_device(uint64_t hcr,uint8_t attrs)485 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
486 {
487 /*
488 * For an S1 page table walk, the stage 1 attributes are always
489 * some form of "this is Normal memory". The combined S1+S2
490 * attributes are therefore only Device if stage 2 specifies Device.
491 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
492 * ie when cacheattrs.attrs bits [3:2] are 0b00.
493 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
494 * when cacheattrs.attrs bit [2] is 0.
495 */
496 if (hcr & HCR_FWB) {
497 return (attrs & 0x4) == 0;
498 } else {
499 return (attrs & 0xc) == 0;
500 }
501 }
502
S2_security_space(ARMSecuritySpace s1_space,ARMMMUIdx s2_mmu_idx)503 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
504 ARMMMUIdx s2_mmu_idx)
505 {
506 /*
507 * Return the security space to use for stage 2 when doing
508 * the S1 page table descriptor load.
509 */
510 if (regime_is_stage2(s2_mmu_idx)) {
511 /*
512 * The security space for ptw reads is almost always the same
513 * as that of the security space of the stage 1 translation.
514 * The only exception is when stage 1 is Secure; in that case
515 * the ptw read might be to the Secure or the NonSecure space
516 * (but never Realm or Root), and the s2_mmu_idx tells us which.
517 * Root translations are always single-stage.
518 */
519 if (s1_space == ARMSS_Secure) {
520 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
521 } else {
522 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
523 assert(s1_space != ARMSS_Root);
524 return s1_space;
525 }
526 } else {
527 /* ptw loads are from phys: the mmu idx itself says which space */
528 return arm_phys_to_space(s2_mmu_idx);
529 }
530 }
531
fault_s1ns(ARMSecuritySpace space,ARMMMUIdx s2_mmu_idx)532 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
533 {
534 /*
535 * For stage 2 faults in Secure EL22, S1NS indicates
536 * whether the faulting IPA is in the Secure or NonSecure
537 * IPA space. For all other kinds of fault, it is false.
538 */
539 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
540 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
541 }
542
543 /* Translate a S1 pagetable walk through S2 if needed. */
S1_ptw_translate(CPUARMState * env,S1Translate * ptw,hwaddr addr,ARMMMUFaultInfo * fi)544 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
545 hwaddr addr, ARMMMUFaultInfo *fi)
546 {
547 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
548 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
549 uint8_t pte_attrs;
550
551 ptw->out_virt = addr;
552
553 if (unlikely(ptw->in_debug)) {
554 /*
555 * From gdbstub, do not use softmmu so that we don't modify the
556 * state of the cpu at all, including softmmu tlb contents.
557 */
558 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
559 S1Translate s2ptw = {
560 .in_mmu_idx = s2_mmu_idx,
561 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
562 .in_space = s2_space,
563 .in_debug = true,
564 };
565 GetPhysAddrResult s2 = { };
566
567 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, &s2, fi)) {
568 goto fail;
569 }
570
571 ptw->out_phys = s2.f.phys_addr;
572 pte_attrs = s2.cacheattrs.attrs;
573 ptw->out_host = NULL;
574 ptw->out_rw = false;
575 ptw->out_space = s2.f.attrs.space;
576 } else {
577 #ifdef CONFIG_TCG
578 CPUTLBEntryFull *full;
579 int flags;
580
581 env->tlb_fi = fi;
582 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
583 arm_to_core_mmu_idx(s2_mmu_idx),
584 &ptw->out_host, &full);
585 env->tlb_fi = NULL;
586
587 if (unlikely(flags & TLB_INVALID_MASK)) {
588 goto fail;
589 }
590 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
591 ptw->out_rw = full->prot & PAGE_WRITE;
592 pte_attrs = full->extra.arm.pte_attrs;
593 ptw->out_space = full->attrs.space;
594 #else
595 g_assert_not_reached();
596 #endif
597 }
598
599 if (regime_is_stage2(s2_mmu_idx)) {
600 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
601
602 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
603 /*
604 * PTW set and S1 walk touched S2 Device memory:
605 * generate Permission fault.
606 */
607 fi->type = ARMFault_Permission;
608 fi->s2addr = addr;
609 fi->stage2 = true;
610 fi->s1ptw = true;
611 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
612 return false;
613 }
614 }
615
616 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
617 return true;
618
619 fail:
620 assert(fi->type != ARMFault_None);
621 if (fi->type == ARMFault_GPCFOnOutput) {
622 fi->type = ARMFault_GPCFOnWalk;
623 }
624 fi->s2addr = addr;
625 fi->stage2 = regime_is_stage2(s2_mmu_idx);
626 fi->s1ptw = fi->stage2;
627 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
628 return false;
629 }
630
631 /* All loads done in the course of a page table walk go through here. */
arm_ldl_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)632 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
633 ARMMMUFaultInfo *fi)
634 {
635 CPUState *cs = env_cpu(env);
636 void *host = ptw->out_host;
637 uint32_t data;
638
639 if (likely(host)) {
640 /* Page tables are in RAM, and we have the host address. */
641 data = qatomic_read((uint32_t *)host);
642 if (ptw->out_be) {
643 data = be32_to_cpu(data);
644 } else {
645 data = le32_to_cpu(data);
646 }
647 } else {
648 /* Page tables are in MMIO. */
649 MemTxAttrs attrs = {
650 .space = ptw->out_space,
651 .secure = arm_space_is_secure(ptw->out_space),
652 };
653 AddressSpace *as = arm_addressspace(cs, attrs);
654 MemTxResult result = MEMTX_OK;
655
656 if (ptw->out_be) {
657 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
658 } else {
659 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
660 }
661 if (unlikely(result != MEMTX_OK)) {
662 fi->type = ARMFault_SyncExternalOnWalk;
663 fi->ea = arm_extabort_type(result);
664 return 0;
665 }
666 }
667 return data;
668 }
669
arm_ldq_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)670 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
671 ARMMMUFaultInfo *fi)
672 {
673 CPUState *cs = env_cpu(env);
674 void *host = ptw->out_host;
675 uint64_t data;
676
677 if (likely(host)) {
678 /* Page tables are in RAM, and we have the host address. */
679 #ifdef CONFIG_ATOMIC64
680 data = qatomic_read__nocheck((uint64_t *)host);
681 if (ptw->out_be) {
682 data = be64_to_cpu(data);
683 } else {
684 data = le64_to_cpu(data);
685 }
686 #else
687 if (ptw->out_be) {
688 data = ldq_be_p(host);
689 } else {
690 data = ldq_le_p(host);
691 }
692 #endif
693 } else {
694 /* Page tables are in MMIO. */
695 MemTxAttrs attrs = {
696 .space = ptw->out_space,
697 .secure = arm_space_is_secure(ptw->out_space),
698 };
699 AddressSpace *as = arm_addressspace(cs, attrs);
700 MemTxResult result = MEMTX_OK;
701
702 if (ptw->out_be) {
703 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
704 } else {
705 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
706 }
707 if (unlikely(result != MEMTX_OK)) {
708 fi->type = ARMFault_SyncExternalOnWalk;
709 fi->ea = arm_extabort_type(result);
710 return 0;
711 }
712 }
713 return data;
714 }
715
arm_casq_ptw(CPUARMState * env,uint64_t old_val,uint64_t new_val,S1Translate * ptw,ARMMMUFaultInfo * fi)716 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
717 uint64_t new_val, S1Translate *ptw,
718 ARMMMUFaultInfo *fi)
719 {
720 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
721 uint64_t cur_val;
722 void *host = ptw->out_host;
723
724 if (unlikely(!host)) {
725 /* Page table in MMIO Memory Region */
726 CPUState *cs = env_cpu(env);
727 MemTxAttrs attrs = {
728 .space = ptw->out_space,
729 .secure = arm_space_is_secure(ptw->out_space),
730 };
731 AddressSpace *as = arm_addressspace(cs, attrs);
732 MemTxResult result = MEMTX_OK;
733 bool need_lock = !bql_locked();
734
735 if (need_lock) {
736 bql_lock();
737 }
738 if (ptw->out_be) {
739 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
740 if (unlikely(result != MEMTX_OK)) {
741 fi->type = ARMFault_SyncExternalOnWalk;
742 fi->ea = arm_extabort_type(result);
743 if (need_lock) {
744 bql_unlock();
745 }
746 return old_val;
747 }
748 if (cur_val == old_val) {
749 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
750 if (unlikely(result != MEMTX_OK)) {
751 fi->type = ARMFault_SyncExternalOnWalk;
752 fi->ea = arm_extabort_type(result);
753 if (need_lock) {
754 bql_unlock();
755 }
756 return old_val;
757 }
758 cur_val = new_val;
759 }
760 } else {
761 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
762 if (unlikely(result != MEMTX_OK)) {
763 fi->type = ARMFault_SyncExternalOnWalk;
764 fi->ea = arm_extabort_type(result);
765 if (need_lock) {
766 bql_unlock();
767 }
768 return old_val;
769 }
770 if (cur_val == old_val) {
771 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
772 if (unlikely(result != MEMTX_OK)) {
773 fi->type = ARMFault_SyncExternalOnWalk;
774 fi->ea = arm_extabort_type(result);
775 if (need_lock) {
776 bql_unlock();
777 }
778 return old_val;
779 }
780 cur_val = new_val;
781 }
782 }
783 if (need_lock) {
784 bql_unlock();
785 }
786 return cur_val;
787 }
788
789 /*
790 * Raising a stage2 Protection fault for an atomic update to a read-only
791 * page is delayed until it is certain that there is a change to make.
792 */
793 if (unlikely(!ptw->out_rw)) {
794 int flags;
795
796 env->tlb_fi = fi;
797 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
798 MMU_DATA_STORE,
799 arm_to_core_mmu_idx(ptw->in_ptw_idx),
800 NULL, NULL);
801 env->tlb_fi = NULL;
802
803 if (unlikely(flags & TLB_INVALID_MASK)) {
804 /*
805 * We know this must be a stage 2 fault because the granule
806 * protection table does not separately track read and write
807 * permission, so all GPC faults are caught in S1_ptw_translate():
808 * we only get here for "readable but not writeable".
809 */
810 assert(fi->type != ARMFault_None);
811 fi->s2addr = ptw->out_virt;
812 fi->stage2 = true;
813 fi->s1ptw = true;
814 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
815 return 0;
816 }
817
818 /* In case CAS mismatches and we loop, remember writability. */
819 ptw->out_rw = true;
820 }
821
822 #ifdef CONFIG_ATOMIC64
823 if (ptw->out_be) {
824 old_val = cpu_to_be64(old_val);
825 new_val = cpu_to_be64(new_val);
826 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
827 cur_val = be64_to_cpu(cur_val);
828 } else {
829 old_val = cpu_to_le64(old_val);
830 new_val = cpu_to_le64(new_val);
831 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
832 cur_val = le64_to_cpu(cur_val);
833 }
834 #else
835 /*
836 * We can't support the full 64-bit atomic cmpxchg on the host.
837 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
838 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
839 * running in round-robin mode and could only race with dma i/o.
840 */
841 #if !TCG_OVERSIZED_GUEST
842 # error "Unexpected configuration"
843 #endif
844 bool locked = bql_locked();
845 if (!locked) {
846 bql_lock();
847 }
848 if (ptw->out_be) {
849 cur_val = ldq_be_p(host);
850 if (cur_val == old_val) {
851 stq_be_p(host, new_val);
852 }
853 } else {
854 cur_val = ldq_le_p(host);
855 if (cur_val == old_val) {
856 stq_le_p(host, new_val);
857 }
858 }
859 if (!locked) {
860 bql_unlock();
861 }
862 #endif
863
864 return cur_val;
865 #else
866 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
867 g_assert_not_reached();
868 #endif
869 }
870
get_level1_table_address(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t * table,uint32_t address)871 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
872 uint32_t *table, uint32_t address)
873 {
874 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
875 uint64_t tcr = regime_tcr(env, mmu_idx);
876 int maskshift = extract32(tcr, 0, 3);
877 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
878 uint32_t base_mask;
879
880 if (address & mask) {
881 if (tcr & TTBCR_PD1) {
882 /* Translation table walk disabled for TTBR1 */
883 return false;
884 }
885 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
886 } else {
887 if (tcr & TTBCR_PD0) {
888 /* Translation table walk disabled for TTBR0 */
889 return false;
890 }
891 base_mask = ~((uint32_t)0x3fffu >> maskshift);
892 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
893 }
894 *table |= (address >> 18) & 0x3ffc;
895 return true;
896 }
897
898 /*
899 * Translate section/page access permissions to page R/W protection flags
900 * @env: CPUARMState
901 * @mmu_idx: MMU index indicating required translation regime
902 * @ap: The 3-bit access permissions (AP[2:0])
903 * @domain_prot: The 2-bit domain access permissions
904 * @is_user: TRUE if accessing from PL0
905 */
ap_to_rw_prot_is_user(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot,bool is_user)906 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
907 int ap, int domain_prot, bool is_user)
908 {
909 if (domain_prot == 3) {
910 return PAGE_READ | PAGE_WRITE;
911 }
912
913 switch (ap) {
914 case 0:
915 if (arm_feature(env, ARM_FEATURE_V7)) {
916 return 0;
917 }
918 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
919 case SCTLR_S:
920 return is_user ? 0 : PAGE_READ;
921 case SCTLR_R:
922 return PAGE_READ;
923 default:
924 return 0;
925 }
926 case 1:
927 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
928 case 2:
929 if (is_user) {
930 return PAGE_READ;
931 } else {
932 return PAGE_READ | PAGE_WRITE;
933 }
934 case 3:
935 return PAGE_READ | PAGE_WRITE;
936 case 4: /* Reserved. */
937 return 0;
938 case 5:
939 return is_user ? 0 : PAGE_READ;
940 case 6:
941 return PAGE_READ;
942 case 7:
943 if (!arm_feature(env, ARM_FEATURE_V6K)) {
944 return 0;
945 }
946 return PAGE_READ;
947 default:
948 g_assert_not_reached();
949 }
950 }
951
952 /*
953 * Translate section/page access permissions to page R/W protection flags
954 * @env: CPUARMState
955 * @mmu_idx: MMU index indicating required translation regime
956 * @ap: The 3-bit access permissions (AP[2:0])
957 * @domain_prot: The 2-bit domain access permissions
958 */
ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot)959 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
960 int ap, int domain_prot)
961 {
962 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
963 regime_is_user(env, mmu_idx));
964 }
965
966 /*
967 * Translate section/page access permissions to page R/W protection flags.
968 * @ap: The 2-bit simple AP (AP[2:1])
969 * @is_user: TRUE if accessing from PL0
970 */
simple_ap_to_rw_prot_is_user(int ap,bool is_user)971 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
972 {
973 switch (ap) {
974 case 0:
975 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
976 case 1:
977 return PAGE_READ | PAGE_WRITE;
978 case 2:
979 return is_user ? 0 : PAGE_READ;
980 case 3:
981 return PAGE_READ;
982 default:
983 g_assert_not_reached();
984 }
985 }
986
simple_ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap)987 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
988 {
989 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
990 }
991
get_phys_addr_v5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)992 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
993 uint32_t address, MMUAccessType access_type,
994 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
995 {
996 int level = 1;
997 uint32_t table;
998 uint32_t desc;
999 int type;
1000 int ap;
1001 int domain = 0;
1002 int domain_prot;
1003 hwaddr phys_addr;
1004 uint32_t dacr;
1005
1006 /* Pagetable walk. */
1007 /* Lookup l1 descriptor. */
1008 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
1009 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1010 fi->type = ARMFault_Translation;
1011 goto do_fault;
1012 }
1013 if (!S1_ptw_translate(env, ptw, table, fi)) {
1014 goto do_fault;
1015 }
1016 desc = arm_ldl_ptw(env, ptw, fi);
1017 if (fi->type != ARMFault_None) {
1018 goto do_fault;
1019 }
1020 type = (desc & 3);
1021 domain = (desc >> 5) & 0x0f;
1022 if (regime_el(env, ptw->in_mmu_idx) == 1) {
1023 dacr = env->cp15.dacr_ns;
1024 } else {
1025 dacr = env->cp15.dacr_s;
1026 }
1027 domain_prot = (dacr >> (domain * 2)) & 3;
1028 if (type == 0) {
1029 /* Section translation fault. */
1030 fi->type = ARMFault_Translation;
1031 goto do_fault;
1032 }
1033 if (type != 2) {
1034 level = 2;
1035 }
1036 if (domain_prot == 0 || domain_prot == 2) {
1037 fi->type = ARMFault_Domain;
1038 goto do_fault;
1039 }
1040 if (type == 2) {
1041 /* 1Mb section. */
1042 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1043 ap = (desc >> 10) & 3;
1044 result->f.lg_page_size = 20; /* 1MB */
1045 } else {
1046 /* Lookup l2 entry. */
1047 if (type == 1) {
1048 /* Coarse pagetable. */
1049 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1050 } else {
1051 /* Fine pagetable. */
1052 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1053 }
1054 if (!S1_ptw_translate(env, ptw, table, fi)) {
1055 goto do_fault;
1056 }
1057 desc = arm_ldl_ptw(env, ptw, fi);
1058 if (fi->type != ARMFault_None) {
1059 goto do_fault;
1060 }
1061 switch (desc & 3) {
1062 case 0: /* Page translation fault. */
1063 fi->type = ARMFault_Translation;
1064 goto do_fault;
1065 case 1: /* 64k page. */
1066 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1067 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1068 result->f.lg_page_size = 16;
1069 break;
1070 case 2: /* 4k page. */
1071 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1072 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1073 result->f.lg_page_size = 12;
1074 break;
1075 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1076 if (type == 1) {
1077 /* ARMv6/XScale extended small page format */
1078 if (arm_feature(env, ARM_FEATURE_XSCALE)
1079 || arm_feature(env, ARM_FEATURE_V6)) {
1080 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1081 result->f.lg_page_size = 12;
1082 } else {
1083 /*
1084 * UNPREDICTABLE in ARMv5; we choose to take a
1085 * page translation fault.
1086 */
1087 fi->type = ARMFault_Translation;
1088 goto do_fault;
1089 }
1090 } else {
1091 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1092 result->f.lg_page_size = 10;
1093 }
1094 ap = (desc >> 4) & 3;
1095 break;
1096 default:
1097 /* Never happens, but compiler isn't smart enough to tell. */
1098 g_assert_not_reached();
1099 }
1100 }
1101 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1102 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1103 if (!(result->f.prot & (1 << access_type))) {
1104 /* Access permission fault. */
1105 fi->type = ARMFault_Permission;
1106 goto do_fault;
1107 }
1108 result->f.phys_addr = phys_addr;
1109 return false;
1110 do_fault:
1111 fi->domain = domain;
1112 fi->level = level;
1113 return true;
1114 }
1115
get_phys_addr_v6(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1116 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1117 uint32_t address, MMUAccessType access_type,
1118 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1119 {
1120 ARMCPU *cpu = env_archcpu(env);
1121 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1122 int level = 1;
1123 uint32_t table;
1124 uint32_t desc;
1125 uint32_t xn;
1126 uint32_t pxn = 0;
1127 int type;
1128 int ap;
1129 int domain = 0;
1130 int domain_prot;
1131 hwaddr phys_addr;
1132 uint32_t dacr;
1133 bool ns;
1134 int user_prot;
1135
1136 /* Pagetable walk. */
1137 /* Lookup l1 descriptor. */
1138 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1139 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1140 fi->type = ARMFault_Translation;
1141 goto do_fault;
1142 }
1143 if (!S1_ptw_translate(env, ptw, table, fi)) {
1144 goto do_fault;
1145 }
1146 desc = arm_ldl_ptw(env, ptw, fi);
1147 if (fi->type != ARMFault_None) {
1148 goto do_fault;
1149 }
1150 type = (desc & 3);
1151 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1152 /* Section translation fault, or attempt to use the encoding
1153 * which is Reserved on implementations without PXN.
1154 */
1155 fi->type = ARMFault_Translation;
1156 goto do_fault;
1157 }
1158 if ((type == 1) || !(desc & (1 << 18))) {
1159 /* Page or Section. */
1160 domain = (desc >> 5) & 0x0f;
1161 }
1162 if (regime_el(env, mmu_idx) == 1) {
1163 dacr = env->cp15.dacr_ns;
1164 } else {
1165 dacr = env->cp15.dacr_s;
1166 }
1167 if (type == 1) {
1168 level = 2;
1169 }
1170 domain_prot = (dacr >> (domain * 2)) & 3;
1171 if (domain_prot == 0 || domain_prot == 2) {
1172 /* Section or Page domain fault */
1173 fi->type = ARMFault_Domain;
1174 goto do_fault;
1175 }
1176 if (type != 1) {
1177 if (desc & (1 << 18)) {
1178 /* Supersection. */
1179 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1180 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1181 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1182 result->f.lg_page_size = 24; /* 16MB */
1183 } else {
1184 /* Section. */
1185 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1186 result->f.lg_page_size = 20; /* 1MB */
1187 }
1188 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1189 xn = desc & (1 << 4);
1190 pxn = desc & 1;
1191 ns = extract32(desc, 19, 1);
1192 } else {
1193 if (cpu_isar_feature(aa32_pxn, cpu)) {
1194 pxn = (desc >> 2) & 1;
1195 }
1196 ns = extract32(desc, 3, 1);
1197 /* Lookup l2 entry. */
1198 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1199 if (!S1_ptw_translate(env, ptw, table, fi)) {
1200 goto do_fault;
1201 }
1202 desc = arm_ldl_ptw(env, ptw, fi);
1203 if (fi->type != ARMFault_None) {
1204 goto do_fault;
1205 }
1206 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1207 switch (desc & 3) {
1208 case 0: /* Page translation fault. */
1209 fi->type = ARMFault_Translation;
1210 goto do_fault;
1211 case 1: /* 64k page. */
1212 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1213 xn = desc & (1 << 15);
1214 result->f.lg_page_size = 16;
1215 break;
1216 case 2: case 3: /* 4k page. */
1217 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1218 xn = desc & 1;
1219 result->f.lg_page_size = 12;
1220 break;
1221 default:
1222 /* Never happens, but compiler isn't smart enough to tell. */
1223 g_assert_not_reached();
1224 }
1225 }
1226 if (domain_prot == 3) {
1227 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1228 } else {
1229 if (pxn && !regime_is_user(env, mmu_idx)) {
1230 xn = 1;
1231 }
1232 if (xn && access_type == MMU_INST_FETCH) {
1233 fi->type = ARMFault_Permission;
1234 goto do_fault;
1235 }
1236
1237 if (arm_feature(env, ARM_FEATURE_V6K) &&
1238 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1239 /* The simplified model uses AP[0] as an access control bit. */
1240 if ((ap & 1) == 0) {
1241 /* Access flag fault. */
1242 fi->type = ARMFault_AccessFlag;
1243 goto do_fault;
1244 }
1245 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1246 user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1247 } else {
1248 result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1249 user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1250 }
1251 if (result->f.prot && !xn) {
1252 result->f.prot |= PAGE_EXEC;
1253 }
1254 if (!(result->f.prot & (1 << access_type))) {
1255 /* Access permission fault. */
1256 fi->type = ARMFault_Permission;
1257 goto do_fault;
1258 }
1259 if (regime_is_pan(env, mmu_idx) &&
1260 !regime_is_user(env, mmu_idx) &&
1261 user_prot &&
1262 access_type != MMU_INST_FETCH) {
1263 /* Privileged Access Never fault */
1264 fi->type = ARMFault_Permission;
1265 goto do_fault;
1266 }
1267 }
1268 if (ns) {
1269 /* The NS bit will (as required by the architecture) have no effect if
1270 * the CPU doesn't support TZ or this is a non-secure translation
1271 * regime, because the attribute will already be non-secure.
1272 */
1273 result->f.attrs.secure = false;
1274 result->f.attrs.space = ARMSS_NonSecure;
1275 }
1276 result->f.phys_addr = phys_addr;
1277 return false;
1278 do_fault:
1279 fi->domain = domain;
1280 fi->level = level;
1281 return true;
1282 }
1283
1284 /*
1285 * Translate S2 section/page access permissions to protection flags
1286 * @env: CPUARMState
1287 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1288 * @xn: XN (execute-never) bits
1289 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1290 */
get_S2prot_noexecute(int s2ap)1291 static int get_S2prot_noexecute(int s2ap)
1292 {
1293 int prot = 0;
1294
1295 if (s2ap & 1) {
1296 prot |= PAGE_READ;
1297 }
1298 if (s2ap & 2) {
1299 prot |= PAGE_WRITE;
1300 }
1301 return prot;
1302 }
1303
get_S2prot(CPUARMState * env,int s2ap,int xn,bool s1_is_el0)1304 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1305 {
1306 int prot = get_S2prot_noexecute(s2ap);
1307
1308 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1309 switch (xn) {
1310 case 0:
1311 prot |= PAGE_EXEC;
1312 break;
1313 case 1:
1314 if (s1_is_el0) {
1315 prot |= PAGE_EXEC;
1316 }
1317 break;
1318 case 2:
1319 break;
1320 case 3:
1321 if (!s1_is_el0) {
1322 prot |= PAGE_EXEC;
1323 }
1324 break;
1325 default:
1326 g_assert_not_reached();
1327 }
1328 } else {
1329 if (!extract32(xn, 1, 1)) {
1330 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1331 prot |= PAGE_EXEC;
1332 }
1333 }
1334 }
1335 return prot;
1336 }
1337
1338 /*
1339 * Translate section/page access permissions to protection flags
1340 * @env: CPUARMState
1341 * @mmu_idx: MMU index indicating required translation regime
1342 * @is_aa64: TRUE if AArch64
1343 * @ap: The 2-bit simple AP (AP[2:1])
1344 * @xn: XN (execute-never) bit
1345 * @pxn: PXN (privileged execute-never) bit
1346 * @in_pa: The original input pa space
1347 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1348 */
get_S1prot(CPUARMState * env,ARMMMUIdx mmu_idx,bool is_aa64,int ap,int xn,int pxn,ARMSecuritySpace in_pa,ARMSecuritySpace out_pa)1349 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1350 int ap, int xn, int pxn,
1351 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1352 {
1353 ARMCPU *cpu = env_archcpu(env);
1354 bool is_user = regime_is_user(env, mmu_idx);
1355 int prot_rw, user_rw;
1356 bool have_wxn;
1357 int wxn = 0;
1358
1359 assert(!regime_is_stage2(mmu_idx));
1360
1361 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
1362 if (is_user) {
1363 prot_rw = user_rw;
1364 } else {
1365 /*
1366 * PAN controls can forbid data accesses but don't affect insn fetch.
1367 * Plain PAN forbids data accesses if EL0 has data permissions;
1368 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1369 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1370 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1371 * do not affect EPAN.
1372 */
1373 if (user_rw && regime_is_pan(env, mmu_idx)) {
1374 prot_rw = 0;
1375 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1376 regime_is_pan(env, mmu_idx) &&
1377 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1378 prot_rw = 0;
1379 } else {
1380 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
1381 }
1382 }
1383
1384 if (in_pa != out_pa) {
1385 switch (in_pa) {
1386 case ARMSS_Root:
1387 /*
1388 * R_ZWRVD: permission fault for insn fetched from non-Root,
1389 * I_WWBFB: SIF has no effect in EL3.
1390 */
1391 return prot_rw;
1392 case ARMSS_Realm:
1393 /*
1394 * R_PKTDS: permission fault for insn fetched from non-Realm,
1395 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1396 * happens during any stage2 translation.
1397 */
1398 switch (mmu_idx) {
1399 case ARMMMUIdx_E2:
1400 case ARMMMUIdx_E20_0:
1401 case ARMMMUIdx_E20_2:
1402 case ARMMMUIdx_E20_2_PAN:
1403 return prot_rw;
1404 default:
1405 break;
1406 }
1407 break;
1408 case ARMSS_Secure:
1409 if (env->cp15.scr_el3 & SCR_SIF) {
1410 return prot_rw;
1411 }
1412 break;
1413 default:
1414 /* Input NonSecure must have output NonSecure. */
1415 g_assert_not_reached();
1416 }
1417 }
1418
1419 /* TODO have_wxn should be replaced with
1420 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1421 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1422 * compatible processors have EL2, which is required for [U]WXN.
1423 */
1424 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1425
1426 if (have_wxn) {
1427 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1428 }
1429
1430 if (is_aa64) {
1431 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1432 xn = pxn || (user_rw & PAGE_WRITE);
1433 }
1434 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1435 switch (regime_el(env, mmu_idx)) {
1436 case 1:
1437 case 3:
1438 if (is_user) {
1439 xn = xn || !(user_rw & PAGE_READ);
1440 } else {
1441 int uwxn = 0;
1442 if (have_wxn) {
1443 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1444 }
1445 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1446 (uwxn && (user_rw & PAGE_WRITE));
1447 }
1448 break;
1449 case 2:
1450 break;
1451 }
1452 } else {
1453 xn = wxn = 0;
1454 }
1455
1456 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1457 return prot_rw;
1458 }
1459 return prot_rw | PAGE_EXEC;
1460 }
1461
aa32_va_parameters(CPUARMState * env,uint32_t va,ARMMMUIdx mmu_idx)1462 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1463 ARMMMUIdx mmu_idx)
1464 {
1465 uint64_t tcr = regime_tcr(env, mmu_idx);
1466 uint32_t el = regime_el(env, mmu_idx);
1467 int select, tsz;
1468 bool epd, hpd;
1469
1470 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1471
1472 if (mmu_idx == ARMMMUIdx_Stage2) {
1473 /* VTCR */
1474 bool sext = extract32(tcr, 4, 1);
1475 bool sign = extract32(tcr, 3, 1);
1476
1477 /*
1478 * If the sign-extend bit is not the same as t0sz[3], the result
1479 * is unpredictable. Flag this as a guest error.
1480 */
1481 if (sign != sext) {
1482 qemu_log_mask(LOG_GUEST_ERROR,
1483 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1484 }
1485 tsz = sextract32(tcr, 0, 4) + 8;
1486 select = 0;
1487 hpd = false;
1488 epd = false;
1489 } else if (el == 2) {
1490 /* HTCR */
1491 tsz = extract32(tcr, 0, 3);
1492 select = 0;
1493 hpd = extract64(tcr, 24, 1);
1494 epd = false;
1495 } else {
1496 int t0sz = extract32(tcr, 0, 3);
1497 int t1sz = extract32(tcr, 16, 3);
1498
1499 if (t1sz == 0) {
1500 select = va > (0xffffffffu >> t0sz);
1501 } else {
1502 /* Note that we will detect errors later. */
1503 select = va >= ~(0xffffffffu >> t1sz);
1504 }
1505 if (!select) {
1506 tsz = t0sz;
1507 epd = extract32(tcr, 7, 1);
1508 hpd = extract64(tcr, 41, 1);
1509 } else {
1510 tsz = t1sz;
1511 epd = extract32(tcr, 23, 1);
1512 hpd = extract64(tcr, 42, 1);
1513 }
1514 /* For aarch32, hpd0 is not enabled without t2e as well. */
1515 hpd &= extract32(tcr, 6, 1);
1516 }
1517
1518 return (ARMVAParameters) {
1519 .tsz = tsz,
1520 .select = select,
1521 .epd = epd,
1522 .hpd = hpd,
1523 };
1524 }
1525
1526 /*
1527 * check_s2_mmu_setup
1528 * @cpu: ARMCPU
1529 * @is_aa64: True if the translation regime is in AArch64 state
1530 * @tcr: VTCR_EL2 or VSTCR_EL2
1531 * @ds: Effective value of TCR.DS.
1532 * @iasize: Bitsize of IPAs
1533 * @stride: Page-table stride (See the ARM ARM)
1534 *
1535 * Decode the starting level of the S2 lookup, returning INT_MIN if
1536 * the configuration is invalid.
1537 */
check_s2_mmu_setup(ARMCPU * cpu,bool is_aa64,uint64_t tcr,bool ds,int iasize,int stride)1538 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1539 bool ds, int iasize, int stride)
1540 {
1541 int sl0, sl2, startlevel, granulebits, levels;
1542 int s1_min_iasize, s1_max_iasize;
1543
1544 sl0 = extract32(tcr, 6, 2);
1545 if (is_aa64) {
1546 /*
1547 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1548 * so interleave AArch64.S2StartLevel.
1549 */
1550 switch (stride) {
1551 case 9: /* 4KB */
1552 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1553 sl2 = extract64(tcr, 33, 1);
1554 if (ds && sl2) {
1555 if (sl0 != 0) {
1556 goto fail;
1557 }
1558 startlevel = -1;
1559 } else {
1560 startlevel = 2 - sl0;
1561 switch (sl0) {
1562 case 2:
1563 if (arm_pamax(cpu) < 44) {
1564 goto fail;
1565 }
1566 break;
1567 case 3:
1568 if (!cpu_isar_feature(aa64_st, cpu)) {
1569 goto fail;
1570 }
1571 startlevel = 3;
1572 break;
1573 }
1574 }
1575 break;
1576 case 11: /* 16KB */
1577 switch (sl0) {
1578 case 2:
1579 if (arm_pamax(cpu) < 42) {
1580 goto fail;
1581 }
1582 break;
1583 case 3:
1584 if (!ds) {
1585 goto fail;
1586 }
1587 break;
1588 }
1589 startlevel = 3 - sl0;
1590 break;
1591 case 13: /* 64KB */
1592 switch (sl0) {
1593 case 2:
1594 if (arm_pamax(cpu) < 44) {
1595 goto fail;
1596 }
1597 break;
1598 case 3:
1599 goto fail;
1600 }
1601 startlevel = 3 - sl0;
1602 break;
1603 default:
1604 g_assert_not_reached();
1605 }
1606 } else {
1607 /*
1608 * Things are simpler for AArch32 EL2, with only 4k pages.
1609 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1610 * begins with walkparms.sl0 in {'1x'}.
1611 */
1612 assert(stride == 9);
1613 if (sl0 >= 2) {
1614 goto fail;
1615 }
1616 startlevel = 2 - sl0;
1617 }
1618
1619 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1620 levels = 3 - startlevel;
1621 granulebits = stride + 3;
1622
1623 s1_min_iasize = levels * stride + granulebits + 1;
1624 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1625
1626 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1627 return startlevel;
1628 }
1629
1630 fail:
1631 return INT_MIN;
1632 }
1633
lpae_block_desc_valid(ARMCPU * cpu,bool ds,ARMGranuleSize gran,int level)1634 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1635 ARMGranuleSize gran, int level)
1636 {
1637 /*
1638 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1639 * are not valid at all levels, depending on the page size.
1640 */
1641 switch (gran) {
1642 case Gran4K:
1643 return (level == 0 && ds) || level == 1 || level == 2;
1644 case Gran16K:
1645 return (level == 1 && ds) || level == 2;
1646 case Gran64K:
1647 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1648 default:
1649 g_assert_not_reached();
1650 }
1651 }
1652
nv_nv1_enabled(CPUARMState * env,S1Translate * ptw)1653 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1654 {
1655 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1656 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1657 }
1658
1659 /**
1660 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1661 *
1662 * Returns false if the translation was successful. Otherwise, phys_ptr,
1663 * attrs, prot and page_size may not be filled in, and the populated fsr
1664 * value provides information on why the translation aborted, in the format
1665 * of a long-format DFSR/IFSR fault register, with the following caveat:
1666 * the WnR bit is never set (the caller must do this).
1667 *
1668 * @env: CPUARMState
1669 * @ptw: Current and next stage parameters for the walk.
1670 * @address: virtual address to get physical address for
1671 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1672 * @result: set on translation success,
1673 * @fi: set to fault info if the translation fails
1674 */
get_phys_addr_lpae(CPUARMState * env,S1Translate * ptw,uint64_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1675 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1676 uint64_t address,
1677 MMUAccessType access_type,
1678 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1679 {
1680 ARMCPU *cpu = env_archcpu(env);
1681 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1682 int32_t level;
1683 ARMVAParameters param;
1684 uint64_t ttbr;
1685 hwaddr descaddr, indexmask, indexmask_grainsize;
1686 uint32_t tableattrs;
1687 target_ulong page_size;
1688 uint64_t attrs;
1689 int32_t stride;
1690 int addrsize, inputsize, outputsize;
1691 uint64_t tcr = regime_tcr(env, mmu_idx);
1692 int ap, xn, pxn;
1693 uint32_t el = regime_el(env, mmu_idx);
1694 uint64_t descaddrmask;
1695 bool aarch64 = arm_el_is_aa64(env, el);
1696 uint64_t descriptor, new_descriptor;
1697 ARMSecuritySpace out_space;
1698 bool device;
1699
1700 /* TODO: This code does not support shareability levels. */
1701 if (aarch64) {
1702 int ps;
1703
1704 param = aa64_va_parameters(env, address, mmu_idx,
1705 access_type != MMU_INST_FETCH,
1706 !arm_el_is_aa64(env, 1));
1707 level = 0;
1708
1709 /*
1710 * If TxSZ is programmed to a value larger than the maximum,
1711 * or smaller than the effective minimum, it is IMPLEMENTATION
1712 * DEFINED whether we behave as if the field were programmed
1713 * within bounds, or if a level 0 Translation fault is generated.
1714 *
1715 * With FEAT_LVA, fault on less than minimum becomes required,
1716 * so our choice is to always raise the fault.
1717 */
1718 if (param.tsz_oob) {
1719 goto do_translation_fault;
1720 }
1721
1722 addrsize = 64 - 8 * param.tbi;
1723 inputsize = 64 - param.tsz;
1724
1725 /*
1726 * Bound PS by PARANGE to find the effective output address size.
1727 * ID_AA64MMFR0 is a read-only register so values outside of the
1728 * supported mappings can be considered an implementation error.
1729 */
1730 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1731 ps = MIN(ps, param.ps);
1732 assert(ps < ARRAY_SIZE(pamax_map));
1733 outputsize = pamax_map[ps];
1734
1735 /*
1736 * With LPA2, the effective output address (OA) size is at most 48 bits
1737 * unless TCR.DS == 1
1738 */
1739 if (!param.ds && param.gran != Gran64K) {
1740 outputsize = MIN(outputsize, 48);
1741 }
1742 } else {
1743 param = aa32_va_parameters(env, address, mmu_idx);
1744 level = 1;
1745 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1746 inputsize = addrsize - param.tsz;
1747 outputsize = 40;
1748 }
1749
1750 /*
1751 * We determined the region when collecting the parameters, but we
1752 * have not yet validated that the address is valid for the region.
1753 * Extract the top bits and verify that they all match select.
1754 *
1755 * For aa32, if inputsize == addrsize, then we have selected the
1756 * region by exclusion in aa32_va_parameters and there is no more
1757 * validation to do here.
1758 */
1759 if (inputsize < addrsize) {
1760 target_ulong top_bits = sextract64(address, inputsize,
1761 addrsize - inputsize);
1762 if (-top_bits != param.select) {
1763 /* The gap between the two regions is a Translation fault */
1764 goto do_translation_fault;
1765 }
1766 }
1767
1768 stride = arm_granule_bits(param.gran) - 3;
1769
1770 /*
1771 * Note that QEMU ignores shareability and cacheability attributes,
1772 * so we don't need to do anything with the SH, ORGN, IRGN fields
1773 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1774 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1775 * implement any ASID-like capability so we can ignore it (instead
1776 * we will always flush the TLB any time the ASID is changed).
1777 */
1778 ttbr = regime_ttbr(env, mmu_idx, param.select);
1779
1780 /*
1781 * Here we should have set up all the parameters for the translation:
1782 * inputsize, ttbr, epd, stride, tbi
1783 */
1784
1785 if (param.epd) {
1786 /*
1787 * Translation table walk disabled => Translation fault on TLB miss
1788 * Note: This is always 0 on 64-bit EL2 and EL3.
1789 */
1790 goto do_translation_fault;
1791 }
1792
1793 if (!regime_is_stage2(mmu_idx)) {
1794 /*
1795 * The starting level depends on the virtual address size (which can
1796 * be up to 48 bits) and the translation granule size. It indicates
1797 * the number of strides (stride bits at a time) needed to
1798 * consume the bits of the input address. In the pseudocode this is:
1799 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1800 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1801 * our 'stride + 3' and 'stride' is our 'stride'.
1802 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1803 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1804 * = 4 - (inputsize - 4) / stride;
1805 */
1806 level = 4 - (inputsize - 4) / stride;
1807 } else {
1808 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1809 inputsize, stride);
1810 if (startlevel == INT_MIN) {
1811 level = 0;
1812 goto do_translation_fault;
1813 }
1814 level = startlevel;
1815 }
1816
1817 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1818 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1819
1820 /* Now we can extract the actual base address from the TTBR */
1821 descaddr = extract64(ttbr, 0, 48);
1822
1823 /*
1824 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1825 *
1826 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1827 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1828 * but we've just cleared the bits above 47, so simplify the test.
1829 */
1830 if (outputsize > 48) {
1831 descaddr |= extract64(ttbr, 2, 4) << 48;
1832 } else if (descaddr >> outputsize) {
1833 level = 0;
1834 fi->type = ARMFault_AddressSize;
1835 goto do_fault;
1836 }
1837
1838 /*
1839 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1840 * and also to mask out CnP (bit 0) which could validly be non-zero.
1841 */
1842 descaddr &= ~indexmask;
1843
1844 /*
1845 * For AArch32, the address field in the descriptor goes up to bit 39
1846 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1847 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1848 * bits as part of the address, which will be checked via outputsize.
1849 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1850 * the highest bits of a 52-bit output are placed elsewhere.
1851 */
1852 if (param.ds) {
1853 descaddrmask = MAKE_64BIT_MASK(0, 50);
1854 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1855 descaddrmask = MAKE_64BIT_MASK(0, 48);
1856 } else {
1857 descaddrmask = MAKE_64BIT_MASK(0, 40);
1858 }
1859 descaddrmask &= ~indexmask_grainsize;
1860 tableattrs = 0;
1861
1862 next_level:
1863 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1864 descaddr &= ~7ULL;
1865
1866 /*
1867 * Process the NSTable bit from the previous level. This changes
1868 * the table address space and the output space from Secure to
1869 * NonSecure. With RME, the EL3 translation regime does not change
1870 * from Root to NonSecure.
1871 */
1872 if (ptw->in_space == ARMSS_Secure
1873 && !regime_is_stage2(mmu_idx)
1874 && extract32(tableattrs, 4, 1)) {
1875 /*
1876 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1877 * Assert the relative order of the secure/non-secure indexes.
1878 */
1879 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1880 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1881 ptw->in_ptw_idx += 1;
1882 ptw->in_space = ARMSS_NonSecure;
1883 }
1884
1885 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1886 goto do_fault;
1887 }
1888 descriptor = arm_ldq_ptw(env, ptw, fi);
1889 if (fi->type != ARMFault_None) {
1890 goto do_fault;
1891 }
1892 new_descriptor = descriptor;
1893
1894 restart_atomic_update:
1895 if (!(descriptor & 1) ||
1896 (!(descriptor & 2) &&
1897 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1898 /* Invalid, or a block descriptor at an invalid level */
1899 goto do_translation_fault;
1900 }
1901
1902 descaddr = descriptor & descaddrmask;
1903
1904 /*
1905 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1906 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1907 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1908 * raise AddressSizeFault.
1909 */
1910 if (outputsize > 48) {
1911 if (param.ds) {
1912 descaddr |= extract64(descriptor, 8, 2) << 50;
1913 } else {
1914 descaddr |= extract64(descriptor, 12, 4) << 48;
1915 }
1916 } else if (descaddr >> outputsize) {
1917 fi->type = ARMFault_AddressSize;
1918 goto do_fault;
1919 }
1920
1921 if ((descriptor & 2) && (level < 3)) {
1922 /*
1923 * Table entry. The top five bits are attributes which may
1924 * propagate down through lower levels of the table (and
1925 * which are all arranged so that 0 means "no effect", so
1926 * we can gather them up by ORing in the bits at each level).
1927 */
1928 tableattrs |= extract64(descriptor, 59, 5);
1929 level++;
1930 indexmask = indexmask_grainsize;
1931 goto next_level;
1932 }
1933
1934 /*
1935 * Block entry at level 1 or 2, or page entry at level 3.
1936 * These are basically the same thing, although the number
1937 * of bits we pull in from the vaddr varies. Note that although
1938 * descaddrmask masks enough of the low bits of the descriptor
1939 * to give a correct page or table address, the address field
1940 * in a block descriptor is smaller; so we need to explicitly
1941 * clear the lower bits here before ORing in the low vaddr bits.
1942 *
1943 * Afterward, descaddr is the final physical address.
1944 */
1945 page_size = (1ULL << ((stride * (4 - level)) + 3));
1946 descaddr &= ~(hwaddr)(page_size - 1);
1947 descaddr |= (address & (page_size - 1));
1948
1949 if (likely(!ptw->in_debug)) {
1950 /*
1951 * Access flag.
1952 * If HA is enabled, prepare to update the descriptor below.
1953 * Otherwise, pass the access fault on to software.
1954 */
1955 if (!(descriptor & (1 << 10))) {
1956 if (param.ha) {
1957 new_descriptor |= 1 << 10; /* AF */
1958 } else {
1959 fi->type = ARMFault_AccessFlag;
1960 goto do_fault;
1961 }
1962 }
1963
1964 /*
1965 * Dirty Bit.
1966 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1967 * bit for writeback. The actual write protection test may still be
1968 * overridden by tableattrs, to be merged below.
1969 */
1970 if (param.hd
1971 && extract64(descriptor, 51, 1) /* DBM */
1972 && access_type == MMU_DATA_STORE) {
1973 if (regime_is_stage2(mmu_idx)) {
1974 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1975 } else {
1976 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1977 }
1978 }
1979 }
1980
1981 /*
1982 * Extract attributes from the (modified) descriptor, and apply
1983 * table descriptors. Stage 2 table descriptors do not include
1984 * any attribute fields. HPD disables all the table attributes
1985 * except NSTable (which we have already handled).
1986 */
1987 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1988 if (!regime_is_stage2(mmu_idx)) {
1989 if (!param.hpd) {
1990 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1991 /*
1992 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1993 * means "force PL1 access only", which means forcing AP[1] to 0.
1994 */
1995 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1996 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
1997 }
1998 }
1999
2000 ap = extract32(attrs, 6, 2);
2001 out_space = ptw->in_space;
2002 if (regime_is_stage2(mmu_idx)) {
2003 /*
2004 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
2005 * The bit remains ignored for other security states.
2006 * R_YMCSL: Executing an insn fetched from non-Realm causes
2007 * a stage2 permission fault.
2008 */
2009 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
2010 out_space = ARMSS_NonSecure;
2011 result->f.prot = get_S2prot_noexecute(ap);
2012 } else {
2013 xn = extract64(attrs, 53, 2);
2014 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2015 }
2016 } else {
2017 int nse, ns = extract32(attrs, 5, 1);
2018 switch (out_space) {
2019 case ARMSS_Root:
2020 /*
2021 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2022 * R_XTYPW: NSE and NS together select the output pa space.
2023 */
2024 nse = extract32(attrs, 11, 1);
2025 out_space = (nse << 1) | ns;
2026 if (out_space == ARMSS_Secure &&
2027 !cpu_isar_feature(aa64_sel2, cpu)) {
2028 out_space = ARMSS_NonSecure;
2029 }
2030 break;
2031 case ARMSS_Secure:
2032 if (ns) {
2033 out_space = ARMSS_NonSecure;
2034 }
2035 break;
2036 case ARMSS_Realm:
2037 switch (mmu_idx) {
2038 case ARMMMUIdx_Stage1_E0:
2039 case ARMMMUIdx_Stage1_E1:
2040 case ARMMMUIdx_Stage1_E1_PAN:
2041 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2042 break;
2043 case ARMMMUIdx_E2:
2044 case ARMMMUIdx_E20_0:
2045 case ARMMMUIdx_E20_2:
2046 case ARMMMUIdx_E20_2_PAN:
2047 /*
2048 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2049 * NS changes the output to non-secure space.
2050 */
2051 if (ns) {
2052 out_space = ARMSS_NonSecure;
2053 }
2054 break;
2055 default:
2056 g_assert_not_reached();
2057 }
2058 break;
2059 case ARMSS_NonSecure:
2060 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2061 break;
2062 default:
2063 g_assert_not_reached();
2064 }
2065 xn = extract64(attrs, 54, 1);
2066 pxn = extract64(attrs, 53, 1);
2067
2068 if (el == 1 && nv_nv1_enabled(env, ptw)) {
2069 /*
2070 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2071 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2072 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2073 * (which we have already folded into bits 53 and 54 of attrs).
2074 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2075 * Similarly, APTable[0] from the table descriptor is treated as 0;
2076 * we already folded this into AP[1] and squashing that to 0 does
2077 * the right thing.
2078 */
2079 pxn = xn;
2080 xn = 0;
2081 ap &= ~1;
2082 }
2083 /*
2084 * Note that we modified ptw->in_space earlier for NSTable, but
2085 * result->f.attrs retains a copy of the original security space.
2086 */
2087 result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
2088 result->f.attrs.space, out_space);
2089 }
2090
2091 if (!(result->f.prot & (1 << access_type))) {
2092 fi->type = ARMFault_Permission;
2093 goto do_fault;
2094 }
2095
2096 /* If FEAT_HAFDBS has made changes, update the PTE. */
2097 if (new_descriptor != descriptor) {
2098 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2099 if (fi->type != ARMFault_None) {
2100 goto do_fault;
2101 }
2102 /*
2103 * I_YZSVV says that if the in-memory descriptor has changed,
2104 * then we must use the information in that new value
2105 * (which might include a different output address, different
2106 * attributes, or generate a fault).
2107 * Restart the handling of the descriptor value from scratch.
2108 */
2109 if (new_descriptor != descriptor) {
2110 descriptor = new_descriptor;
2111 goto restart_atomic_update;
2112 }
2113 }
2114
2115 result->f.attrs.space = out_space;
2116 result->f.attrs.secure = arm_space_is_secure(out_space);
2117
2118 if (regime_is_stage2(mmu_idx)) {
2119 result->cacheattrs.is_s2_format = true;
2120 result->cacheattrs.attrs = extract32(attrs, 2, 4);
2121 /*
2122 * Security state does not really affect HCR_EL2.FWB;
2123 * we only need to filter FWB for aa32 or other FEAT.
2124 */
2125 device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2126 result->cacheattrs.attrs);
2127 } else {
2128 /* Index into MAIR registers for cache attributes */
2129 uint8_t attrindx = extract32(attrs, 2, 3);
2130 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2131 assert(attrindx <= 7);
2132 result->cacheattrs.is_s2_format = false;
2133 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2134
2135 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2136 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2137 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2138 }
2139 device = S1_attrs_are_device(result->cacheattrs.attrs);
2140 }
2141
2142 /*
2143 * Enable alignment checks on Device memory.
2144 *
2145 * Per R_XCHFJ, this check is mis-ordered. The correct ordering
2146 * for alignment, permission, and stage 2 faults should be:
2147 * - Alignment fault caused by the memory type
2148 * - Permission fault
2149 * - A stage 2 fault on the memory access
2150 * but due to the way the TCG softmmu TLB operates, we will have
2151 * implicitly done the permission check and the stage2 lookup in
2152 * finding the TLB entry, so the alignment check cannot be done sooner.
2153 *
2154 * In v7, for a CPU without the Virtualization Extensions this
2155 * access is UNPREDICTABLE; we choose to make it take the alignment
2156 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2157 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2158 */
2159 if (device) {
2160 result->f.tlb_fill_flags |= TLB_CHECK_ALIGNED;
2161 }
2162
2163 /*
2164 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2165 * was re-purposed for output address bits. The SH attribute in
2166 * that case comes from TCR_ELx, which we extracted earlier.
2167 */
2168 if (param.ds) {
2169 result->cacheattrs.shareability = param.sh;
2170 } else {
2171 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2172 }
2173
2174 result->f.phys_addr = descaddr;
2175 result->f.lg_page_size = ctz64(page_size);
2176 return false;
2177
2178 do_translation_fault:
2179 fi->type = ARMFault_Translation;
2180 do_fault:
2181 if (fi->s1ptw) {
2182 /* Retain the existing stage 2 fi->level */
2183 assert(fi->stage2);
2184 } else {
2185 fi->level = level;
2186 fi->stage2 = regime_is_stage2(mmu_idx);
2187 }
2188 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2189 return true;
2190 }
2191
get_phys_addr_pmsav5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2192 static bool get_phys_addr_pmsav5(CPUARMState *env,
2193 S1Translate *ptw,
2194 uint32_t address,
2195 MMUAccessType access_type,
2196 GetPhysAddrResult *result,
2197 ARMMMUFaultInfo *fi)
2198 {
2199 int n;
2200 uint32_t mask;
2201 uint32_t base;
2202 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2203 bool is_user = regime_is_user(env, mmu_idx);
2204
2205 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2206 /* MPU disabled. */
2207 result->f.phys_addr = address;
2208 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2209 return false;
2210 }
2211
2212 result->f.phys_addr = address;
2213 for (n = 7; n >= 0; n--) {
2214 base = env->cp15.c6_region[n];
2215 if ((base & 1) == 0) {
2216 continue;
2217 }
2218 mask = 1 << ((base >> 1) & 0x1f);
2219 /* Keep this shift separate from the above to avoid an
2220 (undefined) << 32. */
2221 mask = (mask << 1) - 1;
2222 if (((base ^ address) & ~mask) == 0) {
2223 break;
2224 }
2225 }
2226 if (n < 0) {
2227 fi->type = ARMFault_Background;
2228 return true;
2229 }
2230
2231 if (access_type == MMU_INST_FETCH) {
2232 mask = env->cp15.pmsav5_insn_ap;
2233 } else {
2234 mask = env->cp15.pmsav5_data_ap;
2235 }
2236 mask = (mask >> (n * 4)) & 0xf;
2237 switch (mask) {
2238 case 0:
2239 fi->type = ARMFault_Permission;
2240 fi->level = 1;
2241 return true;
2242 case 1:
2243 if (is_user) {
2244 fi->type = ARMFault_Permission;
2245 fi->level = 1;
2246 return true;
2247 }
2248 result->f.prot = PAGE_READ | PAGE_WRITE;
2249 break;
2250 case 2:
2251 result->f.prot = PAGE_READ;
2252 if (!is_user) {
2253 result->f.prot |= PAGE_WRITE;
2254 }
2255 break;
2256 case 3:
2257 result->f.prot = PAGE_READ | PAGE_WRITE;
2258 break;
2259 case 5:
2260 if (is_user) {
2261 fi->type = ARMFault_Permission;
2262 fi->level = 1;
2263 return true;
2264 }
2265 result->f.prot = PAGE_READ;
2266 break;
2267 case 6:
2268 result->f.prot = PAGE_READ;
2269 break;
2270 default:
2271 /* Bad permission. */
2272 fi->type = ARMFault_Permission;
2273 fi->level = 1;
2274 return true;
2275 }
2276 result->f.prot |= PAGE_EXEC;
2277 return false;
2278 }
2279
get_phys_addr_pmsav7_default(CPUARMState * env,ARMMMUIdx mmu_idx,int32_t address,uint8_t * prot)2280 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2281 int32_t address, uint8_t *prot)
2282 {
2283 if (!arm_feature(env, ARM_FEATURE_M)) {
2284 *prot = PAGE_READ | PAGE_WRITE;
2285 switch (address) {
2286 case 0xF0000000 ... 0xFFFFFFFF:
2287 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2288 /* hivecs execing is ok */
2289 *prot |= PAGE_EXEC;
2290 }
2291 break;
2292 case 0x00000000 ... 0x7FFFFFFF:
2293 *prot |= PAGE_EXEC;
2294 break;
2295 }
2296 } else {
2297 /* Default system address map for M profile cores.
2298 * The architecture specifies which regions are execute-never;
2299 * at the MPU level no other checks are defined.
2300 */
2301 switch (address) {
2302 case 0x00000000 ... 0x1fffffff: /* ROM */
2303 case 0x20000000 ... 0x3fffffff: /* SRAM */
2304 case 0x60000000 ... 0x7fffffff: /* RAM */
2305 case 0x80000000 ... 0x9fffffff: /* RAM */
2306 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2307 break;
2308 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2309 case 0xa0000000 ... 0xbfffffff: /* Device */
2310 case 0xc0000000 ... 0xdfffffff: /* Device */
2311 case 0xe0000000 ... 0xffffffff: /* System */
2312 *prot = PAGE_READ | PAGE_WRITE;
2313 break;
2314 default:
2315 g_assert_not_reached();
2316 }
2317 }
2318 }
2319
m_is_ppb_region(CPUARMState * env,uint32_t address)2320 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2321 {
2322 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2323 return arm_feature(env, ARM_FEATURE_M) &&
2324 extract32(address, 20, 12) == 0xe00;
2325 }
2326
m_is_system_region(CPUARMState * env,uint32_t address)2327 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2328 {
2329 /*
2330 * True if address is in the M profile system region
2331 * 0xe0000000 - 0xffffffff
2332 */
2333 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2334 }
2335
pmsav7_use_background_region(ARMCPU * cpu,ARMMMUIdx mmu_idx,bool is_secure,bool is_user)2336 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2337 bool is_secure, bool is_user)
2338 {
2339 /*
2340 * Return true if we should use the default memory map as a
2341 * "background" region if there are no hits against any MPU regions.
2342 */
2343 CPUARMState *env = &cpu->env;
2344
2345 if (is_user) {
2346 return false;
2347 }
2348
2349 if (arm_feature(env, ARM_FEATURE_M)) {
2350 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2351 }
2352
2353 if (mmu_idx == ARMMMUIdx_Stage2) {
2354 return false;
2355 }
2356
2357 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2358 }
2359
get_phys_addr_pmsav7(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2360 static bool get_phys_addr_pmsav7(CPUARMState *env,
2361 S1Translate *ptw,
2362 uint32_t address,
2363 MMUAccessType access_type,
2364 GetPhysAddrResult *result,
2365 ARMMMUFaultInfo *fi)
2366 {
2367 ARMCPU *cpu = env_archcpu(env);
2368 int n;
2369 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2370 bool is_user = regime_is_user(env, mmu_idx);
2371 bool secure = arm_space_is_secure(ptw->in_space);
2372
2373 result->f.phys_addr = address;
2374 result->f.lg_page_size = TARGET_PAGE_BITS;
2375 result->f.prot = 0;
2376
2377 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2378 m_is_ppb_region(env, address)) {
2379 /*
2380 * MPU disabled or M profile PPB access: use default memory map.
2381 * The other case which uses the default memory map in the
2382 * v7M ARM ARM pseudocode is exception vector reads from the vector
2383 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2384 * which always does a direct read using address_space_ldl(), rather
2385 * than going via this function, so we don't need to check that here.
2386 */
2387 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2388 } else { /* MPU enabled */
2389 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2390 /* region search */
2391 uint32_t base = env->pmsav7.drbar[n];
2392 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2393 uint32_t rmask;
2394 bool srdis = false;
2395
2396 if (!(env->pmsav7.drsr[n] & 0x1)) {
2397 continue;
2398 }
2399
2400 if (!rsize) {
2401 qemu_log_mask(LOG_GUEST_ERROR,
2402 "DRSR[%d]: Rsize field cannot be 0\n", n);
2403 continue;
2404 }
2405 rsize++;
2406 rmask = (1ull << rsize) - 1;
2407
2408 if (base & rmask) {
2409 qemu_log_mask(LOG_GUEST_ERROR,
2410 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2411 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2412 n, base, rmask);
2413 continue;
2414 }
2415
2416 if (address < base || address > base + rmask) {
2417 /*
2418 * Address not in this region. We must check whether the
2419 * region covers addresses in the same page as our address.
2420 * In that case we must not report a size that covers the
2421 * whole page for a subsequent hit against a different MPU
2422 * region or the background region, because it would result in
2423 * incorrect TLB hits for subsequent accesses to addresses that
2424 * are in this MPU region.
2425 */
2426 if (ranges_overlap(base, rmask,
2427 address & TARGET_PAGE_MASK,
2428 TARGET_PAGE_SIZE)) {
2429 result->f.lg_page_size = 0;
2430 }
2431 continue;
2432 }
2433
2434 /* Region matched */
2435
2436 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2437 int i, snd;
2438 uint32_t srdis_mask;
2439
2440 rsize -= 3; /* sub region size (power of 2) */
2441 snd = ((address - base) >> rsize) & 0x7;
2442 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2443
2444 srdis_mask = srdis ? 0x3 : 0x0;
2445 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2446 /*
2447 * This will check in groups of 2, 4 and then 8, whether
2448 * the subregion bits are consistent. rsize is incremented
2449 * back up to give the region size, considering consistent
2450 * adjacent subregions as one region. Stop testing if rsize
2451 * is already big enough for an entire QEMU page.
2452 */
2453 int snd_rounded = snd & ~(i - 1);
2454 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2455 snd_rounded + 8, i);
2456 if (srdis_mask ^ srdis_multi) {
2457 break;
2458 }
2459 srdis_mask = (srdis_mask << i) | srdis_mask;
2460 rsize++;
2461 }
2462 }
2463 if (srdis) {
2464 continue;
2465 }
2466 if (rsize < TARGET_PAGE_BITS) {
2467 result->f.lg_page_size = rsize;
2468 }
2469 break;
2470 }
2471
2472 if (n == -1) { /* no hits */
2473 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2474 /* background fault */
2475 fi->type = ARMFault_Background;
2476 return true;
2477 }
2478 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2479 &result->f.prot);
2480 } else { /* a MPU hit! */
2481 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2482 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2483
2484 if (m_is_system_region(env, address)) {
2485 /* System space is always execute never */
2486 xn = 1;
2487 }
2488
2489 if (is_user) { /* User mode AP bit decoding */
2490 switch (ap) {
2491 case 0:
2492 case 1:
2493 case 5:
2494 break; /* no access */
2495 case 3:
2496 result->f.prot |= PAGE_WRITE;
2497 /* fall through */
2498 case 2:
2499 case 6:
2500 result->f.prot |= PAGE_READ | PAGE_EXEC;
2501 break;
2502 case 7:
2503 /* for v7M, same as 6; for R profile a reserved value */
2504 if (arm_feature(env, ARM_FEATURE_M)) {
2505 result->f.prot |= PAGE_READ | PAGE_EXEC;
2506 break;
2507 }
2508 /* fall through */
2509 default:
2510 qemu_log_mask(LOG_GUEST_ERROR,
2511 "DRACR[%d]: Bad value for AP bits: 0x%"
2512 PRIx32 "\n", n, ap);
2513 }
2514 } else { /* Priv. mode AP bits decoding */
2515 switch (ap) {
2516 case 0:
2517 break; /* no access */
2518 case 1:
2519 case 2:
2520 case 3:
2521 result->f.prot |= PAGE_WRITE;
2522 /* fall through */
2523 case 5:
2524 case 6:
2525 result->f.prot |= PAGE_READ | PAGE_EXEC;
2526 break;
2527 case 7:
2528 /* for v7M, same as 6; for R profile a reserved value */
2529 if (arm_feature(env, ARM_FEATURE_M)) {
2530 result->f.prot |= PAGE_READ | PAGE_EXEC;
2531 break;
2532 }
2533 /* fall through */
2534 default:
2535 qemu_log_mask(LOG_GUEST_ERROR,
2536 "DRACR[%d]: Bad value for AP bits: 0x%"
2537 PRIx32 "\n", n, ap);
2538 }
2539 }
2540
2541 /* execute never */
2542 if (xn) {
2543 result->f.prot &= ~PAGE_EXEC;
2544 }
2545 }
2546 }
2547
2548 fi->type = ARMFault_Permission;
2549 fi->level = 1;
2550 return !(result->f.prot & (1 << access_type));
2551 }
2552
regime_rbar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2553 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2554 uint32_t secure)
2555 {
2556 if (regime_el(env, mmu_idx) == 2) {
2557 return env->pmsav8.hprbar;
2558 } else {
2559 return env->pmsav8.rbar[secure];
2560 }
2561 }
2562
regime_rlar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2563 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2564 uint32_t secure)
2565 {
2566 if (regime_el(env, mmu_idx) == 2) {
2567 return env->pmsav8.hprlar;
2568 } else {
2569 return env->pmsav8.rlar[secure];
2570 }
2571 }
2572
pmsav8_mpu_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool secure,GetPhysAddrResult * result,ARMMMUFaultInfo * fi,uint32_t * mregion)2573 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2574 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2575 bool secure, GetPhysAddrResult *result,
2576 ARMMMUFaultInfo *fi, uint32_t *mregion)
2577 {
2578 /*
2579 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2580 * that a full phys-to-virt translation does).
2581 * mregion is (if not NULL) set to the region number which matched,
2582 * or -1 if no region number is returned (MPU off, address did not
2583 * hit a region, address hit in multiple regions).
2584 * If the region hit doesn't cover the entire TARGET_PAGE the address
2585 * is within, then we set the result page_size to 1 to force the
2586 * memory system to use a subpage.
2587 */
2588 ARMCPU *cpu = env_archcpu(env);
2589 bool is_user = regime_is_user(env, mmu_idx);
2590 int n;
2591 int matchregion = -1;
2592 bool hit = false;
2593 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2594 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2595 int region_counter;
2596
2597 if (regime_el(env, mmu_idx) == 2) {
2598 region_counter = cpu->pmsav8r_hdregion;
2599 } else {
2600 region_counter = cpu->pmsav7_dregion;
2601 }
2602
2603 result->f.lg_page_size = TARGET_PAGE_BITS;
2604 result->f.phys_addr = address;
2605 result->f.prot = 0;
2606 if (mregion) {
2607 *mregion = -1;
2608 }
2609
2610 if (mmu_idx == ARMMMUIdx_Stage2) {
2611 fi->stage2 = true;
2612 }
2613
2614 /*
2615 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2616 * was an exception vector read from the vector table (which is always
2617 * done using the default system address map), because those accesses
2618 * are done in arm_v7m_load_vector(), which always does a direct
2619 * read using address_space_ldl(), rather than going via this function.
2620 */
2621 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2622 /* MPU disabled */
2623 hit = true;
2624 } else if (m_is_ppb_region(env, address)) {
2625 hit = true;
2626 } else {
2627 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2628 hit = true;
2629 }
2630
2631 uint32_t bitmask;
2632 if (arm_feature(env, ARM_FEATURE_M)) {
2633 bitmask = 0x1f;
2634 } else {
2635 bitmask = 0x3f;
2636 fi->level = 0;
2637 }
2638
2639 for (n = region_counter - 1; n >= 0; n--) {
2640 /* region search */
2641 /*
2642 * Note that the base address is bits [31:x] from the register
2643 * with bits [x-1:0] all zeroes, but the limit address is bits
2644 * [31:x] from the register with bits [x:0] all ones. Where x is
2645 * 5 for Cortex-M and 6 for Cortex-R
2646 */
2647 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2648 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2649
2650 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2651 /* Region disabled */
2652 continue;
2653 }
2654
2655 if (address < base || address > limit) {
2656 /*
2657 * Address not in this region. We must check whether the
2658 * region covers addresses in the same page as our address.
2659 * In that case we must not report a size that covers the
2660 * whole page for a subsequent hit against a different MPU
2661 * region or the background region, because it would result in
2662 * incorrect TLB hits for subsequent accesses to addresses that
2663 * are in this MPU region.
2664 */
2665 if (limit >= base &&
2666 ranges_overlap(base, limit - base + 1,
2667 addr_page_base,
2668 TARGET_PAGE_SIZE)) {
2669 result->f.lg_page_size = 0;
2670 }
2671 continue;
2672 }
2673
2674 if (base > addr_page_base || limit < addr_page_limit) {
2675 result->f.lg_page_size = 0;
2676 }
2677
2678 if (matchregion != -1) {
2679 /*
2680 * Multiple regions match -- always a failure (unlike
2681 * PMSAv7 where highest-numbered-region wins)
2682 */
2683 fi->type = ARMFault_Permission;
2684 if (arm_feature(env, ARM_FEATURE_M)) {
2685 fi->level = 1;
2686 }
2687 return true;
2688 }
2689
2690 matchregion = n;
2691 hit = true;
2692 }
2693 }
2694
2695 if (!hit) {
2696 if (arm_feature(env, ARM_FEATURE_M)) {
2697 fi->type = ARMFault_Background;
2698 } else {
2699 fi->type = ARMFault_Permission;
2700 }
2701 return true;
2702 }
2703
2704 if (matchregion == -1) {
2705 /* hit using the background region */
2706 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2707 } else {
2708 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2709 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2710 uint32_t ap = extract32(matched_rbar, 1, 2);
2711 uint32_t xn = extract32(matched_rbar, 0, 1);
2712 bool pxn = false;
2713
2714 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2715 pxn = extract32(matched_rlar, 4, 1);
2716 }
2717
2718 if (m_is_system_region(env, address)) {
2719 /* System space is always execute never */
2720 xn = 1;
2721 }
2722
2723 if (regime_el(env, mmu_idx) == 2) {
2724 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2725 mmu_idx != ARMMMUIdx_E2);
2726 } else {
2727 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2728 }
2729
2730 if (!arm_feature(env, ARM_FEATURE_M)) {
2731 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2732 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2733 uint8_t sh = extract32(matched_rlar, 3, 2);
2734
2735 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2736 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2737 xn = 0x1;
2738 }
2739
2740 if ((regime_el(env, mmu_idx) == 1) &&
2741 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2742 pxn = 0x1;
2743 }
2744
2745 result->cacheattrs.is_s2_format = false;
2746 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2747 result->cacheattrs.shareability = sh;
2748 }
2749
2750 if (result->f.prot && !xn && !(pxn && !is_user)) {
2751 result->f.prot |= PAGE_EXEC;
2752 }
2753
2754 if (mregion) {
2755 *mregion = matchregion;
2756 }
2757 }
2758
2759 fi->type = ARMFault_Permission;
2760 if (arm_feature(env, ARM_FEATURE_M)) {
2761 fi->level = 1;
2762 }
2763 return !(result->f.prot & (1 << access_type));
2764 }
2765
v8m_is_sau_exempt(CPUARMState * env,uint32_t address,MMUAccessType access_type)2766 static bool v8m_is_sau_exempt(CPUARMState *env,
2767 uint32_t address, MMUAccessType access_type)
2768 {
2769 /*
2770 * The architecture specifies that certain address ranges are
2771 * exempt from v8M SAU/IDAU checks.
2772 */
2773 return
2774 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2775 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2776 (address >= 0xe000e000 && address <= 0xe000efff) ||
2777 (address >= 0xe002e000 && address <= 0xe002efff) ||
2778 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2779 (address >= 0xe00ff000 && address <= 0xe00fffff);
2780 }
2781
v8m_security_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool is_secure,V8M_SAttributes * sattrs)2782 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2783 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2784 bool is_secure, V8M_SAttributes *sattrs)
2785 {
2786 /*
2787 * Look up the security attributes for this address. Compare the
2788 * pseudocode SecurityCheck() function.
2789 * We assume the caller has zero-initialized *sattrs.
2790 */
2791 ARMCPU *cpu = env_archcpu(env);
2792 int r;
2793 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2794 int idau_region = IREGION_NOTVALID;
2795 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2796 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2797
2798 if (cpu->idau) {
2799 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2800 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2801
2802 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2803 &idau_nsc);
2804 }
2805
2806 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2807 /* 0xf0000000..0xffffffff is always S for insn fetches */
2808 return;
2809 }
2810
2811 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2812 sattrs->ns = !is_secure;
2813 return;
2814 }
2815
2816 if (idau_region != IREGION_NOTVALID) {
2817 sattrs->irvalid = true;
2818 sattrs->iregion = idau_region;
2819 }
2820
2821 switch (env->sau.ctrl & 3) {
2822 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2823 break;
2824 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2825 sattrs->ns = true;
2826 break;
2827 default: /* SAU.ENABLE == 1 */
2828 for (r = 0; r < cpu->sau_sregion; r++) {
2829 if (env->sau.rlar[r] & 1) {
2830 uint32_t base = env->sau.rbar[r] & ~0x1f;
2831 uint32_t limit = env->sau.rlar[r] | 0x1f;
2832
2833 if (base <= address && limit >= address) {
2834 if (base > addr_page_base || limit < addr_page_limit) {
2835 sattrs->subpage = true;
2836 }
2837 if (sattrs->srvalid) {
2838 /*
2839 * If we hit in more than one region then we must report
2840 * as Secure, not NS-Callable, with no valid region
2841 * number info.
2842 */
2843 sattrs->ns = false;
2844 sattrs->nsc = false;
2845 sattrs->sregion = 0;
2846 sattrs->srvalid = false;
2847 break;
2848 } else {
2849 if (env->sau.rlar[r] & 2) {
2850 sattrs->nsc = true;
2851 } else {
2852 sattrs->ns = true;
2853 }
2854 sattrs->srvalid = true;
2855 sattrs->sregion = r;
2856 }
2857 } else {
2858 /*
2859 * Address not in this region. We must check whether the
2860 * region covers addresses in the same page as our address.
2861 * In that case we must not report a size that covers the
2862 * whole page for a subsequent hit against a different MPU
2863 * region or the background region, because it would result
2864 * in incorrect TLB hits for subsequent accesses to
2865 * addresses that are in this MPU region.
2866 */
2867 if (limit >= base &&
2868 ranges_overlap(base, limit - base + 1,
2869 addr_page_base,
2870 TARGET_PAGE_SIZE)) {
2871 sattrs->subpage = true;
2872 }
2873 }
2874 }
2875 }
2876 break;
2877 }
2878
2879 /*
2880 * The IDAU will override the SAU lookup results if it specifies
2881 * higher security than the SAU does.
2882 */
2883 if (!idau_ns) {
2884 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2885 sattrs->ns = false;
2886 sattrs->nsc = idau_nsc;
2887 }
2888 }
2889 }
2890
get_phys_addr_pmsav8(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2891 static bool get_phys_addr_pmsav8(CPUARMState *env,
2892 S1Translate *ptw,
2893 uint32_t address,
2894 MMUAccessType access_type,
2895 GetPhysAddrResult *result,
2896 ARMMMUFaultInfo *fi)
2897 {
2898 V8M_SAttributes sattrs = {};
2899 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2900 bool secure = arm_space_is_secure(ptw->in_space);
2901 bool ret;
2902
2903 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2904 v8m_security_lookup(env, address, access_type, mmu_idx,
2905 secure, &sattrs);
2906 if (access_type == MMU_INST_FETCH) {
2907 /*
2908 * Instruction fetches always use the MMU bank and the
2909 * transaction attribute determined by the fetch address,
2910 * regardless of CPU state. This is painful for QEMU
2911 * to handle, because it would mean we need to encode
2912 * into the mmu_idx not just the (user, negpri) information
2913 * for the current security state but also that for the
2914 * other security state, which would balloon the number
2915 * of mmu_idx values needed alarmingly.
2916 * Fortunately we can avoid this because it's not actually
2917 * possible to arbitrarily execute code from memory with
2918 * the wrong security attribute: it will always generate
2919 * an exception of some kind or another, apart from the
2920 * special case of an NS CPU executing an SG instruction
2921 * in S&NSC memory. So we always just fail the translation
2922 * here and sort things out in the exception handler
2923 * (including possibly emulating an SG instruction).
2924 */
2925 if (sattrs.ns != !secure) {
2926 if (sattrs.nsc) {
2927 fi->type = ARMFault_QEMU_NSCExec;
2928 } else {
2929 fi->type = ARMFault_QEMU_SFault;
2930 }
2931 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2932 result->f.phys_addr = address;
2933 result->f.prot = 0;
2934 return true;
2935 }
2936 } else {
2937 /*
2938 * For data accesses we always use the MMU bank indicated
2939 * by the current CPU state, but the security attributes
2940 * might downgrade a secure access to nonsecure.
2941 */
2942 if (sattrs.ns) {
2943 result->f.attrs.secure = false;
2944 result->f.attrs.space = ARMSS_NonSecure;
2945 } else if (!secure) {
2946 /*
2947 * NS access to S memory must fault.
2948 * Architecturally we should first check whether the
2949 * MPU information for this address indicates that we
2950 * are doing an unaligned access to Device memory, which
2951 * should generate a UsageFault instead. QEMU does not
2952 * currently check for that kind of unaligned access though.
2953 * If we added it we would need to do so as a special case
2954 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2955 */
2956 fi->type = ARMFault_QEMU_SFault;
2957 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2958 result->f.phys_addr = address;
2959 result->f.prot = 0;
2960 return true;
2961 }
2962 }
2963 }
2964
2965 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2966 result, fi, NULL);
2967 if (sattrs.subpage) {
2968 result->f.lg_page_size = 0;
2969 }
2970 return ret;
2971 }
2972
2973 /*
2974 * Translate from the 4-bit stage 2 representation of
2975 * memory attributes (without cache-allocation hints) to
2976 * the 8-bit representation of the stage 1 MAIR registers
2977 * (which includes allocation hints).
2978 *
2979 * ref: shared/translation/attrs/S2AttrDecode()
2980 * .../S2ConvertAttrsHints()
2981 */
convert_stage2_attrs(uint64_t hcr,uint8_t s2attrs)2982 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2983 {
2984 uint8_t hiattr = extract32(s2attrs, 2, 2);
2985 uint8_t loattr = extract32(s2attrs, 0, 2);
2986 uint8_t hihint = 0, lohint = 0;
2987
2988 if (hiattr != 0) { /* normal memory */
2989 if (hcr & HCR_CD) { /* cache disabled */
2990 hiattr = loattr = 1; /* non-cacheable */
2991 } else {
2992 if (hiattr != 1) { /* Write-through or write-back */
2993 hihint = 3; /* RW allocate */
2994 }
2995 if (loattr != 1) { /* Write-through or write-back */
2996 lohint = 3; /* RW allocate */
2997 }
2998 }
2999 }
3000
3001 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
3002 }
3003
3004 /*
3005 * Combine either inner or outer cacheability attributes for normal
3006 * memory, according to table D4-42 and pseudocode procedure
3007 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
3008 *
3009 * NB: only stage 1 includes allocation hints (RW bits), leading to
3010 * some asymmetry.
3011 */
combine_cacheattr_nibble(uint8_t s1,uint8_t s2)3012 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3013 {
3014 if (s1 == 4 || s2 == 4) {
3015 /* non-cacheable has precedence */
3016 return 4;
3017 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3018 /* stage 1 write-through takes precedence */
3019 return s1;
3020 } else if (extract32(s2, 2, 2) == 2) {
3021 /* stage 2 write-through takes precedence, but the allocation hint
3022 * is still taken from stage 1
3023 */
3024 return (2 << 2) | extract32(s1, 0, 2);
3025 } else { /* write-back */
3026 return s1;
3027 }
3028 }
3029
3030 /*
3031 * Combine the memory type and cacheability attributes of
3032 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3033 * combined attributes in MAIR_EL1 format.
3034 */
combined_attrs_nofwb(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3035 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3036 ARMCacheAttrs s1, ARMCacheAttrs s2)
3037 {
3038 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3039
3040 if (s2.is_s2_format) {
3041 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3042 } else {
3043 s2_mair_attrs = s2.attrs;
3044 }
3045
3046 s1lo = extract32(s1.attrs, 0, 4);
3047 s2lo = extract32(s2_mair_attrs, 0, 4);
3048 s1hi = extract32(s1.attrs, 4, 4);
3049 s2hi = extract32(s2_mair_attrs, 4, 4);
3050
3051 /* Combine memory type and cacheability attributes */
3052 if (s1hi == 0 || s2hi == 0) {
3053 /* Device has precedence over normal */
3054 if (s1lo == 0 || s2lo == 0) {
3055 /* nGnRnE has precedence over anything */
3056 ret_attrs = 0;
3057 } else if (s1lo == 4 || s2lo == 4) {
3058 /* non-Reordering has precedence over Reordering */
3059 ret_attrs = 4; /* nGnRE */
3060 } else if (s1lo == 8 || s2lo == 8) {
3061 /* non-Gathering has precedence over Gathering */
3062 ret_attrs = 8; /* nGRE */
3063 } else {
3064 ret_attrs = 0xc; /* GRE */
3065 }
3066 } else { /* Normal memory */
3067 /* Outer/inner cacheability combine independently */
3068 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3069 | combine_cacheattr_nibble(s1lo, s2lo);
3070 }
3071 return ret_attrs;
3072 }
3073
force_cacheattr_nibble_wb(uint8_t attr)3074 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3075 {
3076 /*
3077 * Given the 4 bits specifying the outer or inner cacheability
3078 * in MAIR format, return a value specifying Normal Write-Back,
3079 * with the allocation and transient hints taken from the input
3080 * if the input specified some kind of cacheable attribute.
3081 */
3082 if (attr == 0 || attr == 4) {
3083 /*
3084 * 0 == an UNPREDICTABLE encoding
3085 * 4 == Non-cacheable
3086 * Either way, force Write-Back RW allocate non-transient
3087 */
3088 return 0xf;
3089 }
3090 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3091 return attr | 4;
3092 }
3093
3094 /*
3095 * Combine the memory type and cacheability attributes of
3096 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3097 * combined attributes in MAIR_EL1 format.
3098 */
combined_attrs_fwb(ARMCacheAttrs s1,ARMCacheAttrs s2)3099 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3100 {
3101 assert(s2.is_s2_format && !s1.is_s2_format);
3102
3103 switch (s2.attrs) {
3104 case 7:
3105 /* Use stage 1 attributes */
3106 return s1.attrs;
3107 case 6:
3108 /*
3109 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3110 * then we take the allocation hints from it; otherwise it is
3111 * RW allocate, non-transient.
3112 */
3113 if ((s1.attrs & 0xf0) == 0) {
3114 /* S1 is Device */
3115 return 0xff;
3116 }
3117 /* Need to check the Inner and Outer nibbles separately */
3118 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3119 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3120 case 5:
3121 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3122 if ((s1.attrs & 0xf0) == 0) {
3123 return s1.attrs;
3124 }
3125 return 0x44;
3126 case 0 ... 3:
3127 /* Force Device, of subtype specified by S2 */
3128 return s2.attrs << 2;
3129 default:
3130 /*
3131 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3132 * arbitrarily force Device.
3133 */
3134 return 0;
3135 }
3136 }
3137
3138 /*
3139 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3140 * and CombineS1S2Desc()
3141 *
3142 * @env: CPUARMState
3143 * @s1: Attributes from stage 1 walk
3144 * @s2: Attributes from stage 2 walk
3145 */
combine_cacheattrs(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3146 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3147 ARMCacheAttrs s1, ARMCacheAttrs s2)
3148 {
3149 ARMCacheAttrs ret;
3150 bool tagged = false;
3151
3152 assert(!s1.is_s2_format);
3153 ret.is_s2_format = false;
3154
3155 if (s1.attrs == 0xf0) {
3156 tagged = true;
3157 s1.attrs = 0xff;
3158 }
3159
3160 /* Combine shareability attributes (table D4-43) */
3161 if (s1.shareability == 2 || s2.shareability == 2) {
3162 /* if either are outer-shareable, the result is outer-shareable */
3163 ret.shareability = 2;
3164 } else if (s1.shareability == 3 || s2.shareability == 3) {
3165 /* if either are inner-shareable, the result is inner-shareable */
3166 ret.shareability = 3;
3167 } else {
3168 /* both non-shareable */
3169 ret.shareability = 0;
3170 }
3171
3172 /* Combine memory type and cacheability attributes */
3173 if (hcr & HCR_FWB) {
3174 ret.attrs = combined_attrs_fwb(s1, s2);
3175 } else {
3176 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3177 }
3178
3179 /*
3180 * Any location for which the resultant memory type is any
3181 * type of Device memory is always treated as Outer Shareable.
3182 * Any location for which the resultant memory type is Normal
3183 * Inner Non-cacheable, Outer Non-cacheable is always treated
3184 * as Outer Shareable.
3185 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3186 */
3187 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3188 ret.shareability = 2;
3189 }
3190
3191 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3192 if (tagged && ret.attrs == 0xff) {
3193 ret.attrs = 0xf0;
3194 }
3195
3196 return ret;
3197 }
3198
3199 /*
3200 * MMU disabled. S1 addresses within aa64 translation regimes are
3201 * still checked for bounds -- see AArch64.S1DisabledOutput().
3202 */
get_phys_addr_disabled(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3203 static bool get_phys_addr_disabled(CPUARMState *env,
3204 S1Translate *ptw,
3205 vaddr address,
3206 MMUAccessType access_type,
3207 GetPhysAddrResult *result,
3208 ARMMMUFaultInfo *fi)
3209 {
3210 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3211 uint8_t memattr = 0x00; /* Device nGnRnE */
3212 uint8_t shareability = 0; /* non-shareable */
3213 int r_el;
3214
3215 switch (mmu_idx) {
3216 case ARMMMUIdx_Stage2:
3217 case ARMMMUIdx_Stage2_S:
3218 case ARMMMUIdx_Phys_S:
3219 case ARMMMUIdx_Phys_NS:
3220 case ARMMMUIdx_Phys_Root:
3221 case ARMMMUIdx_Phys_Realm:
3222 break;
3223
3224 default:
3225 r_el = regime_el(env, mmu_idx);
3226 if (arm_el_is_aa64(env, r_el)) {
3227 int pamax = arm_pamax(env_archcpu(env));
3228 uint64_t tcr = env->cp15.tcr_el[r_el];
3229 int addrtop, tbi;
3230
3231 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3232 if (access_type == MMU_INST_FETCH) {
3233 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3234 }
3235 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3236 addrtop = (tbi ? 55 : 63);
3237
3238 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3239 fi->type = ARMFault_AddressSize;
3240 fi->level = 0;
3241 fi->stage2 = false;
3242 return 1;
3243 }
3244
3245 /*
3246 * When TBI is disabled, we've just validated that all of the
3247 * bits above PAMax are zero, so logically we only need to
3248 * clear the top byte for TBI. But it's clearer to follow
3249 * the pseudocode set of addrdesc.paddress.
3250 */
3251 address = extract64(address, 0, 52);
3252 }
3253
3254 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3255 if (r_el == 1) {
3256 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3257 if (hcr & HCR_DC) {
3258 if (hcr & HCR_DCT) {
3259 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3260 } else {
3261 memattr = 0xff; /* Normal, WB, RWA */
3262 }
3263 }
3264 }
3265 if (memattr == 0) {
3266 if (access_type == MMU_INST_FETCH) {
3267 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3268 memattr = 0xee; /* Normal, WT, RA, NT */
3269 } else {
3270 memattr = 0x44; /* Normal, NC, No */
3271 }
3272 }
3273 shareability = 2; /* outer shareable */
3274 }
3275 result->cacheattrs.is_s2_format = false;
3276 break;
3277 }
3278
3279 result->f.phys_addr = address;
3280 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3281 result->f.lg_page_size = TARGET_PAGE_BITS;
3282 result->cacheattrs.shareability = shareability;
3283 result->cacheattrs.attrs = memattr;
3284 return false;
3285 }
3286
get_phys_addr_twostage(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3287 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3288 vaddr address,
3289 MMUAccessType access_type,
3290 GetPhysAddrResult *result,
3291 ARMMMUFaultInfo *fi)
3292 {
3293 hwaddr ipa;
3294 int s1_prot, s1_lgpgsz;
3295 ARMSecuritySpace in_space = ptw->in_space;
3296 bool ret, ipa_secure, s1_guarded;
3297 ARMCacheAttrs cacheattrs1;
3298 ARMSecuritySpace ipa_space;
3299 uint64_t hcr;
3300
3301 ret = get_phys_addr_nogpc(env, ptw, address, access_type, result, fi);
3302
3303 /* If S1 fails, return early. */
3304 if (ret) {
3305 return ret;
3306 }
3307
3308 ipa = result->f.phys_addr;
3309 ipa_secure = result->f.attrs.secure;
3310 ipa_space = result->f.attrs.space;
3311
3312 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3313 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3314 ptw->in_space = ipa_space;
3315 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3316
3317 /*
3318 * S1 is done, now do S2 translation.
3319 * Save the stage1 results so that we may merge prot and cacheattrs later.
3320 */
3321 s1_prot = result->f.prot;
3322 s1_lgpgsz = result->f.lg_page_size;
3323 s1_guarded = result->f.extra.arm.guarded;
3324 cacheattrs1 = result->cacheattrs;
3325 memset(result, 0, sizeof(*result));
3326
3327 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type, result, fi);
3328 fi->s2addr = ipa;
3329
3330 /* Combine the S1 and S2 perms. */
3331 result->f.prot &= s1_prot;
3332
3333 /* If S2 fails, return early. */
3334 if (ret) {
3335 return ret;
3336 }
3337
3338 /*
3339 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3340 * this means "don't put this in the TLB"; in this case, return a
3341 * result with lg_page_size == 0 to achieve that. Otherwise,
3342 * use the maximum of the S1 & S2 page size, so that invalidation
3343 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3344 * we know the combined result permissions etc only cover the minimum
3345 * of the S1 and S2 page size, because we know that the common TLB code
3346 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3347 * and passing a larger page size value only affects invalidations.)
3348 */
3349 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3350 s1_lgpgsz < TARGET_PAGE_BITS) {
3351 result->f.lg_page_size = 0;
3352 } else if (result->f.lg_page_size < s1_lgpgsz) {
3353 result->f.lg_page_size = s1_lgpgsz;
3354 }
3355
3356 /* Combine the S1 and S2 cache attributes. */
3357 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3358 if (hcr & HCR_DC) {
3359 /*
3360 * HCR.DC forces the first stage attributes to
3361 * Normal Non-Shareable,
3362 * Inner Write-Back Read-Allocate Write-Allocate,
3363 * Outer Write-Back Read-Allocate Write-Allocate.
3364 * Do not overwrite Tagged within attrs.
3365 */
3366 if (cacheattrs1.attrs != 0xf0) {
3367 cacheattrs1.attrs = 0xff;
3368 }
3369 cacheattrs1.shareability = 0;
3370 }
3371 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3372 result->cacheattrs);
3373
3374 /* No BTI GP information in stage 2, we just use the S1 value */
3375 result->f.extra.arm.guarded = s1_guarded;
3376
3377 /*
3378 * Check if IPA translates to secure or non-secure PA space.
3379 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3380 */
3381 if (in_space == ARMSS_Secure) {
3382 result->f.attrs.secure =
3383 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3384 && (ipa_secure
3385 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3386 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3387 }
3388
3389 return false;
3390 }
3391
get_phys_addr_nogpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3392 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3393 vaddr address,
3394 MMUAccessType access_type,
3395 GetPhysAddrResult *result,
3396 ARMMMUFaultInfo *fi)
3397 {
3398 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3399 ARMMMUIdx s1_mmu_idx;
3400
3401 /*
3402 * The page table entries may downgrade Secure to NonSecure, but
3403 * cannot upgrade a NonSecure translation regime's attributes
3404 * to Secure or Realm.
3405 */
3406 result->f.attrs.space = ptw->in_space;
3407 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3408
3409 switch (mmu_idx) {
3410 case ARMMMUIdx_Phys_S:
3411 case ARMMMUIdx_Phys_NS:
3412 case ARMMMUIdx_Phys_Root:
3413 case ARMMMUIdx_Phys_Realm:
3414 /* Checking Phys early avoids special casing later vs regime_el. */
3415 return get_phys_addr_disabled(env, ptw, address, access_type,
3416 result, fi);
3417
3418 case ARMMMUIdx_Stage1_E0:
3419 case ARMMMUIdx_Stage1_E1:
3420 case ARMMMUIdx_Stage1_E1_PAN:
3421 /*
3422 * First stage lookup uses second stage for ptw; only
3423 * Secure has both S and NS IPA and starts with Stage2_S.
3424 */
3425 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3426 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3427 break;
3428
3429 case ARMMMUIdx_Stage2:
3430 case ARMMMUIdx_Stage2_S:
3431 /*
3432 * Second stage lookup uses physical for ptw; whether this is S or
3433 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3434 * the Secure EL2&0 regime.
3435 */
3436 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3437 break;
3438
3439 case ARMMMUIdx_E10_0:
3440 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3441 goto do_twostage;
3442 case ARMMMUIdx_E10_1:
3443 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3444 goto do_twostage;
3445 case ARMMMUIdx_E10_1_PAN:
3446 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3447 do_twostage:
3448 /*
3449 * Call ourselves recursively to do the stage 1 and then stage 2
3450 * translations if mmu_idx is a two-stage regime, and EL2 present.
3451 * Otherwise, a stage1+stage2 translation is just stage 1.
3452 */
3453 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3454 if (arm_feature(env, ARM_FEATURE_EL2) &&
3455 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3456 return get_phys_addr_twostage(env, ptw, address, access_type,
3457 result, fi);
3458 }
3459 /* fall through */
3460
3461 default:
3462 /* Single stage uses physical for ptw. */
3463 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3464 break;
3465 }
3466
3467 result->f.attrs.user = regime_is_user(env, mmu_idx);
3468
3469 /*
3470 * Fast Context Switch Extension. This doesn't exist at all in v8.
3471 * In v7 and earlier it affects all stage 1 translations.
3472 */
3473 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3474 && !arm_feature(env, ARM_FEATURE_V8)) {
3475 if (regime_el(env, mmu_idx) == 3) {
3476 address += env->cp15.fcseidr_s;
3477 } else {
3478 address += env->cp15.fcseidr_ns;
3479 }
3480 }
3481
3482 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3483 bool ret;
3484 result->f.lg_page_size = TARGET_PAGE_BITS;
3485
3486 if (arm_feature(env, ARM_FEATURE_V8)) {
3487 /* PMSAv8 */
3488 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3489 result, fi);
3490 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3491 /* PMSAv7 */
3492 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3493 result, fi);
3494 } else {
3495 /* Pre-v7 MPU */
3496 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3497 result, fi);
3498 }
3499 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3500 " mmu_idx %u -> %s (prot %c%c%c)\n",
3501 access_type == MMU_DATA_LOAD ? "reading" :
3502 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3503 (uint32_t)address, mmu_idx,
3504 ret ? "Miss" : "Hit",
3505 result->f.prot & PAGE_READ ? 'r' : '-',
3506 result->f.prot & PAGE_WRITE ? 'w' : '-',
3507 result->f.prot & PAGE_EXEC ? 'x' : '-');
3508
3509 return ret;
3510 }
3511
3512 /* Definitely a real MMU, not an MPU */
3513
3514 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3515 return get_phys_addr_disabled(env, ptw, address, access_type,
3516 result, fi);
3517 }
3518
3519 if (regime_using_lpae_format(env, mmu_idx)) {
3520 return get_phys_addr_lpae(env, ptw, address, access_type, result, fi);
3521 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3522 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3523 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3524 } else {
3525 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3526 }
3527 }
3528
get_phys_addr_gpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3529 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3530 vaddr address,
3531 MMUAccessType access_type,
3532 GetPhysAddrResult *result,
3533 ARMMMUFaultInfo *fi)
3534 {
3535 if (get_phys_addr_nogpc(env, ptw, address, access_type, result, fi)) {
3536 return true;
3537 }
3538 if (!granule_protection_check(env, result->f.phys_addr,
3539 result->f.attrs.space, fi)) {
3540 fi->type = ARMFault_GPCFOnOutput;
3541 return true;
3542 }
3543 return false;
3544 }
3545
get_phys_addr_with_space_nogpc(CPUARMState * env,vaddr address,MMUAccessType access_type,ARMMMUIdx mmu_idx,ARMSecuritySpace space,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3546 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3547 MMUAccessType access_type,
3548 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3549 GetPhysAddrResult *result,
3550 ARMMMUFaultInfo *fi)
3551 {
3552 S1Translate ptw = {
3553 .in_mmu_idx = mmu_idx,
3554 .in_space = space,
3555 };
3556 return get_phys_addr_nogpc(env, &ptw, address, access_type, result, fi);
3557 }
3558
get_phys_addr(CPUARMState * env,vaddr address,MMUAccessType access_type,ARMMMUIdx mmu_idx,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3559 bool get_phys_addr(CPUARMState *env, vaddr address,
3560 MMUAccessType access_type, ARMMMUIdx mmu_idx,
3561 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3562 {
3563 S1Translate ptw = {
3564 .in_mmu_idx = mmu_idx,
3565 };
3566 ARMSecuritySpace ss;
3567
3568 switch (mmu_idx) {
3569 case ARMMMUIdx_E10_0:
3570 case ARMMMUIdx_E10_1:
3571 case ARMMMUIdx_E10_1_PAN:
3572 case ARMMMUIdx_E20_0:
3573 case ARMMMUIdx_E20_2:
3574 case ARMMMUIdx_E20_2_PAN:
3575 case ARMMMUIdx_Stage1_E0:
3576 case ARMMMUIdx_Stage1_E1:
3577 case ARMMMUIdx_Stage1_E1_PAN:
3578 case ARMMMUIdx_E2:
3579 if (arm_aa32_secure_pl1_0(env)) {
3580 ss = ARMSS_Secure;
3581 } else {
3582 ss = arm_security_space_below_el3(env);
3583 }
3584 break;
3585 case ARMMMUIdx_Stage2:
3586 /*
3587 * For Secure EL2, we need this index to be NonSecure;
3588 * otherwise this will already be NonSecure or Realm.
3589 */
3590 ss = arm_security_space_below_el3(env);
3591 if (ss == ARMSS_Secure) {
3592 ss = ARMSS_NonSecure;
3593 }
3594 break;
3595 case ARMMMUIdx_Phys_NS:
3596 case ARMMMUIdx_MPrivNegPri:
3597 case ARMMMUIdx_MUserNegPri:
3598 case ARMMMUIdx_MPriv:
3599 case ARMMMUIdx_MUser:
3600 ss = ARMSS_NonSecure;
3601 break;
3602 case ARMMMUIdx_Stage2_S:
3603 case ARMMMUIdx_Phys_S:
3604 case ARMMMUIdx_MSPrivNegPri:
3605 case ARMMMUIdx_MSUserNegPri:
3606 case ARMMMUIdx_MSPriv:
3607 case ARMMMUIdx_MSUser:
3608 ss = ARMSS_Secure;
3609 break;
3610 case ARMMMUIdx_E3:
3611 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3612 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3613 ss = ARMSS_Root;
3614 } else {
3615 ss = ARMSS_Secure;
3616 }
3617 break;
3618 case ARMMMUIdx_Phys_Root:
3619 ss = ARMSS_Root;
3620 break;
3621 case ARMMMUIdx_Phys_Realm:
3622 ss = ARMSS_Realm;
3623 break;
3624 default:
3625 g_assert_not_reached();
3626 }
3627
3628 ptw.in_space = ss;
3629 return get_phys_addr_gpc(env, &ptw, address, access_type, result, fi);
3630 }
3631
arm_cpu_get_phys_page_attrs_debug(CPUState * cs,vaddr addr,MemTxAttrs * attrs)3632 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3633 MemTxAttrs *attrs)
3634 {
3635 ARMCPU *cpu = ARM_CPU(cs);
3636 CPUARMState *env = &cpu->env;
3637 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3638 ARMSecuritySpace ss = arm_security_space(env);
3639 S1Translate ptw = {
3640 .in_mmu_idx = mmu_idx,
3641 .in_space = ss,
3642 .in_debug = true,
3643 };
3644 GetPhysAddrResult res = {};
3645 ARMMMUFaultInfo fi = {};
3646 bool ret;
3647
3648 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, &res, &fi);
3649 *attrs = res.f.attrs;
3650
3651 if (ret) {
3652 return -1;
3653 }
3654 return res.f.phys_addr;
3655 }
3656