1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm_init.c - Memory initialisation verification and debugging
4 *
5 * Copyright 2008 IBM Corporation, 2008
6 * Author Mel Gorman <mel@csn.ul.ie>
7 *
8 */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/swap.h>
28 #include <linux/cma.h>
29 #include <linux/crash_dump.h>
30 #include "internal.h"
31 #include "slab.h"
32 #include "shuffle.h"
33
34 #include <asm/setup.h>
35
36 #ifdef CONFIG_DEBUG_MEMORY_INIT
37 int __meminitdata mminit_loglevel;
38
39 /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)40 void __init mminit_verify_zonelist(void)
41 {
42 int nid;
43
44 if (mminit_loglevel < MMINIT_VERIFY)
45 return;
46
47 for_each_online_node(nid) {
48 pg_data_t *pgdat = NODE_DATA(nid);
49 struct zone *zone;
50 struct zoneref *z;
51 struct zonelist *zonelist;
52 int i, listid, zoneid;
53
54 BUILD_BUG_ON(MAX_ZONELISTS > 2);
55 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
56
57 /* Identify the zone and nodelist */
58 zoneid = i % MAX_NR_ZONES;
59 listid = i / MAX_NR_ZONES;
60 zonelist = &pgdat->node_zonelists[listid];
61 zone = &pgdat->node_zones[zoneid];
62 if (!populated_zone(zone))
63 continue;
64
65 /* Print information about the zonelist */
66 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
67 listid > 0 ? "thisnode" : "general", nid,
68 zone->name);
69
70 /* Iterate the zonelist */
71 for_each_zone_zonelist(zone, z, zonelist, zoneid)
72 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
73 pr_cont("\n");
74 }
75 }
76 }
77
mminit_verify_pageflags_layout(void)78 void __init mminit_verify_pageflags_layout(void)
79 {
80 int shift, width;
81 unsigned long or_mask, add_mask;
82
83 shift = BITS_PER_LONG;
84 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
85 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
86 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
87 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
88 SECTIONS_WIDTH,
89 NODES_WIDTH,
90 ZONES_WIDTH,
91 LAST_CPUPID_WIDTH,
92 KASAN_TAG_WIDTH,
93 LRU_GEN_WIDTH,
94 LRU_REFS_WIDTH,
95 NR_PAGEFLAGS);
96 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
97 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
98 SECTIONS_SHIFT,
99 NODES_SHIFT,
100 ZONES_SHIFT,
101 LAST_CPUPID_SHIFT,
102 KASAN_TAG_WIDTH);
103 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
104 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
105 (unsigned long)SECTIONS_PGSHIFT,
106 (unsigned long)NODES_PGSHIFT,
107 (unsigned long)ZONES_PGSHIFT,
108 (unsigned long)LAST_CPUPID_PGSHIFT,
109 (unsigned long)KASAN_TAG_PGSHIFT);
110 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
111 "Node/Zone ID: %lu -> %lu\n",
112 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
113 (unsigned long)ZONEID_PGOFF);
114 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
115 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
116 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
117 #ifdef NODE_NOT_IN_PAGE_FLAGS
118 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
119 "Node not in page flags");
120 #endif
121 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
122 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
123 "Last cpupid not in page flags");
124 #endif
125
126 if (SECTIONS_WIDTH) {
127 shift -= SECTIONS_WIDTH;
128 BUG_ON(shift != SECTIONS_PGSHIFT);
129 }
130 if (NODES_WIDTH) {
131 shift -= NODES_WIDTH;
132 BUG_ON(shift != NODES_PGSHIFT);
133 }
134 if (ZONES_WIDTH) {
135 shift -= ZONES_WIDTH;
136 BUG_ON(shift != ZONES_PGSHIFT);
137 }
138
139 /* Check for bitmask overlaps */
140 or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
141 (NODES_MASK << NODES_PGSHIFT) |
142 (SECTIONS_MASK << SECTIONS_PGSHIFT);
143 add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
144 (NODES_MASK << NODES_PGSHIFT) +
145 (SECTIONS_MASK << SECTIONS_PGSHIFT);
146 BUG_ON(or_mask != add_mask);
147 }
148
set_mminit_loglevel(char * str)149 static __init int set_mminit_loglevel(char *str)
150 {
151 get_option(&str, &mminit_loglevel);
152 return 0;
153 }
154 early_param("mminit_loglevel", set_mminit_loglevel);
155 #endif /* CONFIG_DEBUG_MEMORY_INIT */
156
157 struct kobject *mm_kobj;
158
159 #ifdef CONFIG_SMP
160 s32 vm_committed_as_batch = 32;
161
mm_compute_batch(int overcommit_policy)162 void mm_compute_batch(int overcommit_policy)
163 {
164 u64 memsized_batch;
165 s32 nr = num_present_cpus();
166 s32 batch = max_t(s32, nr*2, 32);
167 unsigned long ram_pages = totalram_pages();
168
169 /*
170 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
171 * (total memory/#cpus), and lift it to 25% for other policies
172 * to easy the possible lock contention for percpu_counter
173 * vm_committed_as, while the max limit is INT_MAX
174 */
175 if (overcommit_policy == OVERCOMMIT_NEVER)
176 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
177 else
178 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
179
180 vm_committed_as_batch = max_t(s32, memsized_batch, batch);
181 }
182
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)183 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
184 unsigned long action, void *arg)
185 {
186 switch (action) {
187 case MEM_ONLINE:
188 case MEM_OFFLINE:
189 mm_compute_batch(sysctl_overcommit_memory);
190 break;
191 default:
192 break;
193 }
194 return NOTIFY_OK;
195 }
196
mm_compute_batch_init(void)197 static int __init mm_compute_batch_init(void)
198 {
199 mm_compute_batch(sysctl_overcommit_memory);
200 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
201 return 0;
202 }
203
204 __initcall(mm_compute_batch_init);
205
206 #endif
207
mm_sysfs_init(void)208 static int __init mm_sysfs_init(void)
209 {
210 mm_kobj = kobject_create_and_add("mm", kernel_kobj);
211 if (!mm_kobj)
212 return -ENOMEM;
213
214 return 0;
215 }
216 postcore_initcall(mm_sysfs_init);
217
218 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
219 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
220 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
221
222 static unsigned long required_kernelcore __initdata;
223 static unsigned long required_kernelcore_percent __initdata;
224 static unsigned long required_movablecore __initdata;
225 static unsigned long required_movablecore_percent __initdata;
226
227 static unsigned long nr_kernel_pages __initdata;
228 static unsigned long nr_all_pages __initdata;
229 static unsigned long dma_reserve __initdata;
230
231 static bool deferred_struct_pages __meminitdata;
232
233 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
234
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)235 static int __init cmdline_parse_core(char *p, unsigned long *core,
236 unsigned long *percent)
237 {
238 unsigned long long coremem;
239 char *endptr;
240
241 if (!p)
242 return -EINVAL;
243
244 /* Value may be a percentage of total memory, otherwise bytes */
245 coremem = simple_strtoull(p, &endptr, 0);
246 if (*endptr == '%') {
247 /* Paranoid check for percent values greater than 100 */
248 WARN_ON(coremem > 100);
249
250 *percent = coremem;
251 } else {
252 coremem = memparse(p, &p);
253 /* Paranoid check that UL is enough for the coremem value */
254 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
255
256 *core = coremem >> PAGE_SHIFT;
257 *percent = 0UL;
258 }
259 return 0;
260 }
261
262 bool mirrored_kernelcore __initdata_memblock;
263
264 /*
265 * kernelcore=size sets the amount of memory for use for allocations that
266 * cannot be reclaimed or migrated.
267 */
cmdline_parse_kernelcore(char * p)268 static int __init cmdline_parse_kernelcore(char *p)
269 {
270 /* parse kernelcore=mirror */
271 if (parse_option_str(p, "mirror")) {
272 mirrored_kernelcore = true;
273 return 0;
274 }
275
276 return cmdline_parse_core(p, &required_kernelcore,
277 &required_kernelcore_percent);
278 }
279 early_param("kernelcore", cmdline_parse_kernelcore);
280
281 /*
282 * movablecore=size sets the amount of memory for use for allocations that
283 * can be reclaimed or migrated.
284 */
cmdline_parse_movablecore(char * p)285 static int __init cmdline_parse_movablecore(char *p)
286 {
287 return cmdline_parse_core(p, &required_movablecore,
288 &required_movablecore_percent);
289 }
290 early_param("movablecore", cmdline_parse_movablecore);
291
292 /*
293 * early_calculate_totalpages()
294 * Sum pages in active regions for movable zone.
295 * Populate N_MEMORY for calculating usable_nodes.
296 */
early_calculate_totalpages(void)297 static unsigned long __init early_calculate_totalpages(void)
298 {
299 unsigned long totalpages = 0;
300 unsigned long start_pfn, end_pfn;
301 int i, nid;
302
303 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
304 unsigned long pages = end_pfn - start_pfn;
305
306 totalpages += pages;
307 if (pages)
308 node_set_state(nid, N_MEMORY);
309 }
310 return totalpages;
311 }
312
313 /*
314 * This finds a zone that can be used for ZONE_MOVABLE pages. The
315 * assumption is made that zones within a node are ordered in monotonic
316 * increasing memory addresses so that the "highest" populated zone is used
317 */
find_usable_zone_for_movable(void)318 static void __init find_usable_zone_for_movable(void)
319 {
320 int zone_index;
321 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
322 if (zone_index == ZONE_MOVABLE)
323 continue;
324
325 if (arch_zone_highest_possible_pfn[zone_index] >
326 arch_zone_lowest_possible_pfn[zone_index])
327 break;
328 }
329
330 VM_BUG_ON(zone_index == -1);
331 movable_zone = zone_index;
332 }
333
334 /*
335 * Find the PFN the Movable zone begins in each node. Kernel memory
336 * is spread evenly between nodes as long as the nodes have enough
337 * memory. When they don't, some nodes will have more kernelcore than
338 * others
339 */
find_zone_movable_pfns_for_nodes(void)340 static void __init find_zone_movable_pfns_for_nodes(void)
341 {
342 int i, nid;
343 unsigned long usable_startpfn;
344 unsigned long kernelcore_node, kernelcore_remaining;
345 /* save the state before borrow the nodemask */
346 nodemask_t saved_node_state = node_states[N_MEMORY];
347 unsigned long totalpages = early_calculate_totalpages();
348 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
349 struct memblock_region *r;
350
351 /* Need to find movable_zone earlier when movable_node is specified. */
352 find_usable_zone_for_movable();
353
354 /*
355 * If movable_node is specified, ignore kernelcore and movablecore
356 * options.
357 */
358 if (movable_node_is_enabled()) {
359 for_each_mem_region(r) {
360 if (!memblock_is_hotpluggable(r))
361 continue;
362
363 nid = memblock_get_region_node(r);
364
365 usable_startpfn = PFN_DOWN(r->base);
366 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
367 min(usable_startpfn, zone_movable_pfn[nid]) :
368 usable_startpfn;
369 }
370
371 goto out2;
372 }
373
374 /*
375 * If kernelcore=mirror is specified, ignore movablecore option
376 */
377 if (mirrored_kernelcore) {
378 bool mem_below_4gb_not_mirrored = false;
379
380 if (!memblock_has_mirror()) {
381 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
382 goto out;
383 }
384
385 if (is_kdump_kernel()) {
386 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
387 goto out;
388 }
389
390 for_each_mem_region(r) {
391 if (memblock_is_mirror(r))
392 continue;
393
394 nid = memblock_get_region_node(r);
395
396 usable_startpfn = memblock_region_memory_base_pfn(r);
397
398 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
399 mem_below_4gb_not_mirrored = true;
400 continue;
401 }
402
403 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
404 min(usable_startpfn, zone_movable_pfn[nid]) :
405 usable_startpfn;
406 }
407
408 if (mem_below_4gb_not_mirrored)
409 pr_warn("This configuration results in unmirrored kernel memory.\n");
410
411 goto out2;
412 }
413
414 /*
415 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
416 * amount of necessary memory.
417 */
418 if (required_kernelcore_percent)
419 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
420 10000UL;
421 if (required_movablecore_percent)
422 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
423 10000UL;
424
425 /*
426 * If movablecore= was specified, calculate what size of
427 * kernelcore that corresponds so that memory usable for
428 * any allocation type is evenly spread. If both kernelcore
429 * and movablecore are specified, then the value of kernelcore
430 * will be used for required_kernelcore if it's greater than
431 * what movablecore would have allowed.
432 */
433 if (required_movablecore) {
434 unsigned long corepages;
435
436 /*
437 * Round-up so that ZONE_MOVABLE is at least as large as what
438 * was requested by the user
439 */
440 required_movablecore =
441 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
442 required_movablecore = min(totalpages, required_movablecore);
443 corepages = totalpages - required_movablecore;
444
445 required_kernelcore = max(required_kernelcore, corepages);
446 }
447
448 /*
449 * If kernelcore was not specified or kernelcore size is larger
450 * than totalpages, there is no ZONE_MOVABLE.
451 */
452 if (!required_kernelcore || required_kernelcore >= totalpages)
453 goto out;
454
455 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
456 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
457
458 restart:
459 /* Spread kernelcore memory as evenly as possible throughout nodes */
460 kernelcore_node = required_kernelcore / usable_nodes;
461 for_each_node_state(nid, N_MEMORY) {
462 unsigned long start_pfn, end_pfn;
463
464 /*
465 * Recalculate kernelcore_node if the division per node
466 * now exceeds what is necessary to satisfy the requested
467 * amount of memory for the kernel
468 */
469 if (required_kernelcore < kernelcore_node)
470 kernelcore_node = required_kernelcore / usable_nodes;
471
472 /*
473 * As the map is walked, we track how much memory is usable
474 * by the kernel using kernelcore_remaining. When it is
475 * 0, the rest of the node is usable by ZONE_MOVABLE
476 */
477 kernelcore_remaining = kernelcore_node;
478
479 /* Go through each range of PFNs within this node */
480 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
481 unsigned long size_pages;
482
483 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
484 if (start_pfn >= end_pfn)
485 continue;
486
487 /* Account for what is only usable for kernelcore */
488 if (start_pfn < usable_startpfn) {
489 unsigned long kernel_pages;
490 kernel_pages = min(end_pfn, usable_startpfn)
491 - start_pfn;
492
493 kernelcore_remaining -= min(kernel_pages,
494 kernelcore_remaining);
495 required_kernelcore -= min(kernel_pages,
496 required_kernelcore);
497
498 /* Continue if range is now fully accounted */
499 if (end_pfn <= usable_startpfn) {
500
501 /*
502 * Push zone_movable_pfn to the end so
503 * that if we have to rebalance
504 * kernelcore across nodes, we will
505 * not double account here
506 */
507 zone_movable_pfn[nid] = end_pfn;
508 continue;
509 }
510 start_pfn = usable_startpfn;
511 }
512
513 /*
514 * The usable PFN range for ZONE_MOVABLE is from
515 * start_pfn->end_pfn. Calculate size_pages as the
516 * number of pages used as kernelcore
517 */
518 size_pages = end_pfn - start_pfn;
519 if (size_pages > kernelcore_remaining)
520 size_pages = kernelcore_remaining;
521 zone_movable_pfn[nid] = start_pfn + size_pages;
522
523 /*
524 * Some kernelcore has been met, update counts and
525 * break if the kernelcore for this node has been
526 * satisfied
527 */
528 required_kernelcore -= min(required_kernelcore,
529 size_pages);
530 kernelcore_remaining -= size_pages;
531 if (!kernelcore_remaining)
532 break;
533 }
534 }
535
536 /*
537 * If there is still required_kernelcore, we do another pass with one
538 * less node in the count. This will push zone_movable_pfn[nid] further
539 * along on the nodes that still have memory until kernelcore is
540 * satisfied
541 */
542 usable_nodes--;
543 if (usable_nodes && required_kernelcore > usable_nodes)
544 goto restart;
545
546 out2:
547 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
548 for (nid = 0; nid < MAX_NUMNODES; nid++) {
549 unsigned long start_pfn, end_pfn;
550
551 zone_movable_pfn[nid] =
552 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
553
554 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
555 if (zone_movable_pfn[nid] >= end_pfn)
556 zone_movable_pfn[nid] = 0;
557 }
558
559 out:
560 /* restore the node_state */
561 node_states[N_MEMORY] = saved_node_state;
562 }
563
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)564 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
565 unsigned long zone, int nid)
566 {
567 mm_zero_struct_page(page);
568 set_page_links(page, zone, nid, pfn);
569 init_page_count(page);
570 page_mapcount_reset(page);
571 page_cpupid_reset_last(page);
572 page_kasan_tag_reset(page);
573
574 INIT_LIST_HEAD(&page->lru);
575 #ifdef WANT_PAGE_VIRTUAL
576 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
577 if (!is_highmem_idx(zone))
578 set_page_address(page, __va(pfn << PAGE_SHIFT));
579 #endif
580 }
581
582 #ifdef CONFIG_NUMA
583 /*
584 * During memory init memblocks map pfns to nids. The search is expensive and
585 * this caches recent lookups. The implementation of __early_pfn_to_nid
586 * treats start/end as pfns.
587 */
588 struct mminit_pfnnid_cache {
589 unsigned long last_start;
590 unsigned long last_end;
591 int last_nid;
592 };
593
594 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
595
596 /*
597 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
598 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)599 static int __meminit __early_pfn_to_nid(unsigned long pfn,
600 struct mminit_pfnnid_cache *state)
601 {
602 unsigned long start_pfn, end_pfn;
603 int nid;
604
605 if (state->last_start <= pfn && pfn < state->last_end)
606 return state->last_nid;
607
608 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
609 if (nid != NUMA_NO_NODE) {
610 state->last_start = start_pfn;
611 state->last_end = end_pfn;
612 state->last_nid = nid;
613 }
614
615 return nid;
616 }
617
early_pfn_to_nid(unsigned long pfn)618 int __meminit early_pfn_to_nid(unsigned long pfn)
619 {
620 static DEFINE_SPINLOCK(early_pfn_lock);
621 int nid;
622
623 spin_lock(&early_pfn_lock);
624 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
625 if (nid < 0)
626 nid = first_online_node;
627 spin_unlock(&early_pfn_lock);
628
629 return nid;
630 }
631
632 int hashdist = HASHDIST_DEFAULT;
633
set_hashdist(char * str)634 static int __init set_hashdist(char *str)
635 {
636 if (!str)
637 return 0;
638 hashdist = simple_strtoul(str, &str, 0);
639 return 1;
640 }
641 __setup("hashdist=", set_hashdist);
642
fixup_hashdist(void)643 static inline void fixup_hashdist(void)
644 {
645 if (num_node_state(N_MEMORY) == 1)
646 hashdist = 0;
647 }
648 #else
fixup_hashdist(void)649 static inline void fixup_hashdist(void) {}
650 #endif /* CONFIG_NUMA */
651
652 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)653 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
654 {
655 pgdat->first_deferred_pfn = ULONG_MAX;
656 }
657
658 /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)659 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
660 {
661 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
662 return false;
663
664 return true;
665 }
666
667 /*
668 * Returns true when the remaining initialisation should be deferred until
669 * later in the boot cycle when it can be parallelised.
670 */
671 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)672 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
673 {
674 static unsigned long prev_end_pfn, nr_initialised;
675
676 if (early_page_ext_enabled())
677 return false;
678 /*
679 * prev_end_pfn static that contains the end of previous zone
680 * No need to protect because called very early in boot before smp_init.
681 */
682 if (prev_end_pfn != end_pfn) {
683 prev_end_pfn = end_pfn;
684 nr_initialised = 0;
685 }
686
687 /* Always populate low zones for address-constrained allocations */
688 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
689 return false;
690
691 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
692 return true;
693 /*
694 * We start only with one section of pages, more pages are added as
695 * needed until the rest of deferred pages are initialized.
696 */
697 nr_initialised++;
698 if ((nr_initialised > PAGES_PER_SECTION) &&
699 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
700 NODE_DATA(nid)->first_deferred_pfn = pfn;
701 return true;
702 }
703 return false;
704 }
705
init_reserved_page(unsigned long pfn,int nid)706 static void __meminit init_reserved_page(unsigned long pfn, int nid)
707 {
708 pg_data_t *pgdat;
709 int zid;
710
711 if (early_page_initialised(pfn, nid))
712 return;
713
714 pgdat = NODE_DATA(nid);
715
716 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
717 struct zone *zone = &pgdat->node_zones[zid];
718
719 if (zone_spans_pfn(zone, pfn))
720 break;
721 }
722 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
723 }
724 #else
pgdat_set_deferred_range(pg_data_t * pgdat)725 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
726
early_page_initialised(unsigned long pfn,int nid)727 static inline bool early_page_initialised(unsigned long pfn, int nid)
728 {
729 return true;
730 }
731
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)732 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
733 {
734 return false;
735 }
736
init_reserved_page(unsigned long pfn,int nid)737 static inline void init_reserved_page(unsigned long pfn, int nid)
738 {
739 }
740 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
741
742 /*
743 * Initialised pages do not have PageReserved set. This function is
744 * called for each range allocated by the bootmem allocator and
745 * marks the pages PageReserved. The remaining valid pages are later
746 * sent to the buddy page allocator.
747 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)748 void __meminit reserve_bootmem_region(phys_addr_t start,
749 phys_addr_t end, int nid)
750 {
751 unsigned long start_pfn = PFN_DOWN(start);
752 unsigned long end_pfn = PFN_UP(end);
753
754 for (; start_pfn < end_pfn; start_pfn++) {
755 if (pfn_valid(start_pfn)) {
756 struct page *page = pfn_to_page(start_pfn);
757
758 init_reserved_page(start_pfn, nid);
759
760 /* Avoid false-positive PageTail() */
761 INIT_LIST_HEAD(&page->lru);
762
763 /*
764 * no need for atomic set_bit because the struct
765 * page is not visible yet so nobody should
766 * access it yet.
767 */
768 __SetPageReserved(page);
769 }
770 }
771 }
772
773 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
774 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)775 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
776 {
777 static struct memblock_region *r;
778
779 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
780 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
781 for_each_mem_region(r) {
782 if (*pfn < memblock_region_memory_end_pfn(r))
783 break;
784 }
785 }
786 if (*pfn >= memblock_region_memory_base_pfn(r) &&
787 memblock_is_mirror(r)) {
788 *pfn = memblock_region_memory_end_pfn(r);
789 return true;
790 }
791 }
792 return false;
793 }
794
795 /*
796 * Only struct pages that correspond to ranges defined by memblock.memory
797 * are zeroed and initialized by going through __init_single_page() during
798 * memmap_init_zone_range().
799 *
800 * But, there could be struct pages that correspond to holes in
801 * memblock.memory. This can happen because of the following reasons:
802 * - physical memory bank size is not necessarily the exact multiple of the
803 * arbitrary section size
804 * - early reserved memory may not be listed in memblock.memory
805 * - memory layouts defined with memmap= kernel parameter may not align
806 * nicely with memmap sections
807 *
808 * Explicitly initialize those struct pages so that:
809 * - PG_Reserved is set
810 * - zone and node links point to zone and node that span the page if the
811 * hole is in the middle of a zone
812 * - zone and node links point to adjacent zone/node if the hole falls on
813 * the zone boundary; the pages in such holes will be prepended to the
814 * zone/node above the hole except for the trailing pages in the last
815 * section that will be appended to the zone/node below.
816 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)817 static void __init init_unavailable_range(unsigned long spfn,
818 unsigned long epfn,
819 int zone, int node)
820 {
821 unsigned long pfn;
822 u64 pgcnt = 0;
823
824 for (pfn = spfn; pfn < epfn; pfn++) {
825 if (!pfn_valid(pageblock_start_pfn(pfn))) {
826 pfn = pageblock_end_pfn(pfn) - 1;
827 continue;
828 }
829 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
830 __SetPageReserved(pfn_to_page(pfn));
831 pgcnt++;
832 }
833
834 if (pgcnt)
835 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
836 node, zone_names[zone], pgcnt);
837 }
838
839 /*
840 * Initially all pages are reserved - free ones are freed
841 * up by memblock_free_all() once the early boot process is
842 * done. Non-atomic initialization, single-pass.
843 *
844 * All aligned pageblocks are initialized to the specified migratetype
845 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
846 * zone stats (e.g., nr_isolate_pageblock) are touched.
847 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)848 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
849 unsigned long start_pfn, unsigned long zone_end_pfn,
850 enum meminit_context context,
851 struct vmem_altmap *altmap, int migratetype)
852 {
853 unsigned long pfn, end_pfn = start_pfn + size;
854 struct page *page;
855
856 if (highest_memmap_pfn < end_pfn - 1)
857 highest_memmap_pfn = end_pfn - 1;
858
859 #ifdef CONFIG_ZONE_DEVICE
860 /*
861 * Honor reservation requested by the driver for this ZONE_DEVICE
862 * memory. We limit the total number of pages to initialize to just
863 * those that might contain the memory mapping. We will defer the
864 * ZONE_DEVICE page initialization until after we have released
865 * the hotplug lock.
866 */
867 if (zone == ZONE_DEVICE) {
868 if (!altmap)
869 return;
870
871 if (start_pfn == altmap->base_pfn)
872 start_pfn += altmap->reserve;
873 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
874 }
875 #endif
876
877 for (pfn = start_pfn; pfn < end_pfn; ) {
878 /*
879 * There can be holes in boot-time mem_map[]s handed to this
880 * function. They do not exist on hotplugged memory.
881 */
882 if (context == MEMINIT_EARLY) {
883 if (overlap_memmap_init(zone, &pfn))
884 continue;
885 if (defer_init(nid, pfn, zone_end_pfn)) {
886 deferred_struct_pages = true;
887 break;
888 }
889 }
890
891 page = pfn_to_page(pfn);
892 __init_single_page(page, pfn, zone, nid);
893 if (context == MEMINIT_HOTPLUG)
894 __SetPageReserved(page);
895
896 /*
897 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
898 * such that unmovable allocations won't be scattered all
899 * over the place during system boot.
900 */
901 if (pageblock_aligned(pfn)) {
902 set_pageblock_migratetype(page, migratetype);
903 cond_resched();
904 }
905 pfn++;
906 }
907 }
908
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)909 static void __init memmap_init_zone_range(struct zone *zone,
910 unsigned long start_pfn,
911 unsigned long end_pfn,
912 unsigned long *hole_pfn)
913 {
914 unsigned long zone_start_pfn = zone->zone_start_pfn;
915 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
916 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
917
918 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
919 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
920
921 if (start_pfn >= end_pfn)
922 return;
923
924 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
925 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
926
927 if (*hole_pfn < start_pfn)
928 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
929
930 *hole_pfn = end_pfn;
931 }
932
memmap_init(void)933 static void __init memmap_init(void)
934 {
935 unsigned long start_pfn, end_pfn;
936 unsigned long hole_pfn = 0;
937 int i, j, zone_id = 0, nid;
938
939 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
940 struct pglist_data *node = NODE_DATA(nid);
941
942 for (j = 0; j < MAX_NR_ZONES; j++) {
943 struct zone *zone = node->node_zones + j;
944
945 if (!populated_zone(zone))
946 continue;
947
948 memmap_init_zone_range(zone, start_pfn, end_pfn,
949 &hole_pfn);
950 zone_id = j;
951 }
952 }
953
954 #ifdef CONFIG_SPARSEMEM
955 /*
956 * Initialize the memory map for hole in the range [memory_end,
957 * section_end].
958 * Append the pages in this hole to the highest zone in the last
959 * node.
960 * The call to init_unavailable_range() is outside the ifdef to
961 * silence the compiler warining about zone_id set but not used;
962 * for FLATMEM it is a nop anyway
963 */
964 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
965 if (hole_pfn < end_pfn)
966 #endif
967 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
968 }
969
970 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)971 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
972 unsigned long zone_idx, int nid,
973 struct dev_pagemap *pgmap)
974 {
975
976 __init_single_page(page, pfn, zone_idx, nid);
977
978 /*
979 * Mark page reserved as it will need to wait for onlining
980 * phase for it to be fully associated with a zone.
981 *
982 * We can use the non-atomic __set_bit operation for setting
983 * the flag as we are still initializing the pages.
984 */
985 __SetPageReserved(page);
986
987 /*
988 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
989 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
990 * ever freed or placed on a driver-private list.
991 */
992 page->pgmap = pgmap;
993 page->zone_device_data = NULL;
994
995 /*
996 * Mark the block movable so that blocks are reserved for
997 * movable at startup. This will force kernel allocations
998 * to reserve their blocks rather than leaking throughout
999 * the address space during boot when many long-lived
1000 * kernel allocations are made.
1001 *
1002 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1003 * because this is done early in section_activate()
1004 */
1005 if (pageblock_aligned(pfn)) {
1006 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1007 cond_resched();
1008 }
1009
1010 /*
1011 * ZONE_DEVICE pages are released directly to the driver page allocator
1012 * which will set the page count to 1 when allocating the page.
1013 */
1014 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1015 pgmap->type == MEMORY_DEVICE_COHERENT)
1016 set_page_count(page, 0);
1017 }
1018
1019 /*
1020 * With compound page geometry and when struct pages are stored in ram most
1021 * tail pages are reused. Consequently, the amount of unique struct pages to
1022 * initialize is a lot smaller that the total amount of struct pages being
1023 * mapped. This is a paired / mild layering violation with explicit knowledge
1024 * of how the sparse_vmemmap internals handle compound pages in the lack
1025 * of an altmap. See vmemmap_populate_compound_pages().
1026 */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1027 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1028 struct dev_pagemap *pgmap)
1029 {
1030 if (!vmemmap_can_optimize(altmap, pgmap))
1031 return pgmap_vmemmap_nr(pgmap);
1032
1033 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1034 }
1035
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1036 static void __ref memmap_init_compound(struct page *head,
1037 unsigned long head_pfn,
1038 unsigned long zone_idx, int nid,
1039 struct dev_pagemap *pgmap,
1040 unsigned long nr_pages)
1041 {
1042 unsigned long pfn, end_pfn = head_pfn + nr_pages;
1043 unsigned int order = pgmap->vmemmap_shift;
1044
1045 __SetPageHead(head);
1046 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1047 struct page *page = pfn_to_page(pfn);
1048
1049 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1050 prep_compound_tail(head, pfn - head_pfn);
1051 set_page_count(page, 0);
1052
1053 /*
1054 * The first tail page stores important compound page info.
1055 * Call prep_compound_head() after the first tail page has
1056 * been initialized, to not have the data overwritten.
1057 */
1058 if (pfn == head_pfn + 1)
1059 prep_compound_head(head, order);
1060 }
1061 }
1062
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1063 void __ref memmap_init_zone_device(struct zone *zone,
1064 unsigned long start_pfn,
1065 unsigned long nr_pages,
1066 struct dev_pagemap *pgmap)
1067 {
1068 unsigned long pfn, end_pfn = start_pfn + nr_pages;
1069 struct pglist_data *pgdat = zone->zone_pgdat;
1070 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1071 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1072 unsigned long zone_idx = zone_idx(zone);
1073 unsigned long start = jiffies;
1074 int nid = pgdat->node_id;
1075
1076 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1077 return;
1078
1079 /*
1080 * The call to memmap_init should have already taken care
1081 * of the pages reserved for the memmap, so we can just jump to
1082 * the end of that region and start processing the device pages.
1083 */
1084 if (altmap) {
1085 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1086 nr_pages = end_pfn - start_pfn;
1087 }
1088
1089 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1090 struct page *page = pfn_to_page(pfn);
1091
1092 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1093
1094 if (pfns_per_compound == 1)
1095 continue;
1096
1097 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1098 compound_nr_pages(altmap, pgmap));
1099 }
1100
1101 pr_debug("%s initialised %lu pages in %ums\n", __func__,
1102 nr_pages, jiffies_to_msecs(jiffies - start));
1103 }
1104 #endif
1105
1106 /*
1107 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1108 * because it is sized independent of architecture. Unlike the other zones,
1109 * the starting point for ZONE_MOVABLE is not fixed. It may be different
1110 * in each node depending on the size of each node and how evenly kernelcore
1111 * is distributed. This helper function adjusts the zone ranges
1112 * provided by the architecture for a given node by using the end of the
1113 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1114 * zones within a node are in order of monotonic increases memory addresses
1115 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1116 static void __init adjust_zone_range_for_zone_movable(int nid,
1117 unsigned long zone_type,
1118 unsigned long node_end_pfn,
1119 unsigned long *zone_start_pfn,
1120 unsigned long *zone_end_pfn)
1121 {
1122 /* Only adjust if ZONE_MOVABLE is on this node */
1123 if (zone_movable_pfn[nid]) {
1124 /* Size ZONE_MOVABLE */
1125 if (zone_type == ZONE_MOVABLE) {
1126 *zone_start_pfn = zone_movable_pfn[nid];
1127 *zone_end_pfn = min(node_end_pfn,
1128 arch_zone_highest_possible_pfn[movable_zone]);
1129
1130 /* Adjust for ZONE_MOVABLE starting within this range */
1131 } else if (!mirrored_kernelcore &&
1132 *zone_start_pfn < zone_movable_pfn[nid] &&
1133 *zone_end_pfn > zone_movable_pfn[nid]) {
1134 *zone_end_pfn = zone_movable_pfn[nid];
1135
1136 /* Check if this whole range is within ZONE_MOVABLE */
1137 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1138 *zone_start_pfn = *zone_end_pfn;
1139 }
1140 }
1141
1142 /*
1143 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1144 * then all holes in the requested range will be accounted for.
1145 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1146 unsigned long __init __absent_pages_in_range(int nid,
1147 unsigned long range_start_pfn,
1148 unsigned long range_end_pfn)
1149 {
1150 unsigned long nr_absent = range_end_pfn - range_start_pfn;
1151 unsigned long start_pfn, end_pfn;
1152 int i;
1153
1154 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1155 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1156 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1157 nr_absent -= end_pfn - start_pfn;
1158 }
1159 return nr_absent;
1160 }
1161
1162 /**
1163 * absent_pages_in_range - Return number of page frames in holes within a range
1164 * @start_pfn: The start PFN to start searching for holes
1165 * @end_pfn: The end PFN to stop searching for holes
1166 *
1167 * Return: the number of pages frames in memory holes within a range.
1168 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1169 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1170 unsigned long end_pfn)
1171 {
1172 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1173 }
1174
1175 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1176 static unsigned long __init zone_absent_pages_in_node(int nid,
1177 unsigned long zone_type,
1178 unsigned long zone_start_pfn,
1179 unsigned long zone_end_pfn)
1180 {
1181 unsigned long nr_absent;
1182
1183 /* zone is empty, we don't have any absent pages */
1184 if (zone_start_pfn == zone_end_pfn)
1185 return 0;
1186
1187 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1188
1189 /*
1190 * ZONE_MOVABLE handling.
1191 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1192 * and vice versa.
1193 */
1194 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1195 unsigned long start_pfn, end_pfn;
1196 struct memblock_region *r;
1197
1198 for_each_mem_region(r) {
1199 start_pfn = clamp(memblock_region_memory_base_pfn(r),
1200 zone_start_pfn, zone_end_pfn);
1201 end_pfn = clamp(memblock_region_memory_end_pfn(r),
1202 zone_start_pfn, zone_end_pfn);
1203
1204 if (zone_type == ZONE_MOVABLE &&
1205 memblock_is_mirror(r))
1206 nr_absent += end_pfn - start_pfn;
1207
1208 if (zone_type == ZONE_NORMAL &&
1209 !memblock_is_mirror(r))
1210 nr_absent += end_pfn - start_pfn;
1211 }
1212 }
1213
1214 return nr_absent;
1215 }
1216
1217 /*
1218 * Return the number of pages a zone spans in a node, including holes
1219 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1220 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1221 static unsigned long __init zone_spanned_pages_in_node(int nid,
1222 unsigned long zone_type,
1223 unsigned long node_start_pfn,
1224 unsigned long node_end_pfn,
1225 unsigned long *zone_start_pfn,
1226 unsigned long *zone_end_pfn)
1227 {
1228 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1229 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1230
1231 /* Get the start and end of the zone */
1232 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1233 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1234 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1235 zone_start_pfn, zone_end_pfn);
1236
1237 /* Check that this node has pages within the zone's required range */
1238 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1239 return 0;
1240
1241 /* Move the zone boundaries inside the node if necessary */
1242 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1243 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1244
1245 /* Return the spanned pages */
1246 return *zone_end_pfn - *zone_start_pfn;
1247 }
1248
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1249 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1250 {
1251 struct zone *z;
1252
1253 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1254 z->zone_start_pfn = 0;
1255 z->spanned_pages = 0;
1256 z->present_pages = 0;
1257 #if defined(CONFIG_MEMORY_HOTPLUG)
1258 z->present_early_pages = 0;
1259 #endif
1260 }
1261
1262 pgdat->node_spanned_pages = 0;
1263 pgdat->node_present_pages = 0;
1264 pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1265 }
1266
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1267 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1268 unsigned long node_start_pfn,
1269 unsigned long node_end_pfn)
1270 {
1271 unsigned long realtotalpages = 0, totalpages = 0;
1272 enum zone_type i;
1273
1274 for (i = 0; i < MAX_NR_ZONES; i++) {
1275 struct zone *zone = pgdat->node_zones + i;
1276 unsigned long zone_start_pfn, zone_end_pfn;
1277 unsigned long spanned, absent;
1278 unsigned long real_size;
1279
1280 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1281 node_start_pfn,
1282 node_end_pfn,
1283 &zone_start_pfn,
1284 &zone_end_pfn);
1285 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1286 zone_start_pfn,
1287 zone_end_pfn);
1288
1289 real_size = spanned - absent;
1290
1291 if (spanned)
1292 zone->zone_start_pfn = zone_start_pfn;
1293 else
1294 zone->zone_start_pfn = 0;
1295 zone->spanned_pages = spanned;
1296 zone->present_pages = real_size;
1297 #if defined(CONFIG_MEMORY_HOTPLUG)
1298 zone->present_early_pages = real_size;
1299 #endif
1300
1301 totalpages += spanned;
1302 realtotalpages += real_size;
1303 }
1304
1305 pgdat->node_spanned_pages = totalpages;
1306 pgdat->node_present_pages = realtotalpages;
1307 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1308 }
1309
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)1310 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1311 unsigned long present_pages)
1312 {
1313 unsigned long pages = spanned_pages;
1314
1315 /*
1316 * Provide a more accurate estimation if there are holes within
1317 * the zone and SPARSEMEM is in use. If there are holes within the
1318 * zone, each populated memory region may cost us one or two extra
1319 * memmap pages due to alignment because memmap pages for each
1320 * populated regions may not be naturally aligned on page boundary.
1321 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1322 */
1323 if (spanned_pages > present_pages + (present_pages >> 4) &&
1324 IS_ENABLED(CONFIG_SPARSEMEM))
1325 pages = present_pages;
1326
1327 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1328 }
1329
1330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1331 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1332 {
1333 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1334
1335 spin_lock_init(&ds_queue->split_queue_lock);
1336 INIT_LIST_HEAD(&ds_queue->split_queue);
1337 ds_queue->split_queue_len = 0;
1338 }
1339 #else
pgdat_init_split_queue(struct pglist_data * pgdat)1340 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1341 #endif
1342
1343 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1344 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1345 {
1346 init_waitqueue_head(&pgdat->kcompactd_wait);
1347 }
1348 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1349 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1350 #endif
1351
pgdat_init_internals(struct pglist_data * pgdat)1352 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1353 {
1354 int i;
1355
1356 pgdat_resize_init(pgdat);
1357 pgdat_kswapd_lock_init(pgdat);
1358
1359 pgdat_init_split_queue(pgdat);
1360 pgdat_init_kcompactd(pgdat);
1361
1362 init_waitqueue_head(&pgdat->kswapd_wait);
1363 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1364
1365 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1366 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1367
1368 pgdat_page_ext_init(pgdat);
1369 lruvec_init(&pgdat->__lruvec);
1370 }
1371
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1372 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1373 unsigned long remaining_pages)
1374 {
1375 atomic_long_set(&zone->managed_pages, remaining_pages);
1376 zone_set_nid(zone, nid);
1377 zone->name = zone_names[idx];
1378 zone->zone_pgdat = NODE_DATA(nid);
1379 spin_lock_init(&zone->lock);
1380 zone_seqlock_init(zone);
1381 zone_pcp_init(zone);
1382 }
1383
zone_init_free_lists(struct zone * zone)1384 static void __meminit zone_init_free_lists(struct zone *zone)
1385 {
1386 unsigned int order, t;
1387 for_each_migratetype_order(order, t) {
1388 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1389 zone->free_area[order].nr_free = 0;
1390 }
1391
1392 #ifdef CONFIG_UNACCEPTED_MEMORY
1393 INIT_LIST_HEAD(&zone->unaccepted_pages);
1394 #endif
1395 }
1396
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1397 void __meminit init_currently_empty_zone(struct zone *zone,
1398 unsigned long zone_start_pfn,
1399 unsigned long size)
1400 {
1401 struct pglist_data *pgdat = zone->zone_pgdat;
1402 int zone_idx = zone_idx(zone) + 1;
1403
1404 if (zone_idx > pgdat->nr_zones)
1405 pgdat->nr_zones = zone_idx;
1406
1407 zone->zone_start_pfn = zone_start_pfn;
1408
1409 mminit_dprintk(MMINIT_TRACE, "memmap_init",
1410 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1411 pgdat->node_id,
1412 (unsigned long)zone_idx(zone),
1413 zone_start_pfn, (zone_start_pfn + size));
1414
1415 zone_init_free_lists(zone);
1416 zone->initialized = 1;
1417 }
1418
1419 #ifndef CONFIG_SPARSEMEM
1420 /*
1421 * Calculate the size of the zone->blockflags rounded to an unsigned long
1422 * Start by making sure zonesize is a multiple of pageblock_order by rounding
1423 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1424 * round what is now in bits to nearest long in bits, then return it in
1425 * bytes.
1426 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1427 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1428 {
1429 unsigned long usemapsize;
1430
1431 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1432 usemapsize = roundup(zonesize, pageblock_nr_pages);
1433 usemapsize = usemapsize >> pageblock_order;
1434 usemapsize *= NR_PAGEBLOCK_BITS;
1435 usemapsize = roundup(usemapsize, BITS_PER_LONG);
1436
1437 return usemapsize / BITS_PER_BYTE;
1438 }
1439
setup_usemap(struct zone * zone)1440 static void __ref setup_usemap(struct zone *zone)
1441 {
1442 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1443 zone->spanned_pages);
1444 zone->pageblock_flags = NULL;
1445 if (usemapsize) {
1446 zone->pageblock_flags =
1447 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1448 zone_to_nid(zone));
1449 if (!zone->pageblock_flags)
1450 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1451 usemapsize, zone->name, zone_to_nid(zone));
1452 }
1453 }
1454 #else
setup_usemap(struct zone * zone)1455 static inline void setup_usemap(struct zone *zone) {}
1456 #endif /* CONFIG_SPARSEMEM */
1457
1458 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1459
1460 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1461 void __init set_pageblock_order(void)
1462 {
1463 unsigned int order = MAX_ORDER;
1464
1465 /* Check that pageblock_nr_pages has not already been setup */
1466 if (pageblock_order)
1467 return;
1468
1469 /* Don't let pageblocks exceed the maximum allocation granularity. */
1470 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1471 order = HUGETLB_PAGE_ORDER;
1472
1473 /*
1474 * Assume the largest contiguous order of interest is a huge page.
1475 * This value may be variable depending on boot parameters on IA64 and
1476 * powerpc.
1477 */
1478 pageblock_order = order;
1479 }
1480 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1481
1482 /*
1483 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1484 * is unused as pageblock_order is set at compile-time. See
1485 * include/linux/pageblock-flags.h for the values of pageblock_order based on
1486 * the kernel config
1487 */
set_pageblock_order(void)1488 void __init set_pageblock_order(void)
1489 {
1490 }
1491
1492 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1493
1494 /*
1495 * Set up the zone data structures
1496 * - init pgdat internals
1497 * - init all zones belonging to this node
1498 *
1499 * NOTE: this function is only called during memory hotplug
1500 */
1501 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1502 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1503 {
1504 int nid = pgdat->node_id;
1505 enum zone_type z;
1506 int cpu;
1507
1508 pgdat_init_internals(pgdat);
1509
1510 if (pgdat->per_cpu_nodestats == &boot_nodestats)
1511 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1512
1513 /*
1514 * Reset the nr_zones, order and highest_zoneidx before reuse.
1515 * Note that kswapd will init kswapd_highest_zoneidx properly
1516 * when it starts in the near future.
1517 */
1518 pgdat->nr_zones = 0;
1519 pgdat->kswapd_order = 0;
1520 pgdat->kswapd_highest_zoneidx = 0;
1521 pgdat->node_start_pfn = 0;
1522 pgdat->node_present_pages = 0;
1523
1524 for_each_online_cpu(cpu) {
1525 struct per_cpu_nodestat *p;
1526
1527 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1528 memset(p, 0, sizeof(*p));
1529 }
1530
1531 /*
1532 * When memory is hot-added, all the memory is in offline state. So
1533 * clear all zones' present_pages and managed_pages because they will
1534 * be updated in online_pages() and offline_pages().
1535 */
1536 for (z = 0; z < MAX_NR_ZONES; z++) {
1537 struct zone *zone = pgdat->node_zones + z;
1538
1539 zone->present_pages = 0;
1540 zone_init_internals(zone, z, nid, 0);
1541 }
1542 }
1543 #endif
1544
1545 /*
1546 * Set up the zone data structures:
1547 * - mark all pages reserved
1548 * - mark all memory queues empty
1549 * - clear the memory bitmaps
1550 *
1551 * NOTE: pgdat should get zeroed by caller.
1552 * NOTE: this function is only called during early init.
1553 */
free_area_init_core(struct pglist_data * pgdat)1554 static void __init free_area_init_core(struct pglist_data *pgdat)
1555 {
1556 enum zone_type j;
1557 int nid = pgdat->node_id;
1558
1559 pgdat_init_internals(pgdat);
1560 pgdat->per_cpu_nodestats = &boot_nodestats;
1561
1562 for (j = 0; j < MAX_NR_ZONES; j++) {
1563 struct zone *zone = pgdat->node_zones + j;
1564 unsigned long size, freesize, memmap_pages;
1565
1566 size = zone->spanned_pages;
1567 freesize = zone->present_pages;
1568
1569 /*
1570 * Adjust freesize so that it accounts for how much memory
1571 * is used by this zone for memmap. This affects the watermark
1572 * and per-cpu initialisations
1573 */
1574 memmap_pages = calc_memmap_size(size, freesize);
1575 if (!is_highmem_idx(j)) {
1576 if (freesize >= memmap_pages) {
1577 freesize -= memmap_pages;
1578 if (memmap_pages)
1579 pr_debug(" %s zone: %lu pages used for memmap\n",
1580 zone_names[j], memmap_pages);
1581 } else
1582 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
1583 zone_names[j], memmap_pages, freesize);
1584 }
1585
1586 /* Account for reserved pages */
1587 if (j == 0 && freesize > dma_reserve) {
1588 freesize -= dma_reserve;
1589 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1590 }
1591
1592 if (!is_highmem_idx(j))
1593 nr_kernel_pages += freesize;
1594 /* Charge for highmem memmap if there are enough kernel pages */
1595 else if (nr_kernel_pages > memmap_pages * 2)
1596 nr_kernel_pages -= memmap_pages;
1597 nr_all_pages += freesize;
1598
1599 /*
1600 * Set an approximate value for lowmem here, it will be adjusted
1601 * when the bootmem allocator frees pages into the buddy system.
1602 * And all highmem pages will be managed by the buddy system.
1603 */
1604 zone_init_internals(zone, j, nid, freesize);
1605
1606 if (!size)
1607 continue;
1608
1609 setup_usemap(zone);
1610 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1611 }
1612 }
1613
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1614 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1615 phys_addr_t min_addr, int nid, bool exact_nid)
1616 {
1617 void *ptr;
1618
1619 if (exact_nid)
1620 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1621 MEMBLOCK_ALLOC_ACCESSIBLE,
1622 nid);
1623 else
1624 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1625 MEMBLOCK_ALLOC_ACCESSIBLE,
1626 nid);
1627
1628 if (ptr && size > 0)
1629 page_init_poison(ptr, size);
1630
1631 return ptr;
1632 }
1633
1634 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1635 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1636 {
1637 unsigned long __maybe_unused start = 0;
1638 unsigned long __maybe_unused offset = 0;
1639
1640 /* Skip empty nodes */
1641 if (!pgdat->node_spanned_pages)
1642 return;
1643
1644 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1645 offset = pgdat->node_start_pfn - start;
1646 /* ia64 gets its own node_mem_map, before this, without bootmem */
1647 if (!pgdat->node_mem_map) {
1648 unsigned long size, end;
1649 struct page *map;
1650
1651 /*
1652 * The zone's endpoints aren't required to be MAX_ORDER
1653 * aligned but the node_mem_map endpoints must be in order
1654 * for the buddy allocator to function correctly.
1655 */
1656 end = pgdat_end_pfn(pgdat);
1657 end = ALIGN(end, MAX_ORDER_NR_PAGES);
1658 size = (end - start) * sizeof(struct page);
1659 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1660 pgdat->node_id, false);
1661 if (!map)
1662 panic("Failed to allocate %ld bytes for node %d memory map\n",
1663 size, pgdat->node_id);
1664 pgdat->node_mem_map = map + offset;
1665 }
1666 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1667 __func__, pgdat->node_id, (unsigned long)pgdat,
1668 (unsigned long)pgdat->node_mem_map);
1669 #ifndef CONFIG_NUMA
1670 /*
1671 * With no DISCONTIG, the global mem_map is just set as node 0's
1672 */
1673 if (pgdat == NODE_DATA(0)) {
1674 mem_map = NODE_DATA(0)->node_mem_map;
1675 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1676 mem_map -= offset;
1677 }
1678 #endif
1679 }
1680 #else
alloc_node_mem_map(struct pglist_data * pgdat)1681 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1682 #endif /* CONFIG_FLATMEM */
1683
1684 /**
1685 * get_pfn_range_for_nid - Return the start and end page frames for a node
1686 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1687 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1688 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1689 *
1690 * It returns the start and end page frame of a node based on information
1691 * provided by memblock_set_node(). If called for a node
1692 * with no available memory, the start and end PFNs will be 0.
1693 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1694 void __init get_pfn_range_for_nid(unsigned int nid,
1695 unsigned long *start_pfn, unsigned long *end_pfn)
1696 {
1697 unsigned long this_start_pfn, this_end_pfn;
1698 int i;
1699
1700 *start_pfn = -1UL;
1701 *end_pfn = 0;
1702
1703 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1704 *start_pfn = min(*start_pfn, this_start_pfn);
1705 *end_pfn = max(*end_pfn, this_end_pfn);
1706 }
1707
1708 if (*start_pfn == -1UL)
1709 *start_pfn = 0;
1710 }
1711
free_area_init_node(int nid)1712 static void __init free_area_init_node(int nid)
1713 {
1714 pg_data_t *pgdat = NODE_DATA(nid);
1715 unsigned long start_pfn = 0;
1716 unsigned long end_pfn = 0;
1717
1718 /* pg_data_t should be reset to zero when it's allocated */
1719 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1720
1721 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1722
1723 pgdat->node_id = nid;
1724 pgdat->node_start_pfn = start_pfn;
1725 pgdat->per_cpu_nodestats = NULL;
1726
1727 if (start_pfn != end_pfn) {
1728 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1729 (u64)start_pfn << PAGE_SHIFT,
1730 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1731
1732 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1733 } else {
1734 pr_info("Initmem setup node %d as memoryless\n", nid);
1735
1736 reset_memoryless_node_totalpages(pgdat);
1737 }
1738
1739 alloc_node_mem_map(pgdat);
1740 pgdat_set_deferred_range(pgdat);
1741
1742 free_area_init_core(pgdat);
1743 lru_gen_init_pgdat(pgdat);
1744 }
1745
1746 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1747 static void __init check_for_memory(pg_data_t *pgdat)
1748 {
1749 enum zone_type zone_type;
1750
1751 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1752 struct zone *zone = &pgdat->node_zones[zone_type];
1753 if (populated_zone(zone)) {
1754 if (IS_ENABLED(CONFIG_HIGHMEM))
1755 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1756 if (zone_type <= ZONE_NORMAL)
1757 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1758 break;
1759 }
1760 }
1761 }
1762
1763 #if MAX_NUMNODES > 1
1764 /*
1765 * Figure out the number of possible node ids.
1766 */
setup_nr_node_ids(void)1767 void __init setup_nr_node_ids(void)
1768 {
1769 unsigned int highest;
1770
1771 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1772 nr_node_ids = highest + 1;
1773 }
1774 #endif
1775
1776 /*
1777 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1778 * such cases we allow max_zone_pfn sorted in the descending order
1779 */
arch_has_descending_max_zone_pfns(void)1780 static bool arch_has_descending_max_zone_pfns(void)
1781 {
1782 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1783 }
1784
1785 /**
1786 * free_area_init - Initialise all pg_data_t and zone data
1787 * @max_zone_pfn: an array of max PFNs for each zone
1788 *
1789 * This will call free_area_init_node() for each active node in the system.
1790 * Using the page ranges provided by memblock_set_node(), the size of each
1791 * zone in each node and their holes is calculated. If the maximum PFN
1792 * between two adjacent zones match, it is assumed that the zone is empty.
1793 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1794 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1795 * starts where the previous one ended. For example, ZONE_DMA32 starts
1796 * at arch_max_dma_pfn.
1797 */
free_area_init(unsigned long * max_zone_pfn)1798 void __init free_area_init(unsigned long *max_zone_pfn)
1799 {
1800 unsigned long start_pfn, end_pfn;
1801 int i, nid, zone;
1802 bool descending;
1803
1804 /* Record where the zone boundaries are */
1805 memset(arch_zone_lowest_possible_pfn, 0,
1806 sizeof(arch_zone_lowest_possible_pfn));
1807 memset(arch_zone_highest_possible_pfn, 0,
1808 sizeof(arch_zone_highest_possible_pfn));
1809
1810 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1811 descending = arch_has_descending_max_zone_pfns();
1812
1813 for (i = 0; i < MAX_NR_ZONES; i++) {
1814 if (descending)
1815 zone = MAX_NR_ZONES - i - 1;
1816 else
1817 zone = i;
1818
1819 if (zone == ZONE_MOVABLE)
1820 continue;
1821
1822 end_pfn = max(max_zone_pfn[zone], start_pfn);
1823 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1824 arch_zone_highest_possible_pfn[zone] = end_pfn;
1825
1826 start_pfn = end_pfn;
1827 }
1828
1829 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1830 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1831 find_zone_movable_pfns_for_nodes();
1832
1833 /* Print out the zone ranges */
1834 pr_info("Zone ranges:\n");
1835 for (i = 0; i < MAX_NR_ZONES; i++) {
1836 if (i == ZONE_MOVABLE)
1837 continue;
1838 pr_info(" %-8s ", zone_names[i]);
1839 if (arch_zone_lowest_possible_pfn[i] ==
1840 arch_zone_highest_possible_pfn[i])
1841 pr_cont("empty\n");
1842 else
1843 pr_cont("[mem %#018Lx-%#018Lx]\n",
1844 (u64)arch_zone_lowest_possible_pfn[i]
1845 << PAGE_SHIFT,
1846 ((u64)arch_zone_highest_possible_pfn[i]
1847 << PAGE_SHIFT) - 1);
1848 }
1849
1850 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1851 pr_info("Movable zone start for each node\n");
1852 for (i = 0; i < MAX_NUMNODES; i++) {
1853 if (zone_movable_pfn[i])
1854 pr_info(" Node %d: %#018Lx\n", i,
1855 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1856 }
1857
1858 /*
1859 * Print out the early node map, and initialize the
1860 * subsection-map relative to active online memory ranges to
1861 * enable future "sub-section" extensions of the memory map.
1862 */
1863 pr_info("Early memory node ranges\n");
1864 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1865 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1866 (u64)start_pfn << PAGE_SHIFT,
1867 ((u64)end_pfn << PAGE_SHIFT) - 1);
1868 subsection_map_init(start_pfn, end_pfn - start_pfn);
1869 }
1870
1871 /* Initialise every node */
1872 mminit_verify_pageflags_layout();
1873 setup_nr_node_ids();
1874 set_pageblock_order();
1875
1876 for_each_node(nid) {
1877 pg_data_t *pgdat;
1878
1879 if (!node_online(nid)) {
1880 pr_info("Initializing node %d as memoryless\n", nid);
1881
1882 /* Allocator not initialized yet */
1883 pgdat = arch_alloc_nodedata(nid);
1884 if (!pgdat)
1885 panic("Cannot allocate %zuB for node %d.\n",
1886 sizeof(*pgdat), nid);
1887 arch_refresh_nodedata(nid, pgdat);
1888 free_area_init_node(nid);
1889
1890 /*
1891 * We do not want to confuse userspace by sysfs
1892 * files/directories for node without any memory
1893 * attached to it, so this node is not marked as
1894 * N_MEMORY and not marked online so that no sysfs
1895 * hierarchy will be created via register_one_node for
1896 * it. The pgdat will get fully initialized by
1897 * hotadd_init_pgdat() when memory is hotplugged into
1898 * this node.
1899 */
1900 continue;
1901 }
1902
1903 pgdat = NODE_DATA(nid);
1904 free_area_init_node(nid);
1905
1906 /* Any memory on that node */
1907 if (pgdat->node_present_pages)
1908 node_set_state(nid, N_MEMORY);
1909 check_for_memory(pgdat);
1910 }
1911
1912 memmap_init();
1913
1914 /* disable hash distribution for systems with a single node */
1915 fixup_hashdist();
1916 }
1917
1918 /**
1919 * node_map_pfn_alignment - determine the maximum internode alignment
1920 *
1921 * This function should be called after node map is populated and sorted.
1922 * It calculates the maximum power of two alignment which can distinguish
1923 * all the nodes.
1924 *
1925 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1926 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1927 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1928 * shifted, 1GiB is enough and this function will indicate so.
1929 *
1930 * This is used to test whether pfn -> nid mapping of the chosen memory
1931 * model has fine enough granularity to avoid incorrect mapping for the
1932 * populated node map.
1933 *
1934 * Return: the determined alignment in pfn's. 0 if there is no alignment
1935 * requirement (single node).
1936 */
node_map_pfn_alignment(void)1937 unsigned long __init node_map_pfn_alignment(void)
1938 {
1939 unsigned long accl_mask = 0, last_end = 0;
1940 unsigned long start, end, mask;
1941 int last_nid = NUMA_NO_NODE;
1942 int i, nid;
1943
1944 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1945 if (!start || last_nid < 0 || last_nid == nid) {
1946 last_nid = nid;
1947 last_end = end;
1948 continue;
1949 }
1950
1951 /*
1952 * Start with a mask granular enough to pin-point to the
1953 * start pfn and tick off bits one-by-one until it becomes
1954 * too coarse to separate the current node from the last.
1955 */
1956 mask = ~((1 << __ffs(start)) - 1);
1957 while (mask && last_end <= (start & (mask << 1)))
1958 mask <<= 1;
1959
1960 /* accumulate all internode masks */
1961 accl_mask |= mask;
1962 }
1963
1964 /* convert mask to number of pages */
1965 return ~accl_mask + 1;
1966 }
1967
1968 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1969 static void __init deferred_free_range(unsigned long pfn,
1970 unsigned long nr_pages)
1971 {
1972 struct page *page;
1973 unsigned long i;
1974
1975 if (!nr_pages)
1976 return;
1977
1978 page = pfn_to_page(pfn);
1979
1980 /* Free a large naturally-aligned chunk if possible */
1981 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1982 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1983 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1984 __free_pages_core(page, MAX_ORDER);
1985 return;
1986 }
1987
1988 /* Accept chunks smaller than MAX_ORDER upfront */
1989 accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
1990
1991 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1992 if (pageblock_aligned(pfn))
1993 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1994 __free_pages_core(page, 0);
1995 }
1996 }
1997
1998 /* Completion tracking for deferred_init_memmap() threads */
1999 static atomic_t pgdat_init_n_undone __initdata;
2000 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2001
pgdat_init_report_one_done(void)2002 static inline void __init pgdat_init_report_one_done(void)
2003 {
2004 if (atomic_dec_and_test(&pgdat_init_n_undone))
2005 complete(&pgdat_init_all_done_comp);
2006 }
2007
2008 /*
2009 * Returns true if page needs to be initialized or freed to buddy allocator.
2010 *
2011 * We check if a current MAX_ORDER block is valid by only checking the validity
2012 * of the head pfn.
2013 */
deferred_pfn_valid(unsigned long pfn)2014 static inline bool __init deferred_pfn_valid(unsigned long pfn)
2015 {
2016 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
2017 return false;
2018 return true;
2019 }
2020
2021 /*
2022 * Free pages to buddy allocator. Try to free aligned pages in
2023 * MAX_ORDER_NR_PAGES sizes.
2024 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)2025 static void __init deferred_free_pages(unsigned long pfn,
2026 unsigned long end_pfn)
2027 {
2028 unsigned long nr_free = 0;
2029
2030 for (; pfn < end_pfn; pfn++) {
2031 if (!deferred_pfn_valid(pfn)) {
2032 deferred_free_range(pfn - nr_free, nr_free);
2033 nr_free = 0;
2034 } else if (IS_MAX_ORDER_ALIGNED(pfn)) {
2035 deferred_free_range(pfn - nr_free, nr_free);
2036 nr_free = 1;
2037 } else {
2038 nr_free++;
2039 }
2040 }
2041 /* Free the last block of pages to allocator */
2042 deferred_free_range(pfn - nr_free, nr_free);
2043 }
2044
2045 /*
2046 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
2047 * by performing it only once every MAX_ORDER_NR_PAGES.
2048 * Return number of pages initialized.
2049 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2050 static unsigned long __init deferred_init_pages(struct zone *zone,
2051 unsigned long pfn,
2052 unsigned long end_pfn)
2053 {
2054 int nid = zone_to_nid(zone);
2055 unsigned long nr_pages = 0;
2056 int zid = zone_idx(zone);
2057 struct page *page = NULL;
2058
2059 for (; pfn < end_pfn; pfn++) {
2060 if (!deferred_pfn_valid(pfn)) {
2061 page = NULL;
2062 continue;
2063 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
2064 page = pfn_to_page(pfn);
2065 } else {
2066 page++;
2067 }
2068 __init_single_page(page, pfn, zid, nid);
2069 nr_pages++;
2070 }
2071 return (nr_pages);
2072 }
2073
2074 /*
2075 * This function is meant to pre-load the iterator for the zone init.
2076 * Specifically it walks through the ranges until we are caught up to the
2077 * first_init_pfn value and exits there. If we never encounter the value we
2078 * return false indicating there are no valid ranges left.
2079 */
2080 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2081 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2082 unsigned long *spfn, unsigned long *epfn,
2083 unsigned long first_init_pfn)
2084 {
2085 u64 j;
2086
2087 /*
2088 * Start out by walking through the ranges in this zone that have
2089 * already been initialized. We don't need to do anything with them
2090 * so we just need to flush them out of the system.
2091 */
2092 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2093 if (*epfn <= first_init_pfn)
2094 continue;
2095 if (*spfn < first_init_pfn)
2096 *spfn = first_init_pfn;
2097 *i = j;
2098 return true;
2099 }
2100
2101 return false;
2102 }
2103
2104 /*
2105 * Initialize and free pages. We do it in two loops: first we initialize
2106 * struct page, then free to buddy allocator, because while we are
2107 * freeing pages we can access pages that are ahead (computing buddy
2108 * page in __free_one_page()).
2109 *
2110 * In order to try and keep some memory in the cache we have the loop
2111 * broken along max page order boundaries. This way we will not cause
2112 * any issues with the buddy page computation.
2113 */
2114 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2115 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2116 unsigned long *end_pfn)
2117 {
2118 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2119 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2120 unsigned long nr_pages = 0;
2121 u64 j = *i;
2122
2123 /* First we loop through and initialize the page values */
2124 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2125 unsigned long t;
2126
2127 if (mo_pfn <= *start_pfn)
2128 break;
2129
2130 t = min(mo_pfn, *end_pfn);
2131 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2132
2133 if (mo_pfn < *end_pfn) {
2134 *start_pfn = mo_pfn;
2135 break;
2136 }
2137 }
2138
2139 /* Reset values and now loop through freeing pages as needed */
2140 swap(j, *i);
2141
2142 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2143 unsigned long t;
2144
2145 if (mo_pfn <= spfn)
2146 break;
2147
2148 t = min(mo_pfn, epfn);
2149 deferred_free_pages(spfn, t);
2150
2151 if (mo_pfn <= epfn)
2152 break;
2153 }
2154
2155 return nr_pages;
2156 }
2157
2158 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2159 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2160 void *arg)
2161 {
2162 unsigned long spfn, epfn;
2163 struct zone *zone = arg;
2164 u64 i;
2165
2166 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2167
2168 /*
2169 * Initialize and free pages in MAX_ORDER sized increments so that we
2170 * can avoid introducing any issues with the buddy allocator.
2171 */
2172 while (spfn < end_pfn) {
2173 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2174 cond_resched();
2175 }
2176 }
2177
2178 /* An arch may override for more concurrency. */
2179 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2180 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2181 {
2182 return 1;
2183 }
2184
2185 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2186 static int __init deferred_init_memmap(void *data)
2187 {
2188 pg_data_t *pgdat = data;
2189 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2190 unsigned long spfn = 0, epfn = 0;
2191 unsigned long first_init_pfn, flags;
2192 unsigned long start = jiffies;
2193 struct zone *zone;
2194 int zid, max_threads;
2195 u64 i;
2196
2197 /* Bind memory initialisation thread to a local node if possible */
2198 if (!cpumask_empty(cpumask))
2199 set_cpus_allowed_ptr(current, cpumask);
2200
2201 pgdat_resize_lock(pgdat, &flags);
2202 first_init_pfn = pgdat->first_deferred_pfn;
2203 if (first_init_pfn == ULONG_MAX) {
2204 pgdat_resize_unlock(pgdat, &flags);
2205 pgdat_init_report_one_done();
2206 return 0;
2207 }
2208
2209 /* Sanity check boundaries */
2210 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2211 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2212 pgdat->first_deferred_pfn = ULONG_MAX;
2213
2214 /*
2215 * Once we unlock here, the zone cannot be grown anymore, thus if an
2216 * interrupt thread must allocate this early in boot, zone must be
2217 * pre-grown prior to start of deferred page initialization.
2218 */
2219 pgdat_resize_unlock(pgdat, &flags);
2220
2221 /* Only the highest zone is deferred so find it */
2222 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2223 zone = pgdat->node_zones + zid;
2224 if (first_init_pfn < zone_end_pfn(zone))
2225 break;
2226 }
2227
2228 /* If the zone is empty somebody else may have cleared out the zone */
2229 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2230 first_init_pfn))
2231 goto zone_empty;
2232
2233 max_threads = deferred_page_init_max_threads(cpumask);
2234
2235 while (spfn < epfn) {
2236 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2237 struct padata_mt_job job = {
2238 .thread_fn = deferred_init_memmap_chunk,
2239 .fn_arg = zone,
2240 .start = spfn,
2241 .size = epfn_align - spfn,
2242 .align = PAGES_PER_SECTION,
2243 .min_chunk = PAGES_PER_SECTION,
2244 .max_threads = max_threads,
2245 };
2246
2247 padata_do_multithreaded(&job);
2248 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2249 epfn_align);
2250 }
2251 zone_empty:
2252 /* Sanity check that the next zone really is unpopulated */
2253 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2254
2255 pr_info("node %d deferred pages initialised in %ums\n",
2256 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2257
2258 pgdat_init_report_one_done();
2259 return 0;
2260 }
2261
2262 /*
2263 * If this zone has deferred pages, try to grow it by initializing enough
2264 * deferred pages to satisfy the allocation specified by order, rounded up to
2265 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2266 * of SECTION_SIZE bytes by initializing struct pages in increments of
2267 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2268 *
2269 * Return true when zone was grown, otherwise return false. We return true even
2270 * when we grow less than requested, to let the caller decide if there are
2271 * enough pages to satisfy the allocation.
2272 *
2273 * Note: We use noinline because this function is needed only during boot, and
2274 * it is called from a __ref function _deferred_grow_zone. This way we are
2275 * making sure that it is not inlined into permanent text section.
2276 */
deferred_grow_zone(struct zone * zone,unsigned int order)2277 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2278 {
2279 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2280 pg_data_t *pgdat = zone->zone_pgdat;
2281 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2282 unsigned long spfn, epfn, flags;
2283 unsigned long nr_pages = 0;
2284 u64 i;
2285
2286 /* Only the last zone may have deferred pages */
2287 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2288 return false;
2289
2290 pgdat_resize_lock(pgdat, &flags);
2291
2292 /*
2293 * If someone grew this zone while we were waiting for spinlock, return
2294 * true, as there might be enough pages already.
2295 */
2296 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2297 pgdat_resize_unlock(pgdat, &flags);
2298 return true;
2299 }
2300
2301 /* If the zone is empty somebody else may have cleared out the zone */
2302 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2303 first_deferred_pfn)) {
2304 pgdat->first_deferred_pfn = ULONG_MAX;
2305 pgdat_resize_unlock(pgdat, &flags);
2306 /* Retry only once. */
2307 return first_deferred_pfn != ULONG_MAX;
2308 }
2309
2310 /*
2311 * Initialize and free pages in MAX_ORDER sized increments so
2312 * that we can avoid introducing any issues with the buddy
2313 * allocator.
2314 */
2315 while (spfn < epfn) {
2316 /* update our first deferred PFN for this section */
2317 first_deferred_pfn = spfn;
2318
2319 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2320 touch_nmi_watchdog();
2321
2322 /* We should only stop along section boundaries */
2323 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2324 continue;
2325
2326 /* If our quota has been met we can stop here */
2327 if (nr_pages >= nr_pages_needed)
2328 break;
2329 }
2330
2331 pgdat->first_deferred_pfn = spfn;
2332 pgdat_resize_unlock(pgdat, &flags);
2333
2334 return nr_pages > 0;
2335 }
2336
2337 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2338
2339 #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2340 void __init init_cma_reserved_pageblock(struct page *page)
2341 {
2342 unsigned i = pageblock_nr_pages;
2343 struct page *p = page;
2344
2345 do {
2346 __ClearPageReserved(p);
2347 set_page_count(p, 0);
2348 } while (++p, --i);
2349
2350 set_pageblock_migratetype(page, MIGRATE_CMA);
2351 set_page_refcounted(page);
2352 __free_pages(page, pageblock_order);
2353
2354 adjust_managed_page_count(page, pageblock_nr_pages);
2355 page_zone(page)->cma_pages += pageblock_nr_pages;
2356 }
2357 #endif
2358
set_zone_contiguous(struct zone * zone)2359 void set_zone_contiguous(struct zone *zone)
2360 {
2361 unsigned long block_start_pfn = zone->zone_start_pfn;
2362 unsigned long block_end_pfn;
2363
2364 block_end_pfn = pageblock_end_pfn(block_start_pfn);
2365 for (; block_start_pfn < zone_end_pfn(zone);
2366 block_start_pfn = block_end_pfn,
2367 block_end_pfn += pageblock_nr_pages) {
2368
2369 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2370
2371 if (!__pageblock_pfn_to_page(block_start_pfn,
2372 block_end_pfn, zone))
2373 return;
2374 cond_resched();
2375 }
2376
2377 /* We confirm that there is no hole */
2378 zone->contiguous = true;
2379 }
2380
page_alloc_init_late(void)2381 void __init page_alloc_init_late(void)
2382 {
2383 struct zone *zone;
2384 int nid;
2385
2386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2387
2388 /* There will be num_node_state(N_MEMORY) threads */
2389 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2390 for_each_node_state(nid, N_MEMORY) {
2391 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2392 }
2393
2394 /* Block until all are initialised */
2395 wait_for_completion(&pgdat_init_all_done_comp);
2396
2397 /*
2398 * We initialized the rest of the deferred pages. Permanently disable
2399 * on-demand struct page initialization.
2400 */
2401 static_branch_disable(&deferred_pages);
2402
2403 /* Reinit limits that are based on free pages after the kernel is up */
2404 files_maxfiles_init();
2405 #endif
2406
2407 buffer_init();
2408
2409 /* Discard memblock private memory */
2410 memblock_discard();
2411
2412 for_each_node_state(nid, N_MEMORY)
2413 shuffle_free_memory(NODE_DATA(nid));
2414
2415 for_each_populated_zone(zone)
2416 set_zone_contiguous(zone);
2417
2418 /* Initialize page ext after all struct pages are initialized. */
2419 if (deferred_struct_pages)
2420 page_ext_init();
2421
2422 page_alloc_sysctl_init();
2423 }
2424
2425 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2426 /*
2427 * Returns the number of pages that arch has reserved but
2428 * is not known to alloc_large_system_hash().
2429 */
arch_reserved_kernel_pages(void)2430 static unsigned long __init arch_reserved_kernel_pages(void)
2431 {
2432 return 0;
2433 }
2434 #endif
2435
2436 /*
2437 * Adaptive scale is meant to reduce sizes of hash tables on large memory
2438 * machines. As memory size is increased the scale is also increased but at
2439 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2440 * quadruples the scale is increased by one, which means the size of hash table
2441 * only doubles, instead of quadrupling as well.
2442 * Because 32-bit systems cannot have large physical memory, where this scaling
2443 * makes sense, it is disabled on such platforms.
2444 */
2445 #if __BITS_PER_LONG > 32
2446 #define ADAPT_SCALE_BASE (64ul << 30)
2447 #define ADAPT_SCALE_SHIFT 2
2448 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2449 #endif
2450
2451 /*
2452 * allocate a large system hash table from bootmem
2453 * - it is assumed that the hash table must contain an exact power-of-2
2454 * quantity of entries
2455 * - limit is the number of hash buckets, not the total allocation size
2456 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2457 void *__init alloc_large_system_hash(const char *tablename,
2458 unsigned long bucketsize,
2459 unsigned long numentries,
2460 int scale,
2461 int flags,
2462 unsigned int *_hash_shift,
2463 unsigned int *_hash_mask,
2464 unsigned long low_limit,
2465 unsigned long high_limit)
2466 {
2467 unsigned long long max = high_limit;
2468 unsigned long log2qty, size;
2469 void *table;
2470 gfp_t gfp_flags;
2471 bool virt;
2472 bool huge;
2473
2474 /* allow the kernel cmdline to have a say */
2475 if (!numentries) {
2476 /* round applicable memory size up to nearest megabyte */
2477 numentries = nr_kernel_pages;
2478 numentries -= arch_reserved_kernel_pages();
2479
2480 /* It isn't necessary when PAGE_SIZE >= 1MB */
2481 if (PAGE_SIZE < SZ_1M)
2482 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2483
2484 #if __BITS_PER_LONG > 32
2485 if (!high_limit) {
2486 unsigned long adapt;
2487
2488 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2489 adapt <<= ADAPT_SCALE_SHIFT)
2490 scale++;
2491 }
2492 #endif
2493
2494 /* limit to 1 bucket per 2^scale bytes of low memory */
2495 if (scale > PAGE_SHIFT)
2496 numentries >>= (scale - PAGE_SHIFT);
2497 else
2498 numentries <<= (PAGE_SHIFT - scale);
2499
2500 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2501 numentries = PAGE_SIZE / bucketsize;
2502 }
2503 numentries = roundup_pow_of_two(numentries);
2504
2505 /* limit allocation size to 1/16 total memory by default */
2506 if (max == 0) {
2507 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2508 do_div(max, bucketsize);
2509 }
2510 max = min(max, 0x80000000ULL);
2511
2512 if (numentries < low_limit)
2513 numentries = low_limit;
2514 if (numentries > max)
2515 numentries = max;
2516
2517 log2qty = ilog2(numentries);
2518
2519 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2520 do {
2521 virt = false;
2522 size = bucketsize << log2qty;
2523 if (flags & HASH_EARLY) {
2524 if (flags & HASH_ZERO)
2525 table = memblock_alloc(size, SMP_CACHE_BYTES);
2526 else
2527 table = memblock_alloc_raw(size,
2528 SMP_CACHE_BYTES);
2529 } else if (get_order(size) > MAX_ORDER || hashdist) {
2530 table = vmalloc_huge(size, gfp_flags);
2531 virt = true;
2532 if (table)
2533 huge = is_vm_area_hugepages(table);
2534 } else {
2535 /*
2536 * If bucketsize is not a power-of-two, we may free
2537 * some pages at the end of hash table which
2538 * alloc_pages_exact() automatically does
2539 */
2540 table = alloc_pages_exact(size, gfp_flags);
2541 kmemleak_alloc(table, size, 1, gfp_flags);
2542 }
2543 } while (!table && size > PAGE_SIZE && --log2qty);
2544
2545 if (!table)
2546 panic("Failed to allocate %s hash table\n", tablename);
2547
2548 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2549 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2550 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2551
2552 if (_hash_shift)
2553 *_hash_shift = log2qty;
2554 if (_hash_mask)
2555 *_hash_mask = (1 << log2qty) - 1;
2556
2557 return table;
2558 }
2559
2560 /**
2561 * set_dma_reserve - set the specified number of pages reserved in the first zone
2562 * @new_dma_reserve: The number of pages to mark reserved
2563 *
2564 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2565 * In the DMA zone, a significant percentage may be consumed by kernel image
2566 * and other unfreeable allocations which can skew the watermarks badly. This
2567 * function may optionally be used to account for unfreeable pages in the
2568 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2569 * smaller per-cpu batchsize.
2570 */
set_dma_reserve(unsigned long new_dma_reserve)2571 void __init set_dma_reserve(unsigned long new_dma_reserve)
2572 {
2573 dma_reserve = new_dma_reserve;
2574 }
2575
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2576 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2577 unsigned int order)
2578 {
2579
2580 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2581 int nid = early_pfn_to_nid(pfn);
2582
2583 if (!early_page_initialised(pfn, nid))
2584 return;
2585 }
2586
2587 if (!kmsan_memblock_free_pages(page, order)) {
2588 /* KMSAN will take care of these pages. */
2589 return;
2590 }
2591 __free_pages_core(page, order);
2592 }
2593
2594 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2595 EXPORT_SYMBOL(init_on_alloc);
2596
2597 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2598 EXPORT_SYMBOL(init_on_free);
2599
2600 static bool _init_on_alloc_enabled_early __read_mostly
2601 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2602 static int __init early_init_on_alloc(char *buf)
2603 {
2604
2605 return kstrtobool(buf, &_init_on_alloc_enabled_early);
2606 }
2607 early_param("init_on_alloc", early_init_on_alloc);
2608
2609 static bool _init_on_free_enabled_early __read_mostly
2610 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2611 static int __init early_init_on_free(char *buf)
2612 {
2613 return kstrtobool(buf, &_init_on_free_enabled_early);
2614 }
2615 early_param("init_on_free", early_init_on_free);
2616
2617 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2618
2619 /*
2620 * Enable static keys related to various memory debugging and hardening options.
2621 * Some override others, and depend on early params that are evaluated in the
2622 * order of appearance. So we need to first gather the full picture of what was
2623 * enabled, and then make decisions.
2624 */
mem_debugging_and_hardening_init(void)2625 static void __init mem_debugging_and_hardening_init(void)
2626 {
2627 bool page_poisoning_requested = false;
2628 bool want_check_pages = false;
2629
2630 #ifdef CONFIG_PAGE_POISONING
2631 /*
2632 * Page poisoning is debug page alloc for some arches. If
2633 * either of those options are enabled, enable poisoning.
2634 */
2635 if (page_poisoning_enabled() ||
2636 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2637 debug_pagealloc_enabled())) {
2638 static_branch_enable(&_page_poisoning_enabled);
2639 page_poisoning_requested = true;
2640 want_check_pages = true;
2641 }
2642 #endif
2643
2644 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2645 page_poisoning_requested) {
2646 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2647 "will take precedence over init_on_alloc and init_on_free\n");
2648 _init_on_alloc_enabled_early = false;
2649 _init_on_free_enabled_early = false;
2650 }
2651
2652 if (_init_on_alloc_enabled_early) {
2653 want_check_pages = true;
2654 static_branch_enable(&init_on_alloc);
2655 } else {
2656 static_branch_disable(&init_on_alloc);
2657 }
2658
2659 if (_init_on_free_enabled_early) {
2660 want_check_pages = true;
2661 static_branch_enable(&init_on_free);
2662 } else {
2663 static_branch_disable(&init_on_free);
2664 }
2665
2666 if (IS_ENABLED(CONFIG_KMSAN) &&
2667 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2668 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2669
2670 #ifdef CONFIG_DEBUG_PAGEALLOC
2671 if (debug_pagealloc_enabled()) {
2672 want_check_pages = true;
2673 static_branch_enable(&_debug_pagealloc_enabled);
2674
2675 if (debug_guardpage_minorder())
2676 static_branch_enable(&_debug_guardpage_enabled);
2677 }
2678 #endif
2679
2680 /*
2681 * Any page debugging or hardening option also enables sanity checking
2682 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2683 * enabled already.
2684 */
2685 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2686 static_branch_enable(&check_pages_enabled);
2687 }
2688
2689 /* Report memory auto-initialization states for this boot. */
report_meminit(void)2690 static void __init report_meminit(void)
2691 {
2692 const char *stack;
2693
2694 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2695 stack = "all(pattern)";
2696 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2697 stack = "all(zero)";
2698 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2699 stack = "byref_all(zero)";
2700 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2701 stack = "byref(zero)";
2702 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2703 stack = "__user(zero)";
2704 else
2705 stack = "off";
2706
2707 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2708 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2709 want_init_on_free() ? "on" : "off");
2710 if (want_init_on_free())
2711 pr_info("mem auto-init: clearing system memory may take some time...\n");
2712 }
2713
mem_init_print_info(void)2714 static void __init mem_init_print_info(void)
2715 {
2716 unsigned long physpages, codesize, datasize, rosize, bss_size;
2717 unsigned long init_code_size, init_data_size;
2718
2719 physpages = get_num_physpages();
2720 codesize = _etext - _stext;
2721 datasize = _edata - _sdata;
2722 rosize = __end_rodata - __start_rodata;
2723 bss_size = __bss_stop - __bss_start;
2724 init_data_size = __init_end - __init_begin;
2725 init_code_size = _einittext - _sinittext;
2726
2727 /*
2728 * Detect special cases and adjust section sizes accordingly:
2729 * 1) .init.* may be embedded into .data sections
2730 * 2) .init.text.* may be out of [__init_begin, __init_end],
2731 * please refer to arch/tile/kernel/vmlinux.lds.S.
2732 * 3) .rodata.* may be embedded into .text or .data sections.
2733 */
2734 #define adj_init_size(start, end, size, pos, adj) \
2735 do { \
2736 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2737 size -= adj; \
2738 } while (0)
2739
2740 adj_init_size(__init_begin, __init_end, init_data_size,
2741 _sinittext, init_code_size);
2742 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2743 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2744 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2745 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2746
2747 #undef adj_init_size
2748
2749 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2750 #ifdef CONFIG_HIGHMEM
2751 ", %luK highmem"
2752 #endif
2753 ")\n",
2754 K(nr_free_pages()), K(physpages),
2755 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2756 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2757 K(physpages - totalram_pages() - totalcma_pages),
2758 K(totalcma_pages)
2759 #ifdef CONFIG_HIGHMEM
2760 , K(totalhigh_pages())
2761 #endif
2762 );
2763 }
2764
2765 /*
2766 * Set up kernel memory allocators
2767 */
mm_core_init(void)2768 void __init mm_core_init(void)
2769 {
2770 /* Initializations relying on SMP setup */
2771 build_all_zonelists(NULL);
2772 page_alloc_init_cpuhp();
2773
2774 /*
2775 * page_ext requires contiguous pages,
2776 * bigger than MAX_ORDER unless SPARSEMEM.
2777 */
2778 page_ext_init_flatmem();
2779 mem_debugging_and_hardening_init();
2780 kfence_alloc_pool_and_metadata();
2781 report_meminit();
2782 kmsan_init_shadow();
2783 stack_depot_early_init();
2784 mem_init();
2785 mem_init_print_info();
2786 kmem_cache_init();
2787 /*
2788 * page_owner must be initialized after buddy is ready, and also after
2789 * slab is ready so that stack_depot_init() works properly
2790 */
2791 page_ext_init_flatmem_late();
2792 kmemleak_init();
2793 ptlock_cache_init();
2794 pgtable_cache_init();
2795 debug_objects_mem_init();
2796 vmalloc_init();
2797 /* If no deferred init page_ext now, as vmap is fully initialized */
2798 if (!deferred_struct_pages)
2799 page_ext_init();
2800 /* Should be run before the first non-init thread is created */
2801 init_espfix_bsp();
2802 /* Should be run after espfix64 is set up. */
2803 pti_init();
2804 kmsan_init_runtime();
2805 mm_cache_init();
2806 }
2807