1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70 };
71
remote_function(void * data)72 static void remote_function(void *data)
73 {
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(task_cpu(p), remote_function,
121 &data, 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132 }
133
134 /**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
cpu_function_call(int cpu,remote_function_f func,void * info)144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpu, remote_function, &data, 1);
154
155 return data.ret;
156 }
157
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160 {
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164 }
165
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168 {
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
is_kernel_event(struct perf_event * event)176 static bool is_kernel_event(struct perf_event *event)
177 {
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
perf_cpu_task_ctx(void)183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211 struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215 };
216
event_function(void * info)217 static int event_function(void *info)
218 {
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258 perf_ctx_unlock(cpuctx, task_ctx);
259
260 return ret;
261 }
262
event_function_call(struct perf_event * event,event_f func,void * data)263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct perf_cpu_context *cpuctx;
268 struct event_function_struct efs = {
269 .event = event,
270 .func = func,
271 .data = data,
272 };
273
274 if (!event->parent) {
275 /*
276 * If this is a !child event, we must hold ctx::mutex to
277 * stabilize the event->ctx relation. See
278 * perf_event_ctx_lock().
279 */
280 lockdep_assert_held(&ctx->mutex);
281 }
282
283 if (!task) {
284 cpu_function_call(event->cpu, event_function, &efs);
285 return;
286 }
287
288 if (task == TASK_TOMBSTONE)
289 return;
290
291 again:
292 if (!task_function_call(task, event_function, &efs))
293 return;
294
295 local_irq_disable();
296 cpuctx = this_cpu_ptr(&perf_cpu_context);
297 perf_ctx_lock(cpuctx, ctx);
298 /*
299 * Reload the task pointer, it might have been changed by
300 * a concurrent perf_event_context_sched_out().
301 */
302 task = ctx->task;
303 if (task == TASK_TOMBSTONE)
304 goto unlock;
305 if (ctx->is_active) {
306 perf_ctx_unlock(cpuctx, ctx);
307 local_irq_enable();
308 goto again;
309 }
310 func(event, NULL, ctx, data);
311 unlock:
312 perf_ctx_unlock(cpuctx, ctx);
313 local_irq_enable();
314 }
315
316 /*
317 * Similar to event_function_call() + event_function(), but hard assumes IRQs
318 * are already disabled and we're on the right CPU.
319 */
event_function_local(struct perf_event * event,event_f func,void * data)320 static void event_function_local(struct perf_event *event, event_f func, void *data)
321 {
322 struct perf_event_context *ctx = event->ctx;
323 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
324 struct task_struct *task = READ_ONCE(ctx->task);
325 struct perf_event_context *task_ctx = NULL;
326
327 lockdep_assert_irqs_disabled();
328
329 if (task) {
330 if (task == TASK_TOMBSTONE)
331 return;
332
333 task_ctx = ctx;
334 }
335
336 perf_ctx_lock(cpuctx, task_ctx);
337
338 task = ctx->task;
339 if (task == TASK_TOMBSTONE)
340 goto unlock;
341
342 if (task) {
343 /*
344 * We must be either inactive or active and the right task,
345 * otherwise we're screwed, since we cannot IPI to somewhere
346 * else.
347 */
348 if (ctx->is_active) {
349 if (WARN_ON_ONCE(task != current))
350 goto unlock;
351
352 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
353 goto unlock;
354 }
355 } else {
356 WARN_ON_ONCE(&cpuctx->ctx != ctx);
357 }
358
359 func(event, cpuctx, ctx, data);
360 unlock:
361 perf_ctx_unlock(cpuctx, task_ctx);
362 }
363
364 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
365 PERF_FLAG_FD_OUTPUT |\
366 PERF_FLAG_PID_CGROUP |\
367 PERF_FLAG_FD_CLOEXEC)
368
369 /*
370 * branch priv levels that need permission checks
371 */
372 #define PERF_SAMPLE_BRANCH_PERM_PLM \
373 (PERF_SAMPLE_BRANCH_KERNEL |\
374 PERF_SAMPLE_BRANCH_HV)
375
376 enum event_type_t {
377 EVENT_FLEXIBLE = 0x1,
378 EVENT_PINNED = 0x2,
379 EVENT_TIME = 0x4,
380 /* see ctx_resched() for details */
381 EVENT_CPU = 0x8,
382 EVENT_CGROUP = 0x10,
383 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
384 };
385
386 /*
387 * perf_sched_events : >0 events exist
388 */
389
390 static void perf_sched_delayed(struct work_struct *work);
391 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
392 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
393 static DEFINE_MUTEX(perf_sched_mutex);
394 static atomic_t perf_sched_count;
395
396 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
397
398 static atomic_t nr_mmap_events __read_mostly;
399 static atomic_t nr_comm_events __read_mostly;
400 static atomic_t nr_namespaces_events __read_mostly;
401 static atomic_t nr_task_events __read_mostly;
402 static atomic_t nr_freq_events __read_mostly;
403 static atomic_t nr_switch_events __read_mostly;
404 static atomic_t nr_ksymbol_events __read_mostly;
405 static atomic_t nr_bpf_events __read_mostly;
406 static atomic_t nr_cgroup_events __read_mostly;
407 static atomic_t nr_text_poke_events __read_mostly;
408 static atomic_t nr_build_id_events __read_mostly;
409
410 static LIST_HEAD(pmus);
411 static DEFINE_MUTEX(pmus_lock);
412 static struct srcu_struct pmus_srcu;
413 static cpumask_var_t perf_online_mask;
414 static struct kmem_cache *perf_event_cache;
415
416 /*
417 * perf event paranoia level:
418 * -1 - not paranoid at all
419 * 0 - disallow raw tracepoint access for unpriv
420 * 1 - disallow cpu events for unpriv
421 * 2 - disallow kernel profiling for unpriv
422 */
423 int sysctl_perf_event_paranoid __read_mostly = 2;
424
425 /* Minimum for 512 kiB + 1 user control page */
426 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
427
428 /*
429 * max perf event sample rate
430 */
431 #define DEFAULT_MAX_SAMPLE_RATE 100000
432 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
433 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
434
435 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
436
437 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
438 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
439
440 static int perf_sample_allowed_ns __read_mostly =
441 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
442
update_perf_cpu_limits(void)443 static void update_perf_cpu_limits(void)
444 {
445 u64 tmp = perf_sample_period_ns;
446
447 tmp *= sysctl_perf_cpu_time_max_percent;
448 tmp = div_u64(tmp, 100);
449 if (!tmp)
450 tmp = 1;
451
452 WRITE_ONCE(perf_sample_allowed_ns, tmp);
453 }
454
455 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
456
perf_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)457 int perf_proc_update_handler(struct ctl_table *table, int write,
458 void *buffer, size_t *lenp, loff_t *ppos)
459 {
460 int ret;
461 int perf_cpu = sysctl_perf_cpu_time_max_percent;
462 /*
463 * If throttling is disabled don't allow the write:
464 */
465 if (write && (perf_cpu == 100 || perf_cpu == 0))
466 return -EINVAL;
467
468 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
469 if (ret || !write)
470 return ret;
471
472 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
473 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
474 update_perf_cpu_limits();
475
476 return 0;
477 }
478
479 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
480
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)481 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
482 void *buffer, size_t *lenp, loff_t *ppos)
483 {
484 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
485
486 if (ret || !write)
487 return ret;
488
489 if (sysctl_perf_cpu_time_max_percent == 100 ||
490 sysctl_perf_cpu_time_max_percent == 0) {
491 printk(KERN_WARNING
492 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
493 WRITE_ONCE(perf_sample_allowed_ns, 0);
494 } else {
495 update_perf_cpu_limits();
496 }
497
498 return 0;
499 }
500
501 /*
502 * perf samples are done in some very critical code paths (NMIs).
503 * If they take too much CPU time, the system can lock up and not
504 * get any real work done. This will drop the sample rate when
505 * we detect that events are taking too long.
506 */
507 #define NR_ACCUMULATED_SAMPLES 128
508 static DEFINE_PER_CPU(u64, running_sample_length);
509
510 static u64 __report_avg;
511 static u64 __report_allowed;
512
perf_duration_warn(struct irq_work * w)513 static void perf_duration_warn(struct irq_work *w)
514 {
515 printk_ratelimited(KERN_INFO
516 "perf: interrupt took too long (%lld > %lld), lowering "
517 "kernel.perf_event_max_sample_rate to %d\n",
518 __report_avg, __report_allowed,
519 sysctl_perf_event_sample_rate);
520 }
521
522 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
523
perf_sample_event_took(u64 sample_len_ns)524 void perf_sample_event_took(u64 sample_len_ns)
525 {
526 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
527 u64 running_len;
528 u64 avg_len;
529 u32 max;
530
531 if (max_len == 0)
532 return;
533
534 /* Decay the counter by 1 average sample. */
535 running_len = __this_cpu_read(running_sample_length);
536 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
537 running_len += sample_len_ns;
538 __this_cpu_write(running_sample_length, running_len);
539
540 /*
541 * Note: this will be biased artifically low until we have
542 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
543 * from having to maintain a count.
544 */
545 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
546 if (avg_len <= max_len)
547 return;
548
549 __report_avg = avg_len;
550 __report_allowed = max_len;
551
552 /*
553 * Compute a throttle threshold 25% below the current duration.
554 */
555 avg_len += avg_len / 4;
556 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
557 if (avg_len < max)
558 max /= (u32)avg_len;
559 else
560 max = 1;
561
562 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
563 WRITE_ONCE(max_samples_per_tick, max);
564
565 sysctl_perf_event_sample_rate = max * HZ;
566 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
567
568 if (!irq_work_queue(&perf_duration_work)) {
569 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
570 "kernel.perf_event_max_sample_rate to %d\n",
571 __report_avg, __report_allowed,
572 sysctl_perf_event_sample_rate);
573 }
574 }
575
576 static atomic64_t perf_event_id;
577
578 static void update_context_time(struct perf_event_context *ctx);
579 static u64 perf_event_time(struct perf_event *event);
580
perf_event_print_debug(void)581 void __weak perf_event_print_debug(void) { }
582
perf_clock(void)583 static inline u64 perf_clock(void)
584 {
585 return local_clock();
586 }
587
perf_event_clock(struct perf_event * event)588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590 return event->clock();
591 }
592
593 /*
594 * State based event timekeeping...
595 *
596 * The basic idea is to use event->state to determine which (if any) time
597 * fields to increment with the current delta. This means we only need to
598 * update timestamps when we change state or when they are explicitly requested
599 * (read).
600 *
601 * Event groups make things a little more complicated, but not terribly so. The
602 * rules for a group are that if the group leader is OFF the entire group is
603 * OFF, irrespecive of what the group member states are. This results in
604 * __perf_effective_state().
605 *
606 * A futher ramification is that when a group leader flips between OFF and
607 * !OFF, we need to update all group member times.
608 *
609 *
610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611 * need to make sure the relevant context time is updated before we try and
612 * update our timestamps.
613 */
614
615 static __always_inline enum perf_event_state
__perf_effective_state(struct perf_event * event)616 __perf_effective_state(struct perf_event *event)
617 {
618 struct perf_event *leader = event->group_leader;
619
620 if (leader->state <= PERF_EVENT_STATE_OFF)
621 return leader->state;
622
623 return event->state;
624 }
625
626 static __always_inline void
__perf_update_times(struct perf_event * event,u64 now,u64 * enabled,u64 * running)627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629 enum perf_event_state state = __perf_effective_state(event);
630 u64 delta = now - event->tstamp;
631
632 *enabled = event->total_time_enabled;
633 if (state >= PERF_EVENT_STATE_INACTIVE)
634 *enabled += delta;
635
636 *running = event->total_time_running;
637 if (state >= PERF_EVENT_STATE_ACTIVE)
638 *running += delta;
639 }
640
perf_event_update_time(struct perf_event * event)641 static void perf_event_update_time(struct perf_event *event)
642 {
643 u64 now = perf_event_time(event);
644
645 __perf_update_times(event, now, &event->total_time_enabled,
646 &event->total_time_running);
647 event->tstamp = now;
648 }
649
perf_event_update_sibling_time(struct perf_event * leader)650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652 struct perf_event *sibling;
653
654 for_each_sibling_event(sibling, leader)
655 perf_event_update_time(sibling);
656 }
657
658 static void
perf_event_set_state(struct perf_event * event,enum perf_event_state state)659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661 if (event->state == state)
662 return;
663
664 perf_event_update_time(event);
665 /*
666 * If a group leader gets enabled/disabled all its siblings
667 * are affected too.
668 */
669 if ((event->state < 0) ^ (state < 0))
670 perf_event_update_sibling_time(event);
671
672 WRITE_ONCE(event->state, state);
673 }
674
675 /*
676 * UP store-release, load-acquire
677 */
678
679 #define __store_release(ptr, val) \
680 do { \
681 barrier(); \
682 WRITE_ONCE(*(ptr), (val)); \
683 } while (0)
684
685 #define __load_acquire(ptr) \
686 ({ \
687 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
688 barrier(); \
689 ___p; \
690 })
691
perf_ctx_disable(struct perf_event_context * ctx,bool cgroup)692 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
693 {
694 struct perf_event_pmu_context *pmu_ctx;
695
696 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
697 if (cgroup && !pmu_ctx->nr_cgroups)
698 continue;
699 perf_pmu_disable(pmu_ctx->pmu);
700 }
701 }
702
perf_ctx_enable(struct perf_event_context * ctx,bool cgroup)703 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
704 {
705 struct perf_event_pmu_context *pmu_ctx;
706
707 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
708 if (cgroup && !pmu_ctx->nr_cgroups)
709 continue;
710 perf_pmu_enable(pmu_ctx->pmu);
711 }
712 }
713
714 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
715 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
716
717 #ifdef CONFIG_CGROUP_PERF
718
719 static inline bool
perf_cgroup_match(struct perf_event * event)720 perf_cgroup_match(struct perf_event *event)
721 {
722 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
723
724 /* @event doesn't care about cgroup */
725 if (!event->cgrp)
726 return true;
727
728 /* wants specific cgroup scope but @cpuctx isn't associated with any */
729 if (!cpuctx->cgrp)
730 return false;
731
732 /*
733 * Cgroup scoping is recursive. An event enabled for a cgroup is
734 * also enabled for all its descendant cgroups. If @cpuctx's
735 * cgroup is a descendant of @event's (the test covers identity
736 * case), it's a match.
737 */
738 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
739 event->cgrp->css.cgroup);
740 }
741
perf_detach_cgroup(struct perf_event * event)742 static inline void perf_detach_cgroup(struct perf_event *event)
743 {
744 css_put(&event->cgrp->css);
745 event->cgrp = NULL;
746 }
747
is_cgroup_event(struct perf_event * event)748 static inline int is_cgroup_event(struct perf_event *event)
749 {
750 return event->cgrp != NULL;
751 }
752
perf_cgroup_event_time(struct perf_event * event)753 static inline u64 perf_cgroup_event_time(struct perf_event *event)
754 {
755 struct perf_cgroup_info *t;
756
757 t = per_cpu_ptr(event->cgrp->info, event->cpu);
758 return t->time;
759 }
760
perf_cgroup_event_time_now(struct perf_event * event,u64 now)761 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
762 {
763 struct perf_cgroup_info *t;
764
765 t = per_cpu_ptr(event->cgrp->info, event->cpu);
766 if (!__load_acquire(&t->active))
767 return t->time;
768 now += READ_ONCE(t->timeoffset);
769 return now;
770 }
771
__update_cgrp_time(struct perf_cgroup_info * info,u64 now,bool adv)772 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
773 {
774 if (adv)
775 info->time += now - info->timestamp;
776 info->timestamp = now;
777 /*
778 * see update_context_time()
779 */
780 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
781 }
782
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)783 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
784 {
785 struct perf_cgroup *cgrp = cpuctx->cgrp;
786 struct cgroup_subsys_state *css;
787 struct perf_cgroup_info *info;
788
789 if (cgrp) {
790 u64 now = perf_clock();
791
792 for (css = &cgrp->css; css; css = css->parent) {
793 cgrp = container_of(css, struct perf_cgroup, css);
794 info = this_cpu_ptr(cgrp->info);
795
796 __update_cgrp_time(info, now, true);
797 if (final)
798 __store_release(&info->active, 0);
799 }
800 }
801 }
802
update_cgrp_time_from_event(struct perf_event * event)803 static inline void update_cgrp_time_from_event(struct perf_event *event)
804 {
805 struct perf_cgroup_info *info;
806
807 /*
808 * ensure we access cgroup data only when needed and
809 * when we know the cgroup is pinned (css_get)
810 */
811 if (!is_cgroup_event(event))
812 return;
813
814 info = this_cpu_ptr(event->cgrp->info);
815 /*
816 * Do not update time when cgroup is not active
817 */
818 if (info->active)
819 __update_cgrp_time(info, perf_clock(), true);
820 }
821
822 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)823 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
824 {
825 struct perf_event_context *ctx = &cpuctx->ctx;
826 struct perf_cgroup *cgrp = cpuctx->cgrp;
827 struct perf_cgroup_info *info;
828 struct cgroup_subsys_state *css;
829
830 /*
831 * ctx->lock held by caller
832 * ensure we do not access cgroup data
833 * unless we have the cgroup pinned (css_get)
834 */
835 if (!cgrp)
836 return;
837
838 WARN_ON_ONCE(!ctx->nr_cgroups);
839
840 for (css = &cgrp->css; css; css = css->parent) {
841 cgrp = container_of(css, struct perf_cgroup, css);
842 info = this_cpu_ptr(cgrp->info);
843 __update_cgrp_time(info, ctx->timestamp, false);
844 __store_release(&info->active, 1);
845 }
846 }
847
848 /*
849 * reschedule events based on the cgroup constraint of task.
850 */
perf_cgroup_switch(struct task_struct * task)851 static void perf_cgroup_switch(struct task_struct *task)
852 {
853 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
854 struct perf_cgroup *cgrp;
855
856 /*
857 * cpuctx->cgrp is set when the first cgroup event enabled,
858 * and is cleared when the last cgroup event disabled.
859 */
860 if (READ_ONCE(cpuctx->cgrp) == NULL)
861 return;
862
863 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
864
865 cgrp = perf_cgroup_from_task(task, NULL);
866 if (READ_ONCE(cpuctx->cgrp) == cgrp)
867 return;
868
869 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
870 perf_ctx_disable(&cpuctx->ctx, true);
871
872 ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
873 /*
874 * must not be done before ctxswout due
875 * to update_cgrp_time_from_cpuctx() in
876 * ctx_sched_out()
877 */
878 cpuctx->cgrp = cgrp;
879 /*
880 * set cgrp before ctxsw in to allow
881 * perf_cgroup_set_timestamp() in ctx_sched_in()
882 * to not have to pass task around
883 */
884 ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
885
886 perf_ctx_enable(&cpuctx->ctx, true);
887 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
888 }
889
perf_cgroup_ensure_storage(struct perf_event * event,struct cgroup_subsys_state * css)890 static int perf_cgroup_ensure_storage(struct perf_event *event,
891 struct cgroup_subsys_state *css)
892 {
893 struct perf_cpu_context *cpuctx;
894 struct perf_event **storage;
895 int cpu, heap_size, ret = 0;
896
897 /*
898 * Allow storage to have sufficent space for an iterator for each
899 * possibly nested cgroup plus an iterator for events with no cgroup.
900 */
901 for (heap_size = 1; css; css = css->parent)
902 heap_size++;
903
904 for_each_possible_cpu(cpu) {
905 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
906 if (heap_size <= cpuctx->heap_size)
907 continue;
908
909 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
910 GFP_KERNEL, cpu_to_node(cpu));
911 if (!storage) {
912 ret = -ENOMEM;
913 break;
914 }
915
916 raw_spin_lock_irq(&cpuctx->ctx.lock);
917 if (cpuctx->heap_size < heap_size) {
918 swap(cpuctx->heap, storage);
919 if (storage == cpuctx->heap_default)
920 storage = NULL;
921 cpuctx->heap_size = heap_size;
922 }
923 raw_spin_unlock_irq(&cpuctx->ctx.lock);
924
925 kfree(storage);
926 }
927
928 return ret;
929 }
930
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)931 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
932 struct perf_event_attr *attr,
933 struct perf_event *group_leader)
934 {
935 struct perf_cgroup *cgrp;
936 struct cgroup_subsys_state *css;
937 struct fd f = fdget(fd);
938 int ret = 0;
939
940 if (!f.file)
941 return -EBADF;
942
943 css = css_tryget_online_from_dir(f.file->f_path.dentry,
944 &perf_event_cgrp_subsys);
945 if (IS_ERR(css)) {
946 ret = PTR_ERR(css);
947 goto out;
948 }
949
950 ret = perf_cgroup_ensure_storage(event, css);
951 if (ret)
952 goto out;
953
954 cgrp = container_of(css, struct perf_cgroup, css);
955 event->cgrp = cgrp;
956
957 /*
958 * all events in a group must monitor
959 * the same cgroup because a task belongs
960 * to only one perf cgroup at a time
961 */
962 if (group_leader && group_leader->cgrp != cgrp) {
963 perf_detach_cgroup(event);
964 ret = -EINVAL;
965 }
966 out:
967 fdput(f);
968 return ret;
969 }
970
971 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)972 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
973 {
974 struct perf_cpu_context *cpuctx;
975
976 if (!is_cgroup_event(event))
977 return;
978
979 event->pmu_ctx->nr_cgroups++;
980
981 /*
982 * Because cgroup events are always per-cpu events,
983 * @ctx == &cpuctx->ctx.
984 */
985 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
986
987 if (ctx->nr_cgroups++)
988 return;
989
990 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
991 }
992
993 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)994 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
995 {
996 struct perf_cpu_context *cpuctx;
997
998 if (!is_cgroup_event(event))
999 return;
1000
1001 event->pmu_ctx->nr_cgroups--;
1002
1003 /*
1004 * Because cgroup events are always per-cpu events,
1005 * @ctx == &cpuctx->ctx.
1006 */
1007 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1008
1009 if (--ctx->nr_cgroups)
1010 return;
1011
1012 cpuctx->cgrp = NULL;
1013 }
1014
1015 #else /* !CONFIG_CGROUP_PERF */
1016
1017 static inline bool
perf_cgroup_match(struct perf_event * event)1018 perf_cgroup_match(struct perf_event *event)
1019 {
1020 return true;
1021 }
1022
perf_detach_cgroup(struct perf_event * event)1023 static inline void perf_detach_cgroup(struct perf_event *event)
1024 {}
1025
is_cgroup_event(struct perf_event * event)1026 static inline int is_cgroup_event(struct perf_event *event)
1027 {
1028 return 0;
1029 }
1030
update_cgrp_time_from_event(struct perf_event * event)1031 static inline void update_cgrp_time_from_event(struct perf_event *event)
1032 {
1033 }
1034
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx,bool final)1035 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1036 bool final)
1037 {
1038 }
1039
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)1040 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1041 struct perf_event_attr *attr,
1042 struct perf_event *group_leader)
1043 {
1044 return -EINVAL;
1045 }
1046
1047 static inline void
perf_cgroup_set_timestamp(struct perf_cpu_context * cpuctx)1048 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1049 {
1050 }
1051
perf_cgroup_event_time(struct perf_event * event)1052 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1053 {
1054 return 0;
1055 }
1056
perf_cgroup_event_time_now(struct perf_event * event,u64 now)1057 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1058 {
1059 return 0;
1060 }
1061
1062 static inline void
perf_cgroup_event_enable(struct perf_event * event,struct perf_event_context * ctx)1063 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1064 {
1065 }
1066
1067 static inline void
perf_cgroup_event_disable(struct perf_event * event,struct perf_event_context * ctx)1068 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1069 {
1070 }
1071
perf_cgroup_switch(struct task_struct * task)1072 static void perf_cgroup_switch(struct task_struct *task)
1073 {
1074 }
1075 #endif
1076
1077 /*
1078 * set default to be dependent on timer tick just
1079 * like original code
1080 */
1081 #define PERF_CPU_HRTIMER (1000 / HZ)
1082 /*
1083 * function must be called with interrupts disabled
1084 */
perf_mux_hrtimer_handler(struct hrtimer * hr)1085 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1086 {
1087 struct perf_cpu_pmu_context *cpc;
1088 bool rotations;
1089
1090 lockdep_assert_irqs_disabled();
1091
1092 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1093 rotations = perf_rotate_context(cpc);
1094
1095 raw_spin_lock(&cpc->hrtimer_lock);
1096 if (rotations)
1097 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1098 else
1099 cpc->hrtimer_active = 0;
1100 raw_spin_unlock(&cpc->hrtimer_lock);
1101
1102 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1103 }
1104
__perf_mux_hrtimer_init(struct perf_cpu_pmu_context * cpc,int cpu)1105 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1106 {
1107 struct hrtimer *timer = &cpc->hrtimer;
1108 struct pmu *pmu = cpc->epc.pmu;
1109 u64 interval;
1110
1111 /*
1112 * check default is sane, if not set then force to
1113 * default interval (1/tick)
1114 */
1115 interval = pmu->hrtimer_interval_ms;
1116 if (interval < 1)
1117 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1118
1119 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1120
1121 raw_spin_lock_init(&cpc->hrtimer_lock);
1122 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1123 timer->function = perf_mux_hrtimer_handler;
1124 }
1125
perf_mux_hrtimer_restart(struct perf_cpu_pmu_context * cpc)1126 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1127 {
1128 struct hrtimer *timer = &cpc->hrtimer;
1129 unsigned long flags;
1130
1131 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1132 if (!cpc->hrtimer_active) {
1133 cpc->hrtimer_active = 1;
1134 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1136 }
1137 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1138
1139 return 0;
1140 }
1141
perf_mux_hrtimer_restart_ipi(void * arg)1142 static int perf_mux_hrtimer_restart_ipi(void *arg)
1143 {
1144 return perf_mux_hrtimer_restart(arg);
1145 }
1146
perf_pmu_disable(struct pmu * pmu)1147 void perf_pmu_disable(struct pmu *pmu)
1148 {
1149 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1150 if (!(*count)++)
1151 pmu->pmu_disable(pmu);
1152 }
1153
perf_pmu_enable(struct pmu * pmu)1154 void perf_pmu_enable(struct pmu *pmu)
1155 {
1156 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1157 if (!--(*count))
1158 pmu->pmu_enable(pmu);
1159 }
1160
perf_assert_pmu_disabled(struct pmu * pmu)1161 static void perf_assert_pmu_disabled(struct pmu *pmu)
1162 {
1163 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1164 }
1165
get_ctx(struct perf_event_context * ctx)1166 static void get_ctx(struct perf_event_context *ctx)
1167 {
1168 refcount_inc(&ctx->refcount);
1169 }
1170
alloc_task_ctx_data(struct pmu * pmu)1171 static void *alloc_task_ctx_data(struct pmu *pmu)
1172 {
1173 if (pmu->task_ctx_cache)
1174 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1175
1176 return NULL;
1177 }
1178
free_task_ctx_data(struct pmu * pmu,void * task_ctx_data)1179 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1180 {
1181 if (pmu->task_ctx_cache && task_ctx_data)
1182 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1183 }
1184
free_ctx(struct rcu_head * head)1185 static void free_ctx(struct rcu_head *head)
1186 {
1187 struct perf_event_context *ctx;
1188
1189 ctx = container_of(head, struct perf_event_context, rcu_head);
1190 kfree(ctx);
1191 }
1192
put_ctx(struct perf_event_context * ctx)1193 static void put_ctx(struct perf_event_context *ctx)
1194 {
1195 if (refcount_dec_and_test(&ctx->refcount)) {
1196 if (ctx->parent_ctx)
1197 put_ctx(ctx->parent_ctx);
1198 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1199 put_task_struct(ctx->task);
1200 call_rcu(&ctx->rcu_head, free_ctx);
1201 }
1202 }
1203
1204 /*
1205 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1206 * perf_pmu_migrate_context() we need some magic.
1207 *
1208 * Those places that change perf_event::ctx will hold both
1209 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1210 *
1211 * Lock ordering is by mutex address. There are two other sites where
1212 * perf_event_context::mutex nests and those are:
1213 *
1214 * - perf_event_exit_task_context() [ child , 0 ]
1215 * perf_event_exit_event()
1216 * put_event() [ parent, 1 ]
1217 *
1218 * - perf_event_init_context() [ parent, 0 ]
1219 * inherit_task_group()
1220 * inherit_group()
1221 * inherit_event()
1222 * perf_event_alloc()
1223 * perf_init_event()
1224 * perf_try_init_event() [ child , 1 ]
1225 *
1226 * While it appears there is an obvious deadlock here -- the parent and child
1227 * nesting levels are inverted between the two. This is in fact safe because
1228 * life-time rules separate them. That is an exiting task cannot fork, and a
1229 * spawning task cannot (yet) exit.
1230 *
1231 * But remember that these are parent<->child context relations, and
1232 * migration does not affect children, therefore these two orderings should not
1233 * interact.
1234 *
1235 * The change in perf_event::ctx does not affect children (as claimed above)
1236 * because the sys_perf_event_open() case will install a new event and break
1237 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1238 * concerned with cpuctx and that doesn't have children.
1239 *
1240 * The places that change perf_event::ctx will issue:
1241 *
1242 * perf_remove_from_context();
1243 * synchronize_rcu();
1244 * perf_install_in_context();
1245 *
1246 * to affect the change. The remove_from_context() + synchronize_rcu() should
1247 * quiesce the event, after which we can install it in the new location. This
1248 * means that only external vectors (perf_fops, prctl) can perturb the event
1249 * while in transit. Therefore all such accessors should also acquire
1250 * perf_event_context::mutex to serialize against this.
1251 *
1252 * However; because event->ctx can change while we're waiting to acquire
1253 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1254 * function.
1255 *
1256 * Lock order:
1257 * exec_update_lock
1258 * task_struct::perf_event_mutex
1259 * perf_event_context::mutex
1260 * perf_event::child_mutex;
1261 * perf_event_context::lock
1262 * mmap_lock
1263 * perf_event::mmap_mutex
1264 * perf_buffer::aux_mutex
1265 * perf_addr_filters_head::lock
1266 *
1267 * cpu_hotplug_lock
1268 * pmus_lock
1269 * cpuctx->mutex / perf_event_context::mutex
1270 */
1271 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1272 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1273 {
1274 struct perf_event_context *ctx;
1275
1276 again:
1277 rcu_read_lock();
1278 ctx = READ_ONCE(event->ctx);
1279 if (!refcount_inc_not_zero(&ctx->refcount)) {
1280 rcu_read_unlock();
1281 goto again;
1282 }
1283 rcu_read_unlock();
1284
1285 mutex_lock_nested(&ctx->mutex, nesting);
1286 if (event->ctx != ctx) {
1287 mutex_unlock(&ctx->mutex);
1288 put_ctx(ctx);
1289 goto again;
1290 }
1291
1292 return ctx;
1293 }
1294
1295 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1296 perf_event_ctx_lock(struct perf_event *event)
1297 {
1298 return perf_event_ctx_lock_nested(event, 0);
1299 }
1300
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1301 static void perf_event_ctx_unlock(struct perf_event *event,
1302 struct perf_event_context *ctx)
1303 {
1304 mutex_unlock(&ctx->mutex);
1305 put_ctx(ctx);
1306 }
1307
1308 /*
1309 * This must be done under the ctx->lock, such as to serialize against
1310 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1311 * calling scheduler related locks and ctx->lock nests inside those.
1312 */
1313 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1314 unclone_ctx(struct perf_event_context *ctx)
1315 {
1316 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1317
1318 lockdep_assert_held(&ctx->lock);
1319
1320 if (parent_ctx)
1321 ctx->parent_ctx = NULL;
1322 ctx->generation++;
1323
1324 return parent_ctx;
1325 }
1326
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1327 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1328 enum pid_type type)
1329 {
1330 u32 nr;
1331 /*
1332 * only top level events have the pid namespace they were created in
1333 */
1334 if (event->parent)
1335 event = event->parent;
1336
1337 nr = __task_pid_nr_ns(p, type, event->ns);
1338 /* avoid -1 if it is idle thread or runs in another ns */
1339 if (!nr && !pid_alive(p))
1340 nr = -1;
1341 return nr;
1342 }
1343
perf_event_pid(struct perf_event * event,struct task_struct * p)1344 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1345 {
1346 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1347 }
1348
perf_event_tid(struct perf_event * event,struct task_struct * p)1349 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1350 {
1351 return perf_event_pid_type(event, p, PIDTYPE_PID);
1352 }
1353
1354 /*
1355 * If we inherit events we want to return the parent event id
1356 * to userspace.
1357 */
primary_event_id(struct perf_event * event)1358 static u64 primary_event_id(struct perf_event *event)
1359 {
1360 u64 id = event->id;
1361
1362 if (event->parent)
1363 id = event->parent->id;
1364
1365 return id;
1366 }
1367
1368 /*
1369 * Get the perf_event_context for a task and lock it.
1370 *
1371 * This has to cope with the fact that until it is locked,
1372 * the context could get moved to another task.
1373 */
1374 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,unsigned long * flags)1375 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1376 {
1377 struct perf_event_context *ctx;
1378
1379 retry:
1380 /*
1381 * One of the few rules of preemptible RCU is that one cannot do
1382 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1383 * part of the read side critical section was irqs-enabled -- see
1384 * rcu_read_unlock_special().
1385 *
1386 * Since ctx->lock nests under rq->lock we must ensure the entire read
1387 * side critical section has interrupts disabled.
1388 */
1389 local_irq_save(*flags);
1390 rcu_read_lock();
1391 ctx = rcu_dereference(task->perf_event_ctxp);
1392 if (ctx) {
1393 /*
1394 * If this context is a clone of another, it might
1395 * get swapped for another underneath us by
1396 * perf_event_task_sched_out, though the
1397 * rcu_read_lock() protects us from any context
1398 * getting freed. Lock the context and check if it
1399 * got swapped before we could get the lock, and retry
1400 * if so. If we locked the right context, then it
1401 * can't get swapped on us any more.
1402 */
1403 raw_spin_lock(&ctx->lock);
1404 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1405 raw_spin_unlock(&ctx->lock);
1406 rcu_read_unlock();
1407 local_irq_restore(*flags);
1408 goto retry;
1409 }
1410
1411 if (ctx->task == TASK_TOMBSTONE ||
1412 !refcount_inc_not_zero(&ctx->refcount)) {
1413 raw_spin_unlock(&ctx->lock);
1414 ctx = NULL;
1415 } else {
1416 WARN_ON_ONCE(ctx->task != task);
1417 }
1418 }
1419 rcu_read_unlock();
1420 if (!ctx)
1421 local_irq_restore(*flags);
1422 return ctx;
1423 }
1424
1425 /*
1426 * Get the context for a task and increment its pin_count so it
1427 * can't get swapped to another task. This also increments its
1428 * reference count so that the context can't get freed.
1429 */
1430 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task)1431 perf_pin_task_context(struct task_struct *task)
1432 {
1433 struct perf_event_context *ctx;
1434 unsigned long flags;
1435
1436 ctx = perf_lock_task_context(task, &flags);
1437 if (ctx) {
1438 ++ctx->pin_count;
1439 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1440 }
1441 return ctx;
1442 }
1443
perf_unpin_context(struct perf_event_context * ctx)1444 static void perf_unpin_context(struct perf_event_context *ctx)
1445 {
1446 unsigned long flags;
1447
1448 raw_spin_lock_irqsave(&ctx->lock, flags);
1449 --ctx->pin_count;
1450 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1451 }
1452
1453 /*
1454 * Update the record of the current time in a context.
1455 */
__update_context_time(struct perf_event_context * ctx,bool adv)1456 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1457 {
1458 u64 now = perf_clock();
1459
1460 lockdep_assert_held(&ctx->lock);
1461
1462 if (adv)
1463 ctx->time += now - ctx->timestamp;
1464 ctx->timestamp = now;
1465
1466 /*
1467 * The above: time' = time + (now - timestamp), can be re-arranged
1468 * into: time` = now + (time - timestamp), which gives a single value
1469 * offset to compute future time without locks on.
1470 *
1471 * See perf_event_time_now(), which can be used from NMI context where
1472 * it's (obviously) not possible to acquire ctx->lock in order to read
1473 * both the above values in a consistent manner.
1474 */
1475 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1476 }
1477
update_context_time(struct perf_event_context * ctx)1478 static void update_context_time(struct perf_event_context *ctx)
1479 {
1480 __update_context_time(ctx, true);
1481 }
1482
perf_event_time(struct perf_event * event)1483 static u64 perf_event_time(struct perf_event *event)
1484 {
1485 struct perf_event_context *ctx = event->ctx;
1486
1487 if (unlikely(!ctx))
1488 return 0;
1489
1490 if (is_cgroup_event(event))
1491 return perf_cgroup_event_time(event);
1492
1493 return ctx->time;
1494 }
1495
perf_event_time_now(struct perf_event * event,u64 now)1496 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1497 {
1498 struct perf_event_context *ctx = event->ctx;
1499
1500 if (unlikely(!ctx))
1501 return 0;
1502
1503 if (is_cgroup_event(event))
1504 return perf_cgroup_event_time_now(event, now);
1505
1506 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1507 return ctx->time;
1508
1509 now += READ_ONCE(ctx->timeoffset);
1510 return now;
1511 }
1512
get_event_type(struct perf_event * event)1513 static enum event_type_t get_event_type(struct perf_event *event)
1514 {
1515 struct perf_event_context *ctx = event->ctx;
1516 enum event_type_t event_type;
1517
1518 lockdep_assert_held(&ctx->lock);
1519
1520 /*
1521 * It's 'group type', really, because if our group leader is
1522 * pinned, so are we.
1523 */
1524 if (event->group_leader != event)
1525 event = event->group_leader;
1526
1527 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1528 if (!ctx->task)
1529 event_type |= EVENT_CPU;
1530
1531 return event_type;
1532 }
1533
1534 /*
1535 * Helper function to initialize event group nodes.
1536 */
init_event_group(struct perf_event * event)1537 static void init_event_group(struct perf_event *event)
1538 {
1539 RB_CLEAR_NODE(&event->group_node);
1540 event->group_index = 0;
1541 }
1542
1543 /*
1544 * Extract pinned or flexible groups from the context
1545 * based on event attrs bits.
1546 */
1547 static struct perf_event_groups *
get_event_groups(struct perf_event * event,struct perf_event_context * ctx)1548 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1549 {
1550 if (event->attr.pinned)
1551 return &ctx->pinned_groups;
1552 else
1553 return &ctx->flexible_groups;
1554 }
1555
1556 /*
1557 * Helper function to initializes perf_event_group trees.
1558 */
perf_event_groups_init(struct perf_event_groups * groups)1559 static void perf_event_groups_init(struct perf_event_groups *groups)
1560 {
1561 groups->tree = RB_ROOT;
1562 groups->index = 0;
1563 }
1564
event_cgroup(const struct perf_event * event)1565 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1566 {
1567 struct cgroup *cgroup = NULL;
1568
1569 #ifdef CONFIG_CGROUP_PERF
1570 if (event->cgrp)
1571 cgroup = event->cgrp->css.cgroup;
1572 #endif
1573
1574 return cgroup;
1575 }
1576
1577 /*
1578 * Compare function for event groups;
1579 *
1580 * Implements complex key that first sorts by CPU and then by virtual index
1581 * which provides ordering when rotating groups for the same CPU.
1582 */
1583 static __always_inline int
perf_event_groups_cmp(const int left_cpu,const struct pmu * left_pmu,const struct cgroup * left_cgroup,const u64 left_group_index,const struct perf_event * right)1584 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1585 const struct cgroup *left_cgroup, const u64 left_group_index,
1586 const struct perf_event *right)
1587 {
1588 if (left_cpu < right->cpu)
1589 return -1;
1590 if (left_cpu > right->cpu)
1591 return 1;
1592
1593 if (left_pmu) {
1594 if (left_pmu < right->pmu_ctx->pmu)
1595 return -1;
1596 if (left_pmu > right->pmu_ctx->pmu)
1597 return 1;
1598 }
1599
1600 #ifdef CONFIG_CGROUP_PERF
1601 {
1602 const struct cgroup *right_cgroup = event_cgroup(right);
1603
1604 if (left_cgroup != right_cgroup) {
1605 if (!left_cgroup) {
1606 /*
1607 * Left has no cgroup but right does, no
1608 * cgroups come first.
1609 */
1610 return -1;
1611 }
1612 if (!right_cgroup) {
1613 /*
1614 * Right has no cgroup but left does, no
1615 * cgroups come first.
1616 */
1617 return 1;
1618 }
1619 /* Two dissimilar cgroups, order by id. */
1620 if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1621 return -1;
1622
1623 return 1;
1624 }
1625 }
1626 #endif
1627
1628 if (left_group_index < right->group_index)
1629 return -1;
1630 if (left_group_index > right->group_index)
1631 return 1;
1632
1633 return 0;
1634 }
1635
1636 #define __node_2_pe(node) \
1637 rb_entry((node), struct perf_event, group_node)
1638
__group_less(struct rb_node * a,const struct rb_node * b)1639 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1640 {
1641 struct perf_event *e = __node_2_pe(a);
1642 return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1643 e->group_index, __node_2_pe(b)) < 0;
1644 }
1645
1646 struct __group_key {
1647 int cpu;
1648 struct pmu *pmu;
1649 struct cgroup *cgroup;
1650 };
1651
__group_cmp(const void * key,const struct rb_node * node)1652 static inline int __group_cmp(const void *key, const struct rb_node *node)
1653 {
1654 const struct __group_key *a = key;
1655 const struct perf_event *b = __node_2_pe(node);
1656
1657 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1658 return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1659 }
1660
1661 static inline int
__group_cmp_ignore_cgroup(const void * key,const struct rb_node * node)1662 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1663 {
1664 const struct __group_key *a = key;
1665 const struct perf_event *b = __node_2_pe(node);
1666
1667 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1668 return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1669 b->group_index, b);
1670 }
1671
1672 /*
1673 * Insert @event into @groups' tree; using
1674 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1675 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1676 */
1677 static void
perf_event_groups_insert(struct perf_event_groups * groups,struct perf_event * event)1678 perf_event_groups_insert(struct perf_event_groups *groups,
1679 struct perf_event *event)
1680 {
1681 event->group_index = ++groups->index;
1682
1683 rb_add(&event->group_node, &groups->tree, __group_less);
1684 }
1685
1686 /*
1687 * Helper function to insert event into the pinned or flexible groups.
1688 */
1689 static void
add_event_to_groups(struct perf_event * event,struct perf_event_context * ctx)1690 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1691 {
1692 struct perf_event_groups *groups;
1693
1694 groups = get_event_groups(event, ctx);
1695 perf_event_groups_insert(groups, event);
1696 }
1697
1698 /*
1699 * Delete a group from a tree.
1700 */
1701 static void
perf_event_groups_delete(struct perf_event_groups * groups,struct perf_event * event)1702 perf_event_groups_delete(struct perf_event_groups *groups,
1703 struct perf_event *event)
1704 {
1705 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1706 RB_EMPTY_ROOT(&groups->tree));
1707
1708 rb_erase(&event->group_node, &groups->tree);
1709 init_event_group(event);
1710 }
1711
1712 /*
1713 * Helper function to delete event from its groups.
1714 */
1715 static void
del_event_from_groups(struct perf_event * event,struct perf_event_context * ctx)1716 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1717 {
1718 struct perf_event_groups *groups;
1719
1720 groups = get_event_groups(event, ctx);
1721 perf_event_groups_delete(groups, event);
1722 }
1723
1724 /*
1725 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1726 */
1727 static struct perf_event *
perf_event_groups_first(struct perf_event_groups * groups,int cpu,struct pmu * pmu,struct cgroup * cgrp)1728 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1729 struct pmu *pmu, struct cgroup *cgrp)
1730 {
1731 struct __group_key key = {
1732 .cpu = cpu,
1733 .pmu = pmu,
1734 .cgroup = cgrp,
1735 };
1736 struct rb_node *node;
1737
1738 node = rb_find_first(&key, &groups->tree, __group_cmp);
1739 if (node)
1740 return __node_2_pe(node);
1741
1742 return NULL;
1743 }
1744
1745 static struct perf_event *
perf_event_groups_next(struct perf_event * event,struct pmu * pmu)1746 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1747 {
1748 struct __group_key key = {
1749 .cpu = event->cpu,
1750 .pmu = pmu,
1751 .cgroup = event_cgroup(event),
1752 };
1753 struct rb_node *next;
1754
1755 next = rb_next_match(&key, &event->group_node, __group_cmp);
1756 if (next)
1757 return __node_2_pe(next);
1758
1759 return NULL;
1760 }
1761
1762 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1763 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1764 event; event = perf_event_groups_next(event, pmu))
1765
1766 /*
1767 * Iterate through the whole groups tree.
1768 */
1769 #define perf_event_groups_for_each(event, groups) \
1770 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1771 typeof(*event), group_node); event; \
1772 event = rb_entry_safe(rb_next(&event->group_node), \
1773 typeof(*event), group_node))
1774
1775 /*
1776 * Add an event from the lists for its context.
1777 * Must be called with ctx->mutex and ctx->lock held.
1778 */
1779 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1780 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1781 {
1782 lockdep_assert_held(&ctx->lock);
1783
1784 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1785 event->attach_state |= PERF_ATTACH_CONTEXT;
1786
1787 event->tstamp = perf_event_time(event);
1788
1789 /*
1790 * If we're a stand alone event or group leader, we go to the context
1791 * list, group events are kept attached to the group so that
1792 * perf_group_detach can, at all times, locate all siblings.
1793 */
1794 if (event->group_leader == event) {
1795 event->group_caps = event->event_caps;
1796 add_event_to_groups(event, ctx);
1797 }
1798
1799 list_add_rcu(&event->event_entry, &ctx->event_list);
1800 ctx->nr_events++;
1801 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1802 ctx->nr_user++;
1803 if (event->attr.inherit_stat)
1804 ctx->nr_stat++;
1805
1806 if (event->state > PERF_EVENT_STATE_OFF)
1807 perf_cgroup_event_enable(event, ctx);
1808
1809 ctx->generation++;
1810 event->pmu_ctx->nr_events++;
1811 }
1812
1813 /*
1814 * Initialize event state based on the perf_event_attr::disabled.
1815 */
perf_event__state_init(struct perf_event * event)1816 static inline void perf_event__state_init(struct perf_event *event)
1817 {
1818 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1819 PERF_EVENT_STATE_INACTIVE;
1820 }
1821
__perf_event_read_size(u64 read_format,int nr_siblings)1822 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1823 {
1824 int entry = sizeof(u64); /* value */
1825 int size = 0;
1826 int nr = 1;
1827
1828 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1829 size += sizeof(u64);
1830
1831 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1832 size += sizeof(u64);
1833
1834 if (read_format & PERF_FORMAT_ID)
1835 entry += sizeof(u64);
1836
1837 if (read_format & PERF_FORMAT_LOST)
1838 entry += sizeof(u64);
1839
1840 if (read_format & PERF_FORMAT_GROUP) {
1841 nr += nr_siblings;
1842 size += sizeof(u64);
1843 }
1844
1845 /*
1846 * Since perf_event_validate_size() limits this to 16k and inhibits
1847 * adding more siblings, this will never overflow.
1848 */
1849 return size + nr * entry;
1850 }
1851
__perf_event_header_size(struct perf_event * event,u64 sample_type)1852 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1853 {
1854 struct perf_sample_data *data;
1855 u16 size = 0;
1856
1857 if (sample_type & PERF_SAMPLE_IP)
1858 size += sizeof(data->ip);
1859
1860 if (sample_type & PERF_SAMPLE_ADDR)
1861 size += sizeof(data->addr);
1862
1863 if (sample_type & PERF_SAMPLE_PERIOD)
1864 size += sizeof(data->period);
1865
1866 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1867 size += sizeof(data->weight.full);
1868
1869 if (sample_type & PERF_SAMPLE_READ)
1870 size += event->read_size;
1871
1872 if (sample_type & PERF_SAMPLE_DATA_SRC)
1873 size += sizeof(data->data_src.val);
1874
1875 if (sample_type & PERF_SAMPLE_TRANSACTION)
1876 size += sizeof(data->txn);
1877
1878 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1879 size += sizeof(data->phys_addr);
1880
1881 if (sample_type & PERF_SAMPLE_CGROUP)
1882 size += sizeof(data->cgroup);
1883
1884 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1885 size += sizeof(data->data_page_size);
1886
1887 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1888 size += sizeof(data->code_page_size);
1889
1890 event->header_size = size;
1891 }
1892
1893 /*
1894 * Called at perf_event creation and when events are attached/detached from a
1895 * group.
1896 */
perf_event__header_size(struct perf_event * event)1897 static void perf_event__header_size(struct perf_event *event)
1898 {
1899 event->read_size =
1900 __perf_event_read_size(event->attr.read_format,
1901 event->group_leader->nr_siblings);
1902 __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
perf_event__id_header_size(struct perf_event * event)1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907 struct perf_sample_data *data;
1908 u64 sample_type = event->attr.sample_type;
1909 u16 size = 0;
1910
1911 if (sample_type & PERF_SAMPLE_TID)
1912 size += sizeof(data->tid_entry);
1913
1914 if (sample_type & PERF_SAMPLE_TIME)
1915 size += sizeof(data->time);
1916
1917 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918 size += sizeof(data->id);
1919
1920 if (sample_type & PERF_SAMPLE_ID)
1921 size += sizeof(data->id);
1922
1923 if (sample_type & PERF_SAMPLE_STREAM_ID)
1924 size += sizeof(data->stream_id);
1925
1926 if (sample_type & PERF_SAMPLE_CPU)
1927 size += sizeof(data->cpu_entry);
1928
1929 event->id_header_size = size;
1930 }
1931
1932 /*
1933 * Check that adding an event to the group does not result in anybody
1934 * overflowing the 64k event limit imposed by the output buffer.
1935 *
1936 * Specifically, check that the read_size for the event does not exceed 16k,
1937 * read_size being the one term that grows with groups size. Since read_size
1938 * depends on per-event read_format, also (re)check the existing events.
1939 *
1940 * This leaves 48k for the constant size fields and things like callchains,
1941 * branch stacks and register sets.
1942 */
perf_event_validate_size(struct perf_event * event)1943 static bool perf_event_validate_size(struct perf_event *event)
1944 {
1945 struct perf_event *sibling, *group_leader = event->group_leader;
1946
1947 if (__perf_event_read_size(event->attr.read_format,
1948 group_leader->nr_siblings + 1) > 16*1024)
1949 return false;
1950
1951 if (__perf_event_read_size(group_leader->attr.read_format,
1952 group_leader->nr_siblings + 1) > 16*1024)
1953 return false;
1954
1955 /*
1956 * When creating a new group leader, group_leader->ctx is initialized
1957 * after the size has been validated, but we cannot safely use
1958 * for_each_sibling_event() until group_leader->ctx is set. A new group
1959 * leader cannot have any siblings yet, so we can safely skip checking
1960 * the non-existent siblings.
1961 */
1962 if (event == group_leader)
1963 return true;
1964
1965 for_each_sibling_event(sibling, group_leader) {
1966 if (__perf_event_read_size(sibling->attr.read_format,
1967 group_leader->nr_siblings + 1) > 16*1024)
1968 return false;
1969 }
1970
1971 return true;
1972 }
1973
perf_group_attach(struct perf_event * event)1974 static void perf_group_attach(struct perf_event *event)
1975 {
1976 struct perf_event *group_leader = event->group_leader, *pos;
1977
1978 lockdep_assert_held(&event->ctx->lock);
1979
1980 /*
1981 * We can have double attach due to group movement (move_group) in
1982 * perf_event_open().
1983 */
1984 if (event->attach_state & PERF_ATTACH_GROUP)
1985 return;
1986
1987 event->attach_state |= PERF_ATTACH_GROUP;
1988
1989 if (group_leader == event)
1990 return;
1991
1992 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1993
1994 group_leader->group_caps &= event->event_caps;
1995
1996 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1997 group_leader->nr_siblings++;
1998 group_leader->group_generation++;
1999
2000 perf_event__header_size(group_leader);
2001
2002 for_each_sibling_event(pos, group_leader)
2003 perf_event__header_size(pos);
2004 }
2005
2006 /*
2007 * Remove an event from the lists for its context.
2008 * Must be called with ctx->mutex and ctx->lock held.
2009 */
2010 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)2011 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2012 {
2013 WARN_ON_ONCE(event->ctx != ctx);
2014 lockdep_assert_held(&ctx->lock);
2015
2016 /*
2017 * We can have double detach due to exit/hot-unplug + close.
2018 */
2019 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2020 return;
2021
2022 event->attach_state &= ~PERF_ATTACH_CONTEXT;
2023
2024 ctx->nr_events--;
2025 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2026 ctx->nr_user--;
2027 if (event->attr.inherit_stat)
2028 ctx->nr_stat--;
2029
2030 list_del_rcu(&event->event_entry);
2031
2032 if (event->group_leader == event)
2033 del_event_from_groups(event, ctx);
2034
2035 /*
2036 * If event was in error state, then keep it
2037 * that way, otherwise bogus counts will be
2038 * returned on read(). The only way to get out
2039 * of error state is by explicit re-enabling
2040 * of the event
2041 */
2042 if (event->state > PERF_EVENT_STATE_OFF) {
2043 perf_cgroup_event_disable(event, ctx);
2044 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2045 }
2046
2047 ctx->generation++;
2048 event->pmu_ctx->nr_events--;
2049 }
2050
2051 static int
perf_aux_output_match(struct perf_event * event,struct perf_event * aux_event)2052 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2053 {
2054 if (!has_aux(aux_event))
2055 return 0;
2056
2057 if (!event->pmu->aux_output_match)
2058 return 0;
2059
2060 return event->pmu->aux_output_match(aux_event);
2061 }
2062
2063 static void put_event(struct perf_event *event);
2064 static void event_sched_out(struct perf_event *event,
2065 struct perf_event_context *ctx);
2066
perf_put_aux_event(struct perf_event * event)2067 static void perf_put_aux_event(struct perf_event *event)
2068 {
2069 struct perf_event_context *ctx = event->ctx;
2070 struct perf_event *iter;
2071
2072 /*
2073 * If event uses aux_event tear down the link
2074 */
2075 if (event->aux_event) {
2076 iter = event->aux_event;
2077 event->aux_event = NULL;
2078 put_event(iter);
2079 return;
2080 }
2081
2082 /*
2083 * If the event is an aux_event, tear down all links to
2084 * it from other events.
2085 */
2086 for_each_sibling_event(iter, event->group_leader) {
2087 if (iter->aux_event != event)
2088 continue;
2089
2090 iter->aux_event = NULL;
2091 put_event(event);
2092
2093 /*
2094 * If it's ACTIVE, schedule it out and put it into ERROR
2095 * state so that we don't try to schedule it again. Note
2096 * that perf_event_enable() will clear the ERROR status.
2097 */
2098 event_sched_out(iter, ctx);
2099 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2100 }
2101 }
2102
perf_need_aux_event(struct perf_event * event)2103 static bool perf_need_aux_event(struct perf_event *event)
2104 {
2105 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2106 }
2107
perf_get_aux_event(struct perf_event * event,struct perf_event * group_leader)2108 static int perf_get_aux_event(struct perf_event *event,
2109 struct perf_event *group_leader)
2110 {
2111 /*
2112 * Our group leader must be an aux event if we want to be
2113 * an aux_output. This way, the aux event will precede its
2114 * aux_output events in the group, and therefore will always
2115 * schedule first.
2116 */
2117 if (!group_leader)
2118 return 0;
2119
2120 /*
2121 * aux_output and aux_sample_size are mutually exclusive.
2122 */
2123 if (event->attr.aux_output && event->attr.aux_sample_size)
2124 return 0;
2125
2126 if (event->attr.aux_output &&
2127 !perf_aux_output_match(event, group_leader))
2128 return 0;
2129
2130 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2131 return 0;
2132
2133 if (!atomic_long_inc_not_zero(&group_leader->refcount))
2134 return 0;
2135
2136 /*
2137 * Link aux_outputs to their aux event; this is undone in
2138 * perf_group_detach() by perf_put_aux_event(). When the
2139 * group in torn down, the aux_output events loose their
2140 * link to the aux_event and can't schedule any more.
2141 */
2142 event->aux_event = group_leader;
2143
2144 return 1;
2145 }
2146
get_event_list(struct perf_event * event)2147 static inline struct list_head *get_event_list(struct perf_event *event)
2148 {
2149 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2150 &event->pmu_ctx->flexible_active;
2151 }
2152
2153 /*
2154 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2155 * cannot exist on their own, schedule them out and move them into the ERROR
2156 * state. Also see _perf_event_enable(), it will not be able to recover
2157 * this ERROR state.
2158 */
perf_remove_sibling_event(struct perf_event * event)2159 static inline void perf_remove_sibling_event(struct perf_event *event)
2160 {
2161 event_sched_out(event, event->ctx);
2162 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2163 }
2164
perf_group_detach(struct perf_event * event)2165 static void perf_group_detach(struct perf_event *event)
2166 {
2167 struct perf_event *leader = event->group_leader;
2168 struct perf_event *sibling, *tmp;
2169 struct perf_event_context *ctx = event->ctx;
2170
2171 lockdep_assert_held(&ctx->lock);
2172
2173 /*
2174 * We can have double detach due to exit/hot-unplug + close.
2175 */
2176 if (!(event->attach_state & PERF_ATTACH_GROUP))
2177 return;
2178
2179 event->attach_state &= ~PERF_ATTACH_GROUP;
2180
2181 perf_put_aux_event(event);
2182
2183 /*
2184 * If this is a sibling, remove it from its group.
2185 */
2186 if (leader != event) {
2187 list_del_init(&event->sibling_list);
2188 event->group_leader->nr_siblings--;
2189 event->group_leader->group_generation++;
2190 goto out;
2191 }
2192
2193 /*
2194 * If this was a group event with sibling events then
2195 * upgrade the siblings to singleton events by adding them
2196 * to whatever list we are on.
2197 */
2198 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2199
2200 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2201 perf_remove_sibling_event(sibling);
2202
2203 sibling->group_leader = sibling;
2204 list_del_init(&sibling->sibling_list);
2205
2206 /* Inherit group flags from the previous leader */
2207 sibling->group_caps = event->group_caps;
2208
2209 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2210 add_event_to_groups(sibling, event->ctx);
2211
2212 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2213 list_add_tail(&sibling->active_list, get_event_list(sibling));
2214 }
2215
2216 WARN_ON_ONCE(sibling->ctx != event->ctx);
2217 }
2218
2219 out:
2220 for_each_sibling_event(tmp, leader)
2221 perf_event__header_size(tmp);
2222
2223 perf_event__header_size(leader);
2224 }
2225
2226 static void sync_child_event(struct perf_event *child_event);
2227
perf_child_detach(struct perf_event * event)2228 static void perf_child_detach(struct perf_event *event)
2229 {
2230 struct perf_event *parent_event = event->parent;
2231
2232 if (!(event->attach_state & PERF_ATTACH_CHILD))
2233 return;
2234
2235 event->attach_state &= ~PERF_ATTACH_CHILD;
2236
2237 if (WARN_ON_ONCE(!parent_event))
2238 return;
2239
2240 lockdep_assert_held(&parent_event->child_mutex);
2241
2242 sync_child_event(event);
2243 list_del_init(&event->child_list);
2244 }
2245
is_orphaned_event(struct perf_event * event)2246 static bool is_orphaned_event(struct perf_event *event)
2247 {
2248 return event->state == PERF_EVENT_STATE_DEAD;
2249 }
2250
2251 static inline int
event_filter_match(struct perf_event * event)2252 event_filter_match(struct perf_event *event)
2253 {
2254 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2255 perf_cgroup_match(event);
2256 }
2257
2258 static void
event_sched_out(struct perf_event * event,struct perf_event_context * ctx)2259 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2260 {
2261 struct perf_event_pmu_context *epc = event->pmu_ctx;
2262 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2263 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2264
2265 // XXX cpc serialization, probably per-cpu IRQ disabled
2266
2267 WARN_ON_ONCE(event->ctx != ctx);
2268 lockdep_assert_held(&ctx->lock);
2269
2270 if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 return;
2272
2273 /*
2274 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2275 * we can schedule events _OUT_ individually through things like
2276 * __perf_remove_from_context().
2277 */
2278 list_del_init(&event->active_list);
2279
2280 perf_pmu_disable(event->pmu);
2281
2282 event->pmu->del(event, 0);
2283 event->oncpu = -1;
2284
2285 if (event->pending_disable) {
2286 event->pending_disable = 0;
2287 perf_cgroup_event_disable(event, ctx);
2288 state = PERF_EVENT_STATE_OFF;
2289 }
2290
2291 if (event->pending_sigtrap) {
2292 event->pending_sigtrap = 0;
2293 if (state != PERF_EVENT_STATE_OFF &&
2294 !event->pending_work &&
2295 !task_work_add(current, &event->pending_task, TWA_RESUME)) {
2296 event->pending_work = 1;
2297 } else {
2298 local_dec(&event->ctx->nr_pending);
2299 }
2300 }
2301
2302 perf_event_set_state(event, state);
2303
2304 if (!is_software_event(event))
2305 cpc->active_oncpu--;
2306 if (event->attr.freq && event->attr.sample_freq)
2307 ctx->nr_freq--;
2308 if (event->attr.exclusive || !cpc->active_oncpu)
2309 cpc->exclusive = 0;
2310
2311 perf_pmu_enable(event->pmu);
2312 }
2313
2314 static void
group_sched_out(struct perf_event * group_event,struct perf_event_context * ctx)2315 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2316 {
2317 struct perf_event *event;
2318
2319 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2320 return;
2321
2322 perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2323
2324 event_sched_out(group_event, ctx);
2325
2326 /*
2327 * Schedule out siblings (if any):
2328 */
2329 for_each_sibling_event(event, group_event)
2330 event_sched_out(event, ctx);
2331 }
2332
2333 #define DETACH_GROUP 0x01UL
2334 #define DETACH_CHILD 0x02UL
2335 #define DETACH_DEAD 0x04UL
2336
2337 /*
2338 * Cross CPU call to remove a performance event
2339 *
2340 * We disable the event on the hardware level first. After that we
2341 * remove it from the context list.
2342 */
2343 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2344 __perf_remove_from_context(struct perf_event *event,
2345 struct perf_cpu_context *cpuctx,
2346 struct perf_event_context *ctx,
2347 void *info)
2348 {
2349 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2350 unsigned long flags = (unsigned long)info;
2351
2352 if (ctx->is_active & EVENT_TIME) {
2353 update_context_time(ctx);
2354 update_cgrp_time_from_cpuctx(cpuctx, false);
2355 }
2356
2357 /*
2358 * Ensure event_sched_out() switches to OFF, at the very least
2359 * this avoids raising perf_pending_task() at this time.
2360 */
2361 if (flags & DETACH_DEAD)
2362 event->pending_disable = 1;
2363 event_sched_out(event, ctx);
2364 if (flags & DETACH_GROUP)
2365 perf_group_detach(event);
2366 if (flags & DETACH_CHILD)
2367 perf_child_detach(event);
2368 list_del_event(event, ctx);
2369 if (flags & DETACH_DEAD)
2370 event->state = PERF_EVENT_STATE_DEAD;
2371
2372 if (!pmu_ctx->nr_events) {
2373 pmu_ctx->rotate_necessary = 0;
2374
2375 if (ctx->task && ctx->is_active) {
2376 struct perf_cpu_pmu_context *cpc;
2377
2378 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2379 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2380 cpc->task_epc = NULL;
2381 }
2382 }
2383
2384 if (!ctx->nr_events && ctx->is_active) {
2385 if (ctx == &cpuctx->ctx)
2386 update_cgrp_time_from_cpuctx(cpuctx, true);
2387
2388 ctx->is_active = 0;
2389 if (ctx->task) {
2390 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2391 cpuctx->task_ctx = NULL;
2392 }
2393 }
2394 }
2395
2396 /*
2397 * Remove the event from a task's (or a CPU's) list of events.
2398 *
2399 * If event->ctx is a cloned context, callers must make sure that
2400 * every task struct that event->ctx->task could possibly point to
2401 * remains valid. This is OK when called from perf_release since
2402 * that only calls us on the top-level context, which can't be a clone.
2403 * When called from perf_event_exit_task, it's OK because the
2404 * context has been detached from its task.
2405 */
perf_remove_from_context(struct perf_event * event,unsigned long flags)2406 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2407 {
2408 struct perf_event_context *ctx = event->ctx;
2409
2410 lockdep_assert_held(&ctx->mutex);
2411
2412 /*
2413 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2414 * to work in the face of TASK_TOMBSTONE, unlike every other
2415 * event_function_call() user.
2416 */
2417 raw_spin_lock_irq(&ctx->lock);
2418 if (!ctx->is_active) {
2419 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2420 ctx, (void *)flags);
2421 raw_spin_unlock_irq(&ctx->lock);
2422 return;
2423 }
2424 raw_spin_unlock_irq(&ctx->lock);
2425
2426 event_function_call(event, __perf_remove_from_context, (void *)flags);
2427 }
2428
2429 /*
2430 * Cross CPU call to disable a performance event
2431 */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2432 static void __perf_event_disable(struct perf_event *event,
2433 struct perf_cpu_context *cpuctx,
2434 struct perf_event_context *ctx,
2435 void *info)
2436 {
2437 if (event->state < PERF_EVENT_STATE_INACTIVE)
2438 return;
2439
2440 if (ctx->is_active & EVENT_TIME) {
2441 update_context_time(ctx);
2442 update_cgrp_time_from_event(event);
2443 }
2444
2445 perf_pmu_disable(event->pmu_ctx->pmu);
2446
2447 if (event == event->group_leader)
2448 group_sched_out(event, ctx);
2449 else
2450 event_sched_out(event, ctx);
2451
2452 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2453 perf_cgroup_event_disable(event, ctx);
2454
2455 perf_pmu_enable(event->pmu_ctx->pmu);
2456 }
2457
2458 /*
2459 * Disable an event.
2460 *
2461 * If event->ctx is a cloned context, callers must make sure that
2462 * every task struct that event->ctx->task could possibly point to
2463 * remains valid. This condition is satisfied when called through
2464 * perf_event_for_each_child or perf_event_for_each because they
2465 * hold the top-level event's child_mutex, so any descendant that
2466 * goes to exit will block in perf_event_exit_event().
2467 *
2468 * When called from perf_pending_irq it's OK because event->ctx
2469 * is the current context on this CPU and preemption is disabled,
2470 * hence we can't get into perf_event_task_sched_out for this context.
2471 */
_perf_event_disable(struct perf_event * event)2472 static void _perf_event_disable(struct perf_event *event)
2473 {
2474 struct perf_event_context *ctx = event->ctx;
2475
2476 raw_spin_lock_irq(&ctx->lock);
2477 if (event->state <= PERF_EVENT_STATE_OFF) {
2478 raw_spin_unlock_irq(&ctx->lock);
2479 return;
2480 }
2481 raw_spin_unlock_irq(&ctx->lock);
2482
2483 event_function_call(event, __perf_event_disable, NULL);
2484 }
2485
perf_event_disable_local(struct perf_event * event)2486 void perf_event_disable_local(struct perf_event *event)
2487 {
2488 event_function_local(event, __perf_event_disable, NULL);
2489 }
2490
2491 /*
2492 * Strictly speaking kernel users cannot create groups and therefore this
2493 * interface does not need the perf_event_ctx_lock() magic.
2494 */
perf_event_disable(struct perf_event * event)2495 void perf_event_disable(struct perf_event *event)
2496 {
2497 struct perf_event_context *ctx;
2498
2499 ctx = perf_event_ctx_lock(event);
2500 _perf_event_disable(event);
2501 perf_event_ctx_unlock(event, ctx);
2502 }
2503 EXPORT_SYMBOL_GPL(perf_event_disable);
2504
perf_event_disable_inatomic(struct perf_event * event)2505 void perf_event_disable_inatomic(struct perf_event *event)
2506 {
2507 event->pending_disable = 1;
2508 irq_work_queue(&event->pending_irq);
2509 }
2510
2511 #define MAX_INTERRUPTS (~0ULL)
2512
2513 static void perf_log_throttle(struct perf_event *event, int enable);
2514 static void perf_log_itrace_start(struct perf_event *event);
2515
2516 static int
event_sched_in(struct perf_event * event,struct perf_event_context * ctx)2517 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2518 {
2519 struct perf_event_pmu_context *epc = event->pmu_ctx;
2520 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2521 int ret = 0;
2522
2523 WARN_ON_ONCE(event->ctx != ctx);
2524
2525 lockdep_assert_held(&ctx->lock);
2526
2527 if (event->state <= PERF_EVENT_STATE_OFF)
2528 return 0;
2529
2530 WRITE_ONCE(event->oncpu, smp_processor_id());
2531 /*
2532 * Order event::oncpu write to happen before the ACTIVE state is
2533 * visible. This allows perf_event_{stop,read}() to observe the correct
2534 * ->oncpu if it sees ACTIVE.
2535 */
2536 smp_wmb();
2537 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2538
2539 /*
2540 * Unthrottle events, since we scheduled we might have missed several
2541 * ticks already, also for a heavily scheduling task there is little
2542 * guarantee it'll get a tick in a timely manner.
2543 */
2544 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2545 perf_log_throttle(event, 1);
2546 event->hw.interrupts = 0;
2547 }
2548
2549 perf_pmu_disable(event->pmu);
2550
2551 perf_log_itrace_start(event);
2552
2553 if (event->pmu->add(event, PERF_EF_START)) {
2554 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2555 event->oncpu = -1;
2556 ret = -EAGAIN;
2557 goto out;
2558 }
2559
2560 if (!is_software_event(event))
2561 cpc->active_oncpu++;
2562 if (event->attr.freq && event->attr.sample_freq)
2563 ctx->nr_freq++;
2564
2565 if (event->attr.exclusive)
2566 cpc->exclusive = 1;
2567
2568 out:
2569 perf_pmu_enable(event->pmu);
2570
2571 return ret;
2572 }
2573
2574 static int
group_sched_in(struct perf_event * group_event,struct perf_event_context * ctx)2575 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2576 {
2577 struct perf_event *event, *partial_group = NULL;
2578 struct pmu *pmu = group_event->pmu_ctx->pmu;
2579
2580 if (group_event->state == PERF_EVENT_STATE_OFF)
2581 return 0;
2582
2583 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2584
2585 if (event_sched_in(group_event, ctx))
2586 goto error;
2587
2588 /*
2589 * Schedule in siblings as one group (if any):
2590 */
2591 for_each_sibling_event(event, group_event) {
2592 if (event_sched_in(event, ctx)) {
2593 partial_group = event;
2594 goto group_error;
2595 }
2596 }
2597
2598 if (!pmu->commit_txn(pmu))
2599 return 0;
2600
2601 group_error:
2602 /*
2603 * Groups can be scheduled in as one unit only, so undo any
2604 * partial group before returning:
2605 * The events up to the failed event are scheduled out normally.
2606 */
2607 for_each_sibling_event(event, group_event) {
2608 if (event == partial_group)
2609 break;
2610
2611 event_sched_out(event, ctx);
2612 }
2613 event_sched_out(group_event, ctx);
2614
2615 error:
2616 pmu->cancel_txn(pmu);
2617 return -EAGAIN;
2618 }
2619
2620 /*
2621 * Work out whether we can put this event group on the CPU now.
2622 */
group_can_go_on(struct perf_event * event,int can_add_hw)2623 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2624 {
2625 struct perf_event_pmu_context *epc = event->pmu_ctx;
2626 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2627
2628 /*
2629 * Groups consisting entirely of software events can always go on.
2630 */
2631 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2632 return 1;
2633 /*
2634 * If an exclusive group is already on, no other hardware
2635 * events can go on.
2636 */
2637 if (cpc->exclusive)
2638 return 0;
2639 /*
2640 * If this group is exclusive and there are already
2641 * events on the CPU, it can't go on.
2642 */
2643 if (event->attr.exclusive && !list_empty(get_event_list(event)))
2644 return 0;
2645 /*
2646 * Otherwise, try to add it if all previous groups were able
2647 * to go on.
2648 */
2649 return can_add_hw;
2650 }
2651
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2652 static void add_event_to_ctx(struct perf_event *event,
2653 struct perf_event_context *ctx)
2654 {
2655 list_add_event(event, ctx);
2656 perf_group_attach(event);
2657 }
2658
task_ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)2659 static void task_ctx_sched_out(struct perf_event_context *ctx,
2660 enum event_type_t event_type)
2661 {
2662 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2663
2664 if (!cpuctx->task_ctx)
2665 return;
2666
2667 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2668 return;
2669
2670 ctx_sched_out(ctx, event_type);
2671 }
2672
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2673 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2674 struct perf_event_context *ctx)
2675 {
2676 ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2677 if (ctx)
2678 ctx_sched_in(ctx, EVENT_PINNED);
2679 ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2680 if (ctx)
2681 ctx_sched_in(ctx, EVENT_FLEXIBLE);
2682 }
2683
2684 /*
2685 * We want to maintain the following priority of scheduling:
2686 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2687 * - task pinned (EVENT_PINNED)
2688 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2689 * - task flexible (EVENT_FLEXIBLE).
2690 *
2691 * In order to avoid unscheduling and scheduling back in everything every
2692 * time an event is added, only do it for the groups of equal priority and
2693 * below.
2694 *
2695 * This can be called after a batch operation on task events, in which case
2696 * event_type is a bit mask of the types of events involved. For CPU events,
2697 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2698 */
2699 /*
2700 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2701 * event to the context or enabling existing event in the context. We can
2702 * probably optimize it by rescheduling only affected pmu_ctx.
2703 */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2704 static void ctx_resched(struct perf_cpu_context *cpuctx,
2705 struct perf_event_context *task_ctx,
2706 enum event_type_t event_type)
2707 {
2708 bool cpu_event = !!(event_type & EVENT_CPU);
2709
2710 /*
2711 * If pinned groups are involved, flexible groups also need to be
2712 * scheduled out.
2713 */
2714 if (event_type & EVENT_PINNED)
2715 event_type |= EVENT_FLEXIBLE;
2716
2717 event_type &= EVENT_ALL;
2718
2719 perf_ctx_disable(&cpuctx->ctx, false);
2720 if (task_ctx) {
2721 perf_ctx_disable(task_ctx, false);
2722 task_ctx_sched_out(task_ctx, event_type);
2723 }
2724
2725 /*
2726 * Decide which cpu ctx groups to schedule out based on the types
2727 * of events that caused rescheduling:
2728 * - EVENT_CPU: schedule out corresponding groups;
2729 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2730 * - otherwise, do nothing more.
2731 */
2732 if (cpu_event)
2733 ctx_sched_out(&cpuctx->ctx, event_type);
2734 else if (event_type & EVENT_PINNED)
2735 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2736
2737 perf_event_sched_in(cpuctx, task_ctx);
2738
2739 perf_ctx_enable(&cpuctx->ctx, false);
2740 if (task_ctx)
2741 perf_ctx_enable(task_ctx, false);
2742 }
2743
perf_pmu_resched(struct pmu * pmu)2744 void perf_pmu_resched(struct pmu *pmu)
2745 {
2746 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2747 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2748
2749 perf_ctx_lock(cpuctx, task_ctx);
2750 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2751 perf_ctx_unlock(cpuctx, task_ctx);
2752 }
2753
2754 /*
2755 * Cross CPU call to install and enable a performance event
2756 *
2757 * Very similar to remote_function() + event_function() but cannot assume that
2758 * things like ctx->is_active and cpuctx->task_ctx are set.
2759 */
__perf_install_in_context(void * info)2760 static int __perf_install_in_context(void *info)
2761 {
2762 struct perf_event *event = info;
2763 struct perf_event_context *ctx = event->ctx;
2764 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2765 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2766 bool reprogram = true;
2767 int ret = 0;
2768
2769 raw_spin_lock(&cpuctx->ctx.lock);
2770 if (ctx->task) {
2771 raw_spin_lock(&ctx->lock);
2772 task_ctx = ctx;
2773
2774 reprogram = (ctx->task == current);
2775
2776 /*
2777 * If the task is running, it must be running on this CPU,
2778 * otherwise we cannot reprogram things.
2779 *
2780 * If its not running, we don't care, ctx->lock will
2781 * serialize against it becoming runnable.
2782 */
2783 if (task_curr(ctx->task) && !reprogram) {
2784 ret = -ESRCH;
2785 goto unlock;
2786 }
2787
2788 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2789 } else if (task_ctx) {
2790 raw_spin_lock(&task_ctx->lock);
2791 }
2792
2793 #ifdef CONFIG_CGROUP_PERF
2794 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2795 /*
2796 * If the current cgroup doesn't match the event's
2797 * cgroup, we should not try to schedule it.
2798 */
2799 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2800 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2801 event->cgrp->css.cgroup);
2802 }
2803 #endif
2804
2805 if (reprogram) {
2806 ctx_sched_out(ctx, EVENT_TIME);
2807 add_event_to_ctx(event, ctx);
2808 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2809 } else {
2810 add_event_to_ctx(event, ctx);
2811 }
2812
2813 unlock:
2814 perf_ctx_unlock(cpuctx, task_ctx);
2815
2816 return ret;
2817 }
2818
2819 static bool exclusive_event_installable(struct perf_event *event,
2820 struct perf_event_context *ctx);
2821
2822 /*
2823 * Attach a performance event to a context.
2824 *
2825 * Very similar to event_function_call, see comment there.
2826 */
2827 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2828 perf_install_in_context(struct perf_event_context *ctx,
2829 struct perf_event *event,
2830 int cpu)
2831 {
2832 struct task_struct *task = READ_ONCE(ctx->task);
2833
2834 lockdep_assert_held(&ctx->mutex);
2835
2836 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2837
2838 if (event->cpu != -1)
2839 WARN_ON_ONCE(event->cpu != cpu);
2840
2841 /*
2842 * Ensures that if we can observe event->ctx, both the event and ctx
2843 * will be 'complete'. See perf_iterate_sb_cpu().
2844 */
2845 smp_store_release(&event->ctx, ctx);
2846
2847 /*
2848 * perf_event_attr::disabled events will not run and can be initialized
2849 * without IPI. Except when this is the first event for the context, in
2850 * that case we need the magic of the IPI to set ctx->is_active.
2851 *
2852 * The IOC_ENABLE that is sure to follow the creation of a disabled
2853 * event will issue the IPI and reprogram the hardware.
2854 */
2855 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2856 ctx->nr_events && !is_cgroup_event(event)) {
2857 raw_spin_lock_irq(&ctx->lock);
2858 if (ctx->task == TASK_TOMBSTONE) {
2859 raw_spin_unlock_irq(&ctx->lock);
2860 return;
2861 }
2862 add_event_to_ctx(event, ctx);
2863 raw_spin_unlock_irq(&ctx->lock);
2864 return;
2865 }
2866
2867 if (!task) {
2868 cpu_function_call(cpu, __perf_install_in_context, event);
2869 return;
2870 }
2871
2872 /*
2873 * Should not happen, we validate the ctx is still alive before calling.
2874 */
2875 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2876 return;
2877
2878 /*
2879 * Installing events is tricky because we cannot rely on ctx->is_active
2880 * to be set in case this is the nr_events 0 -> 1 transition.
2881 *
2882 * Instead we use task_curr(), which tells us if the task is running.
2883 * However, since we use task_curr() outside of rq::lock, we can race
2884 * against the actual state. This means the result can be wrong.
2885 *
2886 * If we get a false positive, we retry, this is harmless.
2887 *
2888 * If we get a false negative, things are complicated. If we are after
2889 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2890 * value must be correct. If we're before, it doesn't matter since
2891 * perf_event_context_sched_in() will program the counter.
2892 *
2893 * However, this hinges on the remote context switch having observed
2894 * our task->perf_event_ctxp[] store, such that it will in fact take
2895 * ctx::lock in perf_event_context_sched_in().
2896 *
2897 * We do this by task_function_call(), if the IPI fails to hit the task
2898 * we know any future context switch of task must see the
2899 * perf_event_ctpx[] store.
2900 */
2901
2902 /*
2903 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2904 * task_cpu() load, such that if the IPI then does not find the task
2905 * running, a future context switch of that task must observe the
2906 * store.
2907 */
2908 smp_mb();
2909 again:
2910 if (!task_function_call(task, __perf_install_in_context, event))
2911 return;
2912
2913 raw_spin_lock_irq(&ctx->lock);
2914 task = ctx->task;
2915 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2916 /*
2917 * Cannot happen because we already checked above (which also
2918 * cannot happen), and we hold ctx->mutex, which serializes us
2919 * against perf_event_exit_task_context().
2920 */
2921 raw_spin_unlock_irq(&ctx->lock);
2922 return;
2923 }
2924 /*
2925 * If the task is not running, ctx->lock will avoid it becoming so,
2926 * thus we can safely install the event.
2927 */
2928 if (task_curr(task)) {
2929 raw_spin_unlock_irq(&ctx->lock);
2930 goto again;
2931 }
2932 add_event_to_ctx(event, ctx);
2933 raw_spin_unlock_irq(&ctx->lock);
2934 }
2935
2936 /*
2937 * Cross CPU call to enable a performance event
2938 */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2939 static void __perf_event_enable(struct perf_event *event,
2940 struct perf_cpu_context *cpuctx,
2941 struct perf_event_context *ctx,
2942 void *info)
2943 {
2944 struct perf_event *leader = event->group_leader;
2945 struct perf_event_context *task_ctx;
2946
2947 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2948 event->state <= PERF_EVENT_STATE_ERROR)
2949 return;
2950
2951 if (ctx->is_active)
2952 ctx_sched_out(ctx, EVENT_TIME);
2953
2954 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2955 perf_cgroup_event_enable(event, ctx);
2956
2957 if (!ctx->is_active)
2958 return;
2959
2960 if (!event_filter_match(event)) {
2961 ctx_sched_in(ctx, EVENT_TIME);
2962 return;
2963 }
2964
2965 /*
2966 * If the event is in a group and isn't the group leader,
2967 * then don't put it on unless the group is on.
2968 */
2969 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2970 ctx_sched_in(ctx, EVENT_TIME);
2971 return;
2972 }
2973
2974 task_ctx = cpuctx->task_ctx;
2975 if (ctx->task)
2976 WARN_ON_ONCE(task_ctx != ctx);
2977
2978 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2979 }
2980
2981 /*
2982 * Enable an event.
2983 *
2984 * If event->ctx is a cloned context, callers must make sure that
2985 * every task struct that event->ctx->task could possibly point to
2986 * remains valid. This condition is satisfied when called through
2987 * perf_event_for_each_child or perf_event_for_each as described
2988 * for perf_event_disable.
2989 */
_perf_event_enable(struct perf_event * event)2990 static void _perf_event_enable(struct perf_event *event)
2991 {
2992 struct perf_event_context *ctx = event->ctx;
2993
2994 raw_spin_lock_irq(&ctx->lock);
2995 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2996 event->state < PERF_EVENT_STATE_ERROR) {
2997 out:
2998 raw_spin_unlock_irq(&ctx->lock);
2999 return;
3000 }
3001
3002 /*
3003 * If the event is in error state, clear that first.
3004 *
3005 * That way, if we see the event in error state below, we know that it
3006 * has gone back into error state, as distinct from the task having
3007 * been scheduled away before the cross-call arrived.
3008 */
3009 if (event->state == PERF_EVENT_STATE_ERROR) {
3010 /*
3011 * Detached SIBLING events cannot leave ERROR state.
3012 */
3013 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3014 event->group_leader == event)
3015 goto out;
3016
3017 event->state = PERF_EVENT_STATE_OFF;
3018 }
3019 raw_spin_unlock_irq(&ctx->lock);
3020
3021 event_function_call(event, __perf_event_enable, NULL);
3022 }
3023
3024 /*
3025 * See perf_event_disable();
3026 */
perf_event_enable(struct perf_event * event)3027 void perf_event_enable(struct perf_event *event)
3028 {
3029 struct perf_event_context *ctx;
3030
3031 ctx = perf_event_ctx_lock(event);
3032 _perf_event_enable(event);
3033 perf_event_ctx_unlock(event, ctx);
3034 }
3035 EXPORT_SYMBOL_GPL(perf_event_enable);
3036
3037 struct stop_event_data {
3038 struct perf_event *event;
3039 unsigned int restart;
3040 };
3041
__perf_event_stop(void * info)3042 static int __perf_event_stop(void *info)
3043 {
3044 struct stop_event_data *sd = info;
3045 struct perf_event *event = sd->event;
3046
3047 /* if it's already INACTIVE, do nothing */
3048 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3049 return 0;
3050
3051 /* matches smp_wmb() in event_sched_in() */
3052 smp_rmb();
3053
3054 /*
3055 * There is a window with interrupts enabled before we get here,
3056 * so we need to check again lest we try to stop another CPU's event.
3057 */
3058 if (READ_ONCE(event->oncpu) != smp_processor_id())
3059 return -EAGAIN;
3060
3061 event->pmu->stop(event, PERF_EF_UPDATE);
3062
3063 /*
3064 * May race with the actual stop (through perf_pmu_output_stop()),
3065 * but it is only used for events with AUX ring buffer, and such
3066 * events will refuse to restart because of rb::aux_mmap_count==0,
3067 * see comments in perf_aux_output_begin().
3068 *
3069 * Since this is happening on an event-local CPU, no trace is lost
3070 * while restarting.
3071 */
3072 if (sd->restart)
3073 event->pmu->start(event, 0);
3074
3075 return 0;
3076 }
3077
perf_event_stop(struct perf_event * event,int restart)3078 static int perf_event_stop(struct perf_event *event, int restart)
3079 {
3080 struct stop_event_data sd = {
3081 .event = event,
3082 .restart = restart,
3083 };
3084 int ret = 0;
3085
3086 do {
3087 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3088 return 0;
3089
3090 /* matches smp_wmb() in event_sched_in() */
3091 smp_rmb();
3092
3093 /*
3094 * We only want to restart ACTIVE events, so if the event goes
3095 * inactive here (event->oncpu==-1), there's nothing more to do;
3096 * fall through with ret==-ENXIO.
3097 */
3098 ret = cpu_function_call(READ_ONCE(event->oncpu),
3099 __perf_event_stop, &sd);
3100 } while (ret == -EAGAIN);
3101
3102 return ret;
3103 }
3104
3105 /*
3106 * In order to contain the amount of racy and tricky in the address filter
3107 * configuration management, it is a two part process:
3108 *
3109 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3110 * we update the addresses of corresponding vmas in
3111 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3112 * (p2) when an event is scheduled in (pmu::add), it calls
3113 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3114 * if the generation has changed since the previous call.
3115 *
3116 * If (p1) happens while the event is active, we restart it to force (p2).
3117 *
3118 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3119 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3120 * ioctl;
3121 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3122 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3123 * for reading;
3124 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3125 * of exec.
3126 */
perf_event_addr_filters_sync(struct perf_event * event)3127 void perf_event_addr_filters_sync(struct perf_event *event)
3128 {
3129 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3130
3131 if (!has_addr_filter(event))
3132 return;
3133
3134 raw_spin_lock(&ifh->lock);
3135 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3136 event->pmu->addr_filters_sync(event);
3137 event->hw.addr_filters_gen = event->addr_filters_gen;
3138 }
3139 raw_spin_unlock(&ifh->lock);
3140 }
3141 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3142
_perf_event_refresh(struct perf_event * event,int refresh)3143 static int _perf_event_refresh(struct perf_event *event, int refresh)
3144 {
3145 /*
3146 * not supported on inherited events
3147 */
3148 if (event->attr.inherit || !is_sampling_event(event))
3149 return -EINVAL;
3150
3151 atomic_add(refresh, &event->event_limit);
3152 _perf_event_enable(event);
3153
3154 return 0;
3155 }
3156
3157 /*
3158 * See perf_event_disable()
3159 */
perf_event_refresh(struct perf_event * event,int refresh)3160 int perf_event_refresh(struct perf_event *event, int refresh)
3161 {
3162 struct perf_event_context *ctx;
3163 int ret;
3164
3165 ctx = perf_event_ctx_lock(event);
3166 ret = _perf_event_refresh(event, refresh);
3167 perf_event_ctx_unlock(event, ctx);
3168
3169 return ret;
3170 }
3171 EXPORT_SYMBOL_GPL(perf_event_refresh);
3172
perf_event_modify_breakpoint(struct perf_event * bp,struct perf_event_attr * attr)3173 static int perf_event_modify_breakpoint(struct perf_event *bp,
3174 struct perf_event_attr *attr)
3175 {
3176 int err;
3177
3178 _perf_event_disable(bp);
3179
3180 err = modify_user_hw_breakpoint_check(bp, attr, true);
3181
3182 if (!bp->attr.disabled)
3183 _perf_event_enable(bp);
3184
3185 return err;
3186 }
3187
3188 /*
3189 * Copy event-type-independent attributes that may be modified.
3190 */
perf_event_modify_copy_attr(struct perf_event_attr * to,const struct perf_event_attr * from)3191 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3192 const struct perf_event_attr *from)
3193 {
3194 to->sig_data = from->sig_data;
3195 }
3196
perf_event_modify_attr(struct perf_event * event,struct perf_event_attr * attr)3197 static int perf_event_modify_attr(struct perf_event *event,
3198 struct perf_event_attr *attr)
3199 {
3200 int (*func)(struct perf_event *, struct perf_event_attr *);
3201 struct perf_event *child;
3202 int err;
3203
3204 if (event->attr.type != attr->type)
3205 return -EINVAL;
3206
3207 switch (event->attr.type) {
3208 case PERF_TYPE_BREAKPOINT:
3209 func = perf_event_modify_breakpoint;
3210 break;
3211 default:
3212 /* Place holder for future additions. */
3213 return -EOPNOTSUPP;
3214 }
3215
3216 WARN_ON_ONCE(event->ctx->parent_ctx);
3217
3218 mutex_lock(&event->child_mutex);
3219 /*
3220 * Event-type-independent attributes must be copied before event-type
3221 * modification, which will validate that final attributes match the
3222 * source attributes after all relevant attributes have been copied.
3223 */
3224 perf_event_modify_copy_attr(&event->attr, attr);
3225 err = func(event, attr);
3226 if (err)
3227 goto out;
3228 list_for_each_entry(child, &event->child_list, child_list) {
3229 perf_event_modify_copy_attr(&child->attr, attr);
3230 err = func(child, attr);
3231 if (err)
3232 goto out;
3233 }
3234 out:
3235 mutex_unlock(&event->child_mutex);
3236 return err;
3237 }
3238
__pmu_ctx_sched_out(struct perf_event_pmu_context * pmu_ctx,enum event_type_t event_type)3239 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3240 enum event_type_t event_type)
3241 {
3242 struct perf_event_context *ctx = pmu_ctx->ctx;
3243 struct perf_event *event, *tmp;
3244 struct pmu *pmu = pmu_ctx->pmu;
3245
3246 if (ctx->task && !ctx->is_active) {
3247 struct perf_cpu_pmu_context *cpc;
3248
3249 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3250 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3251 cpc->task_epc = NULL;
3252 }
3253
3254 if (!event_type)
3255 return;
3256
3257 perf_pmu_disable(pmu);
3258 if (event_type & EVENT_PINNED) {
3259 list_for_each_entry_safe(event, tmp,
3260 &pmu_ctx->pinned_active,
3261 active_list)
3262 group_sched_out(event, ctx);
3263 }
3264
3265 if (event_type & EVENT_FLEXIBLE) {
3266 list_for_each_entry_safe(event, tmp,
3267 &pmu_ctx->flexible_active,
3268 active_list)
3269 group_sched_out(event, ctx);
3270 /*
3271 * Since we cleared EVENT_FLEXIBLE, also clear
3272 * rotate_necessary, is will be reset by
3273 * ctx_flexible_sched_in() when needed.
3274 */
3275 pmu_ctx->rotate_necessary = 0;
3276 }
3277 perf_pmu_enable(pmu);
3278 }
3279
3280 static void
ctx_sched_out(struct perf_event_context * ctx,enum event_type_t event_type)3281 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3282 {
3283 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3284 struct perf_event_pmu_context *pmu_ctx;
3285 int is_active = ctx->is_active;
3286 bool cgroup = event_type & EVENT_CGROUP;
3287
3288 event_type &= ~EVENT_CGROUP;
3289
3290 lockdep_assert_held(&ctx->lock);
3291
3292 if (likely(!ctx->nr_events)) {
3293 /*
3294 * See __perf_remove_from_context().
3295 */
3296 WARN_ON_ONCE(ctx->is_active);
3297 if (ctx->task)
3298 WARN_ON_ONCE(cpuctx->task_ctx);
3299 return;
3300 }
3301
3302 /*
3303 * Always update time if it was set; not only when it changes.
3304 * Otherwise we can 'forget' to update time for any but the last
3305 * context we sched out. For example:
3306 *
3307 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3308 * ctx_sched_out(.event_type = EVENT_PINNED)
3309 *
3310 * would only update time for the pinned events.
3311 */
3312 if (is_active & EVENT_TIME) {
3313 /* update (and stop) ctx time */
3314 update_context_time(ctx);
3315 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3316 /*
3317 * CPU-release for the below ->is_active store,
3318 * see __load_acquire() in perf_event_time_now()
3319 */
3320 barrier();
3321 }
3322
3323 ctx->is_active &= ~event_type;
3324 if (!(ctx->is_active & EVENT_ALL))
3325 ctx->is_active = 0;
3326
3327 if (ctx->task) {
3328 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3329 if (!ctx->is_active)
3330 cpuctx->task_ctx = NULL;
3331 }
3332
3333 is_active ^= ctx->is_active; /* changed bits */
3334
3335 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3336 if (cgroup && !pmu_ctx->nr_cgroups)
3337 continue;
3338 __pmu_ctx_sched_out(pmu_ctx, is_active);
3339 }
3340 }
3341
3342 /*
3343 * Test whether two contexts are equivalent, i.e. whether they have both been
3344 * cloned from the same version of the same context.
3345 *
3346 * Equivalence is measured using a generation number in the context that is
3347 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3348 * and list_del_event().
3349 */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)3350 static int context_equiv(struct perf_event_context *ctx1,
3351 struct perf_event_context *ctx2)
3352 {
3353 lockdep_assert_held(&ctx1->lock);
3354 lockdep_assert_held(&ctx2->lock);
3355
3356 /* Pinning disables the swap optimization */
3357 if (ctx1->pin_count || ctx2->pin_count)
3358 return 0;
3359
3360 /* If ctx1 is the parent of ctx2 */
3361 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3362 return 1;
3363
3364 /* If ctx2 is the parent of ctx1 */
3365 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3366 return 1;
3367
3368 /*
3369 * If ctx1 and ctx2 have the same parent; we flatten the parent
3370 * hierarchy, see perf_event_init_context().
3371 */
3372 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3373 ctx1->parent_gen == ctx2->parent_gen)
3374 return 1;
3375
3376 /* Unmatched */
3377 return 0;
3378 }
3379
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)3380 static void __perf_event_sync_stat(struct perf_event *event,
3381 struct perf_event *next_event)
3382 {
3383 u64 value;
3384
3385 if (!event->attr.inherit_stat)
3386 return;
3387
3388 /*
3389 * Update the event value, we cannot use perf_event_read()
3390 * because we're in the middle of a context switch and have IRQs
3391 * disabled, which upsets smp_call_function_single(), however
3392 * we know the event must be on the current CPU, therefore we
3393 * don't need to use it.
3394 */
3395 if (event->state == PERF_EVENT_STATE_ACTIVE)
3396 event->pmu->read(event);
3397
3398 perf_event_update_time(event);
3399
3400 /*
3401 * In order to keep per-task stats reliable we need to flip the event
3402 * values when we flip the contexts.
3403 */
3404 value = local64_read(&next_event->count);
3405 value = local64_xchg(&event->count, value);
3406 local64_set(&next_event->count, value);
3407
3408 swap(event->total_time_enabled, next_event->total_time_enabled);
3409 swap(event->total_time_running, next_event->total_time_running);
3410
3411 /*
3412 * Since we swizzled the values, update the user visible data too.
3413 */
3414 perf_event_update_userpage(event);
3415 perf_event_update_userpage(next_event);
3416 }
3417
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)3418 static void perf_event_sync_stat(struct perf_event_context *ctx,
3419 struct perf_event_context *next_ctx)
3420 {
3421 struct perf_event *event, *next_event;
3422
3423 if (!ctx->nr_stat)
3424 return;
3425
3426 update_context_time(ctx);
3427
3428 event = list_first_entry(&ctx->event_list,
3429 struct perf_event, event_entry);
3430
3431 next_event = list_first_entry(&next_ctx->event_list,
3432 struct perf_event, event_entry);
3433
3434 while (&event->event_entry != &ctx->event_list &&
3435 &next_event->event_entry != &next_ctx->event_list) {
3436
3437 __perf_event_sync_stat(event, next_event);
3438
3439 event = list_next_entry(event, event_entry);
3440 next_event = list_next_entry(next_event, event_entry);
3441 }
3442 }
3443
3444 #define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3445 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3446 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3447 !list_entry_is_head(pos1, head1, member) && \
3448 !list_entry_is_head(pos2, head2, member); \
3449 pos1 = list_next_entry(pos1, member), \
3450 pos2 = list_next_entry(pos2, member))
3451
perf_event_swap_task_ctx_data(struct perf_event_context * prev_ctx,struct perf_event_context * next_ctx)3452 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3453 struct perf_event_context *next_ctx)
3454 {
3455 struct perf_event_pmu_context *prev_epc, *next_epc;
3456
3457 if (!prev_ctx->nr_task_data)
3458 return;
3459
3460 double_list_for_each_entry(prev_epc, next_epc,
3461 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3462 pmu_ctx_entry) {
3463
3464 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3465 continue;
3466
3467 /*
3468 * PMU specific parts of task perf context can require
3469 * additional synchronization. As an example of such
3470 * synchronization see implementation details of Intel
3471 * LBR call stack data profiling;
3472 */
3473 if (prev_epc->pmu->swap_task_ctx)
3474 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3475 else
3476 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3477 }
3478 }
3479
perf_ctx_sched_task_cb(struct perf_event_context * ctx,bool sched_in)3480 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3481 {
3482 struct perf_event_pmu_context *pmu_ctx;
3483 struct perf_cpu_pmu_context *cpc;
3484
3485 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3486 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3487
3488 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3489 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3490 }
3491 }
3492
3493 static void
perf_event_context_sched_out(struct task_struct * task,struct task_struct * next)3494 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3495 {
3496 struct perf_event_context *ctx = task->perf_event_ctxp;
3497 struct perf_event_context *next_ctx;
3498 struct perf_event_context *parent, *next_parent;
3499 int do_switch = 1;
3500
3501 if (likely(!ctx))
3502 return;
3503
3504 rcu_read_lock();
3505 next_ctx = rcu_dereference(next->perf_event_ctxp);
3506 if (!next_ctx)
3507 goto unlock;
3508
3509 parent = rcu_dereference(ctx->parent_ctx);
3510 next_parent = rcu_dereference(next_ctx->parent_ctx);
3511
3512 /* If neither context have a parent context; they cannot be clones. */
3513 if (!parent && !next_parent)
3514 goto unlock;
3515
3516 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3517 /*
3518 * Looks like the two contexts are clones, so we might be
3519 * able to optimize the context switch. We lock both
3520 * contexts and check that they are clones under the
3521 * lock (including re-checking that neither has been
3522 * uncloned in the meantime). It doesn't matter which
3523 * order we take the locks because no other cpu could
3524 * be trying to lock both of these tasks.
3525 */
3526 raw_spin_lock(&ctx->lock);
3527 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3528 if (context_equiv(ctx, next_ctx)) {
3529
3530 perf_ctx_disable(ctx, false);
3531
3532 /* PMIs are disabled; ctx->nr_pending is stable. */
3533 if (local_read(&ctx->nr_pending) ||
3534 local_read(&next_ctx->nr_pending)) {
3535 /*
3536 * Must not swap out ctx when there's pending
3537 * events that rely on the ctx->task relation.
3538 */
3539 raw_spin_unlock(&next_ctx->lock);
3540 rcu_read_unlock();
3541 goto inside_switch;
3542 }
3543
3544 WRITE_ONCE(ctx->task, next);
3545 WRITE_ONCE(next_ctx->task, task);
3546
3547 perf_ctx_sched_task_cb(ctx, false);
3548 perf_event_swap_task_ctx_data(ctx, next_ctx);
3549
3550 perf_ctx_enable(ctx, false);
3551
3552 /*
3553 * RCU_INIT_POINTER here is safe because we've not
3554 * modified the ctx and the above modification of
3555 * ctx->task and ctx->task_ctx_data are immaterial
3556 * since those values are always verified under
3557 * ctx->lock which we're now holding.
3558 */
3559 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3560 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3561
3562 do_switch = 0;
3563
3564 perf_event_sync_stat(ctx, next_ctx);
3565 }
3566 raw_spin_unlock(&next_ctx->lock);
3567 raw_spin_unlock(&ctx->lock);
3568 }
3569 unlock:
3570 rcu_read_unlock();
3571
3572 if (do_switch) {
3573 raw_spin_lock(&ctx->lock);
3574 perf_ctx_disable(ctx, false);
3575
3576 inside_switch:
3577 perf_ctx_sched_task_cb(ctx, false);
3578 task_ctx_sched_out(ctx, EVENT_ALL);
3579
3580 perf_ctx_enable(ctx, false);
3581 raw_spin_unlock(&ctx->lock);
3582 }
3583 }
3584
3585 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3586 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3587
perf_sched_cb_dec(struct pmu * pmu)3588 void perf_sched_cb_dec(struct pmu *pmu)
3589 {
3590 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3591
3592 this_cpu_dec(perf_sched_cb_usages);
3593 barrier();
3594
3595 if (!--cpc->sched_cb_usage)
3596 list_del(&cpc->sched_cb_entry);
3597 }
3598
3599
perf_sched_cb_inc(struct pmu * pmu)3600 void perf_sched_cb_inc(struct pmu *pmu)
3601 {
3602 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3603
3604 if (!cpc->sched_cb_usage++)
3605 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3606
3607 barrier();
3608 this_cpu_inc(perf_sched_cb_usages);
3609 }
3610
3611 /*
3612 * This function provides the context switch callback to the lower code
3613 * layer. It is invoked ONLY when the context switch callback is enabled.
3614 *
3615 * This callback is relevant even to per-cpu events; for example multi event
3616 * PEBS requires this to provide PID/TID information. This requires we flush
3617 * all queued PEBS records before we context switch to a new task.
3618 */
__perf_pmu_sched_task(struct perf_cpu_pmu_context * cpc,bool sched_in)3619 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3620 {
3621 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3622 struct pmu *pmu;
3623
3624 pmu = cpc->epc.pmu;
3625
3626 /* software PMUs will not have sched_task */
3627 if (WARN_ON_ONCE(!pmu->sched_task))
3628 return;
3629
3630 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3631 perf_pmu_disable(pmu);
3632
3633 pmu->sched_task(cpc->task_epc, sched_in);
3634
3635 perf_pmu_enable(pmu);
3636 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3637 }
3638
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3639 static void perf_pmu_sched_task(struct task_struct *prev,
3640 struct task_struct *next,
3641 bool sched_in)
3642 {
3643 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3644 struct perf_cpu_pmu_context *cpc;
3645
3646 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3647 if (prev == next || cpuctx->task_ctx)
3648 return;
3649
3650 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3651 __perf_pmu_sched_task(cpc, sched_in);
3652 }
3653
3654 static void perf_event_switch(struct task_struct *task,
3655 struct task_struct *next_prev, bool sched_in);
3656
3657 /*
3658 * Called from scheduler to remove the events of the current task,
3659 * with interrupts disabled.
3660 *
3661 * We stop each event and update the event value in event->count.
3662 *
3663 * This does not protect us against NMI, but disable()
3664 * sets the disabled bit in the control field of event _before_
3665 * accessing the event control register. If a NMI hits, then it will
3666 * not restart the event.
3667 */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3668 void __perf_event_task_sched_out(struct task_struct *task,
3669 struct task_struct *next)
3670 {
3671 if (__this_cpu_read(perf_sched_cb_usages))
3672 perf_pmu_sched_task(task, next, false);
3673
3674 if (atomic_read(&nr_switch_events))
3675 perf_event_switch(task, next, false);
3676
3677 perf_event_context_sched_out(task, next);
3678
3679 /*
3680 * if cgroup events exist on this CPU, then we need
3681 * to check if we have to switch out PMU state.
3682 * cgroup event are system-wide mode only
3683 */
3684 perf_cgroup_switch(next);
3685 }
3686
perf_less_group_idx(const void * l,const void * r)3687 static bool perf_less_group_idx(const void *l, const void *r)
3688 {
3689 const struct perf_event *le = *(const struct perf_event **)l;
3690 const struct perf_event *re = *(const struct perf_event **)r;
3691
3692 return le->group_index < re->group_index;
3693 }
3694
swap_ptr(void * l,void * r)3695 static void swap_ptr(void *l, void *r)
3696 {
3697 void **lp = l, **rp = r;
3698
3699 swap(*lp, *rp);
3700 }
3701
3702 static const struct min_heap_callbacks perf_min_heap = {
3703 .elem_size = sizeof(struct perf_event *),
3704 .less = perf_less_group_idx,
3705 .swp = swap_ptr,
3706 };
3707
__heap_add(struct min_heap * heap,struct perf_event * event)3708 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3709 {
3710 struct perf_event **itrs = heap->data;
3711
3712 if (event) {
3713 itrs[heap->nr] = event;
3714 heap->nr++;
3715 }
3716 }
3717
__link_epc(struct perf_event_pmu_context * pmu_ctx)3718 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3719 {
3720 struct perf_cpu_pmu_context *cpc;
3721
3722 if (!pmu_ctx->ctx->task)
3723 return;
3724
3725 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3726 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3727 cpc->task_epc = pmu_ctx;
3728 }
3729
visit_groups_merge(struct perf_event_context * ctx,struct perf_event_groups * groups,int cpu,struct pmu * pmu,int (* func)(struct perf_event *,void *),void * data)3730 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3731 struct perf_event_groups *groups, int cpu,
3732 struct pmu *pmu,
3733 int (*func)(struct perf_event *, void *),
3734 void *data)
3735 {
3736 #ifdef CONFIG_CGROUP_PERF
3737 struct cgroup_subsys_state *css = NULL;
3738 #endif
3739 struct perf_cpu_context *cpuctx = NULL;
3740 /* Space for per CPU and/or any CPU event iterators. */
3741 struct perf_event *itrs[2];
3742 struct min_heap event_heap;
3743 struct perf_event **evt;
3744 int ret;
3745
3746 if (pmu->filter && pmu->filter(pmu, cpu))
3747 return 0;
3748
3749 if (!ctx->task) {
3750 cpuctx = this_cpu_ptr(&perf_cpu_context);
3751 event_heap = (struct min_heap){
3752 .data = cpuctx->heap,
3753 .nr = 0,
3754 .size = cpuctx->heap_size,
3755 };
3756
3757 lockdep_assert_held(&cpuctx->ctx.lock);
3758
3759 #ifdef CONFIG_CGROUP_PERF
3760 if (cpuctx->cgrp)
3761 css = &cpuctx->cgrp->css;
3762 #endif
3763 } else {
3764 event_heap = (struct min_heap){
3765 .data = itrs,
3766 .nr = 0,
3767 .size = ARRAY_SIZE(itrs),
3768 };
3769 /* Events not within a CPU context may be on any CPU. */
3770 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3771 }
3772 evt = event_heap.data;
3773
3774 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3775
3776 #ifdef CONFIG_CGROUP_PERF
3777 for (; css; css = css->parent)
3778 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3779 #endif
3780
3781 if (event_heap.nr) {
3782 __link_epc((*evt)->pmu_ctx);
3783 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3784 }
3785
3786 min_heapify_all(&event_heap, &perf_min_heap);
3787
3788 while (event_heap.nr) {
3789 ret = func(*evt, data);
3790 if (ret)
3791 return ret;
3792
3793 *evt = perf_event_groups_next(*evt, pmu);
3794 if (*evt)
3795 min_heapify(&event_heap, 0, &perf_min_heap);
3796 else
3797 min_heap_pop(&event_heap, &perf_min_heap);
3798 }
3799
3800 return 0;
3801 }
3802
3803 /*
3804 * Because the userpage is strictly per-event (there is no concept of context,
3805 * so there cannot be a context indirection), every userpage must be updated
3806 * when context time starts :-(
3807 *
3808 * IOW, we must not miss EVENT_TIME edges.
3809 */
event_update_userpage(struct perf_event * event)3810 static inline bool event_update_userpage(struct perf_event *event)
3811 {
3812 if (likely(!atomic_read(&event->mmap_count)))
3813 return false;
3814
3815 perf_event_update_time(event);
3816 perf_event_update_userpage(event);
3817
3818 return true;
3819 }
3820
group_update_userpage(struct perf_event * group_event)3821 static inline void group_update_userpage(struct perf_event *group_event)
3822 {
3823 struct perf_event *event;
3824
3825 if (!event_update_userpage(group_event))
3826 return;
3827
3828 for_each_sibling_event(event, group_event)
3829 event_update_userpage(event);
3830 }
3831
merge_sched_in(struct perf_event * event,void * data)3832 static int merge_sched_in(struct perf_event *event, void *data)
3833 {
3834 struct perf_event_context *ctx = event->ctx;
3835 int *can_add_hw = data;
3836
3837 if (event->state <= PERF_EVENT_STATE_OFF)
3838 return 0;
3839
3840 if (!event_filter_match(event))
3841 return 0;
3842
3843 if (group_can_go_on(event, *can_add_hw)) {
3844 if (!group_sched_in(event, ctx))
3845 list_add_tail(&event->active_list, get_event_list(event));
3846 }
3847
3848 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3849 *can_add_hw = 0;
3850 if (event->attr.pinned) {
3851 perf_cgroup_event_disable(event, ctx);
3852 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3853 } else {
3854 struct perf_cpu_pmu_context *cpc;
3855
3856 event->pmu_ctx->rotate_necessary = 1;
3857 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3858 perf_mux_hrtimer_restart(cpc);
3859 group_update_userpage(event);
3860 }
3861 }
3862
3863 return 0;
3864 }
3865
pmu_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,struct pmu * pmu)3866 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3867 struct perf_event_groups *groups,
3868 struct pmu *pmu)
3869 {
3870 int can_add_hw = 1;
3871 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3872 merge_sched_in, &can_add_hw);
3873 }
3874
ctx_groups_sched_in(struct perf_event_context * ctx,struct perf_event_groups * groups,bool cgroup)3875 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3876 struct perf_event_groups *groups,
3877 bool cgroup)
3878 {
3879 struct perf_event_pmu_context *pmu_ctx;
3880
3881 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3882 if (cgroup && !pmu_ctx->nr_cgroups)
3883 continue;
3884 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3885 }
3886 }
3887
__pmu_ctx_sched_in(struct perf_event_context * ctx,struct pmu * pmu)3888 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3889 struct pmu *pmu)
3890 {
3891 pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3892 }
3893
3894 static void
ctx_sched_in(struct perf_event_context * ctx,enum event_type_t event_type)3895 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3896 {
3897 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3898 int is_active = ctx->is_active;
3899 bool cgroup = event_type & EVENT_CGROUP;
3900
3901 event_type &= ~EVENT_CGROUP;
3902
3903 lockdep_assert_held(&ctx->lock);
3904
3905 if (likely(!ctx->nr_events))
3906 return;
3907
3908 if (!(is_active & EVENT_TIME)) {
3909 /* start ctx time */
3910 __update_context_time(ctx, false);
3911 perf_cgroup_set_timestamp(cpuctx);
3912 /*
3913 * CPU-release for the below ->is_active store,
3914 * see __load_acquire() in perf_event_time_now()
3915 */
3916 barrier();
3917 }
3918
3919 ctx->is_active |= (event_type | EVENT_TIME);
3920 if (ctx->task) {
3921 if (!is_active)
3922 cpuctx->task_ctx = ctx;
3923 else
3924 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3925 }
3926
3927 is_active ^= ctx->is_active; /* changed bits */
3928
3929 /*
3930 * First go through the list and put on any pinned groups
3931 * in order to give them the best chance of going on.
3932 */
3933 if (is_active & EVENT_PINNED)
3934 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3935
3936 /* Then walk through the lower prio flexible groups */
3937 if (is_active & EVENT_FLEXIBLE)
3938 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3939 }
3940
perf_event_context_sched_in(struct task_struct * task)3941 static void perf_event_context_sched_in(struct task_struct *task)
3942 {
3943 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3944 struct perf_event_context *ctx;
3945
3946 rcu_read_lock();
3947 ctx = rcu_dereference(task->perf_event_ctxp);
3948 if (!ctx)
3949 goto rcu_unlock;
3950
3951 if (cpuctx->task_ctx == ctx) {
3952 perf_ctx_lock(cpuctx, ctx);
3953 perf_ctx_disable(ctx, false);
3954
3955 perf_ctx_sched_task_cb(ctx, true);
3956
3957 perf_ctx_enable(ctx, false);
3958 perf_ctx_unlock(cpuctx, ctx);
3959 goto rcu_unlock;
3960 }
3961
3962 perf_ctx_lock(cpuctx, ctx);
3963 /*
3964 * We must check ctx->nr_events while holding ctx->lock, such
3965 * that we serialize against perf_install_in_context().
3966 */
3967 if (!ctx->nr_events)
3968 goto unlock;
3969
3970 perf_ctx_disable(ctx, false);
3971 /*
3972 * We want to keep the following priority order:
3973 * cpu pinned (that don't need to move), task pinned,
3974 * cpu flexible, task flexible.
3975 *
3976 * However, if task's ctx is not carrying any pinned
3977 * events, no need to flip the cpuctx's events around.
3978 */
3979 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3980 perf_ctx_disable(&cpuctx->ctx, false);
3981 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3982 }
3983
3984 perf_event_sched_in(cpuctx, ctx);
3985
3986 perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3987
3988 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3989 perf_ctx_enable(&cpuctx->ctx, false);
3990
3991 perf_ctx_enable(ctx, false);
3992
3993 unlock:
3994 perf_ctx_unlock(cpuctx, ctx);
3995 rcu_unlock:
3996 rcu_read_unlock();
3997 }
3998
3999 /*
4000 * Called from scheduler to add the events of the current task
4001 * with interrupts disabled.
4002 *
4003 * We restore the event value and then enable it.
4004 *
4005 * This does not protect us against NMI, but enable()
4006 * sets the enabled bit in the control field of event _before_
4007 * accessing the event control register. If a NMI hits, then it will
4008 * keep the event running.
4009 */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)4010 void __perf_event_task_sched_in(struct task_struct *prev,
4011 struct task_struct *task)
4012 {
4013 perf_event_context_sched_in(task);
4014
4015 if (atomic_read(&nr_switch_events))
4016 perf_event_switch(task, prev, true);
4017
4018 if (__this_cpu_read(perf_sched_cb_usages))
4019 perf_pmu_sched_task(prev, task, true);
4020 }
4021
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)4022 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4023 {
4024 u64 frequency = event->attr.sample_freq;
4025 u64 sec = NSEC_PER_SEC;
4026 u64 divisor, dividend;
4027
4028 int count_fls, nsec_fls, frequency_fls, sec_fls;
4029
4030 count_fls = fls64(count);
4031 nsec_fls = fls64(nsec);
4032 frequency_fls = fls64(frequency);
4033 sec_fls = 30;
4034
4035 /*
4036 * We got @count in @nsec, with a target of sample_freq HZ
4037 * the target period becomes:
4038 *
4039 * @count * 10^9
4040 * period = -------------------
4041 * @nsec * sample_freq
4042 *
4043 */
4044
4045 /*
4046 * Reduce accuracy by one bit such that @a and @b converge
4047 * to a similar magnitude.
4048 */
4049 #define REDUCE_FLS(a, b) \
4050 do { \
4051 if (a##_fls > b##_fls) { \
4052 a >>= 1; \
4053 a##_fls--; \
4054 } else { \
4055 b >>= 1; \
4056 b##_fls--; \
4057 } \
4058 } while (0)
4059
4060 /*
4061 * Reduce accuracy until either term fits in a u64, then proceed with
4062 * the other, so that finally we can do a u64/u64 division.
4063 */
4064 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4065 REDUCE_FLS(nsec, frequency);
4066 REDUCE_FLS(sec, count);
4067 }
4068
4069 if (count_fls + sec_fls > 64) {
4070 divisor = nsec * frequency;
4071
4072 while (count_fls + sec_fls > 64) {
4073 REDUCE_FLS(count, sec);
4074 divisor >>= 1;
4075 }
4076
4077 dividend = count * sec;
4078 } else {
4079 dividend = count * sec;
4080
4081 while (nsec_fls + frequency_fls > 64) {
4082 REDUCE_FLS(nsec, frequency);
4083 dividend >>= 1;
4084 }
4085
4086 divisor = nsec * frequency;
4087 }
4088
4089 if (!divisor)
4090 return dividend;
4091
4092 return div64_u64(dividend, divisor);
4093 }
4094
4095 static DEFINE_PER_CPU(int, perf_throttled_count);
4096 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4097
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)4098 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4099 {
4100 struct hw_perf_event *hwc = &event->hw;
4101 s64 period, sample_period;
4102 s64 delta;
4103
4104 period = perf_calculate_period(event, nsec, count);
4105
4106 delta = (s64)(period - hwc->sample_period);
4107 if (delta >= 0)
4108 delta += 7;
4109 else
4110 delta -= 7;
4111 delta /= 8; /* low pass filter */
4112
4113 sample_period = hwc->sample_period + delta;
4114
4115 if (!sample_period)
4116 sample_period = 1;
4117
4118 hwc->sample_period = sample_period;
4119
4120 if (local64_read(&hwc->period_left) > 8*sample_period) {
4121 if (disable)
4122 event->pmu->stop(event, PERF_EF_UPDATE);
4123
4124 local64_set(&hwc->period_left, 0);
4125
4126 if (disable)
4127 event->pmu->start(event, PERF_EF_RELOAD);
4128 }
4129 }
4130
4131 /*
4132 * combine freq adjustment with unthrottling to avoid two passes over the
4133 * events. At the same time, make sure, having freq events does not change
4134 * the rate of unthrottling as that would introduce bias.
4135 */
4136 static void
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,bool unthrottle)4137 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4138 {
4139 struct perf_event *event;
4140 struct hw_perf_event *hwc;
4141 u64 now, period = TICK_NSEC;
4142 s64 delta;
4143
4144 /*
4145 * only need to iterate over all events iff:
4146 * - context have events in frequency mode (needs freq adjust)
4147 * - there are events to unthrottle on this cpu
4148 */
4149 if (!(ctx->nr_freq || unthrottle))
4150 return;
4151
4152 raw_spin_lock(&ctx->lock);
4153
4154 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4155 if (event->state != PERF_EVENT_STATE_ACTIVE)
4156 continue;
4157
4158 // XXX use visit thingy to avoid the -1,cpu match
4159 if (!event_filter_match(event))
4160 continue;
4161
4162 perf_pmu_disable(event->pmu);
4163
4164 hwc = &event->hw;
4165
4166 if (hwc->interrupts == MAX_INTERRUPTS) {
4167 hwc->interrupts = 0;
4168 perf_log_throttle(event, 1);
4169 event->pmu->start(event, 0);
4170 }
4171
4172 if (!event->attr.freq || !event->attr.sample_freq)
4173 goto next;
4174
4175 /*
4176 * stop the event and update event->count
4177 */
4178 event->pmu->stop(event, PERF_EF_UPDATE);
4179
4180 now = local64_read(&event->count);
4181 delta = now - hwc->freq_count_stamp;
4182 hwc->freq_count_stamp = now;
4183
4184 /*
4185 * restart the event
4186 * reload only if value has changed
4187 * we have stopped the event so tell that
4188 * to perf_adjust_period() to avoid stopping it
4189 * twice.
4190 */
4191 if (delta > 0)
4192 perf_adjust_period(event, period, delta, false);
4193
4194 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4195 next:
4196 perf_pmu_enable(event->pmu);
4197 }
4198
4199 raw_spin_unlock(&ctx->lock);
4200 }
4201
4202 /*
4203 * Move @event to the tail of the @ctx's elegible events.
4204 */
rotate_ctx(struct perf_event_context * ctx,struct perf_event * event)4205 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4206 {
4207 /*
4208 * Rotate the first entry last of non-pinned groups. Rotation might be
4209 * disabled by the inheritance code.
4210 */
4211 if (ctx->rotate_disable)
4212 return;
4213
4214 perf_event_groups_delete(&ctx->flexible_groups, event);
4215 perf_event_groups_insert(&ctx->flexible_groups, event);
4216 }
4217
4218 /* pick an event from the flexible_groups to rotate */
4219 static inline struct perf_event *
ctx_event_to_rotate(struct perf_event_pmu_context * pmu_ctx)4220 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4221 {
4222 struct perf_event *event;
4223 struct rb_node *node;
4224 struct rb_root *tree;
4225 struct __group_key key = {
4226 .pmu = pmu_ctx->pmu,
4227 };
4228
4229 /* pick the first active flexible event */
4230 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4231 struct perf_event, active_list);
4232 if (event)
4233 goto out;
4234
4235 /* if no active flexible event, pick the first event */
4236 tree = &pmu_ctx->ctx->flexible_groups.tree;
4237
4238 if (!pmu_ctx->ctx->task) {
4239 key.cpu = smp_processor_id();
4240
4241 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4242 if (node)
4243 event = __node_2_pe(node);
4244 goto out;
4245 }
4246
4247 key.cpu = -1;
4248 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4249 if (node) {
4250 event = __node_2_pe(node);
4251 goto out;
4252 }
4253
4254 key.cpu = smp_processor_id();
4255 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256 if (node)
4257 event = __node_2_pe(node);
4258
4259 out:
4260 /*
4261 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4262 * finds there are unschedulable events, it will set it again.
4263 */
4264 pmu_ctx->rotate_necessary = 0;
4265
4266 return event;
4267 }
4268
perf_rotate_context(struct perf_cpu_pmu_context * cpc)4269 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4270 {
4271 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4272 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4273 struct perf_event *cpu_event = NULL, *task_event = NULL;
4274 int cpu_rotate, task_rotate;
4275 struct pmu *pmu;
4276
4277 /*
4278 * Since we run this from IRQ context, nobody can install new
4279 * events, thus the event count values are stable.
4280 */
4281
4282 cpu_epc = &cpc->epc;
4283 pmu = cpu_epc->pmu;
4284 task_epc = cpc->task_epc;
4285
4286 cpu_rotate = cpu_epc->rotate_necessary;
4287 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4288
4289 if (!(cpu_rotate || task_rotate))
4290 return false;
4291
4292 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4293 perf_pmu_disable(pmu);
4294
4295 if (task_rotate)
4296 task_event = ctx_event_to_rotate(task_epc);
4297 if (cpu_rotate)
4298 cpu_event = ctx_event_to_rotate(cpu_epc);
4299
4300 /*
4301 * As per the order given at ctx_resched() first 'pop' task flexible
4302 * and then, if needed CPU flexible.
4303 */
4304 if (task_event || (task_epc && cpu_event)) {
4305 update_context_time(task_epc->ctx);
4306 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4307 }
4308
4309 if (cpu_event) {
4310 update_context_time(&cpuctx->ctx);
4311 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4312 rotate_ctx(&cpuctx->ctx, cpu_event);
4313 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4314 }
4315
4316 if (task_event)
4317 rotate_ctx(task_epc->ctx, task_event);
4318
4319 if (task_event || (task_epc && cpu_event))
4320 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4321
4322 perf_pmu_enable(pmu);
4323 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4324
4325 return true;
4326 }
4327
perf_event_task_tick(void)4328 void perf_event_task_tick(void)
4329 {
4330 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4331 struct perf_event_context *ctx;
4332 int throttled;
4333
4334 lockdep_assert_irqs_disabled();
4335
4336 __this_cpu_inc(perf_throttled_seq);
4337 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4338 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4339
4340 perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4341
4342 rcu_read_lock();
4343 ctx = rcu_dereference(current->perf_event_ctxp);
4344 if (ctx)
4345 perf_adjust_freq_unthr_context(ctx, !!throttled);
4346 rcu_read_unlock();
4347 }
4348
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)4349 static int event_enable_on_exec(struct perf_event *event,
4350 struct perf_event_context *ctx)
4351 {
4352 if (!event->attr.enable_on_exec)
4353 return 0;
4354
4355 event->attr.enable_on_exec = 0;
4356 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4357 return 0;
4358
4359 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4360
4361 return 1;
4362 }
4363
4364 /*
4365 * Enable all of a task's events that have been marked enable-on-exec.
4366 * This expects task == current.
4367 */
perf_event_enable_on_exec(struct perf_event_context * ctx)4368 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4369 {
4370 struct perf_event_context *clone_ctx = NULL;
4371 enum event_type_t event_type = 0;
4372 struct perf_cpu_context *cpuctx;
4373 struct perf_event *event;
4374 unsigned long flags;
4375 int enabled = 0;
4376
4377 local_irq_save(flags);
4378 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4379 goto out;
4380
4381 if (!ctx->nr_events)
4382 goto out;
4383
4384 cpuctx = this_cpu_ptr(&perf_cpu_context);
4385 perf_ctx_lock(cpuctx, ctx);
4386 ctx_sched_out(ctx, EVENT_TIME);
4387
4388 list_for_each_entry(event, &ctx->event_list, event_entry) {
4389 enabled |= event_enable_on_exec(event, ctx);
4390 event_type |= get_event_type(event);
4391 }
4392
4393 /*
4394 * Unclone and reschedule this context if we enabled any event.
4395 */
4396 if (enabled) {
4397 clone_ctx = unclone_ctx(ctx);
4398 ctx_resched(cpuctx, ctx, event_type);
4399 } else {
4400 ctx_sched_in(ctx, EVENT_TIME);
4401 }
4402 perf_ctx_unlock(cpuctx, ctx);
4403
4404 out:
4405 local_irq_restore(flags);
4406
4407 if (clone_ctx)
4408 put_ctx(clone_ctx);
4409 }
4410
4411 static void perf_remove_from_owner(struct perf_event *event);
4412 static void perf_event_exit_event(struct perf_event *event,
4413 struct perf_event_context *ctx);
4414
4415 /*
4416 * Removes all events from the current task that have been marked
4417 * remove-on-exec, and feeds their values back to parent events.
4418 */
perf_event_remove_on_exec(struct perf_event_context * ctx)4419 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4420 {
4421 struct perf_event_context *clone_ctx = NULL;
4422 struct perf_event *event, *next;
4423 unsigned long flags;
4424 bool modified = false;
4425
4426 mutex_lock(&ctx->mutex);
4427
4428 if (WARN_ON_ONCE(ctx->task != current))
4429 goto unlock;
4430
4431 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4432 if (!event->attr.remove_on_exec)
4433 continue;
4434
4435 if (!is_kernel_event(event))
4436 perf_remove_from_owner(event);
4437
4438 modified = true;
4439
4440 perf_event_exit_event(event, ctx);
4441 }
4442
4443 raw_spin_lock_irqsave(&ctx->lock, flags);
4444 if (modified)
4445 clone_ctx = unclone_ctx(ctx);
4446 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4447
4448 unlock:
4449 mutex_unlock(&ctx->mutex);
4450
4451 if (clone_ctx)
4452 put_ctx(clone_ctx);
4453 }
4454
4455 struct perf_read_data {
4456 struct perf_event *event;
4457 bool group;
4458 int ret;
4459 };
4460
__perf_event_read_cpu(struct perf_event * event,int event_cpu)4461 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4462 {
4463 u16 local_pkg, event_pkg;
4464
4465 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4466 int local_cpu = smp_processor_id();
4467
4468 event_pkg = topology_physical_package_id(event_cpu);
4469 local_pkg = topology_physical_package_id(local_cpu);
4470
4471 if (event_pkg == local_pkg)
4472 return local_cpu;
4473 }
4474
4475 return event_cpu;
4476 }
4477
4478 /*
4479 * Cross CPU call to read the hardware event
4480 */
__perf_event_read(void * info)4481 static void __perf_event_read(void *info)
4482 {
4483 struct perf_read_data *data = info;
4484 struct perf_event *sub, *event = data->event;
4485 struct perf_event_context *ctx = event->ctx;
4486 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4487 struct pmu *pmu = event->pmu;
4488
4489 /*
4490 * If this is a task context, we need to check whether it is
4491 * the current task context of this cpu. If not it has been
4492 * scheduled out before the smp call arrived. In that case
4493 * event->count would have been updated to a recent sample
4494 * when the event was scheduled out.
4495 */
4496 if (ctx->task && cpuctx->task_ctx != ctx)
4497 return;
4498
4499 raw_spin_lock(&ctx->lock);
4500 if (ctx->is_active & EVENT_TIME) {
4501 update_context_time(ctx);
4502 update_cgrp_time_from_event(event);
4503 }
4504
4505 perf_event_update_time(event);
4506 if (data->group)
4507 perf_event_update_sibling_time(event);
4508
4509 if (event->state != PERF_EVENT_STATE_ACTIVE)
4510 goto unlock;
4511
4512 if (!data->group) {
4513 pmu->read(event);
4514 data->ret = 0;
4515 goto unlock;
4516 }
4517
4518 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4519
4520 pmu->read(event);
4521
4522 for_each_sibling_event(sub, event) {
4523 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4524 /*
4525 * Use sibling's PMU rather than @event's since
4526 * sibling could be on different (eg: software) PMU.
4527 */
4528 sub->pmu->read(sub);
4529 }
4530 }
4531
4532 data->ret = pmu->commit_txn(pmu);
4533
4534 unlock:
4535 raw_spin_unlock(&ctx->lock);
4536 }
4537
perf_event_count(struct perf_event * event)4538 static inline u64 perf_event_count(struct perf_event *event)
4539 {
4540 return local64_read(&event->count) + atomic64_read(&event->child_count);
4541 }
4542
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4543 static void calc_timer_values(struct perf_event *event,
4544 u64 *now,
4545 u64 *enabled,
4546 u64 *running)
4547 {
4548 u64 ctx_time;
4549
4550 *now = perf_clock();
4551 ctx_time = perf_event_time_now(event, *now);
4552 __perf_update_times(event, ctx_time, enabled, running);
4553 }
4554
4555 /*
4556 * NMI-safe method to read a local event, that is an event that
4557 * is:
4558 * - either for the current task, or for this CPU
4559 * - does not have inherit set, for inherited task events
4560 * will not be local and we cannot read them atomically
4561 * - must not have a pmu::count method
4562 */
perf_event_read_local(struct perf_event * event,u64 * value,u64 * enabled,u64 * running)4563 int perf_event_read_local(struct perf_event *event, u64 *value,
4564 u64 *enabled, u64 *running)
4565 {
4566 unsigned long flags;
4567 int ret = 0;
4568
4569 /*
4570 * Disabling interrupts avoids all counter scheduling (context
4571 * switches, timer based rotation and IPIs).
4572 */
4573 local_irq_save(flags);
4574
4575 /*
4576 * It must not be an event with inherit set, we cannot read
4577 * all child counters from atomic context.
4578 */
4579 if (event->attr.inherit) {
4580 ret = -EOPNOTSUPP;
4581 goto out;
4582 }
4583
4584 /* If this is a per-task event, it must be for current */
4585 if ((event->attach_state & PERF_ATTACH_TASK) &&
4586 event->hw.target != current) {
4587 ret = -EINVAL;
4588 goto out;
4589 }
4590
4591 /* If this is a per-CPU event, it must be for this CPU */
4592 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4593 event->cpu != smp_processor_id()) {
4594 ret = -EINVAL;
4595 goto out;
4596 }
4597
4598 /* If this is a pinned event it must be running on this CPU */
4599 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4600 ret = -EBUSY;
4601 goto out;
4602 }
4603
4604 /*
4605 * If the event is currently on this CPU, its either a per-task event,
4606 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4607 * oncpu == -1).
4608 */
4609 if (event->oncpu == smp_processor_id())
4610 event->pmu->read(event);
4611
4612 *value = local64_read(&event->count);
4613 if (enabled || running) {
4614 u64 __enabled, __running, __now;
4615
4616 calc_timer_values(event, &__now, &__enabled, &__running);
4617 if (enabled)
4618 *enabled = __enabled;
4619 if (running)
4620 *running = __running;
4621 }
4622 out:
4623 local_irq_restore(flags);
4624
4625 return ret;
4626 }
4627
perf_event_read(struct perf_event * event,bool group)4628 static int perf_event_read(struct perf_event *event, bool group)
4629 {
4630 enum perf_event_state state = READ_ONCE(event->state);
4631 int event_cpu, ret = 0;
4632
4633 /*
4634 * If event is enabled and currently active on a CPU, update the
4635 * value in the event structure:
4636 */
4637 again:
4638 if (state == PERF_EVENT_STATE_ACTIVE) {
4639 struct perf_read_data data;
4640
4641 /*
4642 * Orders the ->state and ->oncpu loads such that if we see
4643 * ACTIVE we must also see the right ->oncpu.
4644 *
4645 * Matches the smp_wmb() from event_sched_in().
4646 */
4647 smp_rmb();
4648
4649 event_cpu = READ_ONCE(event->oncpu);
4650 if ((unsigned)event_cpu >= nr_cpu_ids)
4651 return 0;
4652
4653 data = (struct perf_read_data){
4654 .event = event,
4655 .group = group,
4656 .ret = 0,
4657 };
4658
4659 preempt_disable();
4660 event_cpu = __perf_event_read_cpu(event, event_cpu);
4661
4662 /*
4663 * Purposely ignore the smp_call_function_single() return
4664 * value.
4665 *
4666 * If event_cpu isn't a valid CPU it means the event got
4667 * scheduled out and that will have updated the event count.
4668 *
4669 * Therefore, either way, we'll have an up-to-date event count
4670 * after this.
4671 */
4672 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4673 preempt_enable();
4674 ret = data.ret;
4675
4676 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4677 struct perf_event_context *ctx = event->ctx;
4678 unsigned long flags;
4679
4680 raw_spin_lock_irqsave(&ctx->lock, flags);
4681 state = event->state;
4682 if (state != PERF_EVENT_STATE_INACTIVE) {
4683 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4684 goto again;
4685 }
4686
4687 /*
4688 * May read while context is not active (e.g., thread is
4689 * blocked), in that case we cannot update context time
4690 */
4691 if (ctx->is_active & EVENT_TIME) {
4692 update_context_time(ctx);
4693 update_cgrp_time_from_event(event);
4694 }
4695
4696 perf_event_update_time(event);
4697 if (group)
4698 perf_event_update_sibling_time(event);
4699 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4700 }
4701
4702 return ret;
4703 }
4704
4705 /*
4706 * Initialize the perf_event context in a task_struct:
4707 */
__perf_event_init_context(struct perf_event_context * ctx)4708 static void __perf_event_init_context(struct perf_event_context *ctx)
4709 {
4710 raw_spin_lock_init(&ctx->lock);
4711 mutex_init(&ctx->mutex);
4712 INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4713 perf_event_groups_init(&ctx->pinned_groups);
4714 perf_event_groups_init(&ctx->flexible_groups);
4715 INIT_LIST_HEAD(&ctx->event_list);
4716 refcount_set(&ctx->refcount, 1);
4717 }
4718
4719 static void
__perf_init_event_pmu_context(struct perf_event_pmu_context * epc,struct pmu * pmu)4720 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4721 {
4722 epc->pmu = pmu;
4723 INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4724 INIT_LIST_HEAD(&epc->pinned_active);
4725 INIT_LIST_HEAD(&epc->flexible_active);
4726 atomic_set(&epc->refcount, 1);
4727 }
4728
4729 static struct perf_event_context *
alloc_perf_context(struct task_struct * task)4730 alloc_perf_context(struct task_struct *task)
4731 {
4732 struct perf_event_context *ctx;
4733
4734 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4735 if (!ctx)
4736 return NULL;
4737
4738 __perf_event_init_context(ctx);
4739 if (task)
4740 ctx->task = get_task_struct(task);
4741
4742 return ctx;
4743 }
4744
4745 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)4746 find_lively_task_by_vpid(pid_t vpid)
4747 {
4748 struct task_struct *task;
4749
4750 rcu_read_lock();
4751 if (!vpid)
4752 task = current;
4753 else
4754 task = find_task_by_vpid(vpid);
4755 if (task)
4756 get_task_struct(task);
4757 rcu_read_unlock();
4758
4759 if (!task)
4760 return ERR_PTR(-ESRCH);
4761
4762 return task;
4763 }
4764
4765 /*
4766 * Returns a matching context with refcount and pincount.
4767 */
4768 static struct perf_event_context *
find_get_context(struct task_struct * task,struct perf_event * event)4769 find_get_context(struct task_struct *task, struct perf_event *event)
4770 {
4771 struct perf_event_context *ctx, *clone_ctx = NULL;
4772 struct perf_cpu_context *cpuctx;
4773 unsigned long flags;
4774 int err;
4775
4776 if (!task) {
4777 /* Must be root to operate on a CPU event: */
4778 err = perf_allow_cpu(&event->attr);
4779 if (err)
4780 return ERR_PTR(err);
4781
4782 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4783 ctx = &cpuctx->ctx;
4784 get_ctx(ctx);
4785 raw_spin_lock_irqsave(&ctx->lock, flags);
4786 ++ctx->pin_count;
4787 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4788
4789 return ctx;
4790 }
4791
4792 err = -EINVAL;
4793 retry:
4794 ctx = perf_lock_task_context(task, &flags);
4795 if (ctx) {
4796 clone_ctx = unclone_ctx(ctx);
4797 ++ctx->pin_count;
4798
4799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4800
4801 if (clone_ctx)
4802 put_ctx(clone_ctx);
4803 } else {
4804 ctx = alloc_perf_context(task);
4805 err = -ENOMEM;
4806 if (!ctx)
4807 goto errout;
4808
4809 err = 0;
4810 mutex_lock(&task->perf_event_mutex);
4811 /*
4812 * If it has already passed perf_event_exit_task().
4813 * we must see PF_EXITING, it takes this mutex too.
4814 */
4815 if (task->flags & PF_EXITING)
4816 err = -ESRCH;
4817 else if (task->perf_event_ctxp)
4818 err = -EAGAIN;
4819 else {
4820 get_ctx(ctx);
4821 ++ctx->pin_count;
4822 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4823 }
4824 mutex_unlock(&task->perf_event_mutex);
4825
4826 if (unlikely(err)) {
4827 put_ctx(ctx);
4828
4829 if (err == -EAGAIN)
4830 goto retry;
4831 goto errout;
4832 }
4833 }
4834
4835 return ctx;
4836
4837 errout:
4838 return ERR_PTR(err);
4839 }
4840
4841 static struct perf_event_pmu_context *
find_get_pmu_context(struct pmu * pmu,struct perf_event_context * ctx,struct perf_event * event)4842 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4843 struct perf_event *event)
4844 {
4845 struct perf_event_pmu_context *new = NULL, *pos = NULL, *epc;
4846 void *task_ctx_data = NULL;
4847
4848 if (!ctx->task) {
4849 /*
4850 * perf_pmu_migrate_context() / __perf_pmu_install_event()
4851 * relies on the fact that find_get_pmu_context() cannot fail
4852 * for CPU contexts.
4853 */
4854 struct perf_cpu_pmu_context *cpc;
4855
4856 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4857 epc = &cpc->epc;
4858 raw_spin_lock_irq(&ctx->lock);
4859 if (!epc->ctx) {
4860 atomic_set(&epc->refcount, 1);
4861 epc->embedded = 1;
4862 list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4863 epc->ctx = ctx;
4864 } else {
4865 WARN_ON_ONCE(epc->ctx != ctx);
4866 atomic_inc(&epc->refcount);
4867 }
4868 raw_spin_unlock_irq(&ctx->lock);
4869 return epc;
4870 }
4871
4872 new = kzalloc(sizeof(*epc), GFP_KERNEL);
4873 if (!new)
4874 return ERR_PTR(-ENOMEM);
4875
4876 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4877 task_ctx_data = alloc_task_ctx_data(pmu);
4878 if (!task_ctx_data) {
4879 kfree(new);
4880 return ERR_PTR(-ENOMEM);
4881 }
4882 }
4883
4884 __perf_init_event_pmu_context(new, pmu);
4885
4886 /*
4887 * XXX
4888 *
4889 * lockdep_assert_held(&ctx->mutex);
4890 *
4891 * can't because perf_event_init_task() doesn't actually hold the
4892 * child_ctx->mutex.
4893 */
4894
4895 raw_spin_lock_irq(&ctx->lock);
4896 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4897 if (epc->pmu == pmu) {
4898 WARN_ON_ONCE(epc->ctx != ctx);
4899 atomic_inc(&epc->refcount);
4900 goto found_epc;
4901 }
4902 /* Make sure the pmu_ctx_list is sorted by PMU type: */
4903 if (!pos && epc->pmu->type > pmu->type)
4904 pos = epc;
4905 }
4906
4907 epc = new;
4908 new = NULL;
4909
4910 if (!pos)
4911 list_add_tail(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4912 else
4913 list_add(&epc->pmu_ctx_entry, pos->pmu_ctx_entry.prev);
4914
4915 epc->ctx = ctx;
4916
4917 found_epc:
4918 if (task_ctx_data && !epc->task_ctx_data) {
4919 epc->task_ctx_data = task_ctx_data;
4920 task_ctx_data = NULL;
4921 ctx->nr_task_data++;
4922 }
4923 raw_spin_unlock_irq(&ctx->lock);
4924
4925 free_task_ctx_data(pmu, task_ctx_data);
4926 kfree(new);
4927
4928 return epc;
4929 }
4930
get_pmu_ctx(struct perf_event_pmu_context * epc)4931 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4932 {
4933 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4934 }
4935
free_epc_rcu(struct rcu_head * head)4936 static void free_epc_rcu(struct rcu_head *head)
4937 {
4938 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4939
4940 kfree(epc->task_ctx_data);
4941 kfree(epc);
4942 }
4943
put_pmu_ctx(struct perf_event_pmu_context * epc)4944 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4945 {
4946 struct perf_event_context *ctx = epc->ctx;
4947 unsigned long flags;
4948
4949 /*
4950 * XXX
4951 *
4952 * lockdep_assert_held(&ctx->mutex);
4953 *
4954 * can't because of the call-site in _free_event()/put_event()
4955 * which isn't always called under ctx->mutex.
4956 */
4957 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4958 return;
4959
4960 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4961
4962 list_del_init(&epc->pmu_ctx_entry);
4963 epc->ctx = NULL;
4964
4965 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4966 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4967
4968 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4969
4970 if (epc->embedded)
4971 return;
4972
4973 call_rcu(&epc->rcu_head, free_epc_rcu);
4974 }
4975
4976 static void perf_event_free_filter(struct perf_event *event);
4977
free_event_rcu(struct rcu_head * head)4978 static void free_event_rcu(struct rcu_head *head)
4979 {
4980 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4981
4982 if (event->ns)
4983 put_pid_ns(event->ns);
4984 perf_event_free_filter(event);
4985 kmem_cache_free(perf_event_cache, event);
4986 }
4987
4988 static void ring_buffer_attach(struct perf_event *event,
4989 struct perf_buffer *rb);
4990
detach_sb_event(struct perf_event * event)4991 static void detach_sb_event(struct perf_event *event)
4992 {
4993 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4994
4995 raw_spin_lock(&pel->lock);
4996 list_del_rcu(&event->sb_list);
4997 raw_spin_unlock(&pel->lock);
4998 }
4999
is_sb_event(struct perf_event * event)5000 static bool is_sb_event(struct perf_event *event)
5001 {
5002 struct perf_event_attr *attr = &event->attr;
5003
5004 if (event->parent)
5005 return false;
5006
5007 if (event->attach_state & PERF_ATTACH_TASK)
5008 return false;
5009
5010 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5011 attr->comm || attr->comm_exec ||
5012 attr->task || attr->ksymbol ||
5013 attr->context_switch || attr->text_poke ||
5014 attr->bpf_event)
5015 return true;
5016 return false;
5017 }
5018
unaccount_pmu_sb_event(struct perf_event * event)5019 static void unaccount_pmu_sb_event(struct perf_event *event)
5020 {
5021 if (is_sb_event(event))
5022 detach_sb_event(event);
5023 }
5024
5025 #ifdef CONFIG_NO_HZ_FULL
5026 static DEFINE_SPINLOCK(nr_freq_lock);
5027 #endif
5028
unaccount_freq_event_nohz(void)5029 static void unaccount_freq_event_nohz(void)
5030 {
5031 #ifdef CONFIG_NO_HZ_FULL
5032 spin_lock(&nr_freq_lock);
5033 if (atomic_dec_and_test(&nr_freq_events))
5034 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5035 spin_unlock(&nr_freq_lock);
5036 #endif
5037 }
5038
unaccount_freq_event(void)5039 static void unaccount_freq_event(void)
5040 {
5041 if (tick_nohz_full_enabled())
5042 unaccount_freq_event_nohz();
5043 else
5044 atomic_dec(&nr_freq_events);
5045 }
5046
unaccount_event(struct perf_event * event)5047 static void unaccount_event(struct perf_event *event)
5048 {
5049 bool dec = false;
5050
5051 if (event->parent)
5052 return;
5053
5054 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5055 dec = true;
5056 if (event->attr.mmap || event->attr.mmap_data)
5057 atomic_dec(&nr_mmap_events);
5058 if (event->attr.build_id)
5059 atomic_dec(&nr_build_id_events);
5060 if (event->attr.comm)
5061 atomic_dec(&nr_comm_events);
5062 if (event->attr.namespaces)
5063 atomic_dec(&nr_namespaces_events);
5064 if (event->attr.cgroup)
5065 atomic_dec(&nr_cgroup_events);
5066 if (event->attr.task)
5067 atomic_dec(&nr_task_events);
5068 if (event->attr.freq)
5069 unaccount_freq_event();
5070 if (event->attr.context_switch) {
5071 dec = true;
5072 atomic_dec(&nr_switch_events);
5073 }
5074 if (is_cgroup_event(event))
5075 dec = true;
5076 if (has_branch_stack(event))
5077 dec = true;
5078 if (event->attr.ksymbol)
5079 atomic_dec(&nr_ksymbol_events);
5080 if (event->attr.bpf_event)
5081 atomic_dec(&nr_bpf_events);
5082 if (event->attr.text_poke)
5083 atomic_dec(&nr_text_poke_events);
5084
5085 if (dec) {
5086 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5087 schedule_delayed_work(&perf_sched_work, HZ);
5088 }
5089
5090 unaccount_pmu_sb_event(event);
5091 }
5092
perf_sched_delayed(struct work_struct * work)5093 static void perf_sched_delayed(struct work_struct *work)
5094 {
5095 mutex_lock(&perf_sched_mutex);
5096 if (atomic_dec_and_test(&perf_sched_count))
5097 static_branch_disable(&perf_sched_events);
5098 mutex_unlock(&perf_sched_mutex);
5099 }
5100
5101 /*
5102 * The following implement mutual exclusion of events on "exclusive" pmus
5103 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5104 * at a time, so we disallow creating events that might conflict, namely:
5105 *
5106 * 1) cpu-wide events in the presence of per-task events,
5107 * 2) per-task events in the presence of cpu-wide events,
5108 * 3) two matching events on the same perf_event_context.
5109 *
5110 * The former two cases are handled in the allocation path (perf_event_alloc(),
5111 * _free_event()), the latter -- before the first perf_install_in_context().
5112 */
exclusive_event_init(struct perf_event * event)5113 static int exclusive_event_init(struct perf_event *event)
5114 {
5115 struct pmu *pmu = event->pmu;
5116
5117 if (!is_exclusive_pmu(pmu))
5118 return 0;
5119
5120 /*
5121 * Prevent co-existence of per-task and cpu-wide events on the
5122 * same exclusive pmu.
5123 *
5124 * Negative pmu::exclusive_cnt means there are cpu-wide
5125 * events on this "exclusive" pmu, positive means there are
5126 * per-task events.
5127 *
5128 * Since this is called in perf_event_alloc() path, event::ctx
5129 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5130 * to mean "per-task event", because unlike other attach states it
5131 * never gets cleared.
5132 */
5133 if (event->attach_state & PERF_ATTACH_TASK) {
5134 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5135 return -EBUSY;
5136 } else {
5137 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5138 return -EBUSY;
5139 }
5140
5141 return 0;
5142 }
5143
exclusive_event_destroy(struct perf_event * event)5144 static void exclusive_event_destroy(struct perf_event *event)
5145 {
5146 struct pmu *pmu = event->pmu;
5147
5148 if (!is_exclusive_pmu(pmu))
5149 return;
5150
5151 /* see comment in exclusive_event_init() */
5152 if (event->attach_state & PERF_ATTACH_TASK)
5153 atomic_dec(&pmu->exclusive_cnt);
5154 else
5155 atomic_inc(&pmu->exclusive_cnt);
5156 }
5157
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)5158 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5159 {
5160 if ((e1->pmu == e2->pmu) &&
5161 (e1->cpu == e2->cpu ||
5162 e1->cpu == -1 ||
5163 e2->cpu == -1))
5164 return true;
5165 return false;
5166 }
5167
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)5168 static bool exclusive_event_installable(struct perf_event *event,
5169 struct perf_event_context *ctx)
5170 {
5171 struct perf_event *iter_event;
5172 struct pmu *pmu = event->pmu;
5173
5174 lockdep_assert_held(&ctx->mutex);
5175
5176 if (!is_exclusive_pmu(pmu))
5177 return true;
5178
5179 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5180 if (exclusive_event_match(iter_event, event))
5181 return false;
5182 }
5183
5184 return true;
5185 }
5186
5187 static void perf_addr_filters_splice(struct perf_event *event,
5188 struct list_head *head);
5189
perf_pending_task_sync(struct perf_event * event)5190 static void perf_pending_task_sync(struct perf_event *event)
5191 {
5192 struct callback_head *head = &event->pending_task;
5193
5194 if (!event->pending_work)
5195 return;
5196 /*
5197 * If the task is queued to the current task's queue, we
5198 * obviously can't wait for it to complete. Simply cancel it.
5199 */
5200 if (task_work_cancel(current, head)) {
5201 event->pending_work = 0;
5202 local_dec(&event->ctx->nr_pending);
5203 return;
5204 }
5205
5206 /*
5207 * All accesses related to the event are within the same
5208 * non-preemptible section in perf_pending_task(). The RCU
5209 * grace period before the event is freed will make sure all
5210 * those accesses are complete by then.
5211 */
5212 rcuwait_wait_event(&event->pending_work_wait, !event->pending_work, TASK_UNINTERRUPTIBLE);
5213 }
5214
_free_event(struct perf_event * event)5215 static void _free_event(struct perf_event *event)
5216 {
5217 irq_work_sync(&event->pending_irq);
5218 perf_pending_task_sync(event);
5219
5220 unaccount_event(event);
5221
5222 security_perf_event_free(event);
5223
5224 if (event->rb) {
5225 /*
5226 * Can happen when we close an event with re-directed output.
5227 *
5228 * Since we have a 0 refcount, perf_mmap_close() will skip
5229 * over us; possibly making our ring_buffer_put() the last.
5230 */
5231 mutex_lock(&event->mmap_mutex);
5232 ring_buffer_attach(event, NULL);
5233 mutex_unlock(&event->mmap_mutex);
5234 }
5235
5236 if (is_cgroup_event(event))
5237 perf_detach_cgroup(event);
5238
5239 if (!event->parent) {
5240 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5241 put_callchain_buffers();
5242 }
5243
5244 perf_event_free_bpf_prog(event);
5245 perf_addr_filters_splice(event, NULL);
5246 kfree(event->addr_filter_ranges);
5247
5248 if (event->destroy)
5249 event->destroy(event);
5250
5251 /*
5252 * Must be after ->destroy(), due to uprobe_perf_close() using
5253 * hw.target.
5254 */
5255 if (event->hw.target)
5256 put_task_struct(event->hw.target);
5257
5258 if (event->pmu_ctx)
5259 put_pmu_ctx(event->pmu_ctx);
5260
5261 /*
5262 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5263 * all task references must be cleaned up.
5264 */
5265 if (event->ctx)
5266 put_ctx(event->ctx);
5267
5268 exclusive_event_destroy(event);
5269 module_put(event->pmu->module);
5270
5271 call_rcu(&event->rcu_head, free_event_rcu);
5272 }
5273
5274 /*
5275 * Used to free events which have a known refcount of 1, such as in error paths
5276 * where the event isn't exposed yet and inherited events.
5277 */
free_event(struct perf_event * event)5278 static void free_event(struct perf_event *event)
5279 {
5280 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5281 "unexpected event refcount: %ld; ptr=%p\n",
5282 atomic_long_read(&event->refcount), event)) {
5283 /* leak to avoid use-after-free */
5284 return;
5285 }
5286
5287 _free_event(event);
5288 }
5289
5290 /*
5291 * Remove user event from the owner task.
5292 */
perf_remove_from_owner(struct perf_event * event)5293 static void perf_remove_from_owner(struct perf_event *event)
5294 {
5295 struct task_struct *owner;
5296
5297 rcu_read_lock();
5298 /*
5299 * Matches the smp_store_release() in perf_event_exit_task(). If we
5300 * observe !owner it means the list deletion is complete and we can
5301 * indeed free this event, otherwise we need to serialize on
5302 * owner->perf_event_mutex.
5303 */
5304 owner = READ_ONCE(event->owner);
5305 if (owner) {
5306 /*
5307 * Since delayed_put_task_struct() also drops the last
5308 * task reference we can safely take a new reference
5309 * while holding the rcu_read_lock().
5310 */
5311 get_task_struct(owner);
5312 }
5313 rcu_read_unlock();
5314
5315 if (owner) {
5316 /*
5317 * If we're here through perf_event_exit_task() we're already
5318 * holding ctx->mutex which would be an inversion wrt. the
5319 * normal lock order.
5320 *
5321 * However we can safely take this lock because its the child
5322 * ctx->mutex.
5323 */
5324 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5325
5326 /*
5327 * We have to re-check the event->owner field, if it is cleared
5328 * we raced with perf_event_exit_task(), acquiring the mutex
5329 * ensured they're done, and we can proceed with freeing the
5330 * event.
5331 */
5332 if (event->owner) {
5333 list_del_init(&event->owner_entry);
5334 smp_store_release(&event->owner, NULL);
5335 }
5336 mutex_unlock(&owner->perf_event_mutex);
5337 put_task_struct(owner);
5338 }
5339 }
5340
put_event(struct perf_event * event)5341 static void put_event(struct perf_event *event)
5342 {
5343 if (!atomic_long_dec_and_test(&event->refcount))
5344 return;
5345
5346 _free_event(event);
5347 }
5348
5349 /*
5350 * Kill an event dead; while event:refcount will preserve the event
5351 * object, it will not preserve its functionality. Once the last 'user'
5352 * gives up the object, we'll destroy the thing.
5353 */
perf_event_release_kernel(struct perf_event * event)5354 int perf_event_release_kernel(struct perf_event *event)
5355 {
5356 struct perf_event_context *ctx = event->ctx;
5357 struct perf_event *child, *tmp;
5358 LIST_HEAD(free_list);
5359
5360 /*
5361 * If we got here through err_alloc: free_event(event); we will not
5362 * have attached to a context yet.
5363 */
5364 if (!ctx) {
5365 WARN_ON_ONCE(event->attach_state &
5366 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5367 goto no_ctx;
5368 }
5369
5370 if (!is_kernel_event(event))
5371 perf_remove_from_owner(event);
5372
5373 ctx = perf_event_ctx_lock(event);
5374 WARN_ON_ONCE(ctx->parent_ctx);
5375
5376 /*
5377 * Mark this event as STATE_DEAD, there is no external reference to it
5378 * anymore.
5379 *
5380 * Anybody acquiring event->child_mutex after the below loop _must_
5381 * also see this, most importantly inherit_event() which will avoid
5382 * placing more children on the list.
5383 *
5384 * Thus this guarantees that we will in fact observe and kill _ALL_
5385 * child events.
5386 */
5387 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5388
5389 perf_event_ctx_unlock(event, ctx);
5390
5391 again:
5392 mutex_lock(&event->child_mutex);
5393 list_for_each_entry(child, &event->child_list, child_list) {
5394 void *var = NULL;
5395
5396 /*
5397 * Cannot change, child events are not migrated, see the
5398 * comment with perf_event_ctx_lock_nested().
5399 */
5400 ctx = READ_ONCE(child->ctx);
5401 /*
5402 * Since child_mutex nests inside ctx::mutex, we must jump
5403 * through hoops. We start by grabbing a reference on the ctx.
5404 *
5405 * Since the event cannot get freed while we hold the
5406 * child_mutex, the context must also exist and have a !0
5407 * reference count.
5408 */
5409 get_ctx(ctx);
5410
5411 /*
5412 * Now that we have a ctx ref, we can drop child_mutex, and
5413 * acquire ctx::mutex without fear of it going away. Then we
5414 * can re-acquire child_mutex.
5415 */
5416 mutex_unlock(&event->child_mutex);
5417 mutex_lock(&ctx->mutex);
5418 mutex_lock(&event->child_mutex);
5419
5420 /*
5421 * Now that we hold ctx::mutex and child_mutex, revalidate our
5422 * state, if child is still the first entry, it didn't get freed
5423 * and we can continue doing so.
5424 */
5425 tmp = list_first_entry_or_null(&event->child_list,
5426 struct perf_event, child_list);
5427 if (tmp == child) {
5428 perf_remove_from_context(child, DETACH_GROUP);
5429 list_move(&child->child_list, &free_list);
5430 /*
5431 * This matches the refcount bump in inherit_event();
5432 * this can't be the last reference.
5433 */
5434 put_event(event);
5435 } else {
5436 var = &ctx->refcount;
5437 }
5438
5439 mutex_unlock(&event->child_mutex);
5440 mutex_unlock(&ctx->mutex);
5441 put_ctx(ctx);
5442
5443 if (var) {
5444 /*
5445 * If perf_event_free_task() has deleted all events from the
5446 * ctx while the child_mutex got released above, make sure to
5447 * notify about the preceding put_ctx().
5448 */
5449 smp_mb(); /* pairs with wait_var_event() */
5450 wake_up_var(var);
5451 }
5452 goto again;
5453 }
5454 mutex_unlock(&event->child_mutex);
5455
5456 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5457 void *var = &child->ctx->refcount;
5458
5459 list_del(&child->child_list);
5460 free_event(child);
5461
5462 /*
5463 * Wake any perf_event_free_task() waiting for this event to be
5464 * freed.
5465 */
5466 smp_mb(); /* pairs with wait_var_event() */
5467 wake_up_var(var);
5468 }
5469
5470 no_ctx:
5471 put_event(event); /* Must be the 'last' reference */
5472 return 0;
5473 }
5474 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5475
5476 /*
5477 * Called when the last reference to the file is gone.
5478 */
perf_release(struct inode * inode,struct file * file)5479 static int perf_release(struct inode *inode, struct file *file)
5480 {
5481 perf_event_release_kernel(file->private_data);
5482 return 0;
5483 }
5484
__perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5485 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5486 {
5487 struct perf_event *child;
5488 u64 total = 0;
5489
5490 *enabled = 0;
5491 *running = 0;
5492
5493 mutex_lock(&event->child_mutex);
5494
5495 (void)perf_event_read(event, false);
5496 total += perf_event_count(event);
5497
5498 *enabled += event->total_time_enabled +
5499 atomic64_read(&event->child_total_time_enabled);
5500 *running += event->total_time_running +
5501 atomic64_read(&event->child_total_time_running);
5502
5503 list_for_each_entry(child, &event->child_list, child_list) {
5504 (void)perf_event_read(child, false);
5505 total += perf_event_count(child);
5506 *enabled += child->total_time_enabled;
5507 *running += child->total_time_running;
5508 }
5509 mutex_unlock(&event->child_mutex);
5510
5511 return total;
5512 }
5513
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)5514 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5515 {
5516 struct perf_event_context *ctx;
5517 u64 count;
5518
5519 ctx = perf_event_ctx_lock(event);
5520 count = __perf_event_read_value(event, enabled, running);
5521 perf_event_ctx_unlock(event, ctx);
5522
5523 return count;
5524 }
5525 EXPORT_SYMBOL_GPL(perf_event_read_value);
5526
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)5527 static int __perf_read_group_add(struct perf_event *leader,
5528 u64 read_format, u64 *values)
5529 {
5530 struct perf_event_context *ctx = leader->ctx;
5531 struct perf_event *sub, *parent;
5532 unsigned long flags;
5533 int n = 1; /* skip @nr */
5534 int ret;
5535
5536 ret = perf_event_read(leader, true);
5537 if (ret)
5538 return ret;
5539
5540 raw_spin_lock_irqsave(&ctx->lock, flags);
5541 /*
5542 * Verify the grouping between the parent and child (inherited)
5543 * events is still in tact.
5544 *
5545 * Specifically:
5546 * - leader->ctx->lock pins leader->sibling_list
5547 * - parent->child_mutex pins parent->child_list
5548 * - parent->ctx->mutex pins parent->sibling_list
5549 *
5550 * Because parent->ctx != leader->ctx (and child_list nests inside
5551 * ctx->mutex), group destruction is not atomic between children, also
5552 * see perf_event_release_kernel(). Additionally, parent can grow the
5553 * group.
5554 *
5555 * Therefore it is possible to have parent and child groups in a
5556 * different configuration and summing over such a beast makes no sense
5557 * what so ever.
5558 *
5559 * Reject this.
5560 */
5561 parent = leader->parent;
5562 if (parent &&
5563 (parent->group_generation != leader->group_generation ||
5564 parent->nr_siblings != leader->nr_siblings)) {
5565 ret = -ECHILD;
5566 goto unlock;
5567 }
5568
5569 /*
5570 * Since we co-schedule groups, {enabled,running} times of siblings
5571 * will be identical to those of the leader, so we only publish one
5572 * set.
5573 */
5574 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5575 values[n++] += leader->total_time_enabled +
5576 atomic64_read(&leader->child_total_time_enabled);
5577 }
5578
5579 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5580 values[n++] += leader->total_time_running +
5581 atomic64_read(&leader->child_total_time_running);
5582 }
5583
5584 /*
5585 * Write {count,id} tuples for every sibling.
5586 */
5587 values[n++] += perf_event_count(leader);
5588 if (read_format & PERF_FORMAT_ID)
5589 values[n++] = primary_event_id(leader);
5590 if (read_format & PERF_FORMAT_LOST)
5591 values[n++] = atomic64_read(&leader->lost_samples);
5592
5593 for_each_sibling_event(sub, leader) {
5594 values[n++] += perf_event_count(sub);
5595 if (read_format & PERF_FORMAT_ID)
5596 values[n++] = primary_event_id(sub);
5597 if (read_format & PERF_FORMAT_LOST)
5598 values[n++] = atomic64_read(&sub->lost_samples);
5599 }
5600
5601 unlock:
5602 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5603 return ret;
5604 }
5605
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)5606 static int perf_read_group(struct perf_event *event,
5607 u64 read_format, char __user *buf)
5608 {
5609 struct perf_event *leader = event->group_leader, *child;
5610 struct perf_event_context *ctx = leader->ctx;
5611 int ret;
5612 u64 *values;
5613
5614 lockdep_assert_held(&ctx->mutex);
5615
5616 values = kzalloc(event->read_size, GFP_KERNEL);
5617 if (!values)
5618 return -ENOMEM;
5619
5620 values[0] = 1 + leader->nr_siblings;
5621
5622 mutex_lock(&leader->child_mutex);
5623
5624 ret = __perf_read_group_add(leader, read_format, values);
5625 if (ret)
5626 goto unlock;
5627
5628 list_for_each_entry(child, &leader->child_list, child_list) {
5629 ret = __perf_read_group_add(child, read_format, values);
5630 if (ret)
5631 goto unlock;
5632 }
5633
5634 mutex_unlock(&leader->child_mutex);
5635
5636 ret = event->read_size;
5637 if (copy_to_user(buf, values, event->read_size))
5638 ret = -EFAULT;
5639 goto out;
5640
5641 unlock:
5642 mutex_unlock(&leader->child_mutex);
5643 out:
5644 kfree(values);
5645 return ret;
5646 }
5647
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)5648 static int perf_read_one(struct perf_event *event,
5649 u64 read_format, char __user *buf)
5650 {
5651 u64 enabled, running;
5652 u64 values[5];
5653 int n = 0;
5654
5655 values[n++] = __perf_event_read_value(event, &enabled, &running);
5656 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5657 values[n++] = enabled;
5658 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5659 values[n++] = running;
5660 if (read_format & PERF_FORMAT_ID)
5661 values[n++] = primary_event_id(event);
5662 if (read_format & PERF_FORMAT_LOST)
5663 values[n++] = atomic64_read(&event->lost_samples);
5664
5665 if (copy_to_user(buf, values, n * sizeof(u64)))
5666 return -EFAULT;
5667
5668 return n * sizeof(u64);
5669 }
5670
is_event_hup(struct perf_event * event)5671 static bool is_event_hup(struct perf_event *event)
5672 {
5673 bool no_children;
5674
5675 if (event->state > PERF_EVENT_STATE_EXIT)
5676 return false;
5677
5678 mutex_lock(&event->child_mutex);
5679 no_children = list_empty(&event->child_list);
5680 mutex_unlock(&event->child_mutex);
5681 return no_children;
5682 }
5683
5684 /*
5685 * Read the performance event - simple non blocking version for now
5686 */
5687 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)5688 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5689 {
5690 u64 read_format = event->attr.read_format;
5691 int ret;
5692
5693 /*
5694 * Return end-of-file for a read on an event that is in
5695 * error state (i.e. because it was pinned but it couldn't be
5696 * scheduled on to the CPU at some point).
5697 */
5698 if (event->state == PERF_EVENT_STATE_ERROR)
5699 return 0;
5700
5701 if (count < event->read_size)
5702 return -ENOSPC;
5703
5704 WARN_ON_ONCE(event->ctx->parent_ctx);
5705 if (read_format & PERF_FORMAT_GROUP)
5706 ret = perf_read_group(event, read_format, buf);
5707 else
5708 ret = perf_read_one(event, read_format, buf);
5709
5710 return ret;
5711 }
5712
5713 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)5714 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5715 {
5716 struct perf_event *event = file->private_data;
5717 struct perf_event_context *ctx;
5718 int ret;
5719
5720 ret = security_perf_event_read(event);
5721 if (ret)
5722 return ret;
5723
5724 ctx = perf_event_ctx_lock(event);
5725 ret = __perf_read(event, buf, count);
5726 perf_event_ctx_unlock(event, ctx);
5727
5728 return ret;
5729 }
5730
perf_poll(struct file * file,poll_table * wait)5731 static __poll_t perf_poll(struct file *file, poll_table *wait)
5732 {
5733 struct perf_event *event = file->private_data;
5734 struct perf_buffer *rb;
5735 __poll_t events = EPOLLHUP;
5736
5737 poll_wait(file, &event->waitq, wait);
5738
5739 if (is_event_hup(event))
5740 return events;
5741
5742 /*
5743 * Pin the event->rb by taking event->mmap_mutex; otherwise
5744 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5745 */
5746 mutex_lock(&event->mmap_mutex);
5747 rb = event->rb;
5748 if (rb)
5749 events = atomic_xchg(&rb->poll, 0);
5750 mutex_unlock(&event->mmap_mutex);
5751 return events;
5752 }
5753
_perf_event_reset(struct perf_event * event)5754 static void _perf_event_reset(struct perf_event *event)
5755 {
5756 (void)perf_event_read(event, false);
5757 local64_set(&event->count, 0);
5758 perf_event_update_userpage(event);
5759 }
5760
5761 /* Assume it's not an event with inherit set. */
perf_event_pause(struct perf_event * event,bool reset)5762 u64 perf_event_pause(struct perf_event *event, bool reset)
5763 {
5764 struct perf_event_context *ctx;
5765 u64 count;
5766
5767 ctx = perf_event_ctx_lock(event);
5768 WARN_ON_ONCE(event->attr.inherit);
5769 _perf_event_disable(event);
5770 count = local64_read(&event->count);
5771 if (reset)
5772 local64_set(&event->count, 0);
5773 perf_event_ctx_unlock(event, ctx);
5774
5775 return count;
5776 }
5777 EXPORT_SYMBOL_GPL(perf_event_pause);
5778
5779 /*
5780 * Holding the top-level event's child_mutex means that any
5781 * descendant process that has inherited this event will block
5782 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5783 * task existence requirements of perf_event_enable/disable.
5784 */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))5785 static void perf_event_for_each_child(struct perf_event *event,
5786 void (*func)(struct perf_event *))
5787 {
5788 struct perf_event *child;
5789
5790 WARN_ON_ONCE(event->ctx->parent_ctx);
5791
5792 mutex_lock(&event->child_mutex);
5793 func(event);
5794 list_for_each_entry(child, &event->child_list, child_list)
5795 func(child);
5796 mutex_unlock(&event->child_mutex);
5797 }
5798
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))5799 static void perf_event_for_each(struct perf_event *event,
5800 void (*func)(struct perf_event *))
5801 {
5802 struct perf_event_context *ctx = event->ctx;
5803 struct perf_event *sibling;
5804
5805 lockdep_assert_held(&ctx->mutex);
5806
5807 event = event->group_leader;
5808
5809 perf_event_for_each_child(event, func);
5810 for_each_sibling_event(sibling, event)
5811 perf_event_for_each_child(sibling, func);
5812 }
5813
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)5814 static void __perf_event_period(struct perf_event *event,
5815 struct perf_cpu_context *cpuctx,
5816 struct perf_event_context *ctx,
5817 void *info)
5818 {
5819 u64 value = *((u64 *)info);
5820 bool active;
5821
5822 if (event->attr.freq) {
5823 event->attr.sample_freq = value;
5824 } else {
5825 event->attr.sample_period = value;
5826 event->hw.sample_period = value;
5827 }
5828
5829 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5830 if (active) {
5831 perf_pmu_disable(event->pmu);
5832 /*
5833 * We could be throttled; unthrottle now to avoid the tick
5834 * trying to unthrottle while we already re-started the event.
5835 */
5836 if (event->hw.interrupts == MAX_INTERRUPTS) {
5837 event->hw.interrupts = 0;
5838 perf_log_throttle(event, 1);
5839 }
5840 event->pmu->stop(event, PERF_EF_UPDATE);
5841 }
5842
5843 local64_set(&event->hw.period_left, 0);
5844
5845 if (active) {
5846 event->pmu->start(event, PERF_EF_RELOAD);
5847 perf_pmu_enable(event->pmu);
5848 }
5849 }
5850
perf_event_check_period(struct perf_event * event,u64 value)5851 static int perf_event_check_period(struct perf_event *event, u64 value)
5852 {
5853 return event->pmu->check_period(event, value);
5854 }
5855
_perf_event_period(struct perf_event * event,u64 value)5856 static int _perf_event_period(struct perf_event *event, u64 value)
5857 {
5858 if (!is_sampling_event(event))
5859 return -EINVAL;
5860
5861 if (!value)
5862 return -EINVAL;
5863
5864 if (event->attr.freq) {
5865 if (value > sysctl_perf_event_sample_rate)
5866 return -EINVAL;
5867 } else {
5868 if (perf_event_check_period(event, value))
5869 return -EINVAL;
5870 if (value & (1ULL << 63))
5871 return -EINVAL;
5872 }
5873
5874 event_function_call(event, __perf_event_period, &value);
5875
5876 return 0;
5877 }
5878
perf_event_period(struct perf_event * event,u64 value)5879 int perf_event_period(struct perf_event *event, u64 value)
5880 {
5881 struct perf_event_context *ctx;
5882 int ret;
5883
5884 ctx = perf_event_ctx_lock(event);
5885 ret = _perf_event_period(event, value);
5886 perf_event_ctx_unlock(event, ctx);
5887
5888 return ret;
5889 }
5890 EXPORT_SYMBOL_GPL(perf_event_period);
5891
5892 static const struct file_operations perf_fops;
5893
perf_fget_light(int fd,struct fd * p)5894 static inline int perf_fget_light(int fd, struct fd *p)
5895 {
5896 struct fd f = fdget(fd);
5897 if (!f.file)
5898 return -EBADF;
5899
5900 if (f.file->f_op != &perf_fops) {
5901 fdput(f);
5902 return -EBADF;
5903 }
5904 *p = f;
5905 return 0;
5906 }
5907
5908 static int perf_event_set_output(struct perf_event *event,
5909 struct perf_event *output_event);
5910 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5911 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5912 struct perf_event_attr *attr);
5913
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)5914 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5915 {
5916 void (*func)(struct perf_event *);
5917 u32 flags = arg;
5918
5919 switch (cmd) {
5920 case PERF_EVENT_IOC_ENABLE:
5921 func = _perf_event_enable;
5922 break;
5923 case PERF_EVENT_IOC_DISABLE:
5924 func = _perf_event_disable;
5925 break;
5926 case PERF_EVENT_IOC_RESET:
5927 func = _perf_event_reset;
5928 break;
5929
5930 case PERF_EVENT_IOC_REFRESH:
5931 return _perf_event_refresh(event, arg);
5932
5933 case PERF_EVENT_IOC_PERIOD:
5934 {
5935 u64 value;
5936
5937 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5938 return -EFAULT;
5939
5940 return _perf_event_period(event, value);
5941 }
5942 case PERF_EVENT_IOC_ID:
5943 {
5944 u64 id = primary_event_id(event);
5945
5946 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5947 return -EFAULT;
5948 return 0;
5949 }
5950
5951 case PERF_EVENT_IOC_SET_OUTPUT:
5952 {
5953 int ret;
5954 if (arg != -1) {
5955 struct perf_event *output_event;
5956 struct fd output;
5957 ret = perf_fget_light(arg, &output);
5958 if (ret)
5959 return ret;
5960 output_event = output.file->private_data;
5961 ret = perf_event_set_output(event, output_event);
5962 fdput(output);
5963 } else {
5964 ret = perf_event_set_output(event, NULL);
5965 }
5966 return ret;
5967 }
5968
5969 case PERF_EVENT_IOC_SET_FILTER:
5970 return perf_event_set_filter(event, (void __user *)arg);
5971
5972 case PERF_EVENT_IOC_SET_BPF:
5973 {
5974 struct bpf_prog *prog;
5975 int err;
5976
5977 prog = bpf_prog_get(arg);
5978 if (IS_ERR(prog))
5979 return PTR_ERR(prog);
5980
5981 err = perf_event_set_bpf_prog(event, prog, 0);
5982 if (err) {
5983 bpf_prog_put(prog);
5984 return err;
5985 }
5986
5987 return 0;
5988 }
5989
5990 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5991 struct perf_buffer *rb;
5992
5993 rcu_read_lock();
5994 rb = rcu_dereference(event->rb);
5995 if (!rb || !rb->nr_pages) {
5996 rcu_read_unlock();
5997 return -EINVAL;
5998 }
5999 rb_toggle_paused(rb, !!arg);
6000 rcu_read_unlock();
6001 return 0;
6002 }
6003
6004 case PERF_EVENT_IOC_QUERY_BPF:
6005 return perf_event_query_prog_array(event, (void __user *)arg);
6006
6007 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
6008 struct perf_event_attr new_attr;
6009 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
6010 &new_attr);
6011
6012 if (err)
6013 return err;
6014
6015 return perf_event_modify_attr(event, &new_attr);
6016 }
6017 default:
6018 return -ENOTTY;
6019 }
6020
6021 if (flags & PERF_IOC_FLAG_GROUP)
6022 perf_event_for_each(event, func);
6023 else
6024 perf_event_for_each_child(event, func);
6025
6026 return 0;
6027 }
6028
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6029 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6030 {
6031 struct perf_event *event = file->private_data;
6032 struct perf_event_context *ctx;
6033 long ret;
6034
6035 /* Treat ioctl like writes as it is likely a mutating operation. */
6036 ret = security_perf_event_write(event);
6037 if (ret)
6038 return ret;
6039
6040 ctx = perf_event_ctx_lock(event);
6041 ret = _perf_ioctl(event, cmd, arg);
6042 perf_event_ctx_unlock(event, ctx);
6043
6044 return ret;
6045 }
6046
6047 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)6048 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6049 unsigned long arg)
6050 {
6051 switch (_IOC_NR(cmd)) {
6052 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6053 case _IOC_NR(PERF_EVENT_IOC_ID):
6054 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6055 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6056 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6057 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6058 cmd &= ~IOCSIZE_MASK;
6059 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6060 }
6061 break;
6062 }
6063 return perf_ioctl(file, cmd, arg);
6064 }
6065 #else
6066 # define perf_compat_ioctl NULL
6067 #endif
6068
perf_event_task_enable(void)6069 int perf_event_task_enable(void)
6070 {
6071 struct perf_event_context *ctx;
6072 struct perf_event *event;
6073
6074 mutex_lock(¤t->perf_event_mutex);
6075 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6076 ctx = perf_event_ctx_lock(event);
6077 perf_event_for_each_child(event, _perf_event_enable);
6078 perf_event_ctx_unlock(event, ctx);
6079 }
6080 mutex_unlock(¤t->perf_event_mutex);
6081
6082 return 0;
6083 }
6084
perf_event_task_disable(void)6085 int perf_event_task_disable(void)
6086 {
6087 struct perf_event_context *ctx;
6088 struct perf_event *event;
6089
6090 mutex_lock(¤t->perf_event_mutex);
6091 list_for_each_entry(event, ¤t->perf_event_list, owner_entry) {
6092 ctx = perf_event_ctx_lock(event);
6093 perf_event_for_each_child(event, _perf_event_disable);
6094 perf_event_ctx_unlock(event, ctx);
6095 }
6096 mutex_unlock(¤t->perf_event_mutex);
6097
6098 return 0;
6099 }
6100
perf_event_index(struct perf_event * event)6101 static int perf_event_index(struct perf_event *event)
6102 {
6103 if (event->hw.state & PERF_HES_STOPPED)
6104 return 0;
6105
6106 if (event->state != PERF_EVENT_STATE_ACTIVE)
6107 return 0;
6108
6109 return event->pmu->event_idx(event);
6110 }
6111
perf_event_init_userpage(struct perf_event * event)6112 static void perf_event_init_userpage(struct perf_event *event)
6113 {
6114 struct perf_event_mmap_page *userpg;
6115 struct perf_buffer *rb;
6116
6117 rcu_read_lock();
6118 rb = rcu_dereference(event->rb);
6119 if (!rb)
6120 goto unlock;
6121
6122 userpg = rb->user_page;
6123
6124 /* Allow new userspace to detect that bit 0 is deprecated */
6125 userpg->cap_bit0_is_deprecated = 1;
6126 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6127 userpg->data_offset = PAGE_SIZE;
6128 userpg->data_size = perf_data_size(rb);
6129
6130 unlock:
6131 rcu_read_unlock();
6132 }
6133
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)6134 void __weak arch_perf_update_userpage(
6135 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6136 {
6137 }
6138
6139 /*
6140 * Callers need to ensure there can be no nesting of this function, otherwise
6141 * the seqlock logic goes bad. We can not serialize this because the arch
6142 * code calls this from NMI context.
6143 */
perf_event_update_userpage(struct perf_event * event)6144 void perf_event_update_userpage(struct perf_event *event)
6145 {
6146 struct perf_event_mmap_page *userpg;
6147 struct perf_buffer *rb;
6148 u64 enabled, running, now;
6149
6150 rcu_read_lock();
6151 rb = rcu_dereference(event->rb);
6152 if (!rb)
6153 goto unlock;
6154
6155 /*
6156 * compute total_time_enabled, total_time_running
6157 * based on snapshot values taken when the event
6158 * was last scheduled in.
6159 *
6160 * we cannot simply called update_context_time()
6161 * because of locking issue as we can be called in
6162 * NMI context
6163 */
6164 calc_timer_values(event, &now, &enabled, &running);
6165
6166 userpg = rb->user_page;
6167 /*
6168 * Disable preemption to guarantee consistent time stamps are stored to
6169 * the user page.
6170 */
6171 preempt_disable();
6172 ++userpg->lock;
6173 barrier();
6174 userpg->index = perf_event_index(event);
6175 userpg->offset = perf_event_count(event);
6176 if (userpg->index)
6177 userpg->offset -= local64_read(&event->hw.prev_count);
6178
6179 userpg->time_enabled = enabled +
6180 atomic64_read(&event->child_total_time_enabled);
6181
6182 userpg->time_running = running +
6183 atomic64_read(&event->child_total_time_running);
6184
6185 arch_perf_update_userpage(event, userpg, now);
6186
6187 barrier();
6188 ++userpg->lock;
6189 preempt_enable();
6190 unlock:
6191 rcu_read_unlock();
6192 }
6193 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6194
perf_mmap_fault(struct vm_fault * vmf)6195 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6196 {
6197 struct perf_event *event = vmf->vma->vm_file->private_data;
6198 struct perf_buffer *rb;
6199 vm_fault_t ret = VM_FAULT_SIGBUS;
6200
6201 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6202 if (vmf->pgoff == 0)
6203 ret = 0;
6204 return ret;
6205 }
6206
6207 rcu_read_lock();
6208 rb = rcu_dereference(event->rb);
6209 if (!rb)
6210 goto unlock;
6211
6212 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6213 goto unlock;
6214
6215 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6216 if (!vmf->page)
6217 goto unlock;
6218
6219 get_page(vmf->page);
6220 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6221 vmf->page->index = vmf->pgoff;
6222
6223 ret = 0;
6224 unlock:
6225 rcu_read_unlock();
6226
6227 return ret;
6228 }
6229
ring_buffer_attach(struct perf_event * event,struct perf_buffer * rb)6230 static void ring_buffer_attach(struct perf_event *event,
6231 struct perf_buffer *rb)
6232 {
6233 struct perf_buffer *old_rb = NULL;
6234 unsigned long flags;
6235
6236 WARN_ON_ONCE(event->parent);
6237
6238 if (event->rb) {
6239 /*
6240 * Should be impossible, we set this when removing
6241 * event->rb_entry and wait/clear when adding event->rb_entry.
6242 */
6243 WARN_ON_ONCE(event->rcu_pending);
6244
6245 old_rb = event->rb;
6246 spin_lock_irqsave(&old_rb->event_lock, flags);
6247 list_del_rcu(&event->rb_entry);
6248 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6249
6250 event->rcu_batches = get_state_synchronize_rcu();
6251 event->rcu_pending = 1;
6252 }
6253
6254 if (rb) {
6255 if (event->rcu_pending) {
6256 cond_synchronize_rcu(event->rcu_batches);
6257 event->rcu_pending = 0;
6258 }
6259
6260 spin_lock_irqsave(&rb->event_lock, flags);
6261 list_add_rcu(&event->rb_entry, &rb->event_list);
6262 spin_unlock_irqrestore(&rb->event_lock, flags);
6263 }
6264
6265 /*
6266 * Avoid racing with perf_mmap_close(AUX): stop the event
6267 * before swizzling the event::rb pointer; if it's getting
6268 * unmapped, its aux_mmap_count will be 0 and it won't
6269 * restart. See the comment in __perf_pmu_output_stop().
6270 *
6271 * Data will inevitably be lost when set_output is done in
6272 * mid-air, but then again, whoever does it like this is
6273 * not in for the data anyway.
6274 */
6275 if (has_aux(event))
6276 perf_event_stop(event, 0);
6277
6278 rcu_assign_pointer(event->rb, rb);
6279
6280 if (old_rb) {
6281 ring_buffer_put(old_rb);
6282 /*
6283 * Since we detached before setting the new rb, so that we
6284 * could attach the new rb, we could have missed a wakeup.
6285 * Provide it now.
6286 */
6287 wake_up_all(&event->waitq);
6288 }
6289 }
6290
ring_buffer_wakeup(struct perf_event * event)6291 static void ring_buffer_wakeup(struct perf_event *event)
6292 {
6293 struct perf_buffer *rb;
6294
6295 if (event->parent)
6296 event = event->parent;
6297
6298 rcu_read_lock();
6299 rb = rcu_dereference(event->rb);
6300 if (rb) {
6301 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6302 wake_up_all(&event->waitq);
6303 }
6304 rcu_read_unlock();
6305 }
6306
ring_buffer_get(struct perf_event * event)6307 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6308 {
6309 struct perf_buffer *rb;
6310
6311 if (event->parent)
6312 event = event->parent;
6313
6314 rcu_read_lock();
6315 rb = rcu_dereference(event->rb);
6316 if (rb) {
6317 if (!refcount_inc_not_zero(&rb->refcount))
6318 rb = NULL;
6319 }
6320 rcu_read_unlock();
6321
6322 return rb;
6323 }
6324
ring_buffer_put(struct perf_buffer * rb)6325 void ring_buffer_put(struct perf_buffer *rb)
6326 {
6327 if (!refcount_dec_and_test(&rb->refcount))
6328 return;
6329
6330 WARN_ON_ONCE(!list_empty(&rb->event_list));
6331
6332 call_rcu(&rb->rcu_head, rb_free_rcu);
6333 }
6334
perf_mmap_open(struct vm_area_struct * vma)6335 static void perf_mmap_open(struct vm_area_struct *vma)
6336 {
6337 struct perf_event *event = vma->vm_file->private_data;
6338
6339 atomic_inc(&event->mmap_count);
6340 atomic_inc(&event->rb->mmap_count);
6341
6342 if (vma->vm_pgoff)
6343 atomic_inc(&event->rb->aux_mmap_count);
6344
6345 if (event->pmu->event_mapped)
6346 event->pmu->event_mapped(event, vma->vm_mm);
6347 }
6348
6349 static void perf_pmu_output_stop(struct perf_event *event);
6350
6351 /*
6352 * A buffer can be mmap()ed multiple times; either directly through the same
6353 * event, or through other events by use of perf_event_set_output().
6354 *
6355 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6356 * the buffer here, where we still have a VM context. This means we need
6357 * to detach all events redirecting to us.
6358 */
perf_mmap_close(struct vm_area_struct * vma)6359 static void perf_mmap_close(struct vm_area_struct *vma)
6360 {
6361 struct perf_event *event = vma->vm_file->private_data;
6362 struct perf_buffer *rb = ring_buffer_get(event);
6363 struct user_struct *mmap_user = rb->mmap_user;
6364 int mmap_locked = rb->mmap_locked;
6365 unsigned long size = perf_data_size(rb);
6366 bool detach_rest = false;
6367
6368 if (event->pmu->event_unmapped)
6369 event->pmu->event_unmapped(event, vma->vm_mm);
6370
6371 /*
6372 * The AUX buffer is strictly a sub-buffer, serialize using aux_mutex
6373 * to avoid complications.
6374 */
6375 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6376 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &rb->aux_mutex)) {
6377 /*
6378 * Stop all AUX events that are writing to this buffer,
6379 * so that we can free its AUX pages and corresponding PMU
6380 * data. Note that after rb::aux_mmap_count dropped to zero,
6381 * they won't start any more (see perf_aux_output_begin()).
6382 */
6383 perf_pmu_output_stop(event);
6384
6385 /* now it's safe to free the pages */
6386 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6387 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6388
6389 /* this has to be the last one */
6390 rb_free_aux(rb);
6391 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6392
6393 mutex_unlock(&rb->aux_mutex);
6394 }
6395
6396 if (atomic_dec_and_test(&rb->mmap_count))
6397 detach_rest = true;
6398
6399 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6400 goto out_put;
6401
6402 ring_buffer_attach(event, NULL);
6403 mutex_unlock(&event->mmap_mutex);
6404
6405 /* If there's still other mmap()s of this buffer, we're done. */
6406 if (!detach_rest)
6407 goto out_put;
6408
6409 /*
6410 * No other mmap()s, detach from all other events that might redirect
6411 * into the now unreachable buffer. Somewhat complicated by the
6412 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6413 */
6414 again:
6415 rcu_read_lock();
6416 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6417 if (!atomic_long_inc_not_zero(&event->refcount)) {
6418 /*
6419 * This event is en-route to free_event() which will
6420 * detach it and remove it from the list.
6421 */
6422 continue;
6423 }
6424 rcu_read_unlock();
6425
6426 mutex_lock(&event->mmap_mutex);
6427 /*
6428 * Check we didn't race with perf_event_set_output() which can
6429 * swizzle the rb from under us while we were waiting to
6430 * acquire mmap_mutex.
6431 *
6432 * If we find a different rb; ignore this event, a next
6433 * iteration will no longer find it on the list. We have to
6434 * still restart the iteration to make sure we're not now
6435 * iterating the wrong list.
6436 */
6437 if (event->rb == rb)
6438 ring_buffer_attach(event, NULL);
6439
6440 mutex_unlock(&event->mmap_mutex);
6441 put_event(event);
6442
6443 /*
6444 * Restart the iteration; either we're on the wrong list or
6445 * destroyed its integrity by doing a deletion.
6446 */
6447 goto again;
6448 }
6449 rcu_read_unlock();
6450
6451 /*
6452 * It could be there's still a few 0-ref events on the list; they'll
6453 * get cleaned up by free_event() -- they'll also still have their
6454 * ref on the rb and will free it whenever they are done with it.
6455 *
6456 * Aside from that, this buffer is 'fully' detached and unmapped,
6457 * undo the VM accounting.
6458 */
6459
6460 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6461 &mmap_user->locked_vm);
6462 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6463 free_uid(mmap_user);
6464
6465 out_put:
6466 ring_buffer_put(rb); /* could be last */
6467 }
6468
6469 static const struct vm_operations_struct perf_mmap_vmops = {
6470 .open = perf_mmap_open,
6471 .close = perf_mmap_close, /* non mergeable */
6472 .fault = perf_mmap_fault,
6473 .page_mkwrite = perf_mmap_fault,
6474 };
6475
perf_mmap(struct file * file,struct vm_area_struct * vma)6476 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6477 {
6478 struct perf_event *event = file->private_data;
6479 unsigned long user_locked, user_lock_limit;
6480 struct user_struct *user = current_user();
6481 struct mutex *aux_mutex = NULL;
6482 struct perf_buffer *rb = NULL;
6483 unsigned long locked, lock_limit;
6484 unsigned long vma_size;
6485 unsigned long nr_pages;
6486 long user_extra = 0, extra = 0;
6487 int ret = 0, flags = 0;
6488
6489 /*
6490 * Don't allow mmap() of inherited per-task counters. This would
6491 * create a performance issue due to all children writing to the
6492 * same rb.
6493 */
6494 if (event->cpu == -1 && event->attr.inherit)
6495 return -EINVAL;
6496
6497 if (!(vma->vm_flags & VM_SHARED))
6498 return -EINVAL;
6499
6500 ret = security_perf_event_read(event);
6501 if (ret)
6502 return ret;
6503
6504 vma_size = vma->vm_end - vma->vm_start;
6505
6506 if (vma->vm_pgoff == 0) {
6507 nr_pages = (vma_size / PAGE_SIZE) - 1;
6508 } else {
6509 /*
6510 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6511 * mapped, all subsequent mappings should have the same size
6512 * and offset. Must be above the normal perf buffer.
6513 */
6514 u64 aux_offset, aux_size;
6515
6516 if (!event->rb)
6517 return -EINVAL;
6518
6519 nr_pages = vma_size / PAGE_SIZE;
6520 if (nr_pages > INT_MAX)
6521 return -ENOMEM;
6522
6523 mutex_lock(&event->mmap_mutex);
6524 ret = -EINVAL;
6525
6526 rb = event->rb;
6527 if (!rb)
6528 goto aux_unlock;
6529
6530 aux_mutex = &rb->aux_mutex;
6531 mutex_lock(aux_mutex);
6532
6533 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6534 aux_size = READ_ONCE(rb->user_page->aux_size);
6535
6536 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6537 goto aux_unlock;
6538
6539 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6540 goto aux_unlock;
6541
6542 /* already mapped with a different offset */
6543 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6544 goto aux_unlock;
6545
6546 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6547 goto aux_unlock;
6548
6549 /* already mapped with a different size */
6550 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6551 goto aux_unlock;
6552
6553 if (!is_power_of_2(nr_pages))
6554 goto aux_unlock;
6555
6556 if (!atomic_inc_not_zero(&rb->mmap_count))
6557 goto aux_unlock;
6558
6559 if (rb_has_aux(rb)) {
6560 atomic_inc(&rb->aux_mmap_count);
6561 ret = 0;
6562 goto unlock;
6563 }
6564
6565 atomic_set(&rb->aux_mmap_count, 1);
6566 user_extra = nr_pages;
6567
6568 goto accounting;
6569 }
6570
6571 /*
6572 * If we have rb pages ensure they're a power-of-two number, so we
6573 * can do bitmasks instead of modulo.
6574 */
6575 if (nr_pages != 0 && !is_power_of_2(nr_pages))
6576 return -EINVAL;
6577
6578 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6579 return -EINVAL;
6580
6581 WARN_ON_ONCE(event->ctx->parent_ctx);
6582 again:
6583 mutex_lock(&event->mmap_mutex);
6584 if (event->rb) {
6585 if (data_page_nr(event->rb) != nr_pages) {
6586 ret = -EINVAL;
6587 goto unlock;
6588 }
6589
6590 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6591 /*
6592 * Raced against perf_mmap_close(); remove the
6593 * event and try again.
6594 */
6595 ring_buffer_attach(event, NULL);
6596 mutex_unlock(&event->mmap_mutex);
6597 goto again;
6598 }
6599
6600 goto unlock;
6601 }
6602
6603 user_extra = nr_pages + 1;
6604
6605 accounting:
6606 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6607
6608 /*
6609 * Increase the limit linearly with more CPUs:
6610 */
6611 user_lock_limit *= num_online_cpus();
6612
6613 user_locked = atomic_long_read(&user->locked_vm);
6614
6615 /*
6616 * sysctl_perf_event_mlock may have changed, so that
6617 * user->locked_vm > user_lock_limit
6618 */
6619 if (user_locked > user_lock_limit)
6620 user_locked = user_lock_limit;
6621 user_locked += user_extra;
6622
6623 if (user_locked > user_lock_limit) {
6624 /*
6625 * charge locked_vm until it hits user_lock_limit;
6626 * charge the rest from pinned_vm
6627 */
6628 extra = user_locked - user_lock_limit;
6629 user_extra -= extra;
6630 }
6631
6632 lock_limit = rlimit(RLIMIT_MEMLOCK);
6633 lock_limit >>= PAGE_SHIFT;
6634 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6635
6636 if ((locked > lock_limit) && perf_is_paranoid() &&
6637 !capable(CAP_IPC_LOCK)) {
6638 ret = -EPERM;
6639 goto unlock;
6640 }
6641
6642 WARN_ON(!rb && event->rb);
6643
6644 if (vma->vm_flags & VM_WRITE)
6645 flags |= RING_BUFFER_WRITABLE;
6646
6647 if (!rb) {
6648 rb = rb_alloc(nr_pages,
6649 event->attr.watermark ? event->attr.wakeup_watermark : 0,
6650 event->cpu, flags);
6651
6652 if (!rb) {
6653 ret = -ENOMEM;
6654 goto unlock;
6655 }
6656
6657 atomic_set(&rb->mmap_count, 1);
6658 rb->mmap_user = get_current_user();
6659 rb->mmap_locked = extra;
6660
6661 ring_buffer_attach(event, rb);
6662
6663 perf_event_update_time(event);
6664 perf_event_init_userpage(event);
6665 perf_event_update_userpage(event);
6666 } else {
6667 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6668 event->attr.aux_watermark, flags);
6669 if (!ret)
6670 rb->aux_mmap_locked = extra;
6671 }
6672
6673 unlock:
6674 if (!ret) {
6675 atomic_long_add(user_extra, &user->locked_vm);
6676 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6677
6678 atomic_inc(&event->mmap_count);
6679 } else if (rb) {
6680 atomic_dec(&rb->mmap_count);
6681 }
6682 aux_unlock:
6683 if (aux_mutex)
6684 mutex_unlock(aux_mutex);
6685 mutex_unlock(&event->mmap_mutex);
6686
6687 /*
6688 * Since pinned accounting is per vm we cannot allow fork() to copy our
6689 * vma.
6690 */
6691 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6692 vma->vm_ops = &perf_mmap_vmops;
6693
6694 if (event->pmu->event_mapped)
6695 event->pmu->event_mapped(event, vma->vm_mm);
6696
6697 return ret;
6698 }
6699
perf_fasync(int fd,struct file * filp,int on)6700 static int perf_fasync(int fd, struct file *filp, int on)
6701 {
6702 struct inode *inode = file_inode(filp);
6703 struct perf_event *event = filp->private_data;
6704 int retval;
6705
6706 inode_lock(inode);
6707 retval = fasync_helper(fd, filp, on, &event->fasync);
6708 inode_unlock(inode);
6709
6710 if (retval < 0)
6711 return retval;
6712
6713 return 0;
6714 }
6715
6716 static const struct file_operations perf_fops = {
6717 .llseek = no_llseek,
6718 .release = perf_release,
6719 .read = perf_read,
6720 .poll = perf_poll,
6721 .unlocked_ioctl = perf_ioctl,
6722 .compat_ioctl = perf_compat_ioctl,
6723 .mmap = perf_mmap,
6724 .fasync = perf_fasync,
6725 };
6726
6727 /*
6728 * Perf event wakeup
6729 *
6730 * If there's data, ensure we set the poll() state and publish everything
6731 * to user-space before waking everybody up.
6732 */
6733
perf_event_fasync(struct perf_event * event)6734 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6735 {
6736 /* only the parent has fasync state */
6737 if (event->parent)
6738 event = event->parent;
6739 return &event->fasync;
6740 }
6741
perf_event_wakeup(struct perf_event * event)6742 void perf_event_wakeup(struct perf_event *event)
6743 {
6744 ring_buffer_wakeup(event);
6745
6746 if (event->pending_kill) {
6747 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6748 event->pending_kill = 0;
6749 }
6750 }
6751
perf_sigtrap(struct perf_event * event)6752 static void perf_sigtrap(struct perf_event *event)
6753 {
6754 /*
6755 * We'd expect this to only occur if the irq_work is delayed and either
6756 * ctx->task or current has changed in the meantime. This can be the
6757 * case on architectures that do not implement arch_irq_work_raise().
6758 */
6759 if (WARN_ON_ONCE(event->ctx->task != current))
6760 return;
6761
6762 /*
6763 * Both perf_pending_task() and perf_pending_irq() can race with the
6764 * task exiting.
6765 */
6766 if (current->flags & PF_EXITING)
6767 return;
6768
6769 send_sig_perf((void __user *)event->pending_addr,
6770 event->orig_type, event->attr.sig_data);
6771 }
6772
6773 /*
6774 * Deliver the pending work in-event-context or follow the context.
6775 */
__perf_pending_irq(struct perf_event * event)6776 static void __perf_pending_irq(struct perf_event *event)
6777 {
6778 int cpu = READ_ONCE(event->oncpu);
6779
6780 /*
6781 * If the event isn't running; we done. event_sched_out() will have
6782 * taken care of things.
6783 */
6784 if (cpu < 0)
6785 return;
6786
6787 /*
6788 * Yay, we hit home and are in the context of the event.
6789 */
6790 if (cpu == smp_processor_id()) {
6791 if (event->pending_sigtrap) {
6792 event->pending_sigtrap = 0;
6793 perf_sigtrap(event);
6794 local_dec(&event->ctx->nr_pending);
6795 }
6796 if (event->pending_disable) {
6797 event->pending_disable = 0;
6798 perf_event_disable_local(event);
6799 }
6800 return;
6801 }
6802
6803 /*
6804 * CPU-A CPU-B
6805 *
6806 * perf_event_disable_inatomic()
6807 * @pending_disable = CPU-A;
6808 * irq_work_queue();
6809 *
6810 * sched-out
6811 * @pending_disable = -1;
6812 *
6813 * sched-in
6814 * perf_event_disable_inatomic()
6815 * @pending_disable = CPU-B;
6816 * irq_work_queue(); // FAILS
6817 *
6818 * irq_work_run()
6819 * perf_pending_irq()
6820 *
6821 * But the event runs on CPU-B and wants disabling there.
6822 */
6823 irq_work_queue_on(&event->pending_irq, cpu);
6824 }
6825
perf_pending_irq(struct irq_work * entry)6826 static void perf_pending_irq(struct irq_work *entry)
6827 {
6828 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6829 int rctx;
6830
6831 /*
6832 * If we 'fail' here, that's OK, it means recursion is already disabled
6833 * and we won't recurse 'further'.
6834 */
6835 rctx = perf_swevent_get_recursion_context();
6836
6837 /*
6838 * The wakeup isn't bound to the context of the event -- it can happen
6839 * irrespective of where the event is.
6840 */
6841 if (event->pending_wakeup) {
6842 event->pending_wakeup = 0;
6843 perf_event_wakeup(event);
6844 }
6845
6846 __perf_pending_irq(event);
6847
6848 if (rctx >= 0)
6849 perf_swevent_put_recursion_context(rctx);
6850 }
6851
perf_pending_task(struct callback_head * head)6852 static void perf_pending_task(struct callback_head *head)
6853 {
6854 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6855 int rctx;
6856
6857 /*
6858 * All accesses to the event must belong to the same implicit RCU read-side
6859 * critical section as the ->pending_work reset. See comment in
6860 * perf_pending_task_sync().
6861 */
6862 preempt_disable_notrace();
6863 /*
6864 * If we 'fail' here, that's OK, it means recursion is already disabled
6865 * and we won't recurse 'further'.
6866 */
6867 rctx = perf_swevent_get_recursion_context();
6868
6869 if (event->pending_work) {
6870 event->pending_work = 0;
6871 perf_sigtrap(event);
6872 local_dec(&event->ctx->nr_pending);
6873 rcuwait_wake_up(&event->pending_work_wait);
6874 }
6875
6876 if (rctx >= 0)
6877 perf_swevent_put_recursion_context(rctx);
6878 preempt_enable_notrace();
6879 }
6880
6881 #ifdef CONFIG_GUEST_PERF_EVENTS
6882 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6883
6884 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6885 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6886 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6887
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6888 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6889 {
6890 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6891 return;
6892
6893 rcu_assign_pointer(perf_guest_cbs, cbs);
6894 static_call_update(__perf_guest_state, cbs->state);
6895 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6896
6897 /* Implementing ->handle_intel_pt_intr is optional. */
6898 if (cbs->handle_intel_pt_intr)
6899 static_call_update(__perf_guest_handle_intel_pt_intr,
6900 cbs->handle_intel_pt_intr);
6901 }
6902 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6903
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)6904 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6905 {
6906 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6907 return;
6908
6909 rcu_assign_pointer(perf_guest_cbs, NULL);
6910 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6911 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6912 static_call_update(__perf_guest_handle_intel_pt_intr,
6913 (void *)&__static_call_return0);
6914 synchronize_rcu();
6915 }
6916 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6917 #endif
6918
6919 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)6920 perf_output_sample_regs(struct perf_output_handle *handle,
6921 struct pt_regs *regs, u64 mask)
6922 {
6923 int bit;
6924 DECLARE_BITMAP(_mask, 64);
6925
6926 bitmap_from_u64(_mask, mask);
6927 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6928 u64 val;
6929
6930 val = perf_reg_value(regs, bit);
6931 perf_output_put(handle, val);
6932 }
6933 }
6934
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs)6935 static void perf_sample_regs_user(struct perf_regs *regs_user,
6936 struct pt_regs *regs)
6937 {
6938 if (user_mode(regs)) {
6939 regs_user->abi = perf_reg_abi(current);
6940 regs_user->regs = regs;
6941 } else if (!(current->flags & PF_KTHREAD)) {
6942 perf_get_regs_user(regs_user, regs);
6943 } else {
6944 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6945 regs_user->regs = NULL;
6946 }
6947 }
6948
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)6949 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6950 struct pt_regs *regs)
6951 {
6952 regs_intr->regs = regs;
6953 regs_intr->abi = perf_reg_abi(current);
6954 }
6955
6956
6957 /*
6958 * Get remaining task size from user stack pointer.
6959 *
6960 * It'd be better to take stack vma map and limit this more
6961 * precisely, but there's no way to get it safely under interrupt,
6962 * so using TASK_SIZE as limit.
6963 */
perf_ustack_task_size(struct pt_regs * regs)6964 static u64 perf_ustack_task_size(struct pt_regs *regs)
6965 {
6966 unsigned long addr = perf_user_stack_pointer(regs);
6967
6968 if (!addr || addr >= TASK_SIZE)
6969 return 0;
6970
6971 return TASK_SIZE - addr;
6972 }
6973
6974 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)6975 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6976 struct pt_regs *regs)
6977 {
6978 u64 task_size;
6979
6980 /* No regs, no stack pointer, no dump. */
6981 if (!regs)
6982 return 0;
6983
6984 /*
6985 * Check if we fit in with the requested stack size into the:
6986 * - TASK_SIZE
6987 * If we don't, we limit the size to the TASK_SIZE.
6988 *
6989 * - remaining sample size
6990 * If we don't, we customize the stack size to
6991 * fit in to the remaining sample size.
6992 */
6993
6994 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6995 stack_size = min(stack_size, (u16) task_size);
6996
6997 /* Current header size plus static size and dynamic size. */
6998 header_size += 2 * sizeof(u64);
6999
7000 /* Do we fit in with the current stack dump size? */
7001 if ((u16) (header_size + stack_size) < header_size) {
7002 /*
7003 * If we overflow the maximum size for the sample,
7004 * we customize the stack dump size to fit in.
7005 */
7006 stack_size = USHRT_MAX - header_size - sizeof(u64);
7007 stack_size = round_up(stack_size, sizeof(u64));
7008 }
7009
7010 return stack_size;
7011 }
7012
7013 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)7014 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
7015 struct pt_regs *regs)
7016 {
7017 /* Case of a kernel thread, nothing to dump */
7018 if (!regs) {
7019 u64 size = 0;
7020 perf_output_put(handle, size);
7021 } else {
7022 unsigned long sp;
7023 unsigned int rem;
7024 u64 dyn_size;
7025
7026 /*
7027 * We dump:
7028 * static size
7029 * - the size requested by user or the best one we can fit
7030 * in to the sample max size
7031 * data
7032 * - user stack dump data
7033 * dynamic size
7034 * - the actual dumped size
7035 */
7036
7037 /* Static size. */
7038 perf_output_put(handle, dump_size);
7039
7040 /* Data. */
7041 sp = perf_user_stack_pointer(regs);
7042 rem = __output_copy_user(handle, (void *) sp, dump_size);
7043 dyn_size = dump_size - rem;
7044
7045 perf_output_skip(handle, rem);
7046
7047 /* Dynamic size. */
7048 perf_output_put(handle, dyn_size);
7049 }
7050 }
7051
perf_prepare_sample_aux(struct perf_event * event,struct perf_sample_data * data,size_t size)7052 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7053 struct perf_sample_data *data,
7054 size_t size)
7055 {
7056 struct perf_event *sampler = event->aux_event;
7057 struct perf_buffer *rb;
7058
7059 data->aux_size = 0;
7060
7061 if (!sampler)
7062 goto out;
7063
7064 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7065 goto out;
7066
7067 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7068 goto out;
7069
7070 rb = ring_buffer_get(sampler);
7071 if (!rb)
7072 goto out;
7073
7074 /*
7075 * If this is an NMI hit inside sampling code, don't take
7076 * the sample. See also perf_aux_sample_output().
7077 */
7078 if (READ_ONCE(rb->aux_in_sampling)) {
7079 data->aux_size = 0;
7080 } else {
7081 size = min_t(size_t, size, perf_aux_size(rb));
7082 data->aux_size = ALIGN(size, sizeof(u64));
7083 }
7084 ring_buffer_put(rb);
7085
7086 out:
7087 return data->aux_size;
7088 }
7089
perf_pmu_snapshot_aux(struct perf_buffer * rb,struct perf_event * event,struct perf_output_handle * handle,unsigned long size)7090 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7091 struct perf_event *event,
7092 struct perf_output_handle *handle,
7093 unsigned long size)
7094 {
7095 unsigned long flags;
7096 long ret;
7097
7098 /*
7099 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7100 * paths. If we start calling them in NMI context, they may race with
7101 * the IRQ ones, that is, for example, re-starting an event that's just
7102 * been stopped, which is why we're using a separate callback that
7103 * doesn't change the event state.
7104 *
7105 * IRQs need to be disabled to prevent IPIs from racing with us.
7106 */
7107 local_irq_save(flags);
7108 /*
7109 * Guard against NMI hits inside the critical section;
7110 * see also perf_prepare_sample_aux().
7111 */
7112 WRITE_ONCE(rb->aux_in_sampling, 1);
7113 barrier();
7114
7115 ret = event->pmu->snapshot_aux(event, handle, size);
7116
7117 barrier();
7118 WRITE_ONCE(rb->aux_in_sampling, 0);
7119 local_irq_restore(flags);
7120
7121 return ret;
7122 }
7123
perf_aux_sample_output(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * data)7124 static void perf_aux_sample_output(struct perf_event *event,
7125 struct perf_output_handle *handle,
7126 struct perf_sample_data *data)
7127 {
7128 struct perf_event *sampler = event->aux_event;
7129 struct perf_buffer *rb;
7130 unsigned long pad;
7131 long size;
7132
7133 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7134 return;
7135
7136 rb = ring_buffer_get(sampler);
7137 if (!rb)
7138 return;
7139
7140 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7141
7142 /*
7143 * An error here means that perf_output_copy() failed (returned a
7144 * non-zero surplus that it didn't copy), which in its current
7145 * enlightened implementation is not possible. If that changes, we'd
7146 * like to know.
7147 */
7148 if (WARN_ON_ONCE(size < 0))
7149 goto out_put;
7150
7151 /*
7152 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7153 * perf_prepare_sample_aux(), so should not be more than that.
7154 */
7155 pad = data->aux_size - size;
7156 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7157 pad = 8;
7158
7159 if (pad) {
7160 u64 zero = 0;
7161 perf_output_copy(handle, &zero, pad);
7162 }
7163
7164 out_put:
7165 ring_buffer_put(rb);
7166 }
7167
7168 /*
7169 * A set of common sample data types saved even for non-sample records
7170 * when event->attr.sample_id_all is set.
7171 */
7172 #define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7173 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7174 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7175
__perf_event_header__init_id(struct perf_sample_data * data,struct perf_event * event,u64 sample_type)7176 static void __perf_event_header__init_id(struct perf_sample_data *data,
7177 struct perf_event *event,
7178 u64 sample_type)
7179 {
7180 data->type = event->attr.sample_type;
7181 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7182
7183 if (sample_type & PERF_SAMPLE_TID) {
7184 /* namespace issues */
7185 data->tid_entry.pid = perf_event_pid(event, current);
7186 data->tid_entry.tid = perf_event_tid(event, current);
7187 }
7188
7189 if (sample_type & PERF_SAMPLE_TIME)
7190 data->time = perf_event_clock(event);
7191
7192 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7193 data->id = primary_event_id(event);
7194
7195 if (sample_type & PERF_SAMPLE_STREAM_ID)
7196 data->stream_id = event->id;
7197
7198 if (sample_type & PERF_SAMPLE_CPU) {
7199 data->cpu_entry.cpu = raw_smp_processor_id();
7200 data->cpu_entry.reserved = 0;
7201 }
7202 }
7203
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7204 void perf_event_header__init_id(struct perf_event_header *header,
7205 struct perf_sample_data *data,
7206 struct perf_event *event)
7207 {
7208 if (event->attr.sample_id_all) {
7209 header->size += event->id_header_size;
7210 __perf_event_header__init_id(data, event, event->attr.sample_type);
7211 }
7212 }
7213
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)7214 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7215 struct perf_sample_data *data)
7216 {
7217 u64 sample_type = data->type;
7218
7219 if (sample_type & PERF_SAMPLE_TID)
7220 perf_output_put(handle, data->tid_entry);
7221
7222 if (sample_type & PERF_SAMPLE_TIME)
7223 perf_output_put(handle, data->time);
7224
7225 if (sample_type & PERF_SAMPLE_ID)
7226 perf_output_put(handle, data->id);
7227
7228 if (sample_type & PERF_SAMPLE_STREAM_ID)
7229 perf_output_put(handle, data->stream_id);
7230
7231 if (sample_type & PERF_SAMPLE_CPU)
7232 perf_output_put(handle, data->cpu_entry);
7233
7234 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7235 perf_output_put(handle, data->id);
7236 }
7237
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)7238 void perf_event__output_id_sample(struct perf_event *event,
7239 struct perf_output_handle *handle,
7240 struct perf_sample_data *sample)
7241 {
7242 if (event->attr.sample_id_all)
7243 __perf_event__output_id_sample(handle, sample);
7244 }
7245
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7246 static void perf_output_read_one(struct perf_output_handle *handle,
7247 struct perf_event *event,
7248 u64 enabled, u64 running)
7249 {
7250 u64 read_format = event->attr.read_format;
7251 u64 values[5];
7252 int n = 0;
7253
7254 values[n++] = perf_event_count(event);
7255 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7256 values[n++] = enabled +
7257 atomic64_read(&event->child_total_time_enabled);
7258 }
7259 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7260 values[n++] = running +
7261 atomic64_read(&event->child_total_time_running);
7262 }
7263 if (read_format & PERF_FORMAT_ID)
7264 values[n++] = primary_event_id(event);
7265 if (read_format & PERF_FORMAT_LOST)
7266 values[n++] = atomic64_read(&event->lost_samples);
7267
7268 __output_copy(handle, values, n * sizeof(u64));
7269 }
7270
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)7271 static void perf_output_read_group(struct perf_output_handle *handle,
7272 struct perf_event *event,
7273 u64 enabled, u64 running)
7274 {
7275 struct perf_event *leader = event->group_leader, *sub;
7276 u64 read_format = event->attr.read_format;
7277 unsigned long flags;
7278 u64 values[6];
7279 int n = 0;
7280
7281 /*
7282 * Disabling interrupts avoids all counter scheduling
7283 * (context switches, timer based rotation and IPIs).
7284 */
7285 local_irq_save(flags);
7286
7287 values[n++] = 1 + leader->nr_siblings;
7288
7289 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7290 values[n++] = enabled;
7291
7292 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7293 values[n++] = running;
7294
7295 if ((leader != event) &&
7296 (leader->state == PERF_EVENT_STATE_ACTIVE))
7297 leader->pmu->read(leader);
7298
7299 values[n++] = perf_event_count(leader);
7300 if (read_format & PERF_FORMAT_ID)
7301 values[n++] = primary_event_id(leader);
7302 if (read_format & PERF_FORMAT_LOST)
7303 values[n++] = atomic64_read(&leader->lost_samples);
7304
7305 __output_copy(handle, values, n * sizeof(u64));
7306
7307 for_each_sibling_event(sub, leader) {
7308 n = 0;
7309
7310 if ((sub != event) &&
7311 (sub->state == PERF_EVENT_STATE_ACTIVE))
7312 sub->pmu->read(sub);
7313
7314 values[n++] = perf_event_count(sub);
7315 if (read_format & PERF_FORMAT_ID)
7316 values[n++] = primary_event_id(sub);
7317 if (read_format & PERF_FORMAT_LOST)
7318 values[n++] = atomic64_read(&sub->lost_samples);
7319
7320 __output_copy(handle, values, n * sizeof(u64));
7321 }
7322
7323 local_irq_restore(flags);
7324 }
7325
7326 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7327 PERF_FORMAT_TOTAL_TIME_RUNNING)
7328
7329 /*
7330 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7331 *
7332 * The problem is that its both hard and excessively expensive to iterate the
7333 * child list, not to mention that its impossible to IPI the children running
7334 * on another CPU, from interrupt/NMI context.
7335 */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)7336 static void perf_output_read(struct perf_output_handle *handle,
7337 struct perf_event *event)
7338 {
7339 u64 enabled = 0, running = 0, now;
7340 u64 read_format = event->attr.read_format;
7341
7342 /*
7343 * compute total_time_enabled, total_time_running
7344 * based on snapshot values taken when the event
7345 * was last scheduled in.
7346 *
7347 * we cannot simply called update_context_time()
7348 * because of locking issue as we are called in
7349 * NMI context
7350 */
7351 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7352 calc_timer_values(event, &now, &enabled, &running);
7353
7354 if (event->attr.read_format & PERF_FORMAT_GROUP)
7355 perf_output_read_group(handle, event, enabled, running);
7356 else
7357 perf_output_read_one(handle, event, enabled, running);
7358 }
7359
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)7360 void perf_output_sample(struct perf_output_handle *handle,
7361 struct perf_event_header *header,
7362 struct perf_sample_data *data,
7363 struct perf_event *event)
7364 {
7365 u64 sample_type = data->type;
7366
7367 perf_output_put(handle, *header);
7368
7369 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7370 perf_output_put(handle, data->id);
7371
7372 if (sample_type & PERF_SAMPLE_IP)
7373 perf_output_put(handle, data->ip);
7374
7375 if (sample_type & PERF_SAMPLE_TID)
7376 perf_output_put(handle, data->tid_entry);
7377
7378 if (sample_type & PERF_SAMPLE_TIME)
7379 perf_output_put(handle, data->time);
7380
7381 if (sample_type & PERF_SAMPLE_ADDR)
7382 perf_output_put(handle, data->addr);
7383
7384 if (sample_type & PERF_SAMPLE_ID)
7385 perf_output_put(handle, data->id);
7386
7387 if (sample_type & PERF_SAMPLE_STREAM_ID)
7388 perf_output_put(handle, data->stream_id);
7389
7390 if (sample_type & PERF_SAMPLE_CPU)
7391 perf_output_put(handle, data->cpu_entry);
7392
7393 if (sample_type & PERF_SAMPLE_PERIOD)
7394 perf_output_put(handle, data->period);
7395
7396 if (sample_type & PERF_SAMPLE_READ)
7397 perf_output_read(handle, event);
7398
7399 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7400 int size = 1;
7401
7402 size += data->callchain->nr;
7403 size *= sizeof(u64);
7404 __output_copy(handle, data->callchain, size);
7405 }
7406
7407 if (sample_type & PERF_SAMPLE_RAW) {
7408 struct perf_raw_record *raw = data->raw;
7409
7410 if (raw) {
7411 struct perf_raw_frag *frag = &raw->frag;
7412
7413 perf_output_put(handle, raw->size);
7414 do {
7415 if (frag->copy) {
7416 __output_custom(handle, frag->copy,
7417 frag->data, frag->size);
7418 } else {
7419 __output_copy(handle, frag->data,
7420 frag->size);
7421 }
7422 if (perf_raw_frag_last(frag))
7423 break;
7424 frag = frag->next;
7425 } while (1);
7426 if (frag->pad)
7427 __output_skip(handle, NULL, frag->pad);
7428 } else {
7429 struct {
7430 u32 size;
7431 u32 data;
7432 } raw = {
7433 .size = sizeof(u32),
7434 .data = 0,
7435 };
7436 perf_output_put(handle, raw);
7437 }
7438 }
7439
7440 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7441 if (data->br_stack) {
7442 size_t size;
7443
7444 size = data->br_stack->nr
7445 * sizeof(struct perf_branch_entry);
7446
7447 perf_output_put(handle, data->br_stack->nr);
7448 if (branch_sample_hw_index(event))
7449 perf_output_put(handle, data->br_stack->hw_idx);
7450 perf_output_copy(handle, data->br_stack->entries, size);
7451 } else {
7452 /*
7453 * we always store at least the value of nr
7454 */
7455 u64 nr = 0;
7456 perf_output_put(handle, nr);
7457 }
7458 }
7459
7460 if (sample_type & PERF_SAMPLE_REGS_USER) {
7461 u64 abi = data->regs_user.abi;
7462
7463 /*
7464 * If there are no regs to dump, notice it through
7465 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7466 */
7467 perf_output_put(handle, abi);
7468
7469 if (abi) {
7470 u64 mask = event->attr.sample_regs_user;
7471 perf_output_sample_regs(handle,
7472 data->regs_user.regs,
7473 mask);
7474 }
7475 }
7476
7477 if (sample_type & PERF_SAMPLE_STACK_USER) {
7478 perf_output_sample_ustack(handle,
7479 data->stack_user_size,
7480 data->regs_user.regs);
7481 }
7482
7483 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7484 perf_output_put(handle, data->weight.full);
7485
7486 if (sample_type & PERF_SAMPLE_DATA_SRC)
7487 perf_output_put(handle, data->data_src.val);
7488
7489 if (sample_type & PERF_SAMPLE_TRANSACTION)
7490 perf_output_put(handle, data->txn);
7491
7492 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7493 u64 abi = data->regs_intr.abi;
7494 /*
7495 * If there are no regs to dump, notice it through
7496 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7497 */
7498 perf_output_put(handle, abi);
7499
7500 if (abi) {
7501 u64 mask = event->attr.sample_regs_intr;
7502
7503 perf_output_sample_regs(handle,
7504 data->regs_intr.regs,
7505 mask);
7506 }
7507 }
7508
7509 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7510 perf_output_put(handle, data->phys_addr);
7511
7512 if (sample_type & PERF_SAMPLE_CGROUP)
7513 perf_output_put(handle, data->cgroup);
7514
7515 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7516 perf_output_put(handle, data->data_page_size);
7517
7518 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7519 perf_output_put(handle, data->code_page_size);
7520
7521 if (sample_type & PERF_SAMPLE_AUX) {
7522 perf_output_put(handle, data->aux_size);
7523
7524 if (data->aux_size)
7525 perf_aux_sample_output(event, handle, data);
7526 }
7527
7528 if (!event->attr.watermark) {
7529 int wakeup_events = event->attr.wakeup_events;
7530
7531 if (wakeup_events) {
7532 struct perf_buffer *rb = handle->rb;
7533 int events = local_inc_return(&rb->events);
7534
7535 if (events >= wakeup_events) {
7536 local_sub(wakeup_events, &rb->events);
7537 local_inc(&rb->wakeup);
7538 }
7539 }
7540 }
7541 }
7542
perf_virt_to_phys(u64 virt)7543 static u64 perf_virt_to_phys(u64 virt)
7544 {
7545 u64 phys_addr = 0;
7546
7547 if (!virt)
7548 return 0;
7549
7550 if (virt >= TASK_SIZE) {
7551 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7552 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7553 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7554 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7555 } else {
7556 /*
7557 * Walking the pages tables for user address.
7558 * Interrupts are disabled, so it prevents any tear down
7559 * of the page tables.
7560 * Try IRQ-safe get_user_page_fast_only first.
7561 * If failed, leave phys_addr as 0.
7562 */
7563 if (current->mm != NULL) {
7564 struct page *p;
7565
7566 pagefault_disable();
7567 if (get_user_page_fast_only(virt, 0, &p)) {
7568 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7569 put_page(p);
7570 }
7571 pagefault_enable();
7572 }
7573 }
7574
7575 return phys_addr;
7576 }
7577
7578 /*
7579 * Return the pagetable size of a given virtual address.
7580 */
perf_get_pgtable_size(struct mm_struct * mm,unsigned long addr)7581 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7582 {
7583 u64 size = 0;
7584
7585 #ifdef CONFIG_HAVE_FAST_GUP
7586 pgd_t *pgdp, pgd;
7587 p4d_t *p4dp, p4d;
7588 pud_t *pudp, pud;
7589 pmd_t *pmdp, pmd;
7590 pte_t *ptep, pte;
7591
7592 pgdp = pgd_offset(mm, addr);
7593 pgd = READ_ONCE(*pgdp);
7594 if (pgd_none(pgd))
7595 return 0;
7596
7597 if (pgd_leaf(pgd))
7598 return pgd_leaf_size(pgd);
7599
7600 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7601 p4d = READ_ONCE(*p4dp);
7602 if (!p4d_present(p4d))
7603 return 0;
7604
7605 if (p4d_leaf(p4d))
7606 return p4d_leaf_size(p4d);
7607
7608 pudp = pud_offset_lockless(p4dp, p4d, addr);
7609 pud = READ_ONCE(*pudp);
7610 if (!pud_present(pud))
7611 return 0;
7612
7613 if (pud_leaf(pud))
7614 return pud_leaf_size(pud);
7615
7616 pmdp = pmd_offset_lockless(pudp, pud, addr);
7617 again:
7618 pmd = pmdp_get_lockless(pmdp);
7619 if (!pmd_present(pmd))
7620 return 0;
7621
7622 if (pmd_leaf(pmd))
7623 return pmd_leaf_size(pmd);
7624
7625 ptep = pte_offset_map(&pmd, addr);
7626 if (!ptep)
7627 goto again;
7628
7629 pte = ptep_get_lockless(ptep);
7630 if (pte_present(pte))
7631 size = pte_leaf_size(pte);
7632 pte_unmap(ptep);
7633 #endif /* CONFIG_HAVE_FAST_GUP */
7634
7635 return size;
7636 }
7637
perf_get_page_size(unsigned long addr)7638 static u64 perf_get_page_size(unsigned long addr)
7639 {
7640 struct mm_struct *mm;
7641 unsigned long flags;
7642 u64 size;
7643
7644 if (!addr)
7645 return 0;
7646
7647 /*
7648 * Software page-table walkers must disable IRQs,
7649 * which prevents any tear down of the page tables.
7650 */
7651 local_irq_save(flags);
7652
7653 mm = current->mm;
7654 if (!mm) {
7655 /*
7656 * For kernel threads and the like, use init_mm so that
7657 * we can find kernel memory.
7658 */
7659 mm = &init_mm;
7660 }
7661
7662 size = perf_get_pgtable_size(mm, addr);
7663
7664 local_irq_restore(flags);
7665
7666 return size;
7667 }
7668
7669 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7670
7671 struct perf_callchain_entry *
perf_callchain(struct perf_event * event,struct pt_regs * regs)7672 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7673 {
7674 bool kernel = !event->attr.exclude_callchain_kernel;
7675 bool user = !event->attr.exclude_callchain_user;
7676 /* Disallow cross-task user callchains. */
7677 bool crosstask = event->ctx->task && event->ctx->task != current;
7678 const u32 max_stack = event->attr.sample_max_stack;
7679 struct perf_callchain_entry *callchain;
7680
7681 if (!kernel && !user)
7682 return &__empty_callchain;
7683
7684 callchain = get_perf_callchain(regs, 0, kernel, user,
7685 max_stack, crosstask, true);
7686 return callchain ?: &__empty_callchain;
7687 }
7688
__cond_set(u64 flags,u64 s,u64 d)7689 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7690 {
7691 return d * !!(flags & s);
7692 }
7693
perf_prepare_sample(struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7694 void perf_prepare_sample(struct perf_sample_data *data,
7695 struct perf_event *event,
7696 struct pt_regs *regs)
7697 {
7698 u64 sample_type = event->attr.sample_type;
7699 u64 filtered_sample_type;
7700
7701 /*
7702 * Add the sample flags that are dependent to others. And clear the
7703 * sample flags that have already been done by the PMU driver.
7704 */
7705 filtered_sample_type = sample_type;
7706 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7707 PERF_SAMPLE_IP);
7708 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7709 PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7710 filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7711 PERF_SAMPLE_REGS_USER);
7712 filtered_sample_type &= ~data->sample_flags;
7713
7714 if (filtered_sample_type == 0) {
7715 /* Make sure it has the correct data->type for output */
7716 data->type = event->attr.sample_type;
7717 return;
7718 }
7719
7720 __perf_event_header__init_id(data, event, filtered_sample_type);
7721
7722 if (filtered_sample_type & PERF_SAMPLE_IP) {
7723 data->ip = perf_instruction_pointer(regs);
7724 data->sample_flags |= PERF_SAMPLE_IP;
7725 }
7726
7727 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7728 perf_sample_save_callchain(data, event, regs);
7729
7730 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7731 data->raw = NULL;
7732 data->dyn_size += sizeof(u64);
7733 data->sample_flags |= PERF_SAMPLE_RAW;
7734 }
7735
7736 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7737 data->br_stack = NULL;
7738 data->dyn_size += sizeof(u64);
7739 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7740 }
7741
7742 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7743 perf_sample_regs_user(&data->regs_user, regs);
7744
7745 /*
7746 * It cannot use the filtered_sample_type here as REGS_USER can be set
7747 * by STACK_USER (using __cond_set() above) and we don't want to update
7748 * the dyn_size if it's not requested by users.
7749 */
7750 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7751 /* regs dump ABI info */
7752 int size = sizeof(u64);
7753
7754 if (data->regs_user.regs) {
7755 u64 mask = event->attr.sample_regs_user;
7756 size += hweight64(mask) * sizeof(u64);
7757 }
7758
7759 data->dyn_size += size;
7760 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7761 }
7762
7763 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7764 /*
7765 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7766 * processed as the last one or have additional check added
7767 * in case new sample type is added, because we could eat
7768 * up the rest of the sample size.
7769 */
7770 u16 stack_size = event->attr.sample_stack_user;
7771 u16 header_size = perf_sample_data_size(data, event);
7772 u16 size = sizeof(u64);
7773
7774 stack_size = perf_sample_ustack_size(stack_size, header_size,
7775 data->regs_user.regs);
7776
7777 /*
7778 * If there is something to dump, add space for the dump
7779 * itself and for the field that tells the dynamic size,
7780 * which is how many have been actually dumped.
7781 */
7782 if (stack_size)
7783 size += sizeof(u64) + stack_size;
7784
7785 data->stack_user_size = stack_size;
7786 data->dyn_size += size;
7787 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7788 }
7789
7790 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7791 data->weight.full = 0;
7792 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7793 }
7794
7795 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7796 data->data_src.val = PERF_MEM_NA;
7797 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7798 }
7799
7800 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7801 data->txn = 0;
7802 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7803 }
7804
7805 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7806 data->addr = 0;
7807 data->sample_flags |= PERF_SAMPLE_ADDR;
7808 }
7809
7810 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7811 /* regs dump ABI info */
7812 int size = sizeof(u64);
7813
7814 perf_sample_regs_intr(&data->regs_intr, regs);
7815
7816 if (data->regs_intr.regs) {
7817 u64 mask = event->attr.sample_regs_intr;
7818
7819 size += hweight64(mask) * sizeof(u64);
7820 }
7821
7822 data->dyn_size += size;
7823 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7824 }
7825
7826 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7827 data->phys_addr = perf_virt_to_phys(data->addr);
7828 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7829 }
7830
7831 #ifdef CONFIG_CGROUP_PERF
7832 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7833 struct cgroup *cgrp;
7834
7835 /* protected by RCU */
7836 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7837 data->cgroup = cgroup_id(cgrp);
7838 data->sample_flags |= PERF_SAMPLE_CGROUP;
7839 }
7840 #endif
7841
7842 /*
7843 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7844 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7845 * but the value will not dump to the userspace.
7846 */
7847 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7848 data->data_page_size = perf_get_page_size(data->addr);
7849 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7850 }
7851
7852 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7853 data->code_page_size = perf_get_page_size(data->ip);
7854 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7855 }
7856
7857 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7858 u64 size;
7859 u16 header_size = perf_sample_data_size(data, event);
7860
7861 header_size += sizeof(u64); /* size */
7862
7863 /*
7864 * Given the 16bit nature of header::size, an AUX sample can
7865 * easily overflow it, what with all the preceding sample bits.
7866 * Make sure this doesn't happen by using up to U16_MAX bytes
7867 * per sample in total (rounded down to 8 byte boundary).
7868 */
7869 size = min_t(size_t, U16_MAX - header_size,
7870 event->attr.aux_sample_size);
7871 size = rounddown(size, 8);
7872 size = perf_prepare_sample_aux(event, data, size);
7873
7874 WARN_ON_ONCE(size + header_size > U16_MAX);
7875 data->dyn_size += size + sizeof(u64); /* size above */
7876 data->sample_flags |= PERF_SAMPLE_AUX;
7877 }
7878 }
7879
perf_prepare_header(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)7880 void perf_prepare_header(struct perf_event_header *header,
7881 struct perf_sample_data *data,
7882 struct perf_event *event,
7883 struct pt_regs *regs)
7884 {
7885 header->type = PERF_RECORD_SAMPLE;
7886 header->size = perf_sample_data_size(data, event);
7887 header->misc = perf_misc_flags(regs);
7888
7889 /*
7890 * If you're adding more sample types here, you likely need to do
7891 * something about the overflowing header::size, like repurpose the
7892 * lowest 3 bits of size, which should be always zero at the moment.
7893 * This raises a more important question, do we really need 512k sized
7894 * samples and why, so good argumentation is in order for whatever you
7895 * do here next.
7896 */
7897 WARN_ON_ONCE(header->size & 7);
7898 }
7899
7900 static __always_inline int
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_sample_data *,struct perf_event *,unsigned int))7901 __perf_event_output(struct perf_event *event,
7902 struct perf_sample_data *data,
7903 struct pt_regs *regs,
7904 int (*output_begin)(struct perf_output_handle *,
7905 struct perf_sample_data *,
7906 struct perf_event *,
7907 unsigned int))
7908 {
7909 struct perf_output_handle handle;
7910 struct perf_event_header header;
7911 int err;
7912
7913 /* protect the callchain buffers */
7914 rcu_read_lock();
7915
7916 perf_prepare_sample(data, event, regs);
7917 perf_prepare_header(&header, data, event, regs);
7918
7919 err = output_begin(&handle, data, event, header.size);
7920 if (err)
7921 goto exit;
7922
7923 perf_output_sample(&handle, &header, data, event);
7924
7925 perf_output_end(&handle);
7926
7927 exit:
7928 rcu_read_unlock();
7929 return err;
7930 }
7931
7932 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7933 perf_event_output_forward(struct perf_event *event,
7934 struct perf_sample_data *data,
7935 struct pt_regs *regs)
7936 {
7937 __perf_event_output(event, data, regs, perf_output_begin_forward);
7938 }
7939
7940 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7941 perf_event_output_backward(struct perf_event *event,
7942 struct perf_sample_data *data,
7943 struct pt_regs *regs)
7944 {
7945 __perf_event_output(event, data, regs, perf_output_begin_backward);
7946 }
7947
7948 int
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7949 perf_event_output(struct perf_event *event,
7950 struct perf_sample_data *data,
7951 struct pt_regs *regs)
7952 {
7953 return __perf_event_output(event, data, regs, perf_output_begin);
7954 }
7955
7956 /*
7957 * read event_id
7958 */
7959
7960 struct perf_read_event {
7961 struct perf_event_header header;
7962
7963 u32 pid;
7964 u32 tid;
7965 };
7966
7967 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)7968 perf_event_read_event(struct perf_event *event,
7969 struct task_struct *task)
7970 {
7971 struct perf_output_handle handle;
7972 struct perf_sample_data sample;
7973 struct perf_read_event read_event = {
7974 .header = {
7975 .type = PERF_RECORD_READ,
7976 .misc = 0,
7977 .size = sizeof(read_event) + event->read_size,
7978 },
7979 .pid = perf_event_pid(event, task),
7980 .tid = perf_event_tid(event, task),
7981 };
7982 int ret;
7983
7984 perf_event_header__init_id(&read_event.header, &sample, event);
7985 ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7986 if (ret)
7987 return;
7988
7989 perf_output_put(&handle, read_event);
7990 perf_output_read(&handle, event);
7991 perf_event__output_id_sample(event, &handle, &sample);
7992
7993 perf_output_end(&handle);
7994 }
7995
7996 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7997
7998 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)7999 perf_iterate_ctx(struct perf_event_context *ctx,
8000 perf_iterate_f output,
8001 void *data, bool all)
8002 {
8003 struct perf_event *event;
8004
8005 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8006 if (!all) {
8007 if (event->state < PERF_EVENT_STATE_INACTIVE)
8008 continue;
8009 if (!event_filter_match(event))
8010 continue;
8011 }
8012
8013 output(event, data);
8014 }
8015 }
8016
perf_iterate_sb_cpu(perf_iterate_f output,void * data)8017 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
8018 {
8019 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
8020 struct perf_event *event;
8021
8022 list_for_each_entry_rcu(event, &pel->list, sb_list) {
8023 /*
8024 * Skip events that are not fully formed yet; ensure that
8025 * if we observe event->ctx, both event and ctx will be
8026 * complete enough. See perf_install_in_context().
8027 */
8028 if (!smp_load_acquire(&event->ctx))
8029 continue;
8030
8031 if (event->state < PERF_EVENT_STATE_INACTIVE)
8032 continue;
8033 if (!event_filter_match(event))
8034 continue;
8035 output(event, data);
8036 }
8037 }
8038
8039 /*
8040 * Iterate all events that need to receive side-band events.
8041 *
8042 * For new callers; ensure that account_pmu_sb_event() includes
8043 * your event, otherwise it might not get delivered.
8044 */
8045 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)8046 perf_iterate_sb(perf_iterate_f output, void *data,
8047 struct perf_event_context *task_ctx)
8048 {
8049 struct perf_event_context *ctx;
8050
8051 rcu_read_lock();
8052 preempt_disable();
8053
8054 /*
8055 * If we have task_ctx != NULL we only notify the task context itself.
8056 * The task_ctx is set only for EXIT events before releasing task
8057 * context.
8058 */
8059 if (task_ctx) {
8060 perf_iterate_ctx(task_ctx, output, data, false);
8061 goto done;
8062 }
8063
8064 perf_iterate_sb_cpu(output, data);
8065
8066 ctx = rcu_dereference(current->perf_event_ctxp);
8067 if (ctx)
8068 perf_iterate_ctx(ctx, output, data, false);
8069 done:
8070 preempt_enable();
8071 rcu_read_unlock();
8072 }
8073
8074 /*
8075 * Clear all file-based filters at exec, they'll have to be
8076 * re-instated when/if these objects are mmapped again.
8077 */
perf_event_addr_filters_exec(struct perf_event * event,void * data)8078 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8079 {
8080 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8081 struct perf_addr_filter *filter;
8082 unsigned int restart = 0, count = 0;
8083 unsigned long flags;
8084
8085 if (!has_addr_filter(event))
8086 return;
8087
8088 raw_spin_lock_irqsave(&ifh->lock, flags);
8089 list_for_each_entry(filter, &ifh->list, entry) {
8090 if (filter->path.dentry) {
8091 event->addr_filter_ranges[count].start = 0;
8092 event->addr_filter_ranges[count].size = 0;
8093 restart++;
8094 }
8095
8096 count++;
8097 }
8098
8099 if (restart)
8100 event->addr_filters_gen++;
8101 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8102
8103 if (restart)
8104 perf_event_stop(event, 1);
8105 }
8106
perf_event_exec(void)8107 void perf_event_exec(void)
8108 {
8109 struct perf_event_context *ctx;
8110
8111 ctx = perf_pin_task_context(current);
8112 if (!ctx)
8113 return;
8114
8115 perf_event_enable_on_exec(ctx);
8116 perf_event_remove_on_exec(ctx);
8117 scoped_guard(rcu)
8118 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8119
8120 perf_unpin_context(ctx);
8121 put_ctx(ctx);
8122 }
8123
8124 struct remote_output {
8125 struct perf_buffer *rb;
8126 int err;
8127 };
8128
__perf_event_output_stop(struct perf_event * event,void * data)8129 static void __perf_event_output_stop(struct perf_event *event, void *data)
8130 {
8131 struct perf_event *parent = event->parent;
8132 struct remote_output *ro = data;
8133 struct perf_buffer *rb = ro->rb;
8134 struct stop_event_data sd = {
8135 .event = event,
8136 };
8137
8138 if (!has_aux(event))
8139 return;
8140
8141 if (!parent)
8142 parent = event;
8143
8144 /*
8145 * In case of inheritance, it will be the parent that links to the
8146 * ring-buffer, but it will be the child that's actually using it.
8147 *
8148 * We are using event::rb to determine if the event should be stopped,
8149 * however this may race with ring_buffer_attach() (through set_output),
8150 * which will make us skip the event that actually needs to be stopped.
8151 * So ring_buffer_attach() has to stop an aux event before re-assigning
8152 * its rb pointer.
8153 */
8154 if (rcu_dereference(parent->rb) == rb)
8155 ro->err = __perf_event_stop(&sd);
8156 }
8157
__perf_pmu_output_stop(void * info)8158 static int __perf_pmu_output_stop(void *info)
8159 {
8160 struct perf_event *event = info;
8161 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8162 struct remote_output ro = {
8163 .rb = event->rb,
8164 };
8165
8166 rcu_read_lock();
8167 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8168 if (cpuctx->task_ctx)
8169 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8170 &ro, false);
8171 rcu_read_unlock();
8172
8173 return ro.err;
8174 }
8175
perf_pmu_output_stop(struct perf_event * event)8176 static void perf_pmu_output_stop(struct perf_event *event)
8177 {
8178 struct perf_event *iter;
8179 int err, cpu;
8180
8181 restart:
8182 rcu_read_lock();
8183 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8184 /*
8185 * For per-CPU events, we need to make sure that neither they
8186 * nor their children are running; for cpu==-1 events it's
8187 * sufficient to stop the event itself if it's active, since
8188 * it can't have children.
8189 */
8190 cpu = iter->cpu;
8191 if (cpu == -1)
8192 cpu = READ_ONCE(iter->oncpu);
8193
8194 if (cpu == -1)
8195 continue;
8196
8197 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8198 if (err == -EAGAIN) {
8199 rcu_read_unlock();
8200 goto restart;
8201 }
8202 }
8203 rcu_read_unlock();
8204 }
8205
8206 /*
8207 * task tracking -- fork/exit
8208 *
8209 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8210 */
8211
8212 struct perf_task_event {
8213 struct task_struct *task;
8214 struct perf_event_context *task_ctx;
8215
8216 struct {
8217 struct perf_event_header header;
8218
8219 u32 pid;
8220 u32 ppid;
8221 u32 tid;
8222 u32 ptid;
8223 u64 time;
8224 } event_id;
8225 };
8226
perf_event_task_match(struct perf_event * event)8227 static int perf_event_task_match(struct perf_event *event)
8228 {
8229 return event->attr.comm || event->attr.mmap ||
8230 event->attr.mmap2 || event->attr.mmap_data ||
8231 event->attr.task;
8232 }
8233
perf_event_task_output(struct perf_event * event,void * data)8234 static void perf_event_task_output(struct perf_event *event,
8235 void *data)
8236 {
8237 struct perf_task_event *task_event = data;
8238 struct perf_output_handle handle;
8239 struct perf_sample_data sample;
8240 struct task_struct *task = task_event->task;
8241 int ret, size = task_event->event_id.header.size;
8242
8243 if (!perf_event_task_match(event))
8244 return;
8245
8246 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8247
8248 ret = perf_output_begin(&handle, &sample, event,
8249 task_event->event_id.header.size);
8250 if (ret)
8251 goto out;
8252
8253 task_event->event_id.pid = perf_event_pid(event, task);
8254 task_event->event_id.tid = perf_event_tid(event, task);
8255
8256 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8257 task_event->event_id.ppid = perf_event_pid(event,
8258 task->real_parent);
8259 task_event->event_id.ptid = perf_event_pid(event,
8260 task->real_parent);
8261 } else { /* PERF_RECORD_FORK */
8262 task_event->event_id.ppid = perf_event_pid(event, current);
8263 task_event->event_id.ptid = perf_event_tid(event, current);
8264 }
8265
8266 task_event->event_id.time = perf_event_clock(event);
8267
8268 perf_output_put(&handle, task_event->event_id);
8269
8270 perf_event__output_id_sample(event, &handle, &sample);
8271
8272 perf_output_end(&handle);
8273 out:
8274 task_event->event_id.header.size = size;
8275 }
8276
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)8277 static void perf_event_task(struct task_struct *task,
8278 struct perf_event_context *task_ctx,
8279 int new)
8280 {
8281 struct perf_task_event task_event;
8282
8283 if (!atomic_read(&nr_comm_events) &&
8284 !atomic_read(&nr_mmap_events) &&
8285 !atomic_read(&nr_task_events))
8286 return;
8287
8288 task_event = (struct perf_task_event){
8289 .task = task,
8290 .task_ctx = task_ctx,
8291 .event_id = {
8292 .header = {
8293 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8294 .misc = 0,
8295 .size = sizeof(task_event.event_id),
8296 },
8297 /* .pid */
8298 /* .ppid */
8299 /* .tid */
8300 /* .ptid */
8301 /* .time */
8302 },
8303 };
8304
8305 perf_iterate_sb(perf_event_task_output,
8306 &task_event,
8307 task_ctx);
8308 }
8309
perf_event_fork(struct task_struct * task)8310 void perf_event_fork(struct task_struct *task)
8311 {
8312 perf_event_task(task, NULL, 1);
8313 perf_event_namespaces(task);
8314 }
8315
8316 /*
8317 * comm tracking
8318 */
8319
8320 struct perf_comm_event {
8321 struct task_struct *task;
8322 char *comm;
8323 int comm_size;
8324
8325 struct {
8326 struct perf_event_header header;
8327
8328 u32 pid;
8329 u32 tid;
8330 } event_id;
8331 };
8332
perf_event_comm_match(struct perf_event * event)8333 static int perf_event_comm_match(struct perf_event *event)
8334 {
8335 return event->attr.comm;
8336 }
8337
perf_event_comm_output(struct perf_event * event,void * data)8338 static void perf_event_comm_output(struct perf_event *event,
8339 void *data)
8340 {
8341 struct perf_comm_event *comm_event = data;
8342 struct perf_output_handle handle;
8343 struct perf_sample_data sample;
8344 int size = comm_event->event_id.header.size;
8345 int ret;
8346
8347 if (!perf_event_comm_match(event))
8348 return;
8349
8350 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8351 ret = perf_output_begin(&handle, &sample, event,
8352 comm_event->event_id.header.size);
8353
8354 if (ret)
8355 goto out;
8356
8357 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8358 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8359
8360 perf_output_put(&handle, comm_event->event_id);
8361 __output_copy(&handle, comm_event->comm,
8362 comm_event->comm_size);
8363
8364 perf_event__output_id_sample(event, &handle, &sample);
8365
8366 perf_output_end(&handle);
8367 out:
8368 comm_event->event_id.header.size = size;
8369 }
8370
perf_event_comm_event(struct perf_comm_event * comm_event)8371 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8372 {
8373 char comm[TASK_COMM_LEN];
8374 unsigned int size;
8375
8376 memset(comm, 0, sizeof(comm));
8377 strscpy(comm, comm_event->task->comm, sizeof(comm));
8378 size = ALIGN(strlen(comm)+1, sizeof(u64));
8379
8380 comm_event->comm = comm;
8381 comm_event->comm_size = size;
8382
8383 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8384
8385 perf_iterate_sb(perf_event_comm_output,
8386 comm_event,
8387 NULL);
8388 }
8389
perf_event_comm(struct task_struct * task,bool exec)8390 void perf_event_comm(struct task_struct *task, bool exec)
8391 {
8392 struct perf_comm_event comm_event;
8393
8394 if (!atomic_read(&nr_comm_events))
8395 return;
8396
8397 comm_event = (struct perf_comm_event){
8398 .task = task,
8399 /* .comm */
8400 /* .comm_size */
8401 .event_id = {
8402 .header = {
8403 .type = PERF_RECORD_COMM,
8404 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8405 /* .size */
8406 },
8407 /* .pid */
8408 /* .tid */
8409 },
8410 };
8411
8412 perf_event_comm_event(&comm_event);
8413 }
8414
8415 /*
8416 * namespaces tracking
8417 */
8418
8419 struct perf_namespaces_event {
8420 struct task_struct *task;
8421
8422 struct {
8423 struct perf_event_header header;
8424
8425 u32 pid;
8426 u32 tid;
8427 u64 nr_namespaces;
8428 struct perf_ns_link_info link_info[NR_NAMESPACES];
8429 } event_id;
8430 };
8431
perf_event_namespaces_match(struct perf_event * event)8432 static int perf_event_namespaces_match(struct perf_event *event)
8433 {
8434 return event->attr.namespaces;
8435 }
8436
perf_event_namespaces_output(struct perf_event * event,void * data)8437 static void perf_event_namespaces_output(struct perf_event *event,
8438 void *data)
8439 {
8440 struct perf_namespaces_event *namespaces_event = data;
8441 struct perf_output_handle handle;
8442 struct perf_sample_data sample;
8443 u16 header_size = namespaces_event->event_id.header.size;
8444 int ret;
8445
8446 if (!perf_event_namespaces_match(event))
8447 return;
8448
8449 perf_event_header__init_id(&namespaces_event->event_id.header,
8450 &sample, event);
8451 ret = perf_output_begin(&handle, &sample, event,
8452 namespaces_event->event_id.header.size);
8453 if (ret)
8454 goto out;
8455
8456 namespaces_event->event_id.pid = perf_event_pid(event,
8457 namespaces_event->task);
8458 namespaces_event->event_id.tid = perf_event_tid(event,
8459 namespaces_event->task);
8460
8461 perf_output_put(&handle, namespaces_event->event_id);
8462
8463 perf_event__output_id_sample(event, &handle, &sample);
8464
8465 perf_output_end(&handle);
8466 out:
8467 namespaces_event->event_id.header.size = header_size;
8468 }
8469
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)8470 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8471 struct task_struct *task,
8472 const struct proc_ns_operations *ns_ops)
8473 {
8474 struct path ns_path;
8475 struct inode *ns_inode;
8476 int error;
8477
8478 error = ns_get_path(&ns_path, task, ns_ops);
8479 if (!error) {
8480 ns_inode = ns_path.dentry->d_inode;
8481 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8482 ns_link_info->ino = ns_inode->i_ino;
8483 path_put(&ns_path);
8484 }
8485 }
8486
perf_event_namespaces(struct task_struct * task)8487 void perf_event_namespaces(struct task_struct *task)
8488 {
8489 struct perf_namespaces_event namespaces_event;
8490 struct perf_ns_link_info *ns_link_info;
8491
8492 if (!atomic_read(&nr_namespaces_events))
8493 return;
8494
8495 namespaces_event = (struct perf_namespaces_event){
8496 .task = task,
8497 .event_id = {
8498 .header = {
8499 .type = PERF_RECORD_NAMESPACES,
8500 .misc = 0,
8501 .size = sizeof(namespaces_event.event_id),
8502 },
8503 /* .pid */
8504 /* .tid */
8505 .nr_namespaces = NR_NAMESPACES,
8506 /* .link_info[NR_NAMESPACES] */
8507 },
8508 };
8509
8510 ns_link_info = namespaces_event.event_id.link_info;
8511
8512 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8513 task, &mntns_operations);
8514
8515 #ifdef CONFIG_USER_NS
8516 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8517 task, &userns_operations);
8518 #endif
8519 #ifdef CONFIG_NET_NS
8520 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8521 task, &netns_operations);
8522 #endif
8523 #ifdef CONFIG_UTS_NS
8524 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8525 task, &utsns_operations);
8526 #endif
8527 #ifdef CONFIG_IPC_NS
8528 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8529 task, &ipcns_operations);
8530 #endif
8531 #ifdef CONFIG_PID_NS
8532 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8533 task, &pidns_operations);
8534 #endif
8535 #ifdef CONFIG_CGROUPS
8536 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8537 task, &cgroupns_operations);
8538 #endif
8539
8540 perf_iterate_sb(perf_event_namespaces_output,
8541 &namespaces_event,
8542 NULL);
8543 }
8544
8545 /*
8546 * cgroup tracking
8547 */
8548 #ifdef CONFIG_CGROUP_PERF
8549
8550 struct perf_cgroup_event {
8551 char *path;
8552 int path_size;
8553 struct {
8554 struct perf_event_header header;
8555 u64 id;
8556 char path[];
8557 } event_id;
8558 };
8559
perf_event_cgroup_match(struct perf_event * event)8560 static int perf_event_cgroup_match(struct perf_event *event)
8561 {
8562 return event->attr.cgroup;
8563 }
8564
perf_event_cgroup_output(struct perf_event * event,void * data)8565 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8566 {
8567 struct perf_cgroup_event *cgroup_event = data;
8568 struct perf_output_handle handle;
8569 struct perf_sample_data sample;
8570 u16 header_size = cgroup_event->event_id.header.size;
8571 int ret;
8572
8573 if (!perf_event_cgroup_match(event))
8574 return;
8575
8576 perf_event_header__init_id(&cgroup_event->event_id.header,
8577 &sample, event);
8578 ret = perf_output_begin(&handle, &sample, event,
8579 cgroup_event->event_id.header.size);
8580 if (ret)
8581 goto out;
8582
8583 perf_output_put(&handle, cgroup_event->event_id);
8584 __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8585
8586 perf_event__output_id_sample(event, &handle, &sample);
8587
8588 perf_output_end(&handle);
8589 out:
8590 cgroup_event->event_id.header.size = header_size;
8591 }
8592
perf_event_cgroup(struct cgroup * cgrp)8593 static void perf_event_cgroup(struct cgroup *cgrp)
8594 {
8595 struct perf_cgroup_event cgroup_event;
8596 char path_enomem[16] = "//enomem";
8597 char *pathname;
8598 size_t size;
8599
8600 if (!atomic_read(&nr_cgroup_events))
8601 return;
8602
8603 cgroup_event = (struct perf_cgroup_event){
8604 .event_id = {
8605 .header = {
8606 .type = PERF_RECORD_CGROUP,
8607 .misc = 0,
8608 .size = sizeof(cgroup_event.event_id),
8609 },
8610 .id = cgroup_id(cgrp),
8611 },
8612 };
8613
8614 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8615 if (pathname == NULL) {
8616 cgroup_event.path = path_enomem;
8617 } else {
8618 /* just to be sure to have enough space for alignment */
8619 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8620 cgroup_event.path = pathname;
8621 }
8622
8623 /*
8624 * Since our buffer works in 8 byte units we need to align our string
8625 * size to a multiple of 8. However, we must guarantee the tail end is
8626 * zero'd out to avoid leaking random bits to userspace.
8627 */
8628 size = strlen(cgroup_event.path) + 1;
8629 while (!IS_ALIGNED(size, sizeof(u64)))
8630 cgroup_event.path[size++] = '\0';
8631
8632 cgroup_event.event_id.header.size += size;
8633 cgroup_event.path_size = size;
8634
8635 perf_iterate_sb(perf_event_cgroup_output,
8636 &cgroup_event,
8637 NULL);
8638
8639 kfree(pathname);
8640 }
8641
8642 #endif
8643
8644 /*
8645 * mmap tracking
8646 */
8647
8648 struct perf_mmap_event {
8649 struct vm_area_struct *vma;
8650
8651 const char *file_name;
8652 int file_size;
8653 int maj, min;
8654 u64 ino;
8655 u64 ino_generation;
8656 u32 prot, flags;
8657 u8 build_id[BUILD_ID_SIZE_MAX];
8658 u32 build_id_size;
8659
8660 struct {
8661 struct perf_event_header header;
8662
8663 u32 pid;
8664 u32 tid;
8665 u64 start;
8666 u64 len;
8667 u64 pgoff;
8668 } event_id;
8669 };
8670
perf_event_mmap_match(struct perf_event * event,void * data)8671 static int perf_event_mmap_match(struct perf_event *event,
8672 void *data)
8673 {
8674 struct perf_mmap_event *mmap_event = data;
8675 struct vm_area_struct *vma = mmap_event->vma;
8676 int executable = vma->vm_flags & VM_EXEC;
8677
8678 return (!executable && event->attr.mmap_data) ||
8679 (executable && (event->attr.mmap || event->attr.mmap2));
8680 }
8681
perf_event_mmap_output(struct perf_event * event,void * data)8682 static void perf_event_mmap_output(struct perf_event *event,
8683 void *data)
8684 {
8685 struct perf_mmap_event *mmap_event = data;
8686 struct perf_output_handle handle;
8687 struct perf_sample_data sample;
8688 int size = mmap_event->event_id.header.size;
8689 u32 type = mmap_event->event_id.header.type;
8690 bool use_build_id;
8691 int ret;
8692
8693 if (!perf_event_mmap_match(event, data))
8694 return;
8695
8696 if (event->attr.mmap2) {
8697 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8698 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8699 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8700 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8701 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8702 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8703 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8704 }
8705
8706 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8707 ret = perf_output_begin(&handle, &sample, event,
8708 mmap_event->event_id.header.size);
8709 if (ret)
8710 goto out;
8711
8712 mmap_event->event_id.pid = perf_event_pid(event, current);
8713 mmap_event->event_id.tid = perf_event_tid(event, current);
8714
8715 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8716
8717 if (event->attr.mmap2 && use_build_id)
8718 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8719
8720 perf_output_put(&handle, mmap_event->event_id);
8721
8722 if (event->attr.mmap2) {
8723 if (use_build_id) {
8724 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8725
8726 __output_copy(&handle, size, 4);
8727 __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8728 } else {
8729 perf_output_put(&handle, mmap_event->maj);
8730 perf_output_put(&handle, mmap_event->min);
8731 perf_output_put(&handle, mmap_event->ino);
8732 perf_output_put(&handle, mmap_event->ino_generation);
8733 }
8734 perf_output_put(&handle, mmap_event->prot);
8735 perf_output_put(&handle, mmap_event->flags);
8736 }
8737
8738 __output_copy(&handle, mmap_event->file_name,
8739 mmap_event->file_size);
8740
8741 perf_event__output_id_sample(event, &handle, &sample);
8742
8743 perf_output_end(&handle);
8744 out:
8745 mmap_event->event_id.header.size = size;
8746 mmap_event->event_id.header.type = type;
8747 }
8748
perf_event_mmap_event(struct perf_mmap_event * mmap_event)8749 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8750 {
8751 struct vm_area_struct *vma = mmap_event->vma;
8752 struct file *file = vma->vm_file;
8753 int maj = 0, min = 0;
8754 u64 ino = 0, gen = 0;
8755 u32 prot = 0, flags = 0;
8756 unsigned int size;
8757 char tmp[16];
8758 char *buf = NULL;
8759 char *name = NULL;
8760
8761 if (vma->vm_flags & VM_READ)
8762 prot |= PROT_READ;
8763 if (vma->vm_flags & VM_WRITE)
8764 prot |= PROT_WRITE;
8765 if (vma->vm_flags & VM_EXEC)
8766 prot |= PROT_EXEC;
8767
8768 if (vma->vm_flags & VM_MAYSHARE)
8769 flags = MAP_SHARED;
8770 else
8771 flags = MAP_PRIVATE;
8772
8773 if (vma->vm_flags & VM_LOCKED)
8774 flags |= MAP_LOCKED;
8775 if (is_vm_hugetlb_page(vma))
8776 flags |= MAP_HUGETLB;
8777
8778 if (file) {
8779 struct inode *inode;
8780 dev_t dev;
8781
8782 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8783 if (!buf) {
8784 name = "//enomem";
8785 goto cpy_name;
8786 }
8787 /*
8788 * d_path() works from the end of the rb backwards, so we
8789 * need to add enough zero bytes after the string to handle
8790 * the 64bit alignment we do later.
8791 */
8792 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8793 if (IS_ERR(name)) {
8794 name = "//toolong";
8795 goto cpy_name;
8796 }
8797 inode = file_inode(vma->vm_file);
8798 dev = inode->i_sb->s_dev;
8799 ino = inode->i_ino;
8800 gen = inode->i_generation;
8801 maj = MAJOR(dev);
8802 min = MINOR(dev);
8803
8804 goto got_name;
8805 } else {
8806 if (vma->vm_ops && vma->vm_ops->name)
8807 name = (char *) vma->vm_ops->name(vma);
8808 if (!name)
8809 name = (char *)arch_vma_name(vma);
8810 if (!name) {
8811 if (vma_is_initial_heap(vma))
8812 name = "[heap]";
8813 else if (vma_is_initial_stack(vma))
8814 name = "[stack]";
8815 else
8816 name = "//anon";
8817 }
8818 }
8819
8820 cpy_name:
8821 strscpy(tmp, name, sizeof(tmp));
8822 name = tmp;
8823 got_name:
8824 /*
8825 * Since our buffer works in 8 byte units we need to align our string
8826 * size to a multiple of 8. However, we must guarantee the tail end is
8827 * zero'd out to avoid leaking random bits to userspace.
8828 */
8829 size = strlen(name)+1;
8830 while (!IS_ALIGNED(size, sizeof(u64)))
8831 name[size++] = '\0';
8832
8833 mmap_event->file_name = name;
8834 mmap_event->file_size = size;
8835 mmap_event->maj = maj;
8836 mmap_event->min = min;
8837 mmap_event->ino = ino;
8838 mmap_event->ino_generation = gen;
8839 mmap_event->prot = prot;
8840 mmap_event->flags = flags;
8841
8842 if (!(vma->vm_flags & VM_EXEC))
8843 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8844
8845 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8846
8847 if (atomic_read(&nr_build_id_events))
8848 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8849
8850 perf_iterate_sb(perf_event_mmap_output,
8851 mmap_event,
8852 NULL);
8853
8854 kfree(buf);
8855 }
8856
8857 /*
8858 * Check whether inode and address range match filter criteria.
8859 */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)8860 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8861 struct file *file, unsigned long offset,
8862 unsigned long size)
8863 {
8864 /* d_inode(NULL) won't be equal to any mapped user-space file */
8865 if (!filter->path.dentry)
8866 return false;
8867
8868 if (d_inode(filter->path.dentry) != file_inode(file))
8869 return false;
8870
8871 if (filter->offset > offset + size)
8872 return false;
8873
8874 if (filter->offset + filter->size < offset)
8875 return false;
8876
8877 return true;
8878 }
8879
perf_addr_filter_vma_adjust(struct perf_addr_filter * filter,struct vm_area_struct * vma,struct perf_addr_filter_range * fr)8880 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8881 struct vm_area_struct *vma,
8882 struct perf_addr_filter_range *fr)
8883 {
8884 unsigned long vma_size = vma->vm_end - vma->vm_start;
8885 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8886 struct file *file = vma->vm_file;
8887
8888 if (!perf_addr_filter_match(filter, file, off, vma_size))
8889 return false;
8890
8891 if (filter->offset < off) {
8892 fr->start = vma->vm_start;
8893 fr->size = min(vma_size, filter->size - (off - filter->offset));
8894 } else {
8895 fr->start = vma->vm_start + filter->offset - off;
8896 fr->size = min(vma->vm_end - fr->start, filter->size);
8897 }
8898
8899 return true;
8900 }
8901
__perf_addr_filters_adjust(struct perf_event * event,void * data)8902 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8903 {
8904 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8905 struct vm_area_struct *vma = data;
8906 struct perf_addr_filter *filter;
8907 unsigned int restart = 0, count = 0;
8908 unsigned long flags;
8909
8910 if (!has_addr_filter(event))
8911 return;
8912
8913 if (!vma->vm_file)
8914 return;
8915
8916 raw_spin_lock_irqsave(&ifh->lock, flags);
8917 list_for_each_entry(filter, &ifh->list, entry) {
8918 if (perf_addr_filter_vma_adjust(filter, vma,
8919 &event->addr_filter_ranges[count]))
8920 restart++;
8921
8922 count++;
8923 }
8924
8925 if (restart)
8926 event->addr_filters_gen++;
8927 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8928
8929 if (restart)
8930 perf_event_stop(event, 1);
8931 }
8932
8933 /*
8934 * Adjust all task's events' filters to the new vma
8935 */
perf_addr_filters_adjust(struct vm_area_struct * vma)8936 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8937 {
8938 struct perf_event_context *ctx;
8939
8940 /*
8941 * Data tracing isn't supported yet and as such there is no need
8942 * to keep track of anything that isn't related to executable code:
8943 */
8944 if (!(vma->vm_flags & VM_EXEC))
8945 return;
8946
8947 rcu_read_lock();
8948 ctx = rcu_dereference(current->perf_event_ctxp);
8949 if (ctx)
8950 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8951 rcu_read_unlock();
8952 }
8953
perf_event_mmap(struct vm_area_struct * vma)8954 void perf_event_mmap(struct vm_area_struct *vma)
8955 {
8956 struct perf_mmap_event mmap_event;
8957
8958 if (!atomic_read(&nr_mmap_events))
8959 return;
8960
8961 mmap_event = (struct perf_mmap_event){
8962 .vma = vma,
8963 /* .file_name */
8964 /* .file_size */
8965 .event_id = {
8966 .header = {
8967 .type = PERF_RECORD_MMAP,
8968 .misc = PERF_RECORD_MISC_USER,
8969 /* .size */
8970 },
8971 /* .pid */
8972 /* .tid */
8973 .start = vma->vm_start,
8974 .len = vma->vm_end - vma->vm_start,
8975 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8976 },
8977 /* .maj (attr_mmap2 only) */
8978 /* .min (attr_mmap2 only) */
8979 /* .ino (attr_mmap2 only) */
8980 /* .ino_generation (attr_mmap2 only) */
8981 /* .prot (attr_mmap2 only) */
8982 /* .flags (attr_mmap2 only) */
8983 };
8984
8985 perf_addr_filters_adjust(vma);
8986 perf_event_mmap_event(&mmap_event);
8987 }
8988
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)8989 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8990 unsigned long size, u64 flags)
8991 {
8992 struct perf_output_handle handle;
8993 struct perf_sample_data sample;
8994 struct perf_aux_event {
8995 struct perf_event_header header;
8996 u64 offset;
8997 u64 size;
8998 u64 flags;
8999 } rec = {
9000 .header = {
9001 .type = PERF_RECORD_AUX,
9002 .misc = 0,
9003 .size = sizeof(rec),
9004 },
9005 .offset = head,
9006 .size = size,
9007 .flags = flags,
9008 };
9009 int ret;
9010
9011 perf_event_header__init_id(&rec.header, &sample, event);
9012 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9013
9014 if (ret)
9015 return;
9016
9017 perf_output_put(&handle, rec);
9018 perf_event__output_id_sample(event, &handle, &sample);
9019
9020 perf_output_end(&handle);
9021 }
9022
9023 /*
9024 * Lost/dropped samples logging
9025 */
perf_log_lost_samples(struct perf_event * event,u64 lost)9026 void perf_log_lost_samples(struct perf_event *event, u64 lost)
9027 {
9028 struct perf_output_handle handle;
9029 struct perf_sample_data sample;
9030 int ret;
9031
9032 struct {
9033 struct perf_event_header header;
9034 u64 lost;
9035 } lost_samples_event = {
9036 .header = {
9037 .type = PERF_RECORD_LOST_SAMPLES,
9038 .misc = 0,
9039 .size = sizeof(lost_samples_event),
9040 },
9041 .lost = lost,
9042 };
9043
9044 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9045
9046 ret = perf_output_begin(&handle, &sample, event,
9047 lost_samples_event.header.size);
9048 if (ret)
9049 return;
9050
9051 perf_output_put(&handle, lost_samples_event);
9052 perf_event__output_id_sample(event, &handle, &sample);
9053 perf_output_end(&handle);
9054 }
9055
9056 /*
9057 * context_switch tracking
9058 */
9059
9060 struct perf_switch_event {
9061 struct task_struct *task;
9062 struct task_struct *next_prev;
9063
9064 struct {
9065 struct perf_event_header header;
9066 u32 next_prev_pid;
9067 u32 next_prev_tid;
9068 } event_id;
9069 };
9070
perf_event_switch_match(struct perf_event * event)9071 static int perf_event_switch_match(struct perf_event *event)
9072 {
9073 return event->attr.context_switch;
9074 }
9075
perf_event_switch_output(struct perf_event * event,void * data)9076 static void perf_event_switch_output(struct perf_event *event, void *data)
9077 {
9078 struct perf_switch_event *se = data;
9079 struct perf_output_handle handle;
9080 struct perf_sample_data sample;
9081 int ret;
9082
9083 if (!perf_event_switch_match(event))
9084 return;
9085
9086 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9087 if (event->ctx->task) {
9088 se->event_id.header.type = PERF_RECORD_SWITCH;
9089 se->event_id.header.size = sizeof(se->event_id.header);
9090 } else {
9091 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9092 se->event_id.header.size = sizeof(se->event_id);
9093 se->event_id.next_prev_pid =
9094 perf_event_pid(event, se->next_prev);
9095 se->event_id.next_prev_tid =
9096 perf_event_tid(event, se->next_prev);
9097 }
9098
9099 perf_event_header__init_id(&se->event_id.header, &sample, event);
9100
9101 ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9102 if (ret)
9103 return;
9104
9105 if (event->ctx->task)
9106 perf_output_put(&handle, se->event_id.header);
9107 else
9108 perf_output_put(&handle, se->event_id);
9109
9110 perf_event__output_id_sample(event, &handle, &sample);
9111
9112 perf_output_end(&handle);
9113 }
9114
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)9115 static void perf_event_switch(struct task_struct *task,
9116 struct task_struct *next_prev, bool sched_in)
9117 {
9118 struct perf_switch_event switch_event;
9119
9120 /* N.B. caller checks nr_switch_events != 0 */
9121
9122 switch_event = (struct perf_switch_event){
9123 .task = task,
9124 .next_prev = next_prev,
9125 .event_id = {
9126 .header = {
9127 /* .type */
9128 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9129 /* .size */
9130 },
9131 /* .next_prev_pid */
9132 /* .next_prev_tid */
9133 },
9134 };
9135
9136 if (!sched_in && task->on_rq) {
9137 switch_event.event_id.header.misc |=
9138 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9139 }
9140
9141 perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9142 }
9143
9144 /*
9145 * IRQ throttle logging
9146 */
9147
perf_log_throttle(struct perf_event * event,int enable)9148 static void perf_log_throttle(struct perf_event *event, int enable)
9149 {
9150 struct perf_output_handle handle;
9151 struct perf_sample_data sample;
9152 int ret;
9153
9154 struct {
9155 struct perf_event_header header;
9156 u64 time;
9157 u64 id;
9158 u64 stream_id;
9159 } throttle_event = {
9160 .header = {
9161 .type = PERF_RECORD_THROTTLE,
9162 .misc = 0,
9163 .size = sizeof(throttle_event),
9164 },
9165 .time = perf_event_clock(event),
9166 .id = primary_event_id(event),
9167 .stream_id = event->id,
9168 };
9169
9170 if (enable)
9171 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9172
9173 perf_event_header__init_id(&throttle_event.header, &sample, event);
9174
9175 ret = perf_output_begin(&handle, &sample, event,
9176 throttle_event.header.size);
9177 if (ret)
9178 return;
9179
9180 perf_output_put(&handle, throttle_event);
9181 perf_event__output_id_sample(event, &handle, &sample);
9182 perf_output_end(&handle);
9183 }
9184
9185 /*
9186 * ksymbol register/unregister tracking
9187 */
9188
9189 struct perf_ksymbol_event {
9190 const char *name;
9191 int name_len;
9192 struct {
9193 struct perf_event_header header;
9194 u64 addr;
9195 u32 len;
9196 u16 ksym_type;
9197 u16 flags;
9198 } event_id;
9199 };
9200
perf_event_ksymbol_match(struct perf_event * event)9201 static int perf_event_ksymbol_match(struct perf_event *event)
9202 {
9203 return event->attr.ksymbol;
9204 }
9205
perf_event_ksymbol_output(struct perf_event * event,void * data)9206 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9207 {
9208 struct perf_ksymbol_event *ksymbol_event = data;
9209 struct perf_output_handle handle;
9210 struct perf_sample_data sample;
9211 int ret;
9212
9213 if (!perf_event_ksymbol_match(event))
9214 return;
9215
9216 perf_event_header__init_id(&ksymbol_event->event_id.header,
9217 &sample, event);
9218 ret = perf_output_begin(&handle, &sample, event,
9219 ksymbol_event->event_id.header.size);
9220 if (ret)
9221 return;
9222
9223 perf_output_put(&handle, ksymbol_event->event_id);
9224 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9225 perf_event__output_id_sample(event, &handle, &sample);
9226
9227 perf_output_end(&handle);
9228 }
9229
perf_event_ksymbol(u16 ksym_type,u64 addr,u32 len,bool unregister,const char * sym)9230 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9231 const char *sym)
9232 {
9233 struct perf_ksymbol_event ksymbol_event;
9234 char name[KSYM_NAME_LEN];
9235 u16 flags = 0;
9236 int name_len;
9237
9238 if (!atomic_read(&nr_ksymbol_events))
9239 return;
9240
9241 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9242 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9243 goto err;
9244
9245 strscpy(name, sym, KSYM_NAME_LEN);
9246 name_len = strlen(name) + 1;
9247 while (!IS_ALIGNED(name_len, sizeof(u64)))
9248 name[name_len++] = '\0';
9249 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9250
9251 if (unregister)
9252 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9253
9254 ksymbol_event = (struct perf_ksymbol_event){
9255 .name = name,
9256 .name_len = name_len,
9257 .event_id = {
9258 .header = {
9259 .type = PERF_RECORD_KSYMBOL,
9260 .size = sizeof(ksymbol_event.event_id) +
9261 name_len,
9262 },
9263 .addr = addr,
9264 .len = len,
9265 .ksym_type = ksym_type,
9266 .flags = flags,
9267 },
9268 };
9269
9270 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9271 return;
9272 err:
9273 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9274 }
9275
9276 /*
9277 * bpf program load/unload tracking
9278 */
9279
9280 struct perf_bpf_event {
9281 struct bpf_prog *prog;
9282 struct {
9283 struct perf_event_header header;
9284 u16 type;
9285 u16 flags;
9286 u32 id;
9287 u8 tag[BPF_TAG_SIZE];
9288 } event_id;
9289 };
9290
perf_event_bpf_match(struct perf_event * event)9291 static int perf_event_bpf_match(struct perf_event *event)
9292 {
9293 return event->attr.bpf_event;
9294 }
9295
perf_event_bpf_output(struct perf_event * event,void * data)9296 static void perf_event_bpf_output(struct perf_event *event, void *data)
9297 {
9298 struct perf_bpf_event *bpf_event = data;
9299 struct perf_output_handle handle;
9300 struct perf_sample_data sample;
9301 int ret;
9302
9303 if (!perf_event_bpf_match(event))
9304 return;
9305
9306 perf_event_header__init_id(&bpf_event->event_id.header,
9307 &sample, event);
9308 ret = perf_output_begin(&handle, &sample, event,
9309 bpf_event->event_id.header.size);
9310 if (ret)
9311 return;
9312
9313 perf_output_put(&handle, bpf_event->event_id);
9314 perf_event__output_id_sample(event, &handle, &sample);
9315
9316 perf_output_end(&handle);
9317 }
9318
perf_event_bpf_emit_ksymbols(struct bpf_prog * prog,enum perf_bpf_event_type type)9319 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9320 enum perf_bpf_event_type type)
9321 {
9322 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9323 int i;
9324
9325 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9326 (u64)(unsigned long)prog->bpf_func,
9327 prog->jited_len, unregister,
9328 prog->aux->ksym.name);
9329
9330 for (i = 1; i < prog->aux->func_cnt; i++) {
9331 struct bpf_prog *subprog = prog->aux->func[i];
9332
9333 perf_event_ksymbol(
9334 PERF_RECORD_KSYMBOL_TYPE_BPF,
9335 (u64)(unsigned long)subprog->bpf_func,
9336 subprog->jited_len, unregister,
9337 subprog->aux->ksym.name);
9338 }
9339 }
9340
perf_event_bpf_event(struct bpf_prog * prog,enum perf_bpf_event_type type,u16 flags)9341 void perf_event_bpf_event(struct bpf_prog *prog,
9342 enum perf_bpf_event_type type,
9343 u16 flags)
9344 {
9345 struct perf_bpf_event bpf_event;
9346
9347 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9348 type >= PERF_BPF_EVENT_MAX)
9349 return;
9350
9351 switch (type) {
9352 case PERF_BPF_EVENT_PROG_LOAD:
9353 case PERF_BPF_EVENT_PROG_UNLOAD:
9354 if (atomic_read(&nr_ksymbol_events))
9355 perf_event_bpf_emit_ksymbols(prog, type);
9356 break;
9357 default:
9358 break;
9359 }
9360
9361 if (!atomic_read(&nr_bpf_events))
9362 return;
9363
9364 bpf_event = (struct perf_bpf_event){
9365 .prog = prog,
9366 .event_id = {
9367 .header = {
9368 .type = PERF_RECORD_BPF_EVENT,
9369 .size = sizeof(bpf_event.event_id),
9370 },
9371 .type = type,
9372 .flags = flags,
9373 .id = prog->aux->id,
9374 },
9375 };
9376
9377 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9378
9379 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9380 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9381 }
9382
9383 struct perf_text_poke_event {
9384 const void *old_bytes;
9385 const void *new_bytes;
9386 size_t pad;
9387 u16 old_len;
9388 u16 new_len;
9389
9390 struct {
9391 struct perf_event_header header;
9392
9393 u64 addr;
9394 } event_id;
9395 };
9396
perf_event_text_poke_match(struct perf_event * event)9397 static int perf_event_text_poke_match(struct perf_event *event)
9398 {
9399 return event->attr.text_poke;
9400 }
9401
perf_event_text_poke_output(struct perf_event * event,void * data)9402 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9403 {
9404 struct perf_text_poke_event *text_poke_event = data;
9405 struct perf_output_handle handle;
9406 struct perf_sample_data sample;
9407 u64 padding = 0;
9408 int ret;
9409
9410 if (!perf_event_text_poke_match(event))
9411 return;
9412
9413 perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9414
9415 ret = perf_output_begin(&handle, &sample, event,
9416 text_poke_event->event_id.header.size);
9417 if (ret)
9418 return;
9419
9420 perf_output_put(&handle, text_poke_event->event_id);
9421 perf_output_put(&handle, text_poke_event->old_len);
9422 perf_output_put(&handle, text_poke_event->new_len);
9423
9424 __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9425 __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9426
9427 if (text_poke_event->pad)
9428 __output_copy(&handle, &padding, text_poke_event->pad);
9429
9430 perf_event__output_id_sample(event, &handle, &sample);
9431
9432 perf_output_end(&handle);
9433 }
9434
perf_event_text_poke(const void * addr,const void * old_bytes,size_t old_len,const void * new_bytes,size_t new_len)9435 void perf_event_text_poke(const void *addr, const void *old_bytes,
9436 size_t old_len, const void *new_bytes, size_t new_len)
9437 {
9438 struct perf_text_poke_event text_poke_event;
9439 size_t tot, pad;
9440
9441 if (!atomic_read(&nr_text_poke_events))
9442 return;
9443
9444 tot = sizeof(text_poke_event.old_len) + old_len;
9445 tot += sizeof(text_poke_event.new_len) + new_len;
9446 pad = ALIGN(tot, sizeof(u64)) - tot;
9447
9448 text_poke_event = (struct perf_text_poke_event){
9449 .old_bytes = old_bytes,
9450 .new_bytes = new_bytes,
9451 .pad = pad,
9452 .old_len = old_len,
9453 .new_len = new_len,
9454 .event_id = {
9455 .header = {
9456 .type = PERF_RECORD_TEXT_POKE,
9457 .misc = PERF_RECORD_MISC_KERNEL,
9458 .size = sizeof(text_poke_event.event_id) + tot + pad,
9459 },
9460 .addr = (unsigned long)addr,
9461 },
9462 };
9463
9464 perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9465 }
9466
perf_event_itrace_started(struct perf_event * event)9467 void perf_event_itrace_started(struct perf_event *event)
9468 {
9469 event->attach_state |= PERF_ATTACH_ITRACE;
9470 }
9471
perf_log_itrace_start(struct perf_event * event)9472 static void perf_log_itrace_start(struct perf_event *event)
9473 {
9474 struct perf_output_handle handle;
9475 struct perf_sample_data sample;
9476 struct perf_aux_event {
9477 struct perf_event_header header;
9478 u32 pid;
9479 u32 tid;
9480 } rec;
9481 int ret;
9482
9483 if (event->parent)
9484 event = event->parent;
9485
9486 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9487 event->attach_state & PERF_ATTACH_ITRACE)
9488 return;
9489
9490 rec.header.type = PERF_RECORD_ITRACE_START;
9491 rec.header.misc = 0;
9492 rec.header.size = sizeof(rec);
9493 rec.pid = perf_event_pid(event, current);
9494 rec.tid = perf_event_tid(event, current);
9495
9496 perf_event_header__init_id(&rec.header, &sample, event);
9497 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9498
9499 if (ret)
9500 return;
9501
9502 perf_output_put(&handle, rec);
9503 perf_event__output_id_sample(event, &handle, &sample);
9504
9505 perf_output_end(&handle);
9506 }
9507
perf_report_aux_output_id(struct perf_event * event,u64 hw_id)9508 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9509 {
9510 struct perf_output_handle handle;
9511 struct perf_sample_data sample;
9512 struct perf_aux_event {
9513 struct perf_event_header header;
9514 u64 hw_id;
9515 } rec;
9516 int ret;
9517
9518 if (event->parent)
9519 event = event->parent;
9520
9521 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9522 rec.header.misc = 0;
9523 rec.header.size = sizeof(rec);
9524 rec.hw_id = hw_id;
9525
9526 perf_event_header__init_id(&rec.header, &sample, event);
9527 ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9528
9529 if (ret)
9530 return;
9531
9532 perf_output_put(&handle, rec);
9533 perf_event__output_id_sample(event, &handle, &sample);
9534
9535 perf_output_end(&handle);
9536 }
9537 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9538
9539 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)9540 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9541 {
9542 struct hw_perf_event *hwc = &event->hw;
9543 int ret = 0;
9544 u64 seq;
9545
9546 seq = __this_cpu_read(perf_throttled_seq);
9547 if (seq != hwc->interrupts_seq) {
9548 hwc->interrupts_seq = seq;
9549 hwc->interrupts = 1;
9550 } else {
9551 hwc->interrupts++;
9552 if (unlikely(throttle &&
9553 hwc->interrupts > max_samples_per_tick)) {
9554 __this_cpu_inc(perf_throttled_count);
9555 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9556 hwc->interrupts = MAX_INTERRUPTS;
9557 perf_log_throttle(event, 0);
9558 ret = 1;
9559 }
9560 }
9561
9562 if (event->attr.freq) {
9563 u64 now = perf_clock();
9564 s64 delta = now - hwc->freq_time_stamp;
9565
9566 hwc->freq_time_stamp = now;
9567
9568 if (delta > 0 && delta < 2*TICK_NSEC)
9569 perf_adjust_period(event, delta, hwc->last_period, true);
9570 }
9571
9572 return ret;
9573 }
9574
perf_event_account_interrupt(struct perf_event * event)9575 int perf_event_account_interrupt(struct perf_event *event)
9576 {
9577 return __perf_event_account_interrupt(event, 1);
9578 }
9579
sample_is_allowed(struct perf_event * event,struct pt_regs * regs)9580 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9581 {
9582 /*
9583 * Due to interrupt latency (AKA "skid"), we may enter the
9584 * kernel before taking an overflow, even if the PMU is only
9585 * counting user events.
9586 */
9587 if (event->attr.exclude_kernel && !user_mode(regs))
9588 return false;
9589
9590 return true;
9591 }
9592
9593 /*
9594 * Generic event overflow handling, sampling.
9595 */
9596
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)9597 static int __perf_event_overflow(struct perf_event *event,
9598 int throttle, struct perf_sample_data *data,
9599 struct pt_regs *regs)
9600 {
9601 int events = atomic_read(&event->event_limit);
9602 int ret = 0;
9603
9604 /*
9605 * Non-sampling counters might still use the PMI to fold short
9606 * hardware counters, ignore those.
9607 */
9608 if (unlikely(!is_sampling_event(event)))
9609 return 0;
9610
9611 ret = __perf_event_account_interrupt(event, throttle);
9612
9613 /*
9614 * XXX event_limit might not quite work as expected on inherited
9615 * events
9616 */
9617
9618 event->pending_kill = POLL_IN;
9619 if (events && atomic_dec_and_test(&event->event_limit)) {
9620 ret = 1;
9621 event->pending_kill = POLL_HUP;
9622 perf_event_disable_inatomic(event);
9623 }
9624
9625 if (event->attr.sigtrap) {
9626 /*
9627 * The desired behaviour of sigtrap vs invalid samples is a bit
9628 * tricky; on the one hand, one should not loose the SIGTRAP if
9629 * it is the first event, on the other hand, we should also not
9630 * trigger the WARN or override the data address.
9631 */
9632 bool valid_sample = sample_is_allowed(event, regs);
9633 unsigned int pending_id = 1;
9634
9635 if (regs)
9636 pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9637 if (!event->pending_sigtrap) {
9638 event->pending_sigtrap = pending_id;
9639 local_inc(&event->ctx->nr_pending);
9640 } else if (event->attr.exclude_kernel && valid_sample) {
9641 /*
9642 * Should not be able to return to user space without
9643 * consuming pending_sigtrap; with exceptions:
9644 *
9645 * 1. Where !exclude_kernel, events can overflow again
9646 * in the kernel without returning to user space.
9647 *
9648 * 2. Events that can overflow again before the IRQ-
9649 * work without user space progress (e.g. hrtimer).
9650 * To approximate progress (with false negatives),
9651 * check 32-bit hash of the current IP.
9652 */
9653 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9654 }
9655
9656 event->pending_addr = 0;
9657 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9658 event->pending_addr = data->addr;
9659 irq_work_queue(&event->pending_irq);
9660 }
9661
9662 READ_ONCE(event->overflow_handler)(event, data, regs);
9663
9664 if (*perf_event_fasync(event) && event->pending_kill) {
9665 event->pending_wakeup = 1;
9666 irq_work_queue(&event->pending_irq);
9667 }
9668
9669 return ret;
9670 }
9671
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)9672 int perf_event_overflow(struct perf_event *event,
9673 struct perf_sample_data *data,
9674 struct pt_regs *regs)
9675 {
9676 return __perf_event_overflow(event, 1, data, regs);
9677 }
9678
9679 /*
9680 * Generic software event infrastructure
9681 */
9682
9683 struct swevent_htable {
9684 struct swevent_hlist *swevent_hlist;
9685 struct mutex hlist_mutex;
9686 int hlist_refcount;
9687
9688 /* Recursion avoidance in each contexts */
9689 int recursion[PERF_NR_CONTEXTS];
9690 };
9691
9692 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9693
9694 /*
9695 * We directly increment event->count and keep a second value in
9696 * event->hw.period_left to count intervals. This period event
9697 * is kept in the range [-sample_period, 0] so that we can use the
9698 * sign as trigger.
9699 */
9700
perf_swevent_set_period(struct perf_event * event)9701 u64 perf_swevent_set_period(struct perf_event *event)
9702 {
9703 struct hw_perf_event *hwc = &event->hw;
9704 u64 period = hwc->last_period;
9705 u64 nr, offset;
9706 s64 old, val;
9707
9708 hwc->last_period = hwc->sample_period;
9709
9710 old = local64_read(&hwc->period_left);
9711 do {
9712 val = old;
9713 if (val < 0)
9714 return 0;
9715
9716 nr = div64_u64(period + val, period);
9717 offset = nr * period;
9718 val -= offset;
9719 } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9720
9721 return nr;
9722 }
9723
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)9724 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9725 struct perf_sample_data *data,
9726 struct pt_regs *regs)
9727 {
9728 struct hw_perf_event *hwc = &event->hw;
9729 int throttle = 0;
9730
9731 if (!overflow)
9732 overflow = perf_swevent_set_period(event);
9733
9734 if (hwc->interrupts == MAX_INTERRUPTS)
9735 return;
9736
9737 for (; overflow; overflow--) {
9738 if (__perf_event_overflow(event, throttle,
9739 data, regs)) {
9740 /*
9741 * We inhibit the overflow from happening when
9742 * hwc->interrupts == MAX_INTERRUPTS.
9743 */
9744 break;
9745 }
9746 throttle = 1;
9747 }
9748 }
9749
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9750 static void perf_swevent_event(struct perf_event *event, u64 nr,
9751 struct perf_sample_data *data,
9752 struct pt_regs *regs)
9753 {
9754 struct hw_perf_event *hwc = &event->hw;
9755
9756 local64_add(nr, &event->count);
9757
9758 if (!regs)
9759 return;
9760
9761 if (!is_sampling_event(event))
9762 return;
9763
9764 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9765 data->period = nr;
9766 return perf_swevent_overflow(event, 1, data, regs);
9767 } else
9768 data->period = event->hw.last_period;
9769
9770 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9771 return perf_swevent_overflow(event, 1, data, regs);
9772
9773 if (local64_add_negative(nr, &hwc->period_left))
9774 return;
9775
9776 perf_swevent_overflow(event, 0, data, regs);
9777 }
9778
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)9779 static int perf_exclude_event(struct perf_event *event,
9780 struct pt_regs *regs)
9781 {
9782 if (event->hw.state & PERF_HES_STOPPED)
9783 return 1;
9784
9785 if (regs) {
9786 if (event->attr.exclude_user && user_mode(regs))
9787 return 1;
9788
9789 if (event->attr.exclude_kernel && !user_mode(regs))
9790 return 1;
9791 }
9792
9793 return 0;
9794 }
9795
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)9796 static int perf_swevent_match(struct perf_event *event,
9797 enum perf_type_id type,
9798 u32 event_id,
9799 struct perf_sample_data *data,
9800 struct pt_regs *regs)
9801 {
9802 if (event->attr.type != type)
9803 return 0;
9804
9805 if (event->attr.config != event_id)
9806 return 0;
9807
9808 if (perf_exclude_event(event, regs))
9809 return 0;
9810
9811 return 1;
9812 }
9813
swevent_hash(u64 type,u32 event_id)9814 static inline u64 swevent_hash(u64 type, u32 event_id)
9815 {
9816 u64 val = event_id | (type << 32);
9817
9818 return hash_64(val, SWEVENT_HLIST_BITS);
9819 }
9820
9821 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)9822 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9823 {
9824 u64 hash = swevent_hash(type, event_id);
9825
9826 return &hlist->heads[hash];
9827 }
9828
9829 /* For the read side: events when they trigger */
9830 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)9831 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9832 {
9833 struct swevent_hlist *hlist;
9834
9835 hlist = rcu_dereference(swhash->swevent_hlist);
9836 if (!hlist)
9837 return NULL;
9838
9839 return __find_swevent_head(hlist, type, event_id);
9840 }
9841
9842 /* For the event head insertion and removal in the hlist */
9843 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)9844 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9845 {
9846 struct swevent_hlist *hlist;
9847 u32 event_id = event->attr.config;
9848 u64 type = event->attr.type;
9849
9850 /*
9851 * Event scheduling is always serialized against hlist allocation
9852 * and release. Which makes the protected version suitable here.
9853 * The context lock guarantees that.
9854 */
9855 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9856 lockdep_is_held(&event->ctx->lock));
9857 if (!hlist)
9858 return NULL;
9859
9860 return __find_swevent_head(hlist, type, event_id);
9861 }
9862
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)9863 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9864 u64 nr,
9865 struct perf_sample_data *data,
9866 struct pt_regs *regs)
9867 {
9868 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9869 struct perf_event *event;
9870 struct hlist_head *head;
9871
9872 rcu_read_lock();
9873 head = find_swevent_head_rcu(swhash, type, event_id);
9874 if (!head)
9875 goto end;
9876
9877 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9878 if (perf_swevent_match(event, type, event_id, data, regs))
9879 perf_swevent_event(event, nr, data, regs);
9880 }
9881 end:
9882 rcu_read_unlock();
9883 }
9884
9885 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9886
perf_swevent_get_recursion_context(void)9887 int perf_swevent_get_recursion_context(void)
9888 {
9889 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9890
9891 return get_recursion_context(swhash->recursion);
9892 }
9893 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9894
perf_swevent_put_recursion_context(int rctx)9895 void perf_swevent_put_recursion_context(int rctx)
9896 {
9897 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9898
9899 put_recursion_context(swhash->recursion, rctx);
9900 }
9901
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9902 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9903 {
9904 struct perf_sample_data data;
9905
9906 if (WARN_ON_ONCE(!regs))
9907 return;
9908
9909 perf_sample_data_init(&data, addr, 0);
9910 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9911 }
9912
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)9913 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9914 {
9915 int rctx;
9916
9917 preempt_disable_notrace();
9918 rctx = perf_swevent_get_recursion_context();
9919 if (unlikely(rctx < 0))
9920 goto fail;
9921
9922 ___perf_sw_event(event_id, nr, regs, addr);
9923
9924 perf_swevent_put_recursion_context(rctx);
9925 fail:
9926 preempt_enable_notrace();
9927 }
9928
perf_swevent_read(struct perf_event * event)9929 static void perf_swevent_read(struct perf_event *event)
9930 {
9931 }
9932
perf_swevent_add(struct perf_event * event,int flags)9933 static int perf_swevent_add(struct perf_event *event, int flags)
9934 {
9935 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9936 struct hw_perf_event *hwc = &event->hw;
9937 struct hlist_head *head;
9938
9939 if (is_sampling_event(event)) {
9940 hwc->last_period = hwc->sample_period;
9941 perf_swevent_set_period(event);
9942 }
9943
9944 hwc->state = !(flags & PERF_EF_START);
9945
9946 head = find_swevent_head(swhash, event);
9947 if (WARN_ON_ONCE(!head))
9948 return -EINVAL;
9949
9950 hlist_add_head_rcu(&event->hlist_entry, head);
9951 perf_event_update_userpage(event);
9952
9953 return 0;
9954 }
9955
perf_swevent_del(struct perf_event * event,int flags)9956 static void perf_swevent_del(struct perf_event *event, int flags)
9957 {
9958 hlist_del_rcu(&event->hlist_entry);
9959 }
9960
perf_swevent_start(struct perf_event * event,int flags)9961 static void perf_swevent_start(struct perf_event *event, int flags)
9962 {
9963 event->hw.state = 0;
9964 }
9965
perf_swevent_stop(struct perf_event * event,int flags)9966 static void perf_swevent_stop(struct perf_event *event, int flags)
9967 {
9968 event->hw.state = PERF_HES_STOPPED;
9969 }
9970
9971 /* Deref the hlist from the update side */
9972 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)9973 swevent_hlist_deref(struct swevent_htable *swhash)
9974 {
9975 return rcu_dereference_protected(swhash->swevent_hlist,
9976 lockdep_is_held(&swhash->hlist_mutex));
9977 }
9978
swevent_hlist_release(struct swevent_htable * swhash)9979 static void swevent_hlist_release(struct swevent_htable *swhash)
9980 {
9981 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9982
9983 if (!hlist)
9984 return;
9985
9986 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9987 kfree_rcu(hlist, rcu_head);
9988 }
9989
swevent_hlist_put_cpu(int cpu)9990 static void swevent_hlist_put_cpu(int cpu)
9991 {
9992 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9993
9994 mutex_lock(&swhash->hlist_mutex);
9995
9996 if (!--swhash->hlist_refcount)
9997 swevent_hlist_release(swhash);
9998
9999 mutex_unlock(&swhash->hlist_mutex);
10000 }
10001
swevent_hlist_put(void)10002 static void swevent_hlist_put(void)
10003 {
10004 int cpu;
10005
10006 for_each_possible_cpu(cpu)
10007 swevent_hlist_put_cpu(cpu);
10008 }
10009
swevent_hlist_get_cpu(int cpu)10010 static int swevent_hlist_get_cpu(int cpu)
10011 {
10012 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10013 int err = 0;
10014
10015 mutex_lock(&swhash->hlist_mutex);
10016 if (!swevent_hlist_deref(swhash) &&
10017 cpumask_test_cpu(cpu, perf_online_mask)) {
10018 struct swevent_hlist *hlist;
10019
10020 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10021 if (!hlist) {
10022 err = -ENOMEM;
10023 goto exit;
10024 }
10025 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10026 }
10027 swhash->hlist_refcount++;
10028 exit:
10029 mutex_unlock(&swhash->hlist_mutex);
10030
10031 return err;
10032 }
10033
swevent_hlist_get(void)10034 static int swevent_hlist_get(void)
10035 {
10036 int err, cpu, failed_cpu;
10037
10038 mutex_lock(&pmus_lock);
10039 for_each_possible_cpu(cpu) {
10040 err = swevent_hlist_get_cpu(cpu);
10041 if (err) {
10042 failed_cpu = cpu;
10043 goto fail;
10044 }
10045 }
10046 mutex_unlock(&pmus_lock);
10047 return 0;
10048 fail:
10049 for_each_possible_cpu(cpu) {
10050 if (cpu == failed_cpu)
10051 break;
10052 swevent_hlist_put_cpu(cpu);
10053 }
10054 mutex_unlock(&pmus_lock);
10055 return err;
10056 }
10057
10058 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10059
sw_perf_event_destroy(struct perf_event * event)10060 static void sw_perf_event_destroy(struct perf_event *event)
10061 {
10062 u64 event_id = event->attr.config;
10063
10064 WARN_ON(event->parent);
10065
10066 static_key_slow_dec(&perf_swevent_enabled[event_id]);
10067 swevent_hlist_put();
10068 }
10069
10070 static struct pmu perf_cpu_clock; /* fwd declaration */
10071 static struct pmu perf_task_clock;
10072
perf_swevent_init(struct perf_event * event)10073 static int perf_swevent_init(struct perf_event *event)
10074 {
10075 u64 event_id = event->attr.config;
10076
10077 if (event->attr.type != PERF_TYPE_SOFTWARE)
10078 return -ENOENT;
10079
10080 /*
10081 * no branch sampling for software events
10082 */
10083 if (has_branch_stack(event))
10084 return -EOPNOTSUPP;
10085
10086 switch (event_id) {
10087 case PERF_COUNT_SW_CPU_CLOCK:
10088 event->attr.type = perf_cpu_clock.type;
10089 return -ENOENT;
10090 case PERF_COUNT_SW_TASK_CLOCK:
10091 event->attr.type = perf_task_clock.type;
10092 return -ENOENT;
10093
10094 default:
10095 break;
10096 }
10097
10098 if (event_id >= PERF_COUNT_SW_MAX)
10099 return -ENOENT;
10100
10101 if (!event->parent) {
10102 int err;
10103
10104 err = swevent_hlist_get();
10105 if (err)
10106 return err;
10107
10108 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10109 event->destroy = sw_perf_event_destroy;
10110 }
10111
10112 return 0;
10113 }
10114
10115 static struct pmu perf_swevent = {
10116 .task_ctx_nr = perf_sw_context,
10117
10118 .capabilities = PERF_PMU_CAP_NO_NMI,
10119
10120 .event_init = perf_swevent_init,
10121 .add = perf_swevent_add,
10122 .del = perf_swevent_del,
10123 .start = perf_swevent_start,
10124 .stop = perf_swevent_stop,
10125 .read = perf_swevent_read,
10126 };
10127
10128 #ifdef CONFIG_EVENT_TRACING
10129
tp_perf_event_destroy(struct perf_event * event)10130 static void tp_perf_event_destroy(struct perf_event *event)
10131 {
10132 perf_trace_destroy(event);
10133 }
10134
perf_tp_event_init(struct perf_event * event)10135 static int perf_tp_event_init(struct perf_event *event)
10136 {
10137 int err;
10138
10139 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10140 return -ENOENT;
10141
10142 /*
10143 * no branch sampling for tracepoint events
10144 */
10145 if (has_branch_stack(event))
10146 return -EOPNOTSUPP;
10147
10148 err = perf_trace_init(event);
10149 if (err)
10150 return err;
10151
10152 event->destroy = tp_perf_event_destroy;
10153
10154 return 0;
10155 }
10156
10157 static struct pmu perf_tracepoint = {
10158 .task_ctx_nr = perf_sw_context,
10159
10160 .event_init = perf_tp_event_init,
10161 .add = perf_trace_add,
10162 .del = perf_trace_del,
10163 .start = perf_swevent_start,
10164 .stop = perf_swevent_stop,
10165 .read = perf_swevent_read,
10166 };
10167
perf_tp_filter_match(struct perf_event * event,struct perf_raw_record * raw)10168 static int perf_tp_filter_match(struct perf_event *event,
10169 struct perf_raw_record *raw)
10170 {
10171 void *record = raw->frag.data;
10172
10173 /* only top level events have filters set */
10174 if (event->parent)
10175 event = event->parent;
10176
10177 if (likely(!event->filter) || filter_match_preds(event->filter, record))
10178 return 1;
10179 return 0;
10180 }
10181
perf_tp_event_match(struct perf_event * event,struct perf_raw_record * raw,struct pt_regs * regs)10182 static int perf_tp_event_match(struct perf_event *event,
10183 struct perf_raw_record *raw,
10184 struct pt_regs *regs)
10185 {
10186 if (event->hw.state & PERF_HES_STOPPED)
10187 return 0;
10188 /*
10189 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10190 */
10191 if (event->attr.exclude_kernel && !user_mode(regs))
10192 return 0;
10193
10194 if (!perf_tp_filter_match(event, raw))
10195 return 0;
10196
10197 return 1;
10198 }
10199
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)10200 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10201 struct trace_event_call *call, u64 count,
10202 struct pt_regs *regs, struct hlist_head *head,
10203 struct task_struct *task)
10204 {
10205 if (bpf_prog_array_valid(call)) {
10206 *(struct pt_regs **)raw_data = regs;
10207 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10208 perf_swevent_put_recursion_context(rctx);
10209 return;
10210 }
10211 }
10212 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10213 rctx, task);
10214 }
10215 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10216
__perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event * event)10217 static void __perf_tp_event_target_task(u64 count, void *record,
10218 struct pt_regs *regs,
10219 struct perf_sample_data *data,
10220 struct perf_raw_record *raw,
10221 struct perf_event *event)
10222 {
10223 struct trace_entry *entry = record;
10224
10225 if (event->attr.config != entry->type)
10226 return;
10227 /* Cannot deliver synchronous signal to other task. */
10228 if (event->attr.sigtrap)
10229 return;
10230 if (perf_tp_event_match(event, raw, regs)) {
10231 perf_sample_data_init(data, 0, 0);
10232 perf_sample_save_raw_data(data, event, raw);
10233 perf_swevent_event(event, count, data, regs);
10234 }
10235 }
10236
perf_tp_event_target_task(u64 count,void * record,struct pt_regs * regs,struct perf_sample_data * data,struct perf_raw_record * raw,struct perf_event_context * ctx)10237 static void perf_tp_event_target_task(u64 count, void *record,
10238 struct pt_regs *regs,
10239 struct perf_sample_data *data,
10240 struct perf_raw_record *raw,
10241 struct perf_event_context *ctx)
10242 {
10243 unsigned int cpu = smp_processor_id();
10244 struct pmu *pmu = &perf_tracepoint;
10245 struct perf_event *event, *sibling;
10246
10247 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10248 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10249 for_each_sibling_event(sibling, event)
10250 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10251 }
10252
10253 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10254 __perf_tp_event_target_task(count, record, regs, data, raw, event);
10255 for_each_sibling_event(sibling, event)
10256 __perf_tp_event_target_task(count, record, regs, data, raw, sibling);
10257 }
10258 }
10259
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)10260 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10261 struct pt_regs *regs, struct hlist_head *head, int rctx,
10262 struct task_struct *task)
10263 {
10264 struct perf_sample_data data;
10265 struct perf_event *event;
10266
10267 struct perf_raw_record raw = {
10268 .frag = {
10269 .size = entry_size,
10270 .data = record,
10271 },
10272 };
10273
10274 perf_trace_buf_update(record, event_type);
10275
10276 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10277 if (perf_tp_event_match(event, &raw, regs)) {
10278 /*
10279 * Here use the same on-stack perf_sample_data,
10280 * some members in data are event-specific and
10281 * need to be re-computed for different sweveents.
10282 * Re-initialize data->sample_flags safely to avoid
10283 * the problem that next event skips preparing data
10284 * because data->sample_flags is set.
10285 */
10286 perf_sample_data_init(&data, 0, 0);
10287 perf_sample_save_raw_data(&data, event, &raw);
10288 perf_swevent_event(event, count, &data, regs);
10289 }
10290 }
10291
10292 /*
10293 * If we got specified a target task, also iterate its context and
10294 * deliver this event there too.
10295 */
10296 if (task && task != current) {
10297 struct perf_event_context *ctx;
10298
10299 rcu_read_lock();
10300 ctx = rcu_dereference(task->perf_event_ctxp);
10301 if (!ctx)
10302 goto unlock;
10303
10304 raw_spin_lock(&ctx->lock);
10305 perf_tp_event_target_task(count, record, regs, &data, &raw, ctx);
10306 raw_spin_unlock(&ctx->lock);
10307 unlock:
10308 rcu_read_unlock();
10309 }
10310
10311 perf_swevent_put_recursion_context(rctx);
10312 }
10313 EXPORT_SYMBOL_GPL(perf_tp_event);
10314
10315 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10316 /*
10317 * Flags in config, used by dynamic PMU kprobe and uprobe
10318 * The flags should match following PMU_FORMAT_ATTR().
10319 *
10320 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10321 * if not set, create kprobe/uprobe
10322 *
10323 * The following values specify a reference counter (or semaphore in the
10324 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10325 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10326 *
10327 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10328 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10329 */
10330 enum perf_probe_config {
10331 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10332 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10333 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10334 };
10335
10336 PMU_FORMAT_ATTR(retprobe, "config:0");
10337 #endif
10338
10339 #ifdef CONFIG_KPROBE_EVENTS
10340 static struct attribute *kprobe_attrs[] = {
10341 &format_attr_retprobe.attr,
10342 NULL,
10343 };
10344
10345 static struct attribute_group kprobe_format_group = {
10346 .name = "format",
10347 .attrs = kprobe_attrs,
10348 };
10349
10350 static const struct attribute_group *kprobe_attr_groups[] = {
10351 &kprobe_format_group,
10352 NULL,
10353 };
10354
10355 static int perf_kprobe_event_init(struct perf_event *event);
10356 static struct pmu perf_kprobe = {
10357 .task_ctx_nr = perf_sw_context,
10358 .event_init = perf_kprobe_event_init,
10359 .add = perf_trace_add,
10360 .del = perf_trace_del,
10361 .start = perf_swevent_start,
10362 .stop = perf_swevent_stop,
10363 .read = perf_swevent_read,
10364 .attr_groups = kprobe_attr_groups,
10365 };
10366
perf_kprobe_event_init(struct perf_event * event)10367 static int perf_kprobe_event_init(struct perf_event *event)
10368 {
10369 int err;
10370 bool is_retprobe;
10371
10372 if (event->attr.type != perf_kprobe.type)
10373 return -ENOENT;
10374
10375 if (!perfmon_capable())
10376 return -EACCES;
10377
10378 /*
10379 * no branch sampling for probe events
10380 */
10381 if (has_branch_stack(event))
10382 return -EOPNOTSUPP;
10383
10384 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10385 err = perf_kprobe_init(event, is_retprobe);
10386 if (err)
10387 return err;
10388
10389 event->destroy = perf_kprobe_destroy;
10390
10391 return 0;
10392 }
10393 #endif /* CONFIG_KPROBE_EVENTS */
10394
10395 #ifdef CONFIG_UPROBE_EVENTS
10396 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10397
10398 static struct attribute *uprobe_attrs[] = {
10399 &format_attr_retprobe.attr,
10400 &format_attr_ref_ctr_offset.attr,
10401 NULL,
10402 };
10403
10404 static struct attribute_group uprobe_format_group = {
10405 .name = "format",
10406 .attrs = uprobe_attrs,
10407 };
10408
10409 static const struct attribute_group *uprobe_attr_groups[] = {
10410 &uprobe_format_group,
10411 NULL,
10412 };
10413
10414 static int perf_uprobe_event_init(struct perf_event *event);
10415 static struct pmu perf_uprobe = {
10416 .task_ctx_nr = perf_sw_context,
10417 .event_init = perf_uprobe_event_init,
10418 .add = perf_trace_add,
10419 .del = perf_trace_del,
10420 .start = perf_swevent_start,
10421 .stop = perf_swevent_stop,
10422 .read = perf_swevent_read,
10423 .attr_groups = uprobe_attr_groups,
10424 };
10425
perf_uprobe_event_init(struct perf_event * event)10426 static int perf_uprobe_event_init(struct perf_event *event)
10427 {
10428 int err;
10429 unsigned long ref_ctr_offset;
10430 bool is_retprobe;
10431
10432 if (event->attr.type != perf_uprobe.type)
10433 return -ENOENT;
10434
10435 if (!perfmon_capable())
10436 return -EACCES;
10437
10438 /*
10439 * no branch sampling for probe events
10440 */
10441 if (has_branch_stack(event))
10442 return -EOPNOTSUPP;
10443
10444 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10445 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10446 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10447 if (err)
10448 return err;
10449
10450 event->destroy = perf_uprobe_destroy;
10451
10452 return 0;
10453 }
10454 #endif /* CONFIG_UPROBE_EVENTS */
10455
perf_tp_register(void)10456 static inline void perf_tp_register(void)
10457 {
10458 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10459 #ifdef CONFIG_KPROBE_EVENTS
10460 perf_pmu_register(&perf_kprobe, "kprobe", -1);
10461 #endif
10462 #ifdef CONFIG_UPROBE_EVENTS
10463 perf_pmu_register(&perf_uprobe, "uprobe", -1);
10464 #endif
10465 }
10466
perf_event_free_filter(struct perf_event * event)10467 static void perf_event_free_filter(struct perf_event *event)
10468 {
10469 ftrace_profile_free_filter(event);
10470 }
10471
10472 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)10473 static void bpf_overflow_handler(struct perf_event *event,
10474 struct perf_sample_data *data,
10475 struct pt_regs *regs)
10476 {
10477 struct bpf_perf_event_data_kern ctx = {
10478 .data = data,
10479 .event = event,
10480 };
10481 struct bpf_prog *prog;
10482 int ret = 0;
10483
10484 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10485 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10486 goto out;
10487 rcu_read_lock();
10488 prog = READ_ONCE(event->prog);
10489 if (prog) {
10490 perf_prepare_sample(data, event, regs);
10491 ret = bpf_prog_run(prog, &ctx);
10492 }
10493 rcu_read_unlock();
10494 out:
10495 __this_cpu_dec(bpf_prog_active);
10496 if (!ret)
10497 return;
10498
10499 event->orig_overflow_handler(event, data, regs);
10500 }
10501
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10502 static int perf_event_set_bpf_handler(struct perf_event *event,
10503 struct bpf_prog *prog,
10504 u64 bpf_cookie)
10505 {
10506 if (event->overflow_handler_context)
10507 /* hw breakpoint or kernel counter */
10508 return -EINVAL;
10509
10510 if (event->prog)
10511 return -EEXIST;
10512
10513 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10514 return -EINVAL;
10515
10516 if (event->attr.precise_ip &&
10517 prog->call_get_stack &&
10518 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10519 event->attr.exclude_callchain_kernel ||
10520 event->attr.exclude_callchain_user)) {
10521 /*
10522 * On perf_event with precise_ip, calling bpf_get_stack()
10523 * may trigger unwinder warnings and occasional crashes.
10524 * bpf_get_[stack|stackid] works around this issue by using
10525 * callchain attached to perf_sample_data. If the
10526 * perf_event does not full (kernel and user) callchain
10527 * attached to perf_sample_data, do not allow attaching BPF
10528 * program that calls bpf_get_[stack|stackid].
10529 */
10530 return -EPROTO;
10531 }
10532
10533 event->prog = prog;
10534 event->bpf_cookie = bpf_cookie;
10535 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10536 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10537 return 0;
10538 }
10539
perf_event_free_bpf_handler(struct perf_event * event)10540 static void perf_event_free_bpf_handler(struct perf_event *event)
10541 {
10542 struct bpf_prog *prog = event->prog;
10543
10544 if (!prog)
10545 return;
10546
10547 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10548 event->prog = NULL;
10549 bpf_prog_put(prog);
10550 }
10551 #else
perf_event_set_bpf_handler(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10552 static int perf_event_set_bpf_handler(struct perf_event *event,
10553 struct bpf_prog *prog,
10554 u64 bpf_cookie)
10555 {
10556 return -EOPNOTSUPP;
10557 }
perf_event_free_bpf_handler(struct perf_event * event)10558 static void perf_event_free_bpf_handler(struct perf_event *event)
10559 {
10560 }
10561 #endif
10562
10563 /*
10564 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10565 * with perf_event_open()
10566 */
perf_event_is_tracing(struct perf_event * event)10567 static inline bool perf_event_is_tracing(struct perf_event *event)
10568 {
10569 if (event->pmu == &perf_tracepoint)
10570 return true;
10571 #ifdef CONFIG_KPROBE_EVENTS
10572 if (event->pmu == &perf_kprobe)
10573 return true;
10574 #endif
10575 #ifdef CONFIG_UPROBE_EVENTS
10576 if (event->pmu == &perf_uprobe)
10577 return true;
10578 #endif
10579 return false;
10580 }
10581
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10582 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10583 u64 bpf_cookie)
10584 {
10585 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10586
10587 if (!perf_event_is_tracing(event))
10588 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10589
10590 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10591 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10592 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10593 is_syscall_tp = is_syscall_trace_event(event->tp_event);
10594 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10595 /* bpf programs can only be attached to u/kprobe or tracepoint */
10596 return -EINVAL;
10597
10598 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10599 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10600 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10601 return -EINVAL;
10602
10603 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10604 /* only uprobe programs are allowed to be sleepable */
10605 return -EINVAL;
10606
10607 /* Kprobe override only works for kprobes, not uprobes. */
10608 if (prog->kprobe_override && !is_kprobe)
10609 return -EINVAL;
10610
10611 if (is_tracepoint || is_syscall_tp) {
10612 int off = trace_event_get_offsets(event->tp_event);
10613
10614 if (prog->aux->max_ctx_offset > off)
10615 return -EACCES;
10616 }
10617
10618 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10619 }
10620
perf_event_free_bpf_prog(struct perf_event * event)10621 void perf_event_free_bpf_prog(struct perf_event *event)
10622 {
10623 if (!perf_event_is_tracing(event)) {
10624 perf_event_free_bpf_handler(event);
10625 return;
10626 }
10627 perf_event_detach_bpf_prog(event);
10628 }
10629
10630 #else
10631
perf_tp_register(void)10632 static inline void perf_tp_register(void)
10633 {
10634 }
10635
perf_event_free_filter(struct perf_event * event)10636 static void perf_event_free_filter(struct perf_event *event)
10637 {
10638 }
10639
perf_event_set_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)10640 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10641 u64 bpf_cookie)
10642 {
10643 return -ENOENT;
10644 }
10645
perf_event_free_bpf_prog(struct perf_event * event)10646 void perf_event_free_bpf_prog(struct perf_event *event)
10647 {
10648 }
10649 #endif /* CONFIG_EVENT_TRACING */
10650
10651 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)10652 void perf_bp_event(struct perf_event *bp, void *data)
10653 {
10654 struct perf_sample_data sample;
10655 struct pt_regs *regs = data;
10656
10657 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10658
10659 if (!bp->hw.state && !perf_exclude_event(bp, regs))
10660 perf_swevent_event(bp, 1, &sample, regs);
10661 }
10662 #endif
10663
10664 /*
10665 * Allocate a new address filter
10666 */
10667 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)10668 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10669 {
10670 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10671 struct perf_addr_filter *filter;
10672
10673 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10674 if (!filter)
10675 return NULL;
10676
10677 INIT_LIST_HEAD(&filter->entry);
10678 list_add_tail(&filter->entry, filters);
10679
10680 return filter;
10681 }
10682
free_filters_list(struct list_head * filters)10683 static void free_filters_list(struct list_head *filters)
10684 {
10685 struct perf_addr_filter *filter, *iter;
10686
10687 list_for_each_entry_safe(filter, iter, filters, entry) {
10688 path_put(&filter->path);
10689 list_del(&filter->entry);
10690 kfree(filter);
10691 }
10692 }
10693
10694 /*
10695 * Free existing address filters and optionally install new ones
10696 */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)10697 static void perf_addr_filters_splice(struct perf_event *event,
10698 struct list_head *head)
10699 {
10700 unsigned long flags;
10701 LIST_HEAD(list);
10702
10703 if (!has_addr_filter(event))
10704 return;
10705
10706 /* don't bother with children, they don't have their own filters */
10707 if (event->parent)
10708 return;
10709
10710 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10711
10712 list_splice_init(&event->addr_filters.list, &list);
10713 if (head)
10714 list_splice(head, &event->addr_filters.list);
10715
10716 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10717
10718 free_filters_list(&list);
10719 }
10720
10721 /*
10722 * Scan through mm's vmas and see if one of them matches the
10723 * @filter; if so, adjust filter's address range.
10724 * Called with mm::mmap_lock down for reading.
10725 */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm,struct perf_addr_filter_range * fr)10726 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10727 struct mm_struct *mm,
10728 struct perf_addr_filter_range *fr)
10729 {
10730 struct vm_area_struct *vma;
10731 VMA_ITERATOR(vmi, mm, 0);
10732
10733 for_each_vma(vmi, vma) {
10734 if (!vma->vm_file)
10735 continue;
10736
10737 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10738 return;
10739 }
10740 }
10741
10742 /*
10743 * Update event's address range filters based on the
10744 * task's existing mappings, if any.
10745 */
perf_event_addr_filters_apply(struct perf_event * event)10746 static void perf_event_addr_filters_apply(struct perf_event *event)
10747 {
10748 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10749 struct task_struct *task = READ_ONCE(event->ctx->task);
10750 struct perf_addr_filter *filter;
10751 struct mm_struct *mm = NULL;
10752 unsigned int count = 0;
10753 unsigned long flags;
10754
10755 /*
10756 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10757 * will stop on the parent's child_mutex that our caller is also holding
10758 */
10759 if (task == TASK_TOMBSTONE)
10760 return;
10761
10762 if (ifh->nr_file_filters) {
10763 mm = get_task_mm(task);
10764 if (!mm)
10765 goto restart;
10766
10767 mmap_read_lock(mm);
10768 }
10769
10770 raw_spin_lock_irqsave(&ifh->lock, flags);
10771 list_for_each_entry(filter, &ifh->list, entry) {
10772 if (filter->path.dentry) {
10773 /*
10774 * Adjust base offset if the filter is associated to a
10775 * binary that needs to be mapped:
10776 */
10777 event->addr_filter_ranges[count].start = 0;
10778 event->addr_filter_ranges[count].size = 0;
10779
10780 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10781 } else {
10782 event->addr_filter_ranges[count].start = filter->offset;
10783 event->addr_filter_ranges[count].size = filter->size;
10784 }
10785
10786 count++;
10787 }
10788
10789 event->addr_filters_gen++;
10790 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10791
10792 if (ifh->nr_file_filters) {
10793 mmap_read_unlock(mm);
10794
10795 mmput(mm);
10796 }
10797
10798 restart:
10799 perf_event_stop(event, 1);
10800 }
10801
10802 /*
10803 * Address range filtering: limiting the data to certain
10804 * instruction address ranges. Filters are ioctl()ed to us from
10805 * userspace as ascii strings.
10806 *
10807 * Filter string format:
10808 *
10809 * ACTION RANGE_SPEC
10810 * where ACTION is one of the
10811 * * "filter": limit the trace to this region
10812 * * "start": start tracing from this address
10813 * * "stop": stop tracing at this address/region;
10814 * RANGE_SPEC is
10815 * * for kernel addresses: <start address>[/<size>]
10816 * * for object files: <start address>[/<size>]@</path/to/object/file>
10817 *
10818 * if <size> is not specified or is zero, the range is treated as a single
10819 * address; not valid for ACTION=="filter".
10820 */
10821 enum {
10822 IF_ACT_NONE = -1,
10823 IF_ACT_FILTER,
10824 IF_ACT_START,
10825 IF_ACT_STOP,
10826 IF_SRC_FILE,
10827 IF_SRC_KERNEL,
10828 IF_SRC_FILEADDR,
10829 IF_SRC_KERNELADDR,
10830 };
10831
10832 enum {
10833 IF_STATE_ACTION = 0,
10834 IF_STATE_SOURCE,
10835 IF_STATE_END,
10836 };
10837
10838 static const match_table_t if_tokens = {
10839 { IF_ACT_FILTER, "filter" },
10840 { IF_ACT_START, "start" },
10841 { IF_ACT_STOP, "stop" },
10842 { IF_SRC_FILE, "%u/%u@%s" },
10843 { IF_SRC_KERNEL, "%u/%u" },
10844 { IF_SRC_FILEADDR, "%u@%s" },
10845 { IF_SRC_KERNELADDR, "%u" },
10846 { IF_ACT_NONE, NULL },
10847 };
10848
10849 /*
10850 * Address filter string parser
10851 */
10852 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)10853 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10854 struct list_head *filters)
10855 {
10856 struct perf_addr_filter *filter = NULL;
10857 char *start, *orig, *filename = NULL;
10858 substring_t args[MAX_OPT_ARGS];
10859 int state = IF_STATE_ACTION, token;
10860 unsigned int kernel = 0;
10861 int ret = -EINVAL;
10862
10863 orig = fstr = kstrdup(fstr, GFP_KERNEL);
10864 if (!fstr)
10865 return -ENOMEM;
10866
10867 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10868 static const enum perf_addr_filter_action_t actions[] = {
10869 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10870 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10871 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10872 };
10873 ret = -EINVAL;
10874
10875 if (!*start)
10876 continue;
10877
10878 /* filter definition begins */
10879 if (state == IF_STATE_ACTION) {
10880 filter = perf_addr_filter_new(event, filters);
10881 if (!filter)
10882 goto fail;
10883 }
10884
10885 token = match_token(start, if_tokens, args);
10886 switch (token) {
10887 case IF_ACT_FILTER:
10888 case IF_ACT_START:
10889 case IF_ACT_STOP:
10890 if (state != IF_STATE_ACTION)
10891 goto fail;
10892
10893 filter->action = actions[token];
10894 state = IF_STATE_SOURCE;
10895 break;
10896
10897 case IF_SRC_KERNELADDR:
10898 case IF_SRC_KERNEL:
10899 kernel = 1;
10900 fallthrough;
10901
10902 case IF_SRC_FILEADDR:
10903 case IF_SRC_FILE:
10904 if (state != IF_STATE_SOURCE)
10905 goto fail;
10906
10907 *args[0].to = 0;
10908 ret = kstrtoul(args[0].from, 0, &filter->offset);
10909 if (ret)
10910 goto fail;
10911
10912 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10913 *args[1].to = 0;
10914 ret = kstrtoul(args[1].from, 0, &filter->size);
10915 if (ret)
10916 goto fail;
10917 }
10918
10919 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10920 int fpos = token == IF_SRC_FILE ? 2 : 1;
10921
10922 kfree(filename);
10923 filename = match_strdup(&args[fpos]);
10924 if (!filename) {
10925 ret = -ENOMEM;
10926 goto fail;
10927 }
10928 }
10929
10930 state = IF_STATE_END;
10931 break;
10932
10933 default:
10934 goto fail;
10935 }
10936
10937 /*
10938 * Filter definition is fully parsed, validate and install it.
10939 * Make sure that it doesn't contradict itself or the event's
10940 * attribute.
10941 */
10942 if (state == IF_STATE_END) {
10943 ret = -EINVAL;
10944
10945 /*
10946 * ACTION "filter" must have a non-zero length region
10947 * specified.
10948 */
10949 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10950 !filter->size)
10951 goto fail;
10952
10953 if (!kernel) {
10954 if (!filename)
10955 goto fail;
10956
10957 /*
10958 * For now, we only support file-based filters
10959 * in per-task events; doing so for CPU-wide
10960 * events requires additional context switching
10961 * trickery, since same object code will be
10962 * mapped at different virtual addresses in
10963 * different processes.
10964 */
10965 ret = -EOPNOTSUPP;
10966 if (!event->ctx->task)
10967 goto fail;
10968
10969 /* look up the path and grab its inode */
10970 ret = kern_path(filename, LOOKUP_FOLLOW,
10971 &filter->path);
10972 if (ret)
10973 goto fail;
10974
10975 ret = -EINVAL;
10976 if (!filter->path.dentry ||
10977 !S_ISREG(d_inode(filter->path.dentry)
10978 ->i_mode))
10979 goto fail;
10980
10981 event->addr_filters.nr_file_filters++;
10982 }
10983
10984 /* ready to consume more filters */
10985 kfree(filename);
10986 filename = NULL;
10987 state = IF_STATE_ACTION;
10988 filter = NULL;
10989 kernel = 0;
10990 }
10991 }
10992
10993 if (state != IF_STATE_ACTION)
10994 goto fail;
10995
10996 kfree(filename);
10997 kfree(orig);
10998
10999 return 0;
11000
11001 fail:
11002 kfree(filename);
11003 free_filters_list(filters);
11004 kfree(orig);
11005
11006 return ret;
11007 }
11008
11009 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)11010 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
11011 {
11012 LIST_HEAD(filters);
11013 int ret;
11014
11015 /*
11016 * Since this is called in perf_ioctl() path, we're already holding
11017 * ctx::mutex.
11018 */
11019 lockdep_assert_held(&event->ctx->mutex);
11020
11021 if (WARN_ON_ONCE(event->parent))
11022 return -EINVAL;
11023
11024 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
11025 if (ret)
11026 goto fail_clear_files;
11027
11028 ret = event->pmu->addr_filters_validate(&filters);
11029 if (ret)
11030 goto fail_free_filters;
11031
11032 /* remove existing filters, if any */
11033 perf_addr_filters_splice(event, &filters);
11034
11035 /* install new filters */
11036 perf_event_for_each_child(event, perf_event_addr_filters_apply);
11037
11038 return ret;
11039
11040 fail_free_filters:
11041 free_filters_list(&filters);
11042
11043 fail_clear_files:
11044 event->addr_filters.nr_file_filters = 0;
11045
11046 return ret;
11047 }
11048
perf_event_set_filter(struct perf_event * event,void __user * arg)11049 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11050 {
11051 int ret = -EINVAL;
11052 char *filter_str;
11053
11054 filter_str = strndup_user(arg, PAGE_SIZE);
11055 if (IS_ERR(filter_str))
11056 return PTR_ERR(filter_str);
11057
11058 #ifdef CONFIG_EVENT_TRACING
11059 if (perf_event_is_tracing(event)) {
11060 struct perf_event_context *ctx = event->ctx;
11061
11062 /*
11063 * Beware, here be dragons!!
11064 *
11065 * the tracepoint muck will deadlock against ctx->mutex, but
11066 * the tracepoint stuff does not actually need it. So
11067 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11068 * already have a reference on ctx.
11069 *
11070 * This can result in event getting moved to a different ctx,
11071 * but that does not affect the tracepoint state.
11072 */
11073 mutex_unlock(&ctx->mutex);
11074 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11075 mutex_lock(&ctx->mutex);
11076 } else
11077 #endif
11078 if (has_addr_filter(event))
11079 ret = perf_event_set_addr_filter(event, filter_str);
11080
11081 kfree(filter_str);
11082 return ret;
11083 }
11084
11085 /*
11086 * hrtimer based swevent callback
11087 */
11088
perf_swevent_hrtimer(struct hrtimer * hrtimer)11089 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11090 {
11091 enum hrtimer_restart ret = HRTIMER_RESTART;
11092 struct perf_sample_data data;
11093 struct pt_regs *regs;
11094 struct perf_event *event;
11095 u64 period;
11096
11097 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11098
11099 if (event->state != PERF_EVENT_STATE_ACTIVE)
11100 return HRTIMER_NORESTART;
11101
11102 event->pmu->read(event);
11103
11104 perf_sample_data_init(&data, 0, event->hw.last_period);
11105 regs = get_irq_regs();
11106
11107 if (regs && !perf_exclude_event(event, regs)) {
11108 if (!(event->attr.exclude_idle && is_idle_task(current)))
11109 if (__perf_event_overflow(event, 1, &data, regs))
11110 ret = HRTIMER_NORESTART;
11111 }
11112
11113 period = max_t(u64, 10000, event->hw.sample_period);
11114 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11115
11116 return ret;
11117 }
11118
perf_swevent_start_hrtimer(struct perf_event * event)11119 static void perf_swevent_start_hrtimer(struct perf_event *event)
11120 {
11121 struct hw_perf_event *hwc = &event->hw;
11122 s64 period;
11123
11124 if (!is_sampling_event(event))
11125 return;
11126
11127 period = local64_read(&hwc->period_left);
11128 if (period) {
11129 if (period < 0)
11130 period = 10000;
11131
11132 local64_set(&hwc->period_left, 0);
11133 } else {
11134 period = max_t(u64, 10000, hwc->sample_period);
11135 }
11136 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11137 HRTIMER_MODE_REL_PINNED_HARD);
11138 }
11139
perf_swevent_cancel_hrtimer(struct perf_event * event)11140 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11141 {
11142 struct hw_perf_event *hwc = &event->hw;
11143
11144 if (is_sampling_event(event)) {
11145 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11146 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11147
11148 hrtimer_cancel(&hwc->hrtimer);
11149 }
11150 }
11151
perf_swevent_init_hrtimer(struct perf_event * event)11152 static void perf_swevent_init_hrtimer(struct perf_event *event)
11153 {
11154 struct hw_perf_event *hwc = &event->hw;
11155
11156 if (!is_sampling_event(event))
11157 return;
11158
11159 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11160 hwc->hrtimer.function = perf_swevent_hrtimer;
11161
11162 /*
11163 * Since hrtimers have a fixed rate, we can do a static freq->period
11164 * mapping and avoid the whole period adjust feedback stuff.
11165 */
11166 if (event->attr.freq) {
11167 long freq = event->attr.sample_freq;
11168
11169 event->attr.sample_period = NSEC_PER_SEC / freq;
11170 hwc->sample_period = event->attr.sample_period;
11171 local64_set(&hwc->period_left, hwc->sample_period);
11172 hwc->last_period = hwc->sample_period;
11173 event->attr.freq = 0;
11174 }
11175 }
11176
11177 /*
11178 * Software event: cpu wall time clock
11179 */
11180
cpu_clock_event_update(struct perf_event * event)11181 static void cpu_clock_event_update(struct perf_event *event)
11182 {
11183 s64 prev;
11184 u64 now;
11185
11186 now = local_clock();
11187 prev = local64_xchg(&event->hw.prev_count, now);
11188 local64_add(now - prev, &event->count);
11189 }
11190
cpu_clock_event_start(struct perf_event * event,int flags)11191 static void cpu_clock_event_start(struct perf_event *event, int flags)
11192 {
11193 local64_set(&event->hw.prev_count, local_clock());
11194 perf_swevent_start_hrtimer(event);
11195 }
11196
cpu_clock_event_stop(struct perf_event * event,int flags)11197 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11198 {
11199 perf_swevent_cancel_hrtimer(event);
11200 cpu_clock_event_update(event);
11201 }
11202
cpu_clock_event_add(struct perf_event * event,int flags)11203 static int cpu_clock_event_add(struct perf_event *event, int flags)
11204 {
11205 if (flags & PERF_EF_START)
11206 cpu_clock_event_start(event, flags);
11207 perf_event_update_userpage(event);
11208
11209 return 0;
11210 }
11211
cpu_clock_event_del(struct perf_event * event,int flags)11212 static void cpu_clock_event_del(struct perf_event *event, int flags)
11213 {
11214 cpu_clock_event_stop(event, flags);
11215 }
11216
cpu_clock_event_read(struct perf_event * event)11217 static void cpu_clock_event_read(struct perf_event *event)
11218 {
11219 cpu_clock_event_update(event);
11220 }
11221
cpu_clock_event_init(struct perf_event * event)11222 static int cpu_clock_event_init(struct perf_event *event)
11223 {
11224 if (event->attr.type != perf_cpu_clock.type)
11225 return -ENOENT;
11226
11227 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11228 return -ENOENT;
11229
11230 /*
11231 * no branch sampling for software events
11232 */
11233 if (has_branch_stack(event))
11234 return -EOPNOTSUPP;
11235
11236 perf_swevent_init_hrtimer(event);
11237
11238 return 0;
11239 }
11240
11241 static struct pmu perf_cpu_clock = {
11242 .task_ctx_nr = perf_sw_context,
11243
11244 .capabilities = PERF_PMU_CAP_NO_NMI,
11245 .dev = PMU_NULL_DEV,
11246
11247 .event_init = cpu_clock_event_init,
11248 .add = cpu_clock_event_add,
11249 .del = cpu_clock_event_del,
11250 .start = cpu_clock_event_start,
11251 .stop = cpu_clock_event_stop,
11252 .read = cpu_clock_event_read,
11253 };
11254
11255 /*
11256 * Software event: task time clock
11257 */
11258
task_clock_event_update(struct perf_event * event,u64 now)11259 static void task_clock_event_update(struct perf_event *event, u64 now)
11260 {
11261 u64 prev;
11262 s64 delta;
11263
11264 prev = local64_xchg(&event->hw.prev_count, now);
11265 delta = now - prev;
11266 local64_add(delta, &event->count);
11267 }
11268
task_clock_event_start(struct perf_event * event,int flags)11269 static void task_clock_event_start(struct perf_event *event, int flags)
11270 {
11271 local64_set(&event->hw.prev_count, event->ctx->time);
11272 perf_swevent_start_hrtimer(event);
11273 }
11274
task_clock_event_stop(struct perf_event * event,int flags)11275 static void task_clock_event_stop(struct perf_event *event, int flags)
11276 {
11277 perf_swevent_cancel_hrtimer(event);
11278 task_clock_event_update(event, event->ctx->time);
11279 }
11280
task_clock_event_add(struct perf_event * event,int flags)11281 static int task_clock_event_add(struct perf_event *event, int flags)
11282 {
11283 if (flags & PERF_EF_START)
11284 task_clock_event_start(event, flags);
11285 perf_event_update_userpage(event);
11286
11287 return 0;
11288 }
11289
task_clock_event_del(struct perf_event * event,int flags)11290 static void task_clock_event_del(struct perf_event *event, int flags)
11291 {
11292 task_clock_event_stop(event, PERF_EF_UPDATE);
11293 }
11294
task_clock_event_read(struct perf_event * event)11295 static void task_clock_event_read(struct perf_event *event)
11296 {
11297 u64 now = perf_clock();
11298 u64 delta = now - event->ctx->timestamp;
11299 u64 time = event->ctx->time + delta;
11300
11301 task_clock_event_update(event, time);
11302 }
11303
task_clock_event_init(struct perf_event * event)11304 static int task_clock_event_init(struct perf_event *event)
11305 {
11306 if (event->attr.type != perf_task_clock.type)
11307 return -ENOENT;
11308
11309 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11310 return -ENOENT;
11311
11312 /*
11313 * no branch sampling for software events
11314 */
11315 if (has_branch_stack(event))
11316 return -EOPNOTSUPP;
11317
11318 perf_swevent_init_hrtimer(event);
11319
11320 return 0;
11321 }
11322
11323 static struct pmu perf_task_clock = {
11324 .task_ctx_nr = perf_sw_context,
11325
11326 .capabilities = PERF_PMU_CAP_NO_NMI,
11327 .dev = PMU_NULL_DEV,
11328
11329 .event_init = task_clock_event_init,
11330 .add = task_clock_event_add,
11331 .del = task_clock_event_del,
11332 .start = task_clock_event_start,
11333 .stop = task_clock_event_stop,
11334 .read = task_clock_event_read,
11335 };
11336
perf_pmu_nop_void(struct pmu * pmu)11337 static void perf_pmu_nop_void(struct pmu *pmu)
11338 {
11339 }
11340
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)11341 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11342 {
11343 }
11344
perf_pmu_nop_int(struct pmu * pmu)11345 static int perf_pmu_nop_int(struct pmu *pmu)
11346 {
11347 return 0;
11348 }
11349
perf_event_nop_int(struct perf_event * event,u64 value)11350 static int perf_event_nop_int(struct perf_event *event, u64 value)
11351 {
11352 return 0;
11353 }
11354
11355 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11356
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)11357 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11358 {
11359 __this_cpu_write(nop_txn_flags, flags);
11360
11361 if (flags & ~PERF_PMU_TXN_ADD)
11362 return;
11363
11364 perf_pmu_disable(pmu);
11365 }
11366
perf_pmu_commit_txn(struct pmu * pmu)11367 static int perf_pmu_commit_txn(struct pmu *pmu)
11368 {
11369 unsigned int flags = __this_cpu_read(nop_txn_flags);
11370
11371 __this_cpu_write(nop_txn_flags, 0);
11372
11373 if (flags & ~PERF_PMU_TXN_ADD)
11374 return 0;
11375
11376 perf_pmu_enable(pmu);
11377 return 0;
11378 }
11379
perf_pmu_cancel_txn(struct pmu * pmu)11380 static void perf_pmu_cancel_txn(struct pmu *pmu)
11381 {
11382 unsigned int flags = __this_cpu_read(nop_txn_flags);
11383
11384 __this_cpu_write(nop_txn_flags, 0);
11385
11386 if (flags & ~PERF_PMU_TXN_ADD)
11387 return;
11388
11389 perf_pmu_enable(pmu);
11390 }
11391
perf_event_idx_default(struct perf_event * event)11392 static int perf_event_idx_default(struct perf_event *event)
11393 {
11394 return 0;
11395 }
11396
free_pmu_context(struct pmu * pmu)11397 static void free_pmu_context(struct pmu *pmu)
11398 {
11399 free_percpu(pmu->cpu_pmu_context);
11400 }
11401
11402 /*
11403 * Let userspace know that this PMU supports address range filtering:
11404 */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)11405 static ssize_t nr_addr_filters_show(struct device *dev,
11406 struct device_attribute *attr,
11407 char *page)
11408 {
11409 struct pmu *pmu = dev_get_drvdata(dev);
11410
11411 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11412 }
11413 DEVICE_ATTR_RO(nr_addr_filters);
11414
11415 static struct idr pmu_idr;
11416
11417 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)11418 type_show(struct device *dev, struct device_attribute *attr, char *page)
11419 {
11420 struct pmu *pmu = dev_get_drvdata(dev);
11421
11422 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11423 }
11424 static DEVICE_ATTR_RO(type);
11425
11426 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)11427 perf_event_mux_interval_ms_show(struct device *dev,
11428 struct device_attribute *attr,
11429 char *page)
11430 {
11431 struct pmu *pmu = dev_get_drvdata(dev);
11432
11433 return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11434 }
11435
11436 static DEFINE_MUTEX(mux_interval_mutex);
11437
11438 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)11439 perf_event_mux_interval_ms_store(struct device *dev,
11440 struct device_attribute *attr,
11441 const char *buf, size_t count)
11442 {
11443 struct pmu *pmu = dev_get_drvdata(dev);
11444 int timer, cpu, ret;
11445
11446 ret = kstrtoint(buf, 0, &timer);
11447 if (ret)
11448 return ret;
11449
11450 if (timer < 1)
11451 return -EINVAL;
11452
11453 /* same value, noting to do */
11454 if (timer == pmu->hrtimer_interval_ms)
11455 return count;
11456
11457 mutex_lock(&mux_interval_mutex);
11458 pmu->hrtimer_interval_ms = timer;
11459
11460 /* update all cpuctx for this PMU */
11461 cpus_read_lock();
11462 for_each_online_cpu(cpu) {
11463 struct perf_cpu_pmu_context *cpc;
11464 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11465 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11466
11467 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11468 }
11469 cpus_read_unlock();
11470 mutex_unlock(&mux_interval_mutex);
11471
11472 return count;
11473 }
11474 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11475
11476 static struct attribute *pmu_dev_attrs[] = {
11477 &dev_attr_type.attr,
11478 &dev_attr_perf_event_mux_interval_ms.attr,
11479 &dev_attr_nr_addr_filters.attr,
11480 NULL,
11481 };
11482
pmu_dev_is_visible(struct kobject * kobj,struct attribute * a,int n)11483 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11484 {
11485 struct device *dev = kobj_to_dev(kobj);
11486 struct pmu *pmu = dev_get_drvdata(dev);
11487
11488 if (n == 2 && !pmu->nr_addr_filters)
11489 return 0;
11490
11491 return a->mode;
11492 }
11493
11494 static struct attribute_group pmu_dev_attr_group = {
11495 .is_visible = pmu_dev_is_visible,
11496 .attrs = pmu_dev_attrs,
11497 };
11498
11499 static const struct attribute_group *pmu_dev_groups[] = {
11500 &pmu_dev_attr_group,
11501 NULL,
11502 };
11503
11504 static int pmu_bus_running;
11505 static struct bus_type pmu_bus = {
11506 .name = "event_source",
11507 .dev_groups = pmu_dev_groups,
11508 };
11509
pmu_dev_release(struct device * dev)11510 static void pmu_dev_release(struct device *dev)
11511 {
11512 kfree(dev);
11513 }
11514
pmu_dev_alloc(struct pmu * pmu)11515 static int pmu_dev_alloc(struct pmu *pmu)
11516 {
11517 int ret = -ENOMEM;
11518
11519 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11520 if (!pmu->dev)
11521 goto out;
11522
11523 pmu->dev->groups = pmu->attr_groups;
11524 device_initialize(pmu->dev);
11525
11526 dev_set_drvdata(pmu->dev, pmu);
11527 pmu->dev->bus = &pmu_bus;
11528 pmu->dev->parent = pmu->parent;
11529 pmu->dev->release = pmu_dev_release;
11530
11531 ret = dev_set_name(pmu->dev, "%s", pmu->name);
11532 if (ret)
11533 goto free_dev;
11534
11535 ret = device_add(pmu->dev);
11536 if (ret)
11537 goto free_dev;
11538
11539 if (pmu->attr_update) {
11540 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11541 if (ret)
11542 goto del_dev;
11543 }
11544
11545 out:
11546 return ret;
11547
11548 del_dev:
11549 device_del(pmu->dev);
11550
11551 free_dev:
11552 put_device(pmu->dev);
11553 goto out;
11554 }
11555
11556 static struct lock_class_key cpuctx_mutex;
11557 static struct lock_class_key cpuctx_lock;
11558
perf_pmu_register(struct pmu * pmu,const char * name,int type)11559 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11560 {
11561 int cpu, ret, max = PERF_TYPE_MAX;
11562
11563 mutex_lock(&pmus_lock);
11564 ret = -ENOMEM;
11565 pmu->pmu_disable_count = alloc_percpu(int);
11566 if (!pmu->pmu_disable_count)
11567 goto unlock;
11568
11569 pmu->type = -1;
11570 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11571 ret = -EINVAL;
11572 goto free_pdc;
11573 }
11574
11575 pmu->name = name;
11576
11577 if (type >= 0)
11578 max = type;
11579
11580 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11581 if (ret < 0)
11582 goto free_pdc;
11583
11584 WARN_ON(type >= 0 && ret != type);
11585
11586 type = ret;
11587 pmu->type = type;
11588
11589 if (pmu_bus_running && !pmu->dev) {
11590 ret = pmu_dev_alloc(pmu);
11591 if (ret)
11592 goto free_idr;
11593 }
11594
11595 ret = -ENOMEM;
11596 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11597 if (!pmu->cpu_pmu_context)
11598 goto free_dev;
11599
11600 for_each_possible_cpu(cpu) {
11601 struct perf_cpu_pmu_context *cpc;
11602
11603 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11604 __perf_init_event_pmu_context(&cpc->epc, pmu);
11605 __perf_mux_hrtimer_init(cpc, cpu);
11606 }
11607
11608 if (!pmu->start_txn) {
11609 if (pmu->pmu_enable) {
11610 /*
11611 * If we have pmu_enable/pmu_disable calls, install
11612 * transaction stubs that use that to try and batch
11613 * hardware accesses.
11614 */
11615 pmu->start_txn = perf_pmu_start_txn;
11616 pmu->commit_txn = perf_pmu_commit_txn;
11617 pmu->cancel_txn = perf_pmu_cancel_txn;
11618 } else {
11619 pmu->start_txn = perf_pmu_nop_txn;
11620 pmu->commit_txn = perf_pmu_nop_int;
11621 pmu->cancel_txn = perf_pmu_nop_void;
11622 }
11623 }
11624
11625 if (!pmu->pmu_enable) {
11626 pmu->pmu_enable = perf_pmu_nop_void;
11627 pmu->pmu_disable = perf_pmu_nop_void;
11628 }
11629
11630 if (!pmu->check_period)
11631 pmu->check_period = perf_event_nop_int;
11632
11633 if (!pmu->event_idx)
11634 pmu->event_idx = perf_event_idx_default;
11635
11636 list_add_rcu(&pmu->entry, &pmus);
11637 atomic_set(&pmu->exclusive_cnt, 0);
11638 ret = 0;
11639 unlock:
11640 mutex_unlock(&pmus_lock);
11641
11642 return ret;
11643
11644 free_dev:
11645 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11646 device_del(pmu->dev);
11647 put_device(pmu->dev);
11648 }
11649
11650 free_idr:
11651 idr_remove(&pmu_idr, pmu->type);
11652
11653 free_pdc:
11654 free_percpu(pmu->pmu_disable_count);
11655 goto unlock;
11656 }
11657 EXPORT_SYMBOL_GPL(perf_pmu_register);
11658
perf_pmu_unregister(struct pmu * pmu)11659 void perf_pmu_unregister(struct pmu *pmu)
11660 {
11661 mutex_lock(&pmus_lock);
11662 list_del_rcu(&pmu->entry);
11663
11664 /*
11665 * We dereference the pmu list under both SRCU and regular RCU, so
11666 * synchronize against both of those.
11667 */
11668 synchronize_srcu(&pmus_srcu);
11669 synchronize_rcu();
11670
11671 free_percpu(pmu->pmu_disable_count);
11672 idr_remove(&pmu_idr, pmu->type);
11673 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11674 if (pmu->nr_addr_filters)
11675 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11676 device_del(pmu->dev);
11677 put_device(pmu->dev);
11678 }
11679 free_pmu_context(pmu);
11680 mutex_unlock(&pmus_lock);
11681 }
11682 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11683
has_extended_regs(struct perf_event * event)11684 static inline bool has_extended_regs(struct perf_event *event)
11685 {
11686 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11687 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11688 }
11689
perf_try_init_event(struct pmu * pmu,struct perf_event * event)11690 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11691 {
11692 struct perf_event_context *ctx = NULL;
11693 int ret;
11694
11695 if (!try_module_get(pmu->module))
11696 return -ENODEV;
11697
11698 /*
11699 * A number of pmu->event_init() methods iterate the sibling_list to,
11700 * for example, validate if the group fits on the PMU. Therefore,
11701 * if this is a sibling event, acquire the ctx->mutex to protect
11702 * the sibling_list.
11703 */
11704 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11705 /*
11706 * This ctx->mutex can nest when we're called through
11707 * inheritance. See the perf_event_ctx_lock_nested() comment.
11708 */
11709 ctx = perf_event_ctx_lock_nested(event->group_leader,
11710 SINGLE_DEPTH_NESTING);
11711 BUG_ON(!ctx);
11712 }
11713
11714 event->pmu = pmu;
11715 ret = pmu->event_init(event);
11716
11717 if (ctx)
11718 perf_event_ctx_unlock(event->group_leader, ctx);
11719
11720 if (!ret) {
11721 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11722 has_extended_regs(event))
11723 ret = -EOPNOTSUPP;
11724
11725 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11726 event_has_any_exclude_flag(event))
11727 ret = -EINVAL;
11728
11729 if (ret && event->destroy)
11730 event->destroy(event);
11731 }
11732
11733 if (ret)
11734 module_put(pmu->module);
11735
11736 return ret;
11737 }
11738
perf_init_event(struct perf_event * event)11739 static struct pmu *perf_init_event(struct perf_event *event)
11740 {
11741 bool extended_type = false;
11742 int idx, type, ret;
11743 struct pmu *pmu;
11744
11745 idx = srcu_read_lock(&pmus_srcu);
11746
11747 /*
11748 * Save original type before calling pmu->event_init() since certain
11749 * pmus overwrites event->attr.type to forward event to another pmu.
11750 */
11751 event->orig_type = event->attr.type;
11752
11753 /* Try parent's PMU first: */
11754 if (event->parent && event->parent->pmu) {
11755 pmu = event->parent->pmu;
11756 ret = perf_try_init_event(pmu, event);
11757 if (!ret)
11758 goto unlock;
11759 }
11760
11761 /*
11762 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11763 * are often aliases for PERF_TYPE_RAW.
11764 */
11765 type = event->attr.type;
11766 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11767 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11768 if (!type) {
11769 type = PERF_TYPE_RAW;
11770 } else {
11771 extended_type = true;
11772 event->attr.config &= PERF_HW_EVENT_MASK;
11773 }
11774 }
11775
11776 again:
11777 rcu_read_lock();
11778 pmu = idr_find(&pmu_idr, type);
11779 rcu_read_unlock();
11780 if (pmu) {
11781 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11782 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11783 goto fail;
11784
11785 ret = perf_try_init_event(pmu, event);
11786 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11787 type = event->attr.type;
11788 goto again;
11789 }
11790
11791 if (ret)
11792 pmu = ERR_PTR(ret);
11793
11794 goto unlock;
11795 }
11796
11797 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11798 ret = perf_try_init_event(pmu, event);
11799 if (!ret)
11800 goto unlock;
11801
11802 if (ret != -ENOENT) {
11803 pmu = ERR_PTR(ret);
11804 goto unlock;
11805 }
11806 }
11807 fail:
11808 pmu = ERR_PTR(-ENOENT);
11809 unlock:
11810 srcu_read_unlock(&pmus_srcu, idx);
11811
11812 return pmu;
11813 }
11814
attach_sb_event(struct perf_event * event)11815 static void attach_sb_event(struct perf_event *event)
11816 {
11817 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11818
11819 raw_spin_lock(&pel->lock);
11820 list_add_rcu(&event->sb_list, &pel->list);
11821 raw_spin_unlock(&pel->lock);
11822 }
11823
11824 /*
11825 * We keep a list of all !task (and therefore per-cpu) events
11826 * that need to receive side-band records.
11827 *
11828 * This avoids having to scan all the various PMU per-cpu contexts
11829 * looking for them.
11830 */
account_pmu_sb_event(struct perf_event * event)11831 static void account_pmu_sb_event(struct perf_event *event)
11832 {
11833 if (is_sb_event(event))
11834 attach_sb_event(event);
11835 }
11836
11837 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)11838 static void account_freq_event_nohz(void)
11839 {
11840 #ifdef CONFIG_NO_HZ_FULL
11841 /* Lock so we don't race with concurrent unaccount */
11842 spin_lock(&nr_freq_lock);
11843 if (atomic_inc_return(&nr_freq_events) == 1)
11844 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11845 spin_unlock(&nr_freq_lock);
11846 #endif
11847 }
11848
account_freq_event(void)11849 static void account_freq_event(void)
11850 {
11851 if (tick_nohz_full_enabled())
11852 account_freq_event_nohz();
11853 else
11854 atomic_inc(&nr_freq_events);
11855 }
11856
11857
account_event(struct perf_event * event)11858 static void account_event(struct perf_event *event)
11859 {
11860 bool inc = false;
11861
11862 if (event->parent)
11863 return;
11864
11865 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11866 inc = true;
11867 if (event->attr.mmap || event->attr.mmap_data)
11868 atomic_inc(&nr_mmap_events);
11869 if (event->attr.build_id)
11870 atomic_inc(&nr_build_id_events);
11871 if (event->attr.comm)
11872 atomic_inc(&nr_comm_events);
11873 if (event->attr.namespaces)
11874 atomic_inc(&nr_namespaces_events);
11875 if (event->attr.cgroup)
11876 atomic_inc(&nr_cgroup_events);
11877 if (event->attr.task)
11878 atomic_inc(&nr_task_events);
11879 if (event->attr.freq)
11880 account_freq_event();
11881 if (event->attr.context_switch) {
11882 atomic_inc(&nr_switch_events);
11883 inc = true;
11884 }
11885 if (has_branch_stack(event))
11886 inc = true;
11887 if (is_cgroup_event(event))
11888 inc = true;
11889 if (event->attr.ksymbol)
11890 atomic_inc(&nr_ksymbol_events);
11891 if (event->attr.bpf_event)
11892 atomic_inc(&nr_bpf_events);
11893 if (event->attr.text_poke)
11894 atomic_inc(&nr_text_poke_events);
11895
11896 if (inc) {
11897 /*
11898 * We need the mutex here because static_branch_enable()
11899 * must complete *before* the perf_sched_count increment
11900 * becomes visible.
11901 */
11902 if (atomic_inc_not_zero(&perf_sched_count))
11903 goto enabled;
11904
11905 mutex_lock(&perf_sched_mutex);
11906 if (!atomic_read(&perf_sched_count)) {
11907 static_branch_enable(&perf_sched_events);
11908 /*
11909 * Guarantee that all CPUs observe they key change and
11910 * call the perf scheduling hooks before proceeding to
11911 * install events that need them.
11912 */
11913 synchronize_rcu();
11914 }
11915 /*
11916 * Now that we have waited for the sync_sched(), allow further
11917 * increments to by-pass the mutex.
11918 */
11919 atomic_inc(&perf_sched_count);
11920 mutex_unlock(&perf_sched_mutex);
11921 }
11922 enabled:
11923
11924 account_pmu_sb_event(event);
11925 }
11926
11927 /*
11928 * Allocate and initialize an event structure
11929 */
11930 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)11931 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11932 struct task_struct *task,
11933 struct perf_event *group_leader,
11934 struct perf_event *parent_event,
11935 perf_overflow_handler_t overflow_handler,
11936 void *context, int cgroup_fd)
11937 {
11938 struct pmu *pmu;
11939 struct perf_event *event;
11940 struct hw_perf_event *hwc;
11941 long err = -EINVAL;
11942 int node;
11943
11944 if ((unsigned)cpu >= nr_cpu_ids) {
11945 if (!task || cpu != -1)
11946 return ERR_PTR(-EINVAL);
11947 }
11948 if (attr->sigtrap && !task) {
11949 /* Requires a task: avoid signalling random tasks. */
11950 return ERR_PTR(-EINVAL);
11951 }
11952
11953 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11954 event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11955 node);
11956 if (!event)
11957 return ERR_PTR(-ENOMEM);
11958
11959 /*
11960 * Single events are their own group leaders, with an
11961 * empty sibling list:
11962 */
11963 if (!group_leader)
11964 group_leader = event;
11965
11966 mutex_init(&event->child_mutex);
11967 INIT_LIST_HEAD(&event->child_list);
11968
11969 INIT_LIST_HEAD(&event->event_entry);
11970 INIT_LIST_HEAD(&event->sibling_list);
11971 INIT_LIST_HEAD(&event->active_list);
11972 init_event_group(event);
11973 INIT_LIST_HEAD(&event->rb_entry);
11974 INIT_LIST_HEAD(&event->active_entry);
11975 INIT_LIST_HEAD(&event->addr_filters.list);
11976 INIT_HLIST_NODE(&event->hlist_entry);
11977
11978
11979 init_waitqueue_head(&event->waitq);
11980 init_irq_work(&event->pending_irq, perf_pending_irq);
11981 init_task_work(&event->pending_task, perf_pending_task);
11982 rcuwait_init(&event->pending_work_wait);
11983
11984 mutex_init(&event->mmap_mutex);
11985 raw_spin_lock_init(&event->addr_filters.lock);
11986
11987 atomic_long_set(&event->refcount, 1);
11988 event->cpu = cpu;
11989 event->attr = *attr;
11990 event->group_leader = group_leader;
11991 event->pmu = NULL;
11992 event->oncpu = -1;
11993
11994 event->parent = parent_event;
11995
11996 event->ns = get_pid_ns(task_active_pid_ns(current));
11997 event->id = atomic64_inc_return(&perf_event_id);
11998
11999 event->state = PERF_EVENT_STATE_INACTIVE;
12000
12001 if (parent_event)
12002 event->event_caps = parent_event->event_caps;
12003
12004 if (task) {
12005 event->attach_state = PERF_ATTACH_TASK;
12006 /*
12007 * XXX pmu::event_init needs to know what task to account to
12008 * and we cannot use the ctx information because we need the
12009 * pmu before we get a ctx.
12010 */
12011 event->hw.target = get_task_struct(task);
12012 }
12013
12014 event->clock = &local_clock;
12015 if (parent_event)
12016 event->clock = parent_event->clock;
12017
12018 if (!overflow_handler && parent_event) {
12019 overflow_handler = parent_event->overflow_handler;
12020 context = parent_event->overflow_handler_context;
12021 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
12022 if (overflow_handler == bpf_overflow_handler) {
12023 struct bpf_prog *prog = parent_event->prog;
12024
12025 bpf_prog_inc(prog);
12026 event->prog = prog;
12027 event->orig_overflow_handler =
12028 parent_event->orig_overflow_handler;
12029 }
12030 #endif
12031 }
12032
12033 if (overflow_handler) {
12034 event->overflow_handler = overflow_handler;
12035 event->overflow_handler_context = context;
12036 } else if (is_write_backward(event)){
12037 event->overflow_handler = perf_event_output_backward;
12038 event->overflow_handler_context = NULL;
12039 } else {
12040 event->overflow_handler = perf_event_output_forward;
12041 event->overflow_handler_context = NULL;
12042 }
12043
12044 perf_event__state_init(event);
12045
12046 pmu = NULL;
12047
12048 hwc = &event->hw;
12049 hwc->sample_period = attr->sample_period;
12050 if (attr->freq && attr->sample_freq)
12051 hwc->sample_period = 1;
12052 hwc->last_period = hwc->sample_period;
12053
12054 local64_set(&hwc->period_left, hwc->sample_period);
12055
12056 /*
12057 * We currently do not support PERF_SAMPLE_READ on inherited events.
12058 * See perf_output_read().
12059 */
12060 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12061 goto err_ns;
12062
12063 if (!has_branch_stack(event))
12064 event->attr.branch_sample_type = 0;
12065
12066 pmu = perf_init_event(event);
12067 if (IS_ERR(pmu)) {
12068 err = PTR_ERR(pmu);
12069 goto err_ns;
12070 }
12071
12072 /*
12073 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12074 * events (they don't make sense as the cgroup will be different
12075 * on other CPUs in the uncore mask).
12076 */
12077 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12078 err = -EINVAL;
12079 goto err_pmu;
12080 }
12081
12082 if (event->attr.aux_output &&
12083 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12084 err = -EOPNOTSUPP;
12085 goto err_pmu;
12086 }
12087
12088 if (cgroup_fd != -1) {
12089 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12090 if (err)
12091 goto err_pmu;
12092 }
12093
12094 err = exclusive_event_init(event);
12095 if (err)
12096 goto err_pmu;
12097
12098 if (has_addr_filter(event)) {
12099 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12100 sizeof(struct perf_addr_filter_range),
12101 GFP_KERNEL);
12102 if (!event->addr_filter_ranges) {
12103 err = -ENOMEM;
12104 goto err_per_task;
12105 }
12106
12107 /*
12108 * Clone the parent's vma offsets: they are valid until exec()
12109 * even if the mm is not shared with the parent.
12110 */
12111 if (event->parent) {
12112 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12113
12114 raw_spin_lock_irq(&ifh->lock);
12115 memcpy(event->addr_filter_ranges,
12116 event->parent->addr_filter_ranges,
12117 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12118 raw_spin_unlock_irq(&ifh->lock);
12119 }
12120
12121 /* force hw sync on the address filters */
12122 event->addr_filters_gen = 1;
12123 }
12124
12125 if (!event->parent) {
12126 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12127 err = get_callchain_buffers(attr->sample_max_stack);
12128 if (err)
12129 goto err_addr_filters;
12130 }
12131 }
12132
12133 err = security_perf_event_alloc(event);
12134 if (err)
12135 goto err_callchain_buffer;
12136
12137 /* symmetric to unaccount_event() in _free_event() */
12138 account_event(event);
12139
12140 return event;
12141
12142 err_callchain_buffer:
12143 if (!event->parent) {
12144 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12145 put_callchain_buffers();
12146 }
12147 err_addr_filters:
12148 kfree(event->addr_filter_ranges);
12149
12150 err_per_task:
12151 exclusive_event_destroy(event);
12152
12153 err_pmu:
12154 if (is_cgroup_event(event))
12155 perf_detach_cgroup(event);
12156 if (event->destroy)
12157 event->destroy(event);
12158 module_put(pmu->module);
12159 err_ns:
12160 if (event->hw.target)
12161 put_task_struct(event->hw.target);
12162 call_rcu(&event->rcu_head, free_event_rcu);
12163
12164 return ERR_PTR(err);
12165 }
12166
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)12167 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12168 struct perf_event_attr *attr)
12169 {
12170 u32 size;
12171 int ret;
12172
12173 /* Zero the full structure, so that a short copy will be nice. */
12174 memset(attr, 0, sizeof(*attr));
12175
12176 ret = get_user(size, &uattr->size);
12177 if (ret)
12178 return ret;
12179
12180 /* ABI compatibility quirk: */
12181 if (!size)
12182 size = PERF_ATTR_SIZE_VER0;
12183 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12184 goto err_size;
12185
12186 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12187 if (ret) {
12188 if (ret == -E2BIG)
12189 goto err_size;
12190 return ret;
12191 }
12192
12193 attr->size = size;
12194
12195 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12196 return -EINVAL;
12197
12198 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12199 return -EINVAL;
12200
12201 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12202 return -EINVAL;
12203
12204 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12205 u64 mask = attr->branch_sample_type;
12206
12207 /* only using defined bits */
12208 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12209 return -EINVAL;
12210
12211 /* at least one branch bit must be set */
12212 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12213 return -EINVAL;
12214
12215 /* propagate priv level, when not set for branch */
12216 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12217
12218 /* exclude_kernel checked on syscall entry */
12219 if (!attr->exclude_kernel)
12220 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12221
12222 if (!attr->exclude_user)
12223 mask |= PERF_SAMPLE_BRANCH_USER;
12224
12225 if (!attr->exclude_hv)
12226 mask |= PERF_SAMPLE_BRANCH_HV;
12227 /*
12228 * adjust user setting (for HW filter setup)
12229 */
12230 attr->branch_sample_type = mask;
12231 }
12232 /* privileged levels capture (kernel, hv): check permissions */
12233 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12234 ret = perf_allow_kernel(attr);
12235 if (ret)
12236 return ret;
12237 }
12238 }
12239
12240 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12241 ret = perf_reg_validate(attr->sample_regs_user);
12242 if (ret)
12243 return ret;
12244 }
12245
12246 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12247 if (!arch_perf_have_user_stack_dump())
12248 return -ENOSYS;
12249
12250 /*
12251 * We have __u32 type for the size, but so far
12252 * we can only use __u16 as maximum due to the
12253 * __u16 sample size limit.
12254 */
12255 if (attr->sample_stack_user >= USHRT_MAX)
12256 return -EINVAL;
12257 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12258 return -EINVAL;
12259 }
12260
12261 if (!attr->sample_max_stack)
12262 attr->sample_max_stack = sysctl_perf_event_max_stack;
12263
12264 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12265 ret = perf_reg_validate(attr->sample_regs_intr);
12266
12267 #ifndef CONFIG_CGROUP_PERF
12268 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12269 return -EINVAL;
12270 #endif
12271 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12272 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12273 return -EINVAL;
12274
12275 if (!attr->inherit && attr->inherit_thread)
12276 return -EINVAL;
12277
12278 if (attr->remove_on_exec && attr->enable_on_exec)
12279 return -EINVAL;
12280
12281 if (attr->sigtrap && !attr->remove_on_exec)
12282 return -EINVAL;
12283
12284 out:
12285 return ret;
12286
12287 err_size:
12288 put_user(sizeof(*attr), &uattr->size);
12289 ret = -E2BIG;
12290 goto out;
12291 }
12292
mutex_lock_double(struct mutex * a,struct mutex * b)12293 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12294 {
12295 if (b < a)
12296 swap(a, b);
12297
12298 mutex_lock(a);
12299 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12300 }
12301
12302 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)12303 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12304 {
12305 struct perf_buffer *rb = NULL;
12306 int ret = -EINVAL;
12307
12308 if (!output_event) {
12309 mutex_lock(&event->mmap_mutex);
12310 goto set;
12311 }
12312
12313 /* don't allow circular references */
12314 if (event == output_event)
12315 goto out;
12316
12317 /*
12318 * Don't allow cross-cpu buffers
12319 */
12320 if (output_event->cpu != event->cpu)
12321 goto out;
12322
12323 /*
12324 * If its not a per-cpu rb, it must be the same task.
12325 */
12326 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12327 goto out;
12328
12329 /*
12330 * Mixing clocks in the same buffer is trouble you don't need.
12331 */
12332 if (output_event->clock != event->clock)
12333 goto out;
12334
12335 /*
12336 * Either writing ring buffer from beginning or from end.
12337 * Mixing is not allowed.
12338 */
12339 if (is_write_backward(output_event) != is_write_backward(event))
12340 goto out;
12341
12342 /*
12343 * If both events generate aux data, they must be on the same PMU
12344 */
12345 if (has_aux(event) && has_aux(output_event) &&
12346 event->pmu != output_event->pmu)
12347 goto out;
12348
12349 /*
12350 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12351 * output_event is already on rb->event_list, and the list iteration
12352 * restarts after every removal, it is guaranteed this new event is
12353 * observed *OR* if output_event is already removed, it's guaranteed we
12354 * observe !rb->mmap_count.
12355 */
12356 mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12357 set:
12358 /* Can't redirect output if we've got an active mmap() */
12359 if (atomic_read(&event->mmap_count))
12360 goto unlock;
12361
12362 if (output_event) {
12363 /* get the rb we want to redirect to */
12364 rb = ring_buffer_get(output_event);
12365 if (!rb)
12366 goto unlock;
12367
12368 /* did we race against perf_mmap_close() */
12369 if (!atomic_read(&rb->mmap_count)) {
12370 ring_buffer_put(rb);
12371 goto unlock;
12372 }
12373 }
12374
12375 ring_buffer_attach(event, rb);
12376
12377 ret = 0;
12378 unlock:
12379 mutex_unlock(&event->mmap_mutex);
12380 if (output_event)
12381 mutex_unlock(&output_event->mmap_mutex);
12382
12383 out:
12384 return ret;
12385 }
12386
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)12387 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12388 {
12389 bool nmi_safe = false;
12390
12391 switch (clk_id) {
12392 case CLOCK_MONOTONIC:
12393 event->clock = &ktime_get_mono_fast_ns;
12394 nmi_safe = true;
12395 break;
12396
12397 case CLOCK_MONOTONIC_RAW:
12398 event->clock = &ktime_get_raw_fast_ns;
12399 nmi_safe = true;
12400 break;
12401
12402 case CLOCK_REALTIME:
12403 event->clock = &ktime_get_real_ns;
12404 break;
12405
12406 case CLOCK_BOOTTIME:
12407 event->clock = &ktime_get_boottime_ns;
12408 break;
12409
12410 case CLOCK_TAI:
12411 event->clock = &ktime_get_clocktai_ns;
12412 break;
12413
12414 default:
12415 return -EINVAL;
12416 }
12417
12418 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12419 return -EINVAL;
12420
12421 return 0;
12422 }
12423
12424 static bool
perf_check_permission(struct perf_event_attr * attr,struct task_struct * task)12425 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12426 {
12427 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12428 bool is_capable = perfmon_capable();
12429
12430 if (attr->sigtrap) {
12431 /*
12432 * perf_event_attr::sigtrap sends signals to the other task.
12433 * Require the current task to also have CAP_KILL.
12434 */
12435 rcu_read_lock();
12436 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12437 rcu_read_unlock();
12438
12439 /*
12440 * If the required capabilities aren't available, checks for
12441 * ptrace permissions: upgrade to ATTACH, since sending signals
12442 * can effectively change the target task.
12443 */
12444 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12445 }
12446
12447 /*
12448 * Preserve ptrace permission check for backwards compatibility. The
12449 * ptrace check also includes checks that the current task and other
12450 * task have matching uids, and is therefore not done here explicitly.
12451 */
12452 return is_capable || ptrace_may_access(task, ptrace_mode);
12453 }
12454
12455 /**
12456 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12457 *
12458 * @attr_uptr: event_id type attributes for monitoring/sampling
12459 * @pid: target pid
12460 * @cpu: target cpu
12461 * @group_fd: group leader event fd
12462 * @flags: perf event open flags
12463 */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)12464 SYSCALL_DEFINE5(perf_event_open,
12465 struct perf_event_attr __user *, attr_uptr,
12466 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12467 {
12468 struct perf_event *group_leader = NULL, *output_event = NULL;
12469 struct perf_event_pmu_context *pmu_ctx;
12470 struct perf_event *event, *sibling;
12471 struct perf_event_attr attr;
12472 struct perf_event_context *ctx;
12473 struct file *event_file = NULL;
12474 struct fd group = {NULL, 0};
12475 struct task_struct *task = NULL;
12476 struct pmu *pmu;
12477 int event_fd;
12478 int move_group = 0;
12479 int err;
12480 int f_flags = O_RDWR;
12481 int cgroup_fd = -1;
12482
12483 /* for future expandability... */
12484 if (flags & ~PERF_FLAG_ALL)
12485 return -EINVAL;
12486
12487 err = perf_copy_attr(attr_uptr, &attr);
12488 if (err)
12489 return err;
12490
12491 /* Do we allow access to perf_event_open(2) ? */
12492 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12493 if (err)
12494 return err;
12495
12496 if (!attr.exclude_kernel) {
12497 err = perf_allow_kernel(&attr);
12498 if (err)
12499 return err;
12500 }
12501
12502 if (attr.namespaces) {
12503 if (!perfmon_capable())
12504 return -EACCES;
12505 }
12506
12507 if (attr.freq) {
12508 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12509 return -EINVAL;
12510 } else {
12511 if (attr.sample_period & (1ULL << 63))
12512 return -EINVAL;
12513 }
12514
12515 /* Only privileged users can get physical addresses */
12516 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12517 err = perf_allow_kernel(&attr);
12518 if (err)
12519 return err;
12520 }
12521
12522 /* REGS_INTR can leak data, lockdown must prevent this */
12523 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12524 err = security_locked_down(LOCKDOWN_PERF);
12525 if (err)
12526 return err;
12527 }
12528
12529 /*
12530 * In cgroup mode, the pid argument is used to pass the fd
12531 * opened to the cgroup directory in cgroupfs. The cpu argument
12532 * designates the cpu on which to monitor threads from that
12533 * cgroup.
12534 */
12535 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12536 return -EINVAL;
12537
12538 if (flags & PERF_FLAG_FD_CLOEXEC)
12539 f_flags |= O_CLOEXEC;
12540
12541 event_fd = get_unused_fd_flags(f_flags);
12542 if (event_fd < 0)
12543 return event_fd;
12544
12545 if (group_fd != -1) {
12546 err = perf_fget_light(group_fd, &group);
12547 if (err)
12548 goto err_fd;
12549 group_leader = group.file->private_data;
12550 if (flags & PERF_FLAG_FD_OUTPUT)
12551 output_event = group_leader;
12552 if (flags & PERF_FLAG_FD_NO_GROUP)
12553 group_leader = NULL;
12554 }
12555
12556 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12557 task = find_lively_task_by_vpid(pid);
12558 if (IS_ERR(task)) {
12559 err = PTR_ERR(task);
12560 goto err_group_fd;
12561 }
12562 }
12563
12564 if (task && group_leader &&
12565 group_leader->attr.inherit != attr.inherit) {
12566 err = -EINVAL;
12567 goto err_task;
12568 }
12569
12570 if (flags & PERF_FLAG_PID_CGROUP)
12571 cgroup_fd = pid;
12572
12573 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12574 NULL, NULL, cgroup_fd);
12575 if (IS_ERR(event)) {
12576 err = PTR_ERR(event);
12577 goto err_task;
12578 }
12579
12580 if (is_sampling_event(event)) {
12581 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12582 err = -EOPNOTSUPP;
12583 goto err_alloc;
12584 }
12585 }
12586
12587 /*
12588 * Special case software events and allow them to be part of
12589 * any hardware group.
12590 */
12591 pmu = event->pmu;
12592
12593 if (attr.use_clockid) {
12594 err = perf_event_set_clock(event, attr.clockid);
12595 if (err)
12596 goto err_alloc;
12597 }
12598
12599 if (pmu->task_ctx_nr == perf_sw_context)
12600 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12601
12602 if (task) {
12603 err = down_read_interruptible(&task->signal->exec_update_lock);
12604 if (err)
12605 goto err_alloc;
12606
12607 /*
12608 * We must hold exec_update_lock across this and any potential
12609 * perf_install_in_context() call for this new event to
12610 * serialize against exec() altering our credentials (and the
12611 * perf_event_exit_task() that could imply).
12612 */
12613 err = -EACCES;
12614 if (!perf_check_permission(&attr, task))
12615 goto err_cred;
12616 }
12617
12618 /*
12619 * Get the target context (task or percpu):
12620 */
12621 ctx = find_get_context(task, event);
12622 if (IS_ERR(ctx)) {
12623 err = PTR_ERR(ctx);
12624 goto err_cred;
12625 }
12626
12627 mutex_lock(&ctx->mutex);
12628
12629 if (ctx->task == TASK_TOMBSTONE) {
12630 err = -ESRCH;
12631 goto err_locked;
12632 }
12633
12634 if (!task) {
12635 /*
12636 * Check if the @cpu we're creating an event for is online.
12637 *
12638 * We use the perf_cpu_context::ctx::mutex to serialize against
12639 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12640 */
12641 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12642
12643 if (!cpuctx->online) {
12644 err = -ENODEV;
12645 goto err_locked;
12646 }
12647 }
12648
12649 if (group_leader) {
12650 err = -EINVAL;
12651
12652 /*
12653 * Do not allow a recursive hierarchy (this new sibling
12654 * becoming part of another group-sibling):
12655 */
12656 if (group_leader->group_leader != group_leader)
12657 goto err_locked;
12658
12659 /* All events in a group should have the same clock */
12660 if (group_leader->clock != event->clock)
12661 goto err_locked;
12662
12663 /*
12664 * Make sure we're both events for the same CPU;
12665 * grouping events for different CPUs is broken; since
12666 * you can never concurrently schedule them anyhow.
12667 */
12668 if (group_leader->cpu != event->cpu)
12669 goto err_locked;
12670
12671 /*
12672 * Make sure we're both on the same context; either task or cpu.
12673 */
12674 if (group_leader->ctx != ctx)
12675 goto err_locked;
12676
12677 /*
12678 * Only a group leader can be exclusive or pinned
12679 */
12680 if (attr.exclusive || attr.pinned)
12681 goto err_locked;
12682
12683 if (is_software_event(event) &&
12684 !in_software_context(group_leader)) {
12685 /*
12686 * If the event is a sw event, but the group_leader
12687 * is on hw context.
12688 *
12689 * Allow the addition of software events to hw
12690 * groups, this is safe because software events
12691 * never fail to schedule.
12692 *
12693 * Note the comment that goes with struct
12694 * perf_event_pmu_context.
12695 */
12696 pmu = group_leader->pmu_ctx->pmu;
12697 } else if (!is_software_event(event)) {
12698 if (is_software_event(group_leader) &&
12699 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12700 /*
12701 * In case the group is a pure software group, and we
12702 * try to add a hardware event, move the whole group to
12703 * the hardware context.
12704 */
12705 move_group = 1;
12706 }
12707
12708 /* Don't allow group of multiple hw events from different pmus */
12709 if (!in_software_context(group_leader) &&
12710 group_leader->pmu_ctx->pmu != pmu)
12711 goto err_locked;
12712 }
12713 }
12714
12715 /*
12716 * Now that we're certain of the pmu; find the pmu_ctx.
12717 */
12718 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12719 if (IS_ERR(pmu_ctx)) {
12720 err = PTR_ERR(pmu_ctx);
12721 goto err_locked;
12722 }
12723 event->pmu_ctx = pmu_ctx;
12724
12725 if (output_event) {
12726 err = perf_event_set_output(event, output_event);
12727 if (err)
12728 goto err_context;
12729 }
12730
12731 if (!perf_event_validate_size(event)) {
12732 err = -E2BIG;
12733 goto err_context;
12734 }
12735
12736 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12737 err = -EINVAL;
12738 goto err_context;
12739 }
12740
12741 /*
12742 * Must be under the same ctx::mutex as perf_install_in_context(),
12743 * because we need to serialize with concurrent event creation.
12744 */
12745 if (!exclusive_event_installable(event, ctx)) {
12746 err = -EBUSY;
12747 goto err_context;
12748 }
12749
12750 WARN_ON_ONCE(ctx->parent_ctx);
12751
12752 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12753 if (IS_ERR(event_file)) {
12754 err = PTR_ERR(event_file);
12755 event_file = NULL;
12756 goto err_context;
12757 }
12758
12759 /*
12760 * This is the point on no return; we cannot fail hereafter. This is
12761 * where we start modifying current state.
12762 */
12763
12764 if (move_group) {
12765 perf_remove_from_context(group_leader, 0);
12766 put_pmu_ctx(group_leader->pmu_ctx);
12767
12768 for_each_sibling_event(sibling, group_leader) {
12769 perf_remove_from_context(sibling, 0);
12770 put_pmu_ctx(sibling->pmu_ctx);
12771 }
12772
12773 /*
12774 * Install the group siblings before the group leader.
12775 *
12776 * Because a group leader will try and install the entire group
12777 * (through the sibling list, which is still in-tact), we can
12778 * end up with siblings installed in the wrong context.
12779 *
12780 * By installing siblings first we NO-OP because they're not
12781 * reachable through the group lists.
12782 */
12783 for_each_sibling_event(sibling, group_leader) {
12784 sibling->pmu_ctx = pmu_ctx;
12785 get_pmu_ctx(pmu_ctx);
12786 perf_event__state_init(sibling);
12787 perf_install_in_context(ctx, sibling, sibling->cpu);
12788 }
12789
12790 /*
12791 * Removing from the context ends up with disabled
12792 * event. What we want here is event in the initial
12793 * startup state, ready to be add into new context.
12794 */
12795 group_leader->pmu_ctx = pmu_ctx;
12796 get_pmu_ctx(pmu_ctx);
12797 perf_event__state_init(group_leader);
12798 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12799 }
12800
12801 /*
12802 * Precalculate sample_data sizes; do while holding ctx::mutex such
12803 * that we're serialized against further additions and before
12804 * perf_install_in_context() which is the point the event is active and
12805 * can use these values.
12806 */
12807 perf_event__header_size(event);
12808 perf_event__id_header_size(event);
12809
12810 event->owner = current;
12811
12812 perf_install_in_context(ctx, event, event->cpu);
12813 perf_unpin_context(ctx);
12814
12815 mutex_unlock(&ctx->mutex);
12816
12817 if (task) {
12818 up_read(&task->signal->exec_update_lock);
12819 put_task_struct(task);
12820 }
12821
12822 mutex_lock(¤t->perf_event_mutex);
12823 list_add_tail(&event->owner_entry, ¤t->perf_event_list);
12824 mutex_unlock(¤t->perf_event_mutex);
12825
12826 /*
12827 * Drop the reference on the group_event after placing the
12828 * new event on the sibling_list. This ensures destruction
12829 * of the group leader will find the pointer to itself in
12830 * perf_group_detach().
12831 */
12832 fdput(group);
12833 fd_install(event_fd, event_file);
12834 return event_fd;
12835
12836 err_context:
12837 put_pmu_ctx(event->pmu_ctx);
12838 event->pmu_ctx = NULL; /* _free_event() */
12839 err_locked:
12840 mutex_unlock(&ctx->mutex);
12841 perf_unpin_context(ctx);
12842 put_ctx(ctx);
12843 err_cred:
12844 if (task)
12845 up_read(&task->signal->exec_update_lock);
12846 err_alloc:
12847 free_event(event);
12848 err_task:
12849 if (task)
12850 put_task_struct(task);
12851 err_group_fd:
12852 fdput(group);
12853 err_fd:
12854 put_unused_fd(event_fd);
12855 return err;
12856 }
12857
12858 /**
12859 * perf_event_create_kernel_counter
12860 *
12861 * @attr: attributes of the counter to create
12862 * @cpu: cpu in which the counter is bound
12863 * @task: task to profile (NULL for percpu)
12864 * @overflow_handler: callback to trigger when we hit the event
12865 * @context: context data could be used in overflow_handler callback
12866 */
12867 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)12868 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12869 struct task_struct *task,
12870 perf_overflow_handler_t overflow_handler,
12871 void *context)
12872 {
12873 struct perf_event_pmu_context *pmu_ctx;
12874 struct perf_event_context *ctx;
12875 struct perf_event *event;
12876 struct pmu *pmu;
12877 int err;
12878
12879 /*
12880 * Grouping is not supported for kernel events, neither is 'AUX',
12881 * make sure the caller's intentions are adjusted.
12882 */
12883 if (attr->aux_output)
12884 return ERR_PTR(-EINVAL);
12885
12886 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12887 overflow_handler, context, -1);
12888 if (IS_ERR(event)) {
12889 err = PTR_ERR(event);
12890 goto err;
12891 }
12892
12893 /* Mark owner so we could distinguish it from user events. */
12894 event->owner = TASK_TOMBSTONE;
12895 pmu = event->pmu;
12896
12897 if (pmu->task_ctx_nr == perf_sw_context)
12898 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12899
12900 /*
12901 * Get the target context (task or percpu):
12902 */
12903 ctx = find_get_context(task, event);
12904 if (IS_ERR(ctx)) {
12905 err = PTR_ERR(ctx);
12906 goto err_alloc;
12907 }
12908
12909 WARN_ON_ONCE(ctx->parent_ctx);
12910 mutex_lock(&ctx->mutex);
12911 if (ctx->task == TASK_TOMBSTONE) {
12912 err = -ESRCH;
12913 goto err_unlock;
12914 }
12915
12916 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12917 if (IS_ERR(pmu_ctx)) {
12918 err = PTR_ERR(pmu_ctx);
12919 goto err_unlock;
12920 }
12921 event->pmu_ctx = pmu_ctx;
12922
12923 if (!task) {
12924 /*
12925 * Check if the @cpu we're creating an event for is online.
12926 *
12927 * We use the perf_cpu_context::ctx::mutex to serialize against
12928 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12929 */
12930 struct perf_cpu_context *cpuctx =
12931 container_of(ctx, struct perf_cpu_context, ctx);
12932 if (!cpuctx->online) {
12933 err = -ENODEV;
12934 goto err_pmu_ctx;
12935 }
12936 }
12937
12938 if (!exclusive_event_installable(event, ctx)) {
12939 err = -EBUSY;
12940 goto err_pmu_ctx;
12941 }
12942
12943 perf_install_in_context(ctx, event, event->cpu);
12944 perf_unpin_context(ctx);
12945 mutex_unlock(&ctx->mutex);
12946
12947 return event;
12948
12949 err_pmu_ctx:
12950 put_pmu_ctx(pmu_ctx);
12951 event->pmu_ctx = NULL; /* _free_event() */
12952 err_unlock:
12953 mutex_unlock(&ctx->mutex);
12954 perf_unpin_context(ctx);
12955 put_ctx(ctx);
12956 err_alloc:
12957 free_event(event);
12958 err:
12959 return ERR_PTR(err);
12960 }
12961 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12962
__perf_pmu_remove(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct perf_event_groups * groups,struct list_head * events)12963 static void __perf_pmu_remove(struct perf_event_context *ctx,
12964 int cpu, struct pmu *pmu,
12965 struct perf_event_groups *groups,
12966 struct list_head *events)
12967 {
12968 struct perf_event *event, *sibling;
12969
12970 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12971 perf_remove_from_context(event, 0);
12972 put_pmu_ctx(event->pmu_ctx);
12973 list_add(&event->migrate_entry, events);
12974
12975 for_each_sibling_event(sibling, event) {
12976 perf_remove_from_context(sibling, 0);
12977 put_pmu_ctx(sibling->pmu_ctx);
12978 list_add(&sibling->migrate_entry, events);
12979 }
12980 }
12981 }
12982
__perf_pmu_install_event(struct pmu * pmu,struct perf_event_context * ctx,int cpu,struct perf_event * event)12983 static void __perf_pmu_install_event(struct pmu *pmu,
12984 struct perf_event_context *ctx,
12985 int cpu, struct perf_event *event)
12986 {
12987 struct perf_event_pmu_context *epc;
12988 struct perf_event_context *old_ctx = event->ctx;
12989
12990 get_ctx(ctx); /* normally find_get_context() */
12991
12992 event->cpu = cpu;
12993 epc = find_get_pmu_context(pmu, ctx, event);
12994 event->pmu_ctx = epc;
12995
12996 if (event->state >= PERF_EVENT_STATE_OFF)
12997 event->state = PERF_EVENT_STATE_INACTIVE;
12998 perf_install_in_context(ctx, event, cpu);
12999
13000 /*
13001 * Now that event->ctx is updated and visible, put the old ctx.
13002 */
13003 put_ctx(old_ctx);
13004 }
13005
__perf_pmu_install(struct perf_event_context * ctx,int cpu,struct pmu * pmu,struct list_head * events)13006 static void __perf_pmu_install(struct perf_event_context *ctx,
13007 int cpu, struct pmu *pmu, struct list_head *events)
13008 {
13009 struct perf_event *event, *tmp;
13010
13011 /*
13012 * Re-instate events in 2 passes.
13013 *
13014 * Skip over group leaders and only install siblings on this first
13015 * pass, siblings will not get enabled without a leader, however a
13016 * leader will enable its siblings, even if those are still on the old
13017 * context.
13018 */
13019 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13020 if (event->group_leader == event)
13021 continue;
13022
13023 list_del(&event->migrate_entry);
13024 __perf_pmu_install_event(pmu, ctx, cpu, event);
13025 }
13026
13027 /*
13028 * Once all the siblings are setup properly, install the group leaders
13029 * to make it go.
13030 */
13031 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
13032 list_del(&event->migrate_entry);
13033 __perf_pmu_install_event(pmu, ctx, cpu, event);
13034 }
13035 }
13036
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)13037 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13038 {
13039 struct perf_event_context *src_ctx, *dst_ctx;
13040 LIST_HEAD(events);
13041
13042 /*
13043 * Since per-cpu context is persistent, no need to grab an extra
13044 * reference.
13045 */
13046 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13047 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13048
13049 /*
13050 * See perf_event_ctx_lock() for comments on the details
13051 * of swizzling perf_event::ctx.
13052 */
13053 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13054
13055 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13056 __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13057
13058 if (!list_empty(&events)) {
13059 /*
13060 * Wait for the events to quiesce before re-instating them.
13061 */
13062 synchronize_rcu();
13063
13064 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13065 }
13066
13067 mutex_unlock(&dst_ctx->mutex);
13068 mutex_unlock(&src_ctx->mutex);
13069 }
13070 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13071
sync_child_event(struct perf_event * child_event)13072 static void sync_child_event(struct perf_event *child_event)
13073 {
13074 struct perf_event *parent_event = child_event->parent;
13075 u64 child_val;
13076
13077 if (child_event->attr.inherit_stat) {
13078 struct task_struct *task = child_event->ctx->task;
13079
13080 if (task && task != TASK_TOMBSTONE)
13081 perf_event_read_event(child_event, task);
13082 }
13083
13084 child_val = perf_event_count(child_event);
13085
13086 /*
13087 * Add back the child's count to the parent's count:
13088 */
13089 atomic64_add(child_val, &parent_event->child_count);
13090 atomic64_add(child_event->total_time_enabled,
13091 &parent_event->child_total_time_enabled);
13092 atomic64_add(child_event->total_time_running,
13093 &parent_event->child_total_time_running);
13094 }
13095
13096 static void
perf_event_exit_event(struct perf_event * event,struct perf_event_context * ctx)13097 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13098 {
13099 struct perf_event *parent_event = event->parent;
13100 unsigned long detach_flags = 0;
13101
13102 if (parent_event) {
13103 /*
13104 * Do not destroy the 'original' grouping; because of the
13105 * context switch optimization the original events could've
13106 * ended up in a random child task.
13107 *
13108 * If we were to destroy the original group, all group related
13109 * operations would cease to function properly after this
13110 * random child dies.
13111 *
13112 * Do destroy all inherited groups, we don't care about those
13113 * and being thorough is better.
13114 */
13115 detach_flags = DETACH_GROUP | DETACH_CHILD;
13116 mutex_lock(&parent_event->child_mutex);
13117 }
13118
13119 perf_remove_from_context(event, detach_flags);
13120
13121 raw_spin_lock_irq(&ctx->lock);
13122 if (event->state > PERF_EVENT_STATE_EXIT)
13123 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13124 raw_spin_unlock_irq(&ctx->lock);
13125
13126 /*
13127 * Child events can be freed.
13128 */
13129 if (parent_event) {
13130 mutex_unlock(&parent_event->child_mutex);
13131 /*
13132 * Kick perf_poll() for is_event_hup();
13133 */
13134 perf_event_wakeup(parent_event);
13135 free_event(event);
13136 put_event(parent_event);
13137 return;
13138 }
13139
13140 /*
13141 * Parent events are governed by their filedesc, retain them.
13142 */
13143 perf_event_wakeup(event);
13144 }
13145
perf_event_exit_task_context(struct task_struct * child)13146 static void perf_event_exit_task_context(struct task_struct *child)
13147 {
13148 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13149 struct perf_event *child_event, *next;
13150
13151 WARN_ON_ONCE(child != current);
13152
13153 child_ctx = perf_pin_task_context(child);
13154 if (!child_ctx)
13155 return;
13156
13157 /*
13158 * In order to reduce the amount of tricky in ctx tear-down, we hold
13159 * ctx::mutex over the entire thing. This serializes against almost
13160 * everything that wants to access the ctx.
13161 *
13162 * The exception is sys_perf_event_open() /
13163 * perf_event_create_kernel_count() which does find_get_context()
13164 * without ctx::mutex (it cannot because of the move_group double mutex
13165 * lock thing). See the comments in perf_install_in_context().
13166 */
13167 mutex_lock(&child_ctx->mutex);
13168
13169 /*
13170 * In a single ctx::lock section, de-schedule the events and detach the
13171 * context from the task such that we cannot ever get it scheduled back
13172 * in.
13173 */
13174 raw_spin_lock_irq(&child_ctx->lock);
13175 task_ctx_sched_out(child_ctx, EVENT_ALL);
13176
13177 /*
13178 * Now that the context is inactive, destroy the task <-> ctx relation
13179 * and mark the context dead.
13180 */
13181 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13182 put_ctx(child_ctx); /* cannot be last */
13183 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13184 put_task_struct(current); /* cannot be last */
13185
13186 clone_ctx = unclone_ctx(child_ctx);
13187 raw_spin_unlock_irq(&child_ctx->lock);
13188
13189 if (clone_ctx)
13190 put_ctx(clone_ctx);
13191
13192 /*
13193 * Report the task dead after unscheduling the events so that we
13194 * won't get any samples after PERF_RECORD_EXIT. We can however still
13195 * get a few PERF_RECORD_READ events.
13196 */
13197 perf_event_task(child, child_ctx, 0);
13198
13199 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13200 perf_event_exit_event(child_event, child_ctx);
13201
13202 mutex_unlock(&child_ctx->mutex);
13203
13204 put_ctx(child_ctx);
13205 }
13206
13207 /*
13208 * When a child task exits, feed back event values to parent events.
13209 *
13210 * Can be called with exec_update_lock held when called from
13211 * setup_new_exec().
13212 */
perf_event_exit_task(struct task_struct * child)13213 void perf_event_exit_task(struct task_struct *child)
13214 {
13215 struct perf_event *event, *tmp;
13216
13217 mutex_lock(&child->perf_event_mutex);
13218 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13219 owner_entry) {
13220 list_del_init(&event->owner_entry);
13221
13222 /*
13223 * Ensure the list deletion is visible before we clear
13224 * the owner, closes a race against perf_release() where
13225 * we need to serialize on the owner->perf_event_mutex.
13226 */
13227 smp_store_release(&event->owner, NULL);
13228 }
13229 mutex_unlock(&child->perf_event_mutex);
13230
13231 perf_event_exit_task_context(child);
13232
13233 /*
13234 * The perf_event_exit_task_context calls perf_event_task
13235 * with child's task_ctx, which generates EXIT events for
13236 * child contexts and sets child->perf_event_ctxp[] to NULL.
13237 * At this point we need to send EXIT events to cpu contexts.
13238 */
13239 perf_event_task(child, NULL, 0);
13240 }
13241
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)13242 static void perf_free_event(struct perf_event *event,
13243 struct perf_event_context *ctx)
13244 {
13245 struct perf_event *parent = event->parent;
13246
13247 if (WARN_ON_ONCE(!parent))
13248 return;
13249
13250 mutex_lock(&parent->child_mutex);
13251 list_del_init(&event->child_list);
13252 mutex_unlock(&parent->child_mutex);
13253
13254 put_event(parent);
13255
13256 raw_spin_lock_irq(&ctx->lock);
13257 perf_group_detach(event);
13258 list_del_event(event, ctx);
13259 raw_spin_unlock_irq(&ctx->lock);
13260 free_event(event);
13261 }
13262
13263 /*
13264 * Free a context as created by inheritance by perf_event_init_task() below,
13265 * used by fork() in case of fail.
13266 *
13267 * Even though the task has never lived, the context and events have been
13268 * exposed through the child_list, so we must take care tearing it all down.
13269 */
perf_event_free_task(struct task_struct * task)13270 void perf_event_free_task(struct task_struct *task)
13271 {
13272 struct perf_event_context *ctx;
13273 struct perf_event *event, *tmp;
13274
13275 ctx = rcu_access_pointer(task->perf_event_ctxp);
13276 if (!ctx)
13277 return;
13278
13279 mutex_lock(&ctx->mutex);
13280 raw_spin_lock_irq(&ctx->lock);
13281 /*
13282 * Destroy the task <-> ctx relation and mark the context dead.
13283 *
13284 * This is important because even though the task hasn't been
13285 * exposed yet the context has been (through child_list).
13286 */
13287 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13288 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13289 put_task_struct(task); /* cannot be last */
13290 raw_spin_unlock_irq(&ctx->lock);
13291
13292
13293 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13294 perf_free_event(event, ctx);
13295
13296 mutex_unlock(&ctx->mutex);
13297
13298 /*
13299 * perf_event_release_kernel() could've stolen some of our
13300 * child events and still have them on its free_list. In that
13301 * case we must wait for these events to have been freed (in
13302 * particular all their references to this task must've been
13303 * dropped).
13304 *
13305 * Without this copy_process() will unconditionally free this
13306 * task (irrespective of its reference count) and
13307 * _free_event()'s put_task_struct(event->hw.target) will be a
13308 * use-after-free.
13309 *
13310 * Wait for all events to drop their context reference.
13311 */
13312 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13313 put_ctx(ctx); /* must be last */
13314 }
13315
perf_event_delayed_put(struct task_struct * task)13316 void perf_event_delayed_put(struct task_struct *task)
13317 {
13318 WARN_ON_ONCE(task->perf_event_ctxp);
13319 }
13320
perf_event_get(unsigned int fd)13321 struct file *perf_event_get(unsigned int fd)
13322 {
13323 struct file *file = fget(fd);
13324 if (!file)
13325 return ERR_PTR(-EBADF);
13326
13327 if (file->f_op != &perf_fops) {
13328 fput(file);
13329 return ERR_PTR(-EBADF);
13330 }
13331
13332 return file;
13333 }
13334
perf_get_event(struct file * file)13335 const struct perf_event *perf_get_event(struct file *file)
13336 {
13337 if (file->f_op != &perf_fops)
13338 return ERR_PTR(-EINVAL);
13339
13340 return file->private_data;
13341 }
13342
perf_event_attrs(struct perf_event * event)13343 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13344 {
13345 if (!event)
13346 return ERR_PTR(-EINVAL);
13347
13348 return &event->attr;
13349 }
13350
perf_allow_kernel(struct perf_event_attr * attr)13351 int perf_allow_kernel(struct perf_event_attr *attr)
13352 {
13353 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
13354 return -EACCES;
13355
13356 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
13357 }
13358 EXPORT_SYMBOL_GPL(perf_allow_kernel);
13359
13360 /*
13361 * Inherit an event from parent task to child task.
13362 *
13363 * Returns:
13364 * - valid pointer on success
13365 * - NULL for orphaned events
13366 * - IS_ERR() on error
13367 */
13368 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)13369 inherit_event(struct perf_event *parent_event,
13370 struct task_struct *parent,
13371 struct perf_event_context *parent_ctx,
13372 struct task_struct *child,
13373 struct perf_event *group_leader,
13374 struct perf_event_context *child_ctx)
13375 {
13376 enum perf_event_state parent_state = parent_event->state;
13377 struct perf_event_pmu_context *pmu_ctx;
13378 struct perf_event *child_event;
13379 unsigned long flags;
13380
13381 /*
13382 * Instead of creating recursive hierarchies of events,
13383 * we link inherited events back to the original parent,
13384 * which has a filp for sure, which we use as the reference
13385 * count:
13386 */
13387 if (parent_event->parent)
13388 parent_event = parent_event->parent;
13389
13390 child_event = perf_event_alloc(&parent_event->attr,
13391 parent_event->cpu,
13392 child,
13393 group_leader, parent_event,
13394 NULL, NULL, -1);
13395 if (IS_ERR(child_event))
13396 return child_event;
13397
13398 pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13399 if (IS_ERR(pmu_ctx)) {
13400 free_event(child_event);
13401 return ERR_CAST(pmu_ctx);
13402 }
13403 child_event->pmu_ctx = pmu_ctx;
13404
13405 /*
13406 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13407 * must be under the same lock in order to serialize against
13408 * perf_event_release_kernel(), such that either we must observe
13409 * is_orphaned_event() or they will observe us on the child_list.
13410 */
13411 mutex_lock(&parent_event->child_mutex);
13412 if (is_orphaned_event(parent_event) ||
13413 !atomic_long_inc_not_zero(&parent_event->refcount)) {
13414 mutex_unlock(&parent_event->child_mutex);
13415 /* task_ctx_data is freed with child_ctx */
13416 free_event(child_event);
13417 return NULL;
13418 }
13419
13420 get_ctx(child_ctx);
13421
13422 /*
13423 * Make the child state follow the state of the parent event,
13424 * not its attr.disabled bit. We hold the parent's mutex,
13425 * so we won't race with perf_event_{en, dis}able_family.
13426 */
13427 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13428 child_event->state = PERF_EVENT_STATE_INACTIVE;
13429 else
13430 child_event->state = PERF_EVENT_STATE_OFF;
13431
13432 if (parent_event->attr.freq) {
13433 u64 sample_period = parent_event->hw.sample_period;
13434 struct hw_perf_event *hwc = &child_event->hw;
13435
13436 hwc->sample_period = sample_period;
13437 hwc->last_period = sample_period;
13438
13439 local64_set(&hwc->period_left, sample_period);
13440 }
13441
13442 child_event->ctx = child_ctx;
13443 child_event->overflow_handler = parent_event->overflow_handler;
13444 child_event->overflow_handler_context
13445 = parent_event->overflow_handler_context;
13446
13447 /*
13448 * Precalculate sample_data sizes
13449 */
13450 perf_event__header_size(child_event);
13451 perf_event__id_header_size(child_event);
13452
13453 /*
13454 * Link it up in the child's context:
13455 */
13456 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13457 add_event_to_ctx(child_event, child_ctx);
13458 child_event->attach_state |= PERF_ATTACH_CHILD;
13459 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13460
13461 /*
13462 * Link this into the parent event's child list
13463 */
13464 list_add_tail(&child_event->child_list, &parent_event->child_list);
13465 mutex_unlock(&parent_event->child_mutex);
13466
13467 return child_event;
13468 }
13469
13470 /*
13471 * Inherits an event group.
13472 *
13473 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13474 * This matches with perf_event_release_kernel() removing all child events.
13475 *
13476 * Returns:
13477 * - 0 on success
13478 * - <0 on error
13479 */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)13480 static int inherit_group(struct perf_event *parent_event,
13481 struct task_struct *parent,
13482 struct perf_event_context *parent_ctx,
13483 struct task_struct *child,
13484 struct perf_event_context *child_ctx)
13485 {
13486 struct perf_event *leader;
13487 struct perf_event *sub;
13488 struct perf_event *child_ctr;
13489
13490 leader = inherit_event(parent_event, parent, parent_ctx,
13491 child, NULL, child_ctx);
13492 if (IS_ERR(leader))
13493 return PTR_ERR(leader);
13494 /*
13495 * @leader can be NULL here because of is_orphaned_event(). In this
13496 * case inherit_event() will create individual events, similar to what
13497 * perf_group_detach() would do anyway.
13498 */
13499 for_each_sibling_event(sub, parent_event) {
13500 child_ctr = inherit_event(sub, parent, parent_ctx,
13501 child, leader, child_ctx);
13502 if (IS_ERR(child_ctr))
13503 return PTR_ERR(child_ctr);
13504
13505 if (sub->aux_event == parent_event && child_ctr &&
13506 !perf_get_aux_event(child_ctr, leader))
13507 return -EINVAL;
13508 }
13509 if (leader)
13510 leader->group_generation = parent_event->group_generation;
13511 return 0;
13512 }
13513
13514 /*
13515 * Creates the child task context and tries to inherit the event-group.
13516 *
13517 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13518 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13519 * consistent with perf_event_release_kernel() removing all child events.
13520 *
13521 * Returns:
13522 * - 0 on success
13523 * - <0 on error
13524 */
13525 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,u64 clone_flags,int * inherited_all)13526 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13527 struct perf_event_context *parent_ctx,
13528 struct task_struct *child,
13529 u64 clone_flags, int *inherited_all)
13530 {
13531 struct perf_event_context *child_ctx;
13532 int ret;
13533
13534 if (!event->attr.inherit ||
13535 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13536 /* Do not inherit if sigtrap and signal handlers were cleared. */
13537 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13538 *inherited_all = 0;
13539 return 0;
13540 }
13541
13542 child_ctx = child->perf_event_ctxp;
13543 if (!child_ctx) {
13544 /*
13545 * This is executed from the parent task context, so
13546 * inherit events that have been marked for cloning.
13547 * First allocate and initialize a context for the
13548 * child.
13549 */
13550 child_ctx = alloc_perf_context(child);
13551 if (!child_ctx)
13552 return -ENOMEM;
13553
13554 child->perf_event_ctxp = child_ctx;
13555 }
13556
13557 ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13558 if (ret)
13559 *inherited_all = 0;
13560
13561 return ret;
13562 }
13563
13564 /*
13565 * Initialize the perf_event context in task_struct
13566 */
perf_event_init_context(struct task_struct * child,u64 clone_flags)13567 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13568 {
13569 struct perf_event_context *child_ctx, *parent_ctx;
13570 struct perf_event_context *cloned_ctx;
13571 struct perf_event *event;
13572 struct task_struct *parent = current;
13573 int inherited_all = 1;
13574 unsigned long flags;
13575 int ret = 0;
13576
13577 if (likely(!parent->perf_event_ctxp))
13578 return 0;
13579
13580 /*
13581 * If the parent's context is a clone, pin it so it won't get
13582 * swapped under us.
13583 */
13584 parent_ctx = perf_pin_task_context(parent);
13585 if (!parent_ctx)
13586 return 0;
13587
13588 /*
13589 * No need to check if parent_ctx != NULL here; since we saw
13590 * it non-NULL earlier, the only reason for it to become NULL
13591 * is if we exit, and since we're currently in the middle of
13592 * a fork we can't be exiting at the same time.
13593 */
13594
13595 /*
13596 * Lock the parent list. No need to lock the child - not PID
13597 * hashed yet and not running, so nobody can access it.
13598 */
13599 mutex_lock(&parent_ctx->mutex);
13600
13601 /*
13602 * We dont have to disable NMIs - we are only looking at
13603 * the list, not manipulating it:
13604 */
13605 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13606 ret = inherit_task_group(event, parent, parent_ctx,
13607 child, clone_flags, &inherited_all);
13608 if (ret)
13609 goto out_unlock;
13610 }
13611
13612 /*
13613 * We can't hold ctx->lock when iterating the ->flexible_group list due
13614 * to allocations, but we need to prevent rotation because
13615 * rotate_ctx() will change the list from interrupt context.
13616 */
13617 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13618 parent_ctx->rotate_disable = 1;
13619 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13620
13621 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13622 ret = inherit_task_group(event, parent, parent_ctx,
13623 child, clone_flags, &inherited_all);
13624 if (ret)
13625 goto out_unlock;
13626 }
13627
13628 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13629 parent_ctx->rotate_disable = 0;
13630
13631 child_ctx = child->perf_event_ctxp;
13632
13633 if (child_ctx && inherited_all) {
13634 /*
13635 * Mark the child context as a clone of the parent
13636 * context, or of whatever the parent is a clone of.
13637 *
13638 * Note that if the parent is a clone, the holding of
13639 * parent_ctx->lock avoids it from being uncloned.
13640 */
13641 cloned_ctx = parent_ctx->parent_ctx;
13642 if (cloned_ctx) {
13643 child_ctx->parent_ctx = cloned_ctx;
13644 child_ctx->parent_gen = parent_ctx->parent_gen;
13645 } else {
13646 child_ctx->parent_ctx = parent_ctx;
13647 child_ctx->parent_gen = parent_ctx->generation;
13648 }
13649 get_ctx(child_ctx->parent_ctx);
13650 }
13651
13652 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13653 out_unlock:
13654 mutex_unlock(&parent_ctx->mutex);
13655
13656 perf_unpin_context(parent_ctx);
13657 put_ctx(parent_ctx);
13658
13659 return ret;
13660 }
13661
13662 /*
13663 * Initialize the perf_event context in task_struct
13664 */
perf_event_init_task(struct task_struct * child,u64 clone_flags)13665 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13666 {
13667 int ret;
13668
13669 child->perf_event_ctxp = NULL;
13670 mutex_init(&child->perf_event_mutex);
13671 INIT_LIST_HEAD(&child->perf_event_list);
13672
13673 ret = perf_event_init_context(child, clone_flags);
13674 if (ret) {
13675 perf_event_free_task(child);
13676 return ret;
13677 }
13678
13679 return 0;
13680 }
13681
perf_event_init_all_cpus(void)13682 static void __init perf_event_init_all_cpus(void)
13683 {
13684 struct swevent_htable *swhash;
13685 struct perf_cpu_context *cpuctx;
13686 int cpu;
13687
13688 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13689
13690 for_each_possible_cpu(cpu) {
13691 swhash = &per_cpu(swevent_htable, cpu);
13692 mutex_init(&swhash->hlist_mutex);
13693
13694 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13695 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13696
13697 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13698
13699 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13700 __perf_event_init_context(&cpuctx->ctx);
13701 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13702 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13703 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13704 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13705 cpuctx->heap = cpuctx->heap_default;
13706 }
13707 }
13708
perf_swevent_init_cpu(unsigned int cpu)13709 static void perf_swevent_init_cpu(unsigned int cpu)
13710 {
13711 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13712
13713 mutex_lock(&swhash->hlist_mutex);
13714 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13715 struct swevent_hlist *hlist;
13716
13717 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13718 WARN_ON(!hlist);
13719 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13720 }
13721 mutex_unlock(&swhash->hlist_mutex);
13722 }
13723
13724 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)13725 static void __perf_event_exit_context(void *__info)
13726 {
13727 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13728 struct perf_event_context *ctx = __info;
13729 struct perf_event *event;
13730
13731 raw_spin_lock(&ctx->lock);
13732 ctx_sched_out(ctx, EVENT_TIME);
13733 list_for_each_entry(event, &ctx->event_list, event_entry)
13734 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13735 raw_spin_unlock(&ctx->lock);
13736 }
13737
perf_event_exit_cpu_context(int cpu)13738 static void perf_event_exit_cpu_context(int cpu)
13739 {
13740 struct perf_cpu_context *cpuctx;
13741 struct perf_event_context *ctx;
13742
13743 // XXX simplify cpuctx->online
13744 mutex_lock(&pmus_lock);
13745 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13746 ctx = &cpuctx->ctx;
13747
13748 mutex_lock(&ctx->mutex);
13749 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13750 cpuctx->online = 0;
13751 mutex_unlock(&ctx->mutex);
13752 cpumask_clear_cpu(cpu, perf_online_mask);
13753 mutex_unlock(&pmus_lock);
13754 }
13755 #else
13756
perf_event_exit_cpu_context(int cpu)13757 static void perf_event_exit_cpu_context(int cpu) { }
13758
13759 #endif
13760
perf_event_init_cpu(unsigned int cpu)13761 int perf_event_init_cpu(unsigned int cpu)
13762 {
13763 struct perf_cpu_context *cpuctx;
13764 struct perf_event_context *ctx;
13765
13766 perf_swevent_init_cpu(cpu);
13767
13768 mutex_lock(&pmus_lock);
13769 cpumask_set_cpu(cpu, perf_online_mask);
13770 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13771 ctx = &cpuctx->ctx;
13772
13773 mutex_lock(&ctx->mutex);
13774 cpuctx->online = 1;
13775 mutex_unlock(&ctx->mutex);
13776 mutex_unlock(&pmus_lock);
13777
13778 return 0;
13779 }
13780
perf_event_exit_cpu(unsigned int cpu)13781 int perf_event_exit_cpu(unsigned int cpu)
13782 {
13783 perf_event_exit_cpu_context(cpu);
13784 return 0;
13785 }
13786
13787 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)13788 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13789 {
13790 int cpu;
13791
13792 for_each_online_cpu(cpu)
13793 perf_event_exit_cpu(cpu);
13794
13795 return NOTIFY_OK;
13796 }
13797
13798 /*
13799 * Run the perf reboot notifier at the very last possible moment so that
13800 * the generic watchdog code runs as long as possible.
13801 */
13802 static struct notifier_block perf_reboot_notifier = {
13803 .notifier_call = perf_reboot,
13804 .priority = INT_MIN,
13805 };
13806
perf_event_init(void)13807 void __init perf_event_init(void)
13808 {
13809 int ret;
13810
13811 idr_init(&pmu_idr);
13812
13813 perf_event_init_all_cpus();
13814 init_srcu_struct(&pmus_srcu);
13815 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13816 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13817 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13818 perf_tp_register();
13819 perf_event_init_cpu(smp_processor_id());
13820 register_reboot_notifier(&perf_reboot_notifier);
13821
13822 ret = init_hw_breakpoint();
13823 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13824
13825 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13826
13827 /*
13828 * Build time assertion that we keep the data_head at the intended
13829 * location. IOW, validation we got the __reserved[] size right.
13830 */
13831 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13832 != 1024);
13833 }
13834
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)13835 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13836 char *page)
13837 {
13838 struct perf_pmu_events_attr *pmu_attr =
13839 container_of(attr, struct perf_pmu_events_attr, attr);
13840
13841 if (pmu_attr->event_str)
13842 return sprintf(page, "%s\n", pmu_attr->event_str);
13843
13844 return 0;
13845 }
13846 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13847
perf_event_sysfs_init(void)13848 static int __init perf_event_sysfs_init(void)
13849 {
13850 struct pmu *pmu;
13851 int ret;
13852
13853 mutex_lock(&pmus_lock);
13854
13855 ret = bus_register(&pmu_bus);
13856 if (ret)
13857 goto unlock;
13858
13859 list_for_each_entry(pmu, &pmus, entry) {
13860 if (pmu->dev)
13861 continue;
13862
13863 ret = pmu_dev_alloc(pmu);
13864 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13865 }
13866 pmu_bus_running = 1;
13867 ret = 0;
13868
13869 unlock:
13870 mutex_unlock(&pmus_lock);
13871
13872 return ret;
13873 }
13874 device_initcall(perf_event_sysfs_init);
13875
13876 #ifdef CONFIG_CGROUP_PERF
13877 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)13878 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13879 {
13880 struct perf_cgroup *jc;
13881
13882 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13883 if (!jc)
13884 return ERR_PTR(-ENOMEM);
13885
13886 jc->info = alloc_percpu(struct perf_cgroup_info);
13887 if (!jc->info) {
13888 kfree(jc);
13889 return ERR_PTR(-ENOMEM);
13890 }
13891
13892 return &jc->css;
13893 }
13894
perf_cgroup_css_free(struct cgroup_subsys_state * css)13895 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13896 {
13897 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13898
13899 free_percpu(jc->info);
13900 kfree(jc);
13901 }
13902
perf_cgroup_css_online(struct cgroup_subsys_state * css)13903 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13904 {
13905 perf_event_cgroup(css->cgroup);
13906 return 0;
13907 }
13908
__perf_cgroup_move(void * info)13909 static int __perf_cgroup_move(void *info)
13910 {
13911 struct task_struct *task = info;
13912
13913 preempt_disable();
13914 perf_cgroup_switch(task);
13915 preempt_enable();
13916
13917 return 0;
13918 }
13919
perf_cgroup_attach(struct cgroup_taskset * tset)13920 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13921 {
13922 struct task_struct *task;
13923 struct cgroup_subsys_state *css;
13924
13925 cgroup_taskset_for_each(task, css, tset)
13926 task_function_call(task, __perf_cgroup_move, task);
13927 }
13928
13929 struct cgroup_subsys perf_event_cgrp_subsys = {
13930 .css_alloc = perf_cgroup_css_alloc,
13931 .css_free = perf_cgroup_css_free,
13932 .css_online = perf_cgroup_css_online,
13933 .attach = perf_cgroup_attach,
13934 /*
13935 * Implicitly enable on dfl hierarchy so that perf events can
13936 * always be filtered by cgroup2 path as long as perf_event
13937 * controller is not mounted on a legacy hierarchy.
13938 */
13939 .implicit_on_dfl = true,
13940 .threaded = true,
13941 };
13942 #endif /* CONFIG_CGROUP_PERF */
13943
13944 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13945