1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42
43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
44 UTP_TASK_REQ_COMPL |\
45 UFSHCD_ERROR_MASK)
46
47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\
48 UFSHCD_ERROR_MASK |\
49 MCQ_CQ_EVENT_STATUS)
50
51
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT 500
54
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES 10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT 50 /* msecs */
59
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */
67
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT 100 /* msecs */
70
71 /* maximum number of retries for a general UIC command */
72 #define UFS_UIC_COMMAND_RETRIES 3
73
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO 0x02
88
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103
is_mcq_supported(struct ufs_hba * hba)104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 return hba->mcq_sup && use_mcq_mode;
107 }
108
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
113 ({ \
114 int _ret; \
115 if (_on) \
116 _ret = ufshcd_enable_vreg(_dev, _vreg); \
117 else \
118 _ret = ufshcd_disable_vreg(_dev, _vreg); \
119 _ret; \
120 })
121
122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
123 size_t __len = (len); \
124 print_hex_dump(KERN_ERR, prefix_str, \
125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 16, 4, buf, __len, false); \
127 } while (0)
128
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 const char *prefix)
131 {
132 u32 *regs;
133 size_t pos;
134
135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 return -EINVAL;
137
138 regs = kzalloc(len, GFP_ATOMIC);
139 if (!regs)
140 return -ENOMEM;
141
142 for (pos = 0; pos < len; pos += 4) {
143 if (offset == 0 &&
144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 pos <= REG_UIC_ERROR_CODE_DME)
146 continue;
147 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 }
149
150 ufshcd_hex_dump(prefix, regs, len);
151 kfree(regs);
152
153 return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156
157 enum {
158 UFSHCD_MAX_CHANNEL = 0,
159 UFSHCD_MAX_ID = 1,
160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
162 };
163
164 static const char *const ufshcd_state_name[] = {
165 [UFSHCD_STATE_RESET] = "reset",
166 [UFSHCD_STATE_OPERATIONAL] = "operational",
167 [UFSHCD_STATE_ERROR] = "error",
168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal",
169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal",
170 };
171
172 /* UFSHCD error handling flags */
173 enum {
174 UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176
177 /* UFSHCD UIC layer error flags */
178 enum {
179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187
188 #define ufshcd_set_eh_in_progress(h) \
189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 /*
203 * For DeepSleep, the link is first put in hibern8 and then off.
204 * Leaving the link in hibern8 is not supported.
205 */
206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208
209 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 return ufs_pm_lvl_states[lvl].dev_state;
213 }
214
215 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 return ufs_pm_lvl_states[lvl].link_state;
219 }
220
221 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 enum uic_link_state link_state)
224 {
225 enum ufs_pm_level lvl;
226
227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 (ufs_pm_lvl_states[lvl].link_state == link_state))
230 return lvl;
231 }
232
233 /* if no match found, return the level 0 */
234 return UFS_PM_LVL_0;
235 }
236
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 /* UFS cards deviations table */
239 { .wmanufacturerid = UFS_VENDOR_MICRON,
240 .model = UFS_ANY_MODEL,
241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 .model = UFS_ANY_MODEL,
244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 .model = UFS_ANY_MODEL,
249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 .model = "hB8aL1" /*H28U62301AMR*/,
252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 .model = UFS_ANY_MODEL,
255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 .model = "THGLF2G9C8KBADG",
258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 .model = "THGLF2G9D8KBADG",
261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 {}
263 };
264
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290
ufshcd_enable_irq(struct ufs_hba * hba)291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 if (!hba->is_irq_enabled) {
294 enable_irq(hba->irq);
295 hba->is_irq_enabled = true;
296 }
297 }
298
ufshcd_disable_irq(struct ufs_hba * hba)299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 if (hba->is_irq_enabled) {
302 disable_irq(hba->irq);
303 hba->is_irq_enabled = false;
304 }
305 }
306
ufshcd_configure_wb(struct ufs_hba * hba)307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 if (!ufshcd_is_wb_allowed(hba))
310 return;
311
312 ufshcd_wb_toggle(hba, true);
313
314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315
316 if (ufshcd_is_wb_buf_flush_allowed(hba))
317 ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 scsi_unblock_requests(hba->host);
324 }
325
ufshcd_scsi_block_requests(struct ufs_hba * hba)326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 scsi_block_requests(hba->host);
330 }
331
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 enum ufs_trace_str_t str_t)
334 {
335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 struct utp_upiu_header *header;
337
338 if (!trace_ufshcd_upiu_enabled())
339 return;
340
341 if (str_t == UFS_CMD_SEND)
342 header = &rq->header;
343 else
344 header = &hba->lrb[tag].ucd_rsp_ptr->header;
345
346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 UFS_TSF_CDB);
348 }
349
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 enum ufs_trace_str_t str_t,
352 struct utp_upiu_req *rq_rsp)
353 {
354 if (!trace_ufshcd_upiu_enabled())
355 return;
356
357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 &rq_rsp->qr, UFS_TSF_OSF);
359 }
360
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 enum ufs_trace_str_t str_t)
363 {
364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365
366 if (!trace_ufshcd_upiu_enabled())
367 return;
368
369 if (str_t == UFS_TM_SEND)
370 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 &descp->upiu_req.req_header,
372 &descp->upiu_req.input_param1,
373 UFS_TSF_TM_INPUT);
374 else
375 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 &descp->upiu_rsp.rsp_header,
377 &descp->upiu_rsp.output_param1,
378 UFS_TSF_TM_OUTPUT);
379 }
380
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 const struct uic_command *ucmd,
383 enum ufs_trace_str_t str_t)
384 {
385 u32 cmd;
386
387 if (!trace_ufshcd_uic_command_enabled())
388 return;
389
390 if (str_t == UFS_CMD_SEND)
391 cmd = ucmd->command;
392 else
393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394
395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 enum ufs_trace_str_t str_t)
403 {
404 u64 lba = 0;
405 u8 opcode = 0, group_id = 0;
406 u32 doorbell = 0;
407 u32 intr;
408 int hwq_id = -1;
409 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 struct scsi_cmnd *cmd = lrbp->cmd;
411 struct request *rq = scsi_cmd_to_rq(cmd);
412 int transfer_len = -1;
413
414 if (!cmd)
415 return;
416
417 /* trace UPIU also */
418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 if (!trace_ufshcd_command_enabled())
420 return;
421
422 opcode = cmd->cmnd[0];
423
424 if (opcode == READ_10 || opcode == WRITE_10) {
425 /*
426 * Currently we only fully trace read(10) and write(10) commands
427 */
428 transfer_len =
429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 lba = scsi_get_lba(cmd);
431 if (opcode == WRITE_10)
432 group_id = lrbp->cmd->cmnd[6];
433 } else if (opcode == UNMAP) {
434 /*
435 * The number of Bytes to be unmapped beginning with the lba.
436 */
437 transfer_len = blk_rq_bytes(rq);
438 lba = scsi_get_lba(cmd);
439 }
440
441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442
443 if (is_mcq_enabled(hba)) {
444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445
446 hwq_id = hwq->id;
447 } else {
448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 }
450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453
ufshcd_print_clk_freqs(struct ufs_hba * hba)454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 struct ufs_clk_info *clki;
457 struct list_head *head = &hba->clk_list_head;
458
459 if (list_empty(head))
460 return;
461
462 list_for_each_entry(clki, head, list) {
463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 clki->max_freq)
465 dev_err(hba->dev, "clk: %s, rate: %u\n",
466 clki->name, clki->curr_freq);
467 }
468 }
469
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 const char *err_name)
472 {
473 int i;
474 bool found = false;
475 const struct ufs_event_hist *e;
476
477 if (id >= UFS_EVT_CNT)
478 return;
479
480 e = &hba->ufs_stats.event[id];
481
482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484
485 if (e->tstamp[p] == 0)
486 continue;
487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 e->val[p], div_u64(e->tstamp[p], 1000));
489 found = true;
490 }
491
492 if (!found)
493 dev_err(hba->dev, "No record of %s\n", err_name);
494 else
495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497
ufshcd_print_evt_hist(struct ufs_hba * hba)498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501
502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 "auto_hibern8_err");
509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 "link_startup_fail");
512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 "suspend_fail");
515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 "wlun suspend_fail");
518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521
522 ufshcd_vops_dbg_register_dump(hba);
523 }
524
525 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 const struct ufshcd_lrb *lrbp;
529 int prdt_length;
530
531 lrbp = &hba->lrb[tag];
532
533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 dev_err(hba->dev,
538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 tag, (u64)lrbp->utrd_dma_addr);
540
541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 sizeof(struct utp_transfer_req_desc));
543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 (u64)lrbp->ucd_req_dma_addr);
545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 sizeof(struct utp_upiu_req));
547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 (u64)lrbp->ucd_rsp_dma_addr);
549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 sizeof(struct utp_upiu_rsp));
551
552 prdt_length = le16_to_cpu(
553 lrbp->utr_descriptor_ptr->prd_table_length);
554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 prdt_length /= ufshcd_sg_entry_size(hba);
556
557 dev_err(hba->dev,
558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
559 tag, prdt_length,
560 (u64)lrbp->ucd_prdt_dma_addr);
561
562 if (pr_prdt)
563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566
ufshcd_print_tr_iter(struct request * req,void * priv)567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 struct scsi_device *sdev = req->q->queuedata;
570 struct Scsi_Host *shost = sdev->host;
571 struct ufs_hba *hba = shost_priv(shost);
572
573 ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574
575 return true;
576 }
577
578 /**
579 * ufshcd_print_trs_all - print trs for all started requests.
580 * @hba: per-adapter instance.
581 * @pr_prdt: need to print prdt or not.
582 */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 int tag;
591
592 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594
595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 }
598 }
599
ufshcd_print_host_state(struct ufs_hba * hba)600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603
604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 hba->outstanding_reqs, hba->outstanding_tasks);
607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 hba->saved_err, hba->saved_uic_err);
609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 hba->curr_dev_pwr_mode, hba->uic_link_state);
611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 hba->pm_op_in_progress, hba->is_sys_suspended);
613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 dev_err(hba->dev,
617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 hba->ufs_stats.hibern8_exit_cnt);
620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 hba->ufs_stats.last_intr_status);
623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 hba->eh_flags, hba->req_abort_count);
625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 hba->ufs_version, hba->capabilities, hba->caps);
627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 hba->dev_quirks);
629 if (sdev_ufs)
630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632
633 ufshcd_print_clk_freqs(hba);
634 }
635
636 /**
637 * ufshcd_print_pwr_info - print power params as saved in hba
638 * power info
639 * @hba: per-adapter instance
640 */
ufshcd_print_pwr_info(struct ufs_hba * hba)641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 static const char * const names[] = {
644 "INVALID MODE",
645 "FAST MODE",
646 "SLOW_MODE",
647 "INVALID MODE",
648 "FASTAUTO_MODE",
649 "SLOWAUTO_MODE",
650 "INVALID MODE",
651 };
652
653 /*
654 * Using dev_dbg to avoid messages during runtime PM to avoid
655 * never-ending cycles of messages written back to storage by user space
656 * causing runtime resume, causing more messages and so on.
657 */
658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 __func__,
660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 names[hba->pwr_info.pwr_rx],
663 names[hba->pwr_info.pwr_tx],
664 hba->pwr_info.hs_rate);
665 }
666
ufshcd_device_reset(struct ufs_hba * hba)667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 int err;
670
671 err = ufshcd_vops_device_reset(hba);
672
673 if (!err) {
674 ufshcd_set_ufs_dev_active(hba);
675 if (ufshcd_is_wb_allowed(hba)) {
676 hba->dev_info.wb_enabled = false;
677 hba->dev_info.wb_buf_flush_enabled = false;
678 }
679 }
680 if (err != -EOPNOTSUPP)
681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683
ufshcd_delay_us(unsigned long us,unsigned long tolerance)684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 if (!us)
687 return;
688
689 if (us < 10)
690 udelay(us);
691 else
692 usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695
696 /**
697 * ufshcd_wait_for_register - wait for register value to change
698 * @hba: per-adapter interface
699 * @reg: mmio register offset
700 * @mask: mask to apply to the read register value
701 * @val: value to wait for
702 * @interval_us: polling interval in microseconds
703 * @timeout_ms: timeout in milliseconds
704 *
705 * Return: -ETIMEDOUT on error, zero on success.
706 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 u32 val, unsigned long interval_us,
709 unsigned long timeout_ms)
710 {
711 int err = 0;
712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713
714 /* ignore bits that we don't intend to wait on */
715 val = val & mask;
716
717 while ((ufshcd_readl(hba, reg) & mask) != val) {
718 usleep_range(interval_us, interval_us + 50);
719 if (time_after(jiffies, timeout)) {
720 if ((ufshcd_readl(hba, reg) & mask) != val)
721 err = -ETIMEDOUT;
722 break;
723 }
724 }
725
726 return err;
727 }
728
729 /**
730 * ufshcd_get_intr_mask - Get the interrupt bit mask
731 * @hba: Pointer to adapter instance
732 *
733 * Return: interrupt bit mask per version
734 */
ufshcd_get_intr_mask(struct ufs_hba * hba)735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 if (hba->ufs_version == ufshci_version(1, 0))
738 return INTERRUPT_MASK_ALL_VER_10;
739 if (hba->ufs_version <= ufshci_version(2, 0))
740 return INTERRUPT_MASK_ALL_VER_11;
741
742 return INTERRUPT_MASK_ALL_VER_21;
743 }
744
745 /**
746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747 * @hba: Pointer to adapter instance
748 *
749 * Return: UFSHCI version supported by the controller
750 */
ufshcd_get_ufs_version(struct ufs_hba * hba)751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 u32 ufshci_ver;
754
755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 else
758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759
760 /*
761 * UFSHCI v1.x uses a different version scheme, in order
762 * to allow the use of comparisons with the ufshci_version
763 * function, we convert it to the same scheme as ufs 2.0+.
764 */
765 if (ufshci_ver & 0x00010000)
766 return ufshci_version(1, ufshci_ver & 0x00000100);
767
768 return ufshci_ver;
769 }
770
771 /**
772 * ufshcd_is_device_present - Check if any device connected to
773 * the host controller
774 * @hba: pointer to adapter instance
775 *
776 * Return: true if device present, false if no device detected
777 */
ufshcd_is_device_present(struct ufs_hba * hba)778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782
783 /**
784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785 * @lrbp: pointer to local command reference block
786 * @cqe: pointer to the completion queue entry
787 *
788 * This function is used to get the OCS field from UTRD
789 *
790 * Return: the OCS field in the UTRD.
791 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 struct cq_entry *cqe)
794 {
795 if (cqe)
796 return le32_to_cpu(cqe->status) & MASK_OCS;
797
798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800
801 /**
802 * ufshcd_utrl_clear() - Clear requests from the controller request list.
803 * @hba: per adapter instance
804 * @mask: mask with one bit set for each request to be cleared
805 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 mask = ~mask;
810 /*
811 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 * Register (UTRLCLR): This field is bit significant. Each bit
813 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 * by host software to indicate to the host controller that a transfer
816 * request slot is cleared. The host controller
817 * shall free up any resources associated to the request slot
818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 * host software indicates no change to request slots by setting the
820 * associated bits in this field to ‘1’. Bits in this field shall only
821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 */
823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825
826 /**
827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828 * @hba: per adapter instance
829 * @pos: position of the bit to be cleared
830 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 else
836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838
839 /**
840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841 * @reg: Register value of host controller status
842 *
843 * Return: 0 on success; a positive value if failed.
844 */
ufshcd_get_lists_status(u32 reg)845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849
850 /**
851 * ufshcd_get_uic_cmd_result - Get the UIC command result
852 * @hba: Pointer to adapter instance
853 *
854 * This function gets the result of UIC command completion
855 *
856 * Return: 0 on success; non-zero value on error.
857 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 MASK_UIC_COMMAND_RESULT;
862 }
863
864 /**
865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866 * @hba: Pointer to adapter instance
867 *
868 * This function gets UIC command argument3
869 *
870 * Return: 0 on success; non-zero value on error.
871 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876
877 /**
878 * ufshcd_get_req_rsp - returns the TR response transaction type
879 * @ucd_rsp_ptr: pointer to response UPIU
880 *
881 * Return: UPIU type.
882 */
883 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 return ucd_rsp_ptr->header.transaction_code;
887 }
888
889 /**
890 * ufshcd_is_exception_event - Check if the device raised an exception event
891 * @ucd_rsp_ptr: pointer to response UPIU
892 *
893 * The function checks if the device raised an exception event indicated in
894 * the Device Information field of response UPIU.
895 *
896 * Return: true if exception is raised, false otherwise.
897 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 return ucd_rsp_ptr->header.device_information & 1;
901 }
902
903 /**
904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905 * @hba: per adapter instance
906 */
907 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 ufshcd_writel(hba, INT_AGGR_ENABLE |
911 INT_AGGR_COUNTER_AND_TIMER_RESET,
912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914
915 /**
916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917 * @hba: per adapter instance
918 * @cnt: Interrupt aggregation counter threshold
919 * @tmout: Interrupt aggregation timeout value
920 */
921 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 INT_AGGR_TIMEOUT_VAL(tmout),
927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929
930 /**
931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932 * @hba: per adapter instance
933 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938
939 /**
940 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941 * When run-stop registers are set to 1, it indicates the
942 * host controller that it can process the requests
943 * @hba: per adapter instance
944 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952
953 /**
954 * ufshcd_hba_start - Start controller initialization sequence
955 * @hba: per adapter instance
956 */
ufshcd_hba_start(struct ufs_hba * hba)957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 u32 val = CONTROLLER_ENABLE;
960
961 if (ufshcd_crypto_enable(hba))
962 val |= CRYPTO_GENERAL_ENABLE;
963
964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966
967 /**
968 * ufshcd_is_hba_active - Get controller state
969 * @hba: per adapter instance
970 *
971 * Return: true if and only if the controller is active.
972 */
ufshcd_is_hba_active(struct ufs_hba * hba)973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 if (hba->ufs_version <= ufshci_version(1, 1))
983 return UFS_UNIPRO_VER_1_41;
984 else
985 return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 /*
992 * If both host and device support UniPro ver1.6 or later, PA layer
993 * parameters tuning happens during link startup itself.
994 *
995 * We can manually tune PA layer parameters if either host or device
996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 * logic simple, we will only do manual tuning if local unipro version
998 * doesn't support ver1.6 or later.
999 */
1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002
1003 /**
1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005 * @hba: per adapter instance
1006 * @scale_up: If True, set max possible frequency othewise set low frequency
1007 *
1008 * Return: 0 if successful; < 0 upon failure.
1009 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 int ret = 0;
1013 struct ufs_clk_info *clki;
1014 struct list_head *head = &hba->clk_list_head;
1015
1016 if (list_empty(head))
1017 goto out;
1018
1019 list_for_each_entry(clki, head, list) {
1020 if (!IS_ERR_OR_NULL(clki->clk)) {
1021 if (scale_up && clki->max_freq) {
1022 if (clki->curr_freq == clki->max_freq)
1023 continue;
1024
1025 ret = clk_set_rate(clki->clk, clki->max_freq);
1026 if (ret) {
1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 __func__, clki->name,
1029 clki->max_freq, ret);
1030 break;
1031 }
1032 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 "scaled up", clki->name,
1034 clki->curr_freq,
1035 clki->max_freq);
1036
1037 clki->curr_freq = clki->max_freq;
1038
1039 } else if (!scale_up && clki->min_freq) {
1040 if (clki->curr_freq == clki->min_freq)
1041 continue;
1042
1043 ret = clk_set_rate(clki->clk, clki->min_freq);
1044 if (ret) {
1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 __func__, clki->name,
1047 clki->min_freq, ret);
1048 break;
1049 }
1050 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 "scaled down", clki->name,
1052 clki->curr_freq,
1053 clki->min_freq);
1054 clki->curr_freq = clki->min_freq;
1055 }
1056 }
1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 clki->name, clk_get_rate(clki->clk));
1059 }
1060
1061 out:
1062 return ret;
1063 }
1064
1065 /**
1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067 * @hba: per adapter instance
1068 * @scale_up: True if scaling up and false if scaling down
1069 *
1070 * Return: 0 if successful; < 0 upon failure.
1071 */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 int ret = 0;
1075 ktime_t start = ktime_get();
1076
1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 if (ret)
1079 goto out;
1080
1081 ret = ufshcd_set_clk_freq(hba, scale_up);
1082 if (ret)
1083 goto out;
1084
1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 if (ret)
1087 ufshcd_set_clk_freq(hba, !scale_up);
1088
1089 out:
1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 (scale_up ? "up" : "down"),
1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 return ret;
1094 }
1095
1096 /**
1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098 * @hba: per adapter instance
1099 * @scale_up: True if scaling up and false if scaling down
1100 *
1101 * Return: true if scaling is required, false otherwise.
1102 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 bool scale_up)
1105 {
1106 struct ufs_clk_info *clki;
1107 struct list_head *head = &hba->clk_list_head;
1108
1109 if (list_empty(head))
1110 return false;
1111
1112 list_for_each_entry(clki, head, list) {
1113 if (!IS_ERR_OR_NULL(clki->clk)) {
1114 if (scale_up && clki->max_freq) {
1115 if (clki->curr_freq == clki->max_freq)
1116 continue;
1117 return true;
1118 } else if (!scale_up && clki->min_freq) {
1119 if (clki->curr_freq == clki->min_freq)
1120 continue;
1121 return true;
1122 }
1123 }
1124 }
1125
1126 return false;
1127 }
1128
1129 /*
1130 * Determine the number of pending commands by counting the bits in the SCSI
1131 * device budget maps. This approach has been selected because a bit is set in
1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133 * flag. The host_self_blocked flag can be modified by calling
1134 * scsi_block_requests() or scsi_unblock_requests().
1135 */
ufshcd_pending_cmds(struct ufs_hba * hba)1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 const struct scsi_device *sdev;
1139 u32 pending = 0;
1140
1141 lockdep_assert_held(hba->host->host_lock);
1142 __shost_for_each_device(sdev, hba->host)
1143 pending += sbitmap_weight(&sdev->budget_map);
1144
1145 return pending;
1146 }
1147
1148 /*
1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150 * has expired.
1151 *
1152 * Return: 0 upon success; -EBUSY upon timeout.
1153 */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 u64 wait_timeout_us)
1156 {
1157 unsigned long flags;
1158 int ret = 0;
1159 u32 tm_doorbell;
1160 u32 tr_pending;
1161 bool timeout = false, do_last_check = false;
1162 ktime_t start;
1163
1164 ufshcd_hold(hba);
1165 spin_lock_irqsave(hba->host->host_lock, flags);
1166 /*
1167 * Wait for all the outstanding tasks/transfer requests.
1168 * Verify by checking the doorbell registers are clear.
1169 */
1170 start = ktime_get();
1171 do {
1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 ret = -EBUSY;
1174 goto out;
1175 }
1176
1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 tr_pending = ufshcd_pending_cmds(hba);
1179 if (!tm_doorbell && !tr_pending) {
1180 timeout = false;
1181 break;
1182 } else if (do_last_check) {
1183 break;
1184 }
1185
1186 spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 io_schedule_timeout(msecs_to_jiffies(20));
1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 wait_timeout_us) {
1190 timeout = true;
1191 /*
1192 * We might have scheduled out for long time so make
1193 * sure to check if doorbells are cleared by this time
1194 * or not.
1195 */
1196 do_last_check = true;
1197 }
1198 spin_lock_irqsave(hba->host->host_lock, flags);
1199 } while (tm_doorbell || tr_pending);
1200
1201 if (timeout) {
1202 dev_err(hba->dev,
1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 __func__, tm_doorbell, tr_pending);
1205 ret = -EBUSY;
1206 }
1207 out:
1208 spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 ufshcd_release(hba);
1210 return ret;
1211 }
1212
1213 /**
1214 * ufshcd_scale_gear - scale up/down UFS gear
1215 * @hba: per adapter instance
1216 * @scale_up: True for scaling up gear and false for scaling down
1217 *
1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219 * non-zero for any other errors.
1220 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 int ret = 0;
1224 struct ufs_pa_layer_attr new_pwr_info;
1225
1226 if (scale_up) {
1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 sizeof(struct ufs_pa_layer_attr));
1229 } else {
1230 memcpy(&new_pwr_info, &hba->pwr_info,
1231 sizeof(struct ufs_pa_layer_attr));
1232
1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 /* save the current power mode */
1236 memcpy(&hba->clk_scaling.saved_pwr_info,
1237 &hba->pwr_info,
1238 sizeof(struct ufs_pa_layer_attr));
1239
1240 /* scale down gear */
1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 }
1244 }
1245
1246 /* check if the power mode needs to be changed or not? */
1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 if (ret)
1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 __func__, ret,
1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253
1254 return ret;
1255 }
1256
1257 /*
1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259 * has expired.
1260 *
1261 * Return: 0 upon success; -EBUSY upon timeout.
1262 */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 int ret = 0;
1266 /*
1267 * make sure that there are no outstanding requests when
1268 * clock scaling is in progress
1269 */
1270 blk_mq_quiesce_tagset(&hba->host->tag_set);
1271 mutex_lock(&hba->wb_mutex);
1272 down_write(&hba->clk_scaling_lock);
1273
1274 if (!hba->clk_scaling.is_allowed ||
1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 ret = -EBUSY;
1277 up_write(&hba->clk_scaling_lock);
1278 mutex_unlock(&hba->wb_mutex);
1279 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1280 goto out;
1281 }
1282
1283 /* let's not get into low power until clock scaling is completed */
1284 ufshcd_hold(hba);
1285
1286 out:
1287 return ret;
1288 }
1289
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 up_write(&hba->clk_scaling_lock);
1293
1294 /* Enable Write Booster if we have scaled up else disable it */
1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 ufshcd_wb_toggle(hba, scale_up);
1297
1298 mutex_unlock(&hba->wb_mutex);
1299
1300 blk_mq_unquiesce_tagset(&hba->host->tag_set);
1301 ufshcd_release(hba);
1302 }
1303
1304 /**
1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306 * @hba: per adapter instance
1307 * @scale_up: True for scaling up and false for scalin down
1308 *
1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310 * for any other errors.
1311 */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 int ret = 0;
1315
1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 if (ret)
1318 return ret;
1319
1320 /* scale down the gear before scaling down clocks */
1321 if (!scale_up) {
1322 ret = ufshcd_scale_gear(hba, false);
1323 if (ret)
1324 goto out_unprepare;
1325 }
1326
1327 ret = ufshcd_scale_clks(hba, scale_up);
1328 if (ret) {
1329 if (!scale_up)
1330 ufshcd_scale_gear(hba, true);
1331 goto out_unprepare;
1332 }
1333
1334 /* scale up the gear after scaling up clocks */
1335 if (scale_up) {
1336 ret = ufshcd_scale_gear(hba, true);
1337 if (ret) {
1338 ufshcd_scale_clks(hba, false);
1339 goto out_unprepare;
1340 }
1341 }
1342
1343 out_unprepare:
1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 return ret;
1346 }
1347
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 clk_scaling.suspend_work);
1352 unsigned long irq_flags;
1353
1354 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 return;
1358 }
1359 hba->clk_scaling.is_suspended = true;
1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361
1362 __ufshcd_suspend_clkscaling(hba);
1363 }
1364
ufshcd_clk_scaling_resume_work(struct work_struct * work)1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 clk_scaling.resume_work);
1369 unsigned long irq_flags;
1370
1371 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 if (!hba->clk_scaling.is_suspended) {
1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 return;
1375 }
1376 hba->clk_scaling.is_suspended = false;
1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378
1379 devfreq_resume_device(hba->devfreq);
1380 }
1381
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1382 static int ufshcd_devfreq_target(struct device *dev,
1383 unsigned long *freq, u32 flags)
1384 {
1385 int ret = 0;
1386 struct ufs_hba *hba = dev_get_drvdata(dev);
1387 ktime_t start;
1388 bool scale_up, sched_clk_scaling_suspend_work = false;
1389 struct list_head *clk_list = &hba->clk_list_head;
1390 struct ufs_clk_info *clki;
1391 unsigned long irq_flags;
1392
1393 if (!ufshcd_is_clkscaling_supported(hba))
1394 return -EINVAL;
1395
1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 /* Override with the closest supported frequency */
1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 if (ufshcd_eh_in_progress(hba)) {
1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 return 0;
1403 }
1404
1405 if (!hba->clk_scaling.active_reqs)
1406 sched_clk_scaling_suspend_work = true;
1407
1408 if (list_empty(clk_list)) {
1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 goto out;
1411 }
1412
1413 /* Decide based on the rounded-off frequency and update */
1414 scale_up = *freq == clki->max_freq;
1415 if (!scale_up)
1416 *freq = clki->min_freq;
1417 /* Update the frequency */
1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 ret = 0;
1421 goto out; /* no state change required */
1422 }
1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424
1425 start = ktime_get();
1426 ret = ufshcd_devfreq_scale(hba, scale_up);
1427
1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 (scale_up ? "up" : "down"),
1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431
1432 out:
1433 if (sched_clk_scaling_suspend_work)
1434 queue_work(hba->clk_scaling.workq,
1435 &hba->clk_scaling.suspend_work);
1436
1437 return ret;
1438 }
1439
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 struct devfreq_dev_status *stat)
1442 {
1443 struct ufs_hba *hba = dev_get_drvdata(dev);
1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 unsigned long flags;
1446 struct list_head *clk_list = &hba->clk_list_head;
1447 struct ufs_clk_info *clki;
1448 ktime_t curr_t;
1449
1450 if (!ufshcd_is_clkscaling_supported(hba))
1451 return -EINVAL;
1452
1453 memset(stat, 0, sizeof(*stat));
1454
1455 spin_lock_irqsave(hba->host->host_lock, flags);
1456 curr_t = ktime_get();
1457 if (!scaling->window_start_t)
1458 goto start_window;
1459
1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 /*
1462 * If current frequency is 0, then the ondemand governor considers
1463 * there's no initial frequency set. And it always requests to set
1464 * to max. frequency.
1465 */
1466 stat->current_frequency = clki->curr_freq;
1467 if (scaling->is_busy_started)
1468 scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 scaling->busy_start_t);
1470
1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 scaling->window_start_t = curr_t;
1475 scaling->tot_busy_t = 0;
1476
1477 if (scaling->active_reqs) {
1478 scaling->busy_start_t = curr_t;
1479 scaling->is_busy_started = true;
1480 } else {
1481 scaling->busy_start_t = 0;
1482 scaling->is_busy_started = false;
1483 }
1484 spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 return 0;
1486 }
1487
ufshcd_devfreq_init(struct ufs_hba * hba)1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 struct list_head *clk_list = &hba->clk_list_head;
1491 struct ufs_clk_info *clki;
1492 struct devfreq *devfreq;
1493 int ret;
1494
1495 /* Skip devfreq if we don't have any clocks in the list */
1496 if (list_empty(clk_list))
1497 return 0;
1498
1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502
1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 &hba->vps->ondemand_data);
1505 devfreq = devfreq_add_device(hba->dev,
1506 &hba->vps->devfreq_profile,
1507 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 &hba->vps->ondemand_data);
1509 if (IS_ERR(devfreq)) {
1510 ret = PTR_ERR(devfreq);
1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512
1513 dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 return ret;
1516 }
1517
1518 hba->devfreq = devfreq;
1519
1520 return 0;
1521 }
1522
ufshcd_devfreq_remove(struct ufs_hba * hba)1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 struct list_head *clk_list = &hba->clk_list_head;
1526 struct ufs_clk_info *clki;
1527
1528 if (!hba->devfreq)
1529 return;
1530
1531 devfreq_remove_device(hba->devfreq);
1532 hba->devfreq = NULL;
1533
1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 unsigned long flags;
1542
1543 devfreq_suspend_device(hba->devfreq);
1544 spin_lock_irqsave(hba->host->host_lock, flags);
1545 hba->clk_scaling.window_start_t = 0;
1546 spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 unsigned long flags;
1552 bool suspend = false;
1553
1554 cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 cancel_work_sync(&hba->clk_scaling.resume_work);
1556
1557 spin_lock_irqsave(hba->host->host_lock, flags);
1558 if (!hba->clk_scaling.is_suspended) {
1559 suspend = true;
1560 hba->clk_scaling.is_suspended = true;
1561 }
1562 spin_unlock_irqrestore(hba->host->host_lock, flags);
1563
1564 if (suspend)
1565 __ufshcd_suspend_clkscaling(hba);
1566 }
1567
ufshcd_resume_clkscaling(struct ufs_hba * hba)1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 unsigned long flags;
1571 bool resume = false;
1572
1573 spin_lock_irqsave(hba->host->host_lock, flags);
1574 if (hba->clk_scaling.is_suspended) {
1575 resume = true;
1576 hba->clk_scaling.is_suspended = false;
1577 }
1578 spin_unlock_irqrestore(hba->host->host_lock, flags);
1579
1580 if (resume)
1581 devfreq_resume_device(hba->devfreq);
1582 }
1583
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 struct device_attribute *attr, char *buf)
1586 {
1587 struct ufs_hba *hba = dev_get_drvdata(dev);
1588
1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 struct ufs_hba *hba = dev_get_drvdata(dev);
1596 u32 value;
1597 int err = 0;
1598
1599 if (kstrtou32(buf, 0, &value))
1600 return -EINVAL;
1601
1602 down(&hba->host_sem);
1603 if (!ufshcd_is_user_access_allowed(hba)) {
1604 err = -EBUSY;
1605 goto out;
1606 }
1607
1608 value = !!value;
1609 if (value == hba->clk_scaling.is_enabled)
1610 goto out;
1611
1612 ufshcd_rpm_get_sync(hba);
1613 ufshcd_hold(hba);
1614
1615 hba->clk_scaling.is_enabled = value;
1616
1617 if (value) {
1618 ufshcd_resume_clkscaling(hba);
1619 } else {
1620 ufshcd_suspend_clkscaling(hba);
1621 err = ufshcd_devfreq_scale(hba, true);
1622 if (err)
1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 __func__, err);
1625 }
1626
1627 ufshcd_release(hba);
1628 ufshcd_rpm_put_sync(hba);
1629 out:
1630 up(&hba->host_sem);
1631 return err ? err : count;
1632 }
1633
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 if (hba->clk_scaling.enable_attr.attr.name)
1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650
ufshcd_init_clk_scaling(struct ufs_hba * hba)1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 char wq_name[sizeof("ufs_clkscaling_00")];
1654
1655 if (!ufshcd_is_clkscaling_supported(hba))
1656 return;
1657
1658 if (!hba->clk_scaling.min_gear)
1659 hba->clk_scaling.min_gear = UFS_HS_G1;
1660
1661 INIT_WORK(&hba->clk_scaling.suspend_work,
1662 ufshcd_clk_scaling_suspend_work);
1663 INIT_WORK(&hba->clk_scaling.resume_work,
1664 ufshcd_clk_scaling_resume_work);
1665
1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 hba->host->host_no);
1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669
1670 hba->clk_scaling.is_initialized = true;
1671 }
1672
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 if (!hba->clk_scaling.is_initialized)
1676 return;
1677
1678 ufshcd_remove_clk_scaling_sysfs(hba);
1679 destroy_workqueue(hba->clk_scaling.workq);
1680 ufshcd_devfreq_remove(hba);
1681 hba->clk_scaling.is_initialized = false;
1682 }
1683
ufshcd_ungate_work(struct work_struct * work)1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 int ret;
1687 unsigned long flags;
1688 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 clk_gating.ungate_work);
1690
1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692
1693 spin_lock_irqsave(hba->host->host_lock, flags);
1694 if (hba->clk_gating.state == CLKS_ON) {
1695 spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 return;
1697 }
1698
1699 spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 ufshcd_hba_vreg_set_hpm(hba);
1701 ufshcd_setup_clocks(hba, true);
1702
1703 ufshcd_enable_irq(hba);
1704
1705 /* Exit from hibern8 */
1706 if (ufshcd_can_hibern8_during_gating(hba)) {
1707 /* Prevent gating in this path */
1708 hba->clk_gating.is_suspended = true;
1709 if (ufshcd_is_link_hibern8(hba)) {
1710 ret = ufshcd_uic_hibern8_exit(hba);
1711 if (ret)
1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 __func__, ret);
1714 else
1715 ufshcd_set_link_active(hba);
1716 }
1717 hba->clk_gating.is_suspended = false;
1718 }
1719 }
1720
1721 /**
1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723 * Also, exit from hibern8 mode and set the link as active.
1724 * @hba: per adapter instance
1725 */
ufshcd_hold(struct ufs_hba * hba)1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 bool flush_result;
1729 unsigned long flags;
1730
1731 if (!ufshcd_is_clkgating_allowed(hba) ||
1732 !hba->clk_gating.is_initialized)
1733 return;
1734 spin_lock_irqsave(hba->host->host_lock, flags);
1735 hba->clk_gating.active_reqs++;
1736
1737 start:
1738 switch (hba->clk_gating.state) {
1739 case CLKS_ON:
1740 /*
1741 * Wait for the ungate work to complete if in progress.
1742 * Though the clocks may be in ON state, the link could
1743 * still be in hibner8 state if hibern8 is allowed
1744 * during clock gating.
1745 * Make sure we exit hibern8 state also in addition to
1746 * clocks being ON.
1747 */
1748 if (ufshcd_can_hibern8_during_gating(hba) &&
1749 ufshcd_is_link_hibern8(hba)) {
1750 spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 if (hba->clk_gating.is_suspended && !flush_result)
1753 return;
1754 spin_lock_irqsave(hba->host->host_lock, flags);
1755 goto start;
1756 }
1757 break;
1758 case REQ_CLKS_OFF:
1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 hba->clk_gating.state = CLKS_ON;
1761 trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 hba->clk_gating.state);
1763 break;
1764 }
1765 /*
1766 * If we are here, it means gating work is either done or
1767 * currently running. Hence, fall through to cancel gating
1768 * work and to enable clocks.
1769 */
1770 fallthrough;
1771 case CLKS_OFF:
1772 hba->clk_gating.state = REQ_CLKS_ON;
1773 trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 hba->clk_gating.state);
1775 queue_work(hba->clk_gating.clk_gating_workq,
1776 &hba->clk_gating.ungate_work);
1777 /*
1778 * fall through to check if we should wait for this
1779 * work to be done or not.
1780 */
1781 fallthrough;
1782 case REQ_CLKS_ON:
1783 spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 flush_work(&hba->clk_gating.ungate_work);
1785 /* Make sure state is CLKS_ON before returning */
1786 spin_lock_irqsave(hba->host->host_lock, flags);
1787 goto start;
1788 default:
1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 __func__, hba->clk_gating.state);
1791 break;
1792 }
1793 spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796
ufshcd_gate_work(struct work_struct * work)1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 clk_gating.gate_work.work);
1801 unsigned long flags;
1802 int ret;
1803
1804 spin_lock_irqsave(hba->host->host_lock, flags);
1805 /*
1806 * In case you are here to cancel this work the gating state
1807 * would be marked as REQ_CLKS_ON. In this case save time by
1808 * skipping the gating work and exit after changing the clock
1809 * state to CLKS_ON.
1810 */
1811 if (hba->clk_gating.is_suspended ||
1812 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 hba->clk_gating.state = CLKS_ON;
1814 trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 hba->clk_gating.state);
1816 goto rel_lock;
1817 }
1818
1819 if (hba->clk_gating.active_reqs
1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 || hba->outstanding_reqs || hba->outstanding_tasks
1822 || hba->active_uic_cmd || hba->uic_async_done)
1823 goto rel_lock;
1824
1825 spin_unlock_irqrestore(hba->host->host_lock, flags);
1826
1827 /* put the link into hibern8 mode before turning off clocks */
1828 if (ufshcd_can_hibern8_during_gating(hba)) {
1829 ret = ufshcd_uic_hibern8_enter(hba);
1830 if (ret) {
1831 hba->clk_gating.state = CLKS_ON;
1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 __func__, ret);
1834 trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 hba->clk_gating.state);
1836 goto out;
1837 }
1838 ufshcd_set_link_hibern8(hba);
1839 }
1840
1841 ufshcd_disable_irq(hba);
1842
1843 ufshcd_setup_clocks(hba, false);
1844
1845 /* Put the host controller in low power mode if possible */
1846 ufshcd_hba_vreg_set_lpm(hba);
1847 /*
1848 * In case you are here to cancel this work the gating state
1849 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 * and a request to turn them on is pending. By doing this way,
1852 * we keep the state machine in tact and this would ultimately
1853 * prevent from doing cancel work multiple times when there are
1854 * new requests arriving before the current cancel work is done.
1855 */
1856 spin_lock_irqsave(hba->host->host_lock, flags);
1857 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 hba->clk_gating.state = CLKS_OFF;
1859 trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 hba->clk_gating.state);
1861 }
1862 rel_lock:
1863 spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 return;
1866 }
1867
1868 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 if (!ufshcd_is_clkgating_allowed(hba))
1872 return;
1873
1874 hba->clk_gating.active_reqs--;
1875
1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 hba->active_uic_cmd || hba->uic_async_done ||
1880 hba->clk_gating.state == CLKS_OFF)
1881 return;
1882
1883 hba->clk_gating.state = REQ_CLKS_OFF;
1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 &hba->clk_gating.gate_work,
1887 msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889
ufshcd_release(struct ufs_hba * hba)1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 unsigned long flags;
1893
1894 spin_lock_irqsave(hba->host->host_lock, flags);
1895 __ufshcd_release(hba);
1896 spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 struct device_attribute *attr, char *buf)
1902 {
1903 struct ufs_hba *hba = dev_get_drvdata(dev);
1904
1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 struct ufs_hba *hba = dev_get_drvdata(dev);
1911 unsigned long flags;
1912
1913 spin_lock_irqsave(hba->host->host_lock, flags);
1914 hba->clk_gating.delay_ms = value;
1915 spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 unsigned long value;
1923
1924 if (kstrtoul(buf, 0, &value))
1925 return -EINVAL;
1926
1927 ufshcd_clkgate_delay_set(dev, value);
1928 return count;
1929 }
1930
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 struct device_attribute *attr, char *buf)
1933 {
1934 struct ufs_hba *hba = dev_get_drvdata(dev);
1935
1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 struct ufs_hba *hba = dev_get_drvdata(dev);
1943 unsigned long flags;
1944 u32 value;
1945
1946 if (kstrtou32(buf, 0, &value))
1947 return -EINVAL;
1948
1949 value = !!value;
1950
1951 spin_lock_irqsave(hba->host->host_lock, flags);
1952 if (value == hba->clk_gating.is_enabled)
1953 goto out;
1954
1955 if (value)
1956 __ufshcd_release(hba);
1957 else
1958 hba->clk_gating.active_reqs++;
1959
1960 hba->clk_gating.is_enabled = value;
1961 out:
1962 spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 return count;
1964 }
1965
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 hba->clk_gating.delay_attr.attr.mode = 0644;
1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975
1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 hba->clk_gating.enable_attr.attr.mode = 0644;
1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 if (hba->clk_gating.delay_attr.attr.name)
1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 if (hba->clk_gating.enable_attr.attr.name)
1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992
ufshcd_init_clk_gating(struct ufs_hba * hba)1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 char wq_name[sizeof("ufs_clk_gating_00")];
1996
1997 if (!ufshcd_is_clkgating_allowed(hba))
1998 return;
1999
2000 hba->clk_gating.state = CLKS_ON;
2001
2002 hba->clk_gating.delay_ms = 150;
2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005
2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 hba->host->host_no);
2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010
2011 ufshcd_init_clk_gating_sysfs(hba);
2012
2013 hba->clk_gating.is_enabled = true;
2014 hba->clk_gating.is_initialized = true;
2015 }
2016
ufshcd_exit_clk_gating(struct ufs_hba * hba)2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 if (!hba->clk_gating.is_initialized)
2020 return;
2021
2022 ufshcd_remove_clk_gating_sysfs(hba);
2023
2024 /* Ungate the clock if necessary. */
2025 ufshcd_hold(hba);
2026 hba->clk_gating.is_initialized = false;
2027 ufshcd_release(hba);
2028
2029 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 bool queue_resume_work = false;
2035 ktime_t curr_t = ktime_get();
2036 unsigned long flags;
2037
2038 if (!ufshcd_is_clkscaling_supported(hba))
2039 return;
2040
2041 spin_lock_irqsave(hba->host->host_lock, flags);
2042 if (!hba->clk_scaling.active_reqs++)
2043 queue_resume_work = true;
2044
2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 return;
2048 }
2049
2050 if (queue_resume_work)
2051 queue_work(hba->clk_scaling.workq,
2052 &hba->clk_scaling.resume_work);
2053
2054 if (!hba->clk_scaling.window_start_t) {
2055 hba->clk_scaling.window_start_t = curr_t;
2056 hba->clk_scaling.tot_busy_t = 0;
2057 hba->clk_scaling.is_busy_started = false;
2058 }
2059
2060 if (!hba->clk_scaling.is_busy_started) {
2061 hba->clk_scaling.busy_start_t = curr_t;
2062 hba->clk_scaling.is_busy_started = true;
2063 }
2064 spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 unsigned long flags;
2071
2072 if (!ufshcd_is_clkscaling_supported(hba))
2073 return;
2074
2075 spin_lock_irqsave(hba->host->host_lock, flags);
2076 hba->clk_scaling.active_reqs--;
2077 if (!scaling->active_reqs && scaling->is_busy_started) {
2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 scaling->busy_start_t));
2080 scaling->busy_start_t = 0;
2081 scaling->is_busy_started = false;
2082 }
2083 spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085
ufshcd_monitor_opcode2dir(u8 opcode)2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 return READ;
2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 return WRITE;
2092 else
2093 return -EINVAL;
2094 }
2095
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 struct ufshcd_lrb *lrbp)
2098 {
2099 const struct ufs_hba_monitor *m = &hba->monitor;
2100
2101 return (m->enabled && lrbp && lrbp->cmd &&
2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 const struct ufshcd_lrb *lrbp)
2108 {
2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 unsigned long flags;
2111
2112 spin_lock_irqsave(hba->host->host_lock, flags);
2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 hba->monitor.busy_start_ts[dir] = ktime_get();
2115 spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 unsigned long flags;
2122
2123 spin_lock_irqsave(hba->host->host_lock, flags);
2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 struct ufs_hba_monitor *m = &hba->monitor;
2127 ktime_t now, inc, lat;
2128
2129 now = lrbp->compl_time_stamp;
2130 inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133
2134 /* Update latencies */
2135 m->nr_req[dir]++;
2136 lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 m->lat_sum[dir] += lat;
2138 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 m->lat_max[dir] = lat;
2140 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 m->lat_min[dir] = lat;
2142
2143 m->nr_queued[dir]--;
2144 /* Push forward the busy start of monitor */
2145 m->busy_start_ts[dir] = now;
2146 }
2147 spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149
2150 /**
2151 * ufshcd_send_command - Send SCSI or device management commands
2152 * @hba: per adapter instance
2153 * @task_tag: Task tag of the command
2154 * @hwq: pointer to hardware queue instance
2155 */
2156 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 struct ufs_hw_queue *hwq)
2159 {
2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 unsigned long flags;
2162
2163 lrbp->issue_time_stamp = ktime_get();
2164 lrbp->issue_time_stamp_local_clock = local_clock();
2165 lrbp->compl_time_stamp = ktime_set(0, 0);
2166 lrbp->compl_time_stamp_local_clock = 0;
2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 ufshcd_clk_scaling_start_busy(hba);
2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 ufshcd_start_monitor(hba, lrbp);
2171
2172 if (is_mcq_enabled(hba)) {
2173 int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 struct utp_transfer_req_desc *dest;
2176
2177 spin_lock(&hwq->sq_lock);
2178 dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 memcpy(dest, src, utrd_size);
2180 ufshcd_inc_sq_tail(hwq);
2181 spin_unlock(&hwq->sq_lock);
2182 } else {
2183 spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 if (hba->vops && hba->vops->setup_xfer_req)
2185 hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 !!lrbp->cmd);
2187 __set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 }
2192 }
2193
2194 /**
2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196 * @lrbp: pointer to local reference block
2197 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 u16 resp_len;
2202 int len;
2203
2204 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 if (sense_buffer && resp_len) {
2206 int len_to_copy;
2207
2208 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210
2211 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 len_to_copy);
2213 }
2214 }
2215
2216 /**
2217 * ufshcd_copy_query_response() - Copy the Query Response and the data
2218 * descriptor
2219 * @hba: per adapter instance
2220 * @lrbp: pointer to local reference block
2221 *
2222 * Return: 0 upon success; < 0 upon failure.
2223 */
2224 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228
2229 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230
2231 /* Get the descriptor */
2232 if (hba->dev_cmd.query.descriptor &&
2233 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 GENERAL_UPIU_REQUEST_SIZE;
2236 u16 resp_len;
2237 u16 buf_len;
2238
2239 /* data segment length */
2240 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 .data_segment_length);
2242 buf_len = be16_to_cpu(
2243 hba->dev_cmd.query.request.upiu_req.length);
2244 if (likely(buf_len >= resp_len)) {
2245 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 } else {
2247 dev_warn(hba->dev,
2248 "%s: rsp size %d is bigger than buffer size %d",
2249 __func__, resp_len, buf_len);
2250 return -EINVAL;
2251 }
2252 }
2253
2254 return 0;
2255 }
2256
2257 /**
2258 * ufshcd_hba_capabilities - Read controller capabilities
2259 * @hba: per adapter instance
2260 *
2261 * Return: 0 on success, negative on error.
2262 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 int err;
2266
2267 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270
2271 /* nutrs and nutmrs are 0 based values */
2272 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 hba->nutmrs =
2274 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 hba->reserved_slot = hba->nutrs - 1;
2276
2277 /* Read crypto capabilities */
2278 err = ufshcd_hba_init_crypto_capabilities(hba);
2279 if (err) {
2280 dev_err(hba->dev, "crypto setup failed\n");
2281 return err;
2282 }
2283
2284 /*
2285 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2286 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2287 * means we can simply read values regardless of version.
2288 */
2289 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2290 /*
2291 * 0h: legacy single doorbell support is available
2292 * 1h: indicate that legacy single doorbell support has been removed
2293 */
2294 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2295 if (!hba->mcq_sup)
2296 return 0;
2297
2298 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2299 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2300 hba->mcq_capabilities);
2301
2302 return 0;
2303 }
2304
2305 /**
2306 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2307 * to accept UIC commands
2308 * @hba: per adapter instance
2309 *
2310 * Return: true on success, else false.
2311 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2312 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2313 {
2314 u32 val;
2315 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2316 500, UIC_CMD_TIMEOUT * 1000, false, hba,
2317 REG_CONTROLLER_STATUS);
2318 return ret == 0 ? true : false;
2319 }
2320
2321 /**
2322 * ufshcd_get_upmcrs - Get the power mode change request status
2323 * @hba: Pointer to adapter instance
2324 *
2325 * This function gets the UPMCRS field of HCS register
2326 *
2327 * Return: value of UPMCRS field.
2328 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2329 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2330 {
2331 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2332 }
2333
2334 /**
2335 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2336 * @hba: per adapter instance
2337 * @uic_cmd: UIC command
2338 */
2339 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2340 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2341 {
2342 lockdep_assert_held(&hba->uic_cmd_mutex);
2343
2344 WARN_ON(hba->active_uic_cmd);
2345
2346 hba->active_uic_cmd = uic_cmd;
2347
2348 /* Write Args */
2349 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2350 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2351 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2352
2353 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2354
2355 /* Write UIC Cmd */
2356 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2357 REG_UIC_COMMAND);
2358 }
2359
2360 /**
2361 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2362 * @hba: per adapter instance
2363 * @uic_cmd: UIC command
2364 *
2365 * Return: 0 only if success.
2366 */
2367 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2368 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2369 {
2370 int ret;
2371 unsigned long flags;
2372
2373 lockdep_assert_held(&hba->uic_cmd_mutex);
2374
2375 if (wait_for_completion_timeout(&uic_cmd->done,
2376 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2377 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 } else {
2379 ret = -ETIMEDOUT;
2380 dev_err(hba->dev,
2381 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2382 uic_cmd->command, uic_cmd->argument3);
2383
2384 if (!uic_cmd->cmd_active) {
2385 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2386 __func__);
2387 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2388 }
2389 }
2390
2391 spin_lock_irqsave(hba->host->host_lock, flags);
2392 hba->active_uic_cmd = NULL;
2393 spin_unlock_irqrestore(hba->host->host_lock, flags);
2394
2395 return ret;
2396 }
2397
2398 /**
2399 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2400 * @hba: per adapter instance
2401 * @uic_cmd: UIC command
2402 * @completion: initialize the completion only if this is set to true
2403 *
2404 * Return: 0 only if success.
2405 */
2406 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2407 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2408 bool completion)
2409 {
2410 lockdep_assert_held(&hba->uic_cmd_mutex);
2411
2412 if (!ufshcd_ready_for_uic_cmd(hba)) {
2413 dev_err(hba->dev,
2414 "Controller not ready to accept UIC commands\n");
2415 return -EIO;
2416 }
2417
2418 if (completion)
2419 init_completion(&uic_cmd->done);
2420
2421 uic_cmd->cmd_active = 1;
2422 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2423
2424 return 0;
2425 }
2426
2427 /**
2428 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2429 * @hba: per adapter instance
2430 * @uic_cmd: UIC command
2431 *
2432 * Return: 0 only if success.
2433 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2434 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2435 {
2436 int ret;
2437
2438 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2439 return 0;
2440
2441 ufshcd_hold(hba);
2442 mutex_lock(&hba->uic_cmd_mutex);
2443 ufshcd_add_delay_before_dme_cmd(hba);
2444
2445 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2446 if (!ret)
2447 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2448
2449 mutex_unlock(&hba->uic_cmd_mutex);
2450
2451 ufshcd_release(hba);
2452 return ret;
2453 }
2454
2455 /**
2456 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2457 * @hba: per-adapter instance
2458 * @lrbp: pointer to local reference block
2459 * @sg_entries: The number of sg lists actually used
2460 * @sg_list: Pointer to SG list
2461 */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2462 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2463 struct scatterlist *sg_list)
2464 {
2465 struct ufshcd_sg_entry *prd;
2466 struct scatterlist *sg;
2467 int i;
2468
2469 if (sg_entries) {
2470
2471 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2472 lrbp->utr_descriptor_ptr->prd_table_length =
2473 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2474 else
2475 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2476
2477 prd = lrbp->ucd_prdt_ptr;
2478
2479 for_each_sg(sg_list, sg, sg_entries, i) {
2480 const unsigned int len = sg_dma_len(sg);
2481
2482 /*
2483 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2484 * based value that indicates the length, in bytes, of
2485 * the data block. A maximum of length of 256KB may
2486 * exist for any entry. Bits 1:0 of this field shall be
2487 * 11b to indicate Dword granularity. A value of '3'
2488 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2489 */
2490 WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2491 prd->size = cpu_to_le32(len - 1);
2492 prd->addr = cpu_to_le64(sg->dma_address);
2493 prd->reserved = 0;
2494 prd = (void *)prd + ufshcd_sg_entry_size(hba);
2495 }
2496 } else {
2497 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2498 }
2499 }
2500
2501 /**
2502 * ufshcd_map_sg - Map scatter-gather list to prdt
2503 * @hba: per adapter instance
2504 * @lrbp: pointer to local reference block
2505 *
2506 * Return: 0 in case of success, non-zero value in case of failure.
2507 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2508 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2509 {
2510 struct scsi_cmnd *cmd = lrbp->cmd;
2511 int sg_segments = scsi_dma_map(cmd);
2512
2513 if (sg_segments < 0)
2514 return sg_segments;
2515
2516 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2517
2518 return 0;
2519 }
2520
2521 /**
2522 * ufshcd_enable_intr - enable interrupts
2523 * @hba: per adapter instance
2524 * @intrs: interrupt bits
2525 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2526 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2527 {
2528 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2529
2530 if (hba->ufs_version == ufshci_version(1, 0)) {
2531 u32 rw;
2532 rw = set & INTERRUPT_MASK_RW_VER_10;
2533 set = rw | ((set ^ intrs) & intrs);
2534 } else {
2535 set |= intrs;
2536 }
2537
2538 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2539 }
2540
2541 /**
2542 * ufshcd_disable_intr - disable interrupts
2543 * @hba: per adapter instance
2544 * @intrs: interrupt bits
2545 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2546 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2547 {
2548 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2549
2550 if (hba->ufs_version == ufshci_version(1, 0)) {
2551 u32 rw;
2552 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2553 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2554 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2555
2556 } else {
2557 set &= ~intrs;
2558 }
2559
2560 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2561 }
2562
2563 /**
2564 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2565 * descriptor according to request
2566 * @lrbp: pointer to local reference block
2567 * @upiu_flags: flags required in the header
2568 * @cmd_dir: requests data direction
2569 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2570 */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2571 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2572 enum dma_data_direction cmd_dir, int ehs_length)
2573 {
2574 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2575 struct request_desc_header *h = &req_desc->header;
2576 enum utp_data_direction data_direction;
2577
2578 *h = (typeof(*h)){ };
2579
2580 if (cmd_dir == DMA_FROM_DEVICE) {
2581 data_direction = UTP_DEVICE_TO_HOST;
2582 *upiu_flags = UPIU_CMD_FLAGS_READ;
2583 } else if (cmd_dir == DMA_TO_DEVICE) {
2584 data_direction = UTP_HOST_TO_DEVICE;
2585 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2586 } else {
2587 data_direction = UTP_NO_DATA_TRANSFER;
2588 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2589 }
2590
2591 h->command_type = lrbp->command_type;
2592 h->data_direction = data_direction;
2593 h->ehs_length = ehs_length;
2594
2595 if (lrbp->intr_cmd)
2596 h->interrupt = 1;
2597
2598 /* Prepare crypto related dwords */
2599 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2600
2601 /*
2602 * assigning invalid value for command status. Controller
2603 * updates OCS on command completion, with the command
2604 * status
2605 */
2606 h->ocs = OCS_INVALID_COMMAND_STATUS;
2607
2608 req_desc->prd_table_length = 0;
2609 }
2610
2611 /**
2612 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2613 * for scsi commands
2614 * @lrbp: local reference block pointer
2615 * @upiu_flags: flags
2616 */
2617 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2618 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2619 {
2620 struct scsi_cmnd *cmd = lrbp->cmd;
2621 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2622 unsigned short cdb_len;
2623
2624 ucd_req_ptr->header = (struct utp_upiu_header){
2625 .transaction_code = UPIU_TRANSACTION_COMMAND,
2626 .flags = upiu_flags,
2627 .lun = lrbp->lun,
2628 .task_tag = lrbp->task_tag,
2629 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2630 };
2631
2632 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2633
2634 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2635 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2636 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2637
2638 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2639 }
2640
2641 /**
2642 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2643 * @hba: UFS hba
2644 * @lrbp: local reference block pointer
2645 * @upiu_flags: flags
2646 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2647 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2648 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2649 {
2650 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2651 struct ufs_query *query = &hba->dev_cmd.query;
2652 u16 len = be16_to_cpu(query->request.upiu_req.length);
2653
2654 /* Query request header */
2655 ucd_req_ptr->header = (struct utp_upiu_header){
2656 .transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2657 .flags = upiu_flags,
2658 .lun = lrbp->lun,
2659 .task_tag = lrbp->task_tag,
2660 .query_function = query->request.query_func,
2661 /* Data segment length only need for WRITE_DESC */
2662 .data_segment_length =
2663 query->request.upiu_req.opcode ==
2664 UPIU_QUERY_OPCODE_WRITE_DESC ?
2665 cpu_to_be16(len) :
2666 0,
2667 };
2668
2669 /* Copy the Query Request buffer as is */
2670 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2671 QUERY_OSF_SIZE);
2672
2673 /* Copy the Descriptor */
2674 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2675 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2676
2677 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2678 }
2679
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2680 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2681 {
2682 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2683
2684 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2685
2686 ucd_req_ptr->header = (struct utp_upiu_header){
2687 .transaction_code = UPIU_TRANSACTION_NOP_OUT,
2688 .task_tag = lrbp->task_tag,
2689 };
2690
2691 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2692 }
2693
2694 /**
2695 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2696 * for Device Management Purposes
2697 * @hba: per adapter instance
2698 * @lrbp: pointer to local reference block
2699 *
2700 * Return: 0 upon success; < 0 upon failure.
2701 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2702 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2703 struct ufshcd_lrb *lrbp)
2704 {
2705 u8 upiu_flags;
2706 int ret = 0;
2707
2708 if (hba->ufs_version <= ufshci_version(1, 1))
2709 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2710 else
2711 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2712
2713 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2714 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2715 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2716 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2717 ufshcd_prepare_utp_nop_upiu(lrbp);
2718 else
2719 ret = -EINVAL;
2720
2721 return ret;
2722 }
2723
2724 /**
2725 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2726 * for SCSI Purposes
2727 * @hba: per adapter instance
2728 * @lrbp: pointer to local reference block
2729 *
2730 * Return: 0 upon success; < 0 upon failure.
2731 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2732 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2733 {
2734 u8 upiu_flags;
2735 int ret = 0;
2736
2737 if (hba->ufs_version <= ufshci_version(1, 1))
2738 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2739 else
2740 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2741
2742 if (likely(lrbp->cmd)) {
2743 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2744 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2745 } else {
2746 ret = -EINVAL;
2747 }
2748
2749 return ret;
2750 }
2751
2752 /**
2753 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2754 * @upiu_wlun_id: UPIU W-LUN id
2755 *
2756 * Return: SCSI W-LUN id.
2757 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2758 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2759 {
2760 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2761 }
2762
is_device_wlun(struct scsi_device * sdev)2763 static inline bool is_device_wlun(struct scsi_device *sdev)
2764 {
2765 return sdev->lun ==
2766 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2767 }
2768
2769 /*
2770 * Associate the UFS controller queue with the default and poll HCTX types.
2771 * Initialize the mq_map[] arrays.
2772 */
ufshcd_map_queues(struct Scsi_Host * shost)2773 static void ufshcd_map_queues(struct Scsi_Host *shost)
2774 {
2775 struct ufs_hba *hba = shost_priv(shost);
2776 int i, queue_offset = 0;
2777
2778 if (!is_mcq_supported(hba)) {
2779 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2780 hba->nr_queues[HCTX_TYPE_READ] = 0;
2781 hba->nr_queues[HCTX_TYPE_POLL] = 1;
2782 hba->nr_hw_queues = 1;
2783 }
2784
2785 for (i = 0; i < shost->nr_maps; i++) {
2786 struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2787
2788 map->nr_queues = hba->nr_queues[i];
2789 if (!map->nr_queues)
2790 continue;
2791 map->queue_offset = queue_offset;
2792 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2793 map->queue_offset = 0;
2794
2795 blk_mq_map_queues(map);
2796 queue_offset += map->nr_queues;
2797 }
2798 }
2799
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2800 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2801 {
2802 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2803 i * ufshcd_get_ucd_size(hba);
2804 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2805 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2806 i * ufshcd_get_ucd_size(hba);
2807 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2808 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2809
2810 lrb->utr_descriptor_ptr = utrdlp + i;
2811 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2812 i * sizeof(struct utp_transfer_req_desc);
2813 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2814 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2815 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2816 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2817 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2818 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2819 }
2820
2821 /**
2822 * ufshcd_queuecommand - main entry point for SCSI requests
2823 * @host: SCSI host pointer
2824 * @cmd: command from SCSI Midlayer
2825 *
2826 * Return: 0 for success, non-zero in case of failure.
2827 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2828 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2829 {
2830 struct ufs_hba *hba = shost_priv(host);
2831 int tag = scsi_cmd_to_rq(cmd)->tag;
2832 struct ufshcd_lrb *lrbp;
2833 int err = 0;
2834 struct ufs_hw_queue *hwq = NULL;
2835
2836 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2837
2838 switch (hba->ufshcd_state) {
2839 case UFSHCD_STATE_OPERATIONAL:
2840 break;
2841 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2842 /*
2843 * SCSI error handler can call ->queuecommand() while UFS error
2844 * handler is in progress. Error interrupts could change the
2845 * state from UFSHCD_STATE_RESET to
2846 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2847 * being issued in that case.
2848 */
2849 if (ufshcd_eh_in_progress(hba)) {
2850 err = SCSI_MLQUEUE_HOST_BUSY;
2851 goto out;
2852 }
2853 break;
2854 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2855 /*
2856 * pm_runtime_get_sync() is used at error handling preparation
2857 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2858 * PM ops, it can never be finished if we let SCSI layer keep
2859 * retrying it, which gets err handler stuck forever. Neither
2860 * can we let the scsi cmd pass through, because UFS is in bad
2861 * state, the scsi cmd may eventually time out, which will get
2862 * err handler blocked for too long. So, just fail the scsi cmd
2863 * sent from PM ops, err handler can recover PM error anyways.
2864 */
2865 if (hba->pm_op_in_progress) {
2866 hba->force_reset = true;
2867 set_host_byte(cmd, DID_BAD_TARGET);
2868 scsi_done(cmd);
2869 goto out;
2870 }
2871 fallthrough;
2872 case UFSHCD_STATE_RESET:
2873 err = SCSI_MLQUEUE_HOST_BUSY;
2874 goto out;
2875 case UFSHCD_STATE_ERROR:
2876 set_host_byte(cmd, DID_ERROR);
2877 scsi_done(cmd);
2878 goto out;
2879 }
2880
2881 hba->req_abort_count = 0;
2882
2883 ufshcd_hold(hba);
2884
2885 lrbp = &hba->lrb[tag];
2886 lrbp->cmd = cmd;
2887 lrbp->task_tag = tag;
2888 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2889 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2890
2891 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2892
2893 lrbp->req_abort_skip = false;
2894
2895 ufshcd_comp_scsi_upiu(hba, lrbp);
2896
2897 err = ufshcd_map_sg(hba, lrbp);
2898 if (err) {
2899 ufshcd_release(hba);
2900 goto out;
2901 }
2902
2903 if (is_mcq_enabled(hba))
2904 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2905
2906 ufshcd_send_command(hba, tag, hwq);
2907
2908 out:
2909 if (ufs_trigger_eh()) {
2910 unsigned long flags;
2911
2912 spin_lock_irqsave(hba->host->host_lock, flags);
2913 ufshcd_schedule_eh_work(hba);
2914 spin_unlock_irqrestore(hba->host->host_lock, flags);
2915 }
2916
2917 return err;
2918 }
2919
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2920 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2921 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2922 {
2923 lrbp->cmd = NULL;
2924 lrbp->task_tag = tag;
2925 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2926 lrbp->intr_cmd = true; /* No interrupt aggregation */
2927 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2928 hba->dev_cmd.type = cmd_type;
2929
2930 return ufshcd_compose_devman_upiu(hba, lrbp);
2931 }
2932
2933 /*
2934 * Check with the block layer if the command is inflight
2935 * @cmd: command to check.
2936 *
2937 * Return: true if command is inflight; false if not.
2938 */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)2939 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2940 {
2941 struct request *rq;
2942
2943 if (!cmd)
2944 return false;
2945
2946 rq = scsi_cmd_to_rq(cmd);
2947 if (!blk_mq_request_started(rq))
2948 return false;
2949
2950 return true;
2951 }
2952
2953 /*
2954 * Clear the pending command in the controller and wait until
2955 * the controller confirms that the command has been cleared.
2956 * @hba: per adapter instance
2957 * @task_tag: The tag number of the command to be cleared.
2958 */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)2959 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2960 {
2961 u32 mask;
2962 unsigned long flags;
2963 int err;
2964
2965 if (is_mcq_enabled(hba)) {
2966 /*
2967 * MCQ mode. Clean up the MCQ resources similar to
2968 * what the ufshcd_utrl_clear() does for SDB mode.
2969 */
2970 err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2971 if (err) {
2972 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2973 __func__, task_tag, err);
2974 return err;
2975 }
2976 return 0;
2977 }
2978
2979 mask = 1U << task_tag;
2980
2981 /* clear outstanding transaction before retry */
2982 spin_lock_irqsave(hba->host->host_lock, flags);
2983 ufshcd_utrl_clear(hba, mask);
2984 spin_unlock_irqrestore(hba->host->host_lock, flags);
2985
2986 /*
2987 * wait for h/w to clear corresponding bit in door-bell.
2988 * max. wait is 1 sec.
2989 */
2990 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2991 mask, ~mask, 1000, 1000);
2992 }
2993
2994 /**
2995 * ufshcd_dev_cmd_completion() - handles device management command responses
2996 * @hba: per adapter instance
2997 * @lrbp: pointer to local reference block
2998 *
2999 * Return: 0 upon success; < 0 upon failure.
3000 */
3001 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3002 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3003 {
3004 enum upiu_response_transaction resp;
3005 int err = 0;
3006
3007 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3008 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3009
3010 switch (resp) {
3011 case UPIU_TRANSACTION_NOP_IN:
3012 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3013 err = -EINVAL;
3014 dev_err(hba->dev, "%s: unexpected response %x\n",
3015 __func__, resp);
3016 }
3017 break;
3018 case UPIU_TRANSACTION_QUERY_RSP: {
3019 u8 response = lrbp->ucd_rsp_ptr->header.response;
3020
3021 if (response == 0)
3022 err = ufshcd_copy_query_response(hba, lrbp);
3023 break;
3024 }
3025 case UPIU_TRANSACTION_REJECT_UPIU:
3026 /* TODO: handle Reject UPIU Response */
3027 err = -EPERM;
3028 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3029 __func__);
3030 break;
3031 case UPIU_TRANSACTION_RESPONSE:
3032 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3033 err = -EINVAL;
3034 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3035 }
3036 break;
3037 default:
3038 err = -EINVAL;
3039 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3040 __func__, resp);
3041 break;
3042 }
3043
3044 return err;
3045 }
3046
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3047 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3048 struct ufshcd_lrb *lrbp, int max_timeout)
3049 {
3050 unsigned long time_left = msecs_to_jiffies(max_timeout);
3051 unsigned long flags;
3052 bool pending;
3053 int err;
3054
3055 retry:
3056 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3057 time_left);
3058
3059 if (likely(time_left)) {
3060 /*
3061 * The completion handler called complete() and the caller of
3062 * this function still owns the @lrbp tag so the code below does
3063 * not trigger any race conditions.
3064 */
3065 hba->dev_cmd.complete = NULL;
3066 err = ufshcd_get_tr_ocs(lrbp, NULL);
3067 if (!err)
3068 err = ufshcd_dev_cmd_completion(hba, lrbp);
3069 } else {
3070 err = -ETIMEDOUT;
3071 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3072 __func__, lrbp->task_tag);
3073
3074 /* MCQ mode */
3075 if (is_mcq_enabled(hba)) {
3076 /* successfully cleared the command, retry if needed */
3077 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3078 err = -EAGAIN;
3079 hba->dev_cmd.complete = NULL;
3080 return err;
3081 }
3082
3083 /* SDB mode */
3084 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3085 /* successfully cleared the command, retry if needed */
3086 err = -EAGAIN;
3087 /*
3088 * Since clearing the command succeeded we also need to
3089 * clear the task tag bit from the outstanding_reqs
3090 * variable.
3091 */
3092 spin_lock_irqsave(&hba->outstanding_lock, flags);
3093 pending = test_bit(lrbp->task_tag,
3094 &hba->outstanding_reqs);
3095 if (pending) {
3096 hba->dev_cmd.complete = NULL;
3097 __clear_bit(lrbp->task_tag,
3098 &hba->outstanding_reqs);
3099 }
3100 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3101
3102 if (!pending) {
3103 /*
3104 * The completion handler ran while we tried to
3105 * clear the command.
3106 */
3107 time_left = 1;
3108 goto retry;
3109 }
3110 } else {
3111 dev_err(hba->dev, "%s: failed to clear tag %d\n",
3112 __func__, lrbp->task_tag);
3113
3114 spin_lock_irqsave(&hba->outstanding_lock, flags);
3115 pending = test_bit(lrbp->task_tag,
3116 &hba->outstanding_reqs);
3117 if (pending)
3118 hba->dev_cmd.complete = NULL;
3119 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3120
3121 if (!pending) {
3122 /*
3123 * The completion handler ran while we tried to
3124 * clear the command.
3125 */
3126 time_left = 1;
3127 goto retry;
3128 }
3129 }
3130 }
3131
3132 return err;
3133 }
3134
3135 /**
3136 * ufshcd_exec_dev_cmd - API for sending device management requests
3137 * @hba: UFS hba
3138 * @cmd_type: specifies the type (NOP, Query...)
3139 * @timeout: timeout in milliseconds
3140 *
3141 * Return: 0 upon success; < 0 upon failure.
3142 *
3143 * NOTE: Since there is only one available tag for device management commands,
3144 * it is expected you hold the hba->dev_cmd.lock mutex.
3145 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3146 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3147 enum dev_cmd_type cmd_type, int timeout)
3148 {
3149 DECLARE_COMPLETION_ONSTACK(wait);
3150 const u32 tag = hba->reserved_slot;
3151 struct ufshcd_lrb *lrbp;
3152 int err;
3153
3154 /* Protects use of hba->reserved_slot. */
3155 lockdep_assert_held(&hba->dev_cmd.lock);
3156
3157 down_read(&hba->clk_scaling_lock);
3158
3159 lrbp = &hba->lrb[tag];
3160 lrbp->cmd = NULL;
3161 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3162 if (unlikely(err))
3163 goto out;
3164
3165 hba->dev_cmd.complete = &wait;
3166
3167 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3168
3169 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3170 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3171 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3172 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3173
3174 out:
3175 up_read(&hba->clk_scaling_lock);
3176 return err;
3177 }
3178
3179 /**
3180 * ufshcd_init_query() - init the query response and request parameters
3181 * @hba: per-adapter instance
3182 * @request: address of the request pointer to be initialized
3183 * @response: address of the response pointer to be initialized
3184 * @opcode: operation to perform
3185 * @idn: flag idn to access
3186 * @index: LU number to access
3187 * @selector: query/flag/descriptor further identification
3188 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3189 static inline void ufshcd_init_query(struct ufs_hba *hba,
3190 struct ufs_query_req **request, struct ufs_query_res **response,
3191 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3192 {
3193 *request = &hba->dev_cmd.query.request;
3194 *response = &hba->dev_cmd.query.response;
3195 memset(*request, 0, sizeof(struct ufs_query_req));
3196 memset(*response, 0, sizeof(struct ufs_query_res));
3197 (*request)->upiu_req.opcode = opcode;
3198 (*request)->upiu_req.idn = idn;
3199 (*request)->upiu_req.index = index;
3200 (*request)->upiu_req.selector = selector;
3201 }
3202
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3203 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3204 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3205 {
3206 int ret;
3207 int retries;
3208
3209 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3210 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3211 if (ret)
3212 dev_dbg(hba->dev,
3213 "%s: failed with error %d, retries %d\n",
3214 __func__, ret, retries);
3215 else
3216 break;
3217 }
3218
3219 if (ret)
3220 dev_err(hba->dev,
3221 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3222 __func__, opcode, idn, ret, retries);
3223 return ret;
3224 }
3225
3226 /**
3227 * ufshcd_query_flag() - API function for sending flag query requests
3228 * @hba: per-adapter instance
3229 * @opcode: flag query to perform
3230 * @idn: flag idn to access
3231 * @index: flag index to access
3232 * @flag_res: the flag value after the query request completes
3233 *
3234 * Return: 0 for success, non-zero in case of failure.
3235 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3236 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3237 enum flag_idn idn, u8 index, bool *flag_res)
3238 {
3239 struct ufs_query_req *request = NULL;
3240 struct ufs_query_res *response = NULL;
3241 int err, selector = 0;
3242 int timeout = QUERY_REQ_TIMEOUT;
3243
3244 BUG_ON(!hba);
3245
3246 ufshcd_hold(hba);
3247 mutex_lock(&hba->dev_cmd.lock);
3248 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3249 selector);
3250
3251 switch (opcode) {
3252 case UPIU_QUERY_OPCODE_SET_FLAG:
3253 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3254 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3255 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3256 break;
3257 case UPIU_QUERY_OPCODE_READ_FLAG:
3258 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3259 if (!flag_res) {
3260 /* No dummy reads */
3261 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3262 __func__);
3263 err = -EINVAL;
3264 goto out_unlock;
3265 }
3266 break;
3267 default:
3268 dev_err(hba->dev,
3269 "%s: Expected query flag opcode but got = %d\n",
3270 __func__, opcode);
3271 err = -EINVAL;
3272 goto out_unlock;
3273 }
3274
3275 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3276
3277 if (err) {
3278 dev_err(hba->dev,
3279 "%s: Sending flag query for idn %d failed, err = %d\n",
3280 __func__, idn, err);
3281 goto out_unlock;
3282 }
3283
3284 if (flag_res)
3285 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3286 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3287
3288 out_unlock:
3289 mutex_unlock(&hba->dev_cmd.lock);
3290 ufshcd_release(hba);
3291 return err;
3292 }
3293
3294 /**
3295 * ufshcd_query_attr - API function for sending attribute requests
3296 * @hba: per-adapter instance
3297 * @opcode: attribute opcode
3298 * @idn: attribute idn to access
3299 * @index: index field
3300 * @selector: selector field
3301 * @attr_val: the attribute value after the query request completes
3302 *
3303 * Return: 0 for success, non-zero in case of failure.
3304 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3305 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3306 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3307 {
3308 struct ufs_query_req *request = NULL;
3309 struct ufs_query_res *response = NULL;
3310 int err;
3311
3312 BUG_ON(!hba);
3313
3314 if (!attr_val) {
3315 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3316 __func__, opcode);
3317 return -EINVAL;
3318 }
3319
3320 ufshcd_hold(hba);
3321
3322 mutex_lock(&hba->dev_cmd.lock);
3323 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3324 selector);
3325
3326 switch (opcode) {
3327 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3328 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3329 request->upiu_req.value = cpu_to_be32(*attr_val);
3330 break;
3331 case UPIU_QUERY_OPCODE_READ_ATTR:
3332 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3333 break;
3334 default:
3335 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3336 __func__, opcode);
3337 err = -EINVAL;
3338 goto out_unlock;
3339 }
3340
3341 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3342
3343 if (err) {
3344 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3345 __func__, opcode, idn, index, err);
3346 goto out_unlock;
3347 }
3348
3349 *attr_val = be32_to_cpu(response->upiu_res.value);
3350
3351 out_unlock:
3352 mutex_unlock(&hba->dev_cmd.lock);
3353 ufshcd_release(hba);
3354 return err;
3355 }
3356
3357 /**
3358 * ufshcd_query_attr_retry() - API function for sending query
3359 * attribute with retries
3360 * @hba: per-adapter instance
3361 * @opcode: attribute opcode
3362 * @idn: attribute idn to access
3363 * @index: index field
3364 * @selector: selector field
3365 * @attr_val: the attribute value after the query request
3366 * completes
3367 *
3368 * Return: 0 for success, non-zero in case of failure.
3369 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3370 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3371 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3372 u32 *attr_val)
3373 {
3374 int ret = 0;
3375 u32 retries;
3376
3377 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3378 ret = ufshcd_query_attr(hba, opcode, idn, index,
3379 selector, attr_val);
3380 if (ret)
3381 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3382 __func__, ret, retries);
3383 else
3384 break;
3385 }
3386
3387 if (ret)
3388 dev_err(hba->dev,
3389 "%s: query attribute, idn %d, failed with error %d after %d retries\n",
3390 __func__, idn, ret, QUERY_REQ_RETRIES);
3391 return ret;
3392 }
3393
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3394 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3395 enum query_opcode opcode, enum desc_idn idn, u8 index,
3396 u8 selector, u8 *desc_buf, int *buf_len)
3397 {
3398 struct ufs_query_req *request = NULL;
3399 struct ufs_query_res *response = NULL;
3400 int err;
3401
3402 BUG_ON(!hba);
3403
3404 if (!desc_buf) {
3405 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3406 __func__, opcode);
3407 return -EINVAL;
3408 }
3409
3410 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3411 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3412 __func__, *buf_len);
3413 return -EINVAL;
3414 }
3415
3416 ufshcd_hold(hba);
3417
3418 mutex_lock(&hba->dev_cmd.lock);
3419 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3420 selector);
3421 hba->dev_cmd.query.descriptor = desc_buf;
3422 request->upiu_req.length = cpu_to_be16(*buf_len);
3423
3424 switch (opcode) {
3425 case UPIU_QUERY_OPCODE_WRITE_DESC:
3426 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3427 break;
3428 case UPIU_QUERY_OPCODE_READ_DESC:
3429 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3430 break;
3431 default:
3432 dev_err(hba->dev,
3433 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3434 __func__, opcode);
3435 err = -EINVAL;
3436 goto out_unlock;
3437 }
3438
3439 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3440
3441 if (err) {
3442 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3443 __func__, opcode, idn, index, err);
3444 goto out_unlock;
3445 }
3446
3447 *buf_len = be16_to_cpu(response->upiu_res.length);
3448
3449 out_unlock:
3450 hba->dev_cmd.query.descriptor = NULL;
3451 mutex_unlock(&hba->dev_cmd.lock);
3452 ufshcd_release(hba);
3453 return err;
3454 }
3455
3456 /**
3457 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3458 * @hba: per-adapter instance
3459 * @opcode: attribute opcode
3460 * @idn: attribute idn to access
3461 * @index: index field
3462 * @selector: selector field
3463 * @desc_buf: the buffer that contains the descriptor
3464 * @buf_len: length parameter passed to the device
3465 *
3466 * The buf_len parameter will contain, on return, the length parameter
3467 * received on the response.
3468 *
3469 * Return: 0 for success, non-zero in case of failure.
3470 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3471 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3472 enum query_opcode opcode,
3473 enum desc_idn idn, u8 index,
3474 u8 selector,
3475 u8 *desc_buf, int *buf_len)
3476 {
3477 int err;
3478 int retries;
3479
3480 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3481 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3482 selector, desc_buf, buf_len);
3483 if (!err || err == -EINVAL)
3484 break;
3485 }
3486
3487 return err;
3488 }
3489
3490 /**
3491 * ufshcd_read_desc_param - read the specified descriptor parameter
3492 * @hba: Pointer to adapter instance
3493 * @desc_id: descriptor idn value
3494 * @desc_index: descriptor index
3495 * @param_offset: offset of the parameter to read
3496 * @param_read_buf: pointer to buffer where parameter would be read
3497 * @param_size: sizeof(param_read_buf)
3498 *
3499 * Return: 0 in case of success, non-zero otherwise.
3500 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3501 int ufshcd_read_desc_param(struct ufs_hba *hba,
3502 enum desc_idn desc_id,
3503 int desc_index,
3504 u8 param_offset,
3505 u8 *param_read_buf,
3506 u8 param_size)
3507 {
3508 int ret;
3509 u8 *desc_buf;
3510 int buff_len = QUERY_DESC_MAX_SIZE;
3511 bool is_kmalloc = true;
3512
3513 /* Safety check */
3514 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3515 return -EINVAL;
3516
3517 /* Check whether we need temp memory */
3518 if (param_offset != 0 || param_size < buff_len) {
3519 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3520 if (!desc_buf)
3521 return -ENOMEM;
3522 } else {
3523 desc_buf = param_read_buf;
3524 is_kmalloc = false;
3525 }
3526
3527 /* Request for full descriptor */
3528 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3529 desc_id, desc_index, 0,
3530 desc_buf, &buff_len);
3531 if (ret) {
3532 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3533 __func__, desc_id, desc_index, param_offset, ret);
3534 goto out;
3535 }
3536
3537 /* Update descriptor length */
3538 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3539
3540 if (param_offset >= buff_len) {
3541 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3542 __func__, param_offset, desc_id, buff_len);
3543 ret = -EINVAL;
3544 goto out;
3545 }
3546
3547 /* Sanity check */
3548 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3549 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3550 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3551 ret = -EINVAL;
3552 goto out;
3553 }
3554
3555 if (is_kmalloc) {
3556 /* Make sure we don't copy more data than available */
3557 if (param_offset >= buff_len)
3558 ret = -EINVAL;
3559 else
3560 memcpy(param_read_buf, &desc_buf[param_offset],
3561 min_t(u32, param_size, buff_len - param_offset));
3562 }
3563 out:
3564 if (is_kmalloc)
3565 kfree(desc_buf);
3566 return ret;
3567 }
3568
3569 /**
3570 * struct uc_string_id - unicode string
3571 *
3572 * @len: size of this descriptor inclusive
3573 * @type: descriptor type
3574 * @uc: unicode string character
3575 */
3576 struct uc_string_id {
3577 u8 len;
3578 u8 type;
3579 wchar_t uc[];
3580 } __packed;
3581
3582 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3583 static inline char ufshcd_remove_non_printable(u8 ch)
3584 {
3585 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3586 }
3587
3588 /**
3589 * ufshcd_read_string_desc - read string descriptor
3590 * @hba: pointer to adapter instance
3591 * @desc_index: descriptor index
3592 * @buf: pointer to buffer where descriptor would be read,
3593 * the caller should free the memory.
3594 * @ascii: if true convert from unicode to ascii characters
3595 * null terminated string.
3596 *
3597 * Return:
3598 * * string size on success.
3599 * * -ENOMEM: on allocation failure
3600 * * -EINVAL: on a wrong parameter
3601 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3602 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3603 u8 **buf, bool ascii)
3604 {
3605 struct uc_string_id *uc_str;
3606 u8 *str;
3607 int ret;
3608
3609 if (!buf)
3610 return -EINVAL;
3611
3612 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3613 if (!uc_str)
3614 return -ENOMEM;
3615
3616 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3617 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3618 if (ret < 0) {
3619 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3620 QUERY_REQ_RETRIES, ret);
3621 str = NULL;
3622 goto out;
3623 }
3624
3625 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3626 dev_dbg(hba->dev, "String Desc is of zero length\n");
3627 str = NULL;
3628 ret = 0;
3629 goto out;
3630 }
3631
3632 if (ascii) {
3633 ssize_t ascii_len;
3634 int i;
3635 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3636 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3637 str = kzalloc(ascii_len, GFP_KERNEL);
3638 if (!str) {
3639 ret = -ENOMEM;
3640 goto out;
3641 }
3642
3643 /*
3644 * the descriptor contains string in UTF16 format
3645 * we need to convert to utf-8 so it can be displayed
3646 */
3647 ret = utf16s_to_utf8s(uc_str->uc,
3648 uc_str->len - QUERY_DESC_HDR_SIZE,
3649 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3650
3651 /* replace non-printable or non-ASCII characters with spaces */
3652 for (i = 0; i < ret; i++)
3653 str[i] = ufshcd_remove_non_printable(str[i]);
3654
3655 str[ret++] = '\0';
3656
3657 } else {
3658 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3659 if (!str) {
3660 ret = -ENOMEM;
3661 goto out;
3662 }
3663 ret = uc_str->len;
3664 }
3665 out:
3666 *buf = str;
3667 kfree(uc_str);
3668 return ret;
3669 }
3670
3671 /**
3672 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3673 * @hba: Pointer to adapter instance
3674 * @lun: lun id
3675 * @param_offset: offset of the parameter to read
3676 * @param_read_buf: pointer to buffer where parameter would be read
3677 * @param_size: sizeof(param_read_buf)
3678 *
3679 * Return: 0 in case of success, non-zero otherwise.
3680 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3681 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3682 int lun,
3683 enum unit_desc_param param_offset,
3684 u8 *param_read_buf,
3685 u32 param_size)
3686 {
3687 /*
3688 * Unit descriptors are only available for general purpose LUs (LUN id
3689 * from 0 to 7) and RPMB Well known LU.
3690 */
3691 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3692 return -EOPNOTSUPP;
3693
3694 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3695 param_offset, param_read_buf, param_size);
3696 }
3697
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3698 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3699 {
3700 int err = 0;
3701 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3702
3703 if (hba->dev_info.wspecversion >= 0x300) {
3704 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3705 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3706 &gating_wait);
3707 if (err)
3708 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3709 err, gating_wait);
3710
3711 if (gating_wait == 0) {
3712 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3713 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3714 gating_wait);
3715 }
3716
3717 hba->dev_info.clk_gating_wait_us = gating_wait;
3718 }
3719
3720 return err;
3721 }
3722
3723 /**
3724 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3725 * @hba: per adapter instance
3726 *
3727 * 1. Allocate DMA memory for Command Descriptor array
3728 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3729 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3730 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3731 * (UTMRDL)
3732 * 4. Allocate memory for local reference block(lrb).
3733 *
3734 * Return: 0 for success, non-zero in case of failure.
3735 */
ufshcd_memory_alloc(struct ufs_hba * hba)3736 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3737 {
3738 size_t utmrdl_size, utrdl_size, ucdl_size;
3739
3740 /* Allocate memory for UTP command descriptors */
3741 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3742 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3743 ucdl_size,
3744 &hba->ucdl_dma_addr,
3745 GFP_KERNEL);
3746
3747 /*
3748 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3749 */
3750 if (!hba->ucdl_base_addr ||
3751 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3752 dev_err(hba->dev,
3753 "Command Descriptor Memory allocation failed\n");
3754 goto out;
3755 }
3756
3757 /*
3758 * Allocate memory for UTP Transfer descriptors
3759 * UFSHCI requires 1KB alignment of UTRD
3760 */
3761 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3762 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3763 utrdl_size,
3764 &hba->utrdl_dma_addr,
3765 GFP_KERNEL);
3766 if (!hba->utrdl_base_addr ||
3767 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3768 dev_err(hba->dev,
3769 "Transfer Descriptor Memory allocation failed\n");
3770 goto out;
3771 }
3772
3773 /*
3774 * Skip utmrdl allocation; it may have been
3775 * allocated during first pass and not released during
3776 * MCQ memory allocation.
3777 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3778 */
3779 if (hba->utmrdl_base_addr)
3780 goto skip_utmrdl;
3781 /*
3782 * Allocate memory for UTP Task Management descriptors
3783 * UFSHCI requires 1KB alignment of UTMRD
3784 */
3785 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3786 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3787 utmrdl_size,
3788 &hba->utmrdl_dma_addr,
3789 GFP_KERNEL);
3790 if (!hba->utmrdl_base_addr ||
3791 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3792 dev_err(hba->dev,
3793 "Task Management Descriptor Memory allocation failed\n");
3794 goto out;
3795 }
3796
3797 skip_utmrdl:
3798 /* Allocate memory for local reference block */
3799 hba->lrb = devm_kcalloc(hba->dev,
3800 hba->nutrs, sizeof(struct ufshcd_lrb),
3801 GFP_KERNEL);
3802 if (!hba->lrb) {
3803 dev_err(hba->dev, "LRB Memory allocation failed\n");
3804 goto out;
3805 }
3806 return 0;
3807 out:
3808 return -ENOMEM;
3809 }
3810
3811 /**
3812 * ufshcd_host_memory_configure - configure local reference block with
3813 * memory offsets
3814 * @hba: per adapter instance
3815 *
3816 * Configure Host memory space
3817 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3818 * address.
3819 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3820 * and PRDT offset.
3821 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3822 * into local reference block.
3823 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3824 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3825 {
3826 struct utp_transfer_req_desc *utrdlp;
3827 dma_addr_t cmd_desc_dma_addr;
3828 dma_addr_t cmd_desc_element_addr;
3829 u16 response_offset;
3830 u16 prdt_offset;
3831 int cmd_desc_size;
3832 int i;
3833
3834 utrdlp = hba->utrdl_base_addr;
3835
3836 response_offset =
3837 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3838 prdt_offset =
3839 offsetof(struct utp_transfer_cmd_desc, prd_table);
3840
3841 cmd_desc_size = ufshcd_get_ucd_size(hba);
3842 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3843
3844 for (i = 0; i < hba->nutrs; i++) {
3845 /* Configure UTRD with command descriptor base address */
3846 cmd_desc_element_addr =
3847 (cmd_desc_dma_addr + (cmd_desc_size * i));
3848 utrdlp[i].command_desc_base_addr =
3849 cpu_to_le64(cmd_desc_element_addr);
3850
3851 /* Response upiu and prdt offset should be in double words */
3852 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3853 utrdlp[i].response_upiu_offset =
3854 cpu_to_le16(response_offset);
3855 utrdlp[i].prd_table_offset =
3856 cpu_to_le16(prdt_offset);
3857 utrdlp[i].response_upiu_length =
3858 cpu_to_le16(ALIGNED_UPIU_SIZE);
3859 } else {
3860 utrdlp[i].response_upiu_offset =
3861 cpu_to_le16(response_offset >> 2);
3862 utrdlp[i].prd_table_offset =
3863 cpu_to_le16(prdt_offset >> 2);
3864 utrdlp[i].response_upiu_length =
3865 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3866 }
3867
3868 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3869 }
3870 }
3871
3872 /**
3873 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3874 * @hba: per adapter instance
3875 *
3876 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3877 * in order to initialize the Unipro link startup procedure.
3878 * Once the Unipro links are up, the device connected to the controller
3879 * is detected.
3880 *
3881 * Return: 0 on success, non-zero value on failure.
3882 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3883 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3884 {
3885 struct uic_command uic_cmd = {0};
3886 int ret;
3887
3888 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3889
3890 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3891 if (ret)
3892 dev_dbg(hba->dev,
3893 "dme-link-startup: error code %d\n", ret);
3894 return ret;
3895 }
3896 /**
3897 * ufshcd_dme_reset - UIC command for DME_RESET
3898 * @hba: per adapter instance
3899 *
3900 * DME_RESET command is issued in order to reset UniPro stack.
3901 * This function now deals with cold reset.
3902 *
3903 * Return: 0 on success, non-zero value on failure.
3904 */
ufshcd_dme_reset(struct ufs_hba * hba)3905 static int ufshcd_dme_reset(struct ufs_hba *hba)
3906 {
3907 struct uic_command uic_cmd = {0};
3908 int ret;
3909
3910 uic_cmd.command = UIC_CMD_DME_RESET;
3911
3912 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3913 if (ret)
3914 dev_err(hba->dev,
3915 "dme-reset: error code %d\n", ret);
3916
3917 return ret;
3918 }
3919
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3920 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3921 int agreed_gear,
3922 int adapt_val)
3923 {
3924 int ret;
3925
3926 if (agreed_gear < UFS_HS_G4)
3927 adapt_val = PA_NO_ADAPT;
3928
3929 ret = ufshcd_dme_set(hba,
3930 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3931 adapt_val);
3932 return ret;
3933 }
3934 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3935
3936 /**
3937 * ufshcd_dme_enable - UIC command for DME_ENABLE
3938 * @hba: per adapter instance
3939 *
3940 * DME_ENABLE command is issued in order to enable UniPro stack.
3941 *
3942 * Return: 0 on success, non-zero value on failure.
3943 */
ufshcd_dme_enable(struct ufs_hba * hba)3944 static int ufshcd_dme_enable(struct ufs_hba *hba)
3945 {
3946 struct uic_command uic_cmd = {0};
3947 int ret;
3948
3949 uic_cmd.command = UIC_CMD_DME_ENABLE;
3950
3951 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3952 if (ret)
3953 dev_err(hba->dev,
3954 "dme-enable: error code %d\n", ret);
3955
3956 return ret;
3957 }
3958
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3959 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3960 {
3961 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3962 unsigned long min_sleep_time_us;
3963
3964 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3965 return;
3966
3967 /*
3968 * last_dme_cmd_tstamp will be 0 only for 1st call to
3969 * this function
3970 */
3971 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3972 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3973 } else {
3974 unsigned long delta =
3975 (unsigned long) ktime_to_us(
3976 ktime_sub(ktime_get(),
3977 hba->last_dme_cmd_tstamp));
3978
3979 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3980 min_sleep_time_us =
3981 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3982 else
3983 min_sleep_time_us = 0; /* no more delay required */
3984 }
3985
3986 if (min_sleep_time_us > 0) {
3987 /* allow sleep for extra 50us if needed */
3988 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3989 }
3990
3991 /* update the last_dme_cmd_tstamp */
3992 hba->last_dme_cmd_tstamp = ktime_get();
3993 }
3994
3995 /**
3996 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3997 * @hba: per adapter instance
3998 * @attr_sel: uic command argument1
3999 * @attr_set: attribute set type as uic command argument2
4000 * @mib_val: setting value as uic command argument3
4001 * @peer: indicate whether peer or local
4002 *
4003 * Return: 0 on success, non-zero value on failure.
4004 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4005 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4006 u8 attr_set, u32 mib_val, u8 peer)
4007 {
4008 struct uic_command uic_cmd = {0};
4009 static const char *const action[] = {
4010 "dme-set",
4011 "dme-peer-set"
4012 };
4013 const char *set = action[!!peer];
4014 int ret;
4015 int retries = UFS_UIC_COMMAND_RETRIES;
4016
4017 uic_cmd.command = peer ?
4018 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4019 uic_cmd.argument1 = attr_sel;
4020 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4021 uic_cmd.argument3 = mib_val;
4022
4023 do {
4024 /* for peer attributes we retry upon failure */
4025 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4026 if (ret)
4027 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4028 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4029 } while (ret && peer && --retries);
4030
4031 if (ret)
4032 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4033 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4034 UFS_UIC_COMMAND_RETRIES - retries);
4035
4036 return ret;
4037 }
4038 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4039
4040 /**
4041 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4042 * @hba: per adapter instance
4043 * @attr_sel: uic command argument1
4044 * @mib_val: the value of the attribute as returned by the UIC command
4045 * @peer: indicate whether peer or local
4046 *
4047 * Return: 0 on success, non-zero value on failure.
4048 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4049 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4050 u32 *mib_val, u8 peer)
4051 {
4052 struct uic_command uic_cmd = {0};
4053 static const char *const action[] = {
4054 "dme-get",
4055 "dme-peer-get"
4056 };
4057 const char *get = action[!!peer];
4058 int ret;
4059 int retries = UFS_UIC_COMMAND_RETRIES;
4060 struct ufs_pa_layer_attr orig_pwr_info;
4061 struct ufs_pa_layer_attr temp_pwr_info;
4062 bool pwr_mode_change = false;
4063
4064 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4065 orig_pwr_info = hba->pwr_info;
4066 temp_pwr_info = orig_pwr_info;
4067
4068 if (orig_pwr_info.pwr_tx == FAST_MODE ||
4069 orig_pwr_info.pwr_rx == FAST_MODE) {
4070 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4071 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4072 pwr_mode_change = true;
4073 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4074 orig_pwr_info.pwr_rx == SLOW_MODE) {
4075 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4076 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4077 pwr_mode_change = true;
4078 }
4079 if (pwr_mode_change) {
4080 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4081 if (ret)
4082 goto out;
4083 }
4084 }
4085
4086 uic_cmd.command = peer ?
4087 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4088 uic_cmd.argument1 = attr_sel;
4089
4090 do {
4091 /* for peer attributes we retry upon failure */
4092 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4093 if (ret)
4094 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4095 get, UIC_GET_ATTR_ID(attr_sel), ret);
4096 } while (ret && peer && --retries);
4097
4098 if (ret)
4099 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4100 get, UIC_GET_ATTR_ID(attr_sel),
4101 UFS_UIC_COMMAND_RETRIES - retries);
4102
4103 if (mib_val && !ret)
4104 *mib_val = uic_cmd.argument3;
4105
4106 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4107 && pwr_mode_change)
4108 ufshcd_change_power_mode(hba, &orig_pwr_info);
4109 out:
4110 return ret;
4111 }
4112 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4113
4114 /**
4115 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4116 * state) and waits for it to take effect.
4117 *
4118 * @hba: per adapter instance
4119 * @cmd: UIC command to execute
4120 *
4121 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4122 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4123 * and device UniPro link and hence it's final completion would be indicated by
4124 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4125 * addition to normal UIC command completion Status (UCCS). This function only
4126 * returns after the relevant status bits indicate the completion.
4127 *
4128 * Return: 0 on success, non-zero value on failure.
4129 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4130 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4131 {
4132 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4133 unsigned long flags;
4134 u8 status;
4135 int ret;
4136 bool reenable_intr = false;
4137
4138 mutex_lock(&hba->uic_cmd_mutex);
4139 ufshcd_add_delay_before_dme_cmd(hba);
4140
4141 spin_lock_irqsave(hba->host->host_lock, flags);
4142 if (ufshcd_is_link_broken(hba)) {
4143 ret = -ENOLINK;
4144 goto out_unlock;
4145 }
4146 hba->uic_async_done = &uic_async_done;
4147 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4148 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4149 /*
4150 * Make sure UIC command completion interrupt is disabled before
4151 * issuing UIC command.
4152 */
4153 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4154 reenable_intr = true;
4155 }
4156 spin_unlock_irqrestore(hba->host->host_lock, flags);
4157 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4158 if (ret) {
4159 dev_err(hba->dev,
4160 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4161 cmd->command, cmd->argument3, ret);
4162 goto out;
4163 }
4164
4165 if (!wait_for_completion_timeout(hba->uic_async_done,
4166 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4167 dev_err(hba->dev,
4168 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4169 cmd->command, cmd->argument3);
4170
4171 if (!cmd->cmd_active) {
4172 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4173 __func__);
4174 goto check_upmcrs;
4175 }
4176
4177 ret = -ETIMEDOUT;
4178 goto out;
4179 }
4180
4181 check_upmcrs:
4182 status = ufshcd_get_upmcrs(hba);
4183 if (status != PWR_LOCAL) {
4184 dev_err(hba->dev,
4185 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4186 cmd->command, status);
4187 ret = (status != PWR_OK) ? status : -1;
4188 }
4189 out:
4190 if (ret) {
4191 ufshcd_print_host_state(hba);
4192 ufshcd_print_pwr_info(hba);
4193 ufshcd_print_evt_hist(hba);
4194 }
4195
4196 spin_lock_irqsave(hba->host->host_lock, flags);
4197 hba->active_uic_cmd = NULL;
4198 hba->uic_async_done = NULL;
4199 if (reenable_intr)
4200 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4201 if (ret) {
4202 ufshcd_set_link_broken(hba);
4203 ufshcd_schedule_eh_work(hba);
4204 }
4205 out_unlock:
4206 spin_unlock_irqrestore(hba->host->host_lock, flags);
4207 mutex_unlock(&hba->uic_cmd_mutex);
4208
4209 return ret;
4210 }
4211
4212 /**
4213 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4214 * using DME_SET primitives.
4215 * @hba: per adapter instance
4216 * @mode: powr mode value
4217 *
4218 * Return: 0 on success, non-zero value on failure.
4219 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4220 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4221 {
4222 struct uic_command uic_cmd = {0};
4223 int ret;
4224
4225 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4226 ret = ufshcd_dme_set(hba,
4227 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4228 if (ret) {
4229 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4230 __func__, ret);
4231 goto out;
4232 }
4233 }
4234
4235 uic_cmd.command = UIC_CMD_DME_SET;
4236 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4237 uic_cmd.argument3 = mode;
4238 ufshcd_hold(hba);
4239 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4240 ufshcd_release(hba);
4241
4242 out:
4243 return ret;
4244 }
4245 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4246
ufshcd_link_recovery(struct ufs_hba * hba)4247 int ufshcd_link_recovery(struct ufs_hba *hba)
4248 {
4249 int ret;
4250 unsigned long flags;
4251
4252 spin_lock_irqsave(hba->host->host_lock, flags);
4253 hba->ufshcd_state = UFSHCD_STATE_RESET;
4254 ufshcd_set_eh_in_progress(hba);
4255 spin_unlock_irqrestore(hba->host->host_lock, flags);
4256
4257 /* Reset the attached device */
4258 ufshcd_device_reset(hba);
4259
4260 ret = ufshcd_host_reset_and_restore(hba);
4261
4262 spin_lock_irqsave(hba->host->host_lock, flags);
4263 if (ret)
4264 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4265 ufshcd_clear_eh_in_progress(hba);
4266 spin_unlock_irqrestore(hba->host->host_lock, flags);
4267
4268 if (ret)
4269 dev_err(hba->dev, "%s: link recovery failed, err %d",
4270 __func__, ret);
4271
4272 return ret;
4273 }
4274 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4275
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4276 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4277 {
4278 int ret;
4279 struct uic_command uic_cmd = {0};
4280 ktime_t start = ktime_get();
4281
4282 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4283
4284 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4285 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4286 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4287 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4288
4289 if (ret)
4290 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4291 __func__, ret);
4292 else
4293 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4294 POST_CHANGE);
4295
4296 return ret;
4297 }
4298 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4299
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4300 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4301 {
4302 struct uic_command uic_cmd = {0};
4303 int ret;
4304 ktime_t start = ktime_get();
4305
4306 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4307
4308 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4309 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4310 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4311 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4312
4313 if (ret) {
4314 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4315 __func__, ret);
4316 } else {
4317 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4318 POST_CHANGE);
4319 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4320 hba->ufs_stats.hibern8_exit_cnt++;
4321 }
4322
4323 return ret;
4324 }
4325 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4326
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4327 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4328 {
4329 unsigned long flags;
4330 bool update = false;
4331
4332 if (!ufshcd_is_auto_hibern8_supported(hba))
4333 return;
4334
4335 spin_lock_irqsave(hba->host->host_lock, flags);
4336 if (hba->ahit != ahit) {
4337 hba->ahit = ahit;
4338 update = true;
4339 }
4340 spin_unlock_irqrestore(hba->host->host_lock, flags);
4341
4342 if (update &&
4343 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4344 ufshcd_rpm_get_sync(hba);
4345 ufshcd_hold(hba);
4346 ufshcd_auto_hibern8_enable(hba);
4347 ufshcd_release(hba);
4348 ufshcd_rpm_put_sync(hba);
4349 }
4350 }
4351 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4352
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4353 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4354 {
4355 if (!ufshcd_is_auto_hibern8_supported(hba))
4356 return;
4357
4358 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4359 }
4360
4361 /**
4362 * ufshcd_init_pwr_info - setting the POR (power on reset)
4363 * values in hba power info
4364 * @hba: per-adapter instance
4365 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4366 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4367 {
4368 hba->pwr_info.gear_rx = UFS_PWM_G1;
4369 hba->pwr_info.gear_tx = UFS_PWM_G1;
4370 hba->pwr_info.lane_rx = UFS_LANE_1;
4371 hba->pwr_info.lane_tx = UFS_LANE_1;
4372 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4373 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4374 hba->pwr_info.hs_rate = 0;
4375 }
4376
4377 /**
4378 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4379 * @hba: per-adapter instance
4380 *
4381 * Return: 0 upon success; < 0 upon failure.
4382 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4383 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4384 {
4385 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4386
4387 if (hba->max_pwr_info.is_valid)
4388 return 0;
4389
4390 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4391 pwr_info->pwr_tx = FASTAUTO_MODE;
4392 pwr_info->pwr_rx = FASTAUTO_MODE;
4393 } else {
4394 pwr_info->pwr_tx = FAST_MODE;
4395 pwr_info->pwr_rx = FAST_MODE;
4396 }
4397 pwr_info->hs_rate = PA_HS_MODE_B;
4398
4399 /* Get the connected lane count */
4400 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4401 &pwr_info->lane_rx);
4402 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4403 &pwr_info->lane_tx);
4404
4405 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4406 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4407 __func__,
4408 pwr_info->lane_rx,
4409 pwr_info->lane_tx);
4410 return -EINVAL;
4411 }
4412
4413 /*
4414 * First, get the maximum gears of HS speed.
4415 * If a zero value, it means there is no HSGEAR capability.
4416 * Then, get the maximum gears of PWM speed.
4417 */
4418 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4419 if (!pwr_info->gear_rx) {
4420 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4421 &pwr_info->gear_rx);
4422 if (!pwr_info->gear_rx) {
4423 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4424 __func__, pwr_info->gear_rx);
4425 return -EINVAL;
4426 }
4427 pwr_info->pwr_rx = SLOW_MODE;
4428 }
4429
4430 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4431 &pwr_info->gear_tx);
4432 if (!pwr_info->gear_tx) {
4433 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4434 &pwr_info->gear_tx);
4435 if (!pwr_info->gear_tx) {
4436 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4437 __func__, pwr_info->gear_tx);
4438 return -EINVAL;
4439 }
4440 pwr_info->pwr_tx = SLOW_MODE;
4441 }
4442
4443 hba->max_pwr_info.is_valid = true;
4444 return 0;
4445 }
4446
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4447 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4448 struct ufs_pa_layer_attr *pwr_mode)
4449 {
4450 int ret;
4451
4452 /* if already configured to the requested pwr_mode */
4453 if (!hba->force_pmc &&
4454 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4455 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4456 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4457 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4458 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4459 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4460 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4461 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4462 return 0;
4463 }
4464
4465 /*
4466 * Configure attributes for power mode change with below.
4467 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4468 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4469 * - PA_HSSERIES
4470 */
4471 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4472 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4473 pwr_mode->lane_rx);
4474 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4475 pwr_mode->pwr_rx == FAST_MODE)
4476 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4477 else
4478 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4479
4480 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4481 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4482 pwr_mode->lane_tx);
4483 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4484 pwr_mode->pwr_tx == FAST_MODE)
4485 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4486 else
4487 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4488
4489 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4490 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4491 pwr_mode->pwr_rx == FAST_MODE ||
4492 pwr_mode->pwr_tx == FAST_MODE)
4493 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4494 pwr_mode->hs_rate);
4495
4496 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4497 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4498 DL_FC0ProtectionTimeOutVal_Default);
4499 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4500 DL_TC0ReplayTimeOutVal_Default);
4501 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4502 DL_AFC0ReqTimeOutVal_Default);
4503 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4504 DL_FC1ProtectionTimeOutVal_Default);
4505 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4506 DL_TC1ReplayTimeOutVal_Default);
4507 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4508 DL_AFC1ReqTimeOutVal_Default);
4509
4510 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4511 DL_FC0ProtectionTimeOutVal_Default);
4512 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4513 DL_TC0ReplayTimeOutVal_Default);
4514 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4515 DL_AFC0ReqTimeOutVal_Default);
4516 }
4517
4518 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4519 | pwr_mode->pwr_tx);
4520
4521 if (ret) {
4522 dev_err(hba->dev,
4523 "%s: power mode change failed %d\n", __func__, ret);
4524 } else {
4525 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4526 pwr_mode);
4527
4528 memcpy(&hba->pwr_info, pwr_mode,
4529 sizeof(struct ufs_pa_layer_attr));
4530 }
4531
4532 return ret;
4533 }
4534
4535 /**
4536 * ufshcd_config_pwr_mode - configure a new power mode
4537 * @hba: per-adapter instance
4538 * @desired_pwr_mode: desired power configuration
4539 *
4540 * Return: 0 upon success; < 0 upon failure.
4541 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4542 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4543 struct ufs_pa_layer_attr *desired_pwr_mode)
4544 {
4545 struct ufs_pa_layer_attr final_params = { 0 };
4546 int ret;
4547
4548 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4549 desired_pwr_mode, &final_params);
4550
4551 if (ret)
4552 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4553
4554 ret = ufshcd_change_power_mode(hba, &final_params);
4555
4556 return ret;
4557 }
4558 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4559
4560 /**
4561 * ufshcd_complete_dev_init() - checks device readiness
4562 * @hba: per-adapter instance
4563 *
4564 * Set fDeviceInit flag and poll until device toggles it.
4565 *
4566 * Return: 0 upon success; < 0 upon failure.
4567 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4568 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4569 {
4570 int err;
4571 bool flag_res = true;
4572 ktime_t timeout;
4573
4574 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4575 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4576 if (err) {
4577 dev_err(hba->dev,
4578 "%s: setting fDeviceInit flag failed with error %d\n",
4579 __func__, err);
4580 goto out;
4581 }
4582
4583 /* Poll fDeviceInit flag to be cleared */
4584 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4585 do {
4586 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4587 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4588 if (!flag_res)
4589 break;
4590 usleep_range(500, 1000);
4591 } while (ktime_before(ktime_get(), timeout));
4592
4593 if (err) {
4594 dev_err(hba->dev,
4595 "%s: reading fDeviceInit flag failed with error %d\n",
4596 __func__, err);
4597 } else if (flag_res) {
4598 dev_err(hba->dev,
4599 "%s: fDeviceInit was not cleared by the device\n",
4600 __func__);
4601 err = -EBUSY;
4602 }
4603 out:
4604 return err;
4605 }
4606
4607 /**
4608 * ufshcd_make_hba_operational - Make UFS controller operational
4609 * @hba: per adapter instance
4610 *
4611 * To bring UFS host controller to operational state,
4612 * 1. Enable required interrupts
4613 * 2. Configure interrupt aggregation
4614 * 3. Program UTRL and UTMRL base address
4615 * 4. Configure run-stop-registers
4616 *
4617 * Return: 0 on success, non-zero value on failure.
4618 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4619 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4620 {
4621 int err = 0;
4622 u32 reg;
4623
4624 /* Enable required interrupts */
4625 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4626
4627 /* Configure interrupt aggregation */
4628 if (ufshcd_is_intr_aggr_allowed(hba))
4629 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4630 else
4631 ufshcd_disable_intr_aggr(hba);
4632
4633 /* Configure UTRL and UTMRL base address registers */
4634 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4635 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4636 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4637 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4638 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4639 REG_UTP_TASK_REQ_LIST_BASE_L);
4640 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4641 REG_UTP_TASK_REQ_LIST_BASE_H);
4642
4643 /*
4644 * Make sure base address and interrupt setup are updated before
4645 * enabling the run/stop registers below.
4646 */
4647 wmb();
4648
4649 /*
4650 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4651 */
4652 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4653 if (!(ufshcd_get_lists_status(reg))) {
4654 ufshcd_enable_run_stop_reg(hba);
4655 } else {
4656 dev_err(hba->dev,
4657 "Host controller not ready to process requests");
4658 err = -EIO;
4659 }
4660
4661 return err;
4662 }
4663 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4664
4665 /**
4666 * ufshcd_hba_stop - Send controller to reset state
4667 * @hba: per adapter instance
4668 */
ufshcd_hba_stop(struct ufs_hba * hba)4669 void ufshcd_hba_stop(struct ufs_hba *hba)
4670 {
4671 unsigned long flags;
4672 int err;
4673
4674 /*
4675 * Obtain the host lock to prevent that the controller is disabled
4676 * while the UFS interrupt handler is active on another CPU.
4677 */
4678 spin_lock_irqsave(hba->host->host_lock, flags);
4679 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4680 spin_unlock_irqrestore(hba->host->host_lock, flags);
4681
4682 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4683 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4684 10, 1);
4685 if (err)
4686 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4687 }
4688 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4689
4690 /**
4691 * ufshcd_hba_execute_hce - initialize the controller
4692 * @hba: per adapter instance
4693 *
4694 * The controller resets itself and controller firmware initialization
4695 * sequence kicks off. When controller is ready it will set
4696 * the Host Controller Enable bit to 1.
4697 *
4698 * Return: 0 on success, non-zero value on failure.
4699 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4700 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4701 {
4702 int retry_outer = 3;
4703 int retry_inner;
4704
4705 start:
4706 if (ufshcd_is_hba_active(hba))
4707 /* change controller state to "reset state" */
4708 ufshcd_hba_stop(hba);
4709
4710 /* UniPro link is disabled at this point */
4711 ufshcd_set_link_off(hba);
4712
4713 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4714
4715 /* start controller initialization sequence */
4716 ufshcd_hba_start(hba);
4717
4718 /*
4719 * To initialize a UFS host controller HCE bit must be set to 1.
4720 * During initialization the HCE bit value changes from 1->0->1.
4721 * When the host controller completes initialization sequence
4722 * it sets the value of HCE bit to 1. The same HCE bit is read back
4723 * to check if the controller has completed initialization sequence.
4724 * So without this delay the value HCE = 1, set in the previous
4725 * instruction might be read back.
4726 * This delay can be changed based on the controller.
4727 */
4728 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4729
4730 /* wait for the host controller to complete initialization */
4731 retry_inner = 50;
4732 while (!ufshcd_is_hba_active(hba)) {
4733 if (retry_inner) {
4734 retry_inner--;
4735 } else {
4736 dev_err(hba->dev,
4737 "Controller enable failed\n");
4738 if (retry_outer) {
4739 retry_outer--;
4740 goto start;
4741 }
4742 return -EIO;
4743 }
4744 usleep_range(1000, 1100);
4745 }
4746
4747 /* enable UIC related interrupts */
4748 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4749
4750 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4751
4752 return 0;
4753 }
4754
ufshcd_hba_enable(struct ufs_hba * hba)4755 int ufshcd_hba_enable(struct ufs_hba *hba)
4756 {
4757 int ret;
4758
4759 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4760 ufshcd_set_link_off(hba);
4761 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4762
4763 /* enable UIC related interrupts */
4764 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4765 ret = ufshcd_dme_reset(hba);
4766 if (ret) {
4767 dev_err(hba->dev, "DME_RESET failed\n");
4768 return ret;
4769 }
4770
4771 ret = ufshcd_dme_enable(hba);
4772 if (ret) {
4773 dev_err(hba->dev, "Enabling DME failed\n");
4774 return ret;
4775 }
4776
4777 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4778 } else {
4779 ret = ufshcd_hba_execute_hce(hba);
4780 }
4781
4782 return ret;
4783 }
4784 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4785
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4786 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4787 {
4788 int tx_lanes = 0, i, err = 0;
4789
4790 if (!peer)
4791 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4792 &tx_lanes);
4793 else
4794 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4795 &tx_lanes);
4796 for (i = 0; i < tx_lanes; i++) {
4797 if (!peer)
4798 err = ufshcd_dme_set(hba,
4799 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4800 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4801 0);
4802 else
4803 err = ufshcd_dme_peer_set(hba,
4804 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4805 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4806 0);
4807 if (err) {
4808 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4809 __func__, peer, i, err);
4810 break;
4811 }
4812 }
4813
4814 return err;
4815 }
4816
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4817 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4818 {
4819 return ufshcd_disable_tx_lcc(hba, true);
4820 }
4821
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4822 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4823 {
4824 struct ufs_event_hist *e;
4825
4826 if (id >= UFS_EVT_CNT)
4827 return;
4828
4829 e = &hba->ufs_stats.event[id];
4830 e->val[e->pos] = val;
4831 e->tstamp[e->pos] = local_clock();
4832 e->cnt += 1;
4833 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4834
4835 ufshcd_vops_event_notify(hba, id, &val);
4836 }
4837 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4838
4839 /**
4840 * ufshcd_link_startup - Initialize unipro link startup
4841 * @hba: per adapter instance
4842 *
4843 * Return: 0 for success, non-zero in case of failure.
4844 */
ufshcd_link_startup(struct ufs_hba * hba)4845 static int ufshcd_link_startup(struct ufs_hba *hba)
4846 {
4847 int ret;
4848 int retries = DME_LINKSTARTUP_RETRIES;
4849 bool link_startup_again = false;
4850
4851 /*
4852 * If UFS device isn't active then we will have to issue link startup
4853 * 2 times to make sure the device state move to active.
4854 */
4855 if (!ufshcd_is_ufs_dev_active(hba))
4856 link_startup_again = true;
4857
4858 link_startup:
4859 do {
4860 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4861
4862 ret = ufshcd_dme_link_startup(hba);
4863
4864 /* check if device is detected by inter-connect layer */
4865 if (!ret && !ufshcd_is_device_present(hba)) {
4866 ufshcd_update_evt_hist(hba,
4867 UFS_EVT_LINK_STARTUP_FAIL,
4868 0);
4869 dev_err(hba->dev, "%s: Device not present\n", __func__);
4870 ret = -ENXIO;
4871 goto out;
4872 }
4873
4874 /*
4875 * DME link lost indication is only received when link is up,
4876 * but we can't be sure if the link is up until link startup
4877 * succeeds. So reset the local Uni-Pro and try again.
4878 */
4879 if (ret && retries && ufshcd_hba_enable(hba)) {
4880 ufshcd_update_evt_hist(hba,
4881 UFS_EVT_LINK_STARTUP_FAIL,
4882 (u32)ret);
4883 goto out;
4884 }
4885 } while (ret && retries--);
4886
4887 if (ret) {
4888 /* failed to get the link up... retire */
4889 ufshcd_update_evt_hist(hba,
4890 UFS_EVT_LINK_STARTUP_FAIL,
4891 (u32)ret);
4892 goto out;
4893 }
4894
4895 if (link_startup_again) {
4896 link_startup_again = false;
4897 retries = DME_LINKSTARTUP_RETRIES;
4898 goto link_startup;
4899 }
4900
4901 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4902 ufshcd_init_pwr_info(hba);
4903 ufshcd_print_pwr_info(hba);
4904
4905 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4906 ret = ufshcd_disable_device_tx_lcc(hba);
4907 if (ret)
4908 goto out;
4909 }
4910
4911 /* Include any host controller configuration via UIC commands */
4912 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4913 if (ret)
4914 goto out;
4915
4916 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4917 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4918 ret = ufshcd_make_hba_operational(hba);
4919 out:
4920 if (ret) {
4921 dev_err(hba->dev, "link startup failed %d\n", ret);
4922 ufshcd_print_host_state(hba);
4923 ufshcd_print_pwr_info(hba);
4924 ufshcd_print_evt_hist(hba);
4925 }
4926 return ret;
4927 }
4928
4929 /**
4930 * ufshcd_verify_dev_init() - Verify device initialization
4931 * @hba: per-adapter instance
4932 *
4933 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4934 * device Transport Protocol (UTP) layer is ready after a reset.
4935 * If the UTP layer at the device side is not initialized, it may
4936 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4937 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4938 *
4939 * Return: 0 upon success; < 0 upon failure.
4940 */
ufshcd_verify_dev_init(struct ufs_hba * hba)4941 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4942 {
4943 int err = 0;
4944 int retries;
4945
4946 ufshcd_hold(hba);
4947 mutex_lock(&hba->dev_cmd.lock);
4948 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4949 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4950 hba->nop_out_timeout);
4951
4952 if (!err || err == -ETIMEDOUT)
4953 break;
4954
4955 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4956 }
4957 mutex_unlock(&hba->dev_cmd.lock);
4958 ufshcd_release(hba);
4959
4960 if (err)
4961 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4962 return err;
4963 }
4964
4965 /**
4966 * ufshcd_setup_links - associate link b/w device wlun and other luns
4967 * @sdev: pointer to SCSI device
4968 * @hba: pointer to ufs hba
4969 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)4970 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4971 {
4972 struct device_link *link;
4973
4974 /*
4975 * Device wlun is the supplier & rest of the luns are consumers.
4976 * This ensures that device wlun suspends after all other luns.
4977 */
4978 if (hba->ufs_device_wlun) {
4979 link = device_link_add(&sdev->sdev_gendev,
4980 &hba->ufs_device_wlun->sdev_gendev,
4981 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4982 if (!link) {
4983 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4984 dev_name(&hba->ufs_device_wlun->sdev_gendev));
4985 return;
4986 }
4987 hba->luns_avail--;
4988 /* Ignore REPORT_LUN wlun probing */
4989 if (hba->luns_avail == 1) {
4990 ufshcd_rpm_put(hba);
4991 return;
4992 }
4993 } else {
4994 /*
4995 * Device wlun is probed. The assumption is that WLUNs are
4996 * scanned before other LUNs.
4997 */
4998 hba->luns_avail--;
4999 }
5000 }
5001
5002 /**
5003 * ufshcd_lu_init - Initialize the relevant parameters of the LU
5004 * @hba: per-adapter instance
5005 * @sdev: pointer to SCSI device
5006 */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5007 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5008 {
5009 int len = QUERY_DESC_MAX_SIZE;
5010 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5011 u8 lun_qdepth = hba->nutrs;
5012 u8 *desc_buf;
5013 int ret;
5014
5015 desc_buf = kzalloc(len, GFP_KERNEL);
5016 if (!desc_buf)
5017 goto set_qdepth;
5018
5019 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5020 if (ret < 0) {
5021 if (ret == -EOPNOTSUPP)
5022 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5023 lun_qdepth = 1;
5024 kfree(desc_buf);
5025 goto set_qdepth;
5026 }
5027
5028 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5029 /*
5030 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5031 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5032 */
5033 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5034 }
5035 /*
5036 * According to UFS device specification, the write protection mode is only supported by
5037 * normal LU, not supported by WLUN.
5038 */
5039 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5040 !hba->dev_info.is_lu_power_on_wp &&
5041 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5042 hba->dev_info.is_lu_power_on_wp = true;
5043
5044 /* In case of RPMB LU, check if advanced RPMB mode is enabled */
5045 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5046 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5047 hba->dev_info.b_advanced_rpmb_en = true;
5048
5049
5050 kfree(desc_buf);
5051 set_qdepth:
5052 /*
5053 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5054 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5055 */
5056 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5057 scsi_change_queue_depth(sdev, lun_qdepth);
5058 }
5059
5060 /**
5061 * ufshcd_slave_alloc - handle initial SCSI device configurations
5062 * @sdev: pointer to SCSI device
5063 *
5064 * Return: success.
5065 */
ufshcd_slave_alloc(struct scsi_device * sdev)5066 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5067 {
5068 struct ufs_hba *hba;
5069
5070 hba = shost_priv(sdev->host);
5071
5072 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5073 sdev->use_10_for_ms = 1;
5074
5075 /* DBD field should be set to 1 in mode sense(10) */
5076 sdev->set_dbd_for_ms = 1;
5077
5078 /* allow SCSI layer to restart the device in case of errors */
5079 sdev->allow_restart = 1;
5080
5081 /* REPORT SUPPORTED OPERATION CODES is not supported */
5082 sdev->no_report_opcodes = 1;
5083
5084 /* WRITE_SAME command is not supported */
5085 sdev->no_write_same = 1;
5086
5087 ufshcd_lu_init(hba, sdev);
5088
5089 ufshcd_setup_links(hba, sdev);
5090
5091 return 0;
5092 }
5093
5094 /**
5095 * ufshcd_change_queue_depth - change queue depth
5096 * @sdev: pointer to SCSI device
5097 * @depth: required depth to set
5098 *
5099 * Change queue depth and make sure the max. limits are not crossed.
5100 *
5101 * Return: new queue depth.
5102 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5103 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5104 {
5105 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5106 }
5107
5108 /**
5109 * ufshcd_slave_configure - adjust SCSI device configurations
5110 * @sdev: pointer to SCSI device
5111 *
5112 * Return: 0 (success).
5113 */
ufshcd_slave_configure(struct scsi_device * sdev)5114 static int ufshcd_slave_configure(struct scsi_device *sdev)
5115 {
5116 struct ufs_hba *hba = shost_priv(sdev->host);
5117 struct request_queue *q = sdev->request_queue;
5118
5119 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5120 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5121 blk_queue_update_dma_alignment(q, SZ_4K - 1);
5122 /*
5123 * Block runtime-pm until all consumers are added.
5124 * Refer ufshcd_setup_links().
5125 */
5126 if (is_device_wlun(sdev))
5127 pm_runtime_get_noresume(&sdev->sdev_gendev);
5128 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5129 sdev->rpm_autosuspend = 1;
5130 /*
5131 * Do not print messages during runtime PM to avoid never-ending cycles
5132 * of messages written back to storage by user space causing runtime
5133 * resume, causing more messages and so on.
5134 */
5135 sdev->silence_suspend = 1;
5136
5137 ufshcd_crypto_register(hba, q);
5138
5139 return 0;
5140 }
5141
5142 /**
5143 * ufshcd_slave_destroy - remove SCSI device configurations
5144 * @sdev: pointer to SCSI device
5145 */
ufshcd_slave_destroy(struct scsi_device * sdev)5146 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5147 {
5148 struct ufs_hba *hba;
5149 unsigned long flags;
5150
5151 hba = shost_priv(sdev->host);
5152
5153 /* Drop the reference as it won't be needed anymore */
5154 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5155 spin_lock_irqsave(hba->host->host_lock, flags);
5156 hba->ufs_device_wlun = NULL;
5157 spin_unlock_irqrestore(hba->host->host_lock, flags);
5158 } else if (hba->ufs_device_wlun) {
5159 struct device *supplier = NULL;
5160
5161 /* Ensure UFS Device WLUN exists and does not disappear */
5162 spin_lock_irqsave(hba->host->host_lock, flags);
5163 if (hba->ufs_device_wlun) {
5164 supplier = &hba->ufs_device_wlun->sdev_gendev;
5165 get_device(supplier);
5166 }
5167 spin_unlock_irqrestore(hba->host->host_lock, flags);
5168
5169 if (supplier) {
5170 /*
5171 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5172 * device will not have been registered but can still
5173 * have a device link holding a reference to the device.
5174 */
5175 device_link_remove(&sdev->sdev_gendev, supplier);
5176 put_device(supplier);
5177 }
5178 }
5179 }
5180
5181 /**
5182 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5183 * @lrbp: pointer to local reference block of completed command
5184 * @scsi_status: SCSI command status
5185 *
5186 * Return: value base on SCSI command status.
5187 */
5188 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5189 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5190 {
5191 int result = 0;
5192
5193 switch (scsi_status) {
5194 case SAM_STAT_CHECK_CONDITION:
5195 ufshcd_copy_sense_data(lrbp);
5196 fallthrough;
5197 case SAM_STAT_GOOD:
5198 result |= DID_OK << 16 | scsi_status;
5199 break;
5200 case SAM_STAT_TASK_SET_FULL:
5201 case SAM_STAT_BUSY:
5202 case SAM_STAT_TASK_ABORTED:
5203 ufshcd_copy_sense_data(lrbp);
5204 result |= scsi_status;
5205 break;
5206 default:
5207 result |= DID_ERROR << 16;
5208 break;
5209 } /* end of switch */
5210
5211 return result;
5212 }
5213
5214 /**
5215 * ufshcd_transfer_rsp_status - Get overall status of the response
5216 * @hba: per adapter instance
5217 * @lrbp: pointer to local reference block of completed command
5218 * @cqe: pointer to the completion queue entry
5219 *
5220 * Return: result of the command to notify SCSI midlayer.
5221 */
5222 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5223 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5224 struct cq_entry *cqe)
5225 {
5226 int result = 0;
5227 int scsi_status;
5228 enum utp_ocs ocs;
5229 u8 upiu_flags;
5230 u32 resid;
5231
5232 upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5233 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5234 /*
5235 * Test !overflow instead of underflow to support UFS devices that do
5236 * not set either flag.
5237 */
5238 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5239 scsi_set_resid(lrbp->cmd, resid);
5240
5241 /* overall command status of utrd */
5242 ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5243
5244 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5245 if (lrbp->ucd_rsp_ptr->header.response ||
5246 lrbp->ucd_rsp_ptr->header.status)
5247 ocs = OCS_SUCCESS;
5248 }
5249
5250 switch (ocs) {
5251 case OCS_SUCCESS:
5252 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5253 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5254 case UPIU_TRANSACTION_RESPONSE:
5255 /*
5256 * get the result based on SCSI status response
5257 * to notify the SCSI midlayer of the command status
5258 */
5259 scsi_status = lrbp->ucd_rsp_ptr->header.status;
5260 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5261
5262 /*
5263 * Currently we are only supporting BKOPs exception
5264 * events hence we can ignore BKOPs exception event
5265 * during power management callbacks. BKOPs exception
5266 * event is not expected to be raised in runtime suspend
5267 * callback as it allows the urgent bkops.
5268 * During system suspend, we are anyway forcefully
5269 * disabling the bkops and if urgent bkops is needed
5270 * it will be enabled on system resume. Long term
5271 * solution could be to abort the system suspend if
5272 * UFS device needs urgent BKOPs.
5273 */
5274 if (!hba->pm_op_in_progress &&
5275 !ufshcd_eh_in_progress(hba) &&
5276 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5277 /* Flushed in suspend */
5278 schedule_work(&hba->eeh_work);
5279 break;
5280 case UPIU_TRANSACTION_REJECT_UPIU:
5281 /* TODO: handle Reject UPIU Response */
5282 result = DID_ERROR << 16;
5283 dev_err(hba->dev,
5284 "Reject UPIU not fully implemented\n");
5285 break;
5286 default:
5287 dev_err(hba->dev,
5288 "Unexpected request response code = %x\n",
5289 result);
5290 result = DID_ERROR << 16;
5291 break;
5292 }
5293 break;
5294 case OCS_ABORTED:
5295 result |= DID_ABORT << 16;
5296 break;
5297 case OCS_INVALID_COMMAND_STATUS:
5298 result |= DID_REQUEUE << 16;
5299 break;
5300 case OCS_INVALID_CMD_TABLE_ATTR:
5301 case OCS_INVALID_PRDT_ATTR:
5302 case OCS_MISMATCH_DATA_BUF_SIZE:
5303 case OCS_MISMATCH_RESP_UPIU_SIZE:
5304 case OCS_PEER_COMM_FAILURE:
5305 case OCS_FATAL_ERROR:
5306 case OCS_DEVICE_FATAL_ERROR:
5307 case OCS_INVALID_CRYPTO_CONFIG:
5308 case OCS_GENERAL_CRYPTO_ERROR:
5309 default:
5310 result |= DID_ERROR << 16;
5311 dev_err(hba->dev,
5312 "OCS error from controller = %x for tag %d\n",
5313 ocs, lrbp->task_tag);
5314 ufshcd_print_evt_hist(hba);
5315 ufshcd_print_host_state(hba);
5316 break;
5317 } /* end of switch */
5318
5319 if ((host_byte(result) != DID_OK) &&
5320 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5321 ufshcd_print_tr(hba, lrbp->task_tag, true);
5322 return result;
5323 }
5324
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5325 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5326 u32 intr_mask)
5327 {
5328 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5329 !ufshcd_is_auto_hibern8_enabled(hba))
5330 return false;
5331
5332 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5333 return false;
5334
5335 if (hba->active_uic_cmd &&
5336 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5337 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5338 return false;
5339
5340 return true;
5341 }
5342
5343 /**
5344 * ufshcd_uic_cmd_compl - handle completion of uic command
5345 * @hba: per adapter instance
5346 * @intr_status: interrupt status generated by the controller
5347 *
5348 * Return:
5349 * IRQ_HANDLED - If interrupt is valid
5350 * IRQ_NONE - If invalid interrupt
5351 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5352 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5353 {
5354 irqreturn_t retval = IRQ_NONE;
5355
5356 spin_lock(hba->host->host_lock);
5357 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5358 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5359
5360 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5361 hba->active_uic_cmd->argument2 |=
5362 ufshcd_get_uic_cmd_result(hba);
5363 hba->active_uic_cmd->argument3 =
5364 ufshcd_get_dme_attr_val(hba);
5365 if (!hba->uic_async_done)
5366 hba->active_uic_cmd->cmd_active = 0;
5367 complete(&hba->active_uic_cmd->done);
5368 retval = IRQ_HANDLED;
5369 }
5370
5371 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5372 hba->active_uic_cmd->cmd_active = 0;
5373 complete(hba->uic_async_done);
5374 retval = IRQ_HANDLED;
5375 }
5376
5377 if (retval == IRQ_HANDLED)
5378 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5379 UFS_CMD_COMP);
5380 spin_unlock(hba->host->host_lock);
5381 return retval;
5382 }
5383
5384 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5385 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5386 struct ufshcd_lrb *lrbp)
5387 {
5388 struct scsi_cmnd *cmd = lrbp->cmd;
5389
5390 scsi_dma_unmap(cmd);
5391 ufshcd_release(hba);
5392 ufshcd_clk_scaling_update_busy(hba);
5393 }
5394
5395 /**
5396 * ufshcd_compl_one_cqe - handle a completion queue entry
5397 * @hba: per adapter instance
5398 * @task_tag: the task tag of the request to be completed
5399 * @cqe: pointer to the completion queue entry
5400 */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5401 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5402 struct cq_entry *cqe)
5403 {
5404 struct ufshcd_lrb *lrbp;
5405 struct scsi_cmnd *cmd;
5406 enum utp_ocs ocs;
5407
5408 lrbp = &hba->lrb[task_tag];
5409 lrbp->compl_time_stamp = ktime_get();
5410 cmd = lrbp->cmd;
5411 if (cmd) {
5412 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5413 ufshcd_update_monitor(hba, lrbp);
5414 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5415 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5416 ufshcd_release_scsi_cmd(hba, lrbp);
5417 /* Do not touch lrbp after scsi done */
5418 scsi_done(cmd);
5419 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5420 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5421 if (hba->dev_cmd.complete) {
5422 if (cqe) {
5423 ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5424 lrbp->utr_descriptor_ptr->header.ocs = ocs;
5425 }
5426 complete(hba->dev_cmd.complete);
5427 ufshcd_clk_scaling_update_busy(hba);
5428 }
5429 }
5430 }
5431
5432 /**
5433 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5434 * @hba: per adapter instance
5435 * @completed_reqs: bitmask that indicates which requests to complete
5436 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5437 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5438 unsigned long completed_reqs)
5439 {
5440 int tag;
5441
5442 for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5443 ufshcd_compl_one_cqe(hba, tag, NULL);
5444 }
5445
5446 /* Any value that is not an existing queue number is fine for this constant. */
5447 enum {
5448 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5449 };
5450
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5451 static void ufshcd_clear_polled(struct ufs_hba *hba,
5452 unsigned long *completed_reqs)
5453 {
5454 int tag;
5455
5456 for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5457 struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5458
5459 if (!cmd)
5460 continue;
5461 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5462 __clear_bit(tag, completed_reqs);
5463 }
5464 }
5465
5466 /*
5467 * Return: > 0 if one or more commands have been completed or 0 if no
5468 * requests have been completed.
5469 */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5470 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5471 {
5472 struct ufs_hba *hba = shost_priv(shost);
5473 unsigned long completed_reqs, flags;
5474 u32 tr_doorbell;
5475 struct ufs_hw_queue *hwq;
5476
5477 if (is_mcq_enabled(hba)) {
5478 hwq = &hba->uhq[queue_num];
5479
5480 return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5481 }
5482
5483 spin_lock_irqsave(&hba->outstanding_lock, flags);
5484 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5485 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5486 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5487 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5488 hba->outstanding_reqs);
5489 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5490 /* Do not complete polled requests from interrupt context. */
5491 ufshcd_clear_polled(hba, &completed_reqs);
5492 }
5493 hba->outstanding_reqs &= ~completed_reqs;
5494 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5495
5496 if (completed_reqs)
5497 __ufshcd_transfer_req_compl(hba, completed_reqs);
5498
5499 return completed_reqs != 0;
5500 }
5501
5502 /**
5503 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5504 * invoked from the error handler context or ufshcd_host_reset_and_restore()
5505 * to complete the pending transfers and free the resources associated with
5506 * the scsi command.
5507 *
5508 * @hba: per adapter instance
5509 * @force_compl: This flag is set to true when invoked
5510 * from ufshcd_host_reset_and_restore() in which case it requires special
5511 * handling because the host controller has been reset by ufshcd_hba_stop().
5512 */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5513 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5514 bool force_compl)
5515 {
5516 struct ufs_hw_queue *hwq;
5517 struct ufshcd_lrb *lrbp;
5518 struct scsi_cmnd *cmd;
5519 unsigned long flags;
5520 u32 hwq_num, utag;
5521 int tag;
5522
5523 for (tag = 0; tag < hba->nutrs; tag++) {
5524 lrbp = &hba->lrb[tag];
5525 cmd = lrbp->cmd;
5526 if (!ufshcd_cmd_inflight(cmd) ||
5527 test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5528 continue;
5529
5530 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5531 hwq_num = blk_mq_unique_tag_to_hwq(utag);
5532 hwq = &hba->uhq[hwq_num];
5533
5534 if (force_compl) {
5535 ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5536 /*
5537 * For those cmds of which the cqes are not present
5538 * in the cq, complete them explicitly.
5539 */
5540 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5541 spin_lock_irqsave(&hwq->cq_lock, flags);
5542 set_host_byte(cmd, DID_REQUEUE);
5543 ufshcd_release_scsi_cmd(hba, lrbp);
5544 scsi_done(cmd);
5545 spin_unlock_irqrestore(&hwq->cq_lock, flags);
5546 }
5547 } else {
5548 ufshcd_mcq_poll_cqe_lock(hba, hwq);
5549 }
5550 }
5551 }
5552
5553 /**
5554 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5555 * @hba: per adapter instance
5556 *
5557 * Return:
5558 * IRQ_HANDLED - If interrupt is valid
5559 * IRQ_NONE - If invalid interrupt
5560 */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5561 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5562 {
5563 /* Resetting interrupt aggregation counters first and reading the
5564 * DOOR_BELL afterward allows us to handle all the completed requests.
5565 * In order to prevent other interrupts starvation the DB is read once
5566 * after reset. The down side of this solution is the possibility of
5567 * false interrupt if device completes another request after resetting
5568 * aggregation and before reading the DB.
5569 */
5570 if (ufshcd_is_intr_aggr_allowed(hba) &&
5571 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5572 ufshcd_reset_intr_aggr(hba);
5573
5574 if (ufs_fail_completion())
5575 return IRQ_HANDLED;
5576
5577 /*
5578 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5579 * do not want polling to trigger spurious interrupt complaints.
5580 */
5581 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5582
5583 return IRQ_HANDLED;
5584 }
5585
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5586 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5587 {
5588 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5589 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5590 &ee_ctrl_mask);
5591 }
5592
ufshcd_write_ee_control(struct ufs_hba * hba)5593 int ufshcd_write_ee_control(struct ufs_hba *hba)
5594 {
5595 int err;
5596
5597 mutex_lock(&hba->ee_ctrl_mutex);
5598 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5599 mutex_unlock(&hba->ee_ctrl_mutex);
5600 if (err)
5601 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5602 __func__, err);
5603 return err;
5604 }
5605
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5606 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5607 const u16 *other_mask, u16 set, u16 clr)
5608 {
5609 u16 new_mask, ee_ctrl_mask;
5610 int err = 0;
5611
5612 mutex_lock(&hba->ee_ctrl_mutex);
5613 new_mask = (*mask & ~clr) | set;
5614 ee_ctrl_mask = new_mask | *other_mask;
5615 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5616 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5617 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5618 if (!err) {
5619 hba->ee_ctrl_mask = ee_ctrl_mask;
5620 *mask = new_mask;
5621 }
5622 mutex_unlock(&hba->ee_ctrl_mutex);
5623 return err;
5624 }
5625
5626 /**
5627 * ufshcd_disable_ee - disable exception event
5628 * @hba: per-adapter instance
5629 * @mask: exception event to disable
5630 *
5631 * Disables exception event in the device so that the EVENT_ALERT
5632 * bit is not set.
5633 *
5634 * Return: zero on success, non-zero error value on failure.
5635 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5636 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5637 {
5638 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5639 }
5640
5641 /**
5642 * ufshcd_enable_ee - enable exception event
5643 * @hba: per-adapter instance
5644 * @mask: exception event to enable
5645 *
5646 * Enable corresponding exception event in the device to allow
5647 * device to alert host in critical scenarios.
5648 *
5649 * Return: zero on success, non-zero error value on failure.
5650 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5651 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5652 {
5653 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5654 }
5655
5656 /**
5657 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5658 * @hba: per-adapter instance
5659 *
5660 * Allow device to manage background operations on its own. Enabling
5661 * this might lead to inconsistent latencies during normal data transfers
5662 * as the device is allowed to manage its own way of handling background
5663 * operations.
5664 *
5665 * Return: zero on success, non-zero on failure.
5666 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5667 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5668 {
5669 int err = 0;
5670
5671 if (hba->auto_bkops_enabled)
5672 goto out;
5673
5674 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5675 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5676 if (err) {
5677 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5678 __func__, err);
5679 goto out;
5680 }
5681
5682 hba->auto_bkops_enabled = true;
5683 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5684
5685 /* No need of URGENT_BKOPS exception from the device */
5686 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5687 if (err)
5688 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5689 __func__, err);
5690 out:
5691 return err;
5692 }
5693
5694 /**
5695 * ufshcd_disable_auto_bkops - block device in doing background operations
5696 * @hba: per-adapter instance
5697 *
5698 * Disabling background operations improves command response latency but
5699 * has drawback of device moving into critical state where the device is
5700 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5701 * host is idle so that BKOPS are managed effectively without any negative
5702 * impacts.
5703 *
5704 * Return: zero on success, non-zero on failure.
5705 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5706 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5707 {
5708 int err = 0;
5709
5710 if (!hba->auto_bkops_enabled)
5711 goto out;
5712
5713 /*
5714 * If host assisted BKOPs is to be enabled, make sure
5715 * urgent bkops exception is allowed.
5716 */
5717 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5718 if (err) {
5719 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5720 __func__, err);
5721 goto out;
5722 }
5723
5724 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5725 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5726 if (err) {
5727 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5728 __func__, err);
5729 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5730 goto out;
5731 }
5732
5733 hba->auto_bkops_enabled = false;
5734 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5735 hba->is_urgent_bkops_lvl_checked = false;
5736 out:
5737 return err;
5738 }
5739
5740 /**
5741 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5742 * @hba: per adapter instance
5743 *
5744 * After a device reset the device may toggle the BKOPS_EN flag
5745 * to default value. The s/w tracking variables should be updated
5746 * as well. This function would change the auto-bkops state based on
5747 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5748 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5749 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5750 {
5751 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5752 hba->auto_bkops_enabled = false;
5753 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5754 ufshcd_enable_auto_bkops(hba);
5755 } else {
5756 hba->auto_bkops_enabled = true;
5757 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5758 ufshcd_disable_auto_bkops(hba);
5759 }
5760 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5761 hba->is_urgent_bkops_lvl_checked = false;
5762 }
5763
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5764 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5765 {
5766 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5767 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5768 }
5769
5770 /**
5771 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5772 * @hba: per-adapter instance
5773 * @status: bkops_status value
5774 *
5775 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5776 * flag in the device to permit background operations if the device
5777 * bkops_status is greater than or equal to "status" argument passed to
5778 * this function, disable otherwise.
5779 *
5780 * Return: 0 for success, non-zero in case of failure.
5781 *
5782 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5783 * to know whether auto bkops is enabled or disabled after this function
5784 * returns control to it.
5785 */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5786 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5787 enum bkops_status status)
5788 {
5789 int err;
5790 u32 curr_status = 0;
5791
5792 err = ufshcd_get_bkops_status(hba, &curr_status);
5793 if (err) {
5794 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5795 __func__, err);
5796 goto out;
5797 } else if (curr_status > BKOPS_STATUS_MAX) {
5798 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5799 __func__, curr_status);
5800 err = -EINVAL;
5801 goto out;
5802 }
5803
5804 if (curr_status >= status)
5805 err = ufshcd_enable_auto_bkops(hba);
5806 else
5807 err = ufshcd_disable_auto_bkops(hba);
5808 out:
5809 return err;
5810 }
5811
5812 /**
5813 * ufshcd_urgent_bkops - handle urgent bkops exception event
5814 * @hba: per-adapter instance
5815 *
5816 * Enable fBackgroundOpsEn flag in the device to permit background
5817 * operations.
5818 *
5819 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5820 * and negative error value for any other failure.
5821 *
5822 * Return: 0 upon success; < 0 upon failure.
5823 */
ufshcd_urgent_bkops(struct ufs_hba * hba)5824 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5825 {
5826 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5827 }
5828
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5829 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5830 {
5831 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5832 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5833 }
5834
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5835 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5836 {
5837 int err;
5838 u32 curr_status = 0;
5839
5840 if (hba->is_urgent_bkops_lvl_checked)
5841 goto enable_auto_bkops;
5842
5843 err = ufshcd_get_bkops_status(hba, &curr_status);
5844 if (err) {
5845 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5846 __func__, err);
5847 goto out;
5848 }
5849
5850 /*
5851 * We are seeing that some devices are raising the urgent bkops
5852 * exception events even when BKOPS status doesn't indicate performace
5853 * impacted or critical. Handle these device by determining their urgent
5854 * bkops status at runtime.
5855 */
5856 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5857 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5858 __func__, curr_status);
5859 /* update the current status as the urgent bkops level */
5860 hba->urgent_bkops_lvl = curr_status;
5861 hba->is_urgent_bkops_lvl_checked = true;
5862 }
5863
5864 enable_auto_bkops:
5865 err = ufshcd_enable_auto_bkops(hba);
5866 out:
5867 if (err < 0)
5868 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5869 __func__, err);
5870 }
5871
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5872 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5873 {
5874 u32 value;
5875
5876 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5877 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5878 return;
5879
5880 dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5881
5882 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5883
5884 /*
5885 * A placeholder for the platform vendors to add whatever additional
5886 * steps required
5887 */
5888 }
5889
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5890 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5891 {
5892 u8 index;
5893 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5894 UPIU_QUERY_OPCODE_CLEAR_FLAG;
5895
5896 index = ufshcd_wb_get_query_index(hba);
5897 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5898 }
5899
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5900 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5901 {
5902 int ret;
5903
5904 if (!ufshcd_is_wb_allowed(hba) ||
5905 hba->dev_info.wb_enabled == enable)
5906 return 0;
5907
5908 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5909 if (ret) {
5910 dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5911 __func__, enable ? "enabling" : "disabling", ret);
5912 return ret;
5913 }
5914
5915 hba->dev_info.wb_enabled = enable;
5916 dev_dbg(hba->dev, "%s: Write Booster %s\n",
5917 __func__, enable ? "enabled" : "disabled");
5918
5919 return ret;
5920 }
5921
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)5922 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5923 bool enable)
5924 {
5925 int ret;
5926
5927 ret = __ufshcd_wb_toggle(hba, enable,
5928 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5929 if (ret) {
5930 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5931 __func__, enable ? "enabling" : "disabling", ret);
5932 return;
5933 }
5934 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5935 __func__, enable ? "enabled" : "disabled");
5936 }
5937
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)5938 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5939 {
5940 int ret;
5941
5942 if (!ufshcd_is_wb_allowed(hba) ||
5943 hba->dev_info.wb_buf_flush_enabled == enable)
5944 return 0;
5945
5946 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5947 if (ret) {
5948 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5949 __func__, enable ? "enabling" : "disabling", ret);
5950 return ret;
5951 }
5952
5953 hba->dev_info.wb_buf_flush_enabled = enable;
5954 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5955 __func__, enable ? "enabled" : "disabled");
5956
5957 return ret;
5958 }
5959
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5960 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5961 u32 avail_buf)
5962 {
5963 u32 cur_buf;
5964 int ret;
5965 u8 index;
5966
5967 index = ufshcd_wb_get_query_index(hba);
5968 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5969 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5970 index, 0, &cur_buf);
5971 if (ret) {
5972 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5973 __func__, ret);
5974 return false;
5975 }
5976
5977 if (!cur_buf) {
5978 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5979 cur_buf);
5980 return false;
5981 }
5982 /* Let it continue to flush when available buffer exceeds threshold */
5983 return avail_buf < hba->vps->wb_flush_threshold;
5984 }
5985
ufshcd_wb_force_disable(struct ufs_hba * hba)5986 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5987 {
5988 if (ufshcd_is_wb_buf_flush_allowed(hba))
5989 ufshcd_wb_toggle_buf_flush(hba, false);
5990
5991 ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5992 ufshcd_wb_toggle(hba, false);
5993 hba->caps &= ~UFSHCD_CAP_WB_EN;
5994
5995 dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5996 }
5997
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)5998 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5999 {
6000 u32 lifetime;
6001 int ret;
6002 u8 index;
6003
6004 index = ufshcd_wb_get_query_index(hba);
6005 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6006 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6007 index, 0, &lifetime);
6008 if (ret) {
6009 dev_err(hba->dev,
6010 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6011 __func__, ret);
6012 return false;
6013 }
6014
6015 if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6016 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6017 __func__, lifetime);
6018 return false;
6019 }
6020
6021 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6022 __func__, lifetime);
6023
6024 return true;
6025 }
6026
ufshcd_wb_need_flush(struct ufs_hba * hba)6027 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6028 {
6029 int ret;
6030 u32 avail_buf;
6031 u8 index;
6032
6033 if (!ufshcd_is_wb_allowed(hba))
6034 return false;
6035
6036 if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6037 ufshcd_wb_force_disable(hba);
6038 return false;
6039 }
6040
6041 /*
6042 * The ufs device needs the vcc to be ON to flush.
6043 * With user-space reduction enabled, it's enough to enable flush
6044 * by checking only the available buffer. The threshold
6045 * defined here is > 90% full.
6046 * With user-space preserved enabled, the current-buffer
6047 * should be checked too because the wb buffer size can reduce
6048 * when disk tends to be full. This info is provided by current
6049 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6050 * keeping vcc on when current buffer is empty.
6051 */
6052 index = ufshcd_wb_get_query_index(hba);
6053 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6054 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6055 index, 0, &avail_buf);
6056 if (ret) {
6057 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6058 __func__, ret);
6059 return false;
6060 }
6061
6062 if (!hba->dev_info.b_presrv_uspc_en)
6063 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6064
6065 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6066 }
6067
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6068 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6069 {
6070 struct ufs_hba *hba = container_of(to_delayed_work(work),
6071 struct ufs_hba,
6072 rpm_dev_flush_recheck_work);
6073 /*
6074 * To prevent unnecessary VCC power drain after device finishes
6075 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6076 * after a certain delay to recheck the threshold by next runtime
6077 * suspend.
6078 */
6079 ufshcd_rpm_get_sync(hba);
6080 ufshcd_rpm_put_sync(hba);
6081 }
6082
6083 /**
6084 * ufshcd_exception_event_handler - handle exceptions raised by device
6085 * @work: pointer to work data
6086 *
6087 * Read bExceptionEventStatus attribute from the device and handle the
6088 * exception event accordingly.
6089 */
ufshcd_exception_event_handler(struct work_struct * work)6090 static void ufshcd_exception_event_handler(struct work_struct *work)
6091 {
6092 struct ufs_hba *hba;
6093 int err;
6094 u32 status = 0;
6095 hba = container_of(work, struct ufs_hba, eeh_work);
6096
6097 ufshcd_scsi_block_requests(hba);
6098 err = ufshcd_get_ee_status(hba, &status);
6099 if (err) {
6100 dev_err(hba->dev, "%s: failed to get exception status %d\n",
6101 __func__, err);
6102 goto out;
6103 }
6104
6105 trace_ufshcd_exception_event(dev_name(hba->dev), status);
6106
6107 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6108 ufshcd_bkops_exception_event_handler(hba);
6109
6110 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6111 ufshcd_temp_exception_event_handler(hba, status);
6112
6113 ufs_debugfs_exception_event(hba, status);
6114 out:
6115 ufshcd_scsi_unblock_requests(hba);
6116 }
6117
6118 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6119 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6120 {
6121 if (is_mcq_enabled(hba))
6122 ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6123 else
6124 ufshcd_transfer_req_compl(hba);
6125
6126 ufshcd_tmc_handler(hba);
6127 }
6128
6129 /**
6130 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6131 * to recover from the DL NAC errors or not.
6132 * @hba: per-adapter instance
6133 *
6134 * Return: true if error handling is required, false otherwise.
6135 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6136 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6137 {
6138 unsigned long flags;
6139 bool err_handling = true;
6140
6141 spin_lock_irqsave(hba->host->host_lock, flags);
6142 /*
6143 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6144 * device fatal error and/or DL NAC & REPLAY timeout errors.
6145 */
6146 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6147 goto out;
6148
6149 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6150 ((hba->saved_err & UIC_ERROR) &&
6151 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6152 goto out;
6153
6154 if ((hba->saved_err & UIC_ERROR) &&
6155 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6156 int err;
6157 /*
6158 * wait for 50ms to see if we can get any other errors or not.
6159 */
6160 spin_unlock_irqrestore(hba->host->host_lock, flags);
6161 msleep(50);
6162 spin_lock_irqsave(hba->host->host_lock, flags);
6163
6164 /*
6165 * now check if we have got any other severe errors other than
6166 * DL NAC error?
6167 */
6168 if ((hba->saved_err & INT_FATAL_ERRORS) ||
6169 ((hba->saved_err & UIC_ERROR) &&
6170 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6171 goto out;
6172
6173 /*
6174 * As DL NAC is the only error received so far, send out NOP
6175 * command to confirm if link is still active or not.
6176 * - If we don't get any response then do error recovery.
6177 * - If we get response then clear the DL NAC error bit.
6178 */
6179
6180 spin_unlock_irqrestore(hba->host->host_lock, flags);
6181 err = ufshcd_verify_dev_init(hba);
6182 spin_lock_irqsave(hba->host->host_lock, flags);
6183
6184 if (err)
6185 goto out;
6186
6187 /* Link seems to be alive hence ignore the DL NAC errors */
6188 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6189 hba->saved_err &= ~UIC_ERROR;
6190 /* clear NAC error */
6191 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6192 if (!hba->saved_uic_err)
6193 err_handling = false;
6194 }
6195 out:
6196 spin_unlock_irqrestore(hba->host->host_lock, flags);
6197 return err_handling;
6198 }
6199
6200 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6201 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6202 {
6203 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6204 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6205 }
6206
ufshcd_schedule_eh_work(struct ufs_hba * hba)6207 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6208 {
6209 lockdep_assert_held(hba->host->host_lock);
6210
6211 /* handle fatal errors only when link is not in error state */
6212 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6213 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6214 ufshcd_is_saved_err_fatal(hba))
6215 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6216 else
6217 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6218 queue_work(hba->eh_wq, &hba->eh_work);
6219 }
6220 }
6221
ufshcd_force_error_recovery(struct ufs_hba * hba)6222 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6223 {
6224 spin_lock_irq(hba->host->host_lock);
6225 hba->force_reset = true;
6226 ufshcd_schedule_eh_work(hba);
6227 spin_unlock_irq(hba->host->host_lock);
6228 }
6229
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6230 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6231 {
6232 mutex_lock(&hba->wb_mutex);
6233 down_write(&hba->clk_scaling_lock);
6234 hba->clk_scaling.is_allowed = allow;
6235 up_write(&hba->clk_scaling_lock);
6236 mutex_unlock(&hba->wb_mutex);
6237 }
6238
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6239 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6240 {
6241 if (suspend) {
6242 if (hba->clk_scaling.is_enabled)
6243 ufshcd_suspend_clkscaling(hba);
6244 ufshcd_clk_scaling_allow(hba, false);
6245 } else {
6246 ufshcd_clk_scaling_allow(hba, true);
6247 if (hba->clk_scaling.is_enabled)
6248 ufshcd_resume_clkscaling(hba);
6249 }
6250 }
6251
ufshcd_err_handling_prepare(struct ufs_hba * hba)6252 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6253 {
6254 ufshcd_rpm_get_sync(hba);
6255 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6256 hba->is_sys_suspended) {
6257 enum ufs_pm_op pm_op;
6258
6259 /*
6260 * Don't assume anything of resume, if
6261 * resume fails, irq and clocks can be OFF, and powers
6262 * can be OFF or in LPM.
6263 */
6264 ufshcd_setup_hba_vreg(hba, true);
6265 ufshcd_enable_irq(hba);
6266 ufshcd_setup_vreg(hba, true);
6267 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6268 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6269 ufshcd_hold(hba);
6270 if (!ufshcd_is_clkgating_allowed(hba))
6271 ufshcd_setup_clocks(hba, true);
6272 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6273 ufshcd_vops_resume(hba, pm_op);
6274 } else {
6275 ufshcd_hold(hba);
6276 if (ufshcd_is_clkscaling_supported(hba) &&
6277 hba->clk_scaling.is_enabled)
6278 ufshcd_suspend_clkscaling(hba);
6279 ufshcd_clk_scaling_allow(hba, false);
6280 }
6281 ufshcd_scsi_block_requests(hba);
6282 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6283 blk_mq_wait_quiesce_done(&hba->host->tag_set);
6284 cancel_work_sync(&hba->eeh_work);
6285 }
6286
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6287 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6288 {
6289 ufshcd_scsi_unblock_requests(hba);
6290 ufshcd_release(hba);
6291 if (ufshcd_is_clkscaling_supported(hba))
6292 ufshcd_clk_scaling_suspend(hba, false);
6293 ufshcd_rpm_put(hba);
6294 }
6295
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6296 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6297 {
6298 return (!hba->is_powered || hba->shutting_down ||
6299 !hba->ufs_device_wlun ||
6300 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6301 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6302 ufshcd_is_link_broken(hba))));
6303 }
6304
6305 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6306 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6307 {
6308 struct Scsi_Host *shost = hba->host;
6309 struct scsi_device *sdev;
6310 struct request_queue *q;
6311 int ret;
6312
6313 hba->is_sys_suspended = false;
6314 /*
6315 * Set RPM status of wlun device to RPM_ACTIVE,
6316 * this also clears its runtime error.
6317 */
6318 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6319
6320 /* hba device might have a runtime error otherwise */
6321 if (ret)
6322 ret = pm_runtime_set_active(hba->dev);
6323 /*
6324 * If wlun device had runtime error, we also need to resume those
6325 * consumer scsi devices in case any of them has failed to be
6326 * resumed due to supplier runtime resume failure. This is to unblock
6327 * blk_queue_enter in case there are bios waiting inside it.
6328 */
6329 if (!ret) {
6330 shost_for_each_device(sdev, shost) {
6331 q = sdev->request_queue;
6332 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6333 q->rpm_status == RPM_SUSPENDING))
6334 pm_request_resume(q->dev);
6335 }
6336 }
6337 }
6338 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6339 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6340 {
6341 }
6342 #endif
6343
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6344 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6345 {
6346 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6347 u32 mode;
6348
6349 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6350
6351 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6352 return true;
6353
6354 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6355 return true;
6356
6357 return false;
6358 }
6359
ufshcd_abort_one(struct request * rq,void * priv)6360 static bool ufshcd_abort_one(struct request *rq, void *priv)
6361 {
6362 int *ret = priv;
6363 u32 tag = rq->tag;
6364 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6365 struct scsi_device *sdev = cmd->device;
6366 struct Scsi_Host *shost = sdev->host;
6367 struct ufs_hba *hba = shost_priv(shost);
6368 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6369 struct ufs_hw_queue *hwq;
6370 unsigned long flags;
6371
6372 *ret = ufshcd_try_to_abort_task(hba, tag);
6373 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6374 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6375 *ret ? "failed" : "succeeded");
6376
6377 /* Release cmd in MCQ mode if abort succeeds */
6378 if (is_mcq_enabled(hba) && (*ret == 0)) {
6379 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6380 if (!hwq)
6381 return 0;
6382 spin_lock_irqsave(&hwq->cq_lock, flags);
6383 if (ufshcd_cmd_inflight(lrbp->cmd))
6384 ufshcd_release_scsi_cmd(hba, lrbp);
6385 spin_unlock_irqrestore(&hwq->cq_lock, flags);
6386 }
6387
6388 return *ret == 0;
6389 }
6390
6391 /**
6392 * ufshcd_abort_all - Abort all pending commands.
6393 * @hba: Host bus adapter pointer.
6394 *
6395 * Return: true if and only if the host controller needs to be reset.
6396 */
ufshcd_abort_all(struct ufs_hba * hba)6397 static bool ufshcd_abort_all(struct ufs_hba *hba)
6398 {
6399 int tag, ret = 0;
6400
6401 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6402 if (ret)
6403 goto out;
6404
6405 /* Clear pending task management requests */
6406 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6407 ret = ufshcd_clear_tm_cmd(hba, tag);
6408 if (ret)
6409 goto out;
6410 }
6411
6412 out:
6413 /* Complete the requests that are cleared by s/w */
6414 ufshcd_complete_requests(hba, false);
6415
6416 return ret != 0;
6417 }
6418
6419 /**
6420 * ufshcd_err_handler - handle UFS errors that require s/w attention
6421 * @work: pointer to work structure
6422 */
ufshcd_err_handler(struct work_struct * work)6423 static void ufshcd_err_handler(struct work_struct *work)
6424 {
6425 int retries = MAX_ERR_HANDLER_RETRIES;
6426 struct ufs_hba *hba;
6427 unsigned long flags;
6428 bool needs_restore;
6429 bool needs_reset;
6430 int pmc_err;
6431
6432 hba = container_of(work, struct ufs_hba, eh_work);
6433
6434 dev_info(hba->dev,
6435 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6436 __func__, ufshcd_state_name[hba->ufshcd_state],
6437 hba->is_powered, hba->shutting_down, hba->saved_err,
6438 hba->saved_uic_err, hba->force_reset,
6439 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6440
6441 down(&hba->host_sem);
6442 spin_lock_irqsave(hba->host->host_lock, flags);
6443 if (ufshcd_err_handling_should_stop(hba)) {
6444 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6445 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6446 spin_unlock_irqrestore(hba->host->host_lock, flags);
6447 up(&hba->host_sem);
6448 return;
6449 }
6450 ufshcd_set_eh_in_progress(hba);
6451 spin_unlock_irqrestore(hba->host->host_lock, flags);
6452 ufshcd_err_handling_prepare(hba);
6453 /* Complete requests that have door-bell cleared by h/w */
6454 ufshcd_complete_requests(hba, false);
6455 spin_lock_irqsave(hba->host->host_lock, flags);
6456 again:
6457 needs_restore = false;
6458 needs_reset = false;
6459
6460 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6461 hba->ufshcd_state = UFSHCD_STATE_RESET;
6462 /*
6463 * A full reset and restore might have happened after preparation
6464 * is finished, double check whether we should stop.
6465 */
6466 if (ufshcd_err_handling_should_stop(hba))
6467 goto skip_err_handling;
6468
6469 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6470 !hba->force_reset) {
6471 bool ret;
6472
6473 spin_unlock_irqrestore(hba->host->host_lock, flags);
6474 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6475 ret = ufshcd_quirk_dl_nac_errors(hba);
6476 spin_lock_irqsave(hba->host->host_lock, flags);
6477 if (!ret && ufshcd_err_handling_should_stop(hba))
6478 goto skip_err_handling;
6479 }
6480
6481 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6482 (hba->saved_uic_err &&
6483 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6484 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6485
6486 spin_unlock_irqrestore(hba->host->host_lock, flags);
6487 ufshcd_print_host_state(hba);
6488 ufshcd_print_pwr_info(hba);
6489 ufshcd_print_evt_hist(hba);
6490 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6491 ufshcd_print_trs_all(hba, pr_prdt);
6492 spin_lock_irqsave(hba->host->host_lock, flags);
6493 }
6494
6495 /*
6496 * if host reset is required then skip clearing the pending
6497 * transfers forcefully because they will get cleared during
6498 * host reset and restore
6499 */
6500 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6501 ufshcd_is_saved_err_fatal(hba) ||
6502 ((hba->saved_err & UIC_ERROR) &&
6503 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6504 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6505 needs_reset = true;
6506 goto do_reset;
6507 }
6508
6509 /*
6510 * If LINERESET was caught, UFS might have been put to PWM mode,
6511 * check if power mode restore is needed.
6512 */
6513 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6514 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6515 if (!hba->saved_uic_err)
6516 hba->saved_err &= ~UIC_ERROR;
6517 spin_unlock_irqrestore(hba->host->host_lock, flags);
6518 if (ufshcd_is_pwr_mode_restore_needed(hba))
6519 needs_restore = true;
6520 spin_lock_irqsave(hba->host->host_lock, flags);
6521 if (!hba->saved_err && !needs_restore)
6522 goto skip_err_handling;
6523 }
6524
6525 hba->silence_err_logs = true;
6526 /* release lock as clear command might sleep */
6527 spin_unlock_irqrestore(hba->host->host_lock, flags);
6528
6529 needs_reset = ufshcd_abort_all(hba);
6530
6531 spin_lock_irqsave(hba->host->host_lock, flags);
6532 hba->silence_err_logs = false;
6533 if (needs_reset)
6534 goto do_reset;
6535
6536 /*
6537 * After all reqs and tasks are cleared from doorbell,
6538 * now it is safe to retore power mode.
6539 */
6540 if (needs_restore) {
6541 spin_unlock_irqrestore(hba->host->host_lock, flags);
6542 /*
6543 * Hold the scaling lock just in case dev cmds
6544 * are sent via bsg and/or sysfs.
6545 */
6546 down_write(&hba->clk_scaling_lock);
6547 hba->force_pmc = true;
6548 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6549 if (pmc_err) {
6550 needs_reset = true;
6551 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6552 __func__, pmc_err);
6553 }
6554 hba->force_pmc = false;
6555 ufshcd_print_pwr_info(hba);
6556 up_write(&hba->clk_scaling_lock);
6557 spin_lock_irqsave(hba->host->host_lock, flags);
6558 }
6559
6560 do_reset:
6561 /* Fatal errors need reset */
6562 if (needs_reset) {
6563 int err;
6564
6565 hba->force_reset = false;
6566 spin_unlock_irqrestore(hba->host->host_lock, flags);
6567 err = ufshcd_reset_and_restore(hba);
6568 if (err)
6569 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6570 __func__, err);
6571 else
6572 ufshcd_recover_pm_error(hba);
6573 spin_lock_irqsave(hba->host->host_lock, flags);
6574 }
6575
6576 skip_err_handling:
6577 if (!needs_reset) {
6578 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6579 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6580 if (hba->saved_err || hba->saved_uic_err)
6581 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6582 __func__, hba->saved_err, hba->saved_uic_err);
6583 }
6584 /* Exit in an operational state or dead */
6585 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6586 hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6587 if (--retries)
6588 goto again;
6589 hba->ufshcd_state = UFSHCD_STATE_ERROR;
6590 }
6591 ufshcd_clear_eh_in_progress(hba);
6592 spin_unlock_irqrestore(hba->host->host_lock, flags);
6593 ufshcd_err_handling_unprepare(hba);
6594 up(&hba->host_sem);
6595
6596 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6597 ufshcd_state_name[hba->ufshcd_state]);
6598 }
6599
6600 /**
6601 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6602 * @hba: per-adapter instance
6603 *
6604 * Return:
6605 * IRQ_HANDLED - If interrupt is valid
6606 * IRQ_NONE - If invalid interrupt
6607 */
ufshcd_update_uic_error(struct ufs_hba * hba)6608 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6609 {
6610 u32 reg;
6611 irqreturn_t retval = IRQ_NONE;
6612
6613 /* PHY layer error */
6614 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6615 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6616 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6617 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6618 /*
6619 * To know whether this error is fatal or not, DB timeout
6620 * must be checked but this error is handled separately.
6621 */
6622 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6623 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6624 __func__);
6625
6626 /* Got a LINERESET indication. */
6627 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6628 struct uic_command *cmd = NULL;
6629
6630 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6631 if (hba->uic_async_done && hba->active_uic_cmd)
6632 cmd = hba->active_uic_cmd;
6633 /*
6634 * Ignore the LINERESET during power mode change
6635 * operation via DME_SET command.
6636 */
6637 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6638 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6639 }
6640 retval |= IRQ_HANDLED;
6641 }
6642
6643 /* PA_INIT_ERROR is fatal and needs UIC reset */
6644 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6645 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6646 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6647 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6648
6649 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6650 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6651 else if (hba->dev_quirks &
6652 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6653 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6654 hba->uic_error |=
6655 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6656 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6657 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6658 }
6659 retval |= IRQ_HANDLED;
6660 }
6661
6662 /* UIC NL/TL/DME errors needs software retry */
6663 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6664 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6665 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6666 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6667 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6668 retval |= IRQ_HANDLED;
6669 }
6670
6671 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6672 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6673 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6674 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6675 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6676 retval |= IRQ_HANDLED;
6677 }
6678
6679 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6680 if ((reg & UIC_DME_ERROR) &&
6681 (reg & UIC_DME_ERROR_CODE_MASK)) {
6682 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6683 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6684 retval |= IRQ_HANDLED;
6685 }
6686
6687 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6688 __func__, hba->uic_error);
6689 return retval;
6690 }
6691
6692 /**
6693 * ufshcd_check_errors - Check for errors that need s/w attention
6694 * @hba: per-adapter instance
6695 * @intr_status: interrupt status generated by the controller
6696 *
6697 * Return:
6698 * IRQ_HANDLED - If interrupt is valid
6699 * IRQ_NONE - If invalid interrupt
6700 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6701 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6702 {
6703 bool queue_eh_work = false;
6704 irqreturn_t retval = IRQ_NONE;
6705
6706 spin_lock(hba->host->host_lock);
6707 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6708
6709 if (hba->errors & INT_FATAL_ERRORS) {
6710 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6711 hba->errors);
6712 queue_eh_work = true;
6713 }
6714
6715 if (hba->errors & UIC_ERROR) {
6716 hba->uic_error = 0;
6717 retval = ufshcd_update_uic_error(hba);
6718 if (hba->uic_error)
6719 queue_eh_work = true;
6720 }
6721
6722 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6723 dev_err(hba->dev,
6724 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6725 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6726 "Enter" : "Exit",
6727 hba->errors, ufshcd_get_upmcrs(hba));
6728 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6729 hba->errors);
6730 ufshcd_set_link_broken(hba);
6731 queue_eh_work = true;
6732 }
6733
6734 if (queue_eh_work) {
6735 /*
6736 * update the transfer error masks to sticky bits, let's do this
6737 * irrespective of current ufshcd_state.
6738 */
6739 hba->saved_err |= hba->errors;
6740 hba->saved_uic_err |= hba->uic_error;
6741
6742 /* dump controller state before resetting */
6743 if ((hba->saved_err &
6744 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6745 (hba->saved_uic_err &&
6746 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6747 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6748 __func__, hba->saved_err,
6749 hba->saved_uic_err);
6750 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6751 "host_regs: ");
6752 ufshcd_print_pwr_info(hba);
6753 }
6754 ufshcd_schedule_eh_work(hba);
6755 retval |= IRQ_HANDLED;
6756 }
6757 /*
6758 * if (!queue_eh_work) -
6759 * Other errors are either non-fatal where host recovers
6760 * itself without s/w intervention or errors that will be
6761 * handled by the SCSI core layer.
6762 */
6763 hba->errors = 0;
6764 hba->uic_error = 0;
6765 spin_unlock(hba->host->host_lock);
6766 return retval;
6767 }
6768
6769 /**
6770 * ufshcd_tmc_handler - handle task management function completion
6771 * @hba: per adapter instance
6772 *
6773 * Return:
6774 * IRQ_HANDLED - If interrupt is valid
6775 * IRQ_NONE - If invalid interrupt
6776 */
ufshcd_tmc_handler(struct ufs_hba * hba)6777 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6778 {
6779 unsigned long flags, pending, issued;
6780 irqreturn_t ret = IRQ_NONE;
6781 int tag;
6782
6783 spin_lock_irqsave(hba->host->host_lock, flags);
6784 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6785 issued = hba->outstanding_tasks & ~pending;
6786 for_each_set_bit(tag, &issued, hba->nutmrs) {
6787 struct request *req = hba->tmf_rqs[tag];
6788 struct completion *c = req->end_io_data;
6789
6790 complete(c);
6791 ret = IRQ_HANDLED;
6792 }
6793 spin_unlock_irqrestore(hba->host->host_lock, flags);
6794
6795 return ret;
6796 }
6797
6798 /**
6799 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6800 * @hba: per adapter instance
6801 *
6802 * Return: IRQ_HANDLED if interrupt is handled.
6803 */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6804 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6805 {
6806 struct ufs_hw_queue *hwq;
6807 unsigned long outstanding_cqs;
6808 unsigned int nr_queues;
6809 int i, ret;
6810 u32 events;
6811
6812 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6813 if (ret)
6814 outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6815
6816 /* Exclude the poll queues */
6817 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6818 for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6819 hwq = &hba->uhq[i];
6820
6821 events = ufshcd_mcq_read_cqis(hba, i);
6822 if (events)
6823 ufshcd_mcq_write_cqis(hba, events, i);
6824
6825 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6826 ufshcd_mcq_poll_cqe_lock(hba, hwq);
6827 }
6828
6829 return IRQ_HANDLED;
6830 }
6831
6832 /**
6833 * ufshcd_sl_intr - Interrupt service routine
6834 * @hba: per adapter instance
6835 * @intr_status: contains interrupts generated by the controller
6836 *
6837 * Return:
6838 * IRQ_HANDLED - If interrupt is valid
6839 * IRQ_NONE - If invalid interrupt
6840 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6841 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6842 {
6843 irqreturn_t retval = IRQ_NONE;
6844
6845 if (intr_status & UFSHCD_UIC_MASK)
6846 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6847
6848 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6849 retval |= ufshcd_check_errors(hba, intr_status);
6850
6851 if (intr_status & UTP_TASK_REQ_COMPL)
6852 retval |= ufshcd_tmc_handler(hba);
6853
6854 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6855 retval |= ufshcd_transfer_req_compl(hba);
6856
6857 if (intr_status & MCQ_CQ_EVENT_STATUS)
6858 retval |= ufshcd_handle_mcq_cq_events(hba);
6859
6860 return retval;
6861 }
6862
6863 /**
6864 * ufshcd_intr - Main interrupt service routine
6865 * @irq: irq number
6866 * @__hba: pointer to adapter instance
6867 *
6868 * Return:
6869 * IRQ_HANDLED - If interrupt is valid
6870 * IRQ_NONE - If invalid interrupt
6871 */
ufshcd_intr(int irq,void * __hba)6872 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6873 {
6874 u32 intr_status, enabled_intr_status = 0;
6875 irqreturn_t retval = IRQ_NONE;
6876 struct ufs_hba *hba = __hba;
6877 int retries = hba->nutrs;
6878
6879 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6880 hba->ufs_stats.last_intr_status = intr_status;
6881 hba->ufs_stats.last_intr_ts = local_clock();
6882
6883 /*
6884 * There could be max of hba->nutrs reqs in flight and in worst case
6885 * if the reqs get finished 1 by 1 after the interrupt status is
6886 * read, make sure we handle them by checking the interrupt status
6887 * again in a loop until we process all of the reqs before returning.
6888 */
6889 while (intr_status && retries--) {
6890 enabled_intr_status =
6891 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6892 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6893 if (enabled_intr_status)
6894 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6895
6896 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6897 }
6898
6899 if (enabled_intr_status && retval == IRQ_NONE &&
6900 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6901 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6902 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6903 __func__,
6904 intr_status,
6905 hba->ufs_stats.last_intr_status,
6906 enabled_intr_status);
6907 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6908 }
6909
6910 return retval;
6911 }
6912
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6913 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6914 {
6915 int err = 0;
6916 u32 mask = 1 << tag;
6917 unsigned long flags;
6918
6919 if (!test_bit(tag, &hba->outstanding_tasks))
6920 goto out;
6921
6922 spin_lock_irqsave(hba->host->host_lock, flags);
6923 ufshcd_utmrl_clear(hba, tag);
6924 spin_unlock_irqrestore(hba->host->host_lock, flags);
6925
6926 /* poll for max. 1 sec to clear door bell register by h/w */
6927 err = ufshcd_wait_for_register(hba,
6928 REG_UTP_TASK_REQ_DOOR_BELL,
6929 mask, 0, 1000, 1000);
6930
6931 dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6932 tag, err < 0 ? "failed" : "succeeded");
6933
6934 out:
6935 return err;
6936 }
6937
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6938 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6939 struct utp_task_req_desc *treq, u8 tm_function)
6940 {
6941 struct request_queue *q = hba->tmf_queue;
6942 struct Scsi_Host *host = hba->host;
6943 DECLARE_COMPLETION_ONSTACK(wait);
6944 struct request *req;
6945 unsigned long flags;
6946 int task_tag, err;
6947
6948 /*
6949 * blk_mq_alloc_request() is used here only to get a free tag.
6950 */
6951 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6952 if (IS_ERR(req))
6953 return PTR_ERR(req);
6954
6955 req->end_io_data = &wait;
6956 ufshcd_hold(hba);
6957
6958 spin_lock_irqsave(host->host_lock, flags);
6959
6960 task_tag = req->tag;
6961 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6962 task_tag);
6963 hba->tmf_rqs[req->tag] = req;
6964 treq->upiu_req.req_header.task_tag = task_tag;
6965
6966 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6967 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6968
6969 /* send command to the controller */
6970 __set_bit(task_tag, &hba->outstanding_tasks);
6971
6972 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6973 /* Make sure that doorbell is committed immediately */
6974 wmb();
6975
6976 spin_unlock_irqrestore(host->host_lock, flags);
6977
6978 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6979
6980 /* wait until the task management command is completed */
6981 err = wait_for_completion_io_timeout(&wait,
6982 msecs_to_jiffies(TM_CMD_TIMEOUT));
6983 if (!err) {
6984 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6985 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6986 __func__, tm_function);
6987 if (ufshcd_clear_tm_cmd(hba, task_tag))
6988 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6989 __func__, task_tag);
6990 err = -ETIMEDOUT;
6991 } else {
6992 err = 0;
6993 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6994
6995 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6996 }
6997
6998 spin_lock_irqsave(hba->host->host_lock, flags);
6999 hba->tmf_rqs[req->tag] = NULL;
7000 __clear_bit(task_tag, &hba->outstanding_tasks);
7001 spin_unlock_irqrestore(hba->host->host_lock, flags);
7002
7003 ufshcd_release(hba);
7004 blk_mq_free_request(req);
7005
7006 return err;
7007 }
7008
7009 /**
7010 * ufshcd_issue_tm_cmd - issues task management commands to controller
7011 * @hba: per adapter instance
7012 * @lun_id: LUN ID to which TM command is sent
7013 * @task_id: task ID to which the TM command is applicable
7014 * @tm_function: task management function opcode
7015 * @tm_response: task management service response return value
7016 *
7017 * Return: non-zero value on error, zero on success.
7018 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7019 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7020 u8 tm_function, u8 *tm_response)
7021 {
7022 struct utp_task_req_desc treq = { };
7023 enum utp_ocs ocs_value;
7024 int err;
7025
7026 /* Configure task request descriptor */
7027 treq.header.interrupt = 1;
7028 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7029
7030 /* Configure task request UPIU */
7031 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7032 treq.upiu_req.req_header.lun = lun_id;
7033 treq.upiu_req.req_header.tm_function = tm_function;
7034
7035 /*
7036 * The host shall provide the same value for LUN field in the basic
7037 * header and for Input Parameter.
7038 */
7039 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7040 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7041
7042 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7043 if (err == -ETIMEDOUT)
7044 return err;
7045
7046 ocs_value = treq.header.ocs & MASK_OCS;
7047 if (ocs_value != OCS_SUCCESS)
7048 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7049 __func__, ocs_value);
7050 else if (tm_response)
7051 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7052 MASK_TM_SERVICE_RESP;
7053 return err;
7054 }
7055
7056 /**
7057 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7058 * @hba: per-adapter instance
7059 * @req_upiu: upiu request
7060 * @rsp_upiu: upiu reply
7061 * @desc_buff: pointer to descriptor buffer, NULL if NA
7062 * @buff_len: descriptor size, 0 if NA
7063 * @cmd_type: specifies the type (NOP, Query...)
7064 * @desc_op: descriptor operation
7065 *
7066 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7067 * Therefore, it "rides" the device management infrastructure: uses its tag and
7068 * tasks work queues.
7069 *
7070 * Since there is only one available tag for device management commands,
7071 * the caller is expected to hold the hba->dev_cmd.lock mutex.
7072 *
7073 * Return: 0 upon success; < 0 upon failure.
7074 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7075 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7076 struct utp_upiu_req *req_upiu,
7077 struct utp_upiu_req *rsp_upiu,
7078 u8 *desc_buff, int *buff_len,
7079 enum dev_cmd_type cmd_type,
7080 enum query_opcode desc_op)
7081 {
7082 DECLARE_COMPLETION_ONSTACK(wait);
7083 const u32 tag = hba->reserved_slot;
7084 struct ufshcd_lrb *lrbp;
7085 int err = 0;
7086 u8 upiu_flags;
7087
7088 /* Protects use of hba->reserved_slot. */
7089 lockdep_assert_held(&hba->dev_cmd.lock);
7090
7091 down_read(&hba->clk_scaling_lock);
7092
7093 lrbp = &hba->lrb[tag];
7094 lrbp->cmd = NULL;
7095 lrbp->task_tag = tag;
7096 lrbp->lun = 0;
7097 lrbp->intr_cmd = true;
7098 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7099 hba->dev_cmd.type = cmd_type;
7100
7101 if (hba->ufs_version <= ufshci_version(1, 1))
7102 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7103 else
7104 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7105
7106 /* update the task tag in the request upiu */
7107 req_upiu->header.task_tag = tag;
7108
7109 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7110
7111 /* just copy the upiu request as it is */
7112 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7113 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7114 /* The Data Segment Area is optional depending upon the query
7115 * function value. for WRITE DESCRIPTOR, the data segment
7116 * follows right after the tsf.
7117 */
7118 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7119 *buff_len = 0;
7120 }
7121
7122 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7123
7124 hba->dev_cmd.complete = &wait;
7125
7126 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7127
7128 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7129 /*
7130 * ignore the returning value here - ufshcd_check_query_response is
7131 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7132 * read the response directly ignoring all errors.
7133 */
7134 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7135
7136 /* just copy the upiu response as it is */
7137 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7138 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7139 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7140 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7141 .data_segment_length);
7142
7143 if (*buff_len >= resp_len) {
7144 memcpy(desc_buff, descp, resp_len);
7145 *buff_len = resp_len;
7146 } else {
7147 dev_warn(hba->dev,
7148 "%s: rsp size %d is bigger than buffer size %d",
7149 __func__, resp_len, *buff_len);
7150 *buff_len = 0;
7151 err = -EINVAL;
7152 }
7153 }
7154 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7155 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7156
7157 up_read(&hba->clk_scaling_lock);
7158 return err;
7159 }
7160
7161 /**
7162 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7163 * @hba: per-adapter instance
7164 * @req_upiu: upiu request
7165 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
7166 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
7167 * @desc_buff: pointer to descriptor buffer, NULL if NA
7168 * @buff_len: descriptor size, 0 if NA
7169 * @desc_op: descriptor operation
7170 *
7171 * Supports UTP Transfer requests (nop and query), and UTP Task
7172 * Management requests.
7173 * It is up to the caller to fill the upiu conent properly, as it will
7174 * be copied without any further input validations.
7175 *
7176 * Return: 0 upon success; < 0 upon failure.
7177 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7178 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7179 struct utp_upiu_req *req_upiu,
7180 struct utp_upiu_req *rsp_upiu,
7181 enum upiu_request_transaction msgcode,
7182 u8 *desc_buff, int *buff_len,
7183 enum query_opcode desc_op)
7184 {
7185 int err;
7186 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7187 struct utp_task_req_desc treq = { };
7188 enum utp_ocs ocs_value;
7189 u8 tm_f = req_upiu->header.tm_function;
7190
7191 switch (msgcode) {
7192 case UPIU_TRANSACTION_NOP_OUT:
7193 cmd_type = DEV_CMD_TYPE_NOP;
7194 fallthrough;
7195 case UPIU_TRANSACTION_QUERY_REQ:
7196 ufshcd_hold(hba);
7197 mutex_lock(&hba->dev_cmd.lock);
7198 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7199 desc_buff, buff_len,
7200 cmd_type, desc_op);
7201 mutex_unlock(&hba->dev_cmd.lock);
7202 ufshcd_release(hba);
7203
7204 break;
7205 case UPIU_TRANSACTION_TASK_REQ:
7206 treq.header.interrupt = 1;
7207 treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7208
7209 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7210
7211 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7212 if (err == -ETIMEDOUT)
7213 break;
7214
7215 ocs_value = treq.header.ocs & MASK_OCS;
7216 if (ocs_value != OCS_SUCCESS) {
7217 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7218 ocs_value);
7219 break;
7220 }
7221
7222 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7223
7224 break;
7225 default:
7226 err = -EINVAL;
7227
7228 break;
7229 }
7230
7231 return err;
7232 }
7233
7234 /**
7235 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7236 * @hba: per adapter instance
7237 * @req_upiu: upiu request
7238 * @rsp_upiu: upiu reply
7239 * @req_ehs: EHS field which contains Advanced RPMB Request Message
7240 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message
7241 * @sg_cnt: The number of sg lists actually used
7242 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7243 * @dir: DMA direction
7244 *
7245 * Return: zero on success, non-zero on failure.
7246 */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7247 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7248 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7249 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7250 enum dma_data_direction dir)
7251 {
7252 DECLARE_COMPLETION_ONSTACK(wait);
7253 const u32 tag = hba->reserved_slot;
7254 struct ufshcd_lrb *lrbp;
7255 int err = 0;
7256 int result;
7257 u8 upiu_flags;
7258 u8 *ehs_data;
7259 u16 ehs_len;
7260
7261 /* Protects use of hba->reserved_slot. */
7262 ufshcd_hold(hba);
7263 mutex_lock(&hba->dev_cmd.lock);
7264 down_read(&hba->clk_scaling_lock);
7265
7266 lrbp = &hba->lrb[tag];
7267 lrbp->cmd = NULL;
7268 lrbp->task_tag = tag;
7269 lrbp->lun = UFS_UPIU_RPMB_WLUN;
7270
7271 lrbp->intr_cmd = true;
7272 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7273 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7274
7275 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7276 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7277
7278 /*
7279 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7280 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7281 * HW controller takes EHS length from UTRD.
7282 */
7283 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7284 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7285 else
7286 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7287
7288 /* update the task tag */
7289 req_upiu->header.task_tag = tag;
7290
7291 /* copy the UPIU(contains CDB) request as it is */
7292 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7293 /* Copy EHS, starting with byte32, immediately after the CDB package */
7294 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7295
7296 if (dir != DMA_NONE && sg_list)
7297 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7298
7299 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7300
7301 hba->dev_cmd.complete = &wait;
7302
7303 ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7304
7305 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7306
7307 if (!err) {
7308 /* Just copy the upiu response as it is */
7309 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7310 /* Get the response UPIU result */
7311 result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7312 lrbp->ucd_rsp_ptr->header.status;
7313
7314 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7315 /*
7316 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7317 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7318 * Message is 02h
7319 */
7320 if (ehs_len == 2 && rsp_ehs) {
7321 /*
7322 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7323 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7324 */
7325 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7326 memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7327 }
7328 }
7329
7330 up_read(&hba->clk_scaling_lock);
7331 mutex_unlock(&hba->dev_cmd.lock);
7332 ufshcd_release(hba);
7333 return err ? : result;
7334 }
7335
7336 /**
7337 * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7338 * @cmd: SCSI command pointer
7339 *
7340 * Return: SUCCESS or FAILED.
7341 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7342 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7343 {
7344 unsigned long flags, pending_reqs = 0, not_cleared = 0;
7345 struct Scsi_Host *host;
7346 struct ufs_hba *hba;
7347 struct ufs_hw_queue *hwq;
7348 struct ufshcd_lrb *lrbp;
7349 u32 pos, not_cleared_mask = 0;
7350 int err;
7351 u8 resp = 0xF, lun;
7352
7353 host = cmd->device->host;
7354 hba = shost_priv(host);
7355
7356 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7357 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7358 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7359 if (!err)
7360 err = resp;
7361 goto out;
7362 }
7363
7364 if (is_mcq_enabled(hba)) {
7365 for (pos = 0; pos < hba->nutrs; pos++) {
7366 lrbp = &hba->lrb[pos];
7367 if (ufshcd_cmd_inflight(lrbp->cmd) &&
7368 lrbp->lun == lun) {
7369 ufshcd_clear_cmd(hba, pos);
7370 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7371 ufshcd_mcq_poll_cqe_lock(hba, hwq);
7372 }
7373 }
7374 err = 0;
7375 goto out;
7376 }
7377
7378 /* clear the commands that were pending for corresponding LUN */
7379 spin_lock_irqsave(&hba->outstanding_lock, flags);
7380 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7381 if (hba->lrb[pos].lun == lun)
7382 __set_bit(pos, &pending_reqs);
7383 hba->outstanding_reqs &= ~pending_reqs;
7384 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7385
7386 for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7387 if (ufshcd_clear_cmd(hba, pos) < 0) {
7388 spin_lock_irqsave(&hba->outstanding_lock, flags);
7389 not_cleared = 1U << pos &
7390 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7391 hba->outstanding_reqs |= not_cleared;
7392 not_cleared_mask |= not_cleared;
7393 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7394
7395 dev_err(hba->dev, "%s: failed to clear request %d\n",
7396 __func__, pos);
7397 }
7398 }
7399 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7400
7401 out:
7402 hba->req_abort_count = 0;
7403 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7404 if (!err) {
7405 err = SUCCESS;
7406 } else {
7407 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7408 err = FAILED;
7409 }
7410 return err;
7411 }
7412
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7413 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7414 {
7415 struct ufshcd_lrb *lrbp;
7416 int tag;
7417
7418 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7419 lrbp = &hba->lrb[tag];
7420 lrbp->req_abort_skip = true;
7421 }
7422 }
7423
7424 /**
7425 * ufshcd_try_to_abort_task - abort a specific task
7426 * @hba: Pointer to adapter instance
7427 * @tag: Task tag/index to be aborted
7428 *
7429 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7430 * command, and in host controller by clearing the door-bell register. There can
7431 * be race between controller sending the command to the device while abort is
7432 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7433 * really issued and then try to abort it.
7434 *
7435 * Return: zero on success, non-zero on failure.
7436 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7437 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7438 {
7439 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7440 int err = 0;
7441 int poll_cnt;
7442 u8 resp = 0xF;
7443 u32 reg;
7444
7445 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7446 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7447 UFS_QUERY_TASK, &resp);
7448 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7449 /* cmd pending in the device */
7450 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7451 __func__, tag);
7452 break;
7453 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7454 /*
7455 * cmd not pending in the device, check if it is
7456 * in transition.
7457 */
7458 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7459 __func__, tag);
7460 if (is_mcq_enabled(hba)) {
7461 /* MCQ mode */
7462 if (ufshcd_cmd_inflight(lrbp->cmd)) {
7463 /* sleep for max. 200us same delay as in SDB mode */
7464 usleep_range(100, 200);
7465 continue;
7466 }
7467 /* command completed already */
7468 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7469 __func__, tag);
7470 goto out;
7471 }
7472
7473 /* Single Doorbell Mode */
7474 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7475 if (reg & (1 << tag)) {
7476 /* sleep for max. 200us to stabilize */
7477 usleep_range(100, 200);
7478 continue;
7479 }
7480 /* command completed already */
7481 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7482 __func__, tag);
7483 goto out;
7484 } else {
7485 dev_err(hba->dev,
7486 "%s: no response from device. tag = %d, err %d\n",
7487 __func__, tag, err);
7488 if (!err)
7489 err = resp; /* service response error */
7490 goto out;
7491 }
7492 }
7493
7494 if (!poll_cnt) {
7495 err = -EBUSY;
7496 goto out;
7497 }
7498
7499 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7500 UFS_ABORT_TASK, &resp);
7501 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7502 if (!err) {
7503 err = resp; /* service response error */
7504 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7505 __func__, tag, err);
7506 }
7507 goto out;
7508 }
7509
7510 err = ufshcd_clear_cmd(hba, tag);
7511 if (err)
7512 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7513 __func__, tag, err);
7514
7515 out:
7516 return err;
7517 }
7518
7519 /**
7520 * ufshcd_abort - scsi host template eh_abort_handler callback
7521 * @cmd: SCSI command pointer
7522 *
7523 * Return: SUCCESS or FAILED.
7524 */
ufshcd_abort(struct scsi_cmnd * cmd)7525 static int ufshcd_abort(struct scsi_cmnd *cmd)
7526 {
7527 struct Scsi_Host *host = cmd->device->host;
7528 struct ufs_hba *hba = shost_priv(host);
7529 int tag = scsi_cmd_to_rq(cmd)->tag;
7530 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7531 unsigned long flags;
7532 int err = FAILED;
7533 bool outstanding;
7534 u32 reg;
7535
7536 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7537
7538 ufshcd_hold(hba);
7539
7540 if (!is_mcq_enabled(hba)) {
7541 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7542 if (!test_bit(tag, &hba->outstanding_reqs)) {
7543 /* If command is already aborted/completed, return FAILED. */
7544 dev_err(hba->dev,
7545 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7546 __func__, tag, hba->outstanding_reqs, reg);
7547 goto release;
7548 }
7549 }
7550
7551 /* Print Transfer Request of aborted task */
7552 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7553
7554 /*
7555 * Print detailed info about aborted request.
7556 * As more than one request might get aborted at the same time,
7557 * print full information only for the first aborted request in order
7558 * to reduce repeated printouts. For other aborted requests only print
7559 * basic details.
7560 */
7561 scsi_print_command(cmd);
7562 if (!hba->req_abort_count) {
7563 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7564 ufshcd_print_evt_hist(hba);
7565 ufshcd_print_host_state(hba);
7566 ufshcd_print_pwr_info(hba);
7567 ufshcd_print_tr(hba, tag, true);
7568 } else {
7569 ufshcd_print_tr(hba, tag, false);
7570 }
7571 hba->req_abort_count++;
7572
7573 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7574 /* only execute this code in single doorbell mode */
7575 dev_err(hba->dev,
7576 "%s: cmd was completed, but without a notifying intr, tag = %d",
7577 __func__, tag);
7578 __ufshcd_transfer_req_compl(hba, 1UL << tag);
7579 goto release;
7580 }
7581
7582 /*
7583 * Task abort to the device W-LUN is illegal. When this command
7584 * will fail, due to spec violation, scsi err handling next step
7585 * will be to send LU reset which, again, is a spec violation.
7586 * To avoid these unnecessary/illegal steps, first we clean up
7587 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7588 * then queue the eh_work and bail.
7589 */
7590 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7591 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7592
7593 spin_lock_irqsave(host->host_lock, flags);
7594 hba->force_reset = true;
7595 ufshcd_schedule_eh_work(hba);
7596 spin_unlock_irqrestore(host->host_lock, flags);
7597 goto release;
7598 }
7599
7600 if (is_mcq_enabled(hba)) {
7601 /* MCQ mode. Branch off to handle abort for mcq mode */
7602 err = ufshcd_mcq_abort(cmd);
7603 goto release;
7604 }
7605
7606 /* Skip task abort in case previous aborts failed and report failure */
7607 if (lrbp->req_abort_skip) {
7608 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7609 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7610 goto release;
7611 }
7612
7613 err = ufshcd_try_to_abort_task(hba, tag);
7614 if (err) {
7615 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7616 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7617 err = FAILED;
7618 goto release;
7619 }
7620
7621 /*
7622 * Clear the corresponding bit from outstanding_reqs since the command
7623 * has been aborted successfully.
7624 */
7625 spin_lock_irqsave(&hba->outstanding_lock, flags);
7626 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7627 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7628
7629 if (outstanding)
7630 ufshcd_release_scsi_cmd(hba, lrbp);
7631
7632 err = SUCCESS;
7633
7634 release:
7635 /* Matches the ufshcd_hold() call at the start of this function. */
7636 ufshcd_release(hba);
7637 return err;
7638 }
7639
7640 /**
7641 * ufshcd_host_reset_and_restore - reset and restore host controller
7642 * @hba: per-adapter instance
7643 *
7644 * Note that host controller reset may issue DME_RESET to
7645 * local and remote (device) Uni-Pro stack and the attributes
7646 * are reset to default state.
7647 *
7648 * Return: zero on success, non-zero on failure.
7649 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7650 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7651 {
7652 int err;
7653
7654 /*
7655 * Stop the host controller and complete the requests
7656 * cleared by h/w
7657 */
7658 ufshcd_hba_stop(hba);
7659 hba->silence_err_logs = true;
7660 ufshcd_complete_requests(hba, true);
7661 hba->silence_err_logs = false;
7662
7663 /* scale up clocks to max frequency before full reinitialization */
7664 ufshcd_scale_clks(hba, true);
7665
7666 err = ufshcd_hba_enable(hba);
7667
7668 /* Establish the link again and restore the device */
7669 if (!err)
7670 err = ufshcd_probe_hba(hba, false);
7671
7672 if (err)
7673 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7674 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7675 return err;
7676 }
7677
7678 /**
7679 * ufshcd_reset_and_restore - reset and re-initialize host/device
7680 * @hba: per-adapter instance
7681 *
7682 * Reset and recover device, host and re-establish link. This
7683 * is helpful to recover the communication in fatal error conditions.
7684 *
7685 * Return: zero on success, non-zero on failure.
7686 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7687 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7688 {
7689 u32 saved_err = 0;
7690 u32 saved_uic_err = 0;
7691 int err = 0;
7692 unsigned long flags;
7693 int retries = MAX_HOST_RESET_RETRIES;
7694
7695 spin_lock_irqsave(hba->host->host_lock, flags);
7696 do {
7697 /*
7698 * This is a fresh start, cache and clear saved error first,
7699 * in case new error generated during reset and restore.
7700 */
7701 saved_err |= hba->saved_err;
7702 saved_uic_err |= hba->saved_uic_err;
7703 hba->saved_err = 0;
7704 hba->saved_uic_err = 0;
7705 hba->force_reset = false;
7706 hba->ufshcd_state = UFSHCD_STATE_RESET;
7707 spin_unlock_irqrestore(hba->host->host_lock, flags);
7708
7709 /* Reset the attached device */
7710 ufshcd_device_reset(hba);
7711
7712 err = ufshcd_host_reset_and_restore(hba);
7713
7714 spin_lock_irqsave(hba->host->host_lock, flags);
7715 if (err)
7716 continue;
7717 /* Do not exit unless operational or dead */
7718 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7719 hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7720 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7721 err = -EAGAIN;
7722 } while (err && --retries);
7723
7724 /*
7725 * Inform scsi mid-layer that we did reset and allow to handle
7726 * Unit Attention properly.
7727 */
7728 scsi_report_bus_reset(hba->host, 0);
7729 if (err) {
7730 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7731 hba->saved_err |= saved_err;
7732 hba->saved_uic_err |= saved_uic_err;
7733 }
7734 spin_unlock_irqrestore(hba->host->host_lock, flags);
7735
7736 return err;
7737 }
7738
7739 /**
7740 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7741 * @cmd: SCSI command pointer
7742 *
7743 * Return: SUCCESS or FAILED.
7744 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7745 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7746 {
7747 int err = SUCCESS;
7748 unsigned long flags;
7749 struct ufs_hba *hba;
7750
7751 hba = shost_priv(cmd->device->host);
7752
7753 spin_lock_irqsave(hba->host->host_lock, flags);
7754 hba->force_reset = true;
7755 ufshcd_schedule_eh_work(hba);
7756 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7757 spin_unlock_irqrestore(hba->host->host_lock, flags);
7758
7759 flush_work(&hba->eh_work);
7760
7761 spin_lock_irqsave(hba->host->host_lock, flags);
7762 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7763 err = FAILED;
7764 spin_unlock_irqrestore(hba->host->host_lock, flags);
7765
7766 return err;
7767 }
7768
7769 /**
7770 * ufshcd_get_max_icc_level - calculate the ICC level
7771 * @sup_curr_uA: max. current supported by the regulator
7772 * @start_scan: row at the desc table to start scan from
7773 * @buff: power descriptor buffer
7774 *
7775 * Return: calculated max ICC level for specific regulator.
7776 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7777 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7778 const char *buff)
7779 {
7780 int i;
7781 int curr_uA;
7782 u16 data;
7783 u16 unit;
7784
7785 for (i = start_scan; i >= 0; i--) {
7786 data = get_unaligned_be16(&buff[2 * i]);
7787 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7788 ATTR_ICC_LVL_UNIT_OFFSET;
7789 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7790 switch (unit) {
7791 case UFSHCD_NANO_AMP:
7792 curr_uA = curr_uA / 1000;
7793 break;
7794 case UFSHCD_MILI_AMP:
7795 curr_uA = curr_uA * 1000;
7796 break;
7797 case UFSHCD_AMP:
7798 curr_uA = curr_uA * 1000 * 1000;
7799 break;
7800 case UFSHCD_MICRO_AMP:
7801 default:
7802 break;
7803 }
7804 if (sup_curr_uA >= curr_uA)
7805 break;
7806 }
7807 if (i < 0) {
7808 i = 0;
7809 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7810 }
7811
7812 return (u32)i;
7813 }
7814
7815 /**
7816 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7817 * In case regulators are not initialized we'll return 0
7818 * @hba: per-adapter instance
7819 * @desc_buf: power descriptor buffer to extract ICC levels from.
7820 *
7821 * Return: calculated ICC level.
7822 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7823 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7824 const u8 *desc_buf)
7825 {
7826 u32 icc_level = 0;
7827
7828 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7829 !hba->vreg_info.vccq2) {
7830 /*
7831 * Using dev_dbg to avoid messages during runtime PM to avoid
7832 * never-ending cycles of messages written back to storage by
7833 * user space causing runtime resume, causing more messages and
7834 * so on.
7835 */
7836 dev_dbg(hba->dev,
7837 "%s: Regulator capability was not set, actvIccLevel=%d",
7838 __func__, icc_level);
7839 goto out;
7840 }
7841
7842 if (hba->vreg_info.vcc->max_uA)
7843 icc_level = ufshcd_get_max_icc_level(
7844 hba->vreg_info.vcc->max_uA,
7845 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7846 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7847
7848 if (hba->vreg_info.vccq->max_uA)
7849 icc_level = ufshcd_get_max_icc_level(
7850 hba->vreg_info.vccq->max_uA,
7851 icc_level,
7852 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7853
7854 if (hba->vreg_info.vccq2->max_uA)
7855 icc_level = ufshcd_get_max_icc_level(
7856 hba->vreg_info.vccq2->max_uA,
7857 icc_level,
7858 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7859 out:
7860 return icc_level;
7861 }
7862
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7863 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7864 {
7865 int ret;
7866 u8 *desc_buf;
7867 u32 icc_level;
7868
7869 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7870 if (!desc_buf)
7871 return;
7872
7873 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7874 desc_buf, QUERY_DESC_MAX_SIZE);
7875 if (ret) {
7876 dev_err(hba->dev,
7877 "%s: Failed reading power descriptor ret = %d",
7878 __func__, ret);
7879 goto out;
7880 }
7881
7882 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7883 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7884
7885 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7886 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7887
7888 if (ret)
7889 dev_err(hba->dev,
7890 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7891 __func__, icc_level, ret);
7892
7893 out:
7894 kfree(desc_buf);
7895 }
7896
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7897 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7898 {
7899 scsi_autopm_get_device(sdev);
7900 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7901 if (sdev->rpm_autosuspend)
7902 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7903 RPM_AUTOSUSPEND_DELAY_MS);
7904 scsi_autopm_put_device(sdev);
7905 }
7906
7907 /**
7908 * ufshcd_scsi_add_wlus - Adds required W-LUs
7909 * @hba: per-adapter instance
7910 *
7911 * UFS device specification requires the UFS devices to support 4 well known
7912 * logical units:
7913 * "REPORT_LUNS" (address: 01h)
7914 * "UFS Device" (address: 50h)
7915 * "RPMB" (address: 44h)
7916 * "BOOT" (address: 30h)
7917 * UFS device's power management needs to be controlled by "POWER CONDITION"
7918 * field of SSU (START STOP UNIT) command. But this "power condition" field
7919 * will take effect only when its sent to "UFS device" well known logical unit
7920 * hence we require the scsi_device instance to represent this logical unit in
7921 * order for the UFS host driver to send the SSU command for power management.
7922 *
7923 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7924 * Block) LU so user space process can control this LU. User space may also
7925 * want to have access to BOOT LU.
7926 *
7927 * This function adds scsi device instances for each of all well known LUs
7928 * (except "REPORT LUNS" LU).
7929 *
7930 * Return: zero on success (all required W-LUs are added successfully),
7931 * non-zero error value on failure (if failed to add any of the required W-LU).
7932 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7933 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7934 {
7935 int ret = 0;
7936 struct scsi_device *sdev_boot, *sdev_rpmb;
7937
7938 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7939 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7940 if (IS_ERR(hba->ufs_device_wlun)) {
7941 ret = PTR_ERR(hba->ufs_device_wlun);
7942 hba->ufs_device_wlun = NULL;
7943 goto out;
7944 }
7945 scsi_device_put(hba->ufs_device_wlun);
7946
7947 sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7948 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7949 if (IS_ERR(sdev_rpmb)) {
7950 ret = PTR_ERR(sdev_rpmb);
7951 goto remove_ufs_device_wlun;
7952 }
7953 ufshcd_blk_pm_runtime_init(sdev_rpmb);
7954 scsi_device_put(sdev_rpmb);
7955
7956 sdev_boot = __scsi_add_device(hba->host, 0, 0,
7957 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7958 if (IS_ERR(sdev_boot)) {
7959 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7960 } else {
7961 ufshcd_blk_pm_runtime_init(sdev_boot);
7962 scsi_device_put(sdev_boot);
7963 }
7964 goto out;
7965
7966 remove_ufs_device_wlun:
7967 scsi_remove_device(hba->ufs_device_wlun);
7968 out:
7969 return ret;
7970 }
7971
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)7972 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7973 {
7974 struct ufs_dev_info *dev_info = &hba->dev_info;
7975 u8 lun;
7976 u32 d_lu_wb_buf_alloc;
7977 u32 ext_ufs_feature;
7978
7979 if (!ufshcd_is_wb_allowed(hba))
7980 return;
7981
7982 /*
7983 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7984 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7985 * enabled
7986 */
7987 if (!(dev_info->wspecversion >= 0x310 ||
7988 dev_info->wspecversion == 0x220 ||
7989 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7990 goto wb_disabled;
7991
7992 ext_ufs_feature = get_unaligned_be32(desc_buf +
7993 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7994
7995 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7996 goto wb_disabled;
7997
7998 /*
7999 * WB may be supported but not configured while provisioning. The spec
8000 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8001 * buffer configured.
8002 */
8003 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8004
8005 dev_info->b_presrv_uspc_en =
8006 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8007
8008 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8009 if (!get_unaligned_be32(desc_buf +
8010 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8011 goto wb_disabled;
8012 } else {
8013 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8014 d_lu_wb_buf_alloc = 0;
8015 ufshcd_read_unit_desc_param(hba,
8016 lun,
8017 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8018 (u8 *)&d_lu_wb_buf_alloc,
8019 sizeof(d_lu_wb_buf_alloc));
8020 if (d_lu_wb_buf_alloc) {
8021 dev_info->wb_dedicated_lu = lun;
8022 break;
8023 }
8024 }
8025
8026 if (!d_lu_wb_buf_alloc)
8027 goto wb_disabled;
8028 }
8029
8030 if (!ufshcd_is_wb_buf_lifetime_available(hba))
8031 goto wb_disabled;
8032
8033 return;
8034
8035 wb_disabled:
8036 hba->caps &= ~UFSHCD_CAP_WB_EN;
8037 }
8038
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8039 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8040 {
8041 struct ufs_dev_info *dev_info = &hba->dev_info;
8042 u32 ext_ufs_feature;
8043 u8 mask = 0;
8044
8045 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8046 return;
8047
8048 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8049
8050 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8051 mask |= MASK_EE_TOO_LOW_TEMP;
8052
8053 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8054 mask |= MASK_EE_TOO_HIGH_TEMP;
8055
8056 if (mask) {
8057 ufshcd_enable_ee(hba, mask);
8058 ufs_hwmon_probe(hba, mask);
8059 }
8060 }
8061
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8062 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8063 {
8064 struct ufs_dev_info *dev_info = &hba->dev_info;
8065 u32 ext_ufs_feature;
8066 u32 ext_iid_en = 0;
8067 int err;
8068
8069 /* Only UFS-4.0 and above may support EXT_IID */
8070 if (dev_info->wspecversion < 0x400)
8071 goto out;
8072
8073 ext_ufs_feature = get_unaligned_be32(desc_buf +
8074 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8075 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8076 goto out;
8077
8078 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8079 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8080 if (err)
8081 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8082
8083 out:
8084 dev_info->b_ext_iid_en = ext_iid_en;
8085 }
8086
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8087 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8088 const struct ufs_dev_quirk *fixups)
8089 {
8090 const struct ufs_dev_quirk *f;
8091 struct ufs_dev_info *dev_info = &hba->dev_info;
8092
8093 if (!fixups)
8094 return;
8095
8096 for (f = fixups; f->quirk; f++) {
8097 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8098 f->wmanufacturerid == UFS_ANY_VENDOR) &&
8099 ((dev_info->model &&
8100 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8101 !strcmp(f->model, UFS_ANY_MODEL)))
8102 hba->dev_quirks |= f->quirk;
8103 }
8104 }
8105 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8106
ufs_fixup_device_setup(struct ufs_hba * hba)8107 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8108 {
8109 /* fix by general quirk table */
8110 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8111
8112 /* allow vendors to fix quirks */
8113 ufshcd_vops_fixup_dev_quirks(hba);
8114 }
8115
ufs_get_device_desc(struct ufs_hba * hba)8116 static int ufs_get_device_desc(struct ufs_hba *hba)
8117 {
8118 int err;
8119 u8 model_index;
8120 u8 *desc_buf;
8121 struct ufs_dev_info *dev_info = &hba->dev_info;
8122
8123 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8124 if (!desc_buf) {
8125 err = -ENOMEM;
8126 goto out;
8127 }
8128
8129 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8130 QUERY_DESC_MAX_SIZE);
8131 if (err) {
8132 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8133 __func__, err);
8134 goto out;
8135 }
8136
8137 /*
8138 * getting vendor (manufacturerID) and Bank Index in big endian
8139 * format
8140 */
8141 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8142 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8143
8144 /* getting Specification Version in big endian format */
8145 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8146 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8147 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8148
8149 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8150
8151 err = ufshcd_read_string_desc(hba, model_index,
8152 &dev_info->model, SD_ASCII_STD);
8153 if (err < 0) {
8154 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8155 __func__, err);
8156 goto out;
8157 }
8158
8159 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8160 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8161
8162 ufs_fixup_device_setup(hba);
8163
8164 ufshcd_wb_probe(hba, desc_buf);
8165
8166 ufshcd_temp_notif_probe(hba, desc_buf);
8167
8168 if (hba->ext_iid_sup)
8169 ufshcd_ext_iid_probe(hba, desc_buf);
8170
8171 /*
8172 * ufshcd_read_string_desc returns size of the string
8173 * reset the error value
8174 */
8175 err = 0;
8176
8177 out:
8178 kfree(desc_buf);
8179 return err;
8180 }
8181
ufs_put_device_desc(struct ufs_hba * hba)8182 static void ufs_put_device_desc(struct ufs_hba *hba)
8183 {
8184 struct ufs_dev_info *dev_info = &hba->dev_info;
8185
8186 kfree(dev_info->model);
8187 dev_info->model = NULL;
8188 }
8189
8190 /**
8191 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8192 * @hba: per-adapter instance
8193 *
8194 * PA_TActivate parameter can be tuned manually if UniPro version is less than
8195 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8196 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8197 * the hibern8 exit latency.
8198 *
8199 * Return: zero on success, non-zero error value on failure.
8200 */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)8201 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8202 {
8203 int ret = 0;
8204 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8205
8206 ret = ufshcd_dme_peer_get(hba,
8207 UIC_ARG_MIB_SEL(
8208 RX_MIN_ACTIVATETIME_CAPABILITY,
8209 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8210 &peer_rx_min_activatetime);
8211 if (ret)
8212 goto out;
8213
8214 /* make sure proper unit conversion is applied */
8215 tuned_pa_tactivate =
8216 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8217 / PA_TACTIVATE_TIME_UNIT_US);
8218 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8219 tuned_pa_tactivate);
8220
8221 out:
8222 return ret;
8223 }
8224
8225 /**
8226 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8227 * @hba: per-adapter instance
8228 *
8229 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8230 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8231 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8232 * This optimal value can help reduce the hibern8 exit latency.
8233 *
8234 * Return: zero on success, non-zero error value on failure.
8235 */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)8236 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8237 {
8238 int ret = 0;
8239 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8240 u32 max_hibern8_time, tuned_pa_hibern8time;
8241
8242 ret = ufshcd_dme_get(hba,
8243 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8244 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8245 &local_tx_hibern8_time_cap);
8246 if (ret)
8247 goto out;
8248
8249 ret = ufshcd_dme_peer_get(hba,
8250 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8251 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8252 &peer_rx_hibern8_time_cap);
8253 if (ret)
8254 goto out;
8255
8256 max_hibern8_time = max(local_tx_hibern8_time_cap,
8257 peer_rx_hibern8_time_cap);
8258 /* make sure proper unit conversion is applied */
8259 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8260 / PA_HIBERN8_TIME_UNIT_US);
8261 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8262 tuned_pa_hibern8time);
8263 out:
8264 return ret;
8265 }
8266
8267 /**
8268 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8269 * less than device PA_TACTIVATE time.
8270 * @hba: per-adapter instance
8271 *
8272 * Some UFS devices require host PA_TACTIVATE to be lower than device
8273 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8274 * for such devices.
8275 *
8276 * Return: zero on success, non-zero error value on failure.
8277 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8278 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8279 {
8280 int ret = 0;
8281 u32 granularity, peer_granularity;
8282 u32 pa_tactivate, peer_pa_tactivate;
8283 u32 pa_tactivate_us, peer_pa_tactivate_us;
8284 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8285
8286 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8287 &granularity);
8288 if (ret)
8289 goto out;
8290
8291 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8292 &peer_granularity);
8293 if (ret)
8294 goto out;
8295
8296 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8297 (granularity > PA_GRANULARITY_MAX_VAL)) {
8298 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8299 __func__, granularity);
8300 return -EINVAL;
8301 }
8302
8303 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8304 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8305 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8306 __func__, peer_granularity);
8307 return -EINVAL;
8308 }
8309
8310 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8311 if (ret)
8312 goto out;
8313
8314 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8315 &peer_pa_tactivate);
8316 if (ret)
8317 goto out;
8318
8319 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8320 peer_pa_tactivate_us = peer_pa_tactivate *
8321 gran_to_us_table[peer_granularity - 1];
8322
8323 if (pa_tactivate_us >= peer_pa_tactivate_us) {
8324 u32 new_peer_pa_tactivate;
8325
8326 new_peer_pa_tactivate = pa_tactivate_us /
8327 gran_to_us_table[peer_granularity - 1];
8328 new_peer_pa_tactivate++;
8329 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8330 new_peer_pa_tactivate);
8331 }
8332
8333 out:
8334 return ret;
8335 }
8336
ufshcd_tune_unipro_params(struct ufs_hba * hba)8337 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8338 {
8339 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8340 ufshcd_tune_pa_tactivate(hba);
8341 ufshcd_tune_pa_hibern8time(hba);
8342 }
8343
8344 ufshcd_vops_apply_dev_quirks(hba);
8345
8346 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8347 /* set 1ms timeout for PA_TACTIVATE */
8348 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8349
8350 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8351 ufshcd_quirk_tune_host_pa_tactivate(hba);
8352 }
8353
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8354 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8355 {
8356 hba->ufs_stats.hibern8_exit_cnt = 0;
8357 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8358 hba->req_abort_count = 0;
8359 }
8360
ufshcd_device_geo_params_init(struct ufs_hba * hba)8361 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8362 {
8363 int err;
8364 u8 *desc_buf;
8365
8366 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8367 if (!desc_buf) {
8368 err = -ENOMEM;
8369 goto out;
8370 }
8371
8372 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8373 desc_buf, QUERY_DESC_MAX_SIZE);
8374 if (err) {
8375 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8376 __func__, err);
8377 goto out;
8378 }
8379
8380 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8381 hba->dev_info.max_lu_supported = 32;
8382 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8383 hba->dev_info.max_lu_supported = 8;
8384
8385 out:
8386 kfree(desc_buf);
8387 return err;
8388 }
8389
8390 struct ufs_ref_clk {
8391 unsigned long freq_hz;
8392 enum ufs_ref_clk_freq val;
8393 };
8394
8395 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8396 {19200000, REF_CLK_FREQ_19_2_MHZ},
8397 {26000000, REF_CLK_FREQ_26_MHZ},
8398 {38400000, REF_CLK_FREQ_38_4_MHZ},
8399 {52000000, REF_CLK_FREQ_52_MHZ},
8400 {0, REF_CLK_FREQ_INVAL},
8401 };
8402
8403 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8404 ufs_get_bref_clk_from_hz(unsigned long freq)
8405 {
8406 int i;
8407
8408 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8409 if (ufs_ref_clk_freqs[i].freq_hz == freq)
8410 return ufs_ref_clk_freqs[i].val;
8411
8412 return REF_CLK_FREQ_INVAL;
8413 }
8414
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8415 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8416 {
8417 unsigned long freq;
8418
8419 freq = clk_get_rate(refclk);
8420
8421 hba->dev_ref_clk_freq =
8422 ufs_get_bref_clk_from_hz(freq);
8423
8424 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8425 dev_err(hba->dev,
8426 "invalid ref_clk setting = %ld\n", freq);
8427 }
8428
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8429 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8430 {
8431 int err;
8432 u32 ref_clk;
8433 u32 freq = hba->dev_ref_clk_freq;
8434
8435 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8436 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8437
8438 if (err) {
8439 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8440 err);
8441 goto out;
8442 }
8443
8444 if (ref_clk == freq)
8445 goto out; /* nothing to update */
8446
8447 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8448 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8449
8450 if (err) {
8451 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8452 ufs_ref_clk_freqs[freq].freq_hz);
8453 goto out;
8454 }
8455
8456 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8457 ufs_ref_clk_freqs[freq].freq_hz);
8458
8459 out:
8460 return err;
8461 }
8462
ufshcd_device_params_init(struct ufs_hba * hba)8463 static int ufshcd_device_params_init(struct ufs_hba *hba)
8464 {
8465 bool flag;
8466 int ret;
8467
8468 /* Init UFS geometry descriptor related parameters */
8469 ret = ufshcd_device_geo_params_init(hba);
8470 if (ret)
8471 goto out;
8472
8473 /* Check and apply UFS device quirks */
8474 ret = ufs_get_device_desc(hba);
8475 if (ret) {
8476 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8477 __func__, ret);
8478 goto out;
8479 }
8480
8481 ufshcd_get_ref_clk_gating_wait(hba);
8482
8483 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8484 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8485 hba->dev_info.f_power_on_wp_en = flag;
8486
8487 /* Probe maximum power mode co-supported by both UFS host and device */
8488 if (ufshcd_get_max_pwr_mode(hba))
8489 dev_err(hba->dev,
8490 "%s: Failed getting max supported power mode\n",
8491 __func__);
8492 out:
8493 return ret;
8494 }
8495
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8496 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8497 {
8498 int err;
8499 struct ufs_query_req *request = NULL;
8500 struct ufs_query_res *response = NULL;
8501 struct ufs_dev_info *dev_info = &hba->dev_info;
8502 struct utp_upiu_query_v4_0 *upiu_data;
8503
8504 if (dev_info->wspecversion < 0x400)
8505 return;
8506
8507 ufshcd_hold(hba);
8508
8509 mutex_lock(&hba->dev_cmd.lock);
8510
8511 ufshcd_init_query(hba, &request, &response,
8512 UPIU_QUERY_OPCODE_WRITE_ATTR,
8513 QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8514
8515 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8516
8517 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8518
8519 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8520
8521 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8522
8523 if (err)
8524 dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8525 __func__, err);
8526
8527 mutex_unlock(&hba->dev_cmd.lock);
8528 ufshcd_release(hba);
8529 }
8530
8531 /**
8532 * ufshcd_add_lus - probe and add UFS logical units
8533 * @hba: per-adapter instance
8534 *
8535 * Return: 0 upon success; < 0 upon failure.
8536 */
ufshcd_add_lus(struct ufs_hba * hba)8537 static int ufshcd_add_lus(struct ufs_hba *hba)
8538 {
8539 int ret;
8540
8541 /* Add required well known logical units to scsi mid layer */
8542 ret = ufshcd_scsi_add_wlus(hba);
8543 if (ret)
8544 goto out;
8545
8546 /* Initialize devfreq after UFS device is detected */
8547 if (ufshcd_is_clkscaling_supported(hba)) {
8548 memcpy(&hba->clk_scaling.saved_pwr_info,
8549 &hba->pwr_info,
8550 sizeof(struct ufs_pa_layer_attr));
8551 hba->clk_scaling.is_allowed = true;
8552
8553 ret = ufshcd_devfreq_init(hba);
8554 if (ret)
8555 goto out;
8556
8557 hba->clk_scaling.is_enabled = true;
8558 ufshcd_init_clk_scaling_sysfs(hba);
8559 }
8560
8561 ufs_bsg_probe(hba);
8562 scsi_scan_host(hba->host);
8563
8564 out:
8565 return ret;
8566 }
8567
8568 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8569 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8570 {
8571 size_t ucdl_size, utrdl_size;
8572
8573 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8574 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8575 hba->ucdl_dma_addr);
8576
8577 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8578 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8579 hba->utrdl_dma_addr);
8580
8581 devm_kfree(hba->dev, hba->lrb);
8582 }
8583
ufshcd_alloc_mcq(struct ufs_hba * hba)8584 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8585 {
8586 int ret;
8587 int old_nutrs = hba->nutrs;
8588
8589 ret = ufshcd_mcq_decide_queue_depth(hba);
8590 if (ret < 0)
8591 return ret;
8592
8593 hba->nutrs = ret;
8594 ret = ufshcd_mcq_init(hba);
8595 if (ret)
8596 goto err;
8597
8598 /*
8599 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8600 * Number of supported tags in MCQ mode may be larger than SDB mode.
8601 */
8602 if (hba->nutrs != old_nutrs) {
8603 ufshcd_release_sdb_queue(hba, old_nutrs);
8604 ret = ufshcd_memory_alloc(hba);
8605 if (ret)
8606 goto err;
8607 ufshcd_host_memory_configure(hba);
8608 }
8609
8610 ret = ufshcd_mcq_memory_alloc(hba);
8611 if (ret)
8612 goto err;
8613
8614 return 0;
8615 err:
8616 hba->nutrs = old_nutrs;
8617 return ret;
8618 }
8619
ufshcd_config_mcq(struct ufs_hba * hba)8620 static void ufshcd_config_mcq(struct ufs_hba *hba)
8621 {
8622 int ret;
8623 u32 intrs;
8624
8625 ret = ufshcd_mcq_vops_config_esi(hba);
8626 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8627
8628 intrs = UFSHCD_ENABLE_MCQ_INTRS;
8629 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8630 intrs &= ~MCQ_CQ_EVENT_STATUS;
8631 ufshcd_enable_intr(hba, intrs);
8632 ufshcd_mcq_make_queues_operational(hba);
8633 ufshcd_mcq_config_mac(hba, hba->nutrs);
8634
8635 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8636 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8637
8638 /* Select MCQ mode */
8639 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8640 REG_UFS_MEM_CFG);
8641 hba->mcq_enabled = true;
8642
8643 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8644 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8645 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8646 hba->nutrs);
8647 }
8648
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8649 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8650 {
8651 int ret;
8652 struct Scsi_Host *host = hba->host;
8653
8654 hba->ufshcd_state = UFSHCD_STATE_RESET;
8655
8656 ret = ufshcd_link_startup(hba);
8657 if (ret)
8658 return ret;
8659
8660 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8661 return ret;
8662
8663 /* Debug counters initialization */
8664 ufshcd_clear_dbg_ufs_stats(hba);
8665
8666 /* UniPro link is active now */
8667 ufshcd_set_link_active(hba);
8668
8669 /* Reconfigure MCQ upon reset */
8670 if (is_mcq_enabled(hba) && !init_dev_params)
8671 ufshcd_config_mcq(hba);
8672
8673 /* Verify device initialization by sending NOP OUT UPIU */
8674 ret = ufshcd_verify_dev_init(hba);
8675 if (ret)
8676 return ret;
8677
8678 /* Initiate UFS initialization, and waiting until completion */
8679 ret = ufshcd_complete_dev_init(hba);
8680 if (ret)
8681 return ret;
8682
8683 /*
8684 * Initialize UFS device parameters used by driver, these
8685 * parameters are associated with UFS descriptors.
8686 */
8687 if (init_dev_params) {
8688 ret = ufshcd_device_params_init(hba);
8689 if (ret)
8690 return ret;
8691 if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8692 ret = ufshcd_alloc_mcq(hba);
8693 if (!ret) {
8694 ufshcd_config_mcq(hba);
8695 } else {
8696 /* Continue with SDB mode */
8697 use_mcq_mode = false;
8698 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8699 ret);
8700 }
8701 ret = scsi_add_host(host, hba->dev);
8702 if (ret) {
8703 dev_err(hba->dev, "scsi_add_host failed\n");
8704 return ret;
8705 }
8706 hba->scsi_host_added = true;
8707 } else if (is_mcq_supported(hba)) {
8708 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8709 ufshcd_config_mcq(hba);
8710 }
8711 }
8712
8713 ufshcd_tune_unipro_params(hba);
8714
8715 /* UFS device is also active now */
8716 ufshcd_set_ufs_dev_active(hba);
8717 ufshcd_force_reset_auto_bkops(hba);
8718
8719 ufshcd_set_timestamp_attr(hba);
8720
8721 /* Gear up to HS gear if supported */
8722 if (hba->max_pwr_info.is_valid) {
8723 /*
8724 * Set the right value to bRefClkFreq before attempting to
8725 * switch to HS gears.
8726 */
8727 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8728 ufshcd_set_dev_ref_clk(hba);
8729 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8730 if (ret) {
8731 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8732 __func__, ret);
8733 return ret;
8734 }
8735 }
8736
8737 return 0;
8738 }
8739
8740 /**
8741 * ufshcd_probe_hba - probe hba to detect device and initialize it
8742 * @hba: per-adapter instance
8743 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8744 *
8745 * Execute link-startup and verify device initialization
8746 *
8747 * Return: 0 upon success; < 0 upon failure.
8748 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8749 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8750 {
8751 ktime_t start = ktime_get();
8752 unsigned long flags;
8753 int ret;
8754
8755 ret = ufshcd_device_init(hba, init_dev_params);
8756 if (ret)
8757 goto out;
8758
8759 if (!hba->pm_op_in_progress &&
8760 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8761 /* Reset the device and controller before doing reinit */
8762 ufshcd_device_reset(hba);
8763 ufs_put_device_desc(hba);
8764 ufshcd_hba_stop(hba);
8765 ufshcd_vops_reinit_notify(hba);
8766 ret = ufshcd_hba_enable(hba);
8767 if (ret) {
8768 dev_err(hba->dev, "Host controller enable failed\n");
8769 ufshcd_print_evt_hist(hba);
8770 ufshcd_print_host_state(hba);
8771 goto out;
8772 }
8773
8774 /* Reinit the device */
8775 ret = ufshcd_device_init(hba, init_dev_params);
8776 if (ret)
8777 goto out;
8778 }
8779
8780 ufshcd_print_pwr_info(hba);
8781
8782 /*
8783 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8784 * and for removable UFS card as well, hence always set the parameter.
8785 * Note: Error handler may issue the device reset hence resetting
8786 * bActiveICCLevel as well so it is always safe to set this here.
8787 */
8788 ufshcd_set_active_icc_lvl(hba);
8789
8790 /* Enable UFS Write Booster if supported */
8791 ufshcd_configure_wb(hba);
8792
8793 if (hba->ee_usr_mask)
8794 ufshcd_write_ee_control(hba);
8795 /* Enable Auto-Hibernate if configured */
8796 ufshcd_auto_hibern8_enable(hba);
8797
8798 out:
8799 spin_lock_irqsave(hba->host->host_lock, flags);
8800 if (ret)
8801 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8802 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8803 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8804 spin_unlock_irqrestore(hba->host->host_lock, flags);
8805
8806 trace_ufshcd_init(dev_name(hba->dev), ret,
8807 ktime_to_us(ktime_sub(ktime_get(), start)),
8808 hba->curr_dev_pwr_mode, hba->uic_link_state);
8809 return ret;
8810 }
8811
8812 /**
8813 * ufshcd_async_scan - asynchronous execution for probing hba
8814 * @data: data pointer to pass to this function
8815 * @cookie: cookie data
8816 */
ufshcd_async_scan(void * data,async_cookie_t cookie)8817 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8818 {
8819 struct ufs_hba *hba = (struct ufs_hba *)data;
8820 int ret;
8821
8822 down(&hba->host_sem);
8823 /* Initialize hba, detect and initialize UFS device */
8824 ret = ufshcd_probe_hba(hba, true);
8825 up(&hba->host_sem);
8826 if (ret)
8827 goto out;
8828
8829 /* Probe and add UFS logical units */
8830 ret = ufshcd_add_lus(hba);
8831
8832 out:
8833 pm_runtime_put_sync(hba->dev);
8834
8835 if (ret)
8836 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8837 }
8838
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8839 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8840 {
8841 struct ufs_hba *hba = shost_priv(scmd->device->host);
8842
8843 if (!hba->system_suspending) {
8844 /* Activate the error handler in the SCSI core. */
8845 return SCSI_EH_NOT_HANDLED;
8846 }
8847
8848 /*
8849 * If we get here we know that no TMFs are outstanding and also that
8850 * the only pending command is a START STOP UNIT command. Handle the
8851 * timeout of that command directly to prevent a deadlock between
8852 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8853 */
8854 ufshcd_link_recovery(hba);
8855 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8856 __func__, hba->outstanding_tasks);
8857
8858 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8859 }
8860
8861 static const struct attribute_group *ufshcd_driver_groups[] = {
8862 &ufs_sysfs_unit_descriptor_group,
8863 &ufs_sysfs_lun_attributes_group,
8864 NULL,
8865 };
8866
8867 static struct ufs_hba_variant_params ufs_hba_vps = {
8868 .hba_enable_delay_us = 1000,
8869 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8870 .devfreq_profile.polling_ms = 100,
8871 .devfreq_profile.target = ufshcd_devfreq_target,
8872 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8873 .ondemand_data.upthreshold = 70,
8874 .ondemand_data.downdifferential = 5,
8875 };
8876
8877 static const struct scsi_host_template ufshcd_driver_template = {
8878 .module = THIS_MODULE,
8879 .name = UFSHCD,
8880 .proc_name = UFSHCD,
8881 .map_queues = ufshcd_map_queues,
8882 .queuecommand = ufshcd_queuecommand,
8883 .mq_poll = ufshcd_poll,
8884 .slave_alloc = ufshcd_slave_alloc,
8885 .slave_configure = ufshcd_slave_configure,
8886 .slave_destroy = ufshcd_slave_destroy,
8887 .change_queue_depth = ufshcd_change_queue_depth,
8888 .eh_abort_handler = ufshcd_abort,
8889 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8890 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8891 .eh_timed_out = ufshcd_eh_timed_out,
8892 .this_id = -1,
8893 .sg_tablesize = SG_ALL,
8894 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
8895 .can_queue = UFSHCD_CAN_QUEUE,
8896 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8897 .max_sectors = SZ_1M / SECTOR_SIZE,
8898 .max_host_blocked = 1,
8899 .track_queue_depth = 1,
8900 .skip_settle_delay = 1,
8901 .sdev_groups = ufshcd_driver_groups,
8902 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
8903 };
8904
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8905 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8906 int ua)
8907 {
8908 int ret;
8909
8910 if (!vreg)
8911 return 0;
8912
8913 /*
8914 * "set_load" operation shall be required on those regulators
8915 * which specifically configured current limitation. Otherwise
8916 * zero max_uA may cause unexpected behavior when regulator is
8917 * enabled or set as high power mode.
8918 */
8919 if (!vreg->max_uA)
8920 return 0;
8921
8922 ret = regulator_set_load(vreg->reg, ua);
8923 if (ret < 0) {
8924 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8925 __func__, vreg->name, ua, ret);
8926 }
8927
8928 return ret;
8929 }
8930
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8931 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8932 struct ufs_vreg *vreg)
8933 {
8934 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8935 }
8936
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8937 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8938 struct ufs_vreg *vreg)
8939 {
8940 if (!vreg)
8941 return 0;
8942
8943 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8944 }
8945
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8946 static int ufshcd_config_vreg(struct device *dev,
8947 struct ufs_vreg *vreg, bool on)
8948 {
8949 if (regulator_count_voltages(vreg->reg) <= 0)
8950 return 0;
8951
8952 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8953 }
8954
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8955 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8956 {
8957 int ret = 0;
8958
8959 if (!vreg || vreg->enabled)
8960 goto out;
8961
8962 ret = ufshcd_config_vreg(dev, vreg, true);
8963 if (!ret)
8964 ret = regulator_enable(vreg->reg);
8965
8966 if (!ret)
8967 vreg->enabled = true;
8968 else
8969 dev_err(dev, "%s: %s enable failed, err=%d\n",
8970 __func__, vreg->name, ret);
8971 out:
8972 return ret;
8973 }
8974
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8975 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8976 {
8977 int ret = 0;
8978
8979 if (!vreg || !vreg->enabled || vreg->always_on)
8980 goto out;
8981
8982 ret = regulator_disable(vreg->reg);
8983
8984 if (!ret) {
8985 /* ignore errors on applying disable config */
8986 ufshcd_config_vreg(dev, vreg, false);
8987 vreg->enabled = false;
8988 } else {
8989 dev_err(dev, "%s: %s disable failed, err=%d\n",
8990 __func__, vreg->name, ret);
8991 }
8992 out:
8993 return ret;
8994 }
8995
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8996 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8997 {
8998 int ret = 0;
8999 struct device *dev = hba->dev;
9000 struct ufs_vreg_info *info = &hba->vreg_info;
9001
9002 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9003 if (ret)
9004 goto out;
9005
9006 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9007 if (ret)
9008 goto out;
9009
9010 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9011
9012 out:
9013 if (ret) {
9014 ufshcd_toggle_vreg(dev, info->vccq2, false);
9015 ufshcd_toggle_vreg(dev, info->vccq, false);
9016 ufshcd_toggle_vreg(dev, info->vcc, false);
9017 }
9018 return ret;
9019 }
9020
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9021 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9022 {
9023 struct ufs_vreg_info *info = &hba->vreg_info;
9024
9025 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9026 }
9027
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9028 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9029 {
9030 int ret = 0;
9031
9032 if (!vreg)
9033 goto out;
9034
9035 vreg->reg = devm_regulator_get(dev, vreg->name);
9036 if (IS_ERR(vreg->reg)) {
9037 ret = PTR_ERR(vreg->reg);
9038 dev_err(dev, "%s: %s get failed, err=%d\n",
9039 __func__, vreg->name, ret);
9040 }
9041 out:
9042 return ret;
9043 }
9044 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9045
ufshcd_init_vreg(struct ufs_hba * hba)9046 static int ufshcd_init_vreg(struct ufs_hba *hba)
9047 {
9048 int ret = 0;
9049 struct device *dev = hba->dev;
9050 struct ufs_vreg_info *info = &hba->vreg_info;
9051
9052 ret = ufshcd_get_vreg(dev, info->vcc);
9053 if (ret)
9054 goto out;
9055
9056 ret = ufshcd_get_vreg(dev, info->vccq);
9057 if (!ret)
9058 ret = ufshcd_get_vreg(dev, info->vccq2);
9059 out:
9060 return ret;
9061 }
9062
ufshcd_init_hba_vreg(struct ufs_hba * hba)9063 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9064 {
9065 struct ufs_vreg_info *info = &hba->vreg_info;
9066
9067 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9068 }
9069
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9070 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9071 {
9072 int ret = 0;
9073 struct ufs_clk_info *clki;
9074 struct list_head *head = &hba->clk_list_head;
9075 unsigned long flags;
9076 ktime_t start = ktime_get();
9077 bool clk_state_changed = false;
9078
9079 if (list_empty(head))
9080 goto out;
9081
9082 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9083 if (ret)
9084 return ret;
9085
9086 list_for_each_entry(clki, head, list) {
9087 if (!IS_ERR_OR_NULL(clki->clk)) {
9088 /*
9089 * Don't disable clocks which are needed
9090 * to keep the link active.
9091 */
9092 if (ufshcd_is_link_active(hba) &&
9093 clki->keep_link_active)
9094 continue;
9095
9096 clk_state_changed = on ^ clki->enabled;
9097 if (on && !clki->enabled) {
9098 ret = clk_prepare_enable(clki->clk);
9099 if (ret) {
9100 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9101 __func__, clki->name, ret);
9102 goto out;
9103 }
9104 } else if (!on && clki->enabled) {
9105 clk_disable_unprepare(clki->clk);
9106 }
9107 clki->enabled = on;
9108 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9109 clki->name, on ? "en" : "dis");
9110 }
9111 }
9112
9113 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9114 if (ret)
9115 return ret;
9116
9117 out:
9118 if (ret) {
9119 list_for_each_entry(clki, head, list) {
9120 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9121 clk_disable_unprepare(clki->clk);
9122 }
9123 } else if (!ret && on) {
9124 spin_lock_irqsave(hba->host->host_lock, flags);
9125 hba->clk_gating.state = CLKS_ON;
9126 trace_ufshcd_clk_gating(dev_name(hba->dev),
9127 hba->clk_gating.state);
9128 spin_unlock_irqrestore(hba->host->host_lock, flags);
9129 }
9130
9131 if (clk_state_changed)
9132 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9133 (on ? "on" : "off"),
9134 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9135 return ret;
9136 }
9137
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9138 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9139 {
9140 u32 freq;
9141 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9142
9143 if (ret) {
9144 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9145 return REF_CLK_FREQ_INVAL;
9146 }
9147
9148 return ufs_get_bref_clk_from_hz(freq);
9149 }
9150
ufshcd_init_clocks(struct ufs_hba * hba)9151 static int ufshcd_init_clocks(struct ufs_hba *hba)
9152 {
9153 int ret = 0;
9154 struct ufs_clk_info *clki;
9155 struct device *dev = hba->dev;
9156 struct list_head *head = &hba->clk_list_head;
9157
9158 if (list_empty(head))
9159 goto out;
9160
9161 list_for_each_entry(clki, head, list) {
9162 if (!clki->name)
9163 continue;
9164
9165 clki->clk = devm_clk_get(dev, clki->name);
9166 if (IS_ERR(clki->clk)) {
9167 ret = PTR_ERR(clki->clk);
9168 dev_err(dev, "%s: %s clk get failed, %d\n",
9169 __func__, clki->name, ret);
9170 goto out;
9171 }
9172
9173 /*
9174 * Parse device ref clk freq as per device tree "ref_clk".
9175 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9176 * in ufshcd_alloc_host().
9177 */
9178 if (!strcmp(clki->name, "ref_clk"))
9179 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9180
9181 if (clki->max_freq) {
9182 ret = clk_set_rate(clki->clk, clki->max_freq);
9183 if (ret) {
9184 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9185 __func__, clki->name,
9186 clki->max_freq, ret);
9187 goto out;
9188 }
9189 clki->curr_freq = clki->max_freq;
9190 }
9191 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9192 clki->name, clk_get_rate(clki->clk));
9193 }
9194 out:
9195 return ret;
9196 }
9197
ufshcd_variant_hba_init(struct ufs_hba * hba)9198 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9199 {
9200 int err = 0;
9201
9202 if (!hba->vops)
9203 goto out;
9204
9205 err = ufshcd_vops_init(hba);
9206 if (err)
9207 dev_err_probe(hba->dev, err,
9208 "%s: variant %s init failed with err %d\n",
9209 __func__, ufshcd_get_var_name(hba), err);
9210 out:
9211 return err;
9212 }
9213
ufshcd_variant_hba_exit(struct ufs_hba * hba)9214 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9215 {
9216 if (!hba->vops)
9217 return;
9218
9219 ufshcd_vops_exit(hba);
9220 }
9221
ufshcd_hba_init(struct ufs_hba * hba)9222 static int ufshcd_hba_init(struct ufs_hba *hba)
9223 {
9224 int err;
9225
9226 /*
9227 * Handle host controller power separately from the UFS device power
9228 * rails as it will help controlling the UFS host controller power
9229 * collapse easily which is different than UFS device power collapse.
9230 * Also, enable the host controller power before we go ahead with rest
9231 * of the initialization here.
9232 */
9233 err = ufshcd_init_hba_vreg(hba);
9234 if (err)
9235 goto out;
9236
9237 err = ufshcd_setup_hba_vreg(hba, true);
9238 if (err)
9239 goto out;
9240
9241 err = ufshcd_init_clocks(hba);
9242 if (err)
9243 goto out_disable_hba_vreg;
9244
9245 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9246 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9247
9248 err = ufshcd_setup_clocks(hba, true);
9249 if (err)
9250 goto out_disable_hba_vreg;
9251
9252 err = ufshcd_init_vreg(hba);
9253 if (err)
9254 goto out_disable_clks;
9255
9256 err = ufshcd_setup_vreg(hba, true);
9257 if (err)
9258 goto out_disable_clks;
9259
9260 err = ufshcd_variant_hba_init(hba);
9261 if (err)
9262 goto out_disable_vreg;
9263
9264 ufs_debugfs_hba_init(hba);
9265
9266 hba->is_powered = true;
9267 goto out;
9268
9269 out_disable_vreg:
9270 ufshcd_setup_vreg(hba, false);
9271 out_disable_clks:
9272 ufshcd_setup_clocks(hba, false);
9273 out_disable_hba_vreg:
9274 ufshcd_setup_hba_vreg(hba, false);
9275 out:
9276 return err;
9277 }
9278
ufshcd_hba_exit(struct ufs_hba * hba)9279 static void ufshcd_hba_exit(struct ufs_hba *hba)
9280 {
9281 if (hba->is_powered) {
9282 ufshcd_exit_clk_scaling(hba);
9283 ufshcd_exit_clk_gating(hba);
9284 if (hba->eh_wq)
9285 destroy_workqueue(hba->eh_wq);
9286 ufs_debugfs_hba_exit(hba);
9287 ufshcd_variant_hba_exit(hba);
9288 ufshcd_setup_vreg(hba, false);
9289 ufshcd_setup_clocks(hba, false);
9290 ufshcd_setup_hba_vreg(hba, false);
9291 hba->is_powered = false;
9292 ufs_put_device_desc(hba);
9293 }
9294 }
9295
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9296 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9297 enum ufs_dev_pwr_mode pwr_mode,
9298 struct scsi_sense_hdr *sshdr)
9299 {
9300 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9301 const struct scsi_exec_args args = {
9302 .sshdr = sshdr,
9303 .req_flags = BLK_MQ_REQ_PM,
9304 .scmd_flags = SCMD_FAIL_IF_RECOVERING,
9305 };
9306
9307 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9308 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9309 &args);
9310 }
9311
9312 /**
9313 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9314 * power mode
9315 * @hba: per adapter instance
9316 * @pwr_mode: device power mode to set
9317 *
9318 * Return: 0 if requested power mode is set successfully;
9319 * < 0 if failed to set the requested power mode.
9320 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9321 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9322 enum ufs_dev_pwr_mode pwr_mode)
9323 {
9324 struct scsi_sense_hdr sshdr;
9325 struct scsi_device *sdp;
9326 unsigned long flags;
9327 int ret, retries;
9328
9329 spin_lock_irqsave(hba->host->host_lock, flags);
9330 sdp = hba->ufs_device_wlun;
9331 if (sdp && scsi_device_online(sdp))
9332 ret = scsi_device_get(sdp);
9333 else
9334 ret = -ENODEV;
9335 spin_unlock_irqrestore(hba->host->host_lock, flags);
9336
9337 if (ret)
9338 return ret;
9339
9340 /*
9341 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9342 * handling, which would wait for host to be resumed. Since we know
9343 * we are functional while we are here, skip host resume in error
9344 * handling context.
9345 */
9346 hba->host->eh_noresume = 1;
9347
9348 /*
9349 * Current function would be generally called from the power management
9350 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9351 * already suspended childs.
9352 */
9353 for (retries = 3; retries > 0; --retries) {
9354 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9355 /*
9356 * scsi_execute() only returns a negative value if the request
9357 * queue is dying.
9358 */
9359 if (ret <= 0)
9360 break;
9361 }
9362 if (ret) {
9363 sdev_printk(KERN_WARNING, sdp,
9364 "START_STOP failed for power mode: %d, result %x\n",
9365 pwr_mode, ret);
9366 if (ret > 0) {
9367 if (scsi_sense_valid(&sshdr))
9368 scsi_print_sense_hdr(sdp, NULL, &sshdr);
9369 ret = -EIO;
9370 }
9371 } else {
9372 hba->curr_dev_pwr_mode = pwr_mode;
9373 }
9374
9375 scsi_device_put(sdp);
9376 hba->host->eh_noresume = 0;
9377 return ret;
9378 }
9379
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9380 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9381 enum uic_link_state req_link_state,
9382 bool check_for_bkops)
9383 {
9384 int ret = 0;
9385
9386 if (req_link_state == hba->uic_link_state)
9387 return 0;
9388
9389 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9390 ret = ufshcd_uic_hibern8_enter(hba);
9391 if (!ret) {
9392 ufshcd_set_link_hibern8(hba);
9393 } else {
9394 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9395 __func__, ret);
9396 goto out;
9397 }
9398 }
9399 /*
9400 * If autobkops is enabled, link can't be turned off because
9401 * turning off the link would also turn off the device, except in the
9402 * case of DeepSleep where the device is expected to remain powered.
9403 */
9404 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9405 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9406 /*
9407 * Let's make sure that link is in low power mode, we are doing
9408 * this currently by putting the link in Hibern8. Otherway to
9409 * put the link in low power mode is to send the DME end point
9410 * to device and then send the DME reset command to local
9411 * unipro. But putting the link in hibern8 is much faster.
9412 *
9413 * Note also that putting the link in Hibern8 is a requirement
9414 * for entering DeepSleep.
9415 */
9416 ret = ufshcd_uic_hibern8_enter(hba);
9417 if (ret) {
9418 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9419 __func__, ret);
9420 goto out;
9421 }
9422 /*
9423 * Change controller state to "reset state" which
9424 * should also put the link in off/reset state
9425 */
9426 ufshcd_hba_stop(hba);
9427 /*
9428 * TODO: Check if we need any delay to make sure that
9429 * controller is reset
9430 */
9431 ufshcd_set_link_off(hba);
9432 }
9433
9434 out:
9435 return ret;
9436 }
9437
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9438 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9439 {
9440 bool vcc_off = false;
9441
9442 /*
9443 * It seems some UFS devices may keep drawing more than sleep current
9444 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9445 * To avoid this situation, add 2ms delay before putting these UFS
9446 * rails in LPM mode.
9447 */
9448 if (!ufshcd_is_link_active(hba) &&
9449 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9450 usleep_range(2000, 2100);
9451
9452 /*
9453 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9454 * power.
9455 *
9456 * If UFS device and link is in OFF state, all power supplies (VCC,
9457 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9458 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9459 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9460 *
9461 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9462 * in low power state which would save some power.
9463 *
9464 * If Write Booster is enabled and the device needs to flush the WB
9465 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9466 */
9467 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9468 !hba->dev_info.is_lu_power_on_wp) {
9469 ufshcd_setup_vreg(hba, false);
9470 vcc_off = true;
9471 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9472 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9473 vcc_off = true;
9474 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9475 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9476 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9477 }
9478 }
9479
9480 /*
9481 * Some UFS devices require delay after VCC power rail is turned-off.
9482 */
9483 if (vcc_off && hba->vreg_info.vcc &&
9484 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9485 usleep_range(5000, 5100);
9486 }
9487
9488 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9489 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9490 {
9491 int ret = 0;
9492
9493 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9494 !hba->dev_info.is_lu_power_on_wp) {
9495 ret = ufshcd_setup_vreg(hba, true);
9496 } else if (!ufshcd_is_ufs_dev_active(hba)) {
9497 if (!ufshcd_is_link_active(hba)) {
9498 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9499 if (ret)
9500 goto vcc_disable;
9501 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9502 if (ret)
9503 goto vccq_lpm;
9504 }
9505 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9506 }
9507 goto out;
9508
9509 vccq_lpm:
9510 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9511 vcc_disable:
9512 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9513 out:
9514 return ret;
9515 }
9516 #endif /* CONFIG_PM */
9517
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9518 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9519 {
9520 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9521 ufshcd_setup_hba_vreg(hba, false);
9522 }
9523
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9524 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9525 {
9526 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9527 ufshcd_setup_hba_vreg(hba, true);
9528 }
9529
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9530 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9531 {
9532 int ret = 0;
9533 bool check_for_bkops;
9534 enum ufs_pm_level pm_lvl;
9535 enum ufs_dev_pwr_mode req_dev_pwr_mode;
9536 enum uic_link_state req_link_state;
9537
9538 hba->pm_op_in_progress = true;
9539 if (pm_op != UFS_SHUTDOWN_PM) {
9540 pm_lvl = pm_op == UFS_RUNTIME_PM ?
9541 hba->rpm_lvl : hba->spm_lvl;
9542 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9543 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9544 } else {
9545 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9546 req_link_state = UIC_LINK_OFF_STATE;
9547 }
9548
9549 /*
9550 * If we can't transition into any of the low power modes
9551 * just gate the clocks.
9552 */
9553 ufshcd_hold(hba);
9554 hba->clk_gating.is_suspended = true;
9555
9556 if (ufshcd_is_clkscaling_supported(hba))
9557 ufshcd_clk_scaling_suspend(hba, true);
9558
9559 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9560 req_link_state == UIC_LINK_ACTIVE_STATE) {
9561 goto vops_suspend;
9562 }
9563
9564 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9565 (req_link_state == hba->uic_link_state))
9566 goto enable_scaling;
9567
9568 /* UFS device & link must be active before we enter in this function */
9569 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9570 /* Wait err handler finish or trigger err recovery */
9571 if (!ufshcd_eh_in_progress(hba))
9572 ufshcd_force_error_recovery(hba);
9573 ret = -EBUSY;
9574 goto enable_scaling;
9575 }
9576
9577 if (pm_op == UFS_RUNTIME_PM) {
9578 if (ufshcd_can_autobkops_during_suspend(hba)) {
9579 /*
9580 * The device is idle with no requests in the queue,
9581 * allow background operations if bkops status shows
9582 * that performance might be impacted.
9583 */
9584 ret = ufshcd_urgent_bkops(hba);
9585 if (ret) {
9586 /*
9587 * If return err in suspend flow, IO will hang.
9588 * Trigger error handler and break suspend for
9589 * error recovery.
9590 */
9591 ufshcd_force_error_recovery(hba);
9592 ret = -EBUSY;
9593 goto enable_scaling;
9594 }
9595 } else {
9596 /* make sure that auto bkops is disabled */
9597 ufshcd_disable_auto_bkops(hba);
9598 }
9599 /*
9600 * If device needs to do BKOP or WB buffer flush during
9601 * Hibern8, keep device power mode as "active power mode"
9602 * and VCC supply.
9603 */
9604 hba->dev_info.b_rpm_dev_flush_capable =
9605 hba->auto_bkops_enabled ||
9606 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9607 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9608 ufshcd_is_auto_hibern8_enabled(hba))) &&
9609 ufshcd_wb_need_flush(hba));
9610 }
9611
9612 flush_work(&hba->eeh_work);
9613
9614 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9615 if (ret)
9616 goto enable_scaling;
9617
9618 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9619 if (pm_op != UFS_RUNTIME_PM)
9620 /* ensure that bkops is disabled */
9621 ufshcd_disable_auto_bkops(hba);
9622
9623 if (!hba->dev_info.b_rpm_dev_flush_capable) {
9624 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9625 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9626 /*
9627 * If return err in suspend flow, IO will hang.
9628 * Trigger error handler and break suspend for
9629 * error recovery.
9630 */
9631 ufshcd_force_error_recovery(hba);
9632 ret = -EBUSY;
9633 }
9634 if (ret)
9635 goto enable_scaling;
9636 }
9637 }
9638
9639 /*
9640 * In the case of DeepSleep, the device is expected to remain powered
9641 * with the link off, so do not check for bkops.
9642 */
9643 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9644 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9645 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9646 /*
9647 * If return err in suspend flow, IO will hang.
9648 * Trigger error handler and break suspend for
9649 * error recovery.
9650 */
9651 ufshcd_force_error_recovery(hba);
9652 ret = -EBUSY;
9653 }
9654 if (ret)
9655 goto set_dev_active;
9656
9657 vops_suspend:
9658 /*
9659 * Call vendor specific suspend callback. As these callbacks may access
9660 * vendor specific host controller register space call them before the
9661 * host clocks are ON.
9662 */
9663 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9664 if (ret)
9665 goto set_link_active;
9666 goto out;
9667
9668 set_link_active:
9669 /*
9670 * Device hardware reset is required to exit DeepSleep. Also, for
9671 * DeepSleep, the link is off so host reset and restore will be done
9672 * further below.
9673 */
9674 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9675 ufshcd_device_reset(hba);
9676 WARN_ON(!ufshcd_is_link_off(hba));
9677 }
9678 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9679 ufshcd_set_link_active(hba);
9680 else if (ufshcd_is_link_off(hba))
9681 ufshcd_host_reset_and_restore(hba);
9682 set_dev_active:
9683 /* Can also get here needing to exit DeepSleep */
9684 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9685 ufshcd_device_reset(hba);
9686 ufshcd_host_reset_and_restore(hba);
9687 }
9688 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9689 ufshcd_disable_auto_bkops(hba);
9690 enable_scaling:
9691 if (ufshcd_is_clkscaling_supported(hba))
9692 ufshcd_clk_scaling_suspend(hba, false);
9693
9694 hba->dev_info.b_rpm_dev_flush_capable = false;
9695 out:
9696 if (hba->dev_info.b_rpm_dev_flush_capable) {
9697 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9698 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9699 }
9700
9701 if (ret) {
9702 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9703 hba->clk_gating.is_suspended = false;
9704 ufshcd_release(hba);
9705 }
9706 hba->pm_op_in_progress = false;
9707 return ret;
9708 }
9709
9710 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9711 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9712 {
9713 int ret;
9714 enum uic_link_state old_link_state = hba->uic_link_state;
9715
9716 hba->pm_op_in_progress = true;
9717
9718 /*
9719 * Call vendor specific resume callback. As these callbacks may access
9720 * vendor specific host controller register space call them when the
9721 * host clocks are ON.
9722 */
9723 ret = ufshcd_vops_resume(hba, pm_op);
9724 if (ret)
9725 goto out;
9726
9727 /* For DeepSleep, the only supported option is to have the link off */
9728 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9729
9730 if (ufshcd_is_link_hibern8(hba)) {
9731 ret = ufshcd_uic_hibern8_exit(hba);
9732 if (!ret) {
9733 ufshcd_set_link_active(hba);
9734 } else {
9735 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9736 __func__, ret);
9737 goto vendor_suspend;
9738 }
9739 } else if (ufshcd_is_link_off(hba)) {
9740 /*
9741 * A full initialization of the host and the device is
9742 * required since the link was put to off during suspend.
9743 * Note, in the case of DeepSleep, the device will exit
9744 * DeepSleep due to device reset.
9745 */
9746 ret = ufshcd_reset_and_restore(hba);
9747 /*
9748 * ufshcd_reset_and_restore() should have already
9749 * set the link state as active
9750 */
9751 if (ret || !ufshcd_is_link_active(hba))
9752 goto vendor_suspend;
9753 }
9754
9755 if (!ufshcd_is_ufs_dev_active(hba)) {
9756 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9757 if (ret)
9758 goto set_old_link_state;
9759 ufshcd_set_timestamp_attr(hba);
9760 }
9761
9762 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9763 ufshcd_enable_auto_bkops(hba);
9764 else
9765 /*
9766 * If BKOPs operations are urgently needed at this moment then
9767 * keep auto-bkops enabled or else disable it.
9768 */
9769 ufshcd_urgent_bkops(hba);
9770
9771 if (hba->ee_usr_mask)
9772 ufshcd_write_ee_control(hba);
9773
9774 if (ufshcd_is_clkscaling_supported(hba))
9775 ufshcd_clk_scaling_suspend(hba, false);
9776
9777 if (hba->dev_info.b_rpm_dev_flush_capable) {
9778 hba->dev_info.b_rpm_dev_flush_capable = false;
9779 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9780 }
9781
9782 /* Enable Auto-Hibernate if configured */
9783 ufshcd_auto_hibern8_enable(hba);
9784
9785 goto out;
9786
9787 set_old_link_state:
9788 ufshcd_link_state_transition(hba, old_link_state, 0);
9789 vendor_suspend:
9790 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9791 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9792 out:
9793 if (ret)
9794 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9795 hba->clk_gating.is_suspended = false;
9796 ufshcd_release(hba);
9797 hba->pm_op_in_progress = false;
9798 return ret;
9799 }
9800
ufshcd_wl_runtime_suspend(struct device * dev)9801 static int ufshcd_wl_runtime_suspend(struct device *dev)
9802 {
9803 struct scsi_device *sdev = to_scsi_device(dev);
9804 struct ufs_hba *hba;
9805 int ret;
9806 ktime_t start = ktime_get();
9807
9808 hba = shost_priv(sdev->host);
9809
9810 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9811 if (ret)
9812 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9813
9814 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9815 ktime_to_us(ktime_sub(ktime_get(), start)),
9816 hba->curr_dev_pwr_mode, hba->uic_link_state);
9817
9818 return ret;
9819 }
9820
ufshcd_wl_runtime_resume(struct device * dev)9821 static int ufshcd_wl_runtime_resume(struct device *dev)
9822 {
9823 struct scsi_device *sdev = to_scsi_device(dev);
9824 struct ufs_hba *hba;
9825 int ret = 0;
9826 ktime_t start = ktime_get();
9827
9828 hba = shost_priv(sdev->host);
9829
9830 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9831 if (ret)
9832 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9833
9834 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9835 ktime_to_us(ktime_sub(ktime_get(), start)),
9836 hba->curr_dev_pwr_mode, hba->uic_link_state);
9837
9838 return ret;
9839 }
9840 #endif
9841
9842 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9843 static int ufshcd_wl_suspend(struct device *dev)
9844 {
9845 struct scsi_device *sdev = to_scsi_device(dev);
9846 struct ufs_hba *hba;
9847 int ret = 0;
9848 ktime_t start = ktime_get();
9849
9850 hba = shost_priv(sdev->host);
9851 down(&hba->host_sem);
9852 hba->system_suspending = true;
9853
9854 if (pm_runtime_suspended(dev))
9855 goto out;
9856
9857 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9858 if (ret) {
9859 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9860 up(&hba->host_sem);
9861 }
9862
9863 out:
9864 if (!ret)
9865 hba->is_sys_suspended = true;
9866 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9867 ktime_to_us(ktime_sub(ktime_get(), start)),
9868 hba->curr_dev_pwr_mode, hba->uic_link_state);
9869
9870 return ret;
9871 }
9872
ufshcd_wl_resume(struct device * dev)9873 static int ufshcd_wl_resume(struct device *dev)
9874 {
9875 struct scsi_device *sdev = to_scsi_device(dev);
9876 struct ufs_hba *hba;
9877 int ret = 0;
9878 ktime_t start = ktime_get();
9879
9880 hba = shost_priv(sdev->host);
9881
9882 if (pm_runtime_suspended(dev))
9883 goto out;
9884
9885 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9886 if (ret)
9887 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9888 out:
9889 trace_ufshcd_wl_resume(dev_name(dev), ret,
9890 ktime_to_us(ktime_sub(ktime_get(), start)),
9891 hba->curr_dev_pwr_mode, hba->uic_link_state);
9892 if (!ret)
9893 hba->is_sys_suspended = false;
9894 hba->system_suspending = false;
9895 up(&hba->host_sem);
9896 return ret;
9897 }
9898 #endif
9899
9900 /**
9901 * ufshcd_suspend - helper function for suspend operations
9902 * @hba: per adapter instance
9903 *
9904 * This function will put disable irqs, turn off clocks
9905 * and set vreg and hba-vreg in lpm mode.
9906 *
9907 * Return: 0 upon success; < 0 upon failure.
9908 */
ufshcd_suspend(struct ufs_hba * hba)9909 static int ufshcd_suspend(struct ufs_hba *hba)
9910 {
9911 int ret;
9912
9913 if (!hba->is_powered)
9914 return 0;
9915 /*
9916 * Disable the host irq as host controller as there won't be any
9917 * host controller transaction expected till resume.
9918 */
9919 ufshcd_disable_irq(hba);
9920 ret = ufshcd_setup_clocks(hba, false);
9921 if (ret) {
9922 ufshcd_enable_irq(hba);
9923 return ret;
9924 }
9925 if (ufshcd_is_clkgating_allowed(hba)) {
9926 hba->clk_gating.state = CLKS_OFF;
9927 trace_ufshcd_clk_gating(dev_name(hba->dev),
9928 hba->clk_gating.state);
9929 }
9930
9931 ufshcd_vreg_set_lpm(hba);
9932 /* Put the host controller in low power mode if possible */
9933 ufshcd_hba_vreg_set_lpm(hba);
9934 return ret;
9935 }
9936
9937 #ifdef CONFIG_PM
9938 /**
9939 * ufshcd_resume - helper function for resume operations
9940 * @hba: per adapter instance
9941 *
9942 * This function basically turns on the regulators, clocks and
9943 * irqs of the hba.
9944 *
9945 * Return: 0 for success and non-zero for failure.
9946 */
ufshcd_resume(struct ufs_hba * hba)9947 static int ufshcd_resume(struct ufs_hba *hba)
9948 {
9949 int ret;
9950
9951 if (!hba->is_powered)
9952 return 0;
9953
9954 ufshcd_hba_vreg_set_hpm(hba);
9955 ret = ufshcd_vreg_set_hpm(hba);
9956 if (ret)
9957 goto out;
9958
9959 /* Make sure clocks are enabled before accessing controller */
9960 ret = ufshcd_setup_clocks(hba, true);
9961 if (ret)
9962 goto disable_vreg;
9963
9964 /* enable the host irq as host controller would be active soon */
9965 ufshcd_enable_irq(hba);
9966
9967 goto out;
9968
9969 disable_vreg:
9970 ufshcd_vreg_set_lpm(hba);
9971 out:
9972 if (ret)
9973 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9974 return ret;
9975 }
9976 #endif /* CONFIG_PM */
9977
9978 #ifdef CONFIG_PM_SLEEP
9979 /**
9980 * ufshcd_system_suspend - system suspend callback
9981 * @dev: Device associated with the UFS controller.
9982 *
9983 * Executed before putting the system into a sleep state in which the contents
9984 * of main memory are preserved.
9985 *
9986 * Return: 0 for success and non-zero for failure.
9987 */
ufshcd_system_suspend(struct device * dev)9988 int ufshcd_system_suspend(struct device *dev)
9989 {
9990 struct ufs_hba *hba = dev_get_drvdata(dev);
9991 int ret = 0;
9992 ktime_t start = ktime_get();
9993
9994 if (pm_runtime_suspended(hba->dev))
9995 goto out;
9996
9997 ret = ufshcd_suspend(hba);
9998 out:
9999 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10000 ktime_to_us(ktime_sub(ktime_get(), start)),
10001 hba->curr_dev_pwr_mode, hba->uic_link_state);
10002 return ret;
10003 }
10004 EXPORT_SYMBOL(ufshcd_system_suspend);
10005
10006 /**
10007 * ufshcd_system_resume - system resume callback
10008 * @dev: Device associated with the UFS controller.
10009 *
10010 * Executed after waking the system up from a sleep state in which the contents
10011 * of main memory were preserved.
10012 *
10013 * Return: 0 for success and non-zero for failure.
10014 */
ufshcd_system_resume(struct device * dev)10015 int ufshcd_system_resume(struct device *dev)
10016 {
10017 struct ufs_hba *hba = dev_get_drvdata(dev);
10018 ktime_t start = ktime_get();
10019 int ret = 0;
10020
10021 if (pm_runtime_suspended(hba->dev))
10022 goto out;
10023
10024 ret = ufshcd_resume(hba);
10025
10026 out:
10027 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10028 ktime_to_us(ktime_sub(ktime_get(), start)),
10029 hba->curr_dev_pwr_mode, hba->uic_link_state);
10030
10031 return ret;
10032 }
10033 EXPORT_SYMBOL(ufshcd_system_resume);
10034 #endif /* CONFIG_PM_SLEEP */
10035
10036 #ifdef CONFIG_PM
10037 /**
10038 * ufshcd_runtime_suspend - runtime suspend callback
10039 * @dev: Device associated with the UFS controller.
10040 *
10041 * Check the description of ufshcd_suspend() function for more details.
10042 *
10043 * Return: 0 for success and non-zero for failure.
10044 */
ufshcd_runtime_suspend(struct device * dev)10045 int ufshcd_runtime_suspend(struct device *dev)
10046 {
10047 struct ufs_hba *hba = dev_get_drvdata(dev);
10048 int ret;
10049 ktime_t start = ktime_get();
10050
10051 ret = ufshcd_suspend(hba);
10052
10053 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10054 ktime_to_us(ktime_sub(ktime_get(), start)),
10055 hba->curr_dev_pwr_mode, hba->uic_link_state);
10056 return ret;
10057 }
10058 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10059
10060 /**
10061 * ufshcd_runtime_resume - runtime resume routine
10062 * @dev: Device associated with the UFS controller.
10063 *
10064 * This function basically brings controller
10065 * to active state. Following operations are done in this function:
10066 *
10067 * 1. Turn on all the controller related clocks
10068 * 2. Turn ON VCC rail
10069 *
10070 * Return: 0 upon success; < 0 upon failure.
10071 */
ufshcd_runtime_resume(struct device * dev)10072 int ufshcd_runtime_resume(struct device *dev)
10073 {
10074 struct ufs_hba *hba = dev_get_drvdata(dev);
10075 int ret;
10076 ktime_t start = ktime_get();
10077
10078 ret = ufshcd_resume(hba);
10079
10080 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10081 ktime_to_us(ktime_sub(ktime_get(), start)),
10082 hba->curr_dev_pwr_mode, hba->uic_link_state);
10083 return ret;
10084 }
10085 EXPORT_SYMBOL(ufshcd_runtime_resume);
10086 #endif /* CONFIG_PM */
10087
ufshcd_wl_shutdown(struct device * dev)10088 static void ufshcd_wl_shutdown(struct device *dev)
10089 {
10090 struct scsi_device *sdev = to_scsi_device(dev);
10091 struct ufs_hba *hba = shost_priv(sdev->host);
10092
10093 down(&hba->host_sem);
10094 hba->shutting_down = true;
10095 up(&hba->host_sem);
10096
10097 /* Turn on everything while shutting down */
10098 ufshcd_rpm_get_sync(hba);
10099 scsi_device_quiesce(sdev);
10100 shost_for_each_device(sdev, hba->host) {
10101 if (sdev == hba->ufs_device_wlun)
10102 continue;
10103 mutex_lock(&sdev->state_mutex);
10104 scsi_device_set_state(sdev, SDEV_OFFLINE);
10105 mutex_unlock(&sdev->state_mutex);
10106 }
10107 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10108
10109 /*
10110 * Next, turn off the UFS controller and the UFS regulators. Disable
10111 * clocks.
10112 */
10113 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10114 ufshcd_suspend(hba);
10115
10116 hba->is_powered = false;
10117 }
10118
10119 /**
10120 * ufshcd_remove - de-allocate SCSI host and host memory space
10121 * data structure memory
10122 * @hba: per adapter instance
10123 */
ufshcd_remove(struct ufs_hba * hba)10124 void ufshcd_remove(struct ufs_hba *hba)
10125 {
10126 if (hba->ufs_device_wlun)
10127 ufshcd_rpm_get_sync(hba);
10128 ufs_hwmon_remove(hba);
10129 ufs_bsg_remove(hba);
10130 ufs_sysfs_remove_nodes(hba->dev);
10131 blk_mq_destroy_queue(hba->tmf_queue);
10132 blk_put_queue(hba->tmf_queue);
10133 blk_mq_free_tag_set(&hba->tmf_tag_set);
10134 if (hba->scsi_host_added)
10135 scsi_remove_host(hba->host);
10136 /* disable interrupts */
10137 ufshcd_disable_intr(hba, hba->intr_mask);
10138 ufshcd_hba_stop(hba);
10139 ufshcd_hba_exit(hba);
10140 }
10141 EXPORT_SYMBOL_GPL(ufshcd_remove);
10142
10143 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10144 int ufshcd_system_freeze(struct device *dev)
10145 {
10146
10147 return ufshcd_system_suspend(dev);
10148
10149 }
10150 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10151
ufshcd_system_restore(struct device * dev)10152 int ufshcd_system_restore(struct device *dev)
10153 {
10154
10155 struct ufs_hba *hba = dev_get_drvdata(dev);
10156 int ret;
10157
10158 ret = ufshcd_system_resume(dev);
10159 if (ret)
10160 return ret;
10161
10162 /* Configure UTRL and UTMRL base address registers */
10163 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10164 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10165 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10166 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10167 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10168 REG_UTP_TASK_REQ_LIST_BASE_L);
10169 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10170 REG_UTP_TASK_REQ_LIST_BASE_H);
10171 /*
10172 * Make sure that UTRL and UTMRL base address registers
10173 * are updated with the latest queue addresses. Only after
10174 * updating these addresses, we can queue the new commands.
10175 */
10176 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10177
10178 return 0;
10179
10180 }
10181 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10182
ufshcd_system_thaw(struct device * dev)10183 int ufshcd_system_thaw(struct device *dev)
10184 {
10185 return ufshcd_system_resume(dev);
10186 }
10187 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10188 #endif /* CONFIG_PM_SLEEP */
10189
10190 /**
10191 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10192 * @hba: pointer to Host Bus Adapter (HBA)
10193 */
ufshcd_dealloc_host(struct ufs_hba * hba)10194 void ufshcd_dealloc_host(struct ufs_hba *hba)
10195 {
10196 scsi_host_put(hba->host);
10197 }
10198 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10199
10200 /**
10201 * ufshcd_set_dma_mask - Set dma mask based on the controller
10202 * addressing capability
10203 * @hba: per adapter instance
10204 *
10205 * Return: 0 for success, non-zero for failure.
10206 */
ufshcd_set_dma_mask(struct ufs_hba * hba)10207 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10208 {
10209 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10210 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10211 return 0;
10212 }
10213 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10214 }
10215
10216 /**
10217 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10218 * @dev: pointer to device handle
10219 * @hba_handle: driver private handle
10220 *
10221 * Return: 0 on success, non-zero value on failure.
10222 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10223 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10224 {
10225 struct Scsi_Host *host;
10226 struct ufs_hba *hba;
10227 int err = 0;
10228
10229 if (!dev) {
10230 dev_err(dev,
10231 "Invalid memory reference for dev is NULL\n");
10232 err = -ENODEV;
10233 goto out_error;
10234 }
10235
10236 host = scsi_host_alloc(&ufshcd_driver_template,
10237 sizeof(struct ufs_hba));
10238 if (!host) {
10239 dev_err(dev, "scsi_host_alloc failed\n");
10240 err = -ENOMEM;
10241 goto out_error;
10242 }
10243 host->nr_maps = HCTX_TYPE_POLL + 1;
10244 hba = shost_priv(host);
10245 hba->host = host;
10246 hba->dev = dev;
10247 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10248 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10249 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10250 INIT_LIST_HEAD(&hba->clk_list_head);
10251 spin_lock_init(&hba->outstanding_lock);
10252
10253 *hba_handle = hba;
10254
10255 out_error:
10256 return err;
10257 }
10258 EXPORT_SYMBOL(ufshcd_alloc_host);
10259
10260 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10261 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10262 const struct blk_mq_queue_data *qd)
10263 {
10264 WARN_ON_ONCE(true);
10265 return BLK_STS_NOTSUPP;
10266 }
10267
10268 static const struct blk_mq_ops ufshcd_tmf_ops = {
10269 .queue_rq = ufshcd_queue_tmf,
10270 };
10271
10272 /**
10273 * ufshcd_init - Driver initialization routine
10274 * @hba: per-adapter instance
10275 * @mmio_base: base register address
10276 * @irq: Interrupt line of device
10277 *
10278 * Return: 0 on success, non-zero value on failure.
10279 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10280 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10281 {
10282 int err;
10283 struct Scsi_Host *host = hba->host;
10284 struct device *dev = hba->dev;
10285 char eh_wq_name[sizeof("ufs_eh_wq_00")];
10286
10287 /*
10288 * dev_set_drvdata() must be called before any callbacks are registered
10289 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10290 * sysfs).
10291 */
10292 dev_set_drvdata(dev, hba);
10293
10294 if (!mmio_base) {
10295 dev_err(hba->dev,
10296 "Invalid memory reference for mmio_base is NULL\n");
10297 err = -ENODEV;
10298 goto out_error;
10299 }
10300
10301 hba->mmio_base = mmio_base;
10302 hba->irq = irq;
10303 hba->vps = &ufs_hba_vps;
10304
10305 err = ufshcd_hba_init(hba);
10306 if (err)
10307 goto out_error;
10308
10309 /* Read capabilities registers */
10310 err = ufshcd_hba_capabilities(hba);
10311 if (err)
10312 goto out_disable;
10313
10314 /* Get UFS version supported by the controller */
10315 hba->ufs_version = ufshcd_get_ufs_version(hba);
10316
10317 /* Get Interrupt bit mask per version */
10318 hba->intr_mask = ufshcd_get_intr_mask(hba);
10319
10320 err = ufshcd_set_dma_mask(hba);
10321 if (err) {
10322 dev_err(hba->dev, "set dma mask failed\n");
10323 goto out_disable;
10324 }
10325
10326 /* Allocate memory for host memory space */
10327 err = ufshcd_memory_alloc(hba);
10328 if (err) {
10329 dev_err(hba->dev, "Memory allocation failed\n");
10330 goto out_disable;
10331 }
10332
10333 /* Configure LRB */
10334 ufshcd_host_memory_configure(hba);
10335
10336 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10337 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10338 host->max_id = UFSHCD_MAX_ID;
10339 host->max_lun = UFS_MAX_LUNS;
10340 host->max_channel = UFSHCD_MAX_CHANNEL;
10341 host->unique_id = host->host_no;
10342 host->max_cmd_len = UFS_CDB_SIZE;
10343 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10344
10345 hba->max_pwr_info.is_valid = false;
10346
10347 /* Initialize work queues */
10348 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10349 hba->host->host_no);
10350 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10351 if (!hba->eh_wq) {
10352 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10353 __func__);
10354 err = -ENOMEM;
10355 goto out_disable;
10356 }
10357 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10358 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10359
10360 sema_init(&hba->host_sem, 1);
10361
10362 /* Initialize UIC command mutex */
10363 mutex_init(&hba->uic_cmd_mutex);
10364
10365 /* Initialize mutex for device management commands */
10366 mutex_init(&hba->dev_cmd.lock);
10367
10368 /* Initialize mutex for exception event control */
10369 mutex_init(&hba->ee_ctrl_mutex);
10370
10371 mutex_init(&hba->wb_mutex);
10372 init_rwsem(&hba->clk_scaling_lock);
10373
10374 ufshcd_init_clk_gating(hba);
10375
10376 ufshcd_init_clk_scaling(hba);
10377
10378 /*
10379 * In order to avoid any spurious interrupt immediately after
10380 * registering UFS controller interrupt handler, clear any pending UFS
10381 * interrupt status and disable all the UFS interrupts.
10382 */
10383 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10384 REG_INTERRUPT_STATUS);
10385 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10386 /*
10387 * Make sure that UFS interrupts are disabled and any pending interrupt
10388 * status is cleared before registering UFS interrupt handler.
10389 */
10390 ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10391
10392 /* IRQ registration */
10393 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10394 if (err) {
10395 dev_err(hba->dev, "request irq failed\n");
10396 goto out_disable;
10397 } else {
10398 hba->is_irq_enabled = true;
10399 }
10400
10401 if (!is_mcq_supported(hba)) {
10402 if (!hba->lsdb_sup) {
10403 dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10404 __func__);
10405 err = -EINVAL;
10406 goto out_disable;
10407 }
10408 err = scsi_add_host(host, hba->dev);
10409 if (err) {
10410 dev_err(hba->dev, "scsi_add_host failed\n");
10411 goto out_disable;
10412 }
10413 hba->scsi_host_added = true;
10414 }
10415
10416 hba->tmf_tag_set = (struct blk_mq_tag_set) {
10417 .nr_hw_queues = 1,
10418 .queue_depth = hba->nutmrs,
10419 .ops = &ufshcd_tmf_ops,
10420 .flags = BLK_MQ_F_NO_SCHED,
10421 };
10422 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10423 if (err < 0)
10424 goto out_remove_scsi_host;
10425 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10426 if (IS_ERR(hba->tmf_queue)) {
10427 err = PTR_ERR(hba->tmf_queue);
10428 goto free_tmf_tag_set;
10429 }
10430 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10431 sizeof(*hba->tmf_rqs), GFP_KERNEL);
10432 if (!hba->tmf_rqs) {
10433 err = -ENOMEM;
10434 goto free_tmf_queue;
10435 }
10436
10437 /* Reset the attached device */
10438 ufshcd_device_reset(hba);
10439
10440 ufshcd_init_crypto(hba);
10441
10442 /* Host controller enable */
10443 err = ufshcd_hba_enable(hba);
10444 if (err) {
10445 dev_err(hba->dev, "Host controller enable failed\n");
10446 ufshcd_print_evt_hist(hba);
10447 ufshcd_print_host_state(hba);
10448 goto free_tmf_queue;
10449 }
10450
10451 /*
10452 * Set the default power management level for runtime and system PM.
10453 * Default power saving mode is to keep UFS link in Hibern8 state
10454 * and UFS device in sleep state.
10455 */
10456 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10457 UFS_SLEEP_PWR_MODE,
10458 UIC_LINK_HIBERN8_STATE);
10459 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10460 UFS_SLEEP_PWR_MODE,
10461 UIC_LINK_HIBERN8_STATE);
10462
10463 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10464 ufshcd_rpm_dev_flush_recheck_work);
10465
10466 /* Set the default auto-hiberate idle timer value to 150 ms */
10467 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10468 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10469 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10470 }
10471
10472 /* Hold auto suspend until async scan completes */
10473 pm_runtime_get_sync(dev);
10474 atomic_set(&hba->scsi_block_reqs_cnt, 0);
10475 /*
10476 * We are assuming that device wasn't put in sleep/power-down
10477 * state exclusively during the boot stage before kernel.
10478 * This assumption helps avoid doing link startup twice during
10479 * ufshcd_probe_hba().
10480 */
10481 ufshcd_set_ufs_dev_active(hba);
10482
10483 async_schedule(ufshcd_async_scan, hba);
10484 ufs_sysfs_add_nodes(hba->dev);
10485
10486 device_enable_async_suspend(dev);
10487 return 0;
10488
10489 free_tmf_queue:
10490 blk_mq_destroy_queue(hba->tmf_queue);
10491 blk_put_queue(hba->tmf_queue);
10492 free_tmf_tag_set:
10493 blk_mq_free_tag_set(&hba->tmf_tag_set);
10494 out_remove_scsi_host:
10495 if (hba->scsi_host_added)
10496 scsi_remove_host(hba->host);
10497 out_disable:
10498 hba->is_irq_enabled = false;
10499 ufshcd_hba_exit(hba);
10500 out_error:
10501 return err;
10502 }
10503 EXPORT_SYMBOL_GPL(ufshcd_init);
10504
ufshcd_resume_complete(struct device * dev)10505 void ufshcd_resume_complete(struct device *dev)
10506 {
10507 struct ufs_hba *hba = dev_get_drvdata(dev);
10508
10509 if (hba->complete_put) {
10510 ufshcd_rpm_put(hba);
10511 hba->complete_put = false;
10512 }
10513 }
10514 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10515
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10516 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10517 {
10518 struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10519 enum ufs_dev_pwr_mode dev_pwr_mode;
10520 enum uic_link_state link_state;
10521 unsigned long flags;
10522 bool res;
10523
10524 spin_lock_irqsave(&dev->power.lock, flags);
10525 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10526 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10527 res = pm_runtime_suspended(dev) &&
10528 hba->curr_dev_pwr_mode == dev_pwr_mode &&
10529 hba->uic_link_state == link_state &&
10530 !hba->dev_info.b_rpm_dev_flush_capable;
10531 spin_unlock_irqrestore(&dev->power.lock, flags);
10532
10533 return res;
10534 }
10535
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10536 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10537 {
10538 struct ufs_hba *hba = dev_get_drvdata(dev);
10539 int ret;
10540
10541 /*
10542 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10543 * are same. And it doesn't wake up the device for system-suspend
10544 * if it's runtime suspended. But ufs doesn't follow that.
10545 * Refer ufshcd_resume_complete()
10546 */
10547 if (hba->ufs_device_wlun) {
10548 /* Prevent runtime suspend */
10549 ufshcd_rpm_get_noresume(hba);
10550 /*
10551 * Check if already runtime suspended in same state as system
10552 * suspend would be.
10553 */
10554 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10555 /* RPM state is not ok for SPM, so runtime resume */
10556 ret = ufshcd_rpm_resume(hba);
10557 if (ret < 0 && ret != -EACCES) {
10558 ufshcd_rpm_put(hba);
10559 return ret;
10560 }
10561 }
10562 hba->complete_put = true;
10563 }
10564 return 0;
10565 }
10566 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10567
ufshcd_suspend_prepare(struct device * dev)10568 int ufshcd_suspend_prepare(struct device *dev)
10569 {
10570 return __ufshcd_suspend_prepare(dev, true);
10571 }
10572 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10573
10574 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10575 static int ufshcd_wl_poweroff(struct device *dev)
10576 {
10577 struct scsi_device *sdev = to_scsi_device(dev);
10578 struct ufs_hba *hba = shost_priv(sdev->host);
10579
10580 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10581 return 0;
10582 }
10583 #endif
10584
ufshcd_wl_probe(struct device * dev)10585 static int ufshcd_wl_probe(struct device *dev)
10586 {
10587 struct scsi_device *sdev = to_scsi_device(dev);
10588
10589 if (!is_device_wlun(sdev))
10590 return -ENODEV;
10591
10592 blk_pm_runtime_init(sdev->request_queue, dev);
10593 pm_runtime_set_autosuspend_delay(dev, 0);
10594 pm_runtime_allow(dev);
10595
10596 return 0;
10597 }
10598
ufshcd_wl_remove(struct device * dev)10599 static int ufshcd_wl_remove(struct device *dev)
10600 {
10601 pm_runtime_forbid(dev);
10602 return 0;
10603 }
10604
10605 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10606 #ifdef CONFIG_PM_SLEEP
10607 .suspend = ufshcd_wl_suspend,
10608 .resume = ufshcd_wl_resume,
10609 .freeze = ufshcd_wl_suspend,
10610 .thaw = ufshcd_wl_resume,
10611 .poweroff = ufshcd_wl_poweroff,
10612 .restore = ufshcd_wl_resume,
10613 #endif
10614 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10615 };
10616
ufshcd_check_header_layout(void)10617 static void ufshcd_check_header_layout(void)
10618 {
10619 /*
10620 * gcc compilers before version 10 cannot do constant-folding for
10621 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10622 * before.
10623 */
10624 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10625 return;
10626
10627 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10628 .cci = 3})[0] != 3);
10629
10630 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10631 .ehs_length = 2})[1] != 2);
10632
10633 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10634 .enable_crypto = 1})[2]
10635 != 0x80);
10636
10637 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10638 .command_type = 5,
10639 .data_direction = 3,
10640 .interrupt = 1,
10641 })[3]) != ((5 << 4) | (3 << 1) | 1));
10642
10643 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10644 .dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10645 cpu_to_le32(0xdeadbeef));
10646
10647 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10648 .ocs = 4})[8] != 4);
10649
10650 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10651 .cds = 5})[9] != 5);
10652
10653 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10654 .dunu = cpu_to_le32(0xbadcafe)})[3] !=
10655 cpu_to_le32(0xbadcafe));
10656
10657 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10658 .iid = 0xf })[4] != 0xf0);
10659
10660 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10661 .command_set_type = 0xf })[4] != 0xf);
10662 }
10663
10664 /*
10665 * ufs_dev_wlun_template - describes ufs device wlun
10666 * ufs-device wlun - used to send pm commands
10667 * All luns are consumers of ufs-device wlun.
10668 *
10669 * Currently, no sd driver is present for wluns.
10670 * Hence the no specific pm operations are performed.
10671 * With ufs design, SSU should be sent to ufs-device wlun.
10672 * Hence register a scsi driver for ufs wluns only.
10673 */
10674 static struct scsi_driver ufs_dev_wlun_template = {
10675 .gendrv = {
10676 .name = "ufs_device_wlun",
10677 .owner = THIS_MODULE,
10678 .probe = ufshcd_wl_probe,
10679 .remove = ufshcd_wl_remove,
10680 .pm = &ufshcd_wl_pm_ops,
10681 .shutdown = ufshcd_wl_shutdown,
10682 },
10683 };
10684
ufshcd_core_init(void)10685 static int __init ufshcd_core_init(void)
10686 {
10687 int ret;
10688
10689 ufshcd_check_header_layout();
10690
10691 ufs_debugfs_init();
10692
10693 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10694 if (ret)
10695 ufs_debugfs_exit();
10696 return ret;
10697 }
10698
ufshcd_core_exit(void)10699 static void __exit ufshcd_core_exit(void)
10700 {
10701 ufs_debugfs_exit();
10702 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10703 }
10704
10705 module_init(ufshcd_core_init);
10706 module_exit(ufshcd_core_exit);
10707
10708 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10709 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10710 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10711 MODULE_SOFTDEP("pre: governor_simpleondemand");
10712 MODULE_LICENSE("GPL");
10713