xref: /openbmc/qemu/semihosting/arm-compat-semi.c (revision 8f6330a807f2642dc2a3cdf33347aa28a4c00a87)
1  /*
2   *  Semihosting support for systems modeled on the Arm "Angel"
3   *  semihosting syscalls design. This includes Arm and RISC-V processors
4   *
5   *  Copyright (c) 2005, 2007 CodeSourcery.
6   *  Copyright (c) 2019 Linaro
7   *  Written by Paul Brook.
8   *
9   *  Copyright © 2020 by Keith Packard <keithp@keithp.com>
10   *  Adapted for systems other than ARM, including RISC-V, by Keith Packard
11   *
12   *  This program is free software; you can redistribute it and/or modify
13   *  it under the terms of the GNU General Public License as published by
14   *  the Free Software Foundation; either version 2 of the License, or
15   *  (at your option) any later version.
16   *
17   *  This program is distributed in the hope that it will be useful,
18   *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19   *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20   *  GNU General Public License for more details.
21   *
22   *  You should have received a copy of the GNU General Public License
23   *  along with this program; if not, see <http://www.gnu.org/licenses/>.
24   *
25   *  ARM Semihosting is documented in:
26   *     Semihosting for AArch32 and AArch64 Release 2.0
27   *     https://github.com/ARM-software/abi-aa/blob/main/semihosting/semihosting.rst
28   *
29   *  RISC-V Semihosting is documented in:
30   *     RISC-V Semihosting
31   *     https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
32   */
33  
34  #include "qemu/osdep.h"
35  #include "qemu/timer.h"
36  #include "exec/gdbstub.h"
37  #include "gdbstub/syscalls.h"
38  #include "semihosting/semihost.h"
39  #include "semihosting/console.h"
40  #include "semihosting/common-semi.h"
41  #include "semihosting/guestfd.h"
42  #include "semihosting/syscalls.h"
43  
44  #ifdef CONFIG_USER_ONLY
45  #include "qemu.h"
46  
47  #define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
48  #else
49  #include "qemu/cutils.h"
50  #include "hw/loader.h"
51  #include "hw/boards.h"
52  #endif
53  
54  #define TARGET_SYS_OPEN        0x01
55  #define TARGET_SYS_CLOSE       0x02
56  #define TARGET_SYS_WRITEC      0x03
57  #define TARGET_SYS_WRITE0      0x04
58  #define TARGET_SYS_WRITE       0x05
59  #define TARGET_SYS_READ        0x06
60  #define TARGET_SYS_READC       0x07
61  #define TARGET_SYS_ISERROR     0x08
62  #define TARGET_SYS_ISTTY       0x09
63  #define TARGET_SYS_SEEK        0x0a
64  #define TARGET_SYS_FLEN        0x0c
65  #define TARGET_SYS_TMPNAM      0x0d
66  #define TARGET_SYS_REMOVE      0x0e
67  #define TARGET_SYS_RENAME      0x0f
68  #define TARGET_SYS_CLOCK       0x10
69  #define TARGET_SYS_TIME        0x11
70  #define TARGET_SYS_SYSTEM      0x12
71  #define TARGET_SYS_ERRNO       0x13
72  #define TARGET_SYS_GET_CMDLINE 0x15
73  #define TARGET_SYS_HEAPINFO    0x16
74  #define TARGET_SYS_EXIT        0x18
75  #define TARGET_SYS_SYNCCACHE   0x19
76  #define TARGET_SYS_EXIT_EXTENDED 0x20
77  #define TARGET_SYS_ELAPSED     0x30
78  #define TARGET_SYS_TICKFREQ    0x31
79  
80  /* ADP_Stopped_ApplicationExit is used for exit(0),
81   * anything else is implemented as exit(1) */
82  #define ADP_Stopped_ApplicationExit     (0x20026)
83  
84  #ifndef O_BINARY
85  #define O_BINARY 0
86  #endif
87  
88  static int gdb_open_modeflags[12] = {
89      GDB_O_RDONLY,
90      GDB_O_RDONLY,
91      GDB_O_RDWR,
92      GDB_O_RDWR,
93      GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
94      GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
95      GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
96      GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
97      GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
98      GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
99      GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
100      GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
101  };
102  
103  #ifndef CONFIG_USER_ONLY
104  
105  /**
106   * common_semi_find_bases: find information about ram and heap base
107   *
108   * This function attempts to provide meaningful numbers for RAM and
109   * HEAP base addresses. The rambase is simply the lowest addressable
110   * RAM position. For the heapbase we ask the loader to scan the
111   * address space and the largest available gap by querying the "ROM"
112   * regions.
113   *
114   * Returns: a structure with the numbers we need.
115   */
116  
117  typedef struct LayoutInfo {
118      target_ulong rambase;
119      size_t ramsize;
120      hwaddr heapbase;
121      hwaddr heaplimit;
122  } LayoutInfo;
123  
find_ram_cb(Int128 start,Int128 len,const MemoryRegion * mr,hwaddr offset_in_region,void * opaque)124  static bool find_ram_cb(Int128 start, Int128 len, const MemoryRegion *mr,
125                          hwaddr offset_in_region, void *opaque)
126  {
127      LayoutInfo *info = (LayoutInfo *) opaque;
128      uint64_t size = int128_get64(len);
129  
130      if (!mr->ram || mr->readonly) {
131          return false;
132      }
133  
134      if (size > info->ramsize) {
135          info->rambase = int128_get64(start);
136          info->ramsize = size;
137      }
138  
139      /* search exhaustively for largest RAM */
140      return false;
141  }
142  
common_semi_find_bases(CPUState * cs)143  static LayoutInfo common_semi_find_bases(CPUState *cs)
144  {
145      FlatView *fv;
146      LayoutInfo info = { 0, 0, 0, 0 };
147  
148      RCU_READ_LOCK_GUARD();
149  
150      fv = address_space_to_flatview(cs->as);
151      flatview_for_each_range(fv, find_ram_cb, &info);
152  
153      /*
154       * If we have found the RAM lets iterate through the ROM blobs to
155       * work out the best place for the remainder of RAM and split it
156       * equally between stack and heap.
157       */
158      if (info.rambase || info.ramsize > 0) {
159          RomGap gap = rom_find_largest_gap_between(info.rambase, info.ramsize);
160          info.heapbase = gap.base;
161          info.heaplimit = gap.base + gap.size;
162      }
163  
164      return info;
165  }
166  
167  #endif
168  
169  #include "common-semi-target.h"
170  
171  /*
172   * Read the input value from the argument block; fail the semihosting
173   * call if the memory read fails. Eventually we could use a generic
174   * CPUState helper function here.
175   * Note that GET_ARG() handles memory access errors by jumping to
176   * do_fault, so must be used as the first thing done in handling a
177   * semihosting call, to avoid accidentally leaking allocated resources.
178   * SET_ARG(), since it unavoidably happens late, instead returns an
179   * error indication (0 on success, non-0 for error) which the caller
180   * should check.
181   */
182  
183  #define GET_ARG(n) do {                                 \
184      if (is_64bit_semihosting(env)) {                    \
185          if (get_user_u64(arg ## n, args + (n) * 8)) {   \
186              goto do_fault;                              \
187          }                                               \
188      } else {                                            \
189          if (get_user_u32(arg ## n, args + (n) * 4)) {   \
190              goto do_fault;                              \
191          }                                               \
192      }                                                   \
193  } while (0)
194  
195  #define SET_ARG(n, val)                                 \
196      (is_64bit_semihosting(env) ?                        \
197       put_user_u64(val, args + (n) * 8) :                \
198       put_user_u32(val, args + (n) * 4))
199  
200  
201  /*
202   * The semihosting API has no concept of its errno being thread-safe,
203   * as the API design predates SMP CPUs and was intended as a simple
204   * real-hardware set of debug functionality. For QEMU, we make the
205   * errno be per-thread in linux-user mode; in system-mode it is a simple
206   * global, and we assume that the guest takes care of avoiding any races.
207   */
208  #ifndef CONFIG_USER_ONLY
209  static target_ulong syscall_err;
210  
211  #include "semihosting/uaccess.h"
212  #endif
213  
get_swi_errno(CPUState * cs)214  static inline uint32_t get_swi_errno(CPUState *cs)
215  {
216  #ifdef CONFIG_USER_ONLY
217      TaskState *ts = get_task_state(cs);
218  
219      return ts->swi_errno;
220  #else
221      return syscall_err;
222  #endif
223  }
224  
common_semi_cb(CPUState * cs,uint64_t ret,int err)225  static void common_semi_cb(CPUState *cs, uint64_t ret, int err)
226  {
227      if (err) {
228  #ifdef CONFIG_USER_ONLY
229          TaskState *ts = get_task_state(cs);
230          ts->swi_errno = err;
231  #else
232          syscall_err = err;
233  #endif
234      }
235      common_semi_set_ret(cs, ret);
236  }
237  
238  /*
239   * Use 0xdeadbeef as the return value when there isn't a defined
240   * return value for the call.
241   */
common_semi_dead_cb(CPUState * cs,uint64_t ret,int err)242  static void common_semi_dead_cb(CPUState *cs, uint64_t ret, int err)
243  {
244      common_semi_set_ret(cs, 0xdeadbeef);
245  }
246  
247  /*
248   * SYS_READ and SYS_WRITE always return the number of bytes not read/written.
249   * There is no error condition, other than returning the original length.
250   */
common_semi_rw_cb(CPUState * cs,uint64_t ret,int err)251  static void common_semi_rw_cb(CPUState *cs, uint64_t ret, int err)
252  {
253      /* Recover the original length from the third argument. */
254      CPUArchState *env G_GNUC_UNUSED = cpu_env(cs);
255      target_ulong args = common_semi_arg(cs, 1);
256      target_ulong arg2;
257      GET_ARG(2);
258  
259      if (err) {
260   do_fault:
261          ret = 0; /* error: no bytes transmitted */
262      }
263      common_semi_set_ret(cs, arg2 - ret);
264  }
265  
266  /*
267   * Convert from Posix ret+errno to Arm SYS_ISTTY return values.
268   * With gdbstub, err is only ever set for protocol errors to EIO.
269   */
common_semi_istty_cb(CPUState * cs,uint64_t ret,int err)270  static void common_semi_istty_cb(CPUState *cs, uint64_t ret, int err)
271  {
272      if (err) {
273          ret = (err == ENOTTY ? 0 : -1);
274      }
275      common_semi_cb(cs, ret, err);
276  }
277  
278  /*
279   * SYS_SEEK returns 0 on success, not the resulting offset.
280   */
common_semi_seek_cb(CPUState * cs,uint64_t ret,int err)281  static void common_semi_seek_cb(CPUState *cs, uint64_t ret, int err)
282  {
283      if (!err) {
284          ret = 0;
285      }
286      common_semi_cb(cs, ret, err);
287  }
288  
289  /*
290   * Return an address in target memory of 64 bytes where the remote
291   * gdb should write its stat struct. (The format of this structure
292   * is defined by GDB's remote protocol and is not target-specific.)
293   * We put this on the guest's stack just below SP.
294   */
common_semi_flen_buf(CPUState * cs)295  static target_ulong common_semi_flen_buf(CPUState *cs)
296  {
297      target_ulong sp = common_semi_stack_bottom(cs);
298      return sp - 64;
299  }
300  
301  static void
common_semi_flen_fstat_cb(CPUState * cs,uint64_t ret,int err)302  common_semi_flen_fstat_cb(CPUState *cs, uint64_t ret, int err)
303  {
304      if (!err) {
305          /* The size is always stored in big-endian order, extract the value. */
306          uint64_t size;
307          if (cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) +
308                                  offsetof(struct gdb_stat, gdb_st_size),
309                                  &size, 8, 0)) {
310              ret = -1, err = EFAULT;
311          } else {
312              size = be64_to_cpu(size);
313              if (ret != size) {
314                  ret = -1, err = EOVERFLOW;
315              }
316          }
317      }
318      common_semi_cb(cs, ret, err);
319  }
320  
321  static void
common_semi_readc_cb(CPUState * cs,uint64_t ret,int err)322  common_semi_readc_cb(CPUState *cs, uint64_t ret, int err)
323  {
324      if (!err) {
325          CPUArchState *env G_GNUC_UNUSED = cpu_env(cs);
326          uint8_t ch;
327  
328          if (get_user_u8(ch, common_semi_stack_bottom(cs) - 1)) {
329              ret = -1, err = EFAULT;
330          } else {
331              ret = ch;
332          }
333      }
334      common_semi_cb(cs, ret, err);
335  }
336  
337  #define SHFB_MAGIC_0 0x53
338  #define SHFB_MAGIC_1 0x48
339  #define SHFB_MAGIC_2 0x46
340  #define SHFB_MAGIC_3 0x42
341  
342  /* Feature bits reportable in feature byte 0 */
343  #define SH_EXT_EXIT_EXTENDED (1 << 0)
344  #define SH_EXT_STDOUT_STDERR (1 << 1)
345  
346  static const uint8_t featurefile_data[] = {
347      SHFB_MAGIC_0,
348      SHFB_MAGIC_1,
349      SHFB_MAGIC_2,
350      SHFB_MAGIC_3,
351      SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
352  };
353  
354  /*
355   * Do a semihosting call.
356   *
357   * The specification always says that the "return register" either
358   * returns a specific value or is corrupted, so we don't need to
359   * report to our caller whether we are returning a value or trying to
360   * leave the register unchanged.
361   */
do_common_semihosting(CPUState * cs)362  void do_common_semihosting(CPUState *cs)
363  {
364      CPUArchState *env = cpu_env(cs);
365      target_ulong args;
366      target_ulong arg0, arg1, arg2, arg3;
367      target_ulong ul_ret;
368      char * s;
369      int nr;
370      int64_t elapsed;
371  
372      nr = common_semi_arg(cs, 0) & 0xffffffffU;
373      args = common_semi_arg(cs, 1);
374  
375      switch (nr) {
376      case TARGET_SYS_OPEN:
377      {
378          int ret, err = 0;
379          int hostfd;
380  
381          GET_ARG(0);
382          GET_ARG(1);
383          GET_ARG(2);
384          s = lock_user_string(arg0);
385          if (!s) {
386              goto do_fault;
387          }
388          if (arg1 >= 12) {
389              unlock_user(s, arg0, 0);
390              common_semi_cb(cs, -1, EINVAL);
391              break;
392          }
393  
394          if (strcmp(s, ":tt") == 0) {
395              /*
396               * We implement SH_EXT_STDOUT_STDERR, so:
397               *  open for read == stdin
398               *  open for write == stdout
399               *  open for append == stderr
400               */
401              if (arg1 < 4) {
402                  hostfd = STDIN_FILENO;
403              } else if (arg1 < 8) {
404                  hostfd = STDOUT_FILENO;
405              } else {
406                  hostfd = STDERR_FILENO;
407              }
408              ret = alloc_guestfd();
409              associate_guestfd(ret, hostfd);
410          } else if (strcmp(s, ":semihosting-features") == 0) {
411              /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
412              if (arg1 != 0 && arg1 != 1) {
413                  ret = -1;
414                  err = EACCES;
415              } else {
416                  ret = alloc_guestfd();
417                  staticfile_guestfd(ret, featurefile_data,
418                                     sizeof(featurefile_data));
419              }
420          } else {
421              unlock_user(s, arg0, 0);
422              semihost_sys_open(cs, common_semi_cb, arg0, arg2 + 1,
423                                gdb_open_modeflags[arg1], 0644);
424              break;
425          }
426          unlock_user(s, arg0, 0);
427          common_semi_cb(cs, ret, err);
428          break;
429      }
430  
431      case TARGET_SYS_CLOSE:
432          GET_ARG(0);
433          semihost_sys_close(cs, common_semi_cb, arg0);
434          break;
435  
436      case TARGET_SYS_WRITEC:
437          /*
438           * FIXME: the byte to be written is in a target_ulong slot,
439           * which means this is wrong for a big-endian guest.
440           */
441          semihost_sys_write_gf(cs, common_semi_dead_cb,
442                                &console_out_gf, args, 1);
443          break;
444  
445      case TARGET_SYS_WRITE0:
446          {
447              ssize_t len = target_strlen(args);
448              if (len < 0) {
449                  common_semi_dead_cb(cs, -1, EFAULT);
450              } else {
451                  semihost_sys_write_gf(cs, common_semi_dead_cb,
452                                        &console_out_gf, args, len);
453              }
454          }
455          break;
456  
457      case TARGET_SYS_WRITE:
458          GET_ARG(0);
459          GET_ARG(1);
460          GET_ARG(2);
461          semihost_sys_write(cs, common_semi_rw_cb, arg0, arg1, arg2);
462          break;
463  
464      case TARGET_SYS_READ:
465          GET_ARG(0);
466          GET_ARG(1);
467          GET_ARG(2);
468          semihost_sys_read(cs, common_semi_rw_cb, arg0, arg1, arg2);
469          break;
470  
471      case TARGET_SYS_READC:
472          semihost_sys_read_gf(cs, common_semi_readc_cb, &console_in_gf,
473                               common_semi_stack_bottom(cs) - 1, 1);
474          break;
475  
476      case TARGET_SYS_ISERROR:
477          GET_ARG(0);
478          common_semi_set_ret(cs, (target_long)arg0 < 0);
479          break;
480  
481      case TARGET_SYS_ISTTY:
482          GET_ARG(0);
483          semihost_sys_isatty(cs, common_semi_istty_cb, arg0);
484          break;
485  
486      case TARGET_SYS_SEEK:
487          GET_ARG(0);
488          GET_ARG(1);
489          semihost_sys_lseek(cs, common_semi_seek_cb, arg0, arg1, GDB_SEEK_SET);
490          break;
491  
492      case TARGET_SYS_FLEN:
493          GET_ARG(0);
494          semihost_sys_flen(cs, common_semi_flen_fstat_cb, common_semi_cb,
495                            arg0, common_semi_flen_buf(cs));
496          break;
497  
498      case TARGET_SYS_TMPNAM:
499      {
500          int len;
501          char *p;
502  
503          GET_ARG(0);
504          GET_ARG(1);
505          GET_ARG(2);
506          len = asprintf(&s, "%s/qemu-%x%02x", g_get_tmp_dir(),
507                         getpid(), (int)arg1 & 0xff);
508          if (len < 0) {
509              common_semi_set_ret(cs, -1);
510              break;
511          }
512  
513          /* Allow for trailing NUL */
514          len++;
515          /* Make sure there's enough space in the buffer */
516          if (len > arg2) {
517              free(s);
518              common_semi_set_ret(cs, -1);
519              break;
520          }
521          p = lock_user(VERIFY_WRITE, arg0, len, 0);
522          if (!p) {
523              free(s);
524              goto do_fault;
525          }
526          memcpy(p, s, len);
527          unlock_user(p, arg0, len);
528          free(s);
529          common_semi_set_ret(cs, 0);
530          break;
531      }
532  
533      case TARGET_SYS_REMOVE:
534          GET_ARG(0);
535          GET_ARG(1);
536          semihost_sys_remove(cs, common_semi_cb, arg0, arg1 + 1);
537          break;
538  
539      case TARGET_SYS_RENAME:
540          GET_ARG(0);
541          GET_ARG(1);
542          GET_ARG(2);
543          GET_ARG(3);
544          semihost_sys_rename(cs, common_semi_cb, arg0, arg1 + 1, arg2, arg3 + 1);
545          break;
546  
547      case TARGET_SYS_CLOCK:
548          common_semi_set_ret(cs, clock() / (CLOCKS_PER_SEC / 100));
549          break;
550  
551      case TARGET_SYS_TIME:
552          ul_ret = time(NULL);
553          common_semi_cb(cs, ul_ret, ul_ret == -1 ? errno : 0);
554          break;
555  
556      case TARGET_SYS_SYSTEM:
557          GET_ARG(0);
558          GET_ARG(1);
559          semihost_sys_system(cs, common_semi_cb, arg0, arg1 + 1);
560          break;
561  
562      case TARGET_SYS_ERRNO:
563          common_semi_set_ret(cs, get_swi_errno(cs));
564          break;
565  
566      case TARGET_SYS_GET_CMDLINE:
567          {
568              /* Build a command-line from the original argv.
569               *
570               * The inputs are:
571               *     * arg0, pointer to a buffer of at least the size
572               *               specified in arg1.
573               *     * arg1, size of the buffer pointed to by arg0 in
574               *               bytes.
575               *
576               * The outputs are:
577               *     * arg0, pointer to null-terminated string of the
578               *               command line.
579               *     * arg1, length of the string pointed to by arg0.
580               */
581  
582              char *output_buffer;
583              size_t input_size;
584              size_t output_size;
585              int status = 0;
586  #if !defined(CONFIG_USER_ONLY)
587              const char *cmdline;
588  #else
589              TaskState *ts = get_task_state(cs);
590  #endif
591              GET_ARG(0);
592              GET_ARG(1);
593              input_size = arg1;
594              /* Compute the size of the output string.  */
595  #if !defined(CONFIG_USER_ONLY)
596              cmdline = semihosting_get_cmdline();
597              if (cmdline == NULL) {
598                  cmdline = ""; /* Default to an empty line. */
599              }
600              output_size = strlen(cmdline) + 1; /* Count terminating 0. */
601  #else
602              unsigned int i;
603  
604              output_size = ts->info->env_strings - ts->info->arg_strings;
605              if (!output_size) {
606                  /*
607                   * We special-case the "empty command line" case (argc==0).
608                   * Just provide the terminating 0.
609                   */
610                  output_size = 1;
611              }
612  #endif
613  
614              if (output_size > input_size) {
615                  /* Not enough space to store command-line arguments.  */
616                  common_semi_cb(cs, -1, E2BIG);
617                  break;
618              }
619  
620              /* Adjust the command-line length.  */
621              if (SET_ARG(1, output_size - 1)) {
622                  /* Couldn't write back to argument block */
623                  goto do_fault;
624              }
625  
626              /* Lock the buffer on the ARM side.  */
627              output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
628              if (!output_buffer) {
629                  goto do_fault;
630              }
631  
632              /* Copy the command-line arguments.  */
633  #if !defined(CONFIG_USER_ONLY)
634              pstrcpy(output_buffer, output_size, cmdline);
635  #else
636              if (output_size == 1) {
637                  /* Empty command-line.  */
638                  output_buffer[0] = '\0';
639                  goto out;
640              }
641  
642              if (copy_from_user(output_buffer, ts->info->arg_strings,
643                                 output_size)) {
644                  unlock_user(output_buffer, arg0, 0);
645                  goto do_fault;
646              }
647  
648              /* Separate arguments by white spaces.  */
649              for (i = 0; i < output_size - 1; i++) {
650                  if (output_buffer[i] == 0) {
651                      output_buffer[i] = ' ';
652                  }
653              }
654          out:
655  #endif
656              /* Unlock the buffer on the ARM side.  */
657              unlock_user(output_buffer, arg0, output_size);
658              common_semi_cb(cs, status, 0);
659          }
660          break;
661  
662      case TARGET_SYS_HEAPINFO:
663          {
664              target_ulong retvals[4];
665              int i;
666  #ifdef CONFIG_USER_ONLY
667              TaskState *ts = get_task_state(cs);
668              target_ulong limit;
669  #else
670              LayoutInfo info = common_semi_find_bases(cs);
671  #endif
672  
673              GET_ARG(0);
674  
675  #ifdef CONFIG_USER_ONLY
676              /*
677               * Some C libraries assume the heap immediately follows .bss, so
678               * allocate it using sbrk.
679               */
680              if (!ts->heap_limit) {
681                  abi_ulong ret;
682  
683                  ts->heap_base = do_brk(0);
684                  limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
685                  /* Try a big heap, and reduce the size if that fails.  */
686                  for (;;) {
687                      ret = do_brk(limit);
688                      if (ret >= limit) {
689                          break;
690                      }
691                      limit = (ts->heap_base >> 1) + (limit >> 1);
692                  }
693                  ts->heap_limit = limit;
694              }
695  
696              retvals[0] = ts->heap_base;
697              retvals[1] = ts->heap_limit;
698              retvals[2] = ts->stack_base;
699              retvals[3] = 0; /* Stack limit.  */
700  #else
701              retvals[0] = info.heapbase;  /* Heap Base */
702              retvals[1] = info.heaplimit; /* Heap Limit */
703              retvals[2] = info.heaplimit; /* Stack base */
704              retvals[3] = info.heapbase;  /* Stack limit.  */
705  #endif
706  
707              for (i = 0; i < ARRAY_SIZE(retvals); i++) {
708                  bool fail;
709  
710                  if (is_64bit_semihosting(env)) {
711                      fail = put_user_u64(retvals[i], arg0 + i * 8);
712                  } else {
713                      fail = put_user_u32(retvals[i], arg0 + i * 4);
714                  }
715  
716                  if (fail) {
717                      /* Couldn't write back to argument block */
718                      goto do_fault;
719                  }
720              }
721              common_semi_set_ret(cs, 0);
722          }
723          break;
724  
725      case TARGET_SYS_EXIT:
726      case TARGET_SYS_EXIT_EXTENDED:
727      {
728          uint32_t ret;
729  
730          if (common_semi_sys_exit_extended(cs, nr)) {
731              /*
732               * The A64 version of SYS_EXIT takes a parameter block,
733               * so the application-exit type can return a subcode which
734               * is the exit status code from the application.
735               * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
736               * which allows A32/T32 guests to also provide a status code.
737               */
738              GET_ARG(0);
739              GET_ARG(1);
740  
741              if (arg0 == ADP_Stopped_ApplicationExit) {
742                  ret = arg1;
743              } else {
744                  ret = 1;
745              }
746          } else {
747              /*
748               * The A32/T32 version of SYS_EXIT specifies only
749               * Stopped_ApplicationExit as normal exit, but does not
750               * allow the guest to specify the exit status code.
751               * Everything else is considered an error.
752               */
753              ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
754          }
755          gdb_exit(ret);
756          exit(ret);
757      }
758  
759      case TARGET_SYS_ELAPSED:
760          elapsed = get_clock() - clock_start;
761          if (sizeof(target_ulong) == 8) {
762              if (SET_ARG(0, elapsed)) {
763                  goto do_fault;
764              }
765          } else {
766              if (SET_ARG(0, (uint32_t) elapsed) ||
767                  SET_ARG(1, (uint32_t) (elapsed >> 32))) {
768                  goto do_fault;
769              }
770          }
771          common_semi_set_ret(cs, 0);
772          break;
773  
774      case TARGET_SYS_TICKFREQ:
775          /* qemu always uses nsec */
776          common_semi_set_ret(cs, 1000000000);
777          break;
778  
779      case TARGET_SYS_SYNCCACHE:
780          /*
781           * Clean the D-cache and invalidate the I-cache for the specified
782           * virtual address range. This is a nop for us since we don't
783           * implement caches. This is only present on A64.
784           */
785          if (common_semi_has_synccache(env)) {
786              common_semi_set_ret(cs, 0);
787              break;
788          }
789          /* fall through */
790      default:
791          fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
792          cpu_dump_state(cs, stderr, 0);
793          abort();
794  
795      do_fault:
796          common_semi_cb(cs, -1, EFAULT);
797          break;
798      }
799  }
800