xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 2f49e05d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
is_mcq_supported(struct ufs_hba * hba)104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
ufshcd_enable_irq(struct ufs_hba * hba)291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
ufshcd_disable_irq(struct ufs_hba * hba)299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
ufshcd_configure_wb(struct ufs_hba * hba)307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
ufshcd_scsi_block_requests(struct ufs_hba * hba)326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
ufshcd_print_clk_freqs(struct ufs_hba * hba)454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
ufshcd_print_evt_hist(struct ufs_hba * hba)498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
ufshcd_print_tr_iter(struct request * req,void * priv)567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
ufshcd_print_host_state(struct ufs_hba * hba)600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
ufshcd_print_pwr_info(struct ufs_hba * hba)641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
ufshcd_device_reset(struct ufs_hba * hba)667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
ufshcd_get_intr_mask(struct ufs_hba * hba)735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
ufshcd_get_ufs_version(struct ufs_hba * hba)751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
ufshcd_is_device_present(struct ufs_hba * hba)778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
ufshcd_get_lists_status(u32 reg)845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
ufshcd_hba_start(struct ufs_hba * hba)957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
ufshcd_is_hba_active(struct ufs_hba * hba)973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
ufshcd_pending_cmds(struct ufs_hba * hba)1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
ufshcd_devfreq_init(struct ufs_hba * hba)1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
ufshcd_devfreq_remove(struct ufs_hba * hba)1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
ufshcd_ungate_work(struct work_struct * work)1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
ufshcd_hold(struct ufs_hba * hba)1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
ufshcd_gate_work(struct work_struct * work)1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
ufshcd_release(struct ufs_hba * hba)1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
ufshcd_init_clk_gating(struct ufs_hba * hba)1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
ufshcd_monitor_opcode2dir(u8 opcode)2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 		memcpy(dest, src, utrd_size);
2180 		ufshcd_inc_sq_tail(hwq);
2181 		spin_unlock(&hwq->sq_lock);
2182 	} else {
2183 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 		if (hba->vops && hba->vops->setup_xfer_req)
2185 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 						  !!lrbp->cmd);
2187 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 	}
2192 }
2193 
2194 /**
2195  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196  * @lrbp: pointer to local reference block
2197  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 	u16 resp_len;
2202 	int len;
2203 
2204 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 	if (sense_buffer && resp_len) {
2206 		int len_to_copy;
2207 
2208 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210 
2211 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 		       len_to_copy);
2213 	}
2214 }
2215 
2216 /**
2217  * ufshcd_copy_query_response() - Copy the Query Response and the data
2218  * descriptor
2219  * @hba: per adapter instance
2220  * @lrbp: pointer to local reference block
2221  *
2222  * Return: 0 upon success; < 0 upon failure.
2223  */
2224 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228 
2229 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230 
2231 	/* Get the descriptor */
2232 	if (hba->dev_cmd.query.descriptor &&
2233 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 				GENERAL_UPIU_REQUEST_SIZE;
2236 		u16 resp_len;
2237 		u16 buf_len;
2238 
2239 		/* data segment length */
2240 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 				       .data_segment_length);
2242 		buf_len = be16_to_cpu(
2243 				hba->dev_cmd.query.request.upiu_req.length);
2244 		if (likely(buf_len >= resp_len)) {
2245 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 		} else {
2247 			dev_warn(hba->dev,
2248 				 "%s: rsp size %d is bigger than buffer size %d",
2249 				 __func__, resp_len, buf_len);
2250 			return -EINVAL;
2251 		}
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * ufshcd_hba_capabilities - Read controller capabilities
2259  * @hba: per adapter instance
2260  *
2261  * Return: 0 on success, negative on error.
2262  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 	int err;
2266 
2267 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270 
2271 	/* nutrs and nutmrs are 0 based values */
2272 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 	hba->nutmrs =
2274 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 	hba->reserved_slot = hba->nutrs - 1;
2276 
2277 	/* Read crypto capabilities */
2278 	err = ufshcd_hba_init_crypto_capabilities(hba);
2279 	if (err) {
2280 		dev_err(hba->dev, "crypto setup failed\n");
2281 		return err;
2282 	}
2283 
2284 	/*
2285 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2286 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2287 	 * means we can simply read values regardless of version.
2288 	 */
2289 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2290 	/*
2291 	 * 0h: legacy single doorbell support is available
2292 	 * 1h: indicate that legacy single doorbell support has been removed
2293 	 */
2294 	hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2295 	if (!hba->mcq_sup)
2296 		return 0;
2297 
2298 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2299 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2300 				     hba->mcq_capabilities);
2301 
2302 	return 0;
2303 }
2304 
2305 /**
2306  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2307  *                            to accept UIC commands
2308  * @hba: per adapter instance
2309  *
2310  * Return: true on success, else false.
2311  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2312 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2313 {
2314 	u32 val;
2315 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2316 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2317 				    REG_CONTROLLER_STATUS);
2318 	return ret == 0 ? true : false;
2319 }
2320 
2321 /**
2322  * ufshcd_get_upmcrs - Get the power mode change request status
2323  * @hba: Pointer to adapter instance
2324  *
2325  * This function gets the UPMCRS field of HCS register
2326  *
2327  * Return: value of UPMCRS field.
2328  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2329 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2330 {
2331 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2332 }
2333 
2334 /**
2335  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2336  * @hba: per adapter instance
2337  * @uic_cmd: UIC command
2338  */
2339 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2340 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2341 {
2342 	lockdep_assert_held(&hba->uic_cmd_mutex);
2343 
2344 	WARN_ON(hba->active_uic_cmd);
2345 
2346 	hba->active_uic_cmd = uic_cmd;
2347 
2348 	/* Write Args */
2349 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2350 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2351 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2352 
2353 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2354 
2355 	/* Write UIC Cmd */
2356 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2357 		      REG_UIC_COMMAND);
2358 }
2359 
2360 /**
2361  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2362  * @hba: per adapter instance
2363  * @uic_cmd: UIC command
2364  *
2365  * Return: 0 only if success.
2366  */
2367 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2368 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2369 {
2370 	int ret;
2371 	unsigned long flags;
2372 
2373 	lockdep_assert_held(&hba->uic_cmd_mutex);
2374 
2375 	if (wait_for_completion_timeout(&uic_cmd->done,
2376 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2377 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 	} else {
2379 		ret = -ETIMEDOUT;
2380 		dev_err(hba->dev,
2381 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2382 			uic_cmd->command, uic_cmd->argument3);
2383 
2384 		if (!uic_cmd->cmd_active) {
2385 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2386 				__func__);
2387 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2388 		}
2389 	}
2390 
2391 	spin_lock_irqsave(hba->host->host_lock, flags);
2392 	hba->active_uic_cmd = NULL;
2393 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2394 
2395 	return ret;
2396 }
2397 
2398 /**
2399  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2400  * @hba: per adapter instance
2401  * @uic_cmd: UIC command
2402  * @completion: initialize the completion only if this is set to true
2403  *
2404  * Return: 0 only if success.
2405  */
2406 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2407 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2408 		      bool completion)
2409 {
2410 	lockdep_assert_held(&hba->uic_cmd_mutex);
2411 
2412 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2413 		dev_err(hba->dev,
2414 			"Controller not ready to accept UIC commands\n");
2415 		return -EIO;
2416 	}
2417 
2418 	if (completion)
2419 		init_completion(&uic_cmd->done);
2420 
2421 	uic_cmd->cmd_active = 1;
2422 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2423 
2424 	return 0;
2425 }
2426 
2427 /**
2428  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2429  * @hba: per adapter instance
2430  * @uic_cmd: UIC command
2431  *
2432  * Return: 0 only if success.
2433  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2434 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2435 {
2436 	int ret;
2437 
2438 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2439 		return 0;
2440 
2441 	ufshcd_hold(hba);
2442 	mutex_lock(&hba->uic_cmd_mutex);
2443 	ufshcd_add_delay_before_dme_cmd(hba);
2444 
2445 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2446 	if (!ret)
2447 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2448 
2449 	mutex_unlock(&hba->uic_cmd_mutex);
2450 
2451 	ufshcd_release(hba);
2452 	return ret;
2453 }
2454 
2455 /**
2456  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2457  * @hba:	per-adapter instance
2458  * @lrbp:	pointer to local reference block
2459  * @sg_entries:	The number of sg lists actually used
2460  * @sg_list:	Pointer to SG list
2461  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2462 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2463 			       struct scatterlist *sg_list)
2464 {
2465 	struct ufshcd_sg_entry *prd;
2466 	struct scatterlist *sg;
2467 	int i;
2468 
2469 	if (sg_entries) {
2470 
2471 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2472 			lrbp->utr_descriptor_ptr->prd_table_length =
2473 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2474 		else
2475 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2476 
2477 		prd = lrbp->ucd_prdt_ptr;
2478 
2479 		for_each_sg(sg_list, sg, sg_entries, i) {
2480 			const unsigned int len = sg_dma_len(sg);
2481 
2482 			/*
2483 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2484 			 * based value that indicates the length, in bytes, of
2485 			 * the data block. A maximum of length of 256KB may
2486 			 * exist for any entry. Bits 1:0 of this field shall be
2487 			 * 11b to indicate Dword granularity. A value of '3'
2488 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2489 			 */
2490 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2491 			prd->size = cpu_to_le32(len - 1);
2492 			prd->addr = cpu_to_le64(sg->dma_address);
2493 			prd->reserved = 0;
2494 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2495 		}
2496 	} else {
2497 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2498 	}
2499 }
2500 
2501 /**
2502  * ufshcd_map_sg - Map scatter-gather list to prdt
2503  * @hba: per adapter instance
2504  * @lrbp: pointer to local reference block
2505  *
2506  * Return: 0 in case of success, non-zero value in case of failure.
2507  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2508 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2509 {
2510 	struct scsi_cmnd *cmd = lrbp->cmd;
2511 	int sg_segments = scsi_dma_map(cmd);
2512 
2513 	if (sg_segments < 0)
2514 		return sg_segments;
2515 
2516 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2517 
2518 	return 0;
2519 }
2520 
2521 /**
2522  * ufshcd_enable_intr - enable interrupts
2523  * @hba: per adapter instance
2524  * @intrs: interrupt bits
2525  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2526 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2527 {
2528 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2529 
2530 	if (hba->ufs_version == ufshci_version(1, 0)) {
2531 		u32 rw;
2532 		rw = set & INTERRUPT_MASK_RW_VER_10;
2533 		set = rw | ((set ^ intrs) & intrs);
2534 	} else {
2535 		set |= intrs;
2536 	}
2537 
2538 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2539 }
2540 
2541 /**
2542  * ufshcd_disable_intr - disable interrupts
2543  * @hba: per adapter instance
2544  * @intrs: interrupt bits
2545  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2546 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2547 {
2548 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2549 
2550 	if (hba->ufs_version == ufshci_version(1, 0)) {
2551 		u32 rw;
2552 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2553 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2554 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2555 
2556 	} else {
2557 		set &= ~intrs;
2558 	}
2559 
2560 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2561 }
2562 
2563 /**
2564  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2565  * descriptor according to request
2566  * @lrbp: pointer to local reference block
2567  * @upiu_flags: flags required in the header
2568  * @cmd_dir: requests data direction
2569  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2570  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2571 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2572 					enum dma_data_direction cmd_dir, int ehs_length)
2573 {
2574 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2575 	struct request_desc_header *h = &req_desc->header;
2576 	enum utp_data_direction data_direction;
2577 
2578 	*h = (typeof(*h)){ };
2579 
2580 	if (cmd_dir == DMA_FROM_DEVICE) {
2581 		data_direction = UTP_DEVICE_TO_HOST;
2582 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2583 	} else if (cmd_dir == DMA_TO_DEVICE) {
2584 		data_direction = UTP_HOST_TO_DEVICE;
2585 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2586 	} else {
2587 		data_direction = UTP_NO_DATA_TRANSFER;
2588 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2589 	}
2590 
2591 	h->command_type = lrbp->command_type;
2592 	h->data_direction = data_direction;
2593 	h->ehs_length = ehs_length;
2594 
2595 	if (lrbp->intr_cmd)
2596 		h->interrupt = 1;
2597 
2598 	/* Prepare crypto related dwords */
2599 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2600 
2601 	/*
2602 	 * assigning invalid value for command status. Controller
2603 	 * updates OCS on command completion, with the command
2604 	 * status
2605 	 */
2606 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2607 
2608 	req_desc->prd_table_length = 0;
2609 }
2610 
2611 /**
2612  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2613  * for scsi commands
2614  * @lrbp: local reference block pointer
2615  * @upiu_flags: flags
2616  */
2617 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2618 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2619 {
2620 	struct scsi_cmnd *cmd = lrbp->cmd;
2621 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2622 	unsigned short cdb_len;
2623 
2624 	ucd_req_ptr->header = (struct utp_upiu_header){
2625 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2626 		.flags = upiu_flags,
2627 		.lun = lrbp->lun,
2628 		.task_tag = lrbp->task_tag,
2629 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2630 	};
2631 
2632 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2633 
2634 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2635 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2636 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2637 
2638 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2639 }
2640 
2641 /**
2642  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2643  * @hba: UFS hba
2644  * @lrbp: local reference block pointer
2645  * @upiu_flags: flags
2646  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2647 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2648 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2649 {
2650 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2651 	struct ufs_query *query = &hba->dev_cmd.query;
2652 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2653 
2654 	/* Query request header */
2655 	ucd_req_ptr->header = (struct utp_upiu_header){
2656 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2657 		.flags = upiu_flags,
2658 		.lun = lrbp->lun,
2659 		.task_tag = lrbp->task_tag,
2660 		.query_function = query->request.query_func,
2661 		/* Data segment length only need for WRITE_DESC */
2662 		.data_segment_length =
2663 			query->request.upiu_req.opcode ==
2664 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2665 				cpu_to_be16(len) :
2666 				0,
2667 	};
2668 
2669 	/* Copy the Query Request buffer as is */
2670 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2671 			QUERY_OSF_SIZE);
2672 
2673 	/* Copy the Descriptor */
2674 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2675 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2676 
2677 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2678 }
2679 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2680 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2681 {
2682 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2683 
2684 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2685 
2686 	ucd_req_ptr->header = (struct utp_upiu_header){
2687 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2688 		.task_tag = lrbp->task_tag,
2689 	};
2690 
2691 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2692 }
2693 
2694 /**
2695  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2696  *			     for Device Management Purposes
2697  * @hba: per adapter instance
2698  * @lrbp: pointer to local reference block
2699  *
2700  * Return: 0 upon success; < 0 upon failure.
2701  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2702 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2703 				      struct ufshcd_lrb *lrbp)
2704 {
2705 	u8 upiu_flags;
2706 	int ret = 0;
2707 
2708 	if (hba->ufs_version <= ufshci_version(1, 1))
2709 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2710 	else
2711 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2712 
2713 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2714 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2715 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2716 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2717 		ufshcd_prepare_utp_nop_upiu(lrbp);
2718 	else
2719 		ret = -EINVAL;
2720 
2721 	return ret;
2722 }
2723 
2724 /**
2725  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2726  *			   for SCSI Purposes
2727  * @hba: per adapter instance
2728  * @lrbp: pointer to local reference block
2729  *
2730  * Return: 0 upon success; < 0 upon failure.
2731  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2732 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2733 {
2734 	u8 upiu_flags;
2735 	int ret = 0;
2736 
2737 	if (hba->ufs_version <= ufshci_version(1, 1))
2738 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2739 	else
2740 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2741 
2742 	if (likely(lrbp->cmd)) {
2743 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2744 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2745 	} else {
2746 		ret = -EINVAL;
2747 	}
2748 
2749 	return ret;
2750 }
2751 
2752 /**
2753  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2754  * @upiu_wlun_id: UPIU W-LUN id
2755  *
2756  * Return: SCSI W-LUN id.
2757  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2758 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2759 {
2760 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2761 }
2762 
is_device_wlun(struct scsi_device * sdev)2763 static inline bool is_device_wlun(struct scsi_device *sdev)
2764 {
2765 	return sdev->lun ==
2766 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2767 }
2768 
2769 /*
2770  * Associate the UFS controller queue with the default and poll HCTX types.
2771  * Initialize the mq_map[] arrays.
2772  */
ufshcd_map_queues(struct Scsi_Host * shost)2773 static void ufshcd_map_queues(struct Scsi_Host *shost)
2774 {
2775 	struct ufs_hba *hba = shost_priv(shost);
2776 	int i, queue_offset = 0;
2777 
2778 	if (!is_mcq_supported(hba)) {
2779 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2780 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2781 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2782 		hba->nr_hw_queues = 1;
2783 	}
2784 
2785 	for (i = 0; i < shost->nr_maps; i++) {
2786 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2787 
2788 		map->nr_queues = hba->nr_queues[i];
2789 		if (!map->nr_queues)
2790 			continue;
2791 		map->queue_offset = queue_offset;
2792 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2793 			map->queue_offset = 0;
2794 
2795 		blk_mq_map_queues(map);
2796 		queue_offset += map->nr_queues;
2797 	}
2798 }
2799 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2800 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2801 {
2802 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2803 		i * ufshcd_get_ucd_size(hba);
2804 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2805 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2806 		i * ufshcd_get_ucd_size(hba);
2807 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2808 				       response_upiu);
2809 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2810 
2811 	lrb->utr_descriptor_ptr = utrdlp + i;
2812 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2813 		i * sizeof(struct utp_transfer_req_desc);
2814 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2815 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2816 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2817 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2818 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2819 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2820 }
2821 
2822 /**
2823  * ufshcd_queuecommand - main entry point for SCSI requests
2824  * @host: SCSI host pointer
2825  * @cmd: command from SCSI Midlayer
2826  *
2827  * Return: 0 for success, non-zero in case of failure.
2828  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2829 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2830 {
2831 	struct ufs_hba *hba = shost_priv(host);
2832 	int tag = scsi_cmd_to_rq(cmd)->tag;
2833 	struct ufshcd_lrb *lrbp;
2834 	int err = 0;
2835 	struct ufs_hw_queue *hwq = NULL;
2836 
2837 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2838 
2839 	switch (hba->ufshcd_state) {
2840 	case UFSHCD_STATE_OPERATIONAL:
2841 		break;
2842 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2843 		/*
2844 		 * SCSI error handler can call ->queuecommand() while UFS error
2845 		 * handler is in progress. Error interrupts could change the
2846 		 * state from UFSHCD_STATE_RESET to
2847 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2848 		 * being issued in that case.
2849 		 */
2850 		if (ufshcd_eh_in_progress(hba)) {
2851 			err = SCSI_MLQUEUE_HOST_BUSY;
2852 			goto out;
2853 		}
2854 		break;
2855 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2856 		/*
2857 		 * pm_runtime_get_sync() is used at error handling preparation
2858 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2859 		 * PM ops, it can never be finished if we let SCSI layer keep
2860 		 * retrying it, which gets err handler stuck forever. Neither
2861 		 * can we let the scsi cmd pass through, because UFS is in bad
2862 		 * state, the scsi cmd may eventually time out, which will get
2863 		 * err handler blocked for too long. So, just fail the scsi cmd
2864 		 * sent from PM ops, err handler can recover PM error anyways.
2865 		 */
2866 		if (hba->pm_op_in_progress) {
2867 			hba->force_reset = true;
2868 			set_host_byte(cmd, DID_BAD_TARGET);
2869 			scsi_done(cmd);
2870 			goto out;
2871 		}
2872 		fallthrough;
2873 	case UFSHCD_STATE_RESET:
2874 		err = SCSI_MLQUEUE_HOST_BUSY;
2875 		goto out;
2876 	case UFSHCD_STATE_ERROR:
2877 		set_host_byte(cmd, DID_ERROR);
2878 		scsi_done(cmd);
2879 		goto out;
2880 	}
2881 
2882 	hba->req_abort_count = 0;
2883 
2884 	ufshcd_hold(hba);
2885 
2886 	lrbp = &hba->lrb[tag];
2887 	lrbp->cmd = cmd;
2888 	lrbp->task_tag = tag;
2889 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2890 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2891 
2892 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2893 
2894 	lrbp->req_abort_skip = false;
2895 
2896 	ufshcd_comp_scsi_upiu(hba, lrbp);
2897 
2898 	err = ufshcd_map_sg(hba, lrbp);
2899 	if (err) {
2900 		ufshcd_release(hba);
2901 		goto out;
2902 	}
2903 
2904 	if (is_mcq_enabled(hba))
2905 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2906 
2907 	ufshcd_send_command(hba, tag, hwq);
2908 
2909 out:
2910 	if (ufs_trigger_eh()) {
2911 		unsigned long flags;
2912 
2913 		spin_lock_irqsave(hba->host->host_lock, flags);
2914 		ufshcd_schedule_eh_work(hba);
2915 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2916 	}
2917 
2918 	return err;
2919 }
2920 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2921 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2922 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2923 {
2924 	lrbp->cmd = NULL;
2925 	lrbp->task_tag = tag;
2926 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2927 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2928 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2929 	hba->dev_cmd.type = cmd_type;
2930 
2931 	return ufshcd_compose_devman_upiu(hba, lrbp);
2932 }
2933 
2934 /*
2935  * Check with the block layer if the command is inflight
2936  * @cmd: command to check.
2937  *
2938  * Return: true if command is inflight; false if not.
2939  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)2940 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2941 {
2942 	struct request *rq;
2943 
2944 	if (!cmd)
2945 		return false;
2946 
2947 	rq = scsi_cmd_to_rq(cmd);
2948 	if (!blk_mq_request_started(rq))
2949 		return false;
2950 
2951 	return true;
2952 }
2953 
2954 /*
2955  * Clear the pending command in the controller and wait until
2956  * the controller confirms that the command has been cleared.
2957  * @hba: per adapter instance
2958  * @task_tag: The tag number of the command to be cleared.
2959  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)2960 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2961 {
2962 	u32 mask;
2963 	unsigned long flags;
2964 	int err;
2965 
2966 	if (is_mcq_enabled(hba)) {
2967 		/*
2968 		 * MCQ mode. Clean up the MCQ resources similar to
2969 		 * what the ufshcd_utrl_clear() does for SDB mode.
2970 		 */
2971 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2972 		if (err) {
2973 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2974 				__func__, task_tag, err);
2975 			return err;
2976 		}
2977 		return 0;
2978 	}
2979 
2980 	mask = 1U << task_tag;
2981 
2982 	/* clear outstanding transaction before retry */
2983 	spin_lock_irqsave(hba->host->host_lock, flags);
2984 	ufshcd_utrl_clear(hba, mask);
2985 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2986 
2987 	/*
2988 	 * wait for h/w to clear corresponding bit in door-bell.
2989 	 * max. wait is 1 sec.
2990 	 */
2991 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2992 					mask, ~mask, 1000, 1000);
2993 }
2994 
2995 /**
2996  * ufshcd_dev_cmd_completion() - handles device management command responses
2997  * @hba: per adapter instance
2998  * @lrbp: pointer to local reference block
2999  *
3000  * Return: 0 upon success; < 0 upon failure.
3001  */
3002 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3003 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3004 {
3005 	enum upiu_response_transaction resp;
3006 	int err = 0;
3007 
3008 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3009 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3010 
3011 	switch (resp) {
3012 	case UPIU_TRANSACTION_NOP_IN:
3013 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3014 			err = -EINVAL;
3015 			dev_err(hba->dev, "%s: unexpected response %x\n",
3016 					__func__, resp);
3017 		}
3018 		break;
3019 	case UPIU_TRANSACTION_QUERY_RSP: {
3020 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3021 
3022 		if (response == 0)
3023 			err = ufshcd_copy_query_response(hba, lrbp);
3024 		break;
3025 	}
3026 	case UPIU_TRANSACTION_REJECT_UPIU:
3027 		/* TODO: handle Reject UPIU Response */
3028 		err = -EPERM;
3029 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3030 				__func__);
3031 		break;
3032 	case UPIU_TRANSACTION_RESPONSE:
3033 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3034 			err = -EINVAL;
3035 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3036 		}
3037 		break;
3038 	default:
3039 		err = -EINVAL;
3040 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3041 				__func__, resp);
3042 		break;
3043 	}
3044 
3045 	return err;
3046 }
3047 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3048 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3049 		struct ufshcd_lrb *lrbp, int max_timeout)
3050 {
3051 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3052 	unsigned long flags;
3053 	bool pending;
3054 	int err;
3055 
3056 retry:
3057 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3058 						time_left);
3059 
3060 	if (likely(time_left)) {
3061 		/*
3062 		 * The completion handler called complete() and the caller of
3063 		 * this function still owns the @lrbp tag so the code below does
3064 		 * not trigger any race conditions.
3065 		 */
3066 		hba->dev_cmd.complete = NULL;
3067 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3068 		if (!err)
3069 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3070 	} else {
3071 		err = -ETIMEDOUT;
3072 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3073 			__func__, lrbp->task_tag);
3074 
3075 		/* MCQ mode */
3076 		if (is_mcq_enabled(hba)) {
3077 			/* successfully cleared the command, retry if needed */
3078 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3079 				err = -EAGAIN;
3080 			hba->dev_cmd.complete = NULL;
3081 			return err;
3082 		}
3083 
3084 		/* SDB mode */
3085 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3086 			/* successfully cleared the command, retry if needed */
3087 			err = -EAGAIN;
3088 			/*
3089 			 * Since clearing the command succeeded we also need to
3090 			 * clear the task tag bit from the outstanding_reqs
3091 			 * variable.
3092 			 */
3093 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3094 			pending = test_bit(lrbp->task_tag,
3095 					   &hba->outstanding_reqs);
3096 			if (pending) {
3097 				hba->dev_cmd.complete = NULL;
3098 				__clear_bit(lrbp->task_tag,
3099 					    &hba->outstanding_reqs);
3100 			}
3101 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3102 
3103 			if (!pending) {
3104 				/*
3105 				 * The completion handler ran while we tried to
3106 				 * clear the command.
3107 				 */
3108 				time_left = 1;
3109 				goto retry;
3110 			}
3111 		} else {
3112 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3113 				__func__, lrbp->task_tag);
3114 
3115 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3116 			pending = test_bit(lrbp->task_tag,
3117 					   &hba->outstanding_reqs);
3118 			if (pending)
3119 				hba->dev_cmd.complete = NULL;
3120 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3121 
3122 			if (!pending) {
3123 				/*
3124 				 * The completion handler ran while we tried to
3125 				 * clear the command.
3126 				 */
3127 				time_left = 1;
3128 				goto retry;
3129 			}
3130 		}
3131 	}
3132 
3133 	return err;
3134 }
3135 
3136 /**
3137  * ufshcd_exec_dev_cmd - API for sending device management requests
3138  * @hba: UFS hba
3139  * @cmd_type: specifies the type (NOP, Query...)
3140  * @timeout: timeout in milliseconds
3141  *
3142  * Return: 0 upon success; < 0 upon failure.
3143  *
3144  * NOTE: Since there is only one available tag for device management commands,
3145  * it is expected you hold the hba->dev_cmd.lock mutex.
3146  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3147 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3148 		enum dev_cmd_type cmd_type, int timeout)
3149 {
3150 	DECLARE_COMPLETION_ONSTACK(wait);
3151 	const u32 tag = hba->reserved_slot;
3152 	struct ufshcd_lrb *lrbp;
3153 	int err;
3154 
3155 	/* Protects use of hba->reserved_slot. */
3156 	lockdep_assert_held(&hba->dev_cmd.lock);
3157 
3158 	down_read(&hba->clk_scaling_lock);
3159 
3160 	lrbp = &hba->lrb[tag];
3161 	lrbp->cmd = NULL;
3162 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3163 	if (unlikely(err))
3164 		goto out;
3165 
3166 	hba->dev_cmd.complete = &wait;
3167 
3168 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3169 
3170 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3171 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3172 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3173 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3174 
3175 out:
3176 	up_read(&hba->clk_scaling_lock);
3177 	return err;
3178 }
3179 
3180 /**
3181  * ufshcd_init_query() - init the query response and request parameters
3182  * @hba: per-adapter instance
3183  * @request: address of the request pointer to be initialized
3184  * @response: address of the response pointer to be initialized
3185  * @opcode: operation to perform
3186  * @idn: flag idn to access
3187  * @index: LU number to access
3188  * @selector: query/flag/descriptor further identification
3189  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3190 static inline void ufshcd_init_query(struct ufs_hba *hba,
3191 		struct ufs_query_req **request, struct ufs_query_res **response,
3192 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3193 {
3194 	*request = &hba->dev_cmd.query.request;
3195 	*response = &hba->dev_cmd.query.response;
3196 	memset(*request, 0, sizeof(struct ufs_query_req));
3197 	memset(*response, 0, sizeof(struct ufs_query_res));
3198 	(*request)->upiu_req.opcode = opcode;
3199 	(*request)->upiu_req.idn = idn;
3200 	(*request)->upiu_req.index = index;
3201 	(*request)->upiu_req.selector = selector;
3202 }
3203 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3204 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3205 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3206 {
3207 	int ret;
3208 	int retries;
3209 
3210 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3211 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3212 		if (ret)
3213 			dev_dbg(hba->dev,
3214 				"%s: failed with error %d, retries %d\n",
3215 				__func__, ret, retries);
3216 		else
3217 			break;
3218 	}
3219 
3220 	if (ret)
3221 		dev_err(hba->dev,
3222 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3223 			__func__, opcode, idn, ret, retries);
3224 	return ret;
3225 }
3226 
3227 /**
3228  * ufshcd_query_flag() - API function for sending flag query requests
3229  * @hba: per-adapter instance
3230  * @opcode: flag query to perform
3231  * @idn: flag idn to access
3232  * @index: flag index to access
3233  * @flag_res: the flag value after the query request completes
3234  *
3235  * Return: 0 for success, non-zero in case of failure.
3236  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3237 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3238 			enum flag_idn idn, u8 index, bool *flag_res)
3239 {
3240 	struct ufs_query_req *request = NULL;
3241 	struct ufs_query_res *response = NULL;
3242 	int err, selector = 0;
3243 	int timeout = QUERY_REQ_TIMEOUT;
3244 
3245 	BUG_ON(!hba);
3246 
3247 	ufshcd_hold(hba);
3248 	mutex_lock(&hba->dev_cmd.lock);
3249 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3250 			selector);
3251 
3252 	switch (opcode) {
3253 	case UPIU_QUERY_OPCODE_SET_FLAG:
3254 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3255 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3256 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3257 		break;
3258 	case UPIU_QUERY_OPCODE_READ_FLAG:
3259 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3260 		if (!flag_res) {
3261 			/* No dummy reads */
3262 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3263 					__func__);
3264 			err = -EINVAL;
3265 			goto out_unlock;
3266 		}
3267 		break;
3268 	default:
3269 		dev_err(hba->dev,
3270 			"%s: Expected query flag opcode but got = %d\n",
3271 			__func__, opcode);
3272 		err = -EINVAL;
3273 		goto out_unlock;
3274 	}
3275 
3276 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3277 
3278 	if (err) {
3279 		dev_err(hba->dev,
3280 			"%s: Sending flag query for idn %d failed, err = %d\n",
3281 			__func__, idn, err);
3282 		goto out_unlock;
3283 	}
3284 
3285 	if (flag_res)
3286 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3287 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3288 
3289 out_unlock:
3290 	mutex_unlock(&hba->dev_cmd.lock);
3291 	ufshcd_release(hba);
3292 	return err;
3293 }
3294 
3295 /**
3296  * ufshcd_query_attr - API function for sending attribute requests
3297  * @hba: per-adapter instance
3298  * @opcode: attribute opcode
3299  * @idn: attribute idn to access
3300  * @index: index field
3301  * @selector: selector field
3302  * @attr_val: the attribute value after the query request completes
3303  *
3304  * Return: 0 for success, non-zero in case of failure.
3305 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3306 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3307 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3308 {
3309 	struct ufs_query_req *request = NULL;
3310 	struct ufs_query_res *response = NULL;
3311 	int err;
3312 
3313 	BUG_ON(!hba);
3314 
3315 	if (!attr_val) {
3316 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3317 				__func__, opcode);
3318 		return -EINVAL;
3319 	}
3320 
3321 	ufshcd_hold(hba);
3322 
3323 	mutex_lock(&hba->dev_cmd.lock);
3324 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3325 			selector);
3326 
3327 	switch (opcode) {
3328 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3329 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3330 		request->upiu_req.value = cpu_to_be32(*attr_val);
3331 		break;
3332 	case UPIU_QUERY_OPCODE_READ_ATTR:
3333 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3334 		break;
3335 	default:
3336 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3337 				__func__, opcode);
3338 		err = -EINVAL;
3339 		goto out_unlock;
3340 	}
3341 
3342 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3343 
3344 	if (err) {
3345 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3346 				__func__, opcode, idn, index, err);
3347 		goto out_unlock;
3348 	}
3349 
3350 	*attr_val = be32_to_cpu(response->upiu_res.value);
3351 
3352 out_unlock:
3353 	mutex_unlock(&hba->dev_cmd.lock);
3354 	ufshcd_release(hba);
3355 	return err;
3356 }
3357 
3358 /**
3359  * ufshcd_query_attr_retry() - API function for sending query
3360  * attribute with retries
3361  * @hba: per-adapter instance
3362  * @opcode: attribute opcode
3363  * @idn: attribute idn to access
3364  * @index: index field
3365  * @selector: selector field
3366  * @attr_val: the attribute value after the query request
3367  * completes
3368  *
3369  * Return: 0 for success, non-zero in case of failure.
3370 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3371 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3372 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3373 	u32 *attr_val)
3374 {
3375 	int ret = 0;
3376 	u32 retries;
3377 
3378 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3379 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3380 						selector, attr_val);
3381 		if (ret)
3382 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3383 				__func__, ret, retries);
3384 		else
3385 			break;
3386 	}
3387 
3388 	if (ret)
3389 		dev_err(hba->dev,
3390 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3391 			__func__, idn, ret, QUERY_REQ_RETRIES);
3392 	return ret;
3393 }
3394 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3395 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3396 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3397 			u8 selector, u8 *desc_buf, int *buf_len)
3398 {
3399 	struct ufs_query_req *request = NULL;
3400 	struct ufs_query_res *response = NULL;
3401 	int err;
3402 
3403 	BUG_ON(!hba);
3404 
3405 	if (!desc_buf) {
3406 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3407 				__func__, opcode);
3408 		return -EINVAL;
3409 	}
3410 
3411 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3412 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3413 				__func__, *buf_len);
3414 		return -EINVAL;
3415 	}
3416 
3417 	ufshcd_hold(hba);
3418 
3419 	mutex_lock(&hba->dev_cmd.lock);
3420 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3421 			selector);
3422 	hba->dev_cmd.query.descriptor = desc_buf;
3423 	request->upiu_req.length = cpu_to_be16(*buf_len);
3424 
3425 	switch (opcode) {
3426 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3427 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3428 		break;
3429 	case UPIU_QUERY_OPCODE_READ_DESC:
3430 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3431 		break;
3432 	default:
3433 		dev_err(hba->dev,
3434 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3435 				__func__, opcode);
3436 		err = -EINVAL;
3437 		goto out_unlock;
3438 	}
3439 
3440 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3441 
3442 	if (err) {
3443 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3444 				__func__, opcode, idn, index, err);
3445 		goto out_unlock;
3446 	}
3447 
3448 	*buf_len = be16_to_cpu(response->upiu_res.length);
3449 
3450 out_unlock:
3451 	hba->dev_cmd.query.descriptor = NULL;
3452 	mutex_unlock(&hba->dev_cmd.lock);
3453 	ufshcd_release(hba);
3454 	return err;
3455 }
3456 
3457 /**
3458  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3459  * @hba: per-adapter instance
3460  * @opcode: attribute opcode
3461  * @idn: attribute idn to access
3462  * @index: index field
3463  * @selector: selector field
3464  * @desc_buf: the buffer that contains the descriptor
3465  * @buf_len: length parameter passed to the device
3466  *
3467  * The buf_len parameter will contain, on return, the length parameter
3468  * received on the response.
3469  *
3470  * Return: 0 for success, non-zero in case of failure.
3471  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3472 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3473 				  enum query_opcode opcode,
3474 				  enum desc_idn idn, u8 index,
3475 				  u8 selector,
3476 				  u8 *desc_buf, int *buf_len)
3477 {
3478 	int err;
3479 	int retries;
3480 
3481 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3482 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3483 						selector, desc_buf, buf_len);
3484 		if (!err || err == -EINVAL)
3485 			break;
3486 	}
3487 
3488 	return err;
3489 }
3490 
3491 /**
3492  * ufshcd_read_desc_param - read the specified descriptor parameter
3493  * @hba: Pointer to adapter instance
3494  * @desc_id: descriptor idn value
3495  * @desc_index: descriptor index
3496  * @param_offset: offset of the parameter to read
3497  * @param_read_buf: pointer to buffer where parameter would be read
3498  * @param_size: sizeof(param_read_buf)
3499  *
3500  * Return: 0 in case of success, non-zero otherwise.
3501  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3502 int ufshcd_read_desc_param(struct ufs_hba *hba,
3503 			   enum desc_idn desc_id,
3504 			   int desc_index,
3505 			   u8 param_offset,
3506 			   u8 *param_read_buf,
3507 			   u8 param_size)
3508 {
3509 	int ret;
3510 	u8 *desc_buf;
3511 	int buff_len = QUERY_DESC_MAX_SIZE;
3512 	bool is_kmalloc = true;
3513 
3514 	/* Safety check */
3515 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3516 		return -EINVAL;
3517 
3518 	/* Check whether we need temp memory */
3519 	if (param_offset != 0 || param_size < buff_len) {
3520 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3521 		if (!desc_buf)
3522 			return -ENOMEM;
3523 	} else {
3524 		desc_buf = param_read_buf;
3525 		is_kmalloc = false;
3526 	}
3527 
3528 	/* Request for full descriptor */
3529 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3530 					    desc_id, desc_index, 0,
3531 					    desc_buf, &buff_len);
3532 	if (ret) {
3533 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3534 			__func__, desc_id, desc_index, param_offset, ret);
3535 		goto out;
3536 	}
3537 
3538 	/* Update descriptor length */
3539 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3540 
3541 	if (param_offset >= buff_len) {
3542 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3543 			__func__, param_offset, desc_id, buff_len);
3544 		ret = -EINVAL;
3545 		goto out;
3546 	}
3547 
3548 	/* Sanity check */
3549 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3550 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3551 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3552 		ret = -EINVAL;
3553 		goto out;
3554 	}
3555 
3556 	if (is_kmalloc) {
3557 		/* Make sure we don't copy more data than available */
3558 		if (param_offset >= buff_len)
3559 			ret = -EINVAL;
3560 		else
3561 			memcpy(param_read_buf, &desc_buf[param_offset],
3562 			       min_t(u32, param_size, buff_len - param_offset));
3563 	}
3564 out:
3565 	if (is_kmalloc)
3566 		kfree(desc_buf);
3567 	return ret;
3568 }
3569 
3570 /**
3571  * struct uc_string_id - unicode string
3572  *
3573  * @len: size of this descriptor inclusive
3574  * @type: descriptor type
3575  * @uc: unicode string character
3576  */
3577 struct uc_string_id {
3578 	u8 len;
3579 	u8 type;
3580 	wchar_t uc[];
3581 } __packed;
3582 
3583 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3584 static inline char ufshcd_remove_non_printable(u8 ch)
3585 {
3586 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3587 }
3588 
3589 /**
3590  * ufshcd_read_string_desc - read string descriptor
3591  * @hba: pointer to adapter instance
3592  * @desc_index: descriptor index
3593  * @buf: pointer to buffer where descriptor would be read,
3594  *       the caller should free the memory.
3595  * @ascii: if true convert from unicode to ascii characters
3596  *         null terminated string.
3597  *
3598  * Return:
3599  * *      string size on success.
3600  * *      -ENOMEM: on allocation failure
3601  * *      -EINVAL: on a wrong parameter
3602  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3603 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3604 			    u8 **buf, bool ascii)
3605 {
3606 	struct uc_string_id *uc_str;
3607 	u8 *str;
3608 	int ret;
3609 
3610 	if (!buf)
3611 		return -EINVAL;
3612 
3613 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3614 	if (!uc_str)
3615 		return -ENOMEM;
3616 
3617 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3618 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3619 	if (ret < 0) {
3620 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3621 			QUERY_REQ_RETRIES, ret);
3622 		str = NULL;
3623 		goto out;
3624 	}
3625 
3626 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3627 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3628 		str = NULL;
3629 		ret = 0;
3630 		goto out;
3631 	}
3632 
3633 	if (ascii) {
3634 		ssize_t ascii_len;
3635 		int i;
3636 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3637 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3638 		str = kzalloc(ascii_len, GFP_KERNEL);
3639 		if (!str) {
3640 			ret = -ENOMEM;
3641 			goto out;
3642 		}
3643 
3644 		/*
3645 		 * the descriptor contains string in UTF16 format
3646 		 * we need to convert to utf-8 so it can be displayed
3647 		 */
3648 		ret = utf16s_to_utf8s(uc_str->uc,
3649 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3650 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3651 
3652 		/* replace non-printable or non-ASCII characters with spaces */
3653 		for (i = 0; i < ret; i++)
3654 			str[i] = ufshcd_remove_non_printable(str[i]);
3655 
3656 		str[ret++] = '\0';
3657 
3658 	} else {
3659 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3660 		if (!str) {
3661 			ret = -ENOMEM;
3662 			goto out;
3663 		}
3664 		ret = uc_str->len;
3665 	}
3666 out:
3667 	*buf = str;
3668 	kfree(uc_str);
3669 	return ret;
3670 }
3671 
3672 /**
3673  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3674  * @hba: Pointer to adapter instance
3675  * @lun: lun id
3676  * @param_offset: offset of the parameter to read
3677  * @param_read_buf: pointer to buffer where parameter would be read
3678  * @param_size: sizeof(param_read_buf)
3679  *
3680  * Return: 0 in case of success, non-zero otherwise.
3681  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3682 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3683 					      int lun,
3684 					      enum unit_desc_param param_offset,
3685 					      u8 *param_read_buf,
3686 					      u32 param_size)
3687 {
3688 	/*
3689 	 * Unit descriptors are only available for general purpose LUs (LUN id
3690 	 * from 0 to 7) and RPMB Well known LU.
3691 	 */
3692 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3693 		return -EOPNOTSUPP;
3694 
3695 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3696 				      param_offset, param_read_buf, param_size);
3697 }
3698 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3699 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3700 {
3701 	int err = 0;
3702 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3703 
3704 	if (hba->dev_info.wspecversion >= 0x300) {
3705 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3706 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3707 				&gating_wait);
3708 		if (err)
3709 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3710 					 err, gating_wait);
3711 
3712 		if (gating_wait == 0) {
3713 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3714 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3715 					 gating_wait);
3716 		}
3717 
3718 		hba->dev_info.clk_gating_wait_us = gating_wait;
3719 	}
3720 
3721 	return err;
3722 }
3723 
3724 /**
3725  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3726  * @hba: per adapter instance
3727  *
3728  * 1. Allocate DMA memory for Command Descriptor array
3729  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3730  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3731  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3732  *	(UTMRDL)
3733  * 4. Allocate memory for local reference block(lrb).
3734  *
3735  * Return: 0 for success, non-zero in case of failure.
3736  */
ufshcd_memory_alloc(struct ufs_hba * hba)3737 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3738 {
3739 	size_t utmrdl_size, utrdl_size, ucdl_size;
3740 
3741 	/* Allocate memory for UTP command descriptors */
3742 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3743 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3744 						  ucdl_size,
3745 						  &hba->ucdl_dma_addr,
3746 						  GFP_KERNEL);
3747 
3748 	/*
3749 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3750 	 */
3751 	if (!hba->ucdl_base_addr ||
3752 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3753 		dev_err(hba->dev,
3754 			"Command Descriptor Memory allocation failed\n");
3755 		goto out;
3756 	}
3757 
3758 	/*
3759 	 * Allocate memory for UTP Transfer descriptors
3760 	 * UFSHCI requires 1KB alignment of UTRD
3761 	 */
3762 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3763 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3764 						   utrdl_size,
3765 						   &hba->utrdl_dma_addr,
3766 						   GFP_KERNEL);
3767 	if (!hba->utrdl_base_addr ||
3768 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3769 		dev_err(hba->dev,
3770 			"Transfer Descriptor Memory allocation failed\n");
3771 		goto out;
3772 	}
3773 
3774 	/*
3775 	 * Skip utmrdl allocation; it may have been
3776 	 * allocated during first pass and not released during
3777 	 * MCQ memory allocation.
3778 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3779 	 */
3780 	if (hba->utmrdl_base_addr)
3781 		goto skip_utmrdl;
3782 	/*
3783 	 * Allocate memory for UTP Task Management descriptors
3784 	 * UFSHCI requires 1KB alignment of UTMRD
3785 	 */
3786 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3787 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3788 						    utmrdl_size,
3789 						    &hba->utmrdl_dma_addr,
3790 						    GFP_KERNEL);
3791 	if (!hba->utmrdl_base_addr ||
3792 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3793 		dev_err(hba->dev,
3794 		"Task Management Descriptor Memory allocation failed\n");
3795 		goto out;
3796 	}
3797 
3798 skip_utmrdl:
3799 	/* Allocate memory for local reference block */
3800 	hba->lrb = devm_kcalloc(hba->dev,
3801 				hba->nutrs, sizeof(struct ufshcd_lrb),
3802 				GFP_KERNEL);
3803 	if (!hba->lrb) {
3804 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3805 		goto out;
3806 	}
3807 	return 0;
3808 out:
3809 	return -ENOMEM;
3810 }
3811 
3812 /**
3813  * ufshcd_host_memory_configure - configure local reference block with
3814  *				memory offsets
3815  * @hba: per adapter instance
3816  *
3817  * Configure Host memory space
3818  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3819  * address.
3820  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3821  * and PRDT offset.
3822  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3823  * into local reference block.
3824  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3825 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3826 {
3827 	struct utp_transfer_req_desc *utrdlp;
3828 	dma_addr_t cmd_desc_dma_addr;
3829 	dma_addr_t cmd_desc_element_addr;
3830 	u16 response_offset;
3831 	u16 prdt_offset;
3832 	int cmd_desc_size;
3833 	int i;
3834 
3835 	utrdlp = hba->utrdl_base_addr;
3836 
3837 	response_offset =
3838 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3839 	prdt_offset =
3840 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3841 
3842 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3843 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3844 
3845 	for (i = 0; i < hba->nutrs; i++) {
3846 		/* Configure UTRD with command descriptor base address */
3847 		cmd_desc_element_addr =
3848 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3849 		utrdlp[i].command_desc_base_addr =
3850 				cpu_to_le64(cmd_desc_element_addr);
3851 
3852 		/* Response upiu and prdt offset should be in double words */
3853 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3854 			utrdlp[i].response_upiu_offset =
3855 				cpu_to_le16(response_offset);
3856 			utrdlp[i].prd_table_offset =
3857 				cpu_to_le16(prdt_offset);
3858 			utrdlp[i].response_upiu_length =
3859 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3860 		} else {
3861 			utrdlp[i].response_upiu_offset =
3862 				cpu_to_le16(response_offset >> 2);
3863 			utrdlp[i].prd_table_offset =
3864 				cpu_to_le16(prdt_offset >> 2);
3865 			utrdlp[i].response_upiu_length =
3866 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3867 		}
3868 
3869 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3870 	}
3871 }
3872 
3873 /**
3874  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3875  * @hba: per adapter instance
3876  *
3877  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3878  * in order to initialize the Unipro link startup procedure.
3879  * Once the Unipro links are up, the device connected to the controller
3880  * is detected.
3881  *
3882  * Return: 0 on success, non-zero value on failure.
3883  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3884 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3885 {
3886 	struct uic_command uic_cmd = {0};
3887 	int ret;
3888 
3889 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3890 
3891 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3892 	if (ret)
3893 		dev_dbg(hba->dev,
3894 			"dme-link-startup: error code %d\n", ret);
3895 	return ret;
3896 }
3897 /**
3898  * ufshcd_dme_reset - UIC command for DME_RESET
3899  * @hba: per adapter instance
3900  *
3901  * DME_RESET command is issued in order to reset UniPro stack.
3902  * This function now deals with cold reset.
3903  *
3904  * Return: 0 on success, non-zero value on failure.
3905  */
ufshcd_dme_reset(struct ufs_hba * hba)3906 static int ufshcd_dme_reset(struct ufs_hba *hba)
3907 {
3908 	struct uic_command uic_cmd = {0};
3909 	int ret;
3910 
3911 	uic_cmd.command = UIC_CMD_DME_RESET;
3912 
3913 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3914 	if (ret)
3915 		dev_err(hba->dev,
3916 			"dme-reset: error code %d\n", ret);
3917 
3918 	return ret;
3919 }
3920 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3921 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3922 			       int agreed_gear,
3923 			       int adapt_val)
3924 {
3925 	int ret;
3926 
3927 	if (agreed_gear < UFS_HS_G4)
3928 		adapt_val = PA_NO_ADAPT;
3929 
3930 	ret = ufshcd_dme_set(hba,
3931 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3932 			     adapt_val);
3933 	return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3936 
3937 /**
3938  * ufshcd_dme_enable - UIC command for DME_ENABLE
3939  * @hba: per adapter instance
3940  *
3941  * DME_ENABLE command is issued in order to enable UniPro stack.
3942  *
3943  * Return: 0 on success, non-zero value on failure.
3944  */
ufshcd_dme_enable(struct ufs_hba * hba)3945 static int ufshcd_dme_enable(struct ufs_hba *hba)
3946 {
3947 	struct uic_command uic_cmd = {0};
3948 	int ret;
3949 
3950 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3951 
3952 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3953 	if (ret)
3954 		dev_err(hba->dev,
3955 			"dme-enable: error code %d\n", ret);
3956 
3957 	return ret;
3958 }
3959 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3960 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3961 {
3962 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3963 	unsigned long min_sleep_time_us;
3964 
3965 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3966 		return;
3967 
3968 	/*
3969 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3970 	 * this function
3971 	 */
3972 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3973 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3974 	} else {
3975 		unsigned long delta =
3976 			(unsigned long) ktime_to_us(
3977 				ktime_sub(ktime_get(),
3978 				hba->last_dme_cmd_tstamp));
3979 
3980 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3981 			min_sleep_time_us =
3982 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3983 		else
3984 			min_sleep_time_us = 0; /* no more delay required */
3985 	}
3986 
3987 	if (min_sleep_time_us > 0) {
3988 		/* allow sleep for extra 50us if needed */
3989 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3990 	}
3991 
3992 	/* update the last_dme_cmd_tstamp */
3993 	hba->last_dme_cmd_tstamp = ktime_get();
3994 }
3995 
3996 /**
3997  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3998  * @hba: per adapter instance
3999  * @attr_sel: uic command argument1
4000  * @attr_set: attribute set type as uic command argument2
4001  * @mib_val: setting value as uic command argument3
4002  * @peer: indicate whether peer or local
4003  *
4004  * Return: 0 on success, non-zero value on failure.
4005  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4006 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4007 			u8 attr_set, u32 mib_val, u8 peer)
4008 {
4009 	struct uic_command uic_cmd = {0};
4010 	static const char *const action[] = {
4011 		"dme-set",
4012 		"dme-peer-set"
4013 	};
4014 	const char *set = action[!!peer];
4015 	int ret;
4016 	int retries = UFS_UIC_COMMAND_RETRIES;
4017 
4018 	uic_cmd.command = peer ?
4019 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4020 	uic_cmd.argument1 = attr_sel;
4021 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4022 	uic_cmd.argument3 = mib_val;
4023 
4024 	do {
4025 		/* for peer attributes we retry upon failure */
4026 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4027 		if (ret)
4028 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4029 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4030 	} while (ret && peer && --retries);
4031 
4032 	if (ret)
4033 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4034 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4035 			UFS_UIC_COMMAND_RETRIES - retries);
4036 
4037 	return ret;
4038 }
4039 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4040 
4041 /**
4042  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4043  * @hba: per adapter instance
4044  * @attr_sel: uic command argument1
4045  * @mib_val: the value of the attribute as returned by the UIC command
4046  * @peer: indicate whether peer or local
4047  *
4048  * Return: 0 on success, non-zero value on failure.
4049  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4050 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4051 			u32 *mib_val, u8 peer)
4052 {
4053 	struct uic_command uic_cmd = {0};
4054 	static const char *const action[] = {
4055 		"dme-get",
4056 		"dme-peer-get"
4057 	};
4058 	const char *get = action[!!peer];
4059 	int ret;
4060 	int retries = UFS_UIC_COMMAND_RETRIES;
4061 	struct ufs_pa_layer_attr orig_pwr_info;
4062 	struct ufs_pa_layer_attr temp_pwr_info;
4063 	bool pwr_mode_change = false;
4064 
4065 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4066 		orig_pwr_info = hba->pwr_info;
4067 		temp_pwr_info = orig_pwr_info;
4068 
4069 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4070 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4071 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4072 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4073 			pwr_mode_change = true;
4074 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4075 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4076 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4077 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4078 			pwr_mode_change = true;
4079 		}
4080 		if (pwr_mode_change) {
4081 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4082 			if (ret)
4083 				goto out;
4084 		}
4085 	}
4086 
4087 	uic_cmd.command = peer ?
4088 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4089 	uic_cmd.argument1 = attr_sel;
4090 
4091 	do {
4092 		/* for peer attributes we retry upon failure */
4093 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4094 		if (ret)
4095 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4096 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4097 	} while (ret && peer && --retries);
4098 
4099 	if (ret)
4100 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4101 			get, UIC_GET_ATTR_ID(attr_sel),
4102 			UFS_UIC_COMMAND_RETRIES - retries);
4103 
4104 	if (mib_val && !ret)
4105 		*mib_val = uic_cmd.argument3;
4106 
4107 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4108 	    && pwr_mode_change)
4109 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4110 out:
4111 	return ret;
4112 }
4113 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4114 
4115 /**
4116  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4117  * state) and waits for it to take effect.
4118  *
4119  * @hba: per adapter instance
4120  * @cmd: UIC command to execute
4121  *
4122  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4123  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4124  * and device UniPro link and hence it's final completion would be indicated by
4125  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4126  * addition to normal UIC command completion Status (UCCS). This function only
4127  * returns after the relevant status bits indicate the completion.
4128  *
4129  * Return: 0 on success, non-zero value on failure.
4130  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4131 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4132 {
4133 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4134 	unsigned long flags;
4135 	u8 status;
4136 	int ret;
4137 	bool reenable_intr = false;
4138 
4139 	mutex_lock(&hba->uic_cmd_mutex);
4140 	ufshcd_add_delay_before_dme_cmd(hba);
4141 
4142 	spin_lock_irqsave(hba->host->host_lock, flags);
4143 	if (ufshcd_is_link_broken(hba)) {
4144 		ret = -ENOLINK;
4145 		goto out_unlock;
4146 	}
4147 	hba->uic_async_done = &uic_async_done;
4148 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4149 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4150 		/*
4151 		 * Make sure UIC command completion interrupt is disabled before
4152 		 * issuing UIC command.
4153 		 */
4154 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4155 		reenable_intr = true;
4156 	}
4157 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4158 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4159 	if (ret) {
4160 		dev_err(hba->dev,
4161 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4162 			cmd->command, cmd->argument3, ret);
4163 		goto out;
4164 	}
4165 
4166 	if (!wait_for_completion_timeout(hba->uic_async_done,
4167 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4168 		dev_err(hba->dev,
4169 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4170 			cmd->command, cmd->argument3);
4171 
4172 		if (!cmd->cmd_active) {
4173 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4174 				__func__);
4175 			goto check_upmcrs;
4176 		}
4177 
4178 		ret = -ETIMEDOUT;
4179 		goto out;
4180 	}
4181 
4182 check_upmcrs:
4183 	status = ufshcd_get_upmcrs(hba);
4184 	if (status != PWR_LOCAL) {
4185 		dev_err(hba->dev,
4186 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4187 			cmd->command, status);
4188 		ret = (status != PWR_OK) ? status : -1;
4189 	}
4190 out:
4191 	if (ret) {
4192 		ufshcd_print_host_state(hba);
4193 		ufshcd_print_pwr_info(hba);
4194 		ufshcd_print_evt_hist(hba);
4195 	}
4196 
4197 	spin_lock_irqsave(hba->host->host_lock, flags);
4198 	hba->active_uic_cmd = NULL;
4199 	hba->uic_async_done = NULL;
4200 	if (reenable_intr)
4201 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4202 	if (ret) {
4203 		ufshcd_set_link_broken(hba);
4204 		ufshcd_schedule_eh_work(hba);
4205 	}
4206 out_unlock:
4207 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4208 	mutex_unlock(&hba->uic_cmd_mutex);
4209 
4210 	return ret;
4211 }
4212 
4213 /**
4214  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4215  *				using DME_SET primitives.
4216  * @hba: per adapter instance
4217  * @mode: powr mode value
4218  *
4219  * Return: 0 on success, non-zero value on failure.
4220  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4221 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4222 {
4223 	struct uic_command uic_cmd = {0};
4224 	int ret;
4225 
4226 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4227 		ret = ufshcd_dme_set(hba,
4228 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4229 		if (ret) {
4230 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4231 						__func__, ret);
4232 			goto out;
4233 		}
4234 	}
4235 
4236 	uic_cmd.command = UIC_CMD_DME_SET;
4237 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4238 	uic_cmd.argument3 = mode;
4239 	ufshcd_hold(hba);
4240 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4241 	ufshcd_release(hba);
4242 
4243 out:
4244 	return ret;
4245 }
4246 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4247 
ufshcd_link_recovery(struct ufs_hba * hba)4248 int ufshcd_link_recovery(struct ufs_hba *hba)
4249 {
4250 	int ret;
4251 	unsigned long flags;
4252 
4253 	spin_lock_irqsave(hba->host->host_lock, flags);
4254 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4255 	ufshcd_set_eh_in_progress(hba);
4256 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4257 
4258 	/* Reset the attached device */
4259 	ufshcd_device_reset(hba);
4260 
4261 	ret = ufshcd_host_reset_and_restore(hba);
4262 
4263 	spin_lock_irqsave(hba->host->host_lock, flags);
4264 	if (ret)
4265 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4266 	ufshcd_clear_eh_in_progress(hba);
4267 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4268 
4269 	if (ret)
4270 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4271 			__func__, ret);
4272 
4273 	return ret;
4274 }
4275 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4276 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4277 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4278 {
4279 	int ret;
4280 	struct uic_command uic_cmd = {0};
4281 	ktime_t start = ktime_get();
4282 
4283 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4284 
4285 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4286 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4287 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4288 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4289 
4290 	if (ret)
4291 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4292 			__func__, ret);
4293 	else
4294 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4295 								POST_CHANGE);
4296 
4297 	return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4300 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4301 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4302 {
4303 	struct uic_command uic_cmd = {0};
4304 	int ret;
4305 	ktime_t start = ktime_get();
4306 
4307 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4308 
4309 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4310 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4311 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4312 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4313 
4314 	if (ret) {
4315 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4316 			__func__, ret);
4317 	} else {
4318 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4319 								POST_CHANGE);
4320 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4321 		hba->ufs_stats.hibern8_exit_cnt++;
4322 	}
4323 
4324 	return ret;
4325 }
4326 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4327 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4328 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4329 {
4330 	unsigned long flags;
4331 	bool update = false;
4332 
4333 	if (!ufshcd_is_auto_hibern8_supported(hba))
4334 		return;
4335 
4336 	spin_lock_irqsave(hba->host->host_lock, flags);
4337 	if (hba->ahit != ahit) {
4338 		hba->ahit = ahit;
4339 		update = true;
4340 	}
4341 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4342 
4343 	if (update &&
4344 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4345 		ufshcd_rpm_get_sync(hba);
4346 		ufshcd_hold(hba);
4347 		ufshcd_auto_hibern8_enable(hba);
4348 		ufshcd_release(hba);
4349 		ufshcd_rpm_put_sync(hba);
4350 	}
4351 }
4352 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4353 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4354 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4355 {
4356 	if (!ufshcd_is_auto_hibern8_supported(hba))
4357 		return;
4358 
4359 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4360 }
4361 
4362  /**
4363  * ufshcd_init_pwr_info - setting the POR (power on reset)
4364  * values in hba power info
4365  * @hba: per-adapter instance
4366  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4367 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4368 {
4369 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4370 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4371 	hba->pwr_info.lane_rx = UFS_LANE_1;
4372 	hba->pwr_info.lane_tx = UFS_LANE_1;
4373 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4374 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4375 	hba->pwr_info.hs_rate = 0;
4376 }
4377 
4378 /**
4379  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4380  * @hba: per-adapter instance
4381  *
4382  * Return: 0 upon success; < 0 upon failure.
4383  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4384 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4385 {
4386 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4387 
4388 	if (hba->max_pwr_info.is_valid)
4389 		return 0;
4390 
4391 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4392 		pwr_info->pwr_tx = FASTAUTO_MODE;
4393 		pwr_info->pwr_rx = FASTAUTO_MODE;
4394 	} else {
4395 		pwr_info->pwr_tx = FAST_MODE;
4396 		pwr_info->pwr_rx = FAST_MODE;
4397 	}
4398 	pwr_info->hs_rate = PA_HS_MODE_B;
4399 
4400 	/* Get the connected lane count */
4401 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4402 			&pwr_info->lane_rx);
4403 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4404 			&pwr_info->lane_tx);
4405 
4406 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4407 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4408 				__func__,
4409 				pwr_info->lane_rx,
4410 				pwr_info->lane_tx);
4411 		return -EINVAL;
4412 	}
4413 
4414 	/*
4415 	 * First, get the maximum gears of HS speed.
4416 	 * If a zero value, it means there is no HSGEAR capability.
4417 	 * Then, get the maximum gears of PWM speed.
4418 	 */
4419 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4420 	if (!pwr_info->gear_rx) {
4421 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4422 				&pwr_info->gear_rx);
4423 		if (!pwr_info->gear_rx) {
4424 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4425 				__func__, pwr_info->gear_rx);
4426 			return -EINVAL;
4427 		}
4428 		pwr_info->pwr_rx = SLOW_MODE;
4429 	}
4430 
4431 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4432 			&pwr_info->gear_tx);
4433 	if (!pwr_info->gear_tx) {
4434 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4435 				&pwr_info->gear_tx);
4436 		if (!pwr_info->gear_tx) {
4437 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4438 				__func__, pwr_info->gear_tx);
4439 			return -EINVAL;
4440 		}
4441 		pwr_info->pwr_tx = SLOW_MODE;
4442 	}
4443 
4444 	hba->max_pwr_info.is_valid = true;
4445 	return 0;
4446 }
4447 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4448 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4449 			     struct ufs_pa_layer_attr *pwr_mode)
4450 {
4451 	int ret;
4452 
4453 	/* if already configured to the requested pwr_mode */
4454 	if (!hba->force_pmc &&
4455 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4456 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4457 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4458 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4459 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4460 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4461 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4462 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4463 		return 0;
4464 	}
4465 
4466 	/*
4467 	 * Configure attributes for power mode change with below.
4468 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4469 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4470 	 * - PA_HSSERIES
4471 	 */
4472 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4473 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4474 			pwr_mode->lane_rx);
4475 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4476 			pwr_mode->pwr_rx == FAST_MODE)
4477 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4478 	else
4479 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4480 
4481 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4482 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4483 			pwr_mode->lane_tx);
4484 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4485 			pwr_mode->pwr_tx == FAST_MODE)
4486 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4487 	else
4488 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4489 
4490 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4491 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4492 	    pwr_mode->pwr_rx == FAST_MODE ||
4493 	    pwr_mode->pwr_tx == FAST_MODE)
4494 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4495 						pwr_mode->hs_rate);
4496 
4497 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4498 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4499 				DL_FC0ProtectionTimeOutVal_Default);
4500 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4501 				DL_TC0ReplayTimeOutVal_Default);
4502 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4503 				DL_AFC0ReqTimeOutVal_Default);
4504 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4505 				DL_FC1ProtectionTimeOutVal_Default);
4506 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4507 				DL_TC1ReplayTimeOutVal_Default);
4508 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4509 				DL_AFC1ReqTimeOutVal_Default);
4510 
4511 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4512 				DL_FC0ProtectionTimeOutVal_Default);
4513 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4514 				DL_TC0ReplayTimeOutVal_Default);
4515 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4516 				DL_AFC0ReqTimeOutVal_Default);
4517 	}
4518 
4519 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4520 			| pwr_mode->pwr_tx);
4521 
4522 	if (ret) {
4523 		dev_err(hba->dev,
4524 			"%s: power mode change failed %d\n", __func__, ret);
4525 	} else {
4526 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4527 								pwr_mode);
4528 
4529 		memcpy(&hba->pwr_info, pwr_mode,
4530 			sizeof(struct ufs_pa_layer_attr));
4531 	}
4532 
4533 	return ret;
4534 }
4535 
4536 /**
4537  * ufshcd_config_pwr_mode - configure a new power mode
4538  * @hba: per-adapter instance
4539  * @desired_pwr_mode: desired power configuration
4540  *
4541  * Return: 0 upon success; < 0 upon failure.
4542  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4543 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4544 		struct ufs_pa_layer_attr *desired_pwr_mode)
4545 {
4546 	struct ufs_pa_layer_attr final_params = { 0 };
4547 	int ret;
4548 
4549 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4550 					desired_pwr_mode, &final_params);
4551 
4552 	if (ret)
4553 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4554 
4555 	ret = ufshcd_change_power_mode(hba, &final_params);
4556 
4557 	return ret;
4558 }
4559 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4560 
4561 /**
4562  * ufshcd_complete_dev_init() - checks device readiness
4563  * @hba: per-adapter instance
4564  *
4565  * Set fDeviceInit flag and poll until device toggles it.
4566  *
4567  * Return: 0 upon success; < 0 upon failure.
4568  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4569 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4570 {
4571 	int err;
4572 	bool flag_res = true;
4573 	ktime_t timeout;
4574 
4575 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4576 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4577 	if (err) {
4578 		dev_err(hba->dev,
4579 			"%s: setting fDeviceInit flag failed with error %d\n",
4580 			__func__, err);
4581 		goto out;
4582 	}
4583 
4584 	/* Poll fDeviceInit flag to be cleared */
4585 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4586 	do {
4587 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4588 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4589 		if (!flag_res)
4590 			break;
4591 		usleep_range(500, 1000);
4592 	} while (ktime_before(ktime_get(), timeout));
4593 
4594 	if (err) {
4595 		dev_err(hba->dev,
4596 				"%s: reading fDeviceInit flag failed with error %d\n",
4597 				__func__, err);
4598 	} else if (flag_res) {
4599 		dev_err(hba->dev,
4600 				"%s: fDeviceInit was not cleared by the device\n",
4601 				__func__);
4602 		err = -EBUSY;
4603 	}
4604 out:
4605 	return err;
4606 }
4607 
4608 /**
4609  * ufshcd_make_hba_operational - Make UFS controller operational
4610  * @hba: per adapter instance
4611  *
4612  * To bring UFS host controller to operational state,
4613  * 1. Enable required interrupts
4614  * 2. Configure interrupt aggregation
4615  * 3. Program UTRL and UTMRL base address
4616  * 4. Configure run-stop-registers
4617  *
4618  * Return: 0 on success, non-zero value on failure.
4619  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4620 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4621 {
4622 	int err = 0;
4623 	u32 reg;
4624 
4625 	/* Enable required interrupts */
4626 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4627 
4628 	/* Configure interrupt aggregation */
4629 	if (ufshcd_is_intr_aggr_allowed(hba))
4630 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4631 	else
4632 		ufshcd_disable_intr_aggr(hba);
4633 
4634 	/* Configure UTRL and UTMRL base address registers */
4635 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4636 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4637 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4638 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4639 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4640 			REG_UTP_TASK_REQ_LIST_BASE_L);
4641 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4642 			REG_UTP_TASK_REQ_LIST_BASE_H);
4643 
4644 	/*
4645 	 * Make sure base address and interrupt setup are updated before
4646 	 * enabling the run/stop registers below.
4647 	 */
4648 	wmb();
4649 
4650 	/*
4651 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4652 	 */
4653 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4654 	if (!(ufshcd_get_lists_status(reg))) {
4655 		ufshcd_enable_run_stop_reg(hba);
4656 	} else {
4657 		dev_err(hba->dev,
4658 			"Host controller not ready to process requests");
4659 		err = -EIO;
4660 	}
4661 
4662 	return err;
4663 }
4664 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4665 
4666 /**
4667  * ufshcd_hba_stop - Send controller to reset state
4668  * @hba: per adapter instance
4669  */
ufshcd_hba_stop(struct ufs_hba * hba)4670 void ufshcd_hba_stop(struct ufs_hba *hba)
4671 {
4672 	unsigned long flags;
4673 	int err;
4674 
4675 	/*
4676 	 * Obtain the host lock to prevent that the controller is disabled
4677 	 * while the UFS interrupt handler is active on another CPU.
4678 	 */
4679 	spin_lock_irqsave(hba->host->host_lock, flags);
4680 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4681 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4682 
4683 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4684 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4685 					10, 1);
4686 	if (err)
4687 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4688 }
4689 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4690 
4691 /**
4692  * ufshcd_hba_execute_hce - initialize the controller
4693  * @hba: per adapter instance
4694  *
4695  * The controller resets itself and controller firmware initialization
4696  * sequence kicks off. When controller is ready it will set
4697  * the Host Controller Enable bit to 1.
4698  *
4699  * Return: 0 on success, non-zero value on failure.
4700  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4701 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4702 {
4703 	int retry_outer = 3;
4704 	int retry_inner;
4705 
4706 start:
4707 	if (ufshcd_is_hba_active(hba))
4708 		/* change controller state to "reset state" */
4709 		ufshcd_hba_stop(hba);
4710 
4711 	/* UniPro link is disabled at this point */
4712 	ufshcd_set_link_off(hba);
4713 
4714 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4715 
4716 	/* start controller initialization sequence */
4717 	ufshcd_hba_start(hba);
4718 
4719 	/*
4720 	 * To initialize a UFS host controller HCE bit must be set to 1.
4721 	 * During initialization the HCE bit value changes from 1->0->1.
4722 	 * When the host controller completes initialization sequence
4723 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4724 	 * to check if the controller has completed initialization sequence.
4725 	 * So without this delay the value HCE = 1, set in the previous
4726 	 * instruction might be read back.
4727 	 * This delay can be changed based on the controller.
4728 	 */
4729 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4730 
4731 	/* wait for the host controller to complete initialization */
4732 	retry_inner = 50;
4733 	while (!ufshcd_is_hba_active(hba)) {
4734 		if (retry_inner) {
4735 			retry_inner--;
4736 		} else {
4737 			dev_err(hba->dev,
4738 				"Controller enable failed\n");
4739 			if (retry_outer) {
4740 				retry_outer--;
4741 				goto start;
4742 			}
4743 			return -EIO;
4744 		}
4745 		usleep_range(1000, 1100);
4746 	}
4747 
4748 	/* enable UIC related interrupts */
4749 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4750 
4751 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4752 
4753 	return 0;
4754 }
4755 
ufshcd_hba_enable(struct ufs_hba * hba)4756 int ufshcd_hba_enable(struct ufs_hba *hba)
4757 {
4758 	int ret;
4759 
4760 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4761 		ufshcd_set_link_off(hba);
4762 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4763 
4764 		/* enable UIC related interrupts */
4765 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4766 		ret = ufshcd_dme_reset(hba);
4767 		if (ret) {
4768 			dev_err(hba->dev, "DME_RESET failed\n");
4769 			return ret;
4770 		}
4771 
4772 		ret = ufshcd_dme_enable(hba);
4773 		if (ret) {
4774 			dev_err(hba->dev, "Enabling DME failed\n");
4775 			return ret;
4776 		}
4777 
4778 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4779 	} else {
4780 		ret = ufshcd_hba_execute_hce(hba);
4781 	}
4782 
4783 	return ret;
4784 }
4785 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4786 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4787 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4788 {
4789 	int tx_lanes = 0, i, err = 0;
4790 
4791 	if (!peer)
4792 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4793 			       &tx_lanes);
4794 	else
4795 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4796 				    &tx_lanes);
4797 	for (i = 0; i < tx_lanes; i++) {
4798 		if (!peer)
4799 			err = ufshcd_dme_set(hba,
4800 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4801 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4802 					0);
4803 		else
4804 			err = ufshcd_dme_peer_set(hba,
4805 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4806 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4807 					0);
4808 		if (err) {
4809 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4810 				__func__, peer, i, err);
4811 			break;
4812 		}
4813 	}
4814 
4815 	return err;
4816 }
4817 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4818 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4819 {
4820 	return ufshcd_disable_tx_lcc(hba, true);
4821 }
4822 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4823 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4824 {
4825 	struct ufs_event_hist *e;
4826 
4827 	if (id >= UFS_EVT_CNT)
4828 		return;
4829 
4830 	e = &hba->ufs_stats.event[id];
4831 	e->val[e->pos] = val;
4832 	e->tstamp[e->pos] = local_clock();
4833 	e->cnt += 1;
4834 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4835 
4836 	ufshcd_vops_event_notify(hba, id, &val);
4837 }
4838 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4839 
4840 /**
4841  * ufshcd_link_startup - Initialize unipro link startup
4842  * @hba: per adapter instance
4843  *
4844  * Return: 0 for success, non-zero in case of failure.
4845  */
ufshcd_link_startup(struct ufs_hba * hba)4846 static int ufshcd_link_startup(struct ufs_hba *hba)
4847 {
4848 	int ret;
4849 	int retries = DME_LINKSTARTUP_RETRIES;
4850 	bool link_startup_again = false;
4851 
4852 	/*
4853 	 * If UFS device isn't active then we will have to issue link startup
4854 	 * 2 times to make sure the device state move to active.
4855 	 */
4856 	if (!ufshcd_is_ufs_dev_active(hba))
4857 		link_startup_again = true;
4858 
4859 link_startup:
4860 	do {
4861 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4862 
4863 		ret = ufshcd_dme_link_startup(hba);
4864 
4865 		/* check if device is detected by inter-connect layer */
4866 		if (!ret && !ufshcd_is_device_present(hba)) {
4867 			ufshcd_update_evt_hist(hba,
4868 					       UFS_EVT_LINK_STARTUP_FAIL,
4869 					       0);
4870 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4871 			ret = -ENXIO;
4872 			goto out;
4873 		}
4874 
4875 		/*
4876 		 * DME link lost indication is only received when link is up,
4877 		 * but we can't be sure if the link is up until link startup
4878 		 * succeeds. So reset the local Uni-Pro and try again.
4879 		 */
4880 		if (ret && retries && ufshcd_hba_enable(hba)) {
4881 			ufshcd_update_evt_hist(hba,
4882 					       UFS_EVT_LINK_STARTUP_FAIL,
4883 					       (u32)ret);
4884 			goto out;
4885 		}
4886 	} while (ret && retries--);
4887 
4888 	if (ret) {
4889 		/* failed to get the link up... retire */
4890 		ufshcd_update_evt_hist(hba,
4891 				       UFS_EVT_LINK_STARTUP_FAIL,
4892 				       (u32)ret);
4893 		goto out;
4894 	}
4895 
4896 	if (link_startup_again) {
4897 		link_startup_again = false;
4898 		retries = DME_LINKSTARTUP_RETRIES;
4899 		goto link_startup;
4900 	}
4901 
4902 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4903 	ufshcd_init_pwr_info(hba);
4904 	ufshcd_print_pwr_info(hba);
4905 
4906 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4907 		ret = ufshcd_disable_device_tx_lcc(hba);
4908 		if (ret)
4909 			goto out;
4910 	}
4911 
4912 	/* Include any host controller configuration via UIC commands */
4913 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4914 	if (ret)
4915 		goto out;
4916 
4917 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4918 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4919 	ret = ufshcd_make_hba_operational(hba);
4920 out:
4921 	if (ret) {
4922 		dev_err(hba->dev, "link startup failed %d\n", ret);
4923 		ufshcd_print_host_state(hba);
4924 		ufshcd_print_pwr_info(hba);
4925 		ufshcd_print_evt_hist(hba);
4926 	}
4927 	return ret;
4928 }
4929 
4930 /**
4931  * ufshcd_verify_dev_init() - Verify device initialization
4932  * @hba: per-adapter instance
4933  *
4934  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4935  * device Transport Protocol (UTP) layer is ready after a reset.
4936  * If the UTP layer at the device side is not initialized, it may
4937  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4938  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4939  *
4940  * Return: 0 upon success; < 0 upon failure.
4941  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4942 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4943 {
4944 	int err = 0;
4945 	int retries;
4946 
4947 	ufshcd_hold(hba);
4948 	mutex_lock(&hba->dev_cmd.lock);
4949 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4950 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4951 					  hba->nop_out_timeout);
4952 
4953 		if (!err || err == -ETIMEDOUT)
4954 			break;
4955 
4956 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4957 	}
4958 	mutex_unlock(&hba->dev_cmd.lock);
4959 	ufshcd_release(hba);
4960 
4961 	if (err)
4962 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4963 	return err;
4964 }
4965 
4966 /**
4967  * ufshcd_setup_links - associate link b/w device wlun and other luns
4968  * @sdev: pointer to SCSI device
4969  * @hba: pointer to ufs hba
4970  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)4971 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4972 {
4973 	struct device_link *link;
4974 
4975 	/*
4976 	 * Device wlun is the supplier & rest of the luns are consumers.
4977 	 * This ensures that device wlun suspends after all other luns.
4978 	 */
4979 	if (hba->ufs_device_wlun) {
4980 		link = device_link_add(&sdev->sdev_gendev,
4981 				       &hba->ufs_device_wlun->sdev_gendev,
4982 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4983 		if (!link) {
4984 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4985 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4986 			return;
4987 		}
4988 		hba->luns_avail--;
4989 		/* Ignore REPORT_LUN wlun probing */
4990 		if (hba->luns_avail == 1) {
4991 			ufshcd_rpm_put(hba);
4992 			return;
4993 		}
4994 	} else {
4995 		/*
4996 		 * Device wlun is probed. The assumption is that WLUNs are
4997 		 * scanned before other LUNs.
4998 		 */
4999 		hba->luns_avail--;
5000 	}
5001 }
5002 
5003 /**
5004  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5005  * @hba: per-adapter instance
5006  * @sdev: pointer to SCSI device
5007  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5008 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5009 {
5010 	int len = QUERY_DESC_MAX_SIZE;
5011 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5012 	u8 lun_qdepth = hba->nutrs;
5013 	u8 *desc_buf;
5014 	int ret;
5015 
5016 	desc_buf = kzalloc(len, GFP_KERNEL);
5017 	if (!desc_buf)
5018 		goto set_qdepth;
5019 
5020 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5021 	if (ret < 0) {
5022 		if (ret == -EOPNOTSUPP)
5023 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5024 			lun_qdepth = 1;
5025 		kfree(desc_buf);
5026 		goto set_qdepth;
5027 	}
5028 
5029 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5030 		/*
5031 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5032 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5033 		 */
5034 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5035 	}
5036 	/*
5037 	 * According to UFS device specification, the write protection mode is only supported by
5038 	 * normal LU, not supported by WLUN.
5039 	 */
5040 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5041 	    !hba->dev_info.is_lu_power_on_wp &&
5042 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5043 		hba->dev_info.is_lu_power_on_wp = true;
5044 
5045 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5046 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5047 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5048 		hba->dev_info.b_advanced_rpmb_en = true;
5049 
5050 
5051 	kfree(desc_buf);
5052 set_qdepth:
5053 	/*
5054 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5055 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5056 	 */
5057 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5058 	scsi_change_queue_depth(sdev, lun_qdepth);
5059 }
5060 
5061 /**
5062  * ufshcd_slave_alloc - handle initial SCSI device configurations
5063  * @sdev: pointer to SCSI device
5064  *
5065  * Return: success.
5066  */
ufshcd_slave_alloc(struct scsi_device * sdev)5067 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5068 {
5069 	struct ufs_hba *hba;
5070 
5071 	hba = shost_priv(sdev->host);
5072 
5073 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5074 	sdev->use_10_for_ms = 1;
5075 
5076 	/* DBD field should be set to 1 in mode sense(10) */
5077 	sdev->set_dbd_for_ms = 1;
5078 
5079 	/* allow SCSI layer to restart the device in case of errors */
5080 	sdev->allow_restart = 1;
5081 
5082 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5083 	sdev->no_report_opcodes = 1;
5084 
5085 	/* WRITE_SAME command is not supported */
5086 	sdev->no_write_same = 1;
5087 
5088 	ufshcd_lu_init(hba, sdev);
5089 
5090 	ufshcd_setup_links(hba, sdev);
5091 
5092 	return 0;
5093 }
5094 
5095 /**
5096  * ufshcd_change_queue_depth - change queue depth
5097  * @sdev: pointer to SCSI device
5098  * @depth: required depth to set
5099  *
5100  * Change queue depth and make sure the max. limits are not crossed.
5101  *
5102  * Return: new queue depth.
5103  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5104 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5105 {
5106 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5107 }
5108 
5109 /**
5110  * ufshcd_slave_configure - adjust SCSI device configurations
5111  * @sdev: pointer to SCSI device
5112  *
5113  * Return: 0 (success).
5114  */
ufshcd_slave_configure(struct scsi_device * sdev)5115 static int ufshcd_slave_configure(struct scsi_device *sdev)
5116 {
5117 	struct ufs_hba *hba = shost_priv(sdev->host);
5118 	struct request_queue *q = sdev->request_queue;
5119 
5120 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5121 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5122 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5123 	/*
5124 	 * Block runtime-pm until all consumers are added.
5125 	 * Refer ufshcd_setup_links().
5126 	 */
5127 	if (is_device_wlun(sdev))
5128 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5129 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5130 		sdev->rpm_autosuspend = 1;
5131 	/*
5132 	 * Do not print messages during runtime PM to avoid never-ending cycles
5133 	 * of messages written back to storage by user space causing runtime
5134 	 * resume, causing more messages and so on.
5135 	 */
5136 	sdev->silence_suspend = 1;
5137 
5138 	ufshcd_crypto_register(hba, q);
5139 
5140 	return 0;
5141 }
5142 
5143 /**
5144  * ufshcd_slave_destroy - remove SCSI device configurations
5145  * @sdev: pointer to SCSI device
5146  */
ufshcd_slave_destroy(struct scsi_device * sdev)5147 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5148 {
5149 	struct ufs_hba *hba;
5150 	unsigned long flags;
5151 
5152 	hba = shost_priv(sdev->host);
5153 
5154 	/* Drop the reference as it won't be needed anymore */
5155 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5156 		spin_lock_irqsave(hba->host->host_lock, flags);
5157 		hba->ufs_device_wlun = NULL;
5158 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5159 	} else if (hba->ufs_device_wlun) {
5160 		struct device *supplier = NULL;
5161 
5162 		/* Ensure UFS Device WLUN exists and does not disappear */
5163 		spin_lock_irqsave(hba->host->host_lock, flags);
5164 		if (hba->ufs_device_wlun) {
5165 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5166 			get_device(supplier);
5167 		}
5168 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5169 
5170 		if (supplier) {
5171 			/*
5172 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5173 			 * device will not have been registered but can still
5174 			 * have a device link holding a reference to the device.
5175 			 */
5176 			device_link_remove(&sdev->sdev_gendev, supplier);
5177 			put_device(supplier);
5178 		}
5179 	}
5180 }
5181 
5182 /**
5183  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5184  * @lrbp: pointer to local reference block of completed command
5185  * @scsi_status: SCSI command status
5186  *
5187  * Return: value base on SCSI command status.
5188  */
5189 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5190 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5191 {
5192 	int result = 0;
5193 
5194 	switch (scsi_status) {
5195 	case SAM_STAT_CHECK_CONDITION:
5196 		ufshcd_copy_sense_data(lrbp);
5197 		fallthrough;
5198 	case SAM_STAT_GOOD:
5199 		result |= DID_OK << 16 | scsi_status;
5200 		break;
5201 	case SAM_STAT_TASK_SET_FULL:
5202 	case SAM_STAT_BUSY:
5203 	case SAM_STAT_TASK_ABORTED:
5204 		ufshcd_copy_sense_data(lrbp);
5205 		result |= scsi_status;
5206 		break;
5207 	default:
5208 		result |= DID_ERROR << 16;
5209 		break;
5210 	} /* end of switch */
5211 
5212 	return result;
5213 }
5214 
5215 /**
5216  * ufshcd_transfer_rsp_status - Get overall status of the response
5217  * @hba: per adapter instance
5218  * @lrbp: pointer to local reference block of completed command
5219  * @cqe: pointer to the completion queue entry
5220  *
5221  * Return: result of the command to notify SCSI midlayer.
5222  */
5223 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5224 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5225 			   struct cq_entry *cqe)
5226 {
5227 	int result = 0;
5228 	int scsi_status;
5229 	enum utp_ocs ocs;
5230 	u8 upiu_flags;
5231 	u32 resid;
5232 
5233 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5234 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5235 	/*
5236 	 * Test !overflow instead of underflow to support UFS devices that do
5237 	 * not set either flag.
5238 	 */
5239 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5240 		scsi_set_resid(lrbp->cmd, resid);
5241 
5242 	/* overall command status of utrd */
5243 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5244 
5245 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5246 		if (lrbp->ucd_rsp_ptr->header.response ||
5247 		    lrbp->ucd_rsp_ptr->header.status)
5248 			ocs = OCS_SUCCESS;
5249 	}
5250 
5251 	switch (ocs) {
5252 	case OCS_SUCCESS:
5253 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5254 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5255 		case UPIU_TRANSACTION_RESPONSE:
5256 			/*
5257 			 * get the result based on SCSI status response
5258 			 * to notify the SCSI midlayer of the command status
5259 			 */
5260 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5261 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5262 
5263 			/*
5264 			 * Currently we are only supporting BKOPs exception
5265 			 * events hence we can ignore BKOPs exception event
5266 			 * during power management callbacks. BKOPs exception
5267 			 * event is not expected to be raised in runtime suspend
5268 			 * callback as it allows the urgent bkops.
5269 			 * During system suspend, we are anyway forcefully
5270 			 * disabling the bkops and if urgent bkops is needed
5271 			 * it will be enabled on system resume. Long term
5272 			 * solution could be to abort the system suspend if
5273 			 * UFS device needs urgent BKOPs.
5274 			 */
5275 			if (!hba->pm_op_in_progress &&
5276 			    !ufshcd_eh_in_progress(hba) &&
5277 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5278 				/* Flushed in suspend */
5279 				schedule_work(&hba->eeh_work);
5280 			break;
5281 		case UPIU_TRANSACTION_REJECT_UPIU:
5282 			/* TODO: handle Reject UPIU Response */
5283 			result = DID_ERROR << 16;
5284 			dev_err(hba->dev,
5285 				"Reject UPIU not fully implemented\n");
5286 			break;
5287 		default:
5288 			dev_err(hba->dev,
5289 				"Unexpected request response code = %x\n",
5290 				result);
5291 			result = DID_ERROR << 16;
5292 			break;
5293 		}
5294 		break;
5295 	case OCS_ABORTED:
5296 		result |= DID_ABORT << 16;
5297 		break;
5298 	case OCS_INVALID_COMMAND_STATUS:
5299 		result |= DID_REQUEUE << 16;
5300 		break;
5301 	case OCS_INVALID_CMD_TABLE_ATTR:
5302 	case OCS_INVALID_PRDT_ATTR:
5303 	case OCS_MISMATCH_DATA_BUF_SIZE:
5304 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5305 	case OCS_PEER_COMM_FAILURE:
5306 	case OCS_FATAL_ERROR:
5307 	case OCS_DEVICE_FATAL_ERROR:
5308 	case OCS_INVALID_CRYPTO_CONFIG:
5309 	case OCS_GENERAL_CRYPTO_ERROR:
5310 	default:
5311 		result |= DID_ERROR << 16;
5312 		dev_err(hba->dev,
5313 				"OCS error from controller = %x for tag %d\n",
5314 				ocs, lrbp->task_tag);
5315 		ufshcd_print_evt_hist(hba);
5316 		ufshcd_print_host_state(hba);
5317 		break;
5318 	} /* end of switch */
5319 
5320 	if ((host_byte(result) != DID_OK) &&
5321 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5322 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5323 	return result;
5324 }
5325 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5326 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5327 					 u32 intr_mask)
5328 {
5329 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5330 	    !ufshcd_is_auto_hibern8_enabled(hba))
5331 		return false;
5332 
5333 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5334 		return false;
5335 
5336 	if (hba->active_uic_cmd &&
5337 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5338 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5339 		return false;
5340 
5341 	return true;
5342 }
5343 
5344 /**
5345  * ufshcd_uic_cmd_compl - handle completion of uic command
5346  * @hba: per adapter instance
5347  * @intr_status: interrupt status generated by the controller
5348  *
5349  * Return:
5350  *  IRQ_HANDLED - If interrupt is valid
5351  *  IRQ_NONE    - If invalid interrupt
5352  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5353 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5354 {
5355 	irqreturn_t retval = IRQ_NONE;
5356 
5357 	spin_lock(hba->host->host_lock);
5358 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5359 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5360 
5361 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5362 		hba->active_uic_cmd->argument2 |=
5363 			ufshcd_get_uic_cmd_result(hba);
5364 		hba->active_uic_cmd->argument3 =
5365 			ufshcd_get_dme_attr_val(hba);
5366 		if (!hba->uic_async_done)
5367 			hba->active_uic_cmd->cmd_active = 0;
5368 		complete(&hba->active_uic_cmd->done);
5369 		retval = IRQ_HANDLED;
5370 	}
5371 
5372 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5373 		hba->active_uic_cmd->cmd_active = 0;
5374 		complete(hba->uic_async_done);
5375 		retval = IRQ_HANDLED;
5376 	}
5377 
5378 	if (retval == IRQ_HANDLED)
5379 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5380 					     UFS_CMD_COMP);
5381 	spin_unlock(hba->host->host_lock);
5382 	return retval;
5383 }
5384 
5385 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5386 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5387 			     struct ufshcd_lrb *lrbp)
5388 {
5389 	struct scsi_cmnd *cmd = lrbp->cmd;
5390 
5391 	scsi_dma_unmap(cmd);
5392 	ufshcd_release(hba);
5393 	ufshcd_clk_scaling_update_busy(hba);
5394 }
5395 
5396 /**
5397  * ufshcd_compl_one_cqe - handle a completion queue entry
5398  * @hba: per adapter instance
5399  * @task_tag: the task tag of the request to be completed
5400  * @cqe: pointer to the completion queue entry
5401  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5402 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5403 			  struct cq_entry *cqe)
5404 {
5405 	struct ufshcd_lrb *lrbp;
5406 	struct scsi_cmnd *cmd;
5407 	enum utp_ocs ocs;
5408 
5409 	lrbp = &hba->lrb[task_tag];
5410 	lrbp->compl_time_stamp = ktime_get();
5411 	cmd = lrbp->cmd;
5412 	if (cmd) {
5413 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5414 			ufshcd_update_monitor(hba, lrbp);
5415 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5416 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5417 		ufshcd_release_scsi_cmd(hba, lrbp);
5418 		/* Do not touch lrbp after scsi done */
5419 		scsi_done(cmd);
5420 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5421 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5422 		if (hba->dev_cmd.complete) {
5423 			if (cqe) {
5424 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5425 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5426 			}
5427 			complete(hba->dev_cmd.complete);
5428 			ufshcd_clk_scaling_update_busy(hba);
5429 		}
5430 	}
5431 }
5432 
5433 /**
5434  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5435  * @hba: per adapter instance
5436  * @completed_reqs: bitmask that indicates which requests to complete
5437  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5438 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5439 					unsigned long completed_reqs)
5440 {
5441 	int tag;
5442 
5443 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5444 		ufshcd_compl_one_cqe(hba, tag, NULL);
5445 }
5446 
5447 /* Any value that is not an existing queue number is fine for this constant. */
5448 enum {
5449 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5450 };
5451 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5452 static void ufshcd_clear_polled(struct ufs_hba *hba,
5453 				unsigned long *completed_reqs)
5454 {
5455 	int tag;
5456 
5457 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5458 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5459 
5460 		if (!cmd)
5461 			continue;
5462 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5463 			__clear_bit(tag, completed_reqs);
5464 	}
5465 }
5466 
5467 /*
5468  * Return: > 0 if one or more commands have been completed or 0 if no
5469  * requests have been completed.
5470  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5471 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5472 {
5473 	struct ufs_hba *hba = shost_priv(shost);
5474 	unsigned long completed_reqs, flags;
5475 	u32 tr_doorbell;
5476 	struct ufs_hw_queue *hwq;
5477 
5478 	if (is_mcq_enabled(hba)) {
5479 		hwq = &hba->uhq[queue_num];
5480 
5481 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5482 	}
5483 
5484 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5485 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5486 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5487 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5488 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5489 		  hba->outstanding_reqs);
5490 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5491 		/* Do not complete polled requests from interrupt context. */
5492 		ufshcd_clear_polled(hba, &completed_reqs);
5493 	}
5494 	hba->outstanding_reqs &= ~completed_reqs;
5495 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5496 
5497 	if (completed_reqs)
5498 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5499 
5500 	return completed_reqs != 0;
5501 }
5502 
5503 /**
5504  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5505  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5506  * to complete the pending transfers and free the resources associated with
5507  * the scsi command.
5508  *
5509  * @hba: per adapter instance
5510  * @force_compl: This flag is set to true when invoked
5511  * from ufshcd_host_reset_and_restore() in which case it requires special
5512  * handling because the host controller has been reset by ufshcd_hba_stop().
5513  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5514 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5515 					      bool force_compl)
5516 {
5517 	struct ufs_hw_queue *hwq;
5518 	struct ufshcd_lrb *lrbp;
5519 	struct scsi_cmnd *cmd;
5520 	unsigned long flags;
5521 	u32 hwq_num, utag;
5522 	int tag;
5523 
5524 	for (tag = 0; tag < hba->nutrs; tag++) {
5525 		lrbp = &hba->lrb[tag];
5526 		cmd = lrbp->cmd;
5527 		if (!ufshcd_cmd_inflight(cmd) ||
5528 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5529 			continue;
5530 
5531 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5532 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5533 		hwq = &hba->uhq[hwq_num];
5534 
5535 		if (force_compl) {
5536 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5537 			/*
5538 			 * For those cmds of which the cqes are not present
5539 			 * in the cq, complete them explicitly.
5540 			 */
5541 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5542 				spin_lock_irqsave(&hwq->cq_lock, flags);
5543 				set_host_byte(cmd, DID_REQUEUE);
5544 				ufshcd_release_scsi_cmd(hba, lrbp);
5545 				scsi_done(cmd);
5546 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5547 			}
5548 		} else {
5549 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5550 		}
5551 	}
5552 }
5553 
5554 /**
5555  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5556  * @hba: per adapter instance
5557  *
5558  * Return:
5559  *  IRQ_HANDLED - If interrupt is valid
5560  *  IRQ_NONE    - If invalid interrupt
5561  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5562 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5563 {
5564 	/* Resetting interrupt aggregation counters first and reading the
5565 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5566 	 * In order to prevent other interrupts starvation the DB is read once
5567 	 * after reset. The down side of this solution is the possibility of
5568 	 * false interrupt if device completes another request after resetting
5569 	 * aggregation and before reading the DB.
5570 	 */
5571 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5572 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5573 		ufshcd_reset_intr_aggr(hba);
5574 
5575 	if (ufs_fail_completion())
5576 		return IRQ_HANDLED;
5577 
5578 	/*
5579 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5580 	 * do not want polling to trigger spurious interrupt complaints.
5581 	 */
5582 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5583 
5584 	return IRQ_HANDLED;
5585 }
5586 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5587 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5588 {
5589 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5590 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5591 				       &ee_ctrl_mask);
5592 }
5593 
ufshcd_write_ee_control(struct ufs_hba * hba)5594 int ufshcd_write_ee_control(struct ufs_hba *hba)
5595 {
5596 	int err;
5597 
5598 	mutex_lock(&hba->ee_ctrl_mutex);
5599 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5600 	mutex_unlock(&hba->ee_ctrl_mutex);
5601 	if (err)
5602 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5603 			__func__, err);
5604 	return err;
5605 }
5606 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5607 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5608 			     const u16 *other_mask, u16 set, u16 clr)
5609 {
5610 	u16 new_mask, ee_ctrl_mask;
5611 	int err = 0;
5612 
5613 	mutex_lock(&hba->ee_ctrl_mutex);
5614 	new_mask = (*mask & ~clr) | set;
5615 	ee_ctrl_mask = new_mask | *other_mask;
5616 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5617 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5618 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5619 	if (!err) {
5620 		hba->ee_ctrl_mask = ee_ctrl_mask;
5621 		*mask = new_mask;
5622 	}
5623 	mutex_unlock(&hba->ee_ctrl_mutex);
5624 	return err;
5625 }
5626 
5627 /**
5628  * ufshcd_disable_ee - disable exception event
5629  * @hba: per-adapter instance
5630  * @mask: exception event to disable
5631  *
5632  * Disables exception event in the device so that the EVENT_ALERT
5633  * bit is not set.
5634  *
5635  * Return: zero on success, non-zero error value on failure.
5636  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5637 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5638 {
5639 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5640 }
5641 
5642 /**
5643  * ufshcd_enable_ee - enable exception event
5644  * @hba: per-adapter instance
5645  * @mask: exception event to enable
5646  *
5647  * Enable corresponding exception event in the device to allow
5648  * device to alert host in critical scenarios.
5649  *
5650  * Return: zero on success, non-zero error value on failure.
5651  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5652 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5653 {
5654 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5655 }
5656 
5657 /**
5658  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5659  * @hba: per-adapter instance
5660  *
5661  * Allow device to manage background operations on its own. Enabling
5662  * this might lead to inconsistent latencies during normal data transfers
5663  * as the device is allowed to manage its own way of handling background
5664  * operations.
5665  *
5666  * Return: zero on success, non-zero on failure.
5667  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5668 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5669 {
5670 	int err = 0;
5671 
5672 	if (hba->auto_bkops_enabled)
5673 		goto out;
5674 
5675 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5676 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5677 	if (err) {
5678 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5679 				__func__, err);
5680 		goto out;
5681 	}
5682 
5683 	hba->auto_bkops_enabled = true;
5684 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5685 
5686 	/* No need of URGENT_BKOPS exception from the device */
5687 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5688 	if (err)
5689 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5690 				__func__, err);
5691 out:
5692 	return err;
5693 }
5694 
5695 /**
5696  * ufshcd_disable_auto_bkops - block device in doing background operations
5697  * @hba: per-adapter instance
5698  *
5699  * Disabling background operations improves command response latency but
5700  * has drawback of device moving into critical state where the device is
5701  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5702  * host is idle so that BKOPS are managed effectively without any negative
5703  * impacts.
5704  *
5705  * Return: zero on success, non-zero on failure.
5706  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5707 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5708 {
5709 	int err = 0;
5710 
5711 	if (!hba->auto_bkops_enabled)
5712 		goto out;
5713 
5714 	/*
5715 	 * If host assisted BKOPs is to be enabled, make sure
5716 	 * urgent bkops exception is allowed.
5717 	 */
5718 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5719 	if (err) {
5720 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5721 				__func__, err);
5722 		goto out;
5723 	}
5724 
5725 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5726 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5727 	if (err) {
5728 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5729 				__func__, err);
5730 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5731 		goto out;
5732 	}
5733 
5734 	hba->auto_bkops_enabled = false;
5735 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5736 	hba->is_urgent_bkops_lvl_checked = false;
5737 out:
5738 	return err;
5739 }
5740 
5741 /**
5742  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5743  * @hba: per adapter instance
5744  *
5745  * After a device reset the device may toggle the BKOPS_EN flag
5746  * to default value. The s/w tracking variables should be updated
5747  * as well. This function would change the auto-bkops state based on
5748  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5749  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5750 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5751 {
5752 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5753 		hba->auto_bkops_enabled = false;
5754 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5755 		ufshcd_enable_auto_bkops(hba);
5756 	} else {
5757 		hba->auto_bkops_enabled = true;
5758 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5759 		ufshcd_disable_auto_bkops(hba);
5760 	}
5761 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5762 	hba->is_urgent_bkops_lvl_checked = false;
5763 }
5764 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5765 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5766 {
5767 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5768 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5769 }
5770 
5771 /**
5772  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5773  * @hba: per-adapter instance
5774  * @status: bkops_status value
5775  *
5776  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5777  * flag in the device to permit background operations if the device
5778  * bkops_status is greater than or equal to "status" argument passed to
5779  * this function, disable otherwise.
5780  *
5781  * Return: 0 for success, non-zero in case of failure.
5782  *
5783  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5784  * to know whether auto bkops is enabled or disabled after this function
5785  * returns control to it.
5786  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5787 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5788 			     enum bkops_status status)
5789 {
5790 	int err;
5791 	u32 curr_status = 0;
5792 
5793 	err = ufshcd_get_bkops_status(hba, &curr_status);
5794 	if (err) {
5795 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5796 				__func__, err);
5797 		goto out;
5798 	} else if (curr_status > BKOPS_STATUS_MAX) {
5799 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5800 				__func__, curr_status);
5801 		err = -EINVAL;
5802 		goto out;
5803 	}
5804 
5805 	if (curr_status >= status)
5806 		err = ufshcd_enable_auto_bkops(hba);
5807 	else
5808 		err = ufshcd_disable_auto_bkops(hba);
5809 out:
5810 	return err;
5811 }
5812 
5813 /**
5814  * ufshcd_urgent_bkops - handle urgent bkops exception event
5815  * @hba: per-adapter instance
5816  *
5817  * Enable fBackgroundOpsEn flag in the device to permit background
5818  * operations.
5819  *
5820  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5821  * and negative error value for any other failure.
5822  *
5823  * Return: 0 upon success; < 0 upon failure.
5824  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5825 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5826 {
5827 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5828 }
5829 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5830 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5831 {
5832 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5833 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5834 }
5835 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5836 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5837 {
5838 	int err;
5839 	u32 curr_status = 0;
5840 
5841 	if (hba->is_urgent_bkops_lvl_checked)
5842 		goto enable_auto_bkops;
5843 
5844 	err = ufshcd_get_bkops_status(hba, &curr_status);
5845 	if (err) {
5846 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5847 				__func__, err);
5848 		goto out;
5849 	}
5850 
5851 	/*
5852 	 * We are seeing that some devices are raising the urgent bkops
5853 	 * exception events even when BKOPS status doesn't indicate performace
5854 	 * impacted or critical. Handle these device by determining their urgent
5855 	 * bkops status at runtime.
5856 	 */
5857 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5858 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5859 				__func__, curr_status);
5860 		/* update the current status as the urgent bkops level */
5861 		hba->urgent_bkops_lvl = curr_status;
5862 		hba->is_urgent_bkops_lvl_checked = true;
5863 	}
5864 
5865 enable_auto_bkops:
5866 	err = ufshcd_enable_auto_bkops(hba);
5867 out:
5868 	if (err < 0)
5869 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5870 				__func__, err);
5871 }
5872 
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5873 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5874 {
5875 	u32 value;
5876 
5877 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5878 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5879 		return;
5880 
5881 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5882 
5883 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5884 
5885 	/*
5886 	 * A placeholder for the platform vendors to add whatever additional
5887 	 * steps required
5888 	 */
5889 }
5890 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5891 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5892 {
5893 	u8 index;
5894 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5895 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5896 
5897 	index = ufshcd_wb_get_query_index(hba);
5898 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5899 }
5900 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5901 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5902 {
5903 	int ret;
5904 
5905 	if (!ufshcd_is_wb_allowed(hba) ||
5906 	    hba->dev_info.wb_enabled == enable)
5907 		return 0;
5908 
5909 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5910 	if (ret) {
5911 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5912 			__func__, enable ? "enabling" : "disabling", ret);
5913 		return ret;
5914 	}
5915 
5916 	hba->dev_info.wb_enabled = enable;
5917 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5918 			__func__, enable ? "enabled" : "disabled");
5919 
5920 	return ret;
5921 }
5922 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)5923 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5924 						 bool enable)
5925 {
5926 	int ret;
5927 
5928 	ret = __ufshcd_wb_toggle(hba, enable,
5929 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5930 	if (ret) {
5931 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5932 			__func__, enable ? "enabling" : "disabling", ret);
5933 		return;
5934 	}
5935 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5936 			__func__, enable ? "enabled" : "disabled");
5937 }
5938 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)5939 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5940 {
5941 	int ret;
5942 
5943 	if (!ufshcd_is_wb_allowed(hba) ||
5944 	    hba->dev_info.wb_buf_flush_enabled == enable)
5945 		return 0;
5946 
5947 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5948 	if (ret) {
5949 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5950 			__func__, enable ? "enabling" : "disabling", ret);
5951 		return ret;
5952 	}
5953 
5954 	hba->dev_info.wb_buf_flush_enabled = enable;
5955 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5956 			__func__, enable ? "enabled" : "disabled");
5957 
5958 	return ret;
5959 }
5960 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5961 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5962 						u32 avail_buf)
5963 {
5964 	u32 cur_buf;
5965 	int ret;
5966 	u8 index;
5967 
5968 	index = ufshcd_wb_get_query_index(hba);
5969 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5970 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5971 					      index, 0, &cur_buf);
5972 	if (ret) {
5973 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5974 			__func__, ret);
5975 		return false;
5976 	}
5977 
5978 	if (!cur_buf) {
5979 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5980 			 cur_buf);
5981 		return false;
5982 	}
5983 	/* Let it continue to flush when available buffer exceeds threshold */
5984 	return avail_buf < hba->vps->wb_flush_threshold;
5985 }
5986 
ufshcd_wb_force_disable(struct ufs_hba * hba)5987 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5988 {
5989 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5990 		ufshcd_wb_toggle_buf_flush(hba, false);
5991 
5992 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5993 	ufshcd_wb_toggle(hba, false);
5994 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5995 
5996 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5997 }
5998 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)5999 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6000 {
6001 	u32 lifetime;
6002 	int ret;
6003 	u8 index;
6004 
6005 	index = ufshcd_wb_get_query_index(hba);
6006 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6007 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6008 				      index, 0, &lifetime);
6009 	if (ret) {
6010 		dev_err(hba->dev,
6011 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6012 			__func__, ret);
6013 		return false;
6014 	}
6015 
6016 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6017 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6018 			__func__, lifetime);
6019 		return false;
6020 	}
6021 
6022 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6023 		__func__, lifetime);
6024 
6025 	return true;
6026 }
6027 
ufshcd_wb_need_flush(struct ufs_hba * hba)6028 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6029 {
6030 	int ret;
6031 	u32 avail_buf;
6032 	u8 index;
6033 
6034 	if (!ufshcd_is_wb_allowed(hba))
6035 		return false;
6036 
6037 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6038 		ufshcd_wb_force_disable(hba);
6039 		return false;
6040 	}
6041 
6042 	/*
6043 	 * The ufs device needs the vcc to be ON to flush.
6044 	 * With user-space reduction enabled, it's enough to enable flush
6045 	 * by checking only the available buffer. The threshold
6046 	 * defined here is > 90% full.
6047 	 * With user-space preserved enabled, the current-buffer
6048 	 * should be checked too because the wb buffer size can reduce
6049 	 * when disk tends to be full. This info is provided by current
6050 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6051 	 * keeping vcc on when current buffer is empty.
6052 	 */
6053 	index = ufshcd_wb_get_query_index(hba);
6054 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6055 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6056 				      index, 0, &avail_buf);
6057 	if (ret) {
6058 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6059 			 __func__, ret);
6060 		return false;
6061 	}
6062 
6063 	if (!hba->dev_info.b_presrv_uspc_en)
6064 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6065 
6066 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6067 }
6068 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6069 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6070 {
6071 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6072 					   struct ufs_hba,
6073 					   rpm_dev_flush_recheck_work);
6074 	/*
6075 	 * To prevent unnecessary VCC power drain after device finishes
6076 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6077 	 * after a certain delay to recheck the threshold by next runtime
6078 	 * suspend.
6079 	 */
6080 	ufshcd_rpm_get_sync(hba);
6081 	ufshcd_rpm_put_sync(hba);
6082 }
6083 
6084 /**
6085  * ufshcd_exception_event_handler - handle exceptions raised by device
6086  * @work: pointer to work data
6087  *
6088  * Read bExceptionEventStatus attribute from the device and handle the
6089  * exception event accordingly.
6090  */
ufshcd_exception_event_handler(struct work_struct * work)6091 static void ufshcd_exception_event_handler(struct work_struct *work)
6092 {
6093 	struct ufs_hba *hba;
6094 	int err;
6095 	u32 status = 0;
6096 	hba = container_of(work, struct ufs_hba, eeh_work);
6097 
6098 	ufshcd_scsi_block_requests(hba);
6099 	err = ufshcd_get_ee_status(hba, &status);
6100 	if (err) {
6101 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6102 				__func__, err);
6103 		goto out;
6104 	}
6105 
6106 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6107 
6108 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6109 		ufshcd_bkops_exception_event_handler(hba);
6110 
6111 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6112 		ufshcd_temp_exception_event_handler(hba, status);
6113 
6114 	ufs_debugfs_exception_event(hba, status);
6115 out:
6116 	ufshcd_scsi_unblock_requests(hba);
6117 }
6118 
6119 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6120 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6121 {
6122 	if (is_mcq_enabled(hba))
6123 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6124 	else
6125 		ufshcd_transfer_req_compl(hba);
6126 
6127 	ufshcd_tmc_handler(hba);
6128 }
6129 
6130 /**
6131  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6132  *				to recover from the DL NAC errors or not.
6133  * @hba: per-adapter instance
6134  *
6135  * Return: true if error handling is required, false otherwise.
6136  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6137 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6138 {
6139 	unsigned long flags;
6140 	bool err_handling = true;
6141 
6142 	spin_lock_irqsave(hba->host->host_lock, flags);
6143 	/*
6144 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6145 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6146 	 */
6147 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6148 		goto out;
6149 
6150 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6151 	    ((hba->saved_err & UIC_ERROR) &&
6152 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6153 		goto out;
6154 
6155 	if ((hba->saved_err & UIC_ERROR) &&
6156 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6157 		int err;
6158 		/*
6159 		 * wait for 50ms to see if we can get any other errors or not.
6160 		 */
6161 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6162 		msleep(50);
6163 		spin_lock_irqsave(hba->host->host_lock, flags);
6164 
6165 		/*
6166 		 * now check if we have got any other severe errors other than
6167 		 * DL NAC error?
6168 		 */
6169 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6170 		    ((hba->saved_err & UIC_ERROR) &&
6171 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6172 			goto out;
6173 
6174 		/*
6175 		 * As DL NAC is the only error received so far, send out NOP
6176 		 * command to confirm if link is still active or not.
6177 		 *   - If we don't get any response then do error recovery.
6178 		 *   - If we get response then clear the DL NAC error bit.
6179 		 */
6180 
6181 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6182 		err = ufshcd_verify_dev_init(hba);
6183 		spin_lock_irqsave(hba->host->host_lock, flags);
6184 
6185 		if (err)
6186 			goto out;
6187 
6188 		/* Link seems to be alive hence ignore the DL NAC errors */
6189 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6190 			hba->saved_err &= ~UIC_ERROR;
6191 		/* clear NAC error */
6192 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6193 		if (!hba->saved_uic_err)
6194 			err_handling = false;
6195 	}
6196 out:
6197 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6198 	return err_handling;
6199 }
6200 
6201 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6202 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6203 {
6204 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6205 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6206 }
6207 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6208 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6209 {
6210 	lockdep_assert_held(hba->host->host_lock);
6211 
6212 	/* handle fatal errors only when link is not in error state */
6213 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6214 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6215 		    ufshcd_is_saved_err_fatal(hba))
6216 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6217 		else
6218 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6219 		queue_work(hba->eh_wq, &hba->eh_work);
6220 	}
6221 }
6222 
ufshcd_force_error_recovery(struct ufs_hba * hba)6223 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6224 {
6225 	spin_lock_irq(hba->host->host_lock);
6226 	hba->force_reset = true;
6227 	ufshcd_schedule_eh_work(hba);
6228 	spin_unlock_irq(hba->host->host_lock);
6229 }
6230 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6231 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6232 {
6233 	mutex_lock(&hba->wb_mutex);
6234 	down_write(&hba->clk_scaling_lock);
6235 	hba->clk_scaling.is_allowed = allow;
6236 	up_write(&hba->clk_scaling_lock);
6237 	mutex_unlock(&hba->wb_mutex);
6238 }
6239 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6240 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6241 {
6242 	if (suspend) {
6243 		if (hba->clk_scaling.is_enabled)
6244 			ufshcd_suspend_clkscaling(hba);
6245 		ufshcd_clk_scaling_allow(hba, false);
6246 	} else {
6247 		ufshcd_clk_scaling_allow(hba, true);
6248 		if (hba->clk_scaling.is_enabled)
6249 			ufshcd_resume_clkscaling(hba);
6250 	}
6251 }
6252 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6253 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6254 {
6255 	ufshcd_rpm_get_sync(hba);
6256 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6257 	    hba->is_sys_suspended) {
6258 		enum ufs_pm_op pm_op;
6259 
6260 		/*
6261 		 * Don't assume anything of resume, if
6262 		 * resume fails, irq and clocks can be OFF, and powers
6263 		 * can be OFF or in LPM.
6264 		 */
6265 		ufshcd_setup_hba_vreg(hba, true);
6266 		ufshcd_enable_irq(hba);
6267 		ufshcd_setup_vreg(hba, true);
6268 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6269 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6270 		ufshcd_hold(hba);
6271 		if (!ufshcd_is_clkgating_allowed(hba))
6272 			ufshcd_setup_clocks(hba, true);
6273 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6274 		ufshcd_vops_resume(hba, pm_op);
6275 	} else {
6276 		ufshcd_hold(hba);
6277 		if (ufshcd_is_clkscaling_supported(hba) &&
6278 		    hba->clk_scaling.is_enabled)
6279 			ufshcd_suspend_clkscaling(hba);
6280 		ufshcd_clk_scaling_allow(hba, false);
6281 	}
6282 	ufshcd_scsi_block_requests(hba);
6283 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6284 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6285 	cancel_work_sync(&hba->eeh_work);
6286 }
6287 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6288 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6289 {
6290 	ufshcd_scsi_unblock_requests(hba);
6291 	ufshcd_release(hba);
6292 	if (ufshcd_is_clkscaling_supported(hba))
6293 		ufshcd_clk_scaling_suspend(hba, false);
6294 	ufshcd_rpm_put(hba);
6295 }
6296 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6297 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6298 {
6299 	return (!hba->is_powered || hba->shutting_down ||
6300 		!hba->ufs_device_wlun ||
6301 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6302 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6303 		   ufshcd_is_link_broken(hba))));
6304 }
6305 
6306 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6307 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6308 {
6309 	struct Scsi_Host *shost = hba->host;
6310 	struct scsi_device *sdev;
6311 	struct request_queue *q;
6312 	int ret;
6313 
6314 	hba->is_sys_suspended = false;
6315 	/*
6316 	 * Set RPM status of wlun device to RPM_ACTIVE,
6317 	 * this also clears its runtime error.
6318 	 */
6319 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6320 
6321 	/* hba device might have a runtime error otherwise */
6322 	if (ret)
6323 		ret = pm_runtime_set_active(hba->dev);
6324 	/*
6325 	 * If wlun device had runtime error, we also need to resume those
6326 	 * consumer scsi devices in case any of them has failed to be
6327 	 * resumed due to supplier runtime resume failure. This is to unblock
6328 	 * blk_queue_enter in case there are bios waiting inside it.
6329 	 */
6330 	if (!ret) {
6331 		shost_for_each_device(sdev, shost) {
6332 			q = sdev->request_queue;
6333 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6334 				       q->rpm_status == RPM_SUSPENDING))
6335 				pm_request_resume(q->dev);
6336 		}
6337 	}
6338 }
6339 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6340 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6341 {
6342 }
6343 #endif
6344 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6345 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6346 {
6347 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6348 	u32 mode;
6349 
6350 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6351 
6352 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6353 		return true;
6354 
6355 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6356 		return true;
6357 
6358 	return false;
6359 }
6360 
ufshcd_abort_one(struct request * rq,void * priv)6361 static bool ufshcd_abort_one(struct request *rq, void *priv)
6362 {
6363 	int *ret = priv;
6364 	u32 tag = rq->tag;
6365 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6366 	struct scsi_device *sdev = cmd->device;
6367 	struct Scsi_Host *shost = sdev->host;
6368 	struct ufs_hba *hba = shost_priv(shost);
6369 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6370 	struct ufs_hw_queue *hwq;
6371 	unsigned long flags;
6372 
6373 	*ret = ufshcd_try_to_abort_task(hba, tag);
6374 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6375 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6376 		*ret ? "failed" : "succeeded");
6377 
6378 	/* Release cmd in MCQ mode if abort succeeds */
6379 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6380 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6381 		if (!hwq)
6382 			return 0;
6383 		spin_lock_irqsave(&hwq->cq_lock, flags);
6384 		if (ufshcd_cmd_inflight(lrbp->cmd))
6385 			ufshcd_release_scsi_cmd(hba, lrbp);
6386 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6387 	}
6388 
6389 	return *ret == 0;
6390 }
6391 
6392 /**
6393  * ufshcd_abort_all - Abort all pending commands.
6394  * @hba: Host bus adapter pointer.
6395  *
6396  * Return: true if and only if the host controller needs to be reset.
6397  */
ufshcd_abort_all(struct ufs_hba * hba)6398 static bool ufshcd_abort_all(struct ufs_hba *hba)
6399 {
6400 	int tag, ret = 0;
6401 
6402 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6403 	if (ret)
6404 		goto out;
6405 
6406 	/* Clear pending task management requests */
6407 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6408 		ret = ufshcd_clear_tm_cmd(hba, tag);
6409 		if (ret)
6410 			goto out;
6411 	}
6412 
6413 out:
6414 	/* Complete the requests that are cleared by s/w */
6415 	ufshcd_complete_requests(hba, false);
6416 
6417 	return ret != 0;
6418 }
6419 
6420 /**
6421  * ufshcd_err_handler - handle UFS errors that require s/w attention
6422  * @work: pointer to work structure
6423  */
ufshcd_err_handler(struct work_struct * work)6424 static void ufshcd_err_handler(struct work_struct *work)
6425 {
6426 	int retries = MAX_ERR_HANDLER_RETRIES;
6427 	struct ufs_hba *hba;
6428 	unsigned long flags;
6429 	bool needs_restore;
6430 	bool needs_reset;
6431 	int pmc_err;
6432 
6433 	hba = container_of(work, struct ufs_hba, eh_work);
6434 
6435 	dev_info(hba->dev,
6436 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6437 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6438 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6439 		 hba->saved_uic_err, hba->force_reset,
6440 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6441 
6442 	down(&hba->host_sem);
6443 	spin_lock_irqsave(hba->host->host_lock, flags);
6444 	if (ufshcd_err_handling_should_stop(hba)) {
6445 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6446 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6447 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6448 		up(&hba->host_sem);
6449 		return;
6450 	}
6451 	ufshcd_set_eh_in_progress(hba);
6452 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6453 	ufshcd_err_handling_prepare(hba);
6454 	/* Complete requests that have door-bell cleared by h/w */
6455 	ufshcd_complete_requests(hba, false);
6456 	spin_lock_irqsave(hba->host->host_lock, flags);
6457 again:
6458 	needs_restore = false;
6459 	needs_reset = false;
6460 
6461 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6462 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6463 	/*
6464 	 * A full reset and restore might have happened after preparation
6465 	 * is finished, double check whether we should stop.
6466 	 */
6467 	if (ufshcd_err_handling_should_stop(hba))
6468 		goto skip_err_handling;
6469 
6470 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6471 	    !hba->force_reset) {
6472 		bool ret;
6473 
6474 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6475 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6476 		ret = ufshcd_quirk_dl_nac_errors(hba);
6477 		spin_lock_irqsave(hba->host->host_lock, flags);
6478 		if (!ret && ufshcd_err_handling_should_stop(hba))
6479 			goto skip_err_handling;
6480 	}
6481 
6482 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6483 	    (hba->saved_uic_err &&
6484 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6485 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6486 
6487 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6488 		ufshcd_print_host_state(hba);
6489 		ufshcd_print_pwr_info(hba);
6490 		ufshcd_print_evt_hist(hba);
6491 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6492 		ufshcd_print_trs_all(hba, pr_prdt);
6493 		spin_lock_irqsave(hba->host->host_lock, flags);
6494 	}
6495 
6496 	/*
6497 	 * if host reset is required then skip clearing the pending
6498 	 * transfers forcefully because they will get cleared during
6499 	 * host reset and restore
6500 	 */
6501 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6502 	    ufshcd_is_saved_err_fatal(hba) ||
6503 	    ((hba->saved_err & UIC_ERROR) &&
6504 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6505 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6506 		needs_reset = true;
6507 		goto do_reset;
6508 	}
6509 
6510 	/*
6511 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6512 	 * check if power mode restore is needed.
6513 	 */
6514 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6515 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6516 		if (!hba->saved_uic_err)
6517 			hba->saved_err &= ~UIC_ERROR;
6518 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6519 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6520 			needs_restore = true;
6521 		spin_lock_irqsave(hba->host->host_lock, flags);
6522 		if (!hba->saved_err && !needs_restore)
6523 			goto skip_err_handling;
6524 	}
6525 
6526 	hba->silence_err_logs = true;
6527 	/* release lock as clear command might sleep */
6528 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6529 
6530 	needs_reset = ufshcd_abort_all(hba);
6531 
6532 	spin_lock_irqsave(hba->host->host_lock, flags);
6533 	hba->silence_err_logs = false;
6534 	if (needs_reset)
6535 		goto do_reset;
6536 
6537 	/*
6538 	 * After all reqs and tasks are cleared from doorbell,
6539 	 * now it is safe to retore power mode.
6540 	 */
6541 	if (needs_restore) {
6542 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6543 		/*
6544 		 * Hold the scaling lock just in case dev cmds
6545 		 * are sent via bsg and/or sysfs.
6546 		 */
6547 		down_write(&hba->clk_scaling_lock);
6548 		hba->force_pmc = true;
6549 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6550 		if (pmc_err) {
6551 			needs_reset = true;
6552 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6553 					__func__, pmc_err);
6554 		}
6555 		hba->force_pmc = false;
6556 		ufshcd_print_pwr_info(hba);
6557 		up_write(&hba->clk_scaling_lock);
6558 		spin_lock_irqsave(hba->host->host_lock, flags);
6559 	}
6560 
6561 do_reset:
6562 	/* Fatal errors need reset */
6563 	if (needs_reset) {
6564 		int err;
6565 
6566 		hba->force_reset = false;
6567 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6568 		err = ufshcd_reset_and_restore(hba);
6569 		if (err)
6570 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6571 					__func__, err);
6572 		else
6573 			ufshcd_recover_pm_error(hba);
6574 		spin_lock_irqsave(hba->host->host_lock, flags);
6575 	}
6576 
6577 skip_err_handling:
6578 	if (!needs_reset) {
6579 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6580 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6581 		if (hba->saved_err || hba->saved_uic_err)
6582 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6583 			    __func__, hba->saved_err, hba->saved_uic_err);
6584 	}
6585 	/* Exit in an operational state or dead */
6586 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6587 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6588 		if (--retries)
6589 			goto again;
6590 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6591 	}
6592 	ufshcd_clear_eh_in_progress(hba);
6593 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6594 	ufshcd_err_handling_unprepare(hba);
6595 	up(&hba->host_sem);
6596 
6597 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6598 		 ufshcd_state_name[hba->ufshcd_state]);
6599 }
6600 
6601 /**
6602  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6603  * @hba: per-adapter instance
6604  *
6605  * Return:
6606  *  IRQ_HANDLED - If interrupt is valid
6607  *  IRQ_NONE    - If invalid interrupt
6608  */
ufshcd_update_uic_error(struct ufs_hba * hba)6609 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6610 {
6611 	u32 reg;
6612 	irqreturn_t retval = IRQ_NONE;
6613 
6614 	/* PHY layer error */
6615 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6616 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6617 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6618 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6619 		/*
6620 		 * To know whether this error is fatal or not, DB timeout
6621 		 * must be checked but this error is handled separately.
6622 		 */
6623 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6624 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6625 					__func__);
6626 
6627 		/* Got a LINERESET indication. */
6628 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6629 			struct uic_command *cmd = NULL;
6630 
6631 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6632 			if (hba->uic_async_done && hba->active_uic_cmd)
6633 				cmd = hba->active_uic_cmd;
6634 			/*
6635 			 * Ignore the LINERESET during power mode change
6636 			 * operation via DME_SET command.
6637 			 */
6638 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6639 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6640 		}
6641 		retval |= IRQ_HANDLED;
6642 	}
6643 
6644 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6645 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6646 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6647 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6648 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6649 
6650 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6651 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6652 		else if (hba->dev_quirks &
6653 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6654 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6655 				hba->uic_error |=
6656 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6657 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6658 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6659 		}
6660 		retval |= IRQ_HANDLED;
6661 	}
6662 
6663 	/* UIC NL/TL/DME errors needs software retry */
6664 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6665 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6666 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6667 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6668 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6669 		retval |= IRQ_HANDLED;
6670 	}
6671 
6672 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6673 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6674 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6675 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6676 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6677 		retval |= IRQ_HANDLED;
6678 	}
6679 
6680 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6681 	if ((reg & UIC_DME_ERROR) &&
6682 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6683 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6684 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6685 		retval |= IRQ_HANDLED;
6686 	}
6687 
6688 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6689 			__func__, hba->uic_error);
6690 	return retval;
6691 }
6692 
6693 /**
6694  * ufshcd_check_errors - Check for errors that need s/w attention
6695  * @hba: per-adapter instance
6696  * @intr_status: interrupt status generated by the controller
6697  *
6698  * Return:
6699  *  IRQ_HANDLED - If interrupt is valid
6700  *  IRQ_NONE    - If invalid interrupt
6701  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6702 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6703 {
6704 	bool queue_eh_work = false;
6705 	irqreturn_t retval = IRQ_NONE;
6706 
6707 	spin_lock(hba->host->host_lock);
6708 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6709 
6710 	if (hba->errors & INT_FATAL_ERRORS) {
6711 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6712 				       hba->errors);
6713 		queue_eh_work = true;
6714 	}
6715 
6716 	if (hba->errors & UIC_ERROR) {
6717 		hba->uic_error = 0;
6718 		retval = ufshcd_update_uic_error(hba);
6719 		if (hba->uic_error)
6720 			queue_eh_work = true;
6721 	}
6722 
6723 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6724 		dev_err(hba->dev,
6725 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6726 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6727 			"Enter" : "Exit",
6728 			hba->errors, ufshcd_get_upmcrs(hba));
6729 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6730 				       hba->errors);
6731 		ufshcd_set_link_broken(hba);
6732 		queue_eh_work = true;
6733 	}
6734 
6735 	if (queue_eh_work) {
6736 		/*
6737 		 * update the transfer error masks to sticky bits, let's do this
6738 		 * irrespective of current ufshcd_state.
6739 		 */
6740 		hba->saved_err |= hba->errors;
6741 		hba->saved_uic_err |= hba->uic_error;
6742 
6743 		/* dump controller state before resetting */
6744 		if ((hba->saved_err &
6745 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6746 		    (hba->saved_uic_err &&
6747 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6748 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6749 					__func__, hba->saved_err,
6750 					hba->saved_uic_err);
6751 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6752 					 "host_regs: ");
6753 			ufshcd_print_pwr_info(hba);
6754 		}
6755 		ufshcd_schedule_eh_work(hba);
6756 		retval |= IRQ_HANDLED;
6757 	}
6758 	/*
6759 	 * if (!queue_eh_work) -
6760 	 * Other errors are either non-fatal where host recovers
6761 	 * itself without s/w intervention or errors that will be
6762 	 * handled by the SCSI core layer.
6763 	 */
6764 	hba->errors = 0;
6765 	hba->uic_error = 0;
6766 	spin_unlock(hba->host->host_lock);
6767 	return retval;
6768 }
6769 
6770 /**
6771  * ufshcd_tmc_handler - handle task management function completion
6772  * @hba: per adapter instance
6773  *
6774  * Return:
6775  *  IRQ_HANDLED - If interrupt is valid
6776  *  IRQ_NONE    - If invalid interrupt
6777  */
ufshcd_tmc_handler(struct ufs_hba * hba)6778 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6779 {
6780 	unsigned long flags, pending, issued;
6781 	irqreturn_t ret = IRQ_NONE;
6782 	int tag;
6783 
6784 	spin_lock_irqsave(hba->host->host_lock, flags);
6785 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6786 	issued = hba->outstanding_tasks & ~pending;
6787 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6788 		struct request *req = hba->tmf_rqs[tag];
6789 		struct completion *c = req->end_io_data;
6790 
6791 		complete(c);
6792 		ret = IRQ_HANDLED;
6793 	}
6794 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6795 
6796 	return ret;
6797 }
6798 
6799 /**
6800  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6801  * @hba: per adapter instance
6802  *
6803  * Return: IRQ_HANDLED if interrupt is handled.
6804  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6805 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6806 {
6807 	struct ufs_hw_queue *hwq;
6808 	unsigned long outstanding_cqs;
6809 	unsigned int nr_queues;
6810 	int i, ret;
6811 	u32 events;
6812 
6813 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6814 	if (ret)
6815 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6816 
6817 	/* Exclude the poll queues */
6818 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6819 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6820 		hwq = &hba->uhq[i];
6821 
6822 		events = ufshcd_mcq_read_cqis(hba, i);
6823 		if (events)
6824 			ufshcd_mcq_write_cqis(hba, events, i);
6825 
6826 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6827 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6828 	}
6829 
6830 	return IRQ_HANDLED;
6831 }
6832 
6833 /**
6834  * ufshcd_sl_intr - Interrupt service routine
6835  * @hba: per adapter instance
6836  * @intr_status: contains interrupts generated by the controller
6837  *
6838  * Return:
6839  *  IRQ_HANDLED - If interrupt is valid
6840  *  IRQ_NONE    - If invalid interrupt
6841  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6842 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6843 {
6844 	irqreturn_t retval = IRQ_NONE;
6845 
6846 	if (intr_status & UFSHCD_UIC_MASK)
6847 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6848 
6849 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6850 		retval |= ufshcd_check_errors(hba, intr_status);
6851 
6852 	if (intr_status & UTP_TASK_REQ_COMPL)
6853 		retval |= ufshcd_tmc_handler(hba);
6854 
6855 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6856 		retval |= ufshcd_transfer_req_compl(hba);
6857 
6858 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6859 		retval |= ufshcd_handle_mcq_cq_events(hba);
6860 
6861 	return retval;
6862 }
6863 
6864 /**
6865  * ufshcd_intr - Main interrupt service routine
6866  * @irq: irq number
6867  * @__hba: pointer to adapter instance
6868  *
6869  * Return:
6870  *  IRQ_HANDLED - If interrupt is valid
6871  *  IRQ_NONE    - If invalid interrupt
6872  */
ufshcd_intr(int irq,void * __hba)6873 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6874 {
6875 	u32 intr_status, enabled_intr_status = 0;
6876 	irqreturn_t retval = IRQ_NONE;
6877 	struct ufs_hba *hba = __hba;
6878 	int retries = hba->nutrs;
6879 
6880 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6881 	hba->ufs_stats.last_intr_status = intr_status;
6882 	hba->ufs_stats.last_intr_ts = local_clock();
6883 
6884 	/*
6885 	 * There could be max of hba->nutrs reqs in flight and in worst case
6886 	 * if the reqs get finished 1 by 1 after the interrupt status is
6887 	 * read, make sure we handle them by checking the interrupt status
6888 	 * again in a loop until we process all of the reqs before returning.
6889 	 */
6890 	while (intr_status && retries--) {
6891 		enabled_intr_status =
6892 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6893 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6894 		if (enabled_intr_status)
6895 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6896 
6897 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6898 	}
6899 
6900 	if (enabled_intr_status && retval == IRQ_NONE &&
6901 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6902 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6903 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6904 					__func__,
6905 					intr_status,
6906 					hba->ufs_stats.last_intr_status,
6907 					enabled_intr_status);
6908 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6909 	}
6910 
6911 	return retval;
6912 }
6913 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6914 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6915 {
6916 	int err = 0;
6917 	u32 mask = 1 << tag;
6918 	unsigned long flags;
6919 
6920 	if (!test_bit(tag, &hba->outstanding_tasks))
6921 		goto out;
6922 
6923 	spin_lock_irqsave(hba->host->host_lock, flags);
6924 	ufshcd_utmrl_clear(hba, tag);
6925 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6926 
6927 	/* poll for max. 1 sec to clear door bell register by h/w */
6928 	err = ufshcd_wait_for_register(hba,
6929 			REG_UTP_TASK_REQ_DOOR_BELL,
6930 			mask, 0, 1000, 1000);
6931 
6932 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6933 		tag, err < 0 ? "failed" : "succeeded");
6934 
6935 out:
6936 	return err;
6937 }
6938 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6939 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6940 		struct utp_task_req_desc *treq, u8 tm_function)
6941 {
6942 	struct request_queue *q = hba->tmf_queue;
6943 	struct Scsi_Host *host = hba->host;
6944 	DECLARE_COMPLETION_ONSTACK(wait);
6945 	struct request *req;
6946 	unsigned long flags;
6947 	int task_tag, err;
6948 
6949 	/*
6950 	 * blk_mq_alloc_request() is used here only to get a free tag.
6951 	 */
6952 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6953 	if (IS_ERR(req))
6954 		return PTR_ERR(req);
6955 
6956 	req->end_io_data = &wait;
6957 	ufshcd_hold(hba);
6958 
6959 	spin_lock_irqsave(host->host_lock, flags);
6960 
6961 	task_tag = req->tag;
6962 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6963 		  task_tag);
6964 	hba->tmf_rqs[req->tag] = req;
6965 	treq->upiu_req.req_header.task_tag = task_tag;
6966 
6967 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6968 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6969 
6970 	/* send command to the controller */
6971 	__set_bit(task_tag, &hba->outstanding_tasks);
6972 
6973 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6974 	/* Make sure that doorbell is committed immediately */
6975 	wmb();
6976 
6977 	spin_unlock_irqrestore(host->host_lock, flags);
6978 
6979 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6980 
6981 	/* wait until the task management command is completed */
6982 	err = wait_for_completion_io_timeout(&wait,
6983 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6984 	if (!err) {
6985 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6986 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6987 				__func__, tm_function);
6988 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6989 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6990 					__func__, task_tag);
6991 		err = -ETIMEDOUT;
6992 	} else {
6993 		err = 0;
6994 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6995 
6996 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6997 	}
6998 
6999 	spin_lock_irqsave(hba->host->host_lock, flags);
7000 	hba->tmf_rqs[req->tag] = NULL;
7001 	__clear_bit(task_tag, &hba->outstanding_tasks);
7002 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7003 
7004 	ufshcd_release(hba);
7005 	blk_mq_free_request(req);
7006 
7007 	return err;
7008 }
7009 
7010 /**
7011  * ufshcd_issue_tm_cmd - issues task management commands to controller
7012  * @hba: per adapter instance
7013  * @lun_id: LUN ID to which TM command is sent
7014  * @task_id: task ID to which the TM command is applicable
7015  * @tm_function: task management function opcode
7016  * @tm_response: task management service response return value
7017  *
7018  * Return: non-zero value on error, zero on success.
7019  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7020 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7021 		u8 tm_function, u8 *tm_response)
7022 {
7023 	struct utp_task_req_desc treq = { };
7024 	enum utp_ocs ocs_value;
7025 	int err;
7026 
7027 	/* Configure task request descriptor */
7028 	treq.header.interrupt = 1;
7029 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7030 
7031 	/* Configure task request UPIU */
7032 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7033 	treq.upiu_req.req_header.lun = lun_id;
7034 	treq.upiu_req.req_header.tm_function = tm_function;
7035 
7036 	/*
7037 	 * The host shall provide the same value for LUN field in the basic
7038 	 * header and for Input Parameter.
7039 	 */
7040 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7041 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7042 
7043 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7044 	if (err == -ETIMEDOUT)
7045 		return err;
7046 
7047 	ocs_value = treq.header.ocs & MASK_OCS;
7048 	if (ocs_value != OCS_SUCCESS)
7049 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7050 				__func__, ocs_value);
7051 	else if (tm_response)
7052 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7053 				MASK_TM_SERVICE_RESP;
7054 	return err;
7055 }
7056 
7057 /**
7058  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7059  * @hba:	per-adapter instance
7060  * @req_upiu:	upiu request
7061  * @rsp_upiu:	upiu reply
7062  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7063  * @buff_len:	descriptor size, 0 if NA
7064  * @cmd_type:	specifies the type (NOP, Query...)
7065  * @desc_op:	descriptor operation
7066  *
7067  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7068  * Therefore, it "rides" the device management infrastructure: uses its tag and
7069  * tasks work queues.
7070  *
7071  * Since there is only one available tag for device management commands,
7072  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7073  *
7074  * Return: 0 upon success; < 0 upon failure.
7075  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7076 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7077 					struct utp_upiu_req *req_upiu,
7078 					struct utp_upiu_req *rsp_upiu,
7079 					u8 *desc_buff, int *buff_len,
7080 					enum dev_cmd_type cmd_type,
7081 					enum query_opcode desc_op)
7082 {
7083 	DECLARE_COMPLETION_ONSTACK(wait);
7084 	const u32 tag = hba->reserved_slot;
7085 	struct ufshcd_lrb *lrbp;
7086 	int err = 0;
7087 	u8 upiu_flags;
7088 
7089 	/* Protects use of hba->reserved_slot. */
7090 	lockdep_assert_held(&hba->dev_cmd.lock);
7091 
7092 	down_read(&hba->clk_scaling_lock);
7093 
7094 	lrbp = &hba->lrb[tag];
7095 	lrbp->cmd = NULL;
7096 	lrbp->task_tag = tag;
7097 	lrbp->lun = 0;
7098 	lrbp->intr_cmd = true;
7099 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7100 	hba->dev_cmd.type = cmd_type;
7101 
7102 	if (hba->ufs_version <= ufshci_version(1, 1))
7103 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7104 	else
7105 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7106 
7107 	/* update the task tag in the request upiu */
7108 	req_upiu->header.task_tag = tag;
7109 
7110 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7111 
7112 	/* just copy the upiu request as it is */
7113 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7114 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7115 		/* The Data Segment Area is optional depending upon the query
7116 		 * function value. for WRITE DESCRIPTOR, the data segment
7117 		 * follows right after the tsf.
7118 		 */
7119 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7120 		*buff_len = 0;
7121 	}
7122 
7123 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7124 
7125 	hba->dev_cmd.complete = &wait;
7126 
7127 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7128 
7129 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7130 	/*
7131 	 * ignore the returning value here - ufshcd_check_query_response is
7132 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7133 	 * read the response directly ignoring all errors.
7134 	 */
7135 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7136 
7137 	/* just copy the upiu response as it is */
7138 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7139 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7140 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7141 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7142 					   .data_segment_length);
7143 
7144 		if (*buff_len >= resp_len) {
7145 			memcpy(desc_buff, descp, resp_len);
7146 			*buff_len = resp_len;
7147 		} else {
7148 			dev_warn(hba->dev,
7149 				 "%s: rsp size %d is bigger than buffer size %d",
7150 				 __func__, resp_len, *buff_len);
7151 			*buff_len = 0;
7152 			err = -EINVAL;
7153 		}
7154 	}
7155 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7156 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7157 
7158 	up_read(&hba->clk_scaling_lock);
7159 	return err;
7160 }
7161 
7162 /**
7163  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7164  * @hba:	per-adapter instance
7165  * @req_upiu:	upiu request
7166  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7167  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7168  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7169  * @buff_len:	descriptor size, 0 if NA
7170  * @desc_op:	descriptor operation
7171  *
7172  * Supports UTP Transfer requests (nop and query), and UTP Task
7173  * Management requests.
7174  * It is up to the caller to fill the upiu conent properly, as it will
7175  * be copied without any further input validations.
7176  *
7177  * Return: 0 upon success; < 0 upon failure.
7178  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7179 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7180 			     struct utp_upiu_req *req_upiu,
7181 			     struct utp_upiu_req *rsp_upiu,
7182 			     enum upiu_request_transaction msgcode,
7183 			     u8 *desc_buff, int *buff_len,
7184 			     enum query_opcode desc_op)
7185 {
7186 	int err;
7187 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7188 	struct utp_task_req_desc treq = { };
7189 	enum utp_ocs ocs_value;
7190 	u8 tm_f = req_upiu->header.tm_function;
7191 
7192 	switch (msgcode) {
7193 	case UPIU_TRANSACTION_NOP_OUT:
7194 		cmd_type = DEV_CMD_TYPE_NOP;
7195 		fallthrough;
7196 	case UPIU_TRANSACTION_QUERY_REQ:
7197 		ufshcd_hold(hba);
7198 		mutex_lock(&hba->dev_cmd.lock);
7199 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7200 						   desc_buff, buff_len,
7201 						   cmd_type, desc_op);
7202 		mutex_unlock(&hba->dev_cmd.lock);
7203 		ufshcd_release(hba);
7204 
7205 		break;
7206 	case UPIU_TRANSACTION_TASK_REQ:
7207 		treq.header.interrupt = 1;
7208 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7209 
7210 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7211 
7212 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7213 		if (err == -ETIMEDOUT)
7214 			break;
7215 
7216 		ocs_value = treq.header.ocs & MASK_OCS;
7217 		if (ocs_value != OCS_SUCCESS) {
7218 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7219 				ocs_value);
7220 			break;
7221 		}
7222 
7223 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7224 
7225 		break;
7226 	default:
7227 		err = -EINVAL;
7228 
7229 		break;
7230 	}
7231 
7232 	return err;
7233 }
7234 
7235 /**
7236  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7237  * @hba:	per adapter instance
7238  * @req_upiu:	upiu request
7239  * @rsp_upiu:	upiu reply
7240  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7241  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7242  * @sg_cnt:	The number of sg lists actually used
7243  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7244  * @dir:	DMA direction
7245  *
7246  * Return: zero on success, non-zero on failure.
7247  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7248 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7249 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7250 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7251 			 enum dma_data_direction dir)
7252 {
7253 	DECLARE_COMPLETION_ONSTACK(wait);
7254 	const u32 tag = hba->reserved_slot;
7255 	struct ufshcd_lrb *lrbp;
7256 	int err = 0;
7257 	int result;
7258 	u8 upiu_flags;
7259 	u8 *ehs_data;
7260 	u16 ehs_len;
7261 
7262 	/* Protects use of hba->reserved_slot. */
7263 	ufshcd_hold(hba);
7264 	mutex_lock(&hba->dev_cmd.lock);
7265 	down_read(&hba->clk_scaling_lock);
7266 
7267 	lrbp = &hba->lrb[tag];
7268 	lrbp->cmd = NULL;
7269 	lrbp->task_tag = tag;
7270 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7271 
7272 	lrbp->intr_cmd = true;
7273 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7274 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7275 
7276 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7277 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7278 
7279 	/*
7280 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7281 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7282 	 * HW controller takes EHS length from UTRD.
7283 	 */
7284 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7285 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7286 	else
7287 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7288 
7289 	/* update the task tag */
7290 	req_upiu->header.task_tag = tag;
7291 
7292 	/* copy the UPIU(contains CDB) request as it is */
7293 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7294 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7295 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7296 
7297 	if (dir != DMA_NONE && sg_list)
7298 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7299 
7300 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7301 
7302 	hba->dev_cmd.complete = &wait;
7303 
7304 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7305 
7306 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7307 
7308 	if (!err) {
7309 		/* Just copy the upiu response as it is */
7310 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7311 		/* Get the response UPIU result */
7312 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7313 			lrbp->ucd_rsp_ptr->header.status;
7314 
7315 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7316 		/*
7317 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7318 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7319 		 * Message is 02h
7320 		 */
7321 		if (ehs_len == 2 && rsp_ehs) {
7322 			/*
7323 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7324 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7325 			 */
7326 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7327 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7328 		}
7329 	}
7330 
7331 	up_read(&hba->clk_scaling_lock);
7332 	mutex_unlock(&hba->dev_cmd.lock);
7333 	ufshcd_release(hba);
7334 	return err ? : result;
7335 }
7336 
7337 /**
7338  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7339  * @cmd: SCSI command pointer
7340  *
7341  * Return: SUCCESS or FAILED.
7342  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7343 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7344 {
7345 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7346 	struct Scsi_Host *host;
7347 	struct ufs_hba *hba;
7348 	struct ufs_hw_queue *hwq;
7349 	struct ufshcd_lrb *lrbp;
7350 	u32 pos, not_cleared_mask = 0;
7351 	int err;
7352 	u8 resp = 0xF, lun;
7353 
7354 	host = cmd->device->host;
7355 	hba = shost_priv(host);
7356 
7357 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7358 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7359 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7360 		if (!err)
7361 			err = resp;
7362 		goto out;
7363 	}
7364 
7365 	if (is_mcq_enabled(hba)) {
7366 		for (pos = 0; pos < hba->nutrs; pos++) {
7367 			lrbp = &hba->lrb[pos];
7368 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7369 			    lrbp->lun == lun) {
7370 				ufshcd_clear_cmd(hba, pos);
7371 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7372 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7373 			}
7374 		}
7375 		err = 0;
7376 		goto out;
7377 	}
7378 
7379 	/* clear the commands that were pending for corresponding LUN */
7380 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7381 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7382 		if (hba->lrb[pos].lun == lun)
7383 			__set_bit(pos, &pending_reqs);
7384 	hba->outstanding_reqs &= ~pending_reqs;
7385 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7386 
7387 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7388 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7389 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7390 			not_cleared = 1U << pos &
7391 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7392 			hba->outstanding_reqs |= not_cleared;
7393 			not_cleared_mask |= not_cleared;
7394 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7395 
7396 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7397 				__func__, pos);
7398 		}
7399 	}
7400 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7401 
7402 out:
7403 	hba->req_abort_count = 0;
7404 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7405 	if (!err) {
7406 		err = SUCCESS;
7407 	} else {
7408 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7409 		err = FAILED;
7410 	}
7411 	return err;
7412 }
7413 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7414 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7415 {
7416 	struct ufshcd_lrb *lrbp;
7417 	int tag;
7418 
7419 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7420 		lrbp = &hba->lrb[tag];
7421 		lrbp->req_abort_skip = true;
7422 	}
7423 }
7424 
7425 /**
7426  * ufshcd_try_to_abort_task - abort a specific task
7427  * @hba: Pointer to adapter instance
7428  * @tag: Task tag/index to be aborted
7429  *
7430  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7431  * command, and in host controller by clearing the door-bell register. There can
7432  * be race between controller sending the command to the device while abort is
7433  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7434  * really issued and then try to abort it.
7435  *
7436  * Return: zero on success, non-zero on failure.
7437  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7438 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7439 {
7440 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7441 	int err = 0;
7442 	int poll_cnt;
7443 	u8 resp = 0xF;
7444 	u32 reg;
7445 
7446 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7447 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7448 				UFS_QUERY_TASK, &resp);
7449 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7450 			/* cmd pending in the device */
7451 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7452 				__func__, tag);
7453 			break;
7454 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7455 			/*
7456 			 * cmd not pending in the device, check if it is
7457 			 * in transition.
7458 			 */
7459 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7460 				__func__, tag);
7461 			if (is_mcq_enabled(hba)) {
7462 				/* MCQ mode */
7463 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7464 					/* sleep for max. 200us same delay as in SDB mode */
7465 					usleep_range(100, 200);
7466 					continue;
7467 				}
7468 				/* command completed already */
7469 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7470 					__func__, tag);
7471 				goto out;
7472 			}
7473 
7474 			/* Single Doorbell Mode */
7475 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7476 			if (reg & (1 << tag)) {
7477 				/* sleep for max. 200us to stabilize */
7478 				usleep_range(100, 200);
7479 				continue;
7480 			}
7481 			/* command completed already */
7482 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7483 				__func__, tag);
7484 			goto out;
7485 		} else {
7486 			dev_err(hba->dev,
7487 				"%s: no response from device. tag = %d, err %d\n",
7488 				__func__, tag, err);
7489 			if (!err)
7490 				err = resp; /* service response error */
7491 			goto out;
7492 		}
7493 	}
7494 
7495 	if (!poll_cnt) {
7496 		err = -EBUSY;
7497 		goto out;
7498 	}
7499 
7500 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7501 			UFS_ABORT_TASK, &resp);
7502 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7503 		if (!err) {
7504 			err = resp; /* service response error */
7505 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7506 				__func__, tag, err);
7507 		}
7508 		goto out;
7509 	}
7510 
7511 	err = ufshcd_clear_cmd(hba, tag);
7512 	if (err)
7513 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7514 			__func__, tag, err);
7515 
7516 out:
7517 	return err;
7518 }
7519 
7520 /**
7521  * ufshcd_abort - scsi host template eh_abort_handler callback
7522  * @cmd: SCSI command pointer
7523  *
7524  * Return: SUCCESS or FAILED.
7525  */
ufshcd_abort(struct scsi_cmnd * cmd)7526 static int ufshcd_abort(struct scsi_cmnd *cmd)
7527 {
7528 	struct Scsi_Host *host = cmd->device->host;
7529 	struct ufs_hba *hba = shost_priv(host);
7530 	int tag = scsi_cmd_to_rq(cmd)->tag;
7531 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7532 	unsigned long flags;
7533 	int err = FAILED;
7534 	bool outstanding;
7535 	u32 reg;
7536 
7537 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7538 
7539 	ufshcd_hold(hba);
7540 
7541 	if (!is_mcq_enabled(hba)) {
7542 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7543 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7544 			/* If command is already aborted/completed, return FAILED. */
7545 			dev_err(hba->dev,
7546 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7547 				__func__, tag, hba->outstanding_reqs, reg);
7548 			goto release;
7549 		}
7550 	}
7551 
7552 	/* Print Transfer Request of aborted task */
7553 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7554 
7555 	/*
7556 	 * Print detailed info about aborted request.
7557 	 * As more than one request might get aborted at the same time,
7558 	 * print full information only for the first aborted request in order
7559 	 * to reduce repeated printouts. For other aborted requests only print
7560 	 * basic details.
7561 	 */
7562 	scsi_print_command(cmd);
7563 	if (!hba->req_abort_count) {
7564 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7565 		ufshcd_print_evt_hist(hba);
7566 		ufshcd_print_host_state(hba);
7567 		ufshcd_print_pwr_info(hba);
7568 		ufshcd_print_tr(hba, tag, true);
7569 	} else {
7570 		ufshcd_print_tr(hba, tag, false);
7571 	}
7572 	hba->req_abort_count++;
7573 
7574 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7575 		/* only execute this code in single doorbell mode */
7576 		dev_err(hba->dev,
7577 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7578 		__func__, tag);
7579 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7580 		goto release;
7581 	}
7582 
7583 	/*
7584 	 * Task abort to the device W-LUN is illegal. When this command
7585 	 * will fail, due to spec violation, scsi err handling next step
7586 	 * will be to send LU reset which, again, is a spec violation.
7587 	 * To avoid these unnecessary/illegal steps, first we clean up
7588 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7589 	 * then queue the eh_work and bail.
7590 	 */
7591 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7592 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7593 
7594 		spin_lock_irqsave(host->host_lock, flags);
7595 		hba->force_reset = true;
7596 		ufshcd_schedule_eh_work(hba);
7597 		spin_unlock_irqrestore(host->host_lock, flags);
7598 		goto release;
7599 	}
7600 
7601 	if (is_mcq_enabled(hba)) {
7602 		/* MCQ mode. Branch off to handle abort for mcq mode */
7603 		err = ufshcd_mcq_abort(cmd);
7604 		goto release;
7605 	}
7606 
7607 	/* Skip task abort in case previous aborts failed and report failure */
7608 	if (lrbp->req_abort_skip) {
7609 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7610 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7611 		goto release;
7612 	}
7613 
7614 	err = ufshcd_try_to_abort_task(hba, tag);
7615 	if (err) {
7616 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7617 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7618 		err = FAILED;
7619 		goto release;
7620 	}
7621 
7622 	/*
7623 	 * Clear the corresponding bit from outstanding_reqs since the command
7624 	 * has been aborted successfully.
7625 	 */
7626 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7627 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7628 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7629 
7630 	if (outstanding)
7631 		ufshcd_release_scsi_cmd(hba, lrbp);
7632 
7633 	err = SUCCESS;
7634 
7635 release:
7636 	/* Matches the ufshcd_hold() call at the start of this function. */
7637 	ufshcd_release(hba);
7638 	return err;
7639 }
7640 
7641 /**
7642  * ufshcd_host_reset_and_restore - reset and restore host controller
7643  * @hba: per-adapter instance
7644  *
7645  * Note that host controller reset may issue DME_RESET to
7646  * local and remote (device) Uni-Pro stack and the attributes
7647  * are reset to default state.
7648  *
7649  * Return: zero on success, non-zero on failure.
7650  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7651 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7652 {
7653 	int err;
7654 
7655 	/*
7656 	 * Stop the host controller and complete the requests
7657 	 * cleared by h/w
7658 	 */
7659 	ufshcd_hba_stop(hba);
7660 	hba->silence_err_logs = true;
7661 	ufshcd_complete_requests(hba, true);
7662 	hba->silence_err_logs = false;
7663 
7664 	/* scale up clocks to max frequency before full reinitialization */
7665 	ufshcd_scale_clks(hba, true);
7666 
7667 	err = ufshcd_hba_enable(hba);
7668 
7669 	/* Establish the link again and restore the device */
7670 	if (!err)
7671 		err = ufshcd_probe_hba(hba, false);
7672 
7673 	if (err)
7674 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7675 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7676 	return err;
7677 }
7678 
7679 /**
7680  * ufshcd_reset_and_restore - reset and re-initialize host/device
7681  * @hba: per-adapter instance
7682  *
7683  * Reset and recover device, host and re-establish link. This
7684  * is helpful to recover the communication in fatal error conditions.
7685  *
7686  * Return: zero on success, non-zero on failure.
7687  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7688 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7689 {
7690 	u32 saved_err = 0;
7691 	u32 saved_uic_err = 0;
7692 	int err = 0;
7693 	unsigned long flags;
7694 	int retries = MAX_HOST_RESET_RETRIES;
7695 
7696 	spin_lock_irqsave(hba->host->host_lock, flags);
7697 	do {
7698 		/*
7699 		 * This is a fresh start, cache and clear saved error first,
7700 		 * in case new error generated during reset and restore.
7701 		 */
7702 		saved_err |= hba->saved_err;
7703 		saved_uic_err |= hba->saved_uic_err;
7704 		hba->saved_err = 0;
7705 		hba->saved_uic_err = 0;
7706 		hba->force_reset = false;
7707 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7708 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7709 
7710 		/* Reset the attached device */
7711 		ufshcd_device_reset(hba);
7712 
7713 		err = ufshcd_host_reset_and_restore(hba);
7714 
7715 		spin_lock_irqsave(hba->host->host_lock, flags);
7716 		if (err)
7717 			continue;
7718 		/* Do not exit unless operational or dead */
7719 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7720 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7721 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7722 			err = -EAGAIN;
7723 	} while (err && --retries);
7724 
7725 	/*
7726 	 * Inform scsi mid-layer that we did reset and allow to handle
7727 	 * Unit Attention properly.
7728 	 */
7729 	scsi_report_bus_reset(hba->host, 0);
7730 	if (err) {
7731 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7732 		hba->saved_err |= saved_err;
7733 		hba->saved_uic_err |= saved_uic_err;
7734 	}
7735 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7736 
7737 	return err;
7738 }
7739 
7740 /**
7741  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7742  * @cmd: SCSI command pointer
7743  *
7744  * Return: SUCCESS or FAILED.
7745  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7746 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7747 {
7748 	int err = SUCCESS;
7749 	unsigned long flags;
7750 	struct ufs_hba *hba;
7751 
7752 	hba = shost_priv(cmd->device->host);
7753 
7754 	spin_lock_irqsave(hba->host->host_lock, flags);
7755 	hba->force_reset = true;
7756 	ufshcd_schedule_eh_work(hba);
7757 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7758 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7759 
7760 	flush_work(&hba->eh_work);
7761 
7762 	spin_lock_irqsave(hba->host->host_lock, flags);
7763 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7764 		err = FAILED;
7765 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7766 
7767 	return err;
7768 }
7769 
7770 /**
7771  * ufshcd_get_max_icc_level - calculate the ICC level
7772  * @sup_curr_uA: max. current supported by the regulator
7773  * @start_scan: row at the desc table to start scan from
7774  * @buff: power descriptor buffer
7775  *
7776  * Return: calculated max ICC level for specific regulator.
7777  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7778 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7779 				    const char *buff)
7780 {
7781 	int i;
7782 	int curr_uA;
7783 	u16 data;
7784 	u16 unit;
7785 
7786 	for (i = start_scan; i >= 0; i--) {
7787 		data = get_unaligned_be16(&buff[2 * i]);
7788 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7789 						ATTR_ICC_LVL_UNIT_OFFSET;
7790 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7791 		switch (unit) {
7792 		case UFSHCD_NANO_AMP:
7793 			curr_uA = curr_uA / 1000;
7794 			break;
7795 		case UFSHCD_MILI_AMP:
7796 			curr_uA = curr_uA * 1000;
7797 			break;
7798 		case UFSHCD_AMP:
7799 			curr_uA = curr_uA * 1000 * 1000;
7800 			break;
7801 		case UFSHCD_MICRO_AMP:
7802 		default:
7803 			break;
7804 		}
7805 		if (sup_curr_uA >= curr_uA)
7806 			break;
7807 	}
7808 	if (i < 0) {
7809 		i = 0;
7810 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7811 	}
7812 
7813 	return (u32)i;
7814 }
7815 
7816 /**
7817  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7818  * In case regulators are not initialized we'll return 0
7819  * @hba: per-adapter instance
7820  * @desc_buf: power descriptor buffer to extract ICC levels from.
7821  *
7822  * Return: calculated ICC level.
7823  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7824 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7825 						const u8 *desc_buf)
7826 {
7827 	u32 icc_level = 0;
7828 
7829 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7830 						!hba->vreg_info.vccq2) {
7831 		/*
7832 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7833 		 * never-ending cycles of messages written back to storage by
7834 		 * user space causing runtime resume, causing more messages and
7835 		 * so on.
7836 		 */
7837 		dev_dbg(hba->dev,
7838 			"%s: Regulator capability was not set, actvIccLevel=%d",
7839 							__func__, icc_level);
7840 		goto out;
7841 	}
7842 
7843 	if (hba->vreg_info.vcc->max_uA)
7844 		icc_level = ufshcd_get_max_icc_level(
7845 				hba->vreg_info.vcc->max_uA,
7846 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7847 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7848 
7849 	if (hba->vreg_info.vccq->max_uA)
7850 		icc_level = ufshcd_get_max_icc_level(
7851 				hba->vreg_info.vccq->max_uA,
7852 				icc_level,
7853 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7854 
7855 	if (hba->vreg_info.vccq2->max_uA)
7856 		icc_level = ufshcd_get_max_icc_level(
7857 				hba->vreg_info.vccq2->max_uA,
7858 				icc_level,
7859 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7860 out:
7861 	return icc_level;
7862 }
7863 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7864 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7865 {
7866 	int ret;
7867 	u8 *desc_buf;
7868 	u32 icc_level;
7869 
7870 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7871 	if (!desc_buf)
7872 		return;
7873 
7874 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7875 				     desc_buf, QUERY_DESC_MAX_SIZE);
7876 	if (ret) {
7877 		dev_err(hba->dev,
7878 			"%s: Failed reading power descriptor ret = %d",
7879 			__func__, ret);
7880 		goto out;
7881 	}
7882 
7883 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7884 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7885 
7886 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7887 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7888 
7889 	if (ret)
7890 		dev_err(hba->dev,
7891 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7892 			__func__, icc_level, ret);
7893 
7894 out:
7895 	kfree(desc_buf);
7896 }
7897 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7898 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7899 {
7900 	scsi_autopm_get_device(sdev);
7901 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7902 	if (sdev->rpm_autosuspend)
7903 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7904 						 RPM_AUTOSUSPEND_DELAY_MS);
7905 	scsi_autopm_put_device(sdev);
7906 }
7907 
7908 /**
7909  * ufshcd_scsi_add_wlus - Adds required W-LUs
7910  * @hba: per-adapter instance
7911  *
7912  * UFS device specification requires the UFS devices to support 4 well known
7913  * logical units:
7914  *	"REPORT_LUNS" (address: 01h)
7915  *	"UFS Device" (address: 50h)
7916  *	"RPMB" (address: 44h)
7917  *	"BOOT" (address: 30h)
7918  * UFS device's power management needs to be controlled by "POWER CONDITION"
7919  * field of SSU (START STOP UNIT) command. But this "power condition" field
7920  * will take effect only when its sent to "UFS device" well known logical unit
7921  * hence we require the scsi_device instance to represent this logical unit in
7922  * order for the UFS host driver to send the SSU command for power management.
7923  *
7924  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7925  * Block) LU so user space process can control this LU. User space may also
7926  * want to have access to BOOT LU.
7927  *
7928  * This function adds scsi device instances for each of all well known LUs
7929  * (except "REPORT LUNS" LU).
7930  *
7931  * Return: zero on success (all required W-LUs are added successfully),
7932  * non-zero error value on failure (if failed to add any of the required W-LU).
7933  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7934 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7935 {
7936 	int ret = 0;
7937 	struct scsi_device *sdev_boot, *sdev_rpmb;
7938 
7939 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7940 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7941 	if (IS_ERR(hba->ufs_device_wlun)) {
7942 		ret = PTR_ERR(hba->ufs_device_wlun);
7943 		hba->ufs_device_wlun = NULL;
7944 		goto out;
7945 	}
7946 	scsi_device_put(hba->ufs_device_wlun);
7947 
7948 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7949 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7950 	if (IS_ERR(sdev_rpmb)) {
7951 		ret = PTR_ERR(sdev_rpmb);
7952 		goto remove_ufs_device_wlun;
7953 	}
7954 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7955 	scsi_device_put(sdev_rpmb);
7956 
7957 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7958 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7959 	if (IS_ERR(sdev_boot)) {
7960 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7961 	} else {
7962 		ufshcd_blk_pm_runtime_init(sdev_boot);
7963 		scsi_device_put(sdev_boot);
7964 	}
7965 	goto out;
7966 
7967 remove_ufs_device_wlun:
7968 	scsi_remove_device(hba->ufs_device_wlun);
7969 out:
7970 	return ret;
7971 }
7972 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)7973 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7974 {
7975 	struct ufs_dev_info *dev_info = &hba->dev_info;
7976 	u8 lun;
7977 	u32 d_lu_wb_buf_alloc;
7978 	u32 ext_ufs_feature;
7979 
7980 	if (!ufshcd_is_wb_allowed(hba))
7981 		return;
7982 
7983 	/*
7984 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7985 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7986 	 * enabled
7987 	 */
7988 	if (!(dev_info->wspecversion >= 0x310 ||
7989 	      dev_info->wspecversion == 0x220 ||
7990 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7991 		goto wb_disabled;
7992 
7993 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7994 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7995 
7996 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7997 		goto wb_disabled;
7998 
7999 	/*
8000 	 * WB may be supported but not configured while provisioning. The spec
8001 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8002 	 * buffer configured.
8003 	 */
8004 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8005 
8006 	dev_info->b_presrv_uspc_en =
8007 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8008 
8009 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8010 		if (!get_unaligned_be32(desc_buf +
8011 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8012 			goto wb_disabled;
8013 	} else {
8014 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8015 			d_lu_wb_buf_alloc = 0;
8016 			ufshcd_read_unit_desc_param(hba,
8017 					lun,
8018 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8019 					(u8 *)&d_lu_wb_buf_alloc,
8020 					sizeof(d_lu_wb_buf_alloc));
8021 			if (d_lu_wb_buf_alloc) {
8022 				dev_info->wb_dedicated_lu = lun;
8023 				break;
8024 			}
8025 		}
8026 
8027 		if (!d_lu_wb_buf_alloc)
8028 			goto wb_disabled;
8029 	}
8030 
8031 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8032 		goto wb_disabled;
8033 
8034 	return;
8035 
8036 wb_disabled:
8037 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8038 }
8039 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8040 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8041 {
8042 	struct ufs_dev_info *dev_info = &hba->dev_info;
8043 	u32 ext_ufs_feature;
8044 	u8 mask = 0;
8045 
8046 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8047 		return;
8048 
8049 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8050 
8051 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8052 		mask |= MASK_EE_TOO_LOW_TEMP;
8053 
8054 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8055 		mask |= MASK_EE_TOO_HIGH_TEMP;
8056 
8057 	if (mask) {
8058 		ufshcd_enable_ee(hba, mask);
8059 		ufs_hwmon_probe(hba, mask);
8060 	}
8061 }
8062 
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8063 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8064 {
8065 	struct ufs_dev_info *dev_info = &hba->dev_info;
8066 	u32 ext_ufs_feature;
8067 	u32 ext_iid_en = 0;
8068 	int err;
8069 
8070 	/* Only UFS-4.0 and above may support EXT_IID */
8071 	if (dev_info->wspecversion < 0x400)
8072 		goto out;
8073 
8074 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8075 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8076 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8077 		goto out;
8078 
8079 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8080 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8081 	if (err)
8082 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8083 
8084 out:
8085 	dev_info->b_ext_iid_en = ext_iid_en;
8086 }
8087 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8088 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8089 			     const struct ufs_dev_quirk *fixups)
8090 {
8091 	const struct ufs_dev_quirk *f;
8092 	struct ufs_dev_info *dev_info = &hba->dev_info;
8093 
8094 	if (!fixups)
8095 		return;
8096 
8097 	for (f = fixups; f->quirk; f++) {
8098 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8099 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8100 		     ((dev_info->model &&
8101 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8102 		      !strcmp(f->model, UFS_ANY_MODEL)))
8103 			hba->dev_quirks |= f->quirk;
8104 	}
8105 }
8106 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8107 
ufs_fixup_device_setup(struct ufs_hba * hba)8108 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8109 {
8110 	/* fix by general quirk table */
8111 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8112 
8113 	/* allow vendors to fix quirks */
8114 	ufshcd_vops_fixup_dev_quirks(hba);
8115 }
8116 
ufs_get_device_desc(struct ufs_hba * hba)8117 static int ufs_get_device_desc(struct ufs_hba *hba)
8118 {
8119 	int err;
8120 	u8 model_index;
8121 	u8 *desc_buf;
8122 	struct ufs_dev_info *dev_info = &hba->dev_info;
8123 
8124 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8125 	if (!desc_buf) {
8126 		err = -ENOMEM;
8127 		goto out;
8128 	}
8129 
8130 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8131 				     QUERY_DESC_MAX_SIZE);
8132 	if (err) {
8133 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8134 			__func__, err);
8135 		goto out;
8136 	}
8137 
8138 	/*
8139 	 * getting vendor (manufacturerID) and Bank Index in big endian
8140 	 * format
8141 	 */
8142 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8143 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8144 
8145 	/* getting Specification Version in big endian format */
8146 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8147 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8148 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8149 
8150 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8151 
8152 	err = ufshcd_read_string_desc(hba, model_index,
8153 				      &dev_info->model, SD_ASCII_STD);
8154 	if (err < 0) {
8155 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8156 			__func__, err);
8157 		goto out;
8158 	}
8159 
8160 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8161 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8162 
8163 	ufs_fixup_device_setup(hba);
8164 
8165 	ufshcd_wb_probe(hba, desc_buf);
8166 
8167 	ufshcd_temp_notif_probe(hba, desc_buf);
8168 
8169 	if (hba->ext_iid_sup)
8170 		ufshcd_ext_iid_probe(hba, desc_buf);
8171 
8172 	/*
8173 	 * ufshcd_read_string_desc returns size of the string
8174 	 * reset the error value
8175 	 */
8176 	err = 0;
8177 
8178 out:
8179 	kfree(desc_buf);
8180 	return err;
8181 }
8182 
ufs_put_device_desc(struct ufs_hba * hba)8183 static void ufs_put_device_desc(struct ufs_hba *hba)
8184 {
8185 	struct ufs_dev_info *dev_info = &hba->dev_info;
8186 
8187 	kfree(dev_info->model);
8188 	dev_info->model = NULL;
8189 }
8190 
8191 /**
8192  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8193  * @hba: per-adapter instance
8194  *
8195  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8196  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8197  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8198  * the hibern8 exit latency.
8199  *
8200  * Return: zero on success, non-zero error value on failure.
8201  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)8202 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8203 {
8204 	int ret = 0;
8205 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8206 
8207 	ret = ufshcd_dme_peer_get(hba,
8208 				  UIC_ARG_MIB_SEL(
8209 					RX_MIN_ACTIVATETIME_CAPABILITY,
8210 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8211 				  &peer_rx_min_activatetime);
8212 	if (ret)
8213 		goto out;
8214 
8215 	/* make sure proper unit conversion is applied */
8216 	tuned_pa_tactivate =
8217 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8218 		 / PA_TACTIVATE_TIME_UNIT_US);
8219 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8220 			     tuned_pa_tactivate);
8221 
8222 out:
8223 	return ret;
8224 }
8225 
8226 /**
8227  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8228  * @hba: per-adapter instance
8229  *
8230  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8231  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8232  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8233  * This optimal value can help reduce the hibern8 exit latency.
8234  *
8235  * Return: zero on success, non-zero error value on failure.
8236  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)8237 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8238 {
8239 	int ret = 0;
8240 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8241 	u32 max_hibern8_time, tuned_pa_hibern8time;
8242 
8243 	ret = ufshcd_dme_get(hba,
8244 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8245 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8246 				  &local_tx_hibern8_time_cap);
8247 	if (ret)
8248 		goto out;
8249 
8250 	ret = ufshcd_dme_peer_get(hba,
8251 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8252 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8253 				  &peer_rx_hibern8_time_cap);
8254 	if (ret)
8255 		goto out;
8256 
8257 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8258 			       peer_rx_hibern8_time_cap);
8259 	/* make sure proper unit conversion is applied */
8260 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8261 				/ PA_HIBERN8_TIME_UNIT_US);
8262 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8263 			     tuned_pa_hibern8time);
8264 out:
8265 	return ret;
8266 }
8267 
8268 /**
8269  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8270  * less than device PA_TACTIVATE time.
8271  * @hba: per-adapter instance
8272  *
8273  * Some UFS devices require host PA_TACTIVATE to be lower than device
8274  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8275  * for such devices.
8276  *
8277  * Return: zero on success, non-zero error value on failure.
8278  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8279 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8280 {
8281 	int ret = 0;
8282 	u32 granularity, peer_granularity;
8283 	u32 pa_tactivate, peer_pa_tactivate;
8284 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8285 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8286 
8287 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8288 				  &granularity);
8289 	if (ret)
8290 		goto out;
8291 
8292 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8293 				  &peer_granularity);
8294 	if (ret)
8295 		goto out;
8296 
8297 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8298 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8299 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8300 			__func__, granularity);
8301 		return -EINVAL;
8302 	}
8303 
8304 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8305 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8306 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8307 			__func__, peer_granularity);
8308 		return -EINVAL;
8309 	}
8310 
8311 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8312 	if (ret)
8313 		goto out;
8314 
8315 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8316 				  &peer_pa_tactivate);
8317 	if (ret)
8318 		goto out;
8319 
8320 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8321 	peer_pa_tactivate_us = peer_pa_tactivate *
8322 			     gran_to_us_table[peer_granularity - 1];
8323 
8324 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8325 		u32 new_peer_pa_tactivate;
8326 
8327 		new_peer_pa_tactivate = pa_tactivate_us /
8328 				      gran_to_us_table[peer_granularity - 1];
8329 		new_peer_pa_tactivate++;
8330 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8331 					  new_peer_pa_tactivate);
8332 	}
8333 
8334 out:
8335 	return ret;
8336 }
8337 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8338 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8339 {
8340 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8341 		ufshcd_tune_pa_tactivate(hba);
8342 		ufshcd_tune_pa_hibern8time(hba);
8343 	}
8344 
8345 	ufshcd_vops_apply_dev_quirks(hba);
8346 
8347 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8348 		/* set 1ms timeout for PA_TACTIVATE */
8349 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8350 
8351 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8352 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8353 }
8354 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8355 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8356 {
8357 	hba->ufs_stats.hibern8_exit_cnt = 0;
8358 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8359 	hba->req_abort_count = 0;
8360 }
8361 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8362 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8363 {
8364 	int err;
8365 	u8 *desc_buf;
8366 
8367 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8368 	if (!desc_buf) {
8369 		err = -ENOMEM;
8370 		goto out;
8371 	}
8372 
8373 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8374 				     desc_buf, QUERY_DESC_MAX_SIZE);
8375 	if (err) {
8376 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8377 				__func__, err);
8378 		goto out;
8379 	}
8380 
8381 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8382 		hba->dev_info.max_lu_supported = 32;
8383 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8384 		hba->dev_info.max_lu_supported = 8;
8385 
8386 out:
8387 	kfree(desc_buf);
8388 	return err;
8389 }
8390 
8391 struct ufs_ref_clk {
8392 	unsigned long freq_hz;
8393 	enum ufs_ref_clk_freq val;
8394 };
8395 
8396 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8397 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8398 	{26000000, REF_CLK_FREQ_26_MHZ},
8399 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8400 	{52000000, REF_CLK_FREQ_52_MHZ},
8401 	{0, REF_CLK_FREQ_INVAL},
8402 };
8403 
8404 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8405 ufs_get_bref_clk_from_hz(unsigned long freq)
8406 {
8407 	int i;
8408 
8409 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8410 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8411 			return ufs_ref_clk_freqs[i].val;
8412 
8413 	return REF_CLK_FREQ_INVAL;
8414 }
8415 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8416 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8417 {
8418 	unsigned long freq;
8419 
8420 	freq = clk_get_rate(refclk);
8421 
8422 	hba->dev_ref_clk_freq =
8423 		ufs_get_bref_clk_from_hz(freq);
8424 
8425 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8426 		dev_err(hba->dev,
8427 		"invalid ref_clk setting = %ld\n", freq);
8428 }
8429 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8430 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8431 {
8432 	int err;
8433 	u32 ref_clk;
8434 	u32 freq = hba->dev_ref_clk_freq;
8435 
8436 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8437 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8438 
8439 	if (err) {
8440 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8441 			err);
8442 		goto out;
8443 	}
8444 
8445 	if (ref_clk == freq)
8446 		goto out; /* nothing to update */
8447 
8448 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8449 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8450 
8451 	if (err) {
8452 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8453 			ufs_ref_clk_freqs[freq].freq_hz);
8454 		goto out;
8455 	}
8456 
8457 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8458 			ufs_ref_clk_freqs[freq].freq_hz);
8459 
8460 out:
8461 	return err;
8462 }
8463 
ufshcd_device_params_init(struct ufs_hba * hba)8464 static int ufshcd_device_params_init(struct ufs_hba *hba)
8465 {
8466 	bool flag;
8467 	int ret;
8468 
8469 	/* Init UFS geometry descriptor related parameters */
8470 	ret = ufshcd_device_geo_params_init(hba);
8471 	if (ret)
8472 		goto out;
8473 
8474 	/* Check and apply UFS device quirks */
8475 	ret = ufs_get_device_desc(hba);
8476 	if (ret) {
8477 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8478 			__func__, ret);
8479 		goto out;
8480 	}
8481 
8482 	ufshcd_get_ref_clk_gating_wait(hba);
8483 
8484 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8485 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8486 		hba->dev_info.f_power_on_wp_en = flag;
8487 
8488 	/* Probe maximum power mode co-supported by both UFS host and device */
8489 	if (ufshcd_get_max_pwr_mode(hba))
8490 		dev_err(hba->dev,
8491 			"%s: Failed getting max supported power mode\n",
8492 			__func__);
8493 out:
8494 	return ret;
8495 }
8496 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8497 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8498 {
8499 	int err;
8500 	struct ufs_query_req *request = NULL;
8501 	struct ufs_query_res *response = NULL;
8502 	struct ufs_dev_info *dev_info = &hba->dev_info;
8503 	struct utp_upiu_query_v4_0 *upiu_data;
8504 
8505 	if (dev_info->wspecversion < 0x400)
8506 		return;
8507 
8508 	ufshcd_hold(hba);
8509 
8510 	mutex_lock(&hba->dev_cmd.lock);
8511 
8512 	ufshcd_init_query(hba, &request, &response,
8513 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8514 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8515 
8516 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8517 
8518 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8519 
8520 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8521 
8522 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8523 
8524 	if (err)
8525 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8526 			__func__, err);
8527 
8528 	mutex_unlock(&hba->dev_cmd.lock);
8529 	ufshcd_release(hba);
8530 }
8531 
8532 /**
8533  * ufshcd_add_lus - probe and add UFS logical units
8534  * @hba: per-adapter instance
8535  *
8536  * Return: 0 upon success; < 0 upon failure.
8537  */
ufshcd_add_lus(struct ufs_hba * hba)8538 static int ufshcd_add_lus(struct ufs_hba *hba)
8539 {
8540 	int ret;
8541 
8542 	/* Add required well known logical units to scsi mid layer */
8543 	ret = ufshcd_scsi_add_wlus(hba);
8544 	if (ret)
8545 		goto out;
8546 
8547 	/* Initialize devfreq after UFS device is detected */
8548 	if (ufshcd_is_clkscaling_supported(hba)) {
8549 		memcpy(&hba->clk_scaling.saved_pwr_info,
8550 			&hba->pwr_info,
8551 			sizeof(struct ufs_pa_layer_attr));
8552 		hba->clk_scaling.is_allowed = true;
8553 
8554 		ret = ufshcd_devfreq_init(hba);
8555 		if (ret)
8556 			goto out;
8557 
8558 		hba->clk_scaling.is_enabled = true;
8559 		ufshcd_init_clk_scaling_sysfs(hba);
8560 	}
8561 
8562 	ufs_bsg_probe(hba);
8563 	scsi_scan_host(hba->host);
8564 
8565 out:
8566 	return ret;
8567 }
8568 
8569 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8570 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8571 {
8572 	size_t ucdl_size, utrdl_size;
8573 
8574 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8575 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8576 			   hba->ucdl_dma_addr);
8577 
8578 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8579 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8580 			   hba->utrdl_dma_addr);
8581 
8582 	devm_kfree(hba->dev, hba->lrb);
8583 }
8584 
ufshcd_alloc_mcq(struct ufs_hba * hba)8585 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8586 {
8587 	int ret;
8588 	int old_nutrs = hba->nutrs;
8589 
8590 	ret = ufshcd_mcq_decide_queue_depth(hba);
8591 	if (ret < 0)
8592 		return ret;
8593 
8594 	hba->nutrs = ret;
8595 	ret = ufshcd_mcq_init(hba);
8596 	if (ret)
8597 		goto err;
8598 
8599 	/*
8600 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8601 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8602 	 */
8603 	if (hba->nutrs != old_nutrs) {
8604 		ufshcd_release_sdb_queue(hba, old_nutrs);
8605 		ret = ufshcd_memory_alloc(hba);
8606 		if (ret)
8607 			goto err;
8608 		ufshcd_host_memory_configure(hba);
8609 	}
8610 
8611 	ret = ufshcd_mcq_memory_alloc(hba);
8612 	if (ret)
8613 		goto err;
8614 
8615 	return 0;
8616 err:
8617 	hba->nutrs = old_nutrs;
8618 	return ret;
8619 }
8620 
ufshcd_config_mcq(struct ufs_hba * hba)8621 static void ufshcd_config_mcq(struct ufs_hba *hba)
8622 {
8623 	int ret;
8624 	u32 intrs;
8625 
8626 	ret = ufshcd_mcq_vops_config_esi(hba);
8627 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8628 
8629 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8630 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8631 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8632 	ufshcd_enable_intr(hba, intrs);
8633 	ufshcd_mcq_make_queues_operational(hba);
8634 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8635 
8636 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8637 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8638 
8639 	/* Select MCQ mode */
8640 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8641 		      REG_UFS_MEM_CFG);
8642 	hba->mcq_enabled = true;
8643 
8644 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8645 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8646 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8647 		 hba->nutrs);
8648 }
8649 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8650 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8651 {
8652 	int ret;
8653 	struct Scsi_Host *host = hba->host;
8654 
8655 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8656 
8657 	ret = ufshcd_link_startup(hba);
8658 	if (ret)
8659 		return ret;
8660 
8661 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8662 		return ret;
8663 
8664 	/* Debug counters initialization */
8665 	ufshcd_clear_dbg_ufs_stats(hba);
8666 
8667 	/* UniPro link is active now */
8668 	ufshcd_set_link_active(hba);
8669 
8670 	/* Reconfigure MCQ upon reset */
8671 	if (is_mcq_enabled(hba) && !init_dev_params)
8672 		ufshcd_config_mcq(hba);
8673 
8674 	/* Verify device initialization by sending NOP OUT UPIU */
8675 	ret = ufshcd_verify_dev_init(hba);
8676 	if (ret)
8677 		return ret;
8678 
8679 	/* Initiate UFS initialization, and waiting until completion */
8680 	ret = ufshcd_complete_dev_init(hba);
8681 	if (ret)
8682 		return ret;
8683 
8684 	/*
8685 	 * Initialize UFS device parameters used by driver, these
8686 	 * parameters are associated with UFS descriptors.
8687 	 */
8688 	if (init_dev_params) {
8689 		ret = ufshcd_device_params_init(hba);
8690 		if (ret)
8691 			return ret;
8692 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8693 			ret = ufshcd_alloc_mcq(hba);
8694 			if (!ret) {
8695 				ufshcd_config_mcq(hba);
8696 			} else {
8697 				/* Continue with SDB mode */
8698 				use_mcq_mode = false;
8699 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8700 					 ret);
8701 			}
8702 			ret = scsi_add_host(host, hba->dev);
8703 			if (ret) {
8704 				dev_err(hba->dev, "scsi_add_host failed\n");
8705 				return ret;
8706 			}
8707 			hba->scsi_host_added = true;
8708 		} else if (is_mcq_supported(hba)) {
8709 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8710 			ufshcd_config_mcq(hba);
8711 		}
8712 	}
8713 
8714 	ufshcd_tune_unipro_params(hba);
8715 
8716 	/* UFS device is also active now */
8717 	ufshcd_set_ufs_dev_active(hba);
8718 	ufshcd_force_reset_auto_bkops(hba);
8719 
8720 	ufshcd_set_timestamp_attr(hba);
8721 
8722 	/* Gear up to HS gear if supported */
8723 	if (hba->max_pwr_info.is_valid) {
8724 		/*
8725 		 * Set the right value to bRefClkFreq before attempting to
8726 		 * switch to HS gears.
8727 		 */
8728 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8729 			ufshcd_set_dev_ref_clk(hba);
8730 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8731 		if (ret) {
8732 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8733 					__func__, ret);
8734 			return ret;
8735 		}
8736 	}
8737 
8738 	return 0;
8739 }
8740 
8741 /**
8742  * ufshcd_probe_hba - probe hba to detect device and initialize it
8743  * @hba: per-adapter instance
8744  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8745  *
8746  * Execute link-startup and verify device initialization
8747  *
8748  * Return: 0 upon success; < 0 upon failure.
8749  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8750 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8751 {
8752 	ktime_t start = ktime_get();
8753 	unsigned long flags;
8754 	int ret;
8755 
8756 	ret = ufshcd_device_init(hba, init_dev_params);
8757 	if (ret)
8758 		goto out;
8759 
8760 	if (!hba->pm_op_in_progress &&
8761 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8762 		/* Reset the device and controller before doing reinit */
8763 		ufshcd_device_reset(hba);
8764 		ufs_put_device_desc(hba);
8765 		ufshcd_hba_stop(hba);
8766 		ufshcd_vops_reinit_notify(hba);
8767 		ret = ufshcd_hba_enable(hba);
8768 		if (ret) {
8769 			dev_err(hba->dev, "Host controller enable failed\n");
8770 			ufshcd_print_evt_hist(hba);
8771 			ufshcd_print_host_state(hba);
8772 			goto out;
8773 		}
8774 
8775 		/* Reinit the device */
8776 		ret = ufshcd_device_init(hba, init_dev_params);
8777 		if (ret)
8778 			goto out;
8779 	}
8780 
8781 	ufshcd_print_pwr_info(hba);
8782 
8783 	/*
8784 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8785 	 * and for removable UFS card as well, hence always set the parameter.
8786 	 * Note: Error handler may issue the device reset hence resetting
8787 	 * bActiveICCLevel as well so it is always safe to set this here.
8788 	 */
8789 	ufshcd_set_active_icc_lvl(hba);
8790 
8791 	/* Enable UFS Write Booster if supported */
8792 	ufshcd_configure_wb(hba);
8793 
8794 	if (hba->ee_usr_mask)
8795 		ufshcd_write_ee_control(hba);
8796 	/* Enable Auto-Hibernate if configured */
8797 	ufshcd_auto_hibern8_enable(hba);
8798 
8799 out:
8800 	spin_lock_irqsave(hba->host->host_lock, flags);
8801 	if (ret)
8802 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8803 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8804 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8805 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8806 
8807 	trace_ufshcd_init(dev_name(hba->dev), ret,
8808 		ktime_to_us(ktime_sub(ktime_get(), start)),
8809 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8810 	return ret;
8811 }
8812 
8813 /**
8814  * ufshcd_async_scan - asynchronous execution for probing hba
8815  * @data: data pointer to pass to this function
8816  * @cookie: cookie data
8817  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8818 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8819 {
8820 	struct ufs_hba *hba = (struct ufs_hba *)data;
8821 	int ret;
8822 
8823 	down(&hba->host_sem);
8824 	/* Initialize hba, detect and initialize UFS device */
8825 	ret = ufshcd_probe_hba(hba, true);
8826 	up(&hba->host_sem);
8827 	if (ret)
8828 		goto out;
8829 
8830 	/* Probe and add UFS logical units  */
8831 	ret = ufshcd_add_lus(hba);
8832 
8833 out:
8834 	pm_runtime_put_sync(hba->dev);
8835 
8836 	if (ret)
8837 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8838 }
8839 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8840 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8841 {
8842 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8843 
8844 	if (!hba->system_suspending) {
8845 		/* Activate the error handler in the SCSI core. */
8846 		return SCSI_EH_NOT_HANDLED;
8847 	}
8848 
8849 	/*
8850 	 * If we get here we know that no TMFs are outstanding and also that
8851 	 * the only pending command is a START STOP UNIT command. Handle the
8852 	 * timeout of that command directly to prevent a deadlock between
8853 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8854 	 */
8855 	ufshcd_link_recovery(hba);
8856 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8857 		 __func__, hba->outstanding_tasks);
8858 
8859 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8860 }
8861 
8862 static const struct attribute_group *ufshcd_driver_groups[] = {
8863 	&ufs_sysfs_unit_descriptor_group,
8864 	&ufs_sysfs_lun_attributes_group,
8865 	NULL,
8866 };
8867 
8868 static struct ufs_hba_variant_params ufs_hba_vps = {
8869 	.hba_enable_delay_us		= 1000,
8870 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8871 	.devfreq_profile.polling_ms	= 100,
8872 	.devfreq_profile.target		= ufshcd_devfreq_target,
8873 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8874 	.ondemand_data.upthreshold	= 70,
8875 	.ondemand_data.downdifferential	= 5,
8876 };
8877 
8878 static const struct scsi_host_template ufshcd_driver_template = {
8879 	.module			= THIS_MODULE,
8880 	.name			= UFSHCD,
8881 	.proc_name		= UFSHCD,
8882 	.map_queues		= ufshcd_map_queues,
8883 	.queuecommand		= ufshcd_queuecommand,
8884 	.mq_poll		= ufshcd_poll,
8885 	.slave_alloc		= ufshcd_slave_alloc,
8886 	.slave_configure	= ufshcd_slave_configure,
8887 	.slave_destroy		= ufshcd_slave_destroy,
8888 	.change_queue_depth	= ufshcd_change_queue_depth,
8889 	.eh_abort_handler	= ufshcd_abort,
8890 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8891 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8892 	.eh_timed_out		= ufshcd_eh_timed_out,
8893 	.this_id		= -1,
8894 	.sg_tablesize		= SG_ALL,
8895 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8896 	.can_queue		= UFSHCD_CAN_QUEUE,
8897 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8898 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8899 	.max_host_blocked	= 1,
8900 	.track_queue_depth	= 1,
8901 	.skip_settle_delay	= 1,
8902 	.sdev_groups		= ufshcd_driver_groups,
8903 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8904 };
8905 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8906 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8907 				   int ua)
8908 {
8909 	int ret;
8910 
8911 	if (!vreg)
8912 		return 0;
8913 
8914 	/*
8915 	 * "set_load" operation shall be required on those regulators
8916 	 * which specifically configured current limitation. Otherwise
8917 	 * zero max_uA may cause unexpected behavior when regulator is
8918 	 * enabled or set as high power mode.
8919 	 */
8920 	if (!vreg->max_uA)
8921 		return 0;
8922 
8923 	ret = regulator_set_load(vreg->reg, ua);
8924 	if (ret < 0) {
8925 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8926 				__func__, vreg->name, ua, ret);
8927 	}
8928 
8929 	return ret;
8930 }
8931 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8932 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8933 					 struct ufs_vreg *vreg)
8934 {
8935 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8936 }
8937 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8938 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8939 					 struct ufs_vreg *vreg)
8940 {
8941 	if (!vreg)
8942 		return 0;
8943 
8944 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8945 }
8946 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8947 static int ufshcd_config_vreg(struct device *dev,
8948 		struct ufs_vreg *vreg, bool on)
8949 {
8950 	if (regulator_count_voltages(vreg->reg) <= 0)
8951 		return 0;
8952 
8953 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8954 }
8955 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8956 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8957 {
8958 	int ret = 0;
8959 
8960 	if (!vreg || vreg->enabled)
8961 		goto out;
8962 
8963 	ret = ufshcd_config_vreg(dev, vreg, true);
8964 	if (!ret)
8965 		ret = regulator_enable(vreg->reg);
8966 
8967 	if (!ret)
8968 		vreg->enabled = true;
8969 	else
8970 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8971 				__func__, vreg->name, ret);
8972 out:
8973 	return ret;
8974 }
8975 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8976 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8977 {
8978 	int ret = 0;
8979 
8980 	if (!vreg || !vreg->enabled || vreg->always_on)
8981 		goto out;
8982 
8983 	ret = regulator_disable(vreg->reg);
8984 
8985 	if (!ret) {
8986 		/* ignore errors on applying disable config */
8987 		ufshcd_config_vreg(dev, vreg, false);
8988 		vreg->enabled = false;
8989 	} else {
8990 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8991 				__func__, vreg->name, ret);
8992 	}
8993 out:
8994 	return ret;
8995 }
8996 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8997 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8998 {
8999 	int ret = 0;
9000 	struct device *dev = hba->dev;
9001 	struct ufs_vreg_info *info = &hba->vreg_info;
9002 
9003 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9004 	if (ret)
9005 		goto out;
9006 
9007 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9008 	if (ret)
9009 		goto out;
9010 
9011 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9012 
9013 out:
9014 	if (ret) {
9015 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9016 		ufshcd_toggle_vreg(dev, info->vccq, false);
9017 		ufshcd_toggle_vreg(dev, info->vcc, false);
9018 	}
9019 	return ret;
9020 }
9021 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9022 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9023 {
9024 	struct ufs_vreg_info *info = &hba->vreg_info;
9025 
9026 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9027 }
9028 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9029 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9030 {
9031 	int ret = 0;
9032 
9033 	if (!vreg)
9034 		goto out;
9035 
9036 	vreg->reg = devm_regulator_get(dev, vreg->name);
9037 	if (IS_ERR(vreg->reg)) {
9038 		ret = PTR_ERR(vreg->reg);
9039 		dev_err(dev, "%s: %s get failed, err=%d\n",
9040 				__func__, vreg->name, ret);
9041 	}
9042 out:
9043 	return ret;
9044 }
9045 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9046 
ufshcd_init_vreg(struct ufs_hba * hba)9047 static int ufshcd_init_vreg(struct ufs_hba *hba)
9048 {
9049 	int ret = 0;
9050 	struct device *dev = hba->dev;
9051 	struct ufs_vreg_info *info = &hba->vreg_info;
9052 
9053 	ret = ufshcd_get_vreg(dev, info->vcc);
9054 	if (ret)
9055 		goto out;
9056 
9057 	ret = ufshcd_get_vreg(dev, info->vccq);
9058 	if (!ret)
9059 		ret = ufshcd_get_vreg(dev, info->vccq2);
9060 out:
9061 	return ret;
9062 }
9063 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9064 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9065 {
9066 	struct ufs_vreg_info *info = &hba->vreg_info;
9067 
9068 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9069 }
9070 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9071 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9072 {
9073 	int ret = 0;
9074 	struct ufs_clk_info *clki;
9075 	struct list_head *head = &hba->clk_list_head;
9076 	unsigned long flags;
9077 	ktime_t start = ktime_get();
9078 	bool clk_state_changed = false;
9079 
9080 	if (list_empty(head))
9081 		goto out;
9082 
9083 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9084 	if (ret)
9085 		return ret;
9086 
9087 	list_for_each_entry(clki, head, list) {
9088 		if (!IS_ERR_OR_NULL(clki->clk)) {
9089 			/*
9090 			 * Don't disable clocks which are needed
9091 			 * to keep the link active.
9092 			 */
9093 			if (ufshcd_is_link_active(hba) &&
9094 			    clki->keep_link_active)
9095 				continue;
9096 
9097 			clk_state_changed = on ^ clki->enabled;
9098 			if (on && !clki->enabled) {
9099 				ret = clk_prepare_enable(clki->clk);
9100 				if (ret) {
9101 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9102 						__func__, clki->name, ret);
9103 					goto out;
9104 				}
9105 			} else if (!on && clki->enabled) {
9106 				clk_disable_unprepare(clki->clk);
9107 			}
9108 			clki->enabled = on;
9109 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9110 					clki->name, on ? "en" : "dis");
9111 		}
9112 	}
9113 
9114 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9115 	if (ret)
9116 		return ret;
9117 
9118 out:
9119 	if (ret) {
9120 		list_for_each_entry(clki, head, list) {
9121 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9122 				clk_disable_unprepare(clki->clk);
9123 		}
9124 	} else if (!ret && on) {
9125 		spin_lock_irqsave(hba->host->host_lock, flags);
9126 		hba->clk_gating.state = CLKS_ON;
9127 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9128 					hba->clk_gating.state);
9129 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9130 	}
9131 
9132 	if (clk_state_changed)
9133 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9134 			(on ? "on" : "off"),
9135 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9136 	return ret;
9137 }
9138 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9139 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9140 {
9141 	u32 freq;
9142 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9143 
9144 	if (ret) {
9145 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9146 		return REF_CLK_FREQ_INVAL;
9147 	}
9148 
9149 	return ufs_get_bref_clk_from_hz(freq);
9150 }
9151 
ufshcd_init_clocks(struct ufs_hba * hba)9152 static int ufshcd_init_clocks(struct ufs_hba *hba)
9153 {
9154 	int ret = 0;
9155 	struct ufs_clk_info *clki;
9156 	struct device *dev = hba->dev;
9157 	struct list_head *head = &hba->clk_list_head;
9158 
9159 	if (list_empty(head))
9160 		goto out;
9161 
9162 	list_for_each_entry(clki, head, list) {
9163 		if (!clki->name)
9164 			continue;
9165 
9166 		clki->clk = devm_clk_get(dev, clki->name);
9167 		if (IS_ERR(clki->clk)) {
9168 			ret = PTR_ERR(clki->clk);
9169 			dev_err(dev, "%s: %s clk get failed, %d\n",
9170 					__func__, clki->name, ret);
9171 			goto out;
9172 		}
9173 
9174 		/*
9175 		 * Parse device ref clk freq as per device tree "ref_clk".
9176 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9177 		 * in ufshcd_alloc_host().
9178 		 */
9179 		if (!strcmp(clki->name, "ref_clk"))
9180 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9181 
9182 		if (clki->max_freq) {
9183 			ret = clk_set_rate(clki->clk, clki->max_freq);
9184 			if (ret) {
9185 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9186 					__func__, clki->name,
9187 					clki->max_freq, ret);
9188 				goto out;
9189 			}
9190 			clki->curr_freq = clki->max_freq;
9191 		}
9192 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9193 				clki->name, clk_get_rate(clki->clk));
9194 	}
9195 out:
9196 	return ret;
9197 }
9198 
ufshcd_variant_hba_init(struct ufs_hba * hba)9199 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9200 {
9201 	int err = 0;
9202 
9203 	if (!hba->vops)
9204 		goto out;
9205 
9206 	err = ufshcd_vops_init(hba);
9207 	if (err)
9208 		dev_err_probe(hba->dev, err,
9209 			      "%s: variant %s init failed with err %d\n",
9210 			      __func__, ufshcd_get_var_name(hba), err);
9211 out:
9212 	return err;
9213 }
9214 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9215 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9216 {
9217 	if (!hba->vops)
9218 		return;
9219 
9220 	ufshcd_vops_exit(hba);
9221 }
9222 
ufshcd_hba_init(struct ufs_hba * hba)9223 static int ufshcd_hba_init(struct ufs_hba *hba)
9224 {
9225 	int err;
9226 
9227 	/*
9228 	 * Handle host controller power separately from the UFS device power
9229 	 * rails as it will help controlling the UFS host controller power
9230 	 * collapse easily which is different than UFS device power collapse.
9231 	 * Also, enable the host controller power before we go ahead with rest
9232 	 * of the initialization here.
9233 	 */
9234 	err = ufshcd_init_hba_vreg(hba);
9235 	if (err)
9236 		goto out;
9237 
9238 	err = ufshcd_setup_hba_vreg(hba, true);
9239 	if (err)
9240 		goto out;
9241 
9242 	err = ufshcd_init_clocks(hba);
9243 	if (err)
9244 		goto out_disable_hba_vreg;
9245 
9246 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9247 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9248 
9249 	err = ufshcd_setup_clocks(hba, true);
9250 	if (err)
9251 		goto out_disable_hba_vreg;
9252 
9253 	err = ufshcd_init_vreg(hba);
9254 	if (err)
9255 		goto out_disable_clks;
9256 
9257 	err = ufshcd_setup_vreg(hba, true);
9258 	if (err)
9259 		goto out_disable_clks;
9260 
9261 	err = ufshcd_variant_hba_init(hba);
9262 	if (err)
9263 		goto out_disable_vreg;
9264 
9265 	ufs_debugfs_hba_init(hba);
9266 
9267 	hba->is_powered = true;
9268 	goto out;
9269 
9270 out_disable_vreg:
9271 	ufshcd_setup_vreg(hba, false);
9272 out_disable_clks:
9273 	ufshcd_setup_clocks(hba, false);
9274 out_disable_hba_vreg:
9275 	ufshcd_setup_hba_vreg(hba, false);
9276 out:
9277 	return err;
9278 }
9279 
ufshcd_hba_exit(struct ufs_hba * hba)9280 static void ufshcd_hba_exit(struct ufs_hba *hba)
9281 {
9282 	if (hba->is_powered) {
9283 		ufshcd_exit_clk_scaling(hba);
9284 		ufshcd_exit_clk_gating(hba);
9285 		if (hba->eh_wq)
9286 			destroy_workqueue(hba->eh_wq);
9287 		ufs_debugfs_hba_exit(hba);
9288 		ufshcd_variant_hba_exit(hba);
9289 		ufshcd_setup_vreg(hba, false);
9290 		ufshcd_setup_clocks(hba, false);
9291 		ufshcd_setup_hba_vreg(hba, false);
9292 		hba->is_powered = false;
9293 		ufs_put_device_desc(hba);
9294 	}
9295 }
9296 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9297 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9298 				     enum ufs_dev_pwr_mode pwr_mode,
9299 				     struct scsi_sense_hdr *sshdr)
9300 {
9301 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9302 	const struct scsi_exec_args args = {
9303 		.sshdr = sshdr,
9304 		.req_flags = BLK_MQ_REQ_PM,
9305 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9306 	};
9307 
9308 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9309 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9310 			&args);
9311 }
9312 
9313 /**
9314  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9315  *			     power mode
9316  * @hba: per adapter instance
9317  * @pwr_mode: device power mode to set
9318  *
9319  * Return: 0 if requested power mode is set successfully;
9320  *         < 0 if failed to set the requested power mode.
9321  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9322 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9323 				     enum ufs_dev_pwr_mode pwr_mode)
9324 {
9325 	struct scsi_sense_hdr sshdr;
9326 	struct scsi_device *sdp;
9327 	unsigned long flags;
9328 	int ret, retries;
9329 
9330 	spin_lock_irqsave(hba->host->host_lock, flags);
9331 	sdp = hba->ufs_device_wlun;
9332 	if (sdp && scsi_device_online(sdp))
9333 		ret = scsi_device_get(sdp);
9334 	else
9335 		ret = -ENODEV;
9336 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9337 
9338 	if (ret)
9339 		return ret;
9340 
9341 	/*
9342 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9343 	 * handling, which would wait for host to be resumed. Since we know
9344 	 * we are functional while we are here, skip host resume in error
9345 	 * handling context.
9346 	 */
9347 	hba->host->eh_noresume = 1;
9348 
9349 	/*
9350 	 * Current function would be generally called from the power management
9351 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9352 	 * already suspended childs.
9353 	 */
9354 	for (retries = 3; retries > 0; --retries) {
9355 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9356 		/*
9357 		 * scsi_execute() only returns a negative value if the request
9358 		 * queue is dying.
9359 		 */
9360 		if (ret <= 0)
9361 			break;
9362 	}
9363 	if (ret) {
9364 		sdev_printk(KERN_WARNING, sdp,
9365 			    "START_STOP failed for power mode: %d, result %x\n",
9366 			    pwr_mode, ret);
9367 		if (ret > 0) {
9368 			if (scsi_sense_valid(&sshdr))
9369 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9370 			ret = -EIO;
9371 		}
9372 	} else {
9373 		hba->curr_dev_pwr_mode = pwr_mode;
9374 	}
9375 
9376 	scsi_device_put(sdp);
9377 	hba->host->eh_noresume = 0;
9378 	return ret;
9379 }
9380 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9381 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9382 					enum uic_link_state req_link_state,
9383 					bool check_for_bkops)
9384 {
9385 	int ret = 0;
9386 
9387 	if (req_link_state == hba->uic_link_state)
9388 		return 0;
9389 
9390 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9391 		ret = ufshcd_uic_hibern8_enter(hba);
9392 		if (!ret) {
9393 			ufshcd_set_link_hibern8(hba);
9394 		} else {
9395 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9396 					__func__, ret);
9397 			goto out;
9398 		}
9399 	}
9400 	/*
9401 	 * If autobkops is enabled, link can't be turned off because
9402 	 * turning off the link would also turn off the device, except in the
9403 	 * case of DeepSleep where the device is expected to remain powered.
9404 	 */
9405 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9406 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9407 		/*
9408 		 * Let's make sure that link is in low power mode, we are doing
9409 		 * this currently by putting the link in Hibern8. Otherway to
9410 		 * put the link in low power mode is to send the DME end point
9411 		 * to device and then send the DME reset command to local
9412 		 * unipro. But putting the link in hibern8 is much faster.
9413 		 *
9414 		 * Note also that putting the link in Hibern8 is a requirement
9415 		 * for entering DeepSleep.
9416 		 */
9417 		ret = ufshcd_uic_hibern8_enter(hba);
9418 		if (ret) {
9419 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9420 					__func__, ret);
9421 			goto out;
9422 		}
9423 		/*
9424 		 * Change controller state to "reset state" which
9425 		 * should also put the link in off/reset state
9426 		 */
9427 		ufshcd_hba_stop(hba);
9428 		/*
9429 		 * TODO: Check if we need any delay to make sure that
9430 		 * controller is reset
9431 		 */
9432 		ufshcd_set_link_off(hba);
9433 	}
9434 
9435 out:
9436 	return ret;
9437 }
9438 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9439 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9440 {
9441 	bool vcc_off = false;
9442 
9443 	/*
9444 	 * It seems some UFS devices may keep drawing more than sleep current
9445 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9446 	 * To avoid this situation, add 2ms delay before putting these UFS
9447 	 * rails in LPM mode.
9448 	 */
9449 	if (!ufshcd_is_link_active(hba) &&
9450 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9451 		usleep_range(2000, 2100);
9452 
9453 	/*
9454 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9455 	 * power.
9456 	 *
9457 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9458 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9459 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9460 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9461 	 *
9462 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9463 	 * in low power state which would save some power.
9464 	 *
9465 	 * If Write Booster is enabled and the device needs to flush the WB
9466 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9467 	 */
9468 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9469 	    !hba->dev_info.is_lu_power_on_wp) {
9470 		ufshcd_setup_vreg(hba, false);
9471 		vcc_off = true;
9472 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9473 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9474 		vcc_off = true;
9475 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9476 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9477 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9478 		}
9479 	}
9480 
9481 	/*
9482 	 * Some UFS devices require delay after VCC power rail is turned-off.
9483 	 */
9484 	if (vcc_off && hba->vreg_info.vcc &&
9485 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9486 		usleep_range(5000, 5100);
9487 }
9488 
9489 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9490 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9491 {
9492 	int ret = 0;
9493 
9494 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9495 	    !hba->dev_info.is_lu_power_on_wp) {
9496 		ret = ufshcd_setup_vreg(hba, true);
9497 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9498 		if (!ufshcd_is_link_active(hba)) {
9499 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9500 			if (ret)
9501 				goto vcc_disable;
9502 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9503 			if (ret)
9504 				goto vccq_lpm;
9505 		}
9506 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9507 	}
9508 	goto out;
9509 
9510 vccq_lpm:
9511 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9512 vcc_disable:
9513 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9514 out:
9515 	return ret;
9516 }
9517 #endif /* CONFIG_PM */
9518 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9519 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9520 {
9521 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9522 		ufshcd_setup_hba_vreg(hba, false);
9523 }
9524 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9525 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9526 {
9527 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9528 		ufshcd_setup_hba_vreg(hba, true);
9529 }
9530 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9531 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9532 {
9533 	int ret = 0;
9534 	bool check_for_bkops;
9535 	enum ufs_pm_level pm_lvl;
9536 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9537 	enum uic_link_state req_link_state;
9538 
9539 	hba->pm_op_in_progress = true;
9540 	if (pm_op != UFS_SHUTDOWN_PM) {
9541 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9542 			 hba->rpm_lvl : hba->spm_lvl;
9543 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9544 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9545 	} else {
9546 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9547 		req_link_state = UIC_LINK_OFF_STATE;
9548 	}
9549 
9550 	/*
9551 	 * If we can't transition into any of the low power modes
9552 	 * just gate the clocks.
9553 	 */
9554 	ufshcd_hold(hba);
9555 	hba->clk_gating.is_suspended = true;
9556 
9557 	if (ufshcd_is_clkscaling_supported(hba))
9558 		ufshcd_clk_scaling_suspend(hba, true);
9559 
9560 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9561 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9562 		goto vops_suspend;
9563 	}
9564 
9565 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9566 	    (req_link_state == hba->uic_link_state))
9567 		goto enable_scaling;
9568 
9569 	/* UFS device & link must be active before we enter in this function */
9570 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9571 		/*  Wait err handler finish or trigger err recovery */
9572 		if (!ufshcd_eh_in_progress(hba))
9573 			ufshcd_force_error_recovery(hba);
9574 		ret = -EBUSY;
9575 		goto enable_scaling;
9576 	}
9577 
9578 	if (pm_op == UFS_RUNTIME_PM) {
9579 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9580 			/*
9581 			 * The device is idle with no requests in the queue,
9582 			 * allow background operations if bkops status shows
9583 			 * that performance might be impacted.
9584 			 */
9585 			ret = ufshcd_urgent_bkops(hba);
9586 			if (ret) {
9587 				/*
9588 				 * If return err in suspend flow, IO will hang.
9589 				 * Trigger error handler and break suspend for
9590 				 * error recovery.
9591 				 */
9592 				ufshcd_force_error_recovery(hba);
9593 				ret = -EBUSY;
9594 				goto enable_scaling;
9595 			}
9596 		} else {
9597 			/* make sure that auto bkops is disabled */
9598 			ufshcd_disable_auto_bkops(hba);
9599 		}
9600 		/*
9601 		 * If device needs to do BKOP or WB buffer flush during
9602 		 * Hibern8, keep device power mode as "active power mode"
9603 		 * and VCC supply.
9604 		 */
9605 		hba->dev_info.b_rpm_dev_flush_capable =
9606 			hba->auto_bkops_enabled ||
9607 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9608 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9609 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9610 			ufshcd_wb_need_flush(hba));
9611 	}
9612 
9613 	flush_work(&hba->eeh_work);
9614 
9615 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9616 	if (ret)
9617 		goto enable_scaling;
9618 
9619 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9620 		if (pm_op != UFS_RUNTIME_PM)
9621 			/* ensure that bkops is disabled */
9622 			ufshcd_disable_auto_bkops(hba);
9623 
9624 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9625 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9626 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9627 				/*
9628 				 * If return err in suspend flow, IO will hang.
9629 				 * Trigger error handler and break suspend for
9630 				 * error recovery.
9631 				 */
9632 				ufshcd_force_error_recovery(hba);
9633 				ret = -EBUSY;
9634 			}
9635 			if (ret)
9636 				goto enable_scaling;
9637 		}
9638 	}
9639 
9640 	/*
9641 	 * In the case of DeepSleep, the device is expected to remain powered
9642 	 * with the link off, so do not check for bkops.
9643 	 */
9644 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9645 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9646 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9647 		/*
9648 		 * If return err in suspend flow, IO will hang.
9649 		 * Trigger error handler and break suspend for
9650 		 * error recovery.
9651 		 */
9652 		ufshcd_force_error_recovery(hba);
9653 		ret = -EBUSY;
9654 	}
9655 	if (ret)
9656 		goto set_dev_active;
9657 
9658 vops_suspend:
9659 	/*
9660 	 * Call vendor specific suspend callback. As these callbacks may access
9661 	 * vendor specific host controller register space call them before the
9662 	 * host clocks are ON.
9663 	 */
9664 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9665 	if (ret)
9666 		goto set_link_active;
9667 	goto out;
9668 
9669 set_link_active:
9670 	/*
9671 	 * Device hardware reset is required to exit DeepSleep. Also, for
9672 	 * DeepSleep, the link is off so host reset and restore will be done
9673 	 * further below.
9674 	 */
9675 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9676 		ufshcd_device_reset(hba);
9677 		WARN_ON(!ufshcd_is_link_off(hba));
9678 	}
9679 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9680 		ufshcd_set_link_active(hba);
9681 	else if (ufshcd_is_link_off(hba))
9682 		ufshcd_host_reset_and_restore(hba);
9683 set_dev_active:
9684 	/* Can also get here needing to exit DeepSleep */
9685 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9686 		ufshcd_device_reset(hba);
9687 		ufshcd_host_reset_and_restore(hba);
9688 	}
9689 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9690 		ufshcd_disable_auto_bkops(hba);
9691 enable_scaling:
9692 	if (ufshcd_is_clkscaling_supported(hba))
9693 		ufshcd_clk_scaling_suspend(hba, false);
9694 
9695 	hba->dev_info.b_rpm_dev_flush_capable = false;
9696 out:
9697 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9698 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9699 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9700 	}
9701 
9702 	if (ret) {
9703 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9704 		hba->clk_gating.is_suspended = false;
9705 		ufshcd_release(hba);
9706 	}
9707 	hba->pm_op_in_progress = false;
9708 	return ret;
9709 }
9710 
9711 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9712 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9713 {
9714 	int ret;
9715 	enum uic_link_state old_link_state = hba->uic_link_state;
9716 
9717 	hba->pm_op_in_progress = true;
9718 
9719 	/*
9720 	 * Call vendor specific resume callback. As these callbacks may access
9721 	 * vendor specific host controller register space call them when the
9722 	 * host clocks are ON.
9723 	 */
9724 	ret = ufshcd_vops_resume(hba, pm_op);
9725 	if (ret)
9726 		goto out;
9727 
9728 	/* For DeepSleep, the only supported option is to have the link off */
9729 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9730 
9731 	if (ufshcd_is_link_hibern8(hba)) {
9732 		ret = ufshcd_uic_hibern8_exit(hba);
9733 		if (!ret) {
9734 			ufshcd_set_link_active(hba);
9735 		} else {
9736 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9737 					__func__, ret);
9738 			goto vendor_suspend;
9739 		}
9740 	} else if (ufshcd_is_link_off(hba)) {
9741 		/*
9742 		 * A full initialization of the host and the device is
9743 		 * required since the link was put to off during suspend.
9744 		 * Note, in the case of DeepSleep, the device will exit
9745 		 * DeepSleep due to device reset.
9746 		 */
9747 		ret = ufshcd_reset_and_restore(hba);
9748 		/*
9749 		 * ufshcd_reset_and_restore() should have already
9750 		 * set the link state as active
9751 		 */
9752 		if (ret || !ufshcd_is_link_active(hba))
9753 			goto vendor_suspend;
9754 	}
9755 
9756 	if (!ufshcd_is_ufs_dev_active(hba)) {
9757 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9758 		if (ret)
9759 			goto set_old_link_state;
9760 		ufshcd_set_timestamp_attr(hba);
9761 	}
9762 
9763 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9764 		ufshcd_enable_auto_bkops(hba);
9765 	else
9766 		/*
9767 		 * If BKOPs operations are urgently needed at this moment then
9768 		 * keep auto-bkops enabled or else disable it.
9769 		 */
9770 		ufshcd_urgent_bkops(hba);
9771 
9772 	if (hba->ee_usr_mask)
9773 		ufshcd_write_ee_control(hba);
9774 
9775 	if (ufshcd_is_clkscaling_supported(hba))
9776 		ufshcd_clk_scaling_suspend(hba, false);
9777 
9778 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9779 		hba->dev_info.b_rpm_dev_flush_capable = false;
9780 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9781 	}
9782 
9783 	/* Enable Auto-Hibernate if configured */
9784 	ufshcd_auto_hibern8_enable(hba);
9785 
9786 	goto out;
9787 
9788 set_old_link_state:
9789 	ufshcd_link_state_transition(hba, old_link_state, 0);
9790 vendor_suspend:
9791 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9792 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9793 out:
9794 	if (ret)
9795 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9796 	hba->clk_gating.is_suspended = false;
9797 	ufshcd_release(hba);
9798 	hba->pm_op_in_progress = false;
9799 	return ret;
9800 }
9801 
ufshcd_wl_runtime_suspend(struct device * dev)9802 static int ufshcd_wl_runtime_suspend(struct device *dev)
9803 {
9804 	struct scsi_device *sdev = to_scsi_device(dev);
9805 	struct ufs_hba *hba;
9806 	int ret;
9807 	ktime_t start = ktime_get();
9808 
9809 	hba = shost_priv(sdev->host);
9810 
9811 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9812 	if (ret)
9813 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9814 
9815 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9816 		ktime_to_us(ktime_sub(ktime_get(), start)),
9817 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9818 
9819 	return ret;
9820 }
9821 
ufshcd_wl_runtime_resume(struct device * dev)9822 static int ufshcd_wl_runtime_resume(struct device *dev)
9823 {
9824 	struct scsi_device *sdev = to_scsi_device(dev);
9825 	struct ufs_hba *hba;
9826 	int ret = 0;
9827 	ktime_t start = ktime_get();
9828 
9829 	hba = shost_priv(sdev->host);
9830 
9831 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9832 	if (ret)
9833 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9834 
9835 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9836 		ktime_to_us(ktime_sub(ktime_get(), start)),
9837 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9838 
9839 	return ret;
9840 }
9841 #endif
9842 
9843 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9844 static int ufshcd_wl_suspend(struct device *dev)
9845 {
9846 	struct scsi_device *sdev = to_scsi_device(dev);
9847 	struct ufs_hba *hba;
9848 	int ret = 0;
9849 	ktime_t start = ktime_get();
9850 
9851 	hba = shost_priv(sdev->host);
9852 	down(&hba->host_sem);
9853 	hba->system_suspending = true;
9854 
9855 	if (pm_runtime_suspended(dev))
9856 		goto out;
9857 
9858 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9859 	if (ret) {
9860 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9861 		up(&hba->host_sem);
9862 	}
9863 
9864 out:
9865 	if (!ret)
9866 		hba->is_sys_suspended = true;
9867 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9868 		ktime_to_us(ktime_sub(ktime_get(), start)),
9869 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9870 
9871 	return ret;
9872 }
9873 
ufshcd_wl_resume(struct device * dev)9874 static int ufshcd_wl_resume(struct device *dev)
9875 {
9876 	struct scsi_device *sdev = to_scsi_device(dev);
9877 	struct ufs_hba *hba;
9878 	int ret = 0;
9879 	ktime_t start = ktime_get();
9880 
9881 	hba = shost_priv(sdev->host);
9882 
9883 	if (pm_runtime_suspended(dev))
9884 		goto out;
9885 
9886 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9887 	if (ret)
9888 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9889 out:
9890 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9891 		ktime_to_us(ktime_sub(ktime_get(), start)),
9892 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9893 	if (!ret)
9894 		hba->is_sys_suspended = false;
9895 	hba->system_suspending = false;
9896 	up(&hba->host_sem);
9897 	return ret;
9898 }
9899 #endif
9900 
9901 /**
9902  * ufshcd_suspend - helper function for suspend operations
9903  * @hba: per adapter instance
9904  *
9905  * This function will put disable irqs, turn off clocks
9906  * and set vreg and hba-vreg in lpm mode.
9907  *
9908  * Return: 0 upon success; < 0 upon failure.
9909  */
ufshcd_suspend(struct ufs_hba * hba)9910 static int ufshcd_suspend(struct ufs_hba *hba)
9911 {
9912 	int ret;
9913 
9914 	if (!hba->is_powered)
9915 		return 0;
9916 	/*
9917 	 * Disable the host irq as host controller as there won't be any
9918 	 * host controller transaction expected till resume.
9919 	 */
9920 	ufshcd_disable_irq(hba);
9921 	ret = ufshcd_setup_clocks(hba, false);
9922 	if (ret) {
9923 		ufshcd_enable_irq(hba);
9924 		return ret;
9925 	}
9926 	if (ufshcd_is_clkgating_allowed(hba)) {
9927 		hba->clk_gating.state = CLKS_OFF;
9928 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9929 					hba->clk_gating.state);
9930 	}
9931 
9932 	ufshcd_vreg_set_lpm(hba);
9933 	/* Put the host controller in low power mode if possible */
9934 	ufshcd_hba_vreg_set_lpm(hba);
9935 	return ret;
9936 }
9937 
9938 #ifdef CONFIG_PM
9939 /**
9940  * ufshcd_resume - helper function for resume operations
9941  * @hba: per adapter instance
9942  *
9943  * This function basically turns on the regulators, clocks and
9944  * irqs of the hba.
9945  *
9946  * Return: 0 for success and non-zero for failure.
9947  */
ufshcd_resume(struct ufs_hba * hba)9948 static int ufshcd_resume(struct ufs_hba *hba)
9949 {
9950 	int ret;
9951 
9952 	if (!hba->is_powered)
9953 		return 0;
9954 
9955 	ufshcd_hba_vreg_set_hpm(hba);
9956 	ret = ufshcd_vreg_set_hpm(hba);
9957 	if (ret)
9958 		goto out;
9959 
9960 	/* Make sure clocks are enabled before accessing controller */
9961 	ret = ufshcd_setup_clocks(hba, true);
9962 	if (ret)
9963 		goto disable_vreg;
9964 
9965 	/* enable the host irq as host controller would be active soon */
9966 	ufshcd_enable_irq(hba);
9967 
9968 	goto out;
9969 
9970 disable_vreg:
9971 	ufshcd_vreg_set_lpm(hba);
9972 out:
9973 	if (ret)
9974 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9975 	return ret;
9976 }
9977 #endif /* CONFIG_PM */
9978 
9979 #ifdef CONFIG_PM_SLEEP
9980 /**
9981  * ufshcd_system_suspend - system suspend callback
9982  * @dev: Device associated with the UFS controller.
9983  *
9984  * Executed before putting the system into a sleep state in which the contents
9985  * of main memory are preserved.
9986  *
9987  * Return: 0 for success and non-zero for failure.
9988  */
ufshcd_system_suspend(struct device * dev)9989 int ufshcd_system_suspend(struct device *dev)
9990 {
9991 	struct ufs_hba *hba = dev_get_drvdata(dev);
9992 	int ret = 0;
9993 	ktime_t start = ktime_get();
9994 
9995 	if (pm_runtime_suspended(hba->dev))
9996 		goto out;
9997 
9998 	ret = ufshcd_suspend(hba);
9999 out:
10000 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10001 		ktime_to_us(ktime_sub(ktime_get(), start)),
10002 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10003 	return ret;
10004 }
10005 EXPORT_SYMBOL(ufshcd_system_suspend);
10006 
10007 /**
10008  * ufshcd_system_resume - system resume callback
10009  * @dev: Device associated with the UFS controller.
10010  *
10011  * Executed after waking the system up from a sleep state in which the contents
10012  * of main memory were preserved.
10013  *
10014  * Return: 0 for success and non-zero for failure.
10015  */
ufshcd_system_resume(struct device * dev)10016 int ufshcd_system_resume(struct device *dev)
10017 {
10018 	struct ufs_hba *hba = dev_get_drvdata(dev);
10019 	ktime_t start = ktime_get();
10020 	int ret = 0;
10021 
10022 	if (pm_runtime_suspended(hba->dev))
10023 		goto out;
10024 
10025 	ret = ufshcd_resume(hba);
10026 
10027 out:
10028 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10029 		ktime_to_us(ktime_sub(ktime_get(), start)),
10030 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10031 
10032 	return ret;
10033 }
10034 EXPORT_SYMBOL(ufshcd_system_resume);
10035 #endif /* CONFIG_PM_SLEEP */
10036 
10037 #ifdef CONFIG_PM
10038 /**
10039  * ufshcd_runtime_suspend - runtime suspend callback
10040  * @dev: Device associated with the UFS controller.
10041  *
10042  * Check the description of ufshcd_suspend() function for more details.
10043  *
10044  * Return: 0 for success and non-zero for failure.
10045  */
ufshcd_runtime_suspend(struct device * dev)10046 int ufshcd_runtime_suspend(struct device *dev)
10047 {
10048 	struct ufs_hba *hba = dev_get_drvdata(dev);
10049 	int ret;
10050 	ktime_t start = ktime_get();
10051 
10052 	ret = ufshcd_suspend(hba);
10053 
10054 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10055 		ktime_to_us(ktime_sub(ktime_get(), start)),
10056 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10057 	return ret;
10058 }
10059 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10060 
10061 /**
10062  * ufshcd_runtime_resume - runtime resume routine
10063  * @dev: Device associated with the UFS controller.
10064  *
10065  * This function basically brings controller
10066  * to active state. Following operations are done in this function:
10067  *
10068  * 1. Turn on all the controller related clocks
10069  * 2. Turn ON VCC rail
10070  *
10071  * Return: 0 upon success; < 0 upon failure.
10072  */
ufshcd_runtime_resume(struct device * dev)10073 int ufshcd_runtime_resume(struct device *dev)
10074 {
10075 	struct ufs_hba *hba = dev_get_drvdata(dev);
10076 	int ret;
10077 	ktime_t start = ktime_get();
10078 
10079 	ret = ufshcd_resume(hba);
10080 
10081 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10082 		ktime_to_us(ktime_sub(ktime_get(), start)),
10083 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10084 	return ret;
10085 }
10086 EXPORT_SYMBOL(ufshcd_runtime_resume);
10087 #endif /* CONFIG_PM */
10088 
ufshcd_wl_shutdown(struct device * dev)10089 static void ufshcd_wl_shutdown(struct device *dev)
10090 {
10091 	struct scsi_device *sdev = to_scsi_device(dev);
10092 	struct ufs_hba *hba = shost_priv(sdev->host);
10093 
10094 	down(&hba->host_sem);
10095 	hba->shutting_down = true;
10096 	up(&hba->host_sem);
10097 
10098 	/* Turn on everything while shutting down */
10099 	ufshcd_rpm_get_sync(hba);
10100 	scsi_device_quiesce(sdev);
10101 	shost_for_each_device(sdev, hba->host) {
10102 		if (sdev == hba->ufs_device_wlun)
10103 			continue;
10104 		scsi_device_quiesce(sdev);
10105 	}
10106 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10107 
10108 	/*
10109 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10110 	 * clocks.
10111 	 */
10112 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10113 		ufshcd_suspend(hba);
10114 
10115 	hba->is_powered = false;
10116 }
10117 
10118 /**
10119  * ufshcd_remove - de-allocate SCSI host and host memory space
10120  *		data structure memory
10121  * @hba: per adapter instance
10122  */
ufshcd_remove(struct ufs_hba * hba)10123 void ufshcd_remove(struct ufs_hba *hba)
10124 {
10125 	if (hba->ufs_device_wlun)
10126 		ufshcd_rpm_get_sync(hba);
10127 	ufs_hwmon_remove(hba);
10128 	ufs_bsg_remove(hba);
10129 	ufs_sysfs_remove_nodes(hba->dev);
10130 	blk_mq_destroy_queue(hba->tmf_queue);
10131 	blk_put_queue(hba->tmf_queue);
10132 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10133 	if (hba->scsi_host_added)
10134 		scsi_remove_host(hba->host);
10135 	/* disable interrupts */
10136 	ufshcd_disable_intr(hba, hba->intr_mask);
10137 	ufshcd_hba_stop(hba);
10138 	ufshcd_hba_exit(hba);
10139 }
10140 EXPORT_SYMBOL_GPL(ufshcd_remove);
10141 
10142 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10143 int ufshcd_system_freeze(struct device *dev)
10144 {
10145 
10146 	return ufshcd_system_suspend(dev);
10147 
10148 }
10149 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10150 
ufshcd_system_restore(struct device * dev)10151 int ufshcd_system_restore(struct device *dev)
10152 {
10153 
10154 	struct ufs_hba *hba = dev_get_drvdata(dev);
10155 	int ret;
10156 
10157 	ret = ufshcd_system_resume(dev);
10158 	if (ret)
10159 		return ret;
10160 
10161 	/* Configure UTRL and UTMRL base address registers */
10162 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10163 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10164 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10165 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10166 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10167 			REG_UTP_TASK_REQ_LIST_BASE_L);
10168 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10169 			REG_UTP_TASK_REQ_LIST_BASE_H);
10170 	/*
10171 	 * Make sure that UTRL and UTMRL base address registers
10172 	 * are updated with the latest queue addresses. Only after
10173 	 * updating these addresses, we can queue the new commands.
10174 	 */
10175 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10176 
10177 	return 0;
10178 
10179 }
10180 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10181 
ufshcd_system_thaw(struct device * dev)10182 int ufshcd_system_thaw(struct device *dev)
10183 {
10184 	return ufshcd_system_resume(dev);
10185 }
10186 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10187 #endif /* CONFIG_PM_SLEEP  */
10188 
10189 /**
10190  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10191  * @hba: pointer to Host Bus Adapter (HBA)
10192  */
ufshcd_dealloc_host(struct ufs_hba * hba)10193 void ufshcd_dealloc_host(struct ufs_hba *hba)
10194 {
10195 	scsi_host_put(hba->host);
10196 }
10197 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10198 
10199 /**
10200  * ufshcd_set_dma_mask - Set dma mask based on the controller
10201  *			 addressing capability
10202  * @hba: per adapter instance
10203  *
10204  * Return: 0 for success, non-zero for failure.
10205  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10206 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10207 {
10208 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10209 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10210 			return 0;
10211 	}
10212 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10213 }
10214 
10215 /**
10216  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10217  * @dev: pointer to device handle
10218  * @hba_handle: driver private handle
10219  *
10220  * Return: 0 on success, non-zero value on failure.
10221  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10222 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10223 {
10224 	struct Scsi_Host *host;
10225 	struct ufs_hba *hba;
10226 	int err = 0;
10227 
10228 	if (!dev) {
10229 		dev_err(dev,
10230 		"Invalid memory reference for dev is NULL\n");
10231 		err = -ENODEV;
10232 		goto out_error;
10233 	}
10234 
10235 	host = scsi_host_alloc(&ufshcd_driver_template,
10236 				sizeof(struct ufs_hba));
10237 	if (!host) {
10238 		dev_err(dev, "scsi_host_alloc failed\n");
10239 		err = -ENOMEM;
10240 		goto out_error;
10241 	}
10242 	host->nr_maps = HCTX_TYPE_POLL + 1;
10243 	hba = shost_priv(host);
10244 	hba->host = host;
10245 	hba->dev = dev;
10246 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10247 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10248 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10249 	INIT_LIST_HEAD(&hba->clk_list_head);
10250 	spin_lock_init(&hba->outstanding_lock);
10251 
10252 	*hba_handle = hba;
10253 
10254 out_error:
10255 	return err;
10256 }
10257 EXPORT_SYMBOL(ufshcd_alloc_host);
10258 
10259 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10260 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10261 				     const struct blk_mq_queue_data *qd)
10262 {
10263 	WARN_ON_ONCE(true);
10264 	return BLK_STS_NOTSUPP;
10265 }
10266 
10267 static const struct blk_mq_ops ufshcd_tmf_ops = {
10268 	.queue_rq = ufshcd_queue_tmf,
10269 };
10270 
10271 /**
10272  * ufshcd_init - Driver initialization routine
10273  * @hba: per-adapter instance
10274  * @mmio_base: base register address
10275  * @irq: Interrupt line of device
10276  *
10277  * Return: 0 on success, non-zero value on failure.
10278  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10279 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10280 {
10281 	int err;
10282 	struct Scsi_Host *host = hba->host;
10283 	struct device *dev = hba->dev;
10284 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10285 
10286 	/*
10287 	 * dev_set_drvdata() must be called before any callbacks are registered
10288 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10289 	 * sysfs).
10290 	 */
10291 	dev_set_drvdata(dev, hba);
10292 
10293 	if (!mmio_base) {
10294 		dev_err(hba->dev,
10295 		"Invalid memory reference for mmio_base is NULL\n");
10296 		err = -ENODEV;
10297 		goto out_error;
10298 	}
10299 
10300 	hba->mmio_base = mmio_base;
10301 	hba->irq = irq;
10302 	hba->vps = &ufs_hba_vps;
10303 
10304 	err = ufshcd_hba_init(hba);
10305 	if (err)
10306 		goto out_error;
10307 
10308 	/* Read capabilities registers */
10309 	err = ufshcd_hba_capabilities(hba);
10310 	if (err)
10311 		goto out_disable;
10312 
10313 	/* Get UFS version supported by the controller */
10314 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10315 
10316 	/* Get Interrupt bit mask per version */
10317 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10318 
10319 	err = ufshcd_set_dma_mask(hba);
10320 	if (err) {
10321 		dev_err(hba->dev, "set dma mask failed\n");
10322 		goto out_disable;
10323 	}
10324 
10325 	/* Allocate memory for host memory space */
10326 	err = ufshcd_memory_alloc(hba);
10327 	if (err) {
10328 		dev_err(hba->dev, "Memory allocation failed\n");
10329 		goto out_disable;
10330 	}
10331 
10332 	/* Configure LRB */
10333 	ufshcd_host_memory_configure(hba);
10334 
10335 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10336 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10337 	host->max_id = UFSHCD_MAX_ID;
10338 	host->max_lun = UFS_MAX_LUNS;
10339 	host->max_channel = UFSHCD_MAX_CHANNEL;
10340 	host->unique_id = host->host_no;
10341 	host->max_cmd_len = UFS_CDB_SIZE;
10342 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10343 
10344 	hba->max_pwr_info.is_valid = false;
10345 
10346 	/* Initialize work queues */
10347 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10348 		 hba->host->host_no);
10349 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10350 	if (!hba->eh_wq) {
10351 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10352 			__func__);
10353 		err = -ENOMEM;
10354 		goto out_disable;
10355 	}
10356 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10357 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10358 
10359 	sema_init(&hba->host_sem, 1);
10360 
10361 	/* Initialize UIC command mutex */
10362 	mutex_init(&hba->uic_cmd_mutex);
10363 
10364 	/* Initialize mutex for device management commands */
10365 	mutex_init(&hba->dev_cmd.lock);
10366 
10367 	/* Initialize mutex for exception event control */
10368 	mutex_init(&hba->ee_ctrl_mutex);
10369 
10370 	mutex_init(&hba->wb_mutex);
10371 	init_rwsem(&hba->clk_scaling_lock);
10372 
10373 	ufshcd_init_clk_gating(hba);
10374 
10375 	ufshcd_init_clk_scaling(hba);
10376 
10377 	/*
10378 	 * In order to avoid any spurious interrupt immediately after
10379 	 * registering UFS controller interrupt handler, clear any pending UFS
10380 	 * interrupt status and disable all the UFS interrupts.
10381 	 */
10382 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10383 		      REG_INTERRUPT_STATUS);
10384 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10385 	/*
10386 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10387 	 * status is cleared before registering UFS interrupt handler.
10388 	 */
10389 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10390 
10391 	/* IRQ registration */
10392 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10393 	if (err) {
10394 		dev_err(hba->dev, "request irq failed\n");
10395 		goto out_disable;
10396 	} else {
10397 		hba->is_irq_enabled = true;
10398 	}
10399 
10400 	if (!is_mcq_supported(hba)) {
10401 		if (!hba->lsdb_sup) {
10402 			dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10403 				__func__);
10404 			err = -EINVAL;
10405 			goto out_disable;
10406 		}
10407 		err = scsi_add_host(host, hba->dev);
10408 		if (err) {
10409 			dev_err(hba->dev, "scsi_add_host failed\n");
10410 			goto out_disable;
10411 		}
10412 		hba->scsi_host_added = true;
10413 	}
10414 
10415 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10416 		.nr_hw_queues	= 1,
10417 		.queue_depth	= hba->nutmrs,
10418 		.ops		= &ufshcd_tmf_ops,
10419 		.flags		= BLK_MQ_F_NO_SCHED,
10420 	};
10421 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10422 	if (err < 0)
10423 		goto out_remove_scsi_host;
10424 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10425 	if (IS_ERR(hba->tmf_queue)) {
10426 		err = PTR_ERR(hba->tmf_queue);
10427 		goto free_tmf_tag_set;
10428 	}
10429 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10430 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10431 	if (!hba->tmf_rqs) {
10432 		err = -ENOMEM;
10433 		goto free_tmf_queue;
10434 	}
10435 
10436 	/* Reset the attached device */
10437 	ufshcd_device_reset(hba);
10438 
10439 	ufshcd_init_crypto(hba);
10440 
10441 	/* Host controller enable */
10442 	err = ufshcd_hba_enable(hba);
10443 	if (err) {
10444 		dev_err(hba->dev, "Host controller enable failed\n");
10445 		ufshcd_print_evt_hist(hba);
10446 		ufshcd_print_host_state(hba);
10447 		goto free_tmf_queue;
10448 	}
10449 
10450 	/*
10451 	 * Set the default power management level for runtime and system PM.
10452 	 * Default power saving mode is to keep UFS link in Hibern8 state
10453 	 * and UFS device in sleep state.
10454 	 */
10455 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10456 						UFS_SLEEP_PWR_MODE,
10457 						UIC_LINK_HIBERN8_STATE);
10458 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10459 						UFS_SLEEP_PWR_MODE,
10460 						UIC_LINK_HIBERN8_STATE);
10461 
10462 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10463 			  ufshcd_rpm_dev_flush_recheck_work);
10464 
10465 	/* Set the default auto-hiberate idle timer value to 150 ms */
10466 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10467 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10468 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10469 	}
10470 
10471 	/* Hold auto suspend until async scan completes */
10472 	pm_runtime_get_sync(dev);
10473 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10474 	/*
10475 	 * We are assuming that device wasn't put in sleep/power-down
10476 	 * state exclusively during the boot stage before kernel.
10477 	 * This assumption helps avoid doing link startup twice during
10478 	 * ufshcd_probe_hba().
10479 	 */
10480 	ufshcd_set_ufs_dev_active(hba);
10481 
10482 	async_schedule(ufshcd_async_scan, hba);
10483 	ufs_sysfs_add_nodes(hba->dev);
10484 
10485 	device_enable_async_suspend(dev);
10486 	return 0;
10487 
10488 free_tmf_queue:
10489 	blk_mq_destroy_queue(hba->tmf_queue);
10490 	blk_put_queue(hba->tmf_queue);
10491 free_tmf_tag_set:
10492 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10493 out_remove_scsi_host:
10494 	if (hba->scsi_host_added)
10495 		scsi_remove_host(hba->host);
10496 out_disable:
10497 	hba->is_irq_enabled = false;
10498 	ufshcd_hba_exit(hba);
10499 out_error:
10500 	return err;
10501 }
10502 EXPORT_SYMBOL_GPL(ufshcd_init);
10503 
ufshcd_resume_complete(struct device * dev)10504 void ufshcd_resume_complete(struct device *dev)
10505 {
10506 	struct ufs_hba *hba = dev_get_drvdata(dev);
10507 
10508 	if (hba->complete_put) {
10509 		ufshcd_rpm_put(hba);
10510 		hba->complete_put = false;
10511 	}
10512 }
10513 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10514 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10515 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10516 {
10517 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10518 	enum ufs_dev_pwr_mode dev_pwr_mode;
10519 	enum uic_link_state link_state;
10520 	unsigned long flags;
10521 	bool res;
10522 
10523 	spin_lock_irqsave(&dev->power.lock, flags);
10524 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10525 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10526 	res = pm_runtime_suspended(dev) &&
10527 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10528 	      hba->uic_link_state == link_state &&
10529 	      !hba->dev_info.b_rpm_dev_flush_capable;
10530 	spin_unlock_irqrestore(&dev->power.lock, flags);
10531 
10532 	return res;
10533 }
10534 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10535 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10536 {
10537 	struct ufs_hba *hba = dev_get_drvdata(dev);
10538 	int ret;
10539 
10540 	/*
10541 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10542 	 * are same. And it doesn't wake up the device for system-suspend
10543 	 * if it's runtime suspended. But ufs doesn't follow that.
10544 	 * Refer ufshcd_resume_complete()
10545 	 */
10546 	if (hba->ufs_device_wlun) {
10547 		/* Prevent runtime suspend */
10548 		ufshcd_rpm_get_noresume(hba);
10549 		/*
10550 		 * Check if already runtime suspended in same state as system
10551 		 * suspend would be.
10552 		 */
10553 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10554 			/* RPM state is not ok for SPM, so runtime resume */
10555 			ret = ufshcd_rpm_resume(hba);
10556 			if (ret < 0 && ret != -EACCES) {
10557 				ufshcd_rpm_put(hba);
10558 				return ret;
10559 			}
10560 		}
10561 		hba->complete_put = true;
10562 	}
10563 	return 0;
10564 }
10565 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10566 
ufshcd_suspend_prepare(struct device * dev)10567 int ufshcd_suspend_prepare(struct device *dev)
10568 {
10569 	return __ufshcd_suspend_prepare(dev, true);
10570 }
10571 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10572 
10573 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10574 static int ufshcd_wl_poweroff(struct device *dev)
10575 {
10576 	struct scsi_device *sdev = to_scsi_device(dev);
10577 	struct ufs_hba *hba = shost_priv(sdev->host);
10578 
10579 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10580 	return 0;
10581 }
10582 #endif
10583 
ufshcd_wl_probe(struct device * dev)10584 static int ufshcd_wl_probe(struct device *dev)
10585 {
10586 	struct scsi_device *sdev = to_scsi_device(dev);
10587 
10588 	if (!is_device_wlun(sdev))
10589 		return -ENODEV;
10590 
10591 	blk_pm_runtime_init(sdev->request_queue, dev);
10592 	pm_runtime_set_autosuspend_delay(dev, 0);
10593 	pm_runtime_allow(dev);
10594 
10595 	return  0;
10596 }
10597 
ufshcd_wl_remove(struct device * dev)10598 static int ufshcd_wl_remove(struct device *dev)
10599 {
10600 	pm_runtime_forbid(dev);
10601 	return 0;
10602 }
10603 
10604 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10605 #ifdef CONFIG_PM_SLEEP
10606 	.suspend = ufshcd_wl_suspend,
10607 	.resume = ufshcd_wl_resume,
10608 	.freeze = ufshcd_wl_suspend,
10609 	.thaw = ufshcd_wl_resume,
10610 	.poweroff = ufshcd_wl_poweroff,
10611 	.restore = ufshcd_wl_resume,
10612 #endif
10613 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10614 };
10615 
ufshcd_check_header_layout(void)10616 static void ufshcd_check_header_layout(void)
10617 {
10618 	/*
10619 	 * gcc compilers before version 10 cannot do constant-folding for
10620 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10621 	 * before.
10622 	 */
10623 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10624 		return;
10625 
10626 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10627 				.cci = 3})[0] != 3);
10628 
10629 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10630 				.ehs_length = 2})[1] != 2);
10631 
10632 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10633 				.enable_crypto = 1})[2]
10634 		     != 0x80);
10635 
10636 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10637 					.command_type = 5,
10638 					.data_direction = 3,
10639 					.interrupt = 1,
10640 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10641 
10642 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10643 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10644 		cpu_to_le32(0xdeadbeef));
10645 
10646 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10647 				.ocs = 4})[8] != 4);
10648 
10649 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10650 				.cds = 5})[9] != 5);
10651 
10652 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10653 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10654 		cpu_to_le32(0xbadcafe));
10655 
10656 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10657 			     .iid = 0xf })[4] != 0xf0);
10658 
10659 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10660 			     .command_set_type = 0xf })[4] != 0xf);
10661 }
10662 
10663 /*
10664  * ufs_dev_wlun_template - describes ufs device wlun
10665  * ufs-device wlun - used to send pm commands
10666  * All luns are consumers of ufs-device wlun.
10667  *
10668  * Currently, no sd driver is present for wluns.
10669  * Hence the no specific pm operations are performed.
10670  * With ufs design, SSU should be sent to ufs-device wlun.
10671  * Hence register a scsi driver for ufs wluns only.
10672  */
10673 static struct scsi_driver ufs_dev_wlun_template = {
10674 	.gendrv = {
10675 		.name = "ufs_device_wlun",
10676 		.owner = THIS_MODULE,
10677 		.probe = ufshcd_wl_probe,
10678 		.remove = ufshcd_wl_remove,
10679 		.pm = &ufshcd_wl_pm_ops,
10680 		.shutdown = ufshcd_wl_shutdown,
10681 	},
10682 };
10683 
ufshcd_core_init(void)10684 static int __init ufshcd_core_init(void)
10685 {
10686 	int ret;
10687 
10688 	ufshcd_check_header_layout();
10689 
10690 	ufs_debugfs_init();
10691 
10692 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10693 	if (ret)
10694 		ufs_debugfs_exit();
10695 	return ret;
10696 }
10697 
ufshcd_core_exit(void)10698 static void __exit ufshcd_core_exit(void)
10699 {
10700 	ufs_debugfs_exit();
10701 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10702 }
10703 
10704 module_init(ufshcd_core_init);
10705 module_exit(ufshcd_core_exit);
10706 
10707 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10708 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10709 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10710 MODULE_SOFTDEP("pre: governor_simpleondemand");
10711 MODULE_LICENSE("GPL");
10712