1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static void iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 static const char iavf_copyright[] =
25 "Copyright (c) 2013 - 2018 Intel Corporation.";
26
27 /* iavf_pci_tbl - PCI Device ID Table
28 *
29 * Wildcard entries (PCI_ANY_ID) should come last
30 * Last entry must be all 0s
31 *
32 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
33 * Class, Class Mask, private data (not used) }
34 */
35 static const struct pci_device_id iavf_pci_tbl[] = {
36 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
37 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
38 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
39 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
40 /* required last entry */
41 {0, }
42 };
43
44 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
45
46 MODULE_ALIAS("i40evf");
47 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
48 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
49 MODULE_LICENSE("GPL v2");
50
51 static const struct net_device_ops iavf_netdev_ops;
52
iavf_status_to_errno(enum iavf_status status)53 int iavf_status_to_errno(enum iavf_status status)
54 {
55 switch (status) {
56 case IAVF_SUCCESS:
57 return 0;
58 case IAVF_ERR_PARAM:
59 case IAVF_ERR_MAC_TYPE:
60 case IAVF_ERR_INVALID_MAC_ADDR:
61 case IAVF_ERR_INVALID_LINK_SETTINGS:
62 case IAVF_ERR_INVALID_PD_ID:
63 case IAVF_ERR_INVALID_QP_ID:
64 case IAVF_ERR_INVALID_CQ_ID:
65 case IAVF_ERR_INVALID_CEQ_ID:
66 case IAVF_ERR_INVALID_AEQ_ID:
67 case IAVF_ERR_INVALID_SIZE:
68 case IAVF_ERR_INVALID_ARP_INDEX:
69 case IAVF_ERR_INVALID_FPM_FUNC_ID:
70 case IAVF_ERR_QP_INVALID_MSG_SIZE:
71 case IAVF_ERR_INVALID_FRAG_COUNT:
72 case IAVF_ERR_INVALID_ALIGNMENT:
73 case IAVF_ERR_INVALID_PUSH_PAGE_INDEX:
74 case IAVF_ERR_INVALID_IMM_DATA_SIZE:
75 case IAVF_ERR_INVALID_VF_ID:
76 case IAVF_ERR_INVALID_HMCFN_ID:
77 case IAVF_ERR_INVALID_PBLE_INDEX:
78 case IAVF_ERR_INVALID_SD_INDEX:
79 case IAVF_ERR_INVALID_PAGE_DESC_INDEX:
80 case IAVF_ERR_INVALID_SD_TYPE:
81 case IAVF_ERR_INVALID_HMC_OBJ_INDEX:
82 case IAVF_ERR_INVALID_HMC_OBJ_COUNT:
83 case IAVF_ERR_INVALID_SRQ_ARM_LIMIT:
84 return -EINVAL;
85 case IAVF_ERR_NVM:
86 case IAVF_ERR_NVM_CHECKSUM:
87 case IAVF_ERR_PHY:
88 case IAVF_ERR_CONFIG:
89 case IAVF_ERR_UNKNOWN_PHY:
90 case IAVF_ERR_LINK_SETUP:
91 case IAVF_ERR_ADAPTER_STOPPED:
92 case IAVF_ERR_PRIMARY_REQUESTS_PENDING:
93 case IAVF_ERR_AUTONEG_NOT_COMPLETE:
94 case IAVF_ERR_RESET_FAILED:
95 case IAVF_ERR_BAD_PTR:
96 case IAVF_ERR_SWFW_SYNC:
97 case IAVF_ERR_QP_TOOMANY_WRS_POSTED:
98 case IAVF_ERR_QUEUE_EMPTY:
99 case IAVF_ERR_FLUSHED_QUEUE:
100 case IAVF_ERR_OPCODE_MISMATCH:
101 case IAVF_ERR_CQP_COMPL_ERROR:
102 case IAVF_ERR_BACKING_PAGE_ERROR:
103 case IAVF_ERR_NO_PBLCHUNKS_AVAILABLE:
104 case IAVF_ERR_MEMCPY_FAILED:
105 case IAVF_ERR_SRQ_ENABLED:
106 case IAVF_ERR_ADMIN_QUEUE_ERROR:
107 case IAVF_ERR_ADMIN_QUEUE_FULL:
108 case IAVF_ERR_BAD_RDMA_CQE:
109 case IAVF_ERR_NVM_BLANK_MODE:
110 case IAVF_ERR_PE_DOORBELL_NOT_ENABLED:
111 case IAVF_ERR_DIAG_TEST_FAILED:
112 case IAVF_ERR_FIRMWARE_API_VERSION:
113 case IAVF_ERR_ADMIN_QUEUE_CRITICAL_ERROR:
114 return -EIO;
115 case IAVF_ERR_DEVICE_NOT_SUPPORTED:
116 return -ENODEV;
117 case IAVF_ERR_NO_AVAILABLE_VSI:
118 case IAVF_ERR_RING_FULL:
119 return -ENOSPC;
120 case IAVF_ERR_NO_MEMORY:
121 return -ENOMEM;
122 case IAVF_ERR_TIMEOUT:
123 case IAVF_ERR_ADMIN_QUEUE_TIMEOUT:
124 return -ETIMEDOUT;
125 case IAVF_ERR_NOT_IMPLEMENTED:
126 case IAVF_NOT_SUPPORTED:
127 return -EOPNOTSUPP;
128 case IAVF_ERR_ADMIN_QUEUE_NO_WORK:
129 return -EALREADY;
130 case IAVF_ERR_NOT_READY:
131 return -EBUSY;
132 case IAVF_ERR_BUF_TOO_SHORT:
133 return -EMSGSIZE;
134 }
135
136 return -EIO;
137 }
138
virtchnl_status_to_errno(enum virtchnl_status_code v_status)139 int virtchnl_status_to_errno(enum virtchnl_status_code v_status)
140 {
141 switch (v_status) {
142 case VIRTCHNL_STATUS_SUCCESS:
143 return 0;
144 case VIRTCHNL_STATUS_ERR_PARAM:
145 case VIRTCHNL_STATUS_ERR_INVALID_VF_ID:
146 return -EINVAL;
147 case VIRTCHNL_STATUS_ERR_NO_MEMORY:
148 return -ENOMEM;
149 case VIRTCHNL_STATUS_ERR_OPCODE_MISMATCH:
150 case VIRTCHNL_STATUS_ERR_CQP_COMPL_ERROR:
151 case VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR:
152 return -EIO;
153 case VIRTCHNL_STATUS_ERR_NOT_SUPPORTED:
154 return -EOPNOTSUPP;
155 }
156
157 return -EIO;
158 }
159
160 /**
161 * iavf_pdev_to_adapter - go from pci_dev to adapter
162 * @pdev: pci_dev pointer
163 */
iavf_pdev_to_adapter(struct pci_dev * pdev)164 static struct iavf_adapter *iavf_pdev_to_adapter(struct pci_dev *pdev)
165 {
166 return netdev_priv(pci_get_drvdata(pdev));
167 }
168
169 /**
170 * iavf_is_reset_in_progress - Check if a reset is in progress
171 * @adapter: board private structure
172 */
iavf_is_reset_in_progress(struct iavf_adapter * adapter)173 static bool iavf_is_reset_in_progress(struct iavf_adapter *adapter)
174 {
175 if (adapter->state == __IAVF_RESETTING ||
176 adapter->flags & (IAVF_FLAG_RESET_PENDING |
177 IAVF_FLAG_RESET_NEEDED))
178 return true;
179
180 return false;
181 }
182
183 /**
184 * iavf_wait_for_reset - Wait for reset to finish.
185 * @adapter: board private structure
186 *
187 * Returns 0 if reset finished successfully, negative on timeout or interrupt.
188 */
iavf_wait_for_reset(struct iavf_adapter * adapter)189 int iavf_wait_for_reset(struct iavf_adapter *adapter)
190 {
191 int ret = wait_event_interruptible_timeout(adapter->reset_waitqueue,
192 !iavf_is_reset_in_progress(adapter),
193 msecs_to_jiffies(5000));
194
195 /* If ret < 0 then it means wait was interrupted.
196 * If ret == 0 then it means we got a timeout while waiting
197 * for reset to finish.
198 * If ret > 0 it means reset has finished.
199 */
200 if (ret > 0)
201 return 0;
202 else if (ret < 0)
203 return -EINTR;
204 else
205 return -EBUSY;
206 }
207
208 /**
209 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
210 * @hw: pointer to the HW structure
211 * @mem: ptr to mem struct to fill out
212 * @size: size of memory requested
213 * @alignment: what to align the allocation to
214 **/
iavf_allocate_dma_mem_d(struct iavf_hw * hw,struct iavf_dma_mem * mem,u64 size,u32 alignment)215 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
216 struct iavf_dma_mem *mem,
217 u64 size, u32 alignment)
218 {
219 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
220
221 if (!mem)
222 return IAVF_ERR_PARAM;
223
224 mem->size = ALIGN(size, alignment);
225 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
226 (dma_addr_t *)&mem->pa, GFP_KERNEL);
227 if (mem->va)
228 return 0;
229 else
230 return IAVF_ERR_NO_MEMORY;
231 }
232
233 /**
234 * iavf_free_dma_mem - wrapper for DMA memory freeing
235 * @hw: pointer to the HW structure
236 * @mem: ptr to mem struct to free
237 **/
iavf_free_dma_mem(struct iavf_hw * hw,struct iavf_dma_mem * mem)238 enum iavf_status iavf_free_dma_mem(struct iavf_hw *hw, struct iavf_dma_mem *mem)
239 {
240 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
241
242 if (!mem || !mem->va)
243 return IAVF_ERR_PARAM;
244 dma_free_coherent(&adapter->pdev->dev, mem->size,
245 mem->va, (dma_addr_t)mem->pa);
246 return 0;
247 }
248
249 /**
250 * iavf_allocate_virt_mem - virt memory alloc wrapper
251 * @hw: pointer to the HW structure
252 * @mem: ptr to mem struct to fill out
253 * @size: size of memory requested
254 **/
iavf_allocate_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem,u32 size)255 enum iavf_status iavf_allocate_virt_mem(struct iavf_hw *hw,
256 struct iavf_virt_mem *mem, u32 size)
257 {
258 if (!mem)
259 return IAVF_ERR_PARAM;
260
261 mem->size = size;
262 mem->va = kzalloc(size, GFP_KERNEL);
263
264 if (mem->va)
265 return 0;
266 else
267 return IAVF_ERR_NO_MEMORY;
268 }
269
270 /**
271 * iavf_free_virt_mem - virt memory free wrapper
272 * @hw: pointer to the HW structure
273 * @mem: ptr to mem struct to free
274 **/
iavf_free_virt_mem(struct iavf_hw * hw,struct iavf_virt_mem * mem)275 void iavf_free_virt_mem(struct iavf_hw *hw, struct iavf_virt_mem *mem)
276 {
277 kfree(mem->va);
278 }
279
280 /**
281 * iavf_schedule_reset - Set the flags and schedule a reset event
282 * @adapter: board private structure
283 * @flags: IAVF_FLAG_RESET_PENDING or IAVF_FLAG_RESET_NEEDED
284 **/
iavf_schedule_reset(struct iavf_adapter * adapter,u64 flags)285 void iavf_schedule_reset(struct iavf_adapter *adapter, u64 flags)
286 {
287 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section) &&
288 !(adapter->flags &
289 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
290 adapter->flags |= flags;
291 queue_work(adapter->wq, &adapter->reset_task);
292 }
293 }
294
295 /**
296 * iavf_schedule_aq_request - Set the flags and schedule aq request
297 * @adapter: board private structure
298 * @flags: requested aq flags
299 **/
iavf_schedule_aq_request(struct iavf_adapter * adapter,u64 flags)300 void iavf_schedule_aq_request(struct iavf_adapter *adapter, u64 flags)
301 {
302 adapter->aq_required |= flags;
303 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
304 }
305
306 /**
307 * iavf_tx_timeout - Respond to a Tx Hang
308 * @netdev: network interface device structure
309 * @txqueue: queue number that is timing out
310 **/
iavf_tx_timeout(struct net_device * netdev,unsigned int txqueue)311 static void iavf_tx_timeout(struct net_device *netdev, unsigned int txqueue)
312 {
313 struct iavf_adapter *adapter = netdev_priv(netdev);
314
315 adapter->tx_timeout_count++;
316 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
317 }
318
319 /**
320 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
322 **/
iavf_misc_irq_disable(struct iavf_adapter * adapter)323 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
324 {
325 struct iavf_hw *hw = &adapter->hw;
326
327 if (!adapter->msix_entries)
328 return;
329
330 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
331
332 iavf_flush(hw);
333
334 synchronize_irq(adapter->msix_entries[0].vector);
335 }
336
337 /**
338 * iavf_misc_irq_enable - Enable default interrupt generation settings
339 * @adapter: board private structure
340 **/
iavf_misc_irq_enable(struct iavf_adapter * adapter)341 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
342 {
343 struct iavf_hw *hw = &adapter->hw;
344
345 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
346 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
347 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
348
349 iavf_flush(hw);
350 }
351
352 /**
353 * iavf_irq_disable - Mask off interrupt generation on the NIC
354 * @adapter: board private structure
355 **/
iavf_irq_disable(struct iavf_adapter * adapter)356 static void iavf_irq_disable(struct iavf_adapter *adapter)
357 {
358 int i;
359 struct iavf_hw *hw = &adapter->hw;
360
361 if (!adapter->msix_entries)
362 return;
363
364 for (i = 1; i < adapter->num_msix_vectors; i++) {
365 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
366 synchronize_irq(adapter->msix_entries[i].vector);
367 }
368 iavf_flush(hw);
369 }
370
371 /**
372 * iavf_irq_enable_queues - Enable interrupt for all queues
373 * @adapter: board private structure
374 **/
iavf_irq_enable_queues(struct iavf_adapter * adapter)375 static void iavf_irq_enable_queues(struct iavf_adapter *adapter)
376 {
377 struct iavf_hw *hw = &adapter->hw;
378 int i;
379
380 for (i = 1; i < adapter->num_msix_vectors; i++) {
381 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
382 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
383 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
384 }
385 }
386
387 /**
388 * iavf_irq_enable - Enable default interrupt generation settings
389 * @adapter: board private structure
390 * @flush: boolean value whether to run rd32()
391 **/
iavf_irq_enable(struct iavf_adapter * adapter,bool flush)392 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
393 {
394 struct iavf_hw *hw = &adapter->hw;
395
396 iavf_misc_irq_enable(adapter);
397 iavf_irq_enable_queues(adapter);
398
399 if (flush)
400 iavf_flush(hw);
401 }
402
403 /**
404 * iavf_msix_aq - Interrupt handler for vector 0
405 * @irq: interrupt number
406 * @data: pointer to netdev
407 **/
iavf_msix_aq(int irq,void * data)408 static irqreturn_t iavf_msix_aq(int irq, void *data)
409 {
410 struct net_device *netdev = data;
411 struct iavf_adapter *adapter = netdev_priv(netdev);
412 struct iavf_hw *hw = &adapter->hw;
413
414 /* handle non-queue interrupts, these reads clear the registers */
415 rd32(hw, IAVF_VFINT_ICR01);
416 rd32(hw, IAVF_VFINT_ICR0_ENA1);
417
418 if (adapter->state != __IAVF_REMOVE)
419 /* schedule work on the private workqueue */
420 queue_work(adapter->wq, &adapter->adminq_task);
421
422 return IRQ_HANDLED;
423 }
424
425 /**
426 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
427 * @irq: interrupt number
428 * @data: pointer to a q_vector
429 **/
iavf_msix_clean_rings(int irq,void * data)430 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
431 {
432 struct iavf_q_vector *q_vector = data;
433
434 if (!q_vector->tx.ring && !q_vector->rx.ring)
435 return IRQ_HANDLED;
436
437 napi_schedule_irqoff(&q_vector->napi);
438
439 return IRQ_HANDLED;
440 }
441
442 /**
443 * iavf_map_vector_to_rxq - associate irqs with rx queues
444 * @adapter: board private structure
445 * @v_idx: interrupt number
446 * @r_idx: queue number
447 **/
448 static void
iavf_map_vector_to_rxq(struct iavf_adapter * adapter,int v_idx,int r_idx)449 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
450 {
451 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
452 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
453 struct iavf_hw *hw = &adapter->hw;
454
455 rx_ring->q_vector = q_vector;
456 rx_ring->next = q_vector->rx.ring;
457 rx_ring->vsi = &adapter->vsi;
458 q_vector->rx.ring = rx_ring;
459 q_vector->rx.count++;
460 q_vector->rx.next_update = jiffies + 1;
461 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
462 q_vector->ring_mask |= BIT(r_idx);
463 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
464 q_vector->rx.current_itr >> 1);
465 q_vector->rx.current_itr = q_vector->rx.target_itr;
466 }
467
468 /**
469 * iavf_map_vector_to_txq - associate irqs with tx queues
470 * @adapter: board private structure
471 * @v_idx: interrupt number
472 * @t_idx: queue number
473 **/
474 static void
iavf_map_vector_to_txq(struct iavf_adapter * adapter,int v_idx,int t_idx)475 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
476 {
477 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
478 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
479 struct iavf_hw *hw = &adapter->hw;
480
481 tx_ring->q_vector = q_vector;
482 tx_ring->next = q_vector->tx.ring;
483 tx_ring->vsi = &adapter->vsi;
484 q_vector->tx.ring = tx_ring;
485 q_vector->tx.count++;
486 q_vector->tx.next_update = jiffies + 1;
487 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
488 q_vector->num_ringpairs++;
489 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
490 q_vector->tx.target_itr >> 1);
491 q_vector->tx.current_itr = q_vector->tx.target_itr;
492 }
493
494 /**
495 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
496 * @adapter: board private structure to initialize
497 *
498 * This function maps descriptor rings to the queue-specific vectors
499 * we were allotted through the MSI-X enabling code. Ideally, we'd have
500 * one vector per ring/queue, but on a constrained vector budget, we
501 * group the rings as "efficiently" as possible. You would add new
502 * mapping configurations in here.
503 **/
iavf_map_rings_to_vectors(struct iavf_adapter * adapter)504 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
505 {
506 int rings_remaining = adapter->num_active_queues;
507 int ridx = 0, vidx = 0;
508 int q_vectors;
509
510 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
511
512 for (; ridx < rings_remaining; ridx++) {
513 iavf_map_vector_to_rxq(adapter, vidx, ridx);
514 iavf_map_vector_to_txq(adapter, vidx, ridx);
515
516 /* In the case where we have more queues than vectors, continue
517 * round-robin on vectors until all queues are mapped.
518 */
519 if (++vidx >= q_vectors)
520 vidx = 0;
521 }
522
523 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
524 }
525
526 /**
527 * iavf_irq_affinity_notify - Callback for affinity changes
528 * @notify: context as to what irq was changed
529 * @mask: the new affinity mask
530 *
531 * This is a callback function used by the irq_set_affinity_notifier function
532 * so that we may register to receive changes to the irq affinity masks.
533 **/
iavf_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)534 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
535 const cpumask_t *mask)
536 {
537 struct iavf_q_vector *q_vector =
538 container_of(notify, struct iavf_q_vector, affinity_notify);
539
540 cpumask_copy(&q_vector->affinity_mask, mask);
541 }
542
543 /**
544 * iavf_irq_affinity_release - Callback for affinity notifier release
545 * @ref: internal core kernel usage
546 *
547 * This is a callback function used by the irq_set_affinity_notifier function
548 * to inform the current notification subscriber that they will no longer
549 * receive notifications.
550 **/
iavf_irq_affinity_release(struct kref * ref)551 static void iavf_irq_affinity_release(struct kref *ref) {}
552
553 /**
554 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
555 * @adapter: board private structure
556 * @basename: device basename
557 *
558 * Allocates MSI-X vectors for tx and rx handling, and requests
559 * interrupts from the kernel.
560 **/
561 static int
iavf_request_traffic_irqs(struct iavf_adapter * adapter,char * basename)562 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
563 {
564 unsigned int vector, q_vectors;
565 unsigned int rx_int_idx = 0, tx_int_idx = 0;
566 int irq_num, err;
567 int cpu;
568
569 iavf_irq_disable(adapter);
570 /* Decrement for Other and TCP Timer vectors */
571 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
572
573 for (vector = 0; vector < q_vectors; vector++) {
574 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
575
576 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
577
578 if (q_vector->tx.ring && q_vector->rx.ring) {
579 snprintf(q_vector->name, sizeof(q_vector->name),
580 "iavf-%s-TxRx-%u", basename, rx_int_idx++);
581 tx_int_idx++;
582 } else if (q_vector->rx.ring) {
583 snprintf(q_vector->name, sizeof(q_vector->name),
584 "iavf-%s-rx-%u", basename, rx_int_idx++);
585 } else if (q_vector->tx.ring) {
586 snprintf(q_vector->name, sizeof(q_vector->name),
587 "iavf-%s-tx-%u", basename, tx_int_idx++);
588 } else {
589 /* skip this unused q_vector */
590 continue;
591 }
592 err = request_irq(irq_num,
593 iavf_msix_clean_rings,
594 0,
595 q_vector->name,
596 q_vector);
597 if (err) {
598 dev_info(&adapter->pdev->dev,
599 "Request_irq failed, error: %d\n", err);
600 goto free_queue_irqs;
601 }
602 /* register for affinity change notifications */
603 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
604 q_vector->affinity_notify.release =
605 iavf_irq_affinity_release;
606 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
607 /* Spread the IRQ affinity hints across online CPUs. Note that
608 * get_cpu_mask returns a mask with a permanent lifetime so
609 * it's safe to use as a hint for irq_update_affinity_hint.
610 */
611 cpu = cpumask_local_spread(q_vector->v_idx, -1);
612 irq_update_affinity_hint(irq_num, get_cpu_mask(cpu));
613 }
614
615 return 0;
616
617 free_queue_irqs:
618 while (vector) {
619 vector--;
620 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
621 irq_set_affinity_notifier(irq_num, NULL);
622 irq_update_affinity_hint(irq_num, NULL);
623 free_irq(irq_num, &adapter->q_vectors[vector]);
624 }
625 return err;
626 }
627
628 /**
629 * iavf_request_misc_irq - Initialize MSI-X interrupts
630 * @adapter: board private structure
631 *
632 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
633 * vector is only for the admin queue, and stays active even when the netdev
634 * is closed.
635 **/
iavf_request_misc_irq(struct iavf_adapter * adapter)636 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
637 {
638 struct net_device *netdev = adapter->netdev;
639 int err;
640
641 snprintf(adapter->misc_vector_name,
642 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
643 dev_name(&adapter->pdev->dev));
644 err = request_irq(adapter->msix_entries[0].vector,
645 &iavf_msix_aq, 0,
646 adapter->misc_vector_name, netdev);
647 if (err) {
648 dev_err(&adapter->pdev->dev,
649 "request_irq for %s failed: %d\n",
650 adapter->misc_vector_name, err);
651 free_irq(adapter->msix_entries[0].vector, netdev);
652 }
653 return err;
654 }
655
656 /**
657 * iavf_free_traffic_irqs - Free MSI-X interrupts
658 * @adapter: board private structure
659 *
660 * Frees all MSI-X vectors other than 0.
661 **/
iavf_free_traffic_irqs(struct iavf_adapter * adapter)662 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
663 {
664 int vector, irq_num, q_vectors;
665
666 if (!adapter->msix_entries)
667 return;
668
669 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
670
671 for (vector = 0; vector < q_vectors; vector++) {
672 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
673 irq_set_affinity_notifier(irq_num, NULL);
674 irq_update_affinity_hint(irq_num, NULL);
675 free_irq(irq_num, &adapter->q_vectors[vector]);
676 }
677 }
678
679 /**
680 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
681 * @adapter: board private structure
682 *
683 * Frees MSI-X vector 0.
684 **/
iavf_free_misc_irq(struct iavf_adapter * adapter)685 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
686 {
687 struct net_device *netdev = adapter->netdev;
688
689 if (!adapter->msix_entries)
690 return;
691
692 free_irq(adapter->msix_entries[0].vector, netdev);
693 }
694
695 /**
696 * iavf_configure_tx - Configure Transmit Unit after Reset
697 * @adapter: board private structure
698 *
699 * Configure the Tx unit of the MAC after a reset.
700 **/
iavf_configure_tx(struct iavf_adapter * adapter)701 static void iavf_configure_tx(struct iavf_adapter *adapter)
702 {
703 struct iavf_hw *hw = &adapter->hw;
704 int i;
705
706 for (i = 0; i < adapter->num_active_queues; i++)
707 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
708 }
709
710 /**
711 * iavf_configure_rx - Configure Receive Unit after Reset
712 * @adapter: board private structure
713 *
714 * Configure the Rx unit of the MAC after a reset.
715 **/
iavf_configure_rx(struct iavf_adapter * adapter)716 static void iavf_configure_rx(struct iavf_adapter *adapter)
717 {
718 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
719 struct iavf_hw *hw = &adapter->hw;
720 int i;
721
722 /* Legacy Rx will always default to a 2048 buffer size. */
723 #if (PAGE_SIZE < 8192)
724 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
725 struct net_device *netdev = adapter->netdev;
726
727 /* For jumbo frames on systems with 4K pages we have to use
728 * an order 1 page, so we might as well increase the size
729 * of our Rx buffer to make better use of the available space
730 */
731 rx_buf_len = IAVF_RXBUFFER_3072;
732
733 /* We use a 1536 buffer size for configurations with
734 * standard Ethernet mtu. On x86 this gives us enough room
735 * for shared info and 192 bytes of padding.
736 */
737 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
738 (netdev->mtu <= ETH_DATA_LEN))
739 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
740 }
741 #endif
742
743 for (i = 0; i < adapter->num_active_queues; i++) {
744 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
745 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
746
747 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
748 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
749 else
750 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
751 }
752 }
753
754 /**
755 * iavf_find_vlan - Search filter list for specific vlan filter
756 * @adapter: board private structure
757 * @vlan: vlan tag
758 *
759 * Returns ptr to the filter object or NULL. Must be called while holding the
760 * mac_vlan_list_lock.
761 **/
762 static struct
iavf_find_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)763 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter,
764 struct iavf_vlan vlan)
765 {
766 struct iavf_vlan_filter *f;
767
768 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
769 if (f->vlan.vid == vlan.vid &&
770 f->vlan.tpid == vlan.tpid)
771 return f;
772 }
773
774 return NULL;
775 }
776
777 /**
778 * iavf_add_vlan - Add a vlan filter to the list
779 * @adapter: board private structure
780 * @vlan: VLAN tag
781 *
782 * Returns ptr to the filter object or NULL when no memory available.
783 **/
784 static struct
iavf_add_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)785 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter,
786 struct iavf_vlan vlan)
787 {
788 struct iavf_vlan_filter *f = NULL;
789
790 spin_lock_bh(&adapter->mac_vlan_list_lock);
791
792 f = iavf_find_vlan(adapter, vlan);
793 if (!f) {
794 f = kzalloc(sizeof(*f), GFP_ATOMIC);
795 if (!f)
796 goto clearout;
797
798 f->vlan = vlan;
799
800 list_add_tail(&f->list, &adapter->vlan_filter_list);
801 f->state = IAVF_VLAN_ADD;
802 adapter->num_vlan_filters++;
803 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_ADD_VLAN_FILTER);
804 }
805
806 clearout:
807 spin_unlock_bh(&adapter->mac_vlan_list_lock);
808 return f;
809 }
810
811 /**
812 * iavf_del_vlan - Remove a vlan filter from the list
813 * @adapter: board private structure
814 * @vlan: VLAN tag
815 **/
iavf_del_vlan(struct iavf_adapter * adapter,struct iavf_vlan vlan)816 static void iavf_del_vlan(struct iavf_adapter *adapter, struct iavf_vlan vlan)
817 {
818 struct iavf_vlan_filter *f;
819
820 spin_lock_bh(&adapter->mac_vlan_list_lock);
821
822 f = iavf_find_vlan(adapter, vlan);
823 if (f) {
824 f->state = IAVF_VLAN_REMOVE;
825 iavf_schedule_aq_request(adapter, IAVF_FLAG_AQ_DEL_VLAN_FILTER);
826 }
827
828 spin_unlock_bh(&adapter->mac_vlan_list_lock);
829 }
830
831 /**
832 * iavf_restore_filters
833 * @adapter: board private structure
834 *
835 * Restore existing non MAC filters when VF netdev comes back up
836 **/
iavf_restore_filters(struct iavf_adapter * adapter)837 static void iavf_restore_filters(struct iavf_adapter *adapter)
838 {
839 struct iavf_vlan_filter *f;
840
841 /* re-add all VLAN filters */
842 spin_lock_bh(&adapter->mac_vlan_list_lock);
843
844 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
845 if (f->state == IAVF_VLAN_INACTIVE)
846 f->state = IAVF_VLAN_ADD;
847 }
848
849 spin_unlock_bh(&adapter->mac_vlan_list_lock);
850 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
851 }
852
853 /**
854 * iavf_get_num_vlans_added - get number of VLANs added
855 * @adapter: board private structure
856 */
iavf_get_num_vlans_added(struct iavf_adapter * adapter)857 u16 iavf_get_num_vlans_added(struct iavf_adapter *adapter)
858 {
859 return adapter->num_vlan_filters;
860 }
861
862 /**
863 * iavf_get_max_vlans_allowed - get maximum VLANs allowed for this VF
864 * @adapter: board private structure
865 *
866 * This depends on the negotiated VLAN capability. For VIRTCHNL_VF_OFFLOAD_VLAN,
867 * do not impose a limit as that maintains current behavior and for
868 * VIRTCHNL_VF_OFFLOAD_VLAN_V2, use the maximum allowed sent from the PF.
869 **/
iavf_get_max_vlans_allowed(struct iavf_adapter * adapter)870 static u16 iavf_get_max_vlans_allowed(struct iavf_adapter *adapter)
871 {
872 /* don't impose any limit for VIRTCHNL_VF_OFFLOAD_VLAN since there has
873 * never been a limit on the VF driver side
874 */
875 if (VLAN_ALLOWED(adapter))
876 return VLAN_N_VID;
877 else if (VLAN_V2_ALLOWED(adapter))
878 return adapter->vlan_v2_caps.filtering.max_filters;
879
880 return 0;
881 }
882
883 /**
884 * iavf_max_vlans_added - check if maximum VLANs allowed already exist
885 * @adapter: board private structure
886 **/
iavf_max_vlans_added(struct iavf_adapter * adapter)887 static bool iavf_max_vlans_added(struct iavf_adapter *adapter)
888 {
889 if (iavf_get_num_vlans_added(adapter) <
890 iavf_get_max_vlans_allowed(adapter))
891 return false;
892
893 return true;
894 }
895
896 /**
897 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
898 * @netdev: network device struct
899 * @proto: unused protocol data
900 * @vid: VLAN tag
901 **/
iavf_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)902 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
903 __always_unused __be16 proto, u16 vid)
904 {
905 struct iavf_adapter *adapter = netdev_priv(netdev);
906
907 /* Do not track VLAN 0 filter, always added by the PF on VF init */
908 if (!vid)
909 return 0;
910
911 if (!VLAN_FILTERING_ALLOWED(adapter))
912 return -EIO;
913
914 if (iavf_max_vlans_added(adapter)) {
915 netdev_err(netdev, "Max allowed VLAN filters %u. Remove existing VLANs or disable filtering via Ethtool if supported.\n",
916 iavf_get_max_vlans_allowed(adapter));
917 return -EIO;
918 }
919
920 if (!iavf_add_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto))))
921 return -ENOMEM;
922
923 return 0;
924 }
925
926 /**
927 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
928 * @netdev: network device struct
929 * @proto: unused protocol data
930 * @vid: VLAN tag
931 **/
iavf_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)932 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
933 __always_unused __be16 proto, u16 vid)
934 {
935 struct iavf_adapter *adapter = netdev_priv(netdev);
936
937 /* We do not track VLAN 0 filter */
938 if (!vid)
939 return 0;
940
941 iavf_del_vlan(adapter, IAVF_VLAN(vid, be16_to_cpu(proto)));
942 return 0;
943 }
944
945 /**
946 * iavf_find_filter - Search filter list for specific mac filter
947 * @adapter: board private structure
948 * @macaddr: the MAC address
949 *
950 * Returns ptr to the filter object or NULL. Must be called while holding the
951 * mac_vlan_list_lock.
952 **/
953 static struct
iavf_find_filter(struct iavf_adapter * adapter,const u8 * macaddr)954 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
955 const u8 *macaddr)
956 {
957 struct iavf_mac_filter *f;
958
959 if (!macaddr)
960 return NULL;
961
962 list_for_each_entry(f, &adapter->mac_filter_list, list) {
963 if (ether_addr_equal(macaddr, f->macaddr))
964 return f;
965 }
966 return NULL;
967 }
968
969 /**
970 * iavf_add_filter - Add a mac filter to the filter list
971 * @adapter: board private structure
972 * @macaddr: the MAC address
973 *
974 * Returns ptr to the filter object or NULL when no memory available.
975 **/
iavf_add_filter(struct iavf_adapter * adapter,const u8 * macaddr)976 struct iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
977 const u8 *macaddr)
978 {
979 struct iavf_mac_filter *f;
980
981 if (!macaddr)
982 return NULL;
983
984 f = iavf_find_filter(adapter, macaddr);
985 if (!f) {
986 f = kzalloc(sizeof(*f), GFP_ATOMIC);
987 if (!f)
988 return f;
989
990 ether_addr_copy(f->macaddr, macaddr);
991
992 list_add_tail(&f->list, &adapter->mac_filter_list);
993 f->add = true;
994 f->add_handled = false;
995 f->is_new_mac = true;
996 f->is_primary = ether_addr_equal(macaddr, adapter->hw.mac.addr);
997 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
998 } else {
999 f->remove = false;
1000 }
1001
1002 return f;
1003 }
1004
1005 /**
1006 * iavf_replace_primary_mac - Replace current primary address
1007 * @adapter: board private structure
1008 * @new_mac: new MAC address to be applied
1009 *
1010 * Replace current dev_addr and send request to PF for removal of previous
1011 * primary MAC address filter and addition of new primary MAC filter.
1012 * Return 0 for success, -ENOMEM for failure.
1013 *
1014 * Do not call this with mac_vlan_list_lock!
1015 **/
iavf_replace_primary_mac(struct iavf_adapter * adapter,const u8 * new_mac)1016 static int iavf_replace_primary_mac(struct iavf_adapter *adapter,
1017 const u8 *new_mac)
1018 {
1019 struct iavf_hw *hw = &adapter->hw;
1020 struct iavf_mac_filter *new_f;
1021 struct iavf_mac_filter *old_f;
1022
1023 spin_lock_bh(&adapter->mac_vlan_list_lock);
1024
1025 new_f = iavf_add_filter(adapter, new_mac);
1026 if (!new_f) {
1027 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1028 return -ENOMEM;
1029 }
1030
1031 old_f = iavf_find_filter(adapter, hw->mac.addr);
1032 if (old_f) {
1033 old_f->is_primary = false;
1034 old_f->remove = true;
1035 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1036 }
1037 /* Always send the request to add if changing primary MAC,
1038 * even if filter is already present on the list
1039 */
1040 new_f->is_primary = true;
1041 new_f->add = true;
1042 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
1043 ether_addr_copy(hw->mac.addr, new_mac);
1044
1045 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1046
1047 /* schedule the watchdog task to immediately process the request */
1048 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1049 return 0;
1050 }
1051
1052 /**
1053 * iavf_is_mac_set_handled - wait for a response to set MAC from PF
1054 * @netdev: network interface device structure
1055 * @macaddr: MAC address to set
1056 *
1057 * Returns true on success, false on failure
1058 */
iavf_is_mac_set_handled(struct net_device * netdev,const u8 * macaddr)1059 static bool iavf_is_mac_set_handled(struct net_device *netdev,
1060 const u8 *macaddr)
1061 {
1062 struct iavf_adapter *adapter = netdev_priv(netdev);
1063 struct iavf_mac_filter *f;
1064 bool ret = false;
1065
1066 spin_lock_bh(&adapter->mac_vlan_list_lock);
1067
1068 f = iavf_find_filter(adapter, macaddr);
1069
1070 if (!f || (!f->add && f->add_handled))
1071 ret = true;
1072
1073 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1074
1075 return ret;
1076 }
1077
1078 /**
1079 * iavf_set_mac - NDO callback to set port MAC address
1080 * @netdev: network interface device structure
1081 * @p: pointer to an address structure
1082 *
1083 * Returns 0 on success, negative on failure
1084 */
iavf_set_mac(struct net_device * netdev,void * p)1085 static int iavf_set_mac(struct net_device *netdev, void *p)
1086 {
1087 struct iavf_adapter *adapter = netdev_priv(netdev);
1088 struct sockaddr *addr = p;
1089 int ret;
1090
1091 if (!is_valid_ether_addr(addr->sa_data))
1092 return -EADDRNOTAVAIL;
1093
1094 ret = iavf_replace_primary_mac(adapter, addr->sa_data);
1095
1096 if (ret)
1097 return ret;
1098
1099 ret = wait_event_interruptible_timeout(adapter->vc_waitqueue,
1100 iavf_is_mac_set_handled(netdev, addr->sa_data),
1101 msecs_to_jiffies(2500));
1102
1103 /* If ret < 0 then it means wait was interrupted.
1104 * If ret == 0 then it means we got a timeout.
1105 * else it means we got response for set MAC from PF,
1106 * check if netdev MAC was updated to requested MAC,
1107 * if yes then set MAC succeeded otherwise it failed return -EACCES
1108 */
1109 if (ret < 0)
1110 return ret;
1111
1112 if (!ret)
1113 return -EAGAIN;
1114
1115 if (!ether_addr_equal(netdev->dev_addr, addr->sa_data))
1116 return -EACCES;
1117
1118 return 0;
1119 }
1120
1121 /**
1122 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
1123 * @netdev: the netdevice
1124 * @addr: address to add
1125 *
1126 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1127 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1128 */
iavf_addr_sync(struct net_device * netdev,const u8 * addr)1129 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
1130 {
1131 struct iavf_adapter *adapter = netdev_priv(netdev);
1132
1133 if (iavf_add_filter(adapter, addr))
1134 return 0;
1135 else
1136 return -ENOMEM;
1137 }
1138
1139 /**
1140 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1141 * @netdev: the netdevice
1142 * @addr: address to add
1143 *
1144 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1145 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1146 */
iavf_addr_unsync(struct net_device * netdev,const u8 * addr)1147 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
1148 {
1149 struct iavf_adapter *adapter = netdev_priv(netdev);
1150 struct iavf_mac_filter *f;
1151
1152 /* Under some circumstances, we might receive a request to delete
1153 * our own device address from our uc list. Because we store the
1154 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1155 * such requests and not delete our device address from this list.
1156 */
1157 if (ether_addr_equal(addr, netdev->dev_addr))
1158 return 0;
1159
1160 f = iavf_find_filter(adapter, addr);
1161 if (f) {
1162 f->remove = true;
1163 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1164 }
1165 return 0;
1166 }
1167
1168 /**
1169 * iavf_promiscuous_mode_changed - check if promiscuous mode bits changed
1170 * @adapter: device specific adapter
1171 */
iavf_promiscuous_mode_changed(struct iavf_adapter * adapter)1172 bool iavf_promiscuous_mode_changed(struct iavf_adapter *adapter)
1173 {
1174 return (adapter->current_netdev_promisc_flags ^ adapter->netdev->flags) &
1175 (IFF_PROMISC | IFF_ALLMULTI);
1176 }
1177
1178 /**
1179 * iavf_set_rx_mode - NDO callback to set the netdev filters
1180 * @netdev: network interface device structure
1181 **/
iavf_set_rx_mode(struct net_device * netdev)1182 static void iavf_set_rx_mode(struct net_device *netdev)
1183 {
1184 struct iavf_adapter *adapter = netdev_priv(netdev);
1185
1186 spin_lock_bh(&adapter->mac_vlan_list_lock);
1187 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1188 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
1189 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1190
1191 spin_lock_bh(&adapter->current_netdev_promisc_flags_lock);
1192 if (iavf_promiscuous_mode_changed(adapter))
1193 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE;
1194 spin_unlock_bh(&adapter->current_netdev_promisc_flags_lock);
1195 }
1196
1197 /**
1198 * iavf_napi_enable_all - enable NAPI on all queue vectors
1199 * @adapter: board private structure
1200 **/
iavf_napi_enable_all(struct iavf_adapter * adapter)1201 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
1202 {
1203 int q_idx;
1204 struct iavf_q_vector *q_vector;
1205 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1206
1207 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1208 struct napi_struct *napi;
1209
1210 q_vector = &adapter->q_vectors[q_idx];
1211 napi = &q_vector->napi;
1212 napi_enable(napi);
1213 }
1214 }
1215
1216 /**
1217 * iavf_napi_disable_all - disable NAPI on all queue vectors
1218 * @adapter: board private structure
1219 **/
iavf_napi_disable_all(struct iavf_adapter * adapter)1220 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
1221 {
1222 int q_idx;
1223 struct iavf_q_vector *q_vector;
1224 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1225
1226 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1227 q_vector = &adapter->q_vectors[q_idx];
1228 napi_disable(&q_vector->napi);
1229 }
1230 }
1231
1232 /**
1233 * iavf_configure - set up transmit and receive data structures
1234 * @adapter: board private structure
1235 **/
iavf_configure(struct iavf_adapter * adapter)1236 static void iavf_configure(struct iavf_adapter *adapter)
1237 {
1238 struct net_device *netdev = adapter->netdev;
1239 int i;
1240
1241 iavf_set_rx_mode(netdev);
1242
1243 iavf_configure_tx(adapter);
1244 iavf_configure_rx(adapter);
1245 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
1246
1247 for (i = 0; i < adapter->num_active_queues; i++) {
1248 struct iavf_ring *ring = &adapter->rx_rings[i];
1249
1250 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
1251 }
1252 }
1253
1254 /**
1255 * iavf_up_complete - Finish the last steps of bringing up a connection
1256 * @adapter: board private structure
1257 *
1258 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1259 **/
iavf_up_complete(struct iavf_adapter * adapter)1260 static void iavf_up_complete(struct iavf_adapter *adapter)
1261 {
1262 iavf_change_state(adapter, __IAVF_RUNNING);
1263 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1264
1265 iavf_napi_enable_all(adapter);
1266
1267 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
1268 if (CLIENT_ENABLED(adapter))
1269 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
1270 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1271 }
1272
1273 /**
1274 * iavf_clear_mac_vlan_filters - Remove mac and vlan filters not sent to PF
1275 * yet and mark other to be removed.
1276 * @adapter: board private structure
1277 **/
iavf_clear_mac_vlan_filters(struct iavf_adapter * adapter)1278 static void iavf_clear_mac_vlan_filters(struct iavf_adapter *adapter)
1279 {
1280 struct iavf_vlan_filter *vlf, *vlftmp;
1281 struct iavf_mac_filter *f, *ftmp;
1282
1283 spin_lock_bh(&adapter->mac_vlan_list_lock);
1284 /* clear the sync flag on all filters */
1285 __dev_uc_unsync(adapter->netdev, NULL);
1286 __dev_mc_unsync(adapter->netdev, NULL);
1287
1288 /* remove all MAC filters */
1289 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list,
1290 list) {
1291 if (f->add) {
1292 list_del(&f->list);
1293 kfree(f);
1294 } else {
1295 f->remove = true;
1296 }
1297 }
1298
1299 /* disable all VLAN filters */
1300 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
1301 list)
1302 vlf->state = IAVF_VLAN_DISABLE;
1303
1304 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1305 }
1306
1307 /**
1308 * iavf_clear_cloud_filters - Remove cloud filters not sent to PF yet and
1309 * mark other to be removed.
1310 * @adapter: board private structure
1311 **/
iavf_clear_cloud_filters(struct iavf_adapter * adapter)1312 static void iavf_clear_cloud_filters(struct iavf_adapter *adapter)
1313 {
1314 struct iavf_cloud_filter *cf, *cftmp;
1315
1316 /* remove all cloud filters */
1317 spin_lock_bh(&adapter->cloud_filter_list_lock);
1318 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
1319 list) {
1320 if (cf->add) {
1321 list_del(&cf->list);
1322 kfree(cf);
1323 adapter->num_cloud_filters--;
1324 } else {
1325 cf->del = true;
1326 }
1327 }
1328 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1329 }
1330
1331 /**
1332 * iavf_clear_fdir_filters - Remove fdir filters not sent to PF yet and mark
1333 * other to be removed.
1334 * @adapter: board private structure
1335 **/
iavf_clear_fdir_filters(struct iavf_adapter * adapter)1336 static void iavf_clear_fdir_filters(struct iavf_adapter *adapter)
1337 {
1338 struct iavf_fdir_fltr *fdir;
1339
1340 /* remove all Flow Director filters */
1341 spin_lock_bh(&adapter->fdir_fltr_lock);
1342 list_for_each_entry(fdir, &adapter->fdir_list_head, list) {
1343 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST) {
1344 /* Cancel a request, keep filter as inactive */
1345 fdir->state = IAVF_FDIR_FLTR_INACTIVE;
1346 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
1347 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
1348 /* Disable filters which are active or have a pending
1349 * request to PF to be added
1350 */
1351 fdir->state = IAVF_FDIR_FLTR_DIS_REQUEST;
1352 }
1353 }
1354 spin_unlock_bh(&adapter->fdir_fltr_lock);
1355 }
1356
1357 /**
1358 * iavf_clear_adv_rss_conf - Remove adv rss conf not sent to PF yet and mark
1359 * other to be removed.
1360 * @adapter: board private structure
1361 **/
iavf_clear_adv_rss_conf(struct iavf_adapter * adapter)1362 static void iavf_clear_adv_rss_conf(struct iavf_adapter *adapter)
1363 {
1364 struct iavf_adv_rss *rss, *rsstmp;
1365
1366 /* remove all advance RSS configuration */
1367 spin_lock_bh(&adapter->adv_rss_lock);
1368 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
1369 list) {
1370 if (rss->state == IAVF_ADV_RSS_ADD_REQUEST) {
1371 list_del(&rss->list);
1372 kfree(rss);
1373 } else {
1374 rss->state = IAVF_ADV_RSS_DEL_REQUEST;
1375 }
1376 }
1377 spin_unlock_bh(&adapter->adv_rss_lock);
1378 }
1379
1380 /**
1381 * iavf_down - Shutdown the connection processing
1382 * @adapter: board private structure
1383 *
1384 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
1385 **/
iavf_down(struct iavf_adapter * adapter)1386 void iavf_down(struct iavf_adapter *adapter)
1387 {
1388 struct net_device *netdev = adapter->netdev;
1389
1390 if (adapter->state <= __IAVF_DOWN_PENDING)
1391 return;
1392
1393 netif_carrier_off(netdev);
1394 netif_tx_disable(netdev);
1395 adapter->link_up = false;
1396 iavf_napi_disable_all(adapter);
1397 iavf_irq_disable(adapter);
1398
1399 iavf_clear_mac_vlan_filters(adapter);
1400 iavf_clear_cloud_filters(adapter);
1401 iavf_clear_fdir_filters(adapter);
1402 iavf_clear_adv_rss_conf(adapter);
1403
1404 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1405 !(test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))) {
1406 /* cancel any current operation */
1407 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1408 /* Schedule operations to close down the HW. Don't wait
1409 * here for this to complete. The watchdog is still running
1410 * and it will take care of this.
1411 */
1412 if (!list_empty(&adapter->mac_filter_list))
1413 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
1414 if (!list_empty(&adapter->vlan_filter_list))
1415 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1416 if (!list_empty(&adapter->cloud_filter_list))
1417 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1418 if (!list_empty(&adapter->fdir_list_head))
1419 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1420 if (!list_empty(&adapter->adv_rss_list_head))
1421 adapter->aq_required |= IAVF_FLAG_AQ_DEL_ADV_RSS_CFG;
1422 }
1423
1424 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1425 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1426 }
1427
1428 /**
1429 * iavf_acquire_msix_vectors - Setup the MSIX capability
1430 * @adapter: board private structure
1431 * @vectors: number of vectors to request
1432 *
1433 * Work with the OS to set up the MSIX vectors needed.
1434 *
1435 * Returns 0 on success, negative on failure
1436 **/
1437 static int
iavf_acquire_msix_vectors(struct iavf_adapter * adapter,int vectors)1438 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1439 {
1440 int err, vector_threshold;
1441
1442 /* We'll want at least 3 (vector_threshold):
1443 * 0) Other (Admin Queue and link, mostly)
1444 * 1) TxQ[0] Cleanup
1445 * 2) RxQ[0] Cleanup
1446 */
1447 vector_threshold = MIN_MSIX_COUNT;
1448
1449 /* The more we get, the more we will assign to Tx/Rx Cleanup
1450 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1451 * Right now, we simply care about how many we'll get; we'll
1452 * set them up later while requesting irq's.
1453 */
1454 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1455 vector_threshold, vectors);
1456 if (err < 0) {
1457 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1458 kfree(adapter->msix_entries);
1459 adapter->msix_entries = NULL;
1460 return err;
1461 }
1462
1463 /* Adjust for only the vectors we'll use, which is minimum
1464 * of max_msix_q_vectors + NONQ_VECS, or the number of
1465 * vectors we were allocated.
1466 */
1467 adapter->num_msix_vectors = err;
1468 return 0;
1469 }
1470
1471 /**
1472 * iavf_free_queues - Free memory for all rings
1473 * @adapter: board private structure to initialize
1474 *
1475 * Free all of the memory associated with queue pairs.
1476 **/
iavf_free_queues(struct iavf_adapter * adapter)1477 static void iavf_free_queues(struct iavf_adapter *adapter)
1478 {
1479 if (!adapter->vsi_res)
1480 return;
1481 adapter->num_active_queues = 0;
1482 kfree(adapter->tx_rings);
1483 adapter->tx_rings = NULL;
1484 kfree(adapter->rx_rings);
1485 adapter->rx_rings = NULL;
1486 }
1487
1488 /**
1489 * iavf_set_queue_vlan_tag_loc - set location for VLAN tag offload
1490 * @adapter: board private structure
1491 *
1492 * Based on negotiated capabilities, the VLAN tag needs to be inserted and/or
1493 * stripped in certain descriptor fields. Instead of checking the offload
1494 * capability bits in the hot path, cache the location the ring specific
1495 * flags.
1496 */
iavf_set_queue_vlan_tag_loc(struct iavf_adapter * adapter)1497 void iavf_set_queue_vlan_tag_loc(struct iavf_adapter *adapter)
1498 {
1499 int i;
1500
1501 for (i = 0; i < adapter->num_active_queues; i++) {
1502 struct iavf_ring *tx_ring = &adapter->tx_rings[i];
1503 struct iavf_ring *rx_ring = &adapter->rx_rings[i];
1504
1505 /* prevent multiple L2TAG bits being set after VFR */
1506 tx_ring->flags &=
1507 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1508 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2);
1509 rx_ring->flags &=
1510 ~(IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1 |
1511 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2);
1512
1513 if (VLAN_ALLOWED(adapter)) {
1514 tx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1515 rx_ring->flags |= IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1516 } else if (VLAN_V2_ALLOWED(adapter)) {
1517 struct virtchnl_vlan_supported_caps *stripping_support;
1518 struct virtchnl_vlan_supported_caps *insertion_support;
1519
1520 stripping_support =
1521 &adapter->vlan_v2_caps.offloads.stripping_support;
1522 insertion_support =
1523 &adapter->vlan_v2_caps.offloads.insertion_support;
1524
1525 if (stripping_support->outer) {
1526 if (stripping_support->outer &
1527 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1528 rx_ring->flags |=
1529 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1530 else if (stripping_support->outer &
1531 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1532 rx_ring->flags |=
1533 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1534 } else if (stripping_support->inner) {
1535 if (stripping_support->inner &
1536 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1537 rx_ring->flags |=
1538 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1539 else if (stripping_support->inner &
1540 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2)
1541 rx_ring->flags |=
1542 IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2;
1543 }
1544
1545 if (insertion_support->outer) {
1546 if (insertion_support->outer &
1547 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1548 tx_ring->flags |=
1549 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1550 else if (insertion_support->outer &
1551 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1552 tx_ring->flags |=
1553 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1554 } else if (insertion_support->inner) {
1555 if (insertion_support->inner &
1556 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1)
1557 tx_ring->flags |=
1558 IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1;
1559 else if (insertion_support->inner &
1560 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2)
1561 tx_ring->flags |=
1562 IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2;
1563 }
1564 }
1565 }
1566 }
1567
1568 /**
1569 * iavf_alloc_queues - Allocate memory for all rings
1570 * @adapter: board private structure to initialize
1571 *
1572 * We allocate one ring per queue at run-time since we don't know the
1573 * number of queues at compile-time. The polling_netdev array is
1574 * intended for Multiqueue, but should work fine with a single queue.
1575 **/
iavf_alloc_queues(struct iavf_adapter * adapter)1576 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1577 {
1578 int i, num_active_queues;
1579
1580 /* If we're in reset reallocating queues we don't actually know yet for
1581 * certain the PF gave us the number of queues we asked for but we'll
1582 * assume it did. Once basic reset is finished we'll confirm once we
1583 * start negotiating config with PF.
1584 */
1585 if (adapter->num_req_queues)
1586 num_active_queues = adapter->num_req_queues;
1587 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1588 adapter->num_tc)
1589 num_active_queues = adapter->ch_config.total_qps;
1590 else
1591 num_active_queues = min_t(int,
1592 adapter->vsi_res->num_queue_pairs,
1593 (int)(num_online_cpus()));
1594
1595
1596 adapter->tx_rings = kcalloc(num_active_queues,
1597 sizeof(struct iavf_ring), GFP_KERNEL);
1598 if (!adapter->tx_rings)
1599 goto err_out;
1600 adapter->rx_rings = kcalloc(num_active_queues,
1601 sizeof(struct iavf_ring), GFP_KERNEL);
1602 if (!adapter->rx_rings)
1603 goto err_out;
1604
1605 for (i = 0; i < num_active_queues; i++) {
1606 struct iavf_ring *tx_ring;
1607 struct iavf_ring *rx_ring;
1608
1609 tx_ring = &adapter->tx_rings[i];
1610
1611 tx_ring->queue_index = i;
1612 tx_ring->netdev = adapter->netdev;
1613 tx_ring->dev = &adapter->pdev->dev;
1614 tx_ring->count = adapter->tx_desc_count;
1615 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1616 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1617 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1618
1619 rx_ring = &adapter->rx_rings[i];
1620 rx_ring->queue_index = i;
1621 rx_ring->netdev = adapter->netdev;
1622 rx_ring->dev = &adapter->pdev->dev;
1623 rx_ring->count = adapter->rx_desc_count;
1624 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1625 }
1626
1627 adapter->num_active_queues = num_active_queues;
1628
1629 iavf_set_queue_vlan_tag_loc(adapter);
1630
1631 return 0;
1632
1633 err_out:
1634 iavf_free_queues(adapter);
1635 return -ENOMEM;
1636 }
1637
1638 /**
1639 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1640 * @adapter: board private structure to initialize
1641 *
1642 * Attempt to configure the interrupts using the best available
1643 * capabilities of the hardware and the kernel.
1644 **/
iavf_set_interrupt_capability(struct iavf_adapter * adapter)1645 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1646 {
1647 int vector, v_budget;
1648 int pairs = 0;
1649 int err = 0;
1650
1651 if (!adapter->vsi_res) {
1652 err = -EIO;
1653 goto out;
1654 }
1655 pairs = adapter->num_active_queues;
1656
1657 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1658 * us much good if we have more vectors than CPUs. However, we already
1659 * limit the total number of queues by the number of CPUs so we do not
1660 * need any further limiting here.
1661 */
1662 v_budget = min_t(int, pairs + NONQ_VECS,
1663 (int)adapter->vf_res->max_vectors);
1664
1665 adapter->msix_entries = kcalloc(v_budget,
1666 sizeof(struct msix_entry), GFP_KERNEL);
1667 if (!adapter->msix_entries) {
1668 err = -ENOMEM;
1669 goto out;
1670 }
1671
1672 for (vector = 0; vector < v_budget; vector++)
1673 adapter->msix_entries[vector].entry = vector;
1674
1675 err = iavf_acquire_msix_vectors(adapter, v_budget);
1676 if (!err)
1677 iavf_schedule_finish_config(adapter);
1678
1679 out:
1680 return err;
1681 }
1682
1683 /**
1684 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1685 * @adapter: board private structure
1686 *
1687 * Return 0 on success, negative on failure
1688 **/
iavf_config_rss_aq(struct iavf_adapter * adapter)1689 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1690 {
1691 struct iavf_aqc_get_set_rss_key_data *rss_key =
1692 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1693 struct iavf_hw *hw = &adapter->hw;
1694 enum iavf_status status;
1695
1696 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1697 /* bail because we already have a command pending */
1698 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1699 adapter->current_op);
1700 return -EBUSY;
1701 }
1702
1703 status = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1704 if (status) {
1705 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1706 iavf_stat_str(hw, status),
1707 iavf_aq_str(hw, hw->aq.asq_last_status));
1708 return iavf_status_to_errno(status);
1709
1710 }
1711
1712 status = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1713 adapter->rss_lut, adapter->rss_lut_size);
1714 if (status) {
1715 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1716 iavf_stat_str(hw, status),
1717 iavf_aq_str(hw, hw->aq.asq_last_status));
1718 return iavf_status_to_errno(status);
1719 }
1720
1721 return 0;
1722
1723 }
1724
1725 /**
1726 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1727 * @adapter: board private structure
1728 *
1729 * Returns 0 on success, negative on failure
1730 **/
iavf_config_rss_reg(struct iavf_adapter * adapter)1731 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1732 {
1733 struct iavf_hw *hw = &adapter->hw;
1734 u32 *dw;
1735 u16 i;
1736
1737 dw = (u32 *)adapter->rss_key;
1738 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1739 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1740
1741 dw = (u32 *)adapter->rss_lut;
1742 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1743 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1744
1745 iavf_flush(hw);
1746
1747 return 0;
1748 }
1749
1750 /**
1751 * iavf_config_rss - Configure RSS keys and lut
1752 * @adapter: board private structure
1753 *
1754 * Returns 0 on success, negative on failure
1755 **/
iavf_config_rss(struct iavf_adapter * adapter)1756 int iavf_config_rss(struct iavf_adapter *adapter)
1757 {
1758
1759 if (RSS_PF(adapter)) {
1760 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1761 IAVF_FLAG_AQ_SET_RSS_KEY;
1762 return 0;
1763 } else if (RSS_AQ(adapter)) {
1764 return iavf_config_rss_aq(adapter);
1765 } else {
1766 return iavf_config_rss_reg(adapter);
1767 }
1768 }
1769
1770 /**
1771 * iavf_fill_rss_lut - Fill the lut with default values
1772 * @adapter: board private structure
1773 **/
iavf_fill_rss_lut(struct iavf_adapter * adapter)1774 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1775 {
1776 u16 i;
1777
1778 for (i = 0; i < adapter->rss_lut_size; i++)
1779 adapter->rss_lut[i] = i % adapter->num_active_queues;
1780 }
1781
1782 /**
1783 * iavf_init_rss - Prepare for RSS
1784 * @adapter: board private structure
1785 *
1786 * Return 0 on success, negative on failure
1787 **/
iavf_init_rss(struct iavf_adapter * adapter)1788 static int iavf_init_rss(struct iavf_adapter *adapter)
1789 {
1790 struct iavf_hw *hw = &adapter->hw;
1791
1792 if (!RSS_PF(adapter)) {
1793 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1794 if (adapter->vf_res->vf_cap_flags &
1795 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1796 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1797 else
1798 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1799
1800 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1801 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1802 }
1803
1804 iavf_fill_rss_lut(adapter);
1805 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1806
1807 return iavf_config_rss(adapter);
1808 }
1809
1810 /**
1811 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1812 * @adapter: board private structure to initialize
1813 *
1814 * We allocate one q_vector per queue interrupt. If allocation fails we
1815 * return -ENOMEM.
1816 **/
iavf_alloc_q_vectors(struct iavf_adapter * adapter)1817 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1818 {
1819 int q_idx = 0, num_q_vectors;
1820 struct iavf_q_vector *q_vector;
1821
1822 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1823 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1824 GFP_KERNEL);
1825 if (!adapter->q_vectors)
1826 return -ENOMEM;
1827
1828 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1829 q_vector = &adapter->q_vectors[q_idx];
1830 q_vector->adapter = adapter;
1831 q_vector->vsi = &adapter->vsi;
1832 q_vector->v_idx = q_idx;
1833 q_vector->reg_idx = q_idx;
1834 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1835 netif_napi_add(adapter->netdev, &q_vector->napi,
1836 iavf_napi_poll);
1837 }
1838
1839 return 0;
1840 }
1841
1842 /**
1843 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1844 * @adapter: board private structure to initialize
1845 *
1846 * This function frees the memory allocated to the q_vectors. In addition if
1847 * NAPI is enabled it will delete any references to the NAPI struct prior
1848 * to freeing the q_vector.
1849 **/
iavf_free_q_vectors(struct iavf_adapter * adapter)1850 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1851 {
1852 int q_idx, num_q_vectors;
1853
1854 if (!adapter->q_vectors)
1855 return;
1856
1857 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1858
1859 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1860 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1861
1862 netif_napi_del(&q_vector->napi);
1863 }
1864 kfree(adapter->q_vectors);
1865 adapter->q_vectors = NULL;
1866 }
1867
1868 /**
1869 * iavf_reset_interrupt_capability - Reset MSIX setup
1870 * @adapter: board private structure
1871 *
1872 **/
iavf_reset_interrupt_capability(struct iavf_adapter * adapter)1873 static void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1874 {
1875 if (!adapter->msix_entries)
1876 return;
1877
1878 pci_disable_msix(adapter->pdev);
1879 kfree(adapter->msix_entries);
1880 adapter->msix_entries = NULL;
1881 }
1882
1883 /**
1884 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1885 * @adapter: board private structure to initialize
1886 *
1887 **/
iavf_init_interrupt_scheme(struct iavf_adapter * adapter)1888 static int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1889 {
1890 int err;
1891
1892 err = iavf_alloc_queues(adapter);
1893 if (err) {
1894 dev_err(&adapter->pdev->dev,
1895 "Unable to allocate memory for queues\n");
1896 goto err_alloc_queues;
1897 }
1898
1899 err = iavf_set_interrupt_capability(adapter);
1900 if (err) {
1901 dev_err(&adapter->pdev->dev,
1902 "Unable to setup interrupt capabilities\n");
1903 goto err_set_interrupt;
1904 }
1905
1906 err = iavf_alloc_q_vectors(adapter);
1907 if (err) {
1908 dev_err(&adapter->pdev->dev,
1909 "Unable to allocate memory for queue vectors\n");
1910 goto err_alloc_q_vectors;
1911 }
1912
1913 /* If we've made it so far while ADq flag being ON, then we haven't
1914 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1915 * resources have been allocated in the reset path.
1916 * Now we can truly claim that ADq is enabled.
1917 */
1918 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1919 adapter->num_tc)
1920 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1921 adapter->num_tc);
1922
1923 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1924 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1925 adapter->num_active_queues);
1926
1927 return 0;
1928 err_alloc_q_vectors:
1929 iavf_reset_interrupt_capability(adapter);
1930 err_set_interrupt:
1931 iavf_free_queues(adapter);
1932 err_alloc_queues:
1933 return err;
1934 }
1935
1936 /**
1937 * iavf_free_rss - Free memory used by RSS structs
1938 * @adapter: board private structure
1939 **/
iavf_free_rss(struct iavf_adapter * adapter)1940 static void iavf_free_rss(struct iavf_adapter *adapter)
1941 {
1942 kfree(adapter->rss_key);
1943 adapter->rss_key = NULL;
1944
1945 kfree(adapter->rss_lut);
1946 adapter->rss_lut = NULL;
1947 }
1948
1949 /**
1950 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1951 * @adapter: board private structure
1952 * @running: true if adapter->state == __IAVF_RUNNING
1953 *
1954 * Returns 0 on success, negative on failure
1955 **/
iavf_reinit_interrupt_scheme(struct iavf_adapter * adapter,bool running)1956 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter, bool running)
1957 {
1958 struct net_device *netdev = adapter->netdev;
1959 int err;
1960
1961 if (running)
1962 iavf_free_traffic_irqs(adapter);
1963 iavf_free_misc_irq(adapter);
1964 iavf_reset_interrupt_capability(adapter);
1965 iavf_free_q_vectors(adapter);
1966 iavf_free_queues(adapter);
1967
1968 err = iavf_init_interrupt_scheme(adapter);
1969 if (err)
1970 goto err;
1971
1972 netif_tx_stop_all_queues(netdev);
1973
1974 err = iavf_request_misc_irq(adapter);
1975 if (err)
1976 goto err;
1977
1978 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1979
1980 iavf_map_rings_to_vectors(adapter);
1981 err:
1982 return err;
1983 }
1984
1985 /**
1986 * iavf_finish_config - do all netdev work that needs RTNL
1987 * @work: our work_struct
1988 *
1989 * Do work that needs both RTNL and crit_lock.
1990 **/
iavf_finish_config(struct work_struct * work)1991 static void iavf_finish_config(struct work_struct *work)
1992 {
1993 struct iavf_adapter *adapter;
1994 int pairs, err;
1995
1996 adapter = container_of(work, struct iavf_adapter, finish_config);
1997
1998 /* Always take RTNL first to prevent circular lock dependency */
1999 rtnl_lock();
2000 mutex_lock(&adapter->crit_lock);
2001
2002 if ((adapter->flags & IAVF_FLAG_SETUP_NETDEV_FEATURES) &&
2003 adapter->netdev_registered &&
2004 !test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section)) {
2005 netdev_update_features(adapter->netdev);
2006 adapter->flags &= ~IAVF_FLAG_SETUP_NETDEV_FEATURES;
2007 }
2008
2009 switch (adapter->state) {
2010 case __IAVF_DOWN:
2011 if (!adapter->netdev_registered) {
2012 err = register_netdevice(adapter->netdev);
2013 if (err) {
2014 dev_err(&adapter->pdev->dev, "Unable to register netdev (%d)\n",
2015 err);
2016
2017 /* go back and try again.*/
2018 iavf_free_rss(adapter);
2019 iavf_free_misc_irq(adapter);
2020 iavf_reset_interrupt_capability(adapter);
2021 iavf_change_state(adapter,
2022 __IAVF_INIT_CONFIG_ADAPTER);
2023 goto out;
2024 }
2025 adapter->netdev_registered = true;
2026 }
2027
2028 /* Set the real number of queues when reset occurs while
2029 * state == __IAVF_DOWN
2030 */
2031 fallthrough;
2032 case __IAVF_RUNNING:
2033 pairs = adapter->num_active_queues;
2034 netif_set_real_num_rx_queues(adapter->netdev, pairs);
2035 netif_set_real_num_tx_queues(adapter->netdev, pairs);
2036 break;
2037
2038 default:
2039 break;
2040 }
2041
2042 out:
2043 mutex_unlock(&adapter->crit_lock);
2044 rtnl_unlock();
2045 }
2046
2047 /**
2048 * iavf_schedule_finish_config - Set the flags and schedule a reset event
2049 * @adapter: board private structure
2050 **/
iavf_schedule_finish_config(struct iavf_adapter * adapter)2051 void iavf_schedule_finish_config(struct iavf_adapter *adapter)
2052 {
2053 if (!test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2054 queue_work(adapter->wq, &adapter->finish_config);
2055 }
2056
2057 /**
2058 * iavf_process_aq_command - process aq_required flags
2059 * and sends aq command
2060 * @adapter: pointer to iavf adapter structure
2061 *
2062 * Returns 0 on success
2063 * Returns error code if no command was sent
2064 * or error code if the command failed.
2065 **/
iavf_process_aq_command(struct iavf_adapter * adapter)2066 static int iavf_process_aq_command(struct iavf_adapter *adapter)
2067 {
2068 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
2069 return iavf_send_vf_config_msg(adapter);
2070 if (adapter->aq_required & IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS)
2071 return iavf_send_vf_offload_vlan_v2_msg(adapter);
2072 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
2073 iavf_disable_queues(adapter);
2074 return 0;
2075 }
2076
2077 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
2078 iavf_map_queues(adapter);
2079 return 0;
2080 }
2081
2082 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
2083 iavf_add_ether_addrs(adapter);
2084 return 0;
2085 }
2086
2087 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
2088 iavf_add_vlans(adapter);
2089 return 0;
2090 }
2091
2092 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
2093 iavf_del_ether_addrs(adapter);
2094 return 0;
2095 }
2096
2097 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
2098 iavf_del_vlans(adapter);
2099 return 0;
2100 }
2101
2102 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
2103 iavf_enable_vlan_stripping(adapter);
2104 return 0;
2105 }
2106
2107 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
2108 iavf_disable_vlan_stripping(adapter);
2109 return 0;
2110 }
2111
2112 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
2113 iavf_configure_queues(adapter);
2114 return 0;
2115 }
2116
2117 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
2118 iavf_enable_queues(adapter);
2119 return 0;
2120 }
2121
2122 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
2123 /* This message goes straight to the firmware, not the
2124 * PF, so we don't have to set current_op as we will
2125 * not get a response through the ARQ.
2126 */
2127 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
2128 return 0;
2129 }
2130 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
2131 iavf_get_hena(adapter);
2132 return 0;
2133 }
2134 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
2135 iavf_set_hena(adapter);
2136 return 0;
2137 }
2138 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
2139 iavf_set_rss_key(adapter);
2140 return 0;
2141 }
2142 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
2143 iavf_set_rss_lut(adapter);
2144 return 0;
2145 }
2146
2147 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_PROMISC_MODE) {
2148 iavf_set_promiscuous(adapter);
2149 return 0;
2150 }
2151
2152 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
2153 iavf_enable_channels(adapter);
2154 return 0;
2155 }
2156
2157 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
2158 iavf_disable_channels(adapter);
2159 return 0;
2160 }
2161 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2162 iavf_add_cloud_filter(adapter);
2163 return 0;
2164 }
2165
2166 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2167 iavf_del_cloud_filter(adapter);
2168 return 0;
2169 }
2170 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
2171 iavf_del_cloud_filter(adapter);
2172 return 0;
2173 }
2174 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
2175 iavf_add_cloud_filter(adapter);
2176 return 0;
2177 }
2178 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_FDIR_FILTER) {
2179 iavf_add_fdir_filter(adapter);
2180 return IAVF_SUCCESS;
2181 }
2182 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_FDIR_FILTER) {
2183 iavf_del_fdir_filter(adapter);
2184 return IAVF_SUCCESS;
2185 }
2186 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_ADV_RSS_CFG) {
2187 iavf_add_adv_rss_cfg(adapter);
2188 return 0;
2189 }
2190 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_ADV_RSS_CFG) {
2191 iavf_del_adv_rss_cfg(adapter);
2192 return 0;
2193 }
2194 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING) {
2195 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2196 return 0;
2197 }
2198 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING) {
2199 iavf_disable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2200 return 0;
2201 }
2202 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING) {
2203 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021Q);
2204 return 0;
2205 }
2206 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING) {
2207 iavf_enable_vlan_stripping_v2(adapter, ETH_P_8021AD);
2208 return 0;
2209 }
2210 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION) {
2211 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2212 return 0;
2213 }
2214 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION) {
2215 iavf_disable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2216 return 0;
2217 }
2218 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION) {
2219 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021Q);
2220 return 0;
2221 }
2222 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION) {
2223 iavf_enable_vlan_insertion_v2(adapter, ETH_P_8021AD);
2224 return 0;
2225 }
2226
2227 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_STATS) {
2228 iavf_request_stats(adapter);
2229 return 0;
2230 }
2231
2232 return -EAGAIN;
2233 }
2234
2235 /**
2236 * iavf_set_vlan_offload_features - set VLAN offload configuration
2237 * @adapter: board private structure
2238 * @prev_features: previous features used for comparison
2239 * @features: updated features used for configuration
2240 *
2241 * Set the aq_required bit(s) based on the requested features passed in to
2242 * configure VLAN stripping and/or VLAN insertion if supported. Also, schedule
2243 * the watchdog if any changes are requested to expedite the request via
2244 * virtchnl.
2245 **/
2246 static void
iavf_set_vlan_offload_features(struct iavf_adapter * adapter,netdev_features_t prev_features,netdev_features_t features)2247 iavf_set_vlan_offload_features(struct iavf_adapter *adapter,
2248 netdev_features_t prev_features,
2249 netdev_features_t features)
2250 {
2251 bool enable_stripping = true, enable_insertion = true;
2252 u16 vlan_ethertype = 0;
2253 u64 aq_required = 0;
2254
2255 /* keep cases separate because one ethertype for offloads can be
2256 * disabled at the same time as another is disabled, so check for an
2257 * enabled ethertype first, then check for disabled. Default to
2258 * ETH_P_8021Q so an ethertype is specified if disabling insertion and
2259 * stripping.
2260 */
2261 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2262 vlan_ethertype = ETH_P_8021AD;
2263 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2264 vlan_ethertype = ETH_P_8021Q;
2265 else if (prev_features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
2266 vlan_ethertype = ETH_P_8021AD;
2267 else if (prev_features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
2268 vlan_ethertype = ETH_P_8021Q;
2269 else
2270 vlan_ethertype = ETH_P_8021Q;
2271
2272 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
2273 enable_stripping = false;
2274 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
2275 enable_insertion = false;
2276
2277 if (VLAN_ALLOWED(adapter)) {
2278 /* VIRTCHNL_VF_OFFLOAD_VLAN only has support for toggling VLAN
2279 * stripping via virtchnl. VLAN insertion can be toggled on the
2280 * netdev, but it doesn't require a virtchnl message
2281 */
2282 if (enable_stripping)
2283 aq_required |= IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
2284 else
2285 aq_required |= IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
2286
2287 } else if (VLAN_V2_ALLOWED(adapter)) {
2288 switch (vlan_ethertype) {
2289 case ETH_P_8021Q:
2290 if (enable_stripping)
2291 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_STRIPPING;
2292 else
2293 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_STRIPPING;
2294
2295 if (enable_insertion)
2296 aq_required |= IAVF_FLAG_AQ_ENABLE_CTAG_VLAN_INSERTION;
2297 else
2298 aq_required |= IAVF_FLAG_AQ_DISABLE_CTAG_VLAN_INSERTION;
2299 break;
2300 case ETH_P_8021AD:
2301 if (enable_stripping)
2302 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_STRIPPING;
2303 else
2304 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_STRIPPING;
2305
2306 if (enable_insertion)
2307 aq_required |= IAVF_FLAG_AQ_ENABLE_STAG_VLAN_INSERTION;
2308 else
2309 aq_required |= IAVF_FLAG_AQ_DISABLE_STAG_VLAN_INSERTION;
2310 break;
2311 }
2312 }
2313
2314 if (aq_required) {
2315 adapter->aq_required |= aq_required;
2316 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
2317 }
2318 }
2319
2320 /**
2321 * iavf_startup - first step of driver startup
2322 * @adapter: board private structure
2323 *
2324 * Function process __IAVF_STARTUP driver state.
2325 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
2326 * when fails the state is changed to __IAVF_INIT_FAILED
2327 **/
iavf_startup(struct iavf_adapter * adapter)2328 static void iavf_startup(struct iavf_adapter *adapter)
2329 {
2330 struct pci_dev *pdev = adapter->pdev;
2331 struct iavf_hw *hw = &adapter->hw;
2332 enum iavf_status status;
2333 int ret;
2334
2335 WARN_ON(adapter->state != __IAVF_STARTUP);
2336
2337 /* driver loaded, probe complete */
2338 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2339 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2340 status = iavf_set_mac_type(hw);
2341 if (status) {
2342 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", status);
2343 goto err;
2344 }
2345
2346 ret = iavf_check_reset_complete(hw);
2347 if (ret) {
2348 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
2349 ret);
2350 goto err;
2351 }
2352 hw->aq.num_arq_entries = IAVF_AQ_LEN;
2353 hw->aq.num_asq_entries = IAVF_AQ_LEN;
2354 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2355 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
2356
2357 status = iavf_init_adminq(hw);
2358 if (status) {
2359 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n",
2360 status);
2361 goto err;
2362 }
2363 ret = iavf_send_api_ver(adapter);
2364 if (ret) {
2365 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", ret);
2366 iavf_shutdown_adminq(hw);
2367 goto err;
2368 }
2369 iavf_change_state(adapter, __IAVF_INIT_VERSION_CHECK);
2370 return;
2371 err:
2372 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2373 }
2374
2375 /**
2376 * iavf_init_version_check - second step of driver startup
2377 * @adapter: board private structure
2378 *
2379 * Function process __IAVF_INIT_VERSION_CHECK driver state.
2380 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
2381 * when fails the state is changed to __IAVF_INIT_FAILED
2382 **/
iavf_init_version_check(struct iavf_adapter * adapter)2383 static void iavf_init_version_check(struct iavf_adapter *adapter)
2384 {
2385 struct pci_dev *pdev = adapter->pdev;
2386 struct iavf_hw *hw = &adapter->hw;
2387 int err = -EAGAIN;
2388
2389 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
2390
2391 if (!iavf_asq_done(hw)) {
2392 dev_err(&pdev->dev, "Admin queue command never completed\n");
2393 iavf_shutdown_adminq(hw);
2394 iavf_change_state(adapter, __IAVF_STARTUP);
2395 goto err;
2396 }
2397
2398 /* aq msg sent, awaiting reply */
2399 err = iavf_verify_api_ver(adapter);
2400 if (err) {
2401 if (err == -EALREADY)
2402 err = iavf_send_api_ver(adapter);
2403 else
2404 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
2405 adapter->pf_version.major,
2406 adapter->pf_version.minor,
2407 VIRTCHNL_VERSION_MAJOR,
2408 VIRTCHNL_VERSION_MINOR);
2409 goto err;
2410 }
2411 err = iavf_send_vf_config_msg(adapter);
2412 if (err) {
2413 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
2414 err);
2415 goto err;
2416 }
2417 iavf_change_state(adapter, __IAVF_INIT_GET_RESOURCES);
2418 return;
2419 err:
2420 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2421 }
2422
2423 /**
2424 * iavf_parse_vf_resource_msg - parse response from VIRTCHNL_OP_GET_VF_RESOURCES
2425 * @adapter: board private structure
2426 */
iavf_parse_vf_resource_msg(struct iavf_adapter * adapter)2427 int iavf_parse_vf_resource_msg(struct iavf_adapter *adapter)
2428 {
2429 int i, num_req_queues = adapter->num_req_queues;
2430 struct iavf_vsi *vsi = &adapter->vsi;
2431
2432 for (i = 0; i < adapter->vf_res->num_vsis; i++) {
2433 if (adapter->vf_res->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
2434 adapter->vsi_res = &adapter->vf_res->vsi_res[i];
2435 }
2436 if (!adapter->vsi_res) {
2437 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
2438 return -ENODEV;
2439 }
2440
2441 if (num_req_queues &&
2442 num_req_queues > adapter->vsi_res->num_queue_pairs) {
2443 /* Problem. The PF gave us fewer queues than what we had
2444 * negotiated in our request. Need a reset to see if we can't
2445 * get back to a working state.
2446 */
2447 dev_err(&adapter->pdev->dev,
2448 "Requested %d queues, but PF only gave us %d.\n",
2449 num_req_queues,
2450 adapter->vsi_res->num_queue_pairs);
2451 adapter->flags |= IAVF_FLAG_REINIT_MSIX_NEEDED;
2452 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
2453 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
2454
2455 return -EAGAIN;
2456 }
2457 adapter->num_req_queues = 0;
2458 adapter->vsi.id = adapter->vsi_res->vsi_id;
2459
2460 adapter->vsi.back = adapter;
2461 adapter->vsi.base_vector = 1;
2462 vsi->netdev = adapter->netdev;
2463 vsi->qs_handle = adapter->vsi_res->qset_handle;
2464 if (adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2465 adapter->rss_key_size = adapter->vf_res->rss_key_size;
2466 adapter->rss_lut_size = adapter->vf_res->rss_lut_size;
2467 } else {
2468 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
2469 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
2470 }
2471
2472 return 0;
2473 }
2474
2475 /**
2476 * iavf_init_get_resources - third step of driver startup
2477 * @adapter: board private structure
2478 *
2479 * Function process __IAVF_INIT_GET_RESOURCES driver state and
2480 * finishes driver initialization procedure.
2481 * When success the state is changed to __IAVF_DOWN
2482 * when fails the state is changed to __IAVF_INIT_FAILED
2483 **/
iavf_init_get_resources(struct iavf_adapter * adapter)2484 static void iavf_init_get_resources(struct iavf_adapter *adapter)
2485 {
2486 struct pci_dev *pdev = adapter->pdev;
2487 struct iavf_hw *hw = &adapter->hw;
2488 int err;
2489
2490 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
2491 /* aq msg sent, awaiting reply */
2492 if (!adapter->vf_res) {
2493 adapter->vf_res = kzalloc(IAVF_VIRTCHNL_VF_RESOURCE_SIZE,
2494 GFP_KERNEL);
2495 if (!adapter->vf_res) {
2496 err = -ENOMEM;
2497 goto err;
2498 }
2499 }
2500 err = iavf_get_vf_config(adapter);
2501 if (err == -EALREADY) {
2502 err = iavf_send_vf_config_msg(adapter);
2503 goto err;
2504 } else if (err == -EINVAL) {
2505 /* We only get -EINVAL if the device is in a very bad
2506 * state or if we've been disabled for previous bad
2507 * behavior. Either way, we're done now.
2508 */
2509 iavf_shutdown_adminq(hw);
2510 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
2511 return;
2512 }
2513 if (err) {
2514 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
2515 goto err_alloc;
2516 }
2517
2518 err = iavf_parse_vf_resource_msg(adapter);
2519 if (err) {
2520 dev_err(&pdev->dev, "Failed to parse VF resource message from PF (%d)\n",
2521 err);
2522 goto err_alloc;
2523 }
2524 /* Some features require additional messages to negotiate extended
2525 * capabilities. These are processed in sequence by the
2526 * __IAVF_INIT_EXTENDED_CAPS driver state.
2527 */
2528 adapter->extended_caps = IAVF_EXTENDED_CAPS;
2529
2530 iavf_change_state(adapter, __IAVF_INIT_EXTENDED_CAPS);
2531 return;
2532
2533 err_alloc:
2534 kfree(adapter->vf_res);
2535 adapter->vf_res = NULL;
2536 err:
2537 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2538 }
2539
2540 /**
2541 * iavf_init_send_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2542 * @adapter: board private structure
2543 *
2544 * Function processes send of the extended VLAN V2 capability message to the
2545 * PF. Must clear IAVF_EXTENDED_CAP_RECV_VLAN_V2 if the message is not sent,
2546 * e.g. due to PF not negotiating VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2547 */
iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter * adapter)2548 static void iavf_init_send_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2549 {
2550 int ret;
2551
2552 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2));
2553
2554 ret = iavf_send_vf_offload_vlan_v2_msg(adapter);
2555 if (ret && ret == -EOPNOTSUPP) {
2556 /* PF does not support VIRTCHNL_VF_OFFLOAD_V2. In this case,
2557 * we did not send the capability exchange message and do not
2558 * expect a response.
2559 */
2560 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2561 }
2562
2563 /* We sent the message, so move on to the next step */
2564 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2565 }
2566
2567 /**
2568 * iavf_init_recv_offload_vlan_v2_caps - part of initializing VLAN V2 caps
2569 * @adapter: board private structure
2570 *
2571 * Function processes receipt of the extended VLAN V2 capability message from
2572 * the PF.
2573 **/
iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter * adapter)2574 static void iavf_init_recv_offload_vlan_v2_caps(struct iavf_adapter *adapter)
2575 {
2576 int ret;
2577
2578 WARN_ON(!(adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2));
2579
2580 memset(&adapter->vlan_v2_caps, 0, sizeof(adapter->vlan_v2_caps));
2581
2582 ret = iavf_get_vf_vlan_v2_caps(adapter);
2583 if (ret)
2584 goto err;
2585
2586 /* We've processed receipt of the VLAN V2 caps message */
2587 adapter->extended_caps &= ~IAVF_EXTENDED_CAP_RECV_VLAN_V2;
2588 return;
2589 err:
2590 /* We didn't receive a reply. Make sure we try sending again when
2591 * __IAVF_INIT_FAILED attempts to recover.
2592 */
2593 adapter->extended_caps |= IAVF_EXTENDED_CAP_SEND_VLAN_V2;
2594 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2595 }
2596
2597 /**
2598 * iavf_init_process_extended_caps - Part of driver startup
2599 * @adapter: board private structure
2600 *
2601 * Function processes __IAVF_INIT_EXTENDED_CAPS driver state. This state
2602 * handles negotiating capabilities for features which require an additional
2603 * message.
2604 *
2605 * Once all extended capabilities exchanges are finished, the driver will
2606 * transition into __IAVF_INIT_CONFIG_ADAPTER.
2607 */
iavf_init_process_extended_caps(struct iavf_adapter * adapter)2608 static void iavf_init_process_extended_caps(struct iavf_adapter *adapter)
2609 {
2610 WARN_ON(adapter->state != __IAVF_INIT_EXTENDED_CAPS);
2611
2612 /* Process capability exchange for VLAN V2 */
2613 if (adapter->extended_caps & IAVF_EXTENDED_CAP_SEND_VLAN_V2) {
2614 iavf_init_send_offload_vlan_v2_caps(adapter);
2615 return;
2616 } else if (adapter->extended_caps & IAVF_EXTENDED_CAP_RECV_VLAN_V2) {
2617 iavf_init_recv_offload_vlan_v2_caps(adapter);
2618 return;
2619 }
2620
2621 /* When we reach here, no further extended capabilities exchanges are
2622 * necessary, so we finally transition into __IAVF_INIT_CONFIG_ADAPTER
2623 */
2624 iavf_change_state(adapter, __IAVF_INIT_CONFIG_ADAPTER);
2625 }
2626
2627 /**
2628 * iavf_init_config_adapter - last part of driver startup
2629 * @adapter: board private structure
2630 *
2631 * After all the supported capabilities are negotiated, then the
2632 * __IAVF_INIT_CONFIG_ADAPTER state will finish driver initialization.
2633 */
iavf_init_config_adapter(struct iavf_adapter * adapter)2634 static void iavf_init_config_adapter(struct iavf_adapter *adapter)
2635 {
2636 struct net_device *netdev = adapter->netdev;
2637 struct pci_dev *pdev = adapter->pdev;
2638 int err;
2639
2640 WARN_ON(adapter->state != __IAVF_INIT_CONFIG_ADAPTER);
2641
2642 if (iavf_process_config(adapter))
2643 goto err;
2644
2645 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2646
2647 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
2648
2649 netdev->netdev_ops = &iavf_netdev_ops;
2650 iavf_set_ethtool_ops(netdev);
2651 netdev->watchdog_timeo = 5 * HZ;
2652
2653 /* MTU range: 68 - 9710 */
2654 netdev->min_mtu = ETH_MIN_MTU;
2655 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
2656
2657 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
2658 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
2659 adapter->hw.mac.addr);
2660 eth_hw_addr_random(netdev);
2661 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
2662 } else {
2663 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2664 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2665 }
2666
2667 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
2668 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
2669 err = iavf_init_interrupt_scheme(adapter);
2670 if (err)
2671 goto err_sw_init;
2672 iavf_map_rings_to_vectors(adapter);
2673 if (adapter->vf_res->vf_cap_flags &
2674 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
2675 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
2676
2677 err = iavf_request_misc_irq(adapter);
2678 if (err)
2679 goto err_sw_init;
2680
2681 netif_carrier_off(netdev);
2682 adapter->link_up = false;
2683 netif_tx_stop_all_queues(netdev);
2684
2685 if (CLIENT_ALLOWED(adapter)) {
2686 err = iavf_lan_add_device(adapter);
2687 if (err)
2688 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
2689 err);
2690 }
2691 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
2692 if (netdev->features & NETIF_F_GRO)
2693 dev_info(&pdev->dev, "GRO is enabled\n");
2694
2695 iavf_change_state(adapter, __IAVF_DOWN);
2696 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2697
2698 iavf_misc_irq_enable(adapter);
2699 wake_up(&adapter->down_waitqueue);
2700
2701 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
2702 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
2703 if (!adapter->rss_key || !adapter->rss_lut) {
2704 err = -ENOMEM;
2705 goto err_mem;
2706 }
2707 if (RSS_AQ(adapter))
2708 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
2709 else
2710 iavf_init_rss(adapter);
2711
2712 if (VLAN_V2_ALLOWED(adapter))
2713 /* request initial VLAN offload settings */
2714 iavf_set_vlan_offload_features(adapter, 0, netdev->features);
2715
2716 iavf_schedule_finish_config(adapter);
2717 return;
2718
2719 err_mem:
2720 iavf_free_rss(adapter);
2721 iavf_free_misc_irq(adapter);
2722 err_sw_init:
2723 iavf_reset_interrupt_capability(adapter);
2724 err:
2725 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2726 }
2727
2728 /**
2729 * iavf_watchdog_task - Periodic call-back task
2730 * @work: pointer to work_struct
2731 **/
iavf_watchdog_task(struct work_struct * work)2732 static void iavf_watchdog_task(struct work_struct *work)
2733 {
2734 struct iavf_adapter *adapter = container_of(work,
2735 struct iavf_adapter,
2736 watchdog_task.work);
2737 struct iavf_hw *hw = &adapter->hw;
2738 u32 reg_val;
2739
2740 if (!mutex_trylock(&adapter->crit_lock)) {
2741 if (adapter->state == __IAVF_REMOVE)
2742 return;
2743
2744 goto restart_watchdog;
2745 }
2746
2747 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2748 iavf_change_state(adapter, __IAVF_COMM_FAILED);
2749
2750 switch (adapter->state) {
2751 case __IAVF_STARTUP:
2752 iavf_startup(adapter);
2753 mutex_unlock(&adapter->crit_lock);
2754 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2755 msecs_to_jiffies(30));
2756 return;
2757 case __IAVF_INIT_VERSION_CHECK:
2758 iavf_init_version_check(adapter);
2759 mutex_unlock(&adapter->crit_lock);
2760 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2761 msecs_to_jiffies(30));
2762 return;
2763 case __IAVF_INIT_GET_RESOURCES:
2764 iavf_init_get_resources(adapter);
2765 mutex_unlock(&adapter->crit_lock);
2766 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2767 msecs_to_jiffies(1));
2768 return;
2769 case __IAVF_INIT_EXTENDED_CAPS:
2770 iavf_init_process_extended_caps(adapter);
2771 mutex_unlock(&adapter->crit_lock);
2772 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2773 msecs_to_jiffies(1));
2774 return;
2775 case __IAVF_INIT_CONFIG_ADAPTER:
2776 iavf_init_config_adapter(adapter);
2777 mutex_unlock(&adapter->crit_lock);
2778 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2779 msecs_to_jiffies(1));
2780 return;
2781 case __IAVF_INIT_FAILED:
2782 if (test_bit(__IAVF_IN_REMOVE_TASK,
2783 &adapter->crit_section)) {
2784 /* Do not update the state and do not reschedule
2785 * watchdog task, iavf_remove should handle this state
2786 * as it can loop forever
2787 */
2788 mutex_unlock(&adapter->crit_lock);
2789 return;
2790 }
2791 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
2792 dev_err(&adapter->pdev->dev,
2793 "Failed to communicate with PF; waiting before retry\n");
2794 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2795 iavf_shutdown_adminq(hw);
2796 mutex_unlock(&adapter->crit_lock);
2797 queue_delayed_work(adapter->wq,
2798 &adapter->watchdog_task, (5 * HZ));
2799 return;
2800 }
2801 /* Try again from failed step*/
2802 iavf_change_state(adapter, adapter->last_state);
2803 mutex_unlock(&adapter->crit_lock);
2804 queue_delayed_work(adapter->wq, &adapter->watchdog_task, HZ);
2805 return;
2806 case __IAVF_COMM_FAILED:
2807 if (test_bit(__IAVF_IN_REMOVE_TASK,
2808 &adapter->crit_section)) {
2809 /* Set state to __IAVF_INIT_FAILED and perform remove
2810 * steps. Remove IAVF_FLAG_PF_COMMS_FAILED so the task
2811 * doesn't bring the state back to __IAVF_COMM_FAILED.
2812 */
2813 iavf_change_state(adapter, __IAVF_INIT_FAILED);
2814 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2815 mutex_unlock(&adapter->crit_lock);
2816 return;
2817 }
2818 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2819 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2820 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
2821 reg_val == VIRTCHNL_VFR_COMPLETED) {
2822 /* A chance for redemption! */
2823 dev_err(&adapter->pdev->dev,
2824 "Hardware came out of reset. Attempting reinit.\n");
2825 /* When init task contacts the PF and
2826 * gets everything set up again, it'll restart the
2827 * watchdog for us. Down, boy. Sit. Stay. Woof.
2828 */
2829 iavf_change_state(adapter, __IAVF_STARTUP);
2830 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
2831 }
2832 adapter->aq_required = 0;
2833 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2834 mutex_unlock(&adapter->crit_lock);
2835 queue_delayed_work(adapter->wq,
2836 &adapter->watchdog_task,
2837 msecs_to_jiffies(10));
2838 return;
2839 case __IAVF_RESETTING:
2840 mutex_unlock(&adapter->crit_lock);
2841 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2842 HZ * 2);
2843 return;
2844 case __IAVF_DOWN:
2845 case __IAVF_DOWN_PENDING:
2846 case __IAVF_TESTING:
2847 case __IAVF_RUNNING:
2848 if (adapter->current_op) {
2849 if (!iavf_asq_done(hw)) {
2850 dev_dbg(&adapter->pdev->dev,
2851 "Admin queue timeout\n");
2852 iavf_send_api_ver(adapter);
2853 }
2854 } else {
2855 int ret = iavf_process_aq_command(adapter);
2856
2857 /* An error will be returned if no commands were
2858 * processed; use this opportunity to update stats
2859 * if the error isn't -ENOTSUPP
2860 */
2861 if (ret && ret != -EOPNOTSUPP &&
2862 adapter->state == __IAVF_RUNNING)
2863 iavf_request_stats(adapter);
2864 }
2865 if (adapter->state == __IAVF_RUNNING)
2866 iavf_detect_recover_hung(&adapter->vsi);
2867 break;
2868 case __IAVF_REMOVE:
2869 default:
2870 mutex_unlock(&adapter->crit_lock);
2871 return;
2872 }
2873
2874 /* check for hw reset */
2875 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2876 if (!reg_val) {
2877 adapter->aq_required = 0;
2878 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2879 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
2880 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_PENDING);
2881 mutex_unlock(&adapter->crit_lock);
2882 queue_delayed_work(adapter->wq,
2883 &adapter->watchdog_task, HZ * 2);
2884 return;
2885 }
2886
2887 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
2888 mutex_unlock(&adapter->crit_lock);
2889 restart_watchdog:
2890 if (adapter->state >= __IAVF_DOWN)
2891 queue_work(adapter->wq, &adapter->adminq_task);
2892 if (adapter->aq_required)
2893 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2894 msecs_to_jiffies(20));
2895 else
2896 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
2897 HZ * 2);
2898 }
2899
2900 /**
2901 * iavf_disable_vf - disable VF
2902 * @adapter: board private structure
2903 *
2904 * Set communication failed flag and free all resources.
2905 * NOTE: This function is expected to be called with crit_lock being held.
2906 **/
iavf_disable_vf(struct iavf_adapter * adapter)2907 static void iavf_disable_vf(struct iavf_adapter *adapter)
2908 {
2909 struct iavf_mac_filter *f, *ftmp;
2910 struct iavf_vlan_filter *fv, *fvtmp;
2911 struct iavf_cloud_filter *cf, *cftmp;
2912
2913 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
2914
2915 /* We don't use netif_running() because it may be true prior to
2916 * ndo_open() returning, so we can't assume it means all our open
2917 * tasks have finished, since we're not holding the rtnl_lock here.
2918 */
2919 if (adapter->state == __IAVF_RUNNING) {
2920 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2921 netif_carrier_off(adapter->netdev);
2922 netif_tx_disable(adapter->netdev);
2923 adapter->link_up = false;
2924 iavf_napi_disable_all(adapter);
2925 iavf_irq_disable(adapter);
2926 iavf_free_traffic_irqs(adapter);
2927 iavf_free_all_tx_resources(adapter);
2928 iavf_free_all_rx_resources(adapter);
2929 }
2930
2931 spin_lock_bh(&adapter->mac_vlan_list_lock);
2932
2933 /* Delete all of the filters */
2934 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2935 list_del(&f->list);
2936 kfree(f);
2937 }
2938
2939 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2940 list_del(&fv->list);
2941 kfree(fv);
2942 }
2943 adapter->num_vlan_filters = 0;
2944
2945 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2946
2947 spin_lock_bh(&adapter->cloud_filter_list_lock);
2948 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2949 list_del(&cf->list);
2950 kfree(cf);
2951 adapter->num_cloud_filters--;
2952 }
2953 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2954
2955 iavf_free_misc_irq(adapter);
2956 iavf_reset_interrupt_capability(adapter);
2957 iavf_free_q_vectors(adapter);
2958 iavf_free_queues(adapter);
2959 memset(adapter->vf_res, 0, IAVF_VIRTCHNL_VF_RESOURCE_SIZE);
2960 iavf_shutdown_adminq(&adapter->hw);
2961 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2962 iavf_change_state(adapter, __IAVF_DOWN);
2963 wake_up(&adapter->down_waitqueue);
2964 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2965 }
2966
2967 /**
2968 * iavf_reset_task - Call-back task to handle hardware reset
2969 * @work: pointer to work_struct
2970 *
2971 * During reset we need to shut down and reinitialize the admin queue
2972 * before we can use it to communicate with the PF again. We also clear
2973 * and reinit the rings because that context is lost as well.
2974 **/
iavf_reset_task(struct work_struct * work)2975 static void iavf_reset_task(struct work_struct *work)
2976 {
2977 struct iavf_adapter *adapter = container_of(work,
2978 struct iavf_adapter,
2979 reset_task);
2980 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2981 struct net_device *netdev = adapter->netdev;
2982 struct iavf_hw *hw = &adapter->hw;
2983 struct iavf_mac_filter *f, *ftmp;
2984 struct iavf_cloud_filter *cf;
2985 enum iavf_status status;
2986 u32 reg_val;
2987 int i = 0, err;
2988 bool running;
2989
2990 /* When device is being removed it doesn't make sense to run the reset
2991 * task, just return in such a case.
2992 */
2993 if (!mutex_trylock(&adapter->crit_lock)) {
2994 if (adapter->state != __IAVF_REMOVE)
2995 queue_work(adapter->wq, &adapter->reset_task);
2996
2997 return;
2998 }
2999
3000 while (!mutex_trylock(&adapter->client_lock))
3001 usleep_range(500, 1000);
3002 if (CLIENT_ENABLED(adapter)) {
3003 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
3004 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
3005 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
3006 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
3007 cancel_delayed_work_sync(&adapter->client_task);
3008 iavf_notify_client_close(&adapter->vsi, true);
3009 }
3010 iavf_misc_irq_disable(adapter);
3011 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
3012 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
3013 /* Restart the AQ here. If we have been reset but didn't
3014 * detect it, or if the PF had to reinit, our AQ will be hosed.
3015 */
3016 iavf_shutdown_adminq(hw);
3017 iavf_init_adminq(hw);
3018 iavf_request_reset(adapter);
3019 }
3020 adapter->flags |= IAVF_FLAG_RESET_PENDING;
3021
3022 /* poll until we see the reset actually happen */
3023 for (i = 0; i < IAVF_RESET_WAIT_DETECTED_COUNT; i++) {
3024 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
3025 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
3026 if (!reg_val)
3027 break;
3028 usleep_range(5000, 10000);
3029 }
3030 if (i == IAVF_RESET_WAIT_DETECTED_COUNT) {
3031 dev_info(&adapter->pdev->dev, "Never saw reset\n");
3032 goto continue_reset; /* act like the reset happened */
3033 }
3034
3035 /* wait until the reset is complete and the PF is responding to us */
3036 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
3037 /* sleep first to make sure a minimum wait time is met */
3038 msleep(IAVF_RESET_WAIT_MS);
3039
3040 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
3041 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3042 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
3043 break;
3044 }
3045
3046 pci_set_master(adapter->pdev);
3047 pci_restore_msi_state(adapter->pdev);
3048
3049 if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
3050 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
3051 reg_val);
3052 iavf_disable_vf(adapter);
3053 mutex_unlock(&adapter->client_lock);
3054 mutex_unlock(&adapter->crit_lock);
3055 return; /* Do not attempt to reinit. It's dead, Jim. */
3056 }
3057
3058 continue_reset:
3059 /* We don't use netif_running() because it may be true prior to
3060 * ndo_open() returning, so we can't assume it means all our open
3061 * tasks have finished, since we're not holding the rtnl_lock here.
3062 */
3063 running = adapter->state == __IAVF_RUNNING;
3064
3065 if (running) {
3066 netif_carrier_off(netdev);
3067 netif_tx_stop_all_queues(netdev);
3068 adapter->link_up = false;
3069 iavf_napi_disable_all(adapter);
3070 }
3071 iavf_irq_disable(adapter);
3072
3073 iavf_change_state(adapter, __IAVF_RESETTING);
3074 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
3075
3076 /* free the Tx/Rx rings and descriptors, might be better to just
3077 * re-use them sometime in the future
3078 */
3079 iavf_free_all_rx_resources(adapter);
3080 iavf_free_all_tx_resources(adapter);
3081
3082 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
3083 /* kill and reinit the admin queue */
3084 iavf_shutdown_adminq(hw);
3085 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
3086 status = iavf_init_adminq(hw);
3087 if (status) {
3088 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
3089 status);
3090 goto reset_err;
3091 }
3092 adapter->aq_required = 0;
3093
3094 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3095 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3096 err = iavf_reinit_interrupt_scheme(adapter, running);
3097 if (err)
3098 goto reset_err;
3099 }
3100
3101 if (RSS_AQ(adapter)) {
3102 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
3103 } else {
3104 err = iavf_init_rss(adapter);
3105 if (err)
3106 goto reset_err;
3107 }
3108
3109 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
3110 /* always set since VIRTCHNL_OP_GET_VF_RESOURCES has not been
3111 * sent/received yet, so VLAN_V2_ALLOWED() cannot is not reliable here,
3112 * however the VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS won't be sent until
3113 * VIRTCHNL_OP_GET_VF_RESOURCES and VIRTCHNL_VF_OFFLOAD_VLAN_V2 have
3114 * been successfully sent and negotiated
3115 */
3116 adapter->aq_required |= IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS;
3117 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
3118
3119 spin_lock_bh(&adapter->mac_vlan_list_lock);
3120
3121 /* Delete filter for the current MAC address, it could have
3122 * been changed by the PF via administratively set MAC.
3123 * Will be re-added via VIRTCHNL_OP_GET_VF_RESOURCES.
3124 */
3125 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3126 if (ether_addr_equal(f->macaddr, adapter->hw.mac.addr)) {
3127 list_del(&f->list);
3128 kfree(f);
3129 }
3130 }
3131 /* re-add all MAC filters */
3132 list_for_each_entry(f, &adapter->mac_filter_list, list) {
3133 f->add = true;
3134 }
3135 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3136
3137 /* check if TCs are running and re-add all cloud filters */
3138 spin_lock_bh(&adapter->cloud_filter_list_lock);
3139 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
3140 adapter->num_tc) {
3141 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
3142 cf->add = true;
3143 }
3144 }
3145 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3146
3147 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
3148 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
3149 iavf_misc_irq_enable(adapter);
3150
3151 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 2);
3152
3153 /* We were running when the reset started, so we need to restore some
3154 * state here.
3155 */
3156 if (running) {
3157 /* allocate transmit descriptors */
3158 err = iavf_setup_all_tx_resources(adapter);
3159 if (err)
3160 goto reset_err;
3161
3162 /* allocate receive descriptors */
3163 err = iavf_setup_all_rx_resources(adapter);
3164 if (err)
3165 goto reset_err;
3166
3167 if ((adapter->flags & IAVF_FLAG_REINIT_MSIX_NEEDED) ||
3168 (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED)) {
3169 err = iavf_request_traffic_irqs(adapter, netdev->name);
3170 if (err)
3171 goto reset_err;
3172
3173 adapter->flags &= ~IAVF_FLAG_REINIT_MSIX_NEEDED;
3174 }
3175
3176 iavf_configure(adapter);
3177
3178 /* iavf_up_complete() will switch device back
3179 * to __IAVF_RUNNING
3180 */
3181 iavf_up_complete(adapter);
3182
3183 iavf_irq_enable(adapter, true);
3184 } else {
3185 iavf_change_state(adapter, __IAVF_DOWN);
3186 wake_up(&adapter->down_waitqueue);
3187 }
3188
3189 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3190
3191 wake_up(&adapter->reset_waitqueue);
3192 mutex_unlock(&adapter->client_lock);
3193 mutex_unlock(&adapter->crit_lock);
3194
3195 return;
3196 reset_err:
3197 if (running) {
3198 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3199 iavf_free_traffic_irqs(adapter);
3200 }
3201 iavf_disable_vf(adapter);
3202
3203 mutex_unlock(&adapter->client_lock);
3204 mutex_unlock(&adapter->crit_lock);
3205 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
3206 }
3207
3208 /**
3209 * iavf_adminq_task - worker thread to clean the admin queue
3210 * @work: pointer to work_struct containing our data
3211 **/
iavf_adminq_task(struct work_struct * work)3212 static void iavf_adminq_task(struct work_struct *work)
3213 {
3214 struct iavf_adapter *adapter =
3215 container_of(work, struct iavf_adapter, adminq_task);
3216 struct iavf_hw *hw = &adapter->hw;
3217 struct iavf_arq_event_info event;
3218 enum virtchnl_ops v_op;
3219 enum iavf_status ret, v_ret;
3220 u32 val, oldval;
3221 u16 pending;
3222
3223 if (!mutex_trylock(&adapter->crit_lock)) {
3224 if (adapter->state == __IAVF_REMOVE)
3225 return;
3226
3227 queue_work(adapter->wq, &adapter->adminq_task);
3228 goto out;
3229 }
3230
3231 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
3232 goto unlock;
3233
3234 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
3235 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
3236 if (!event.msg_buf)
3237 goto unlock;
3238
3239 do {
3240 ret = iavf_clean_arq_element(hw, &event, &pending);
3241 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
3242 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
3243
3244 if (ret || !v_op)
3245 break; /* No event to process or error cleaning ARQ */
3246
3247 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
3248 event.msg_len);
3249 if (pending != 0)
3250 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
3251 } while (pending);
3252
3253 if (iavf_is_reset_in_progress(adapter))
3254 goto freedom;
3255
3256 /* check for error indications */
3257 val = rd32(hw, hw->aq.arq.len);
3258 if (val == 0xdeadbeef || val == 0xffffffff) /* device in reset */
3259 goto freedom;
3260 oldval = val;
3261 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
3262 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
3263 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
3264 }
3265 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
3266 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
3267 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
3268 }
3269 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
3270 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
3271 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
3272 }
3273 if (oldval != val)
3274 wr32(hw, hw->aq.arq.len, val);
3275
3276 val = rd32(hw, hw->aq.asq.len);
3277 oldval = val;
3278 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
3279 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
3280 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
3281 }
3282 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
3283 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
3284 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
3285 }
3286 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
3287 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
3288 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
3289 }
3290 if (oldval != val)
3291 wr32(hw, hw->aq.asq.len, val);
3292
3293 freedom:
3294 kfree(event.msg_buf);
3295 unlock:
3296 mutex_unlock(&adapter->crit_lock);
3297 out:
3298 /* re-enable Admin queue interrupt cause */
3299 iavf_misc_irq_enable(adapter);
3300 }
3301
3302 /**
3303 * iavf_client_task - worker thread to perform client work
3304 * @work: pointer to work_struct containing our data
3305 *
3306 * This task handles client interactions. Because client calls can be
3307 * reentrant, we can't handle them in the watchdog.
3308 **/
iavf_client_task(struct work_struct * work)3309 static void iavf_client_task(struct work_struct *work)
3310 {
3311 struct iavf_adapter *adapter =
3312 container_of(work, struct iavf_adapter, client_task.work);
3313
3314 /* If we can't get the client bit, just give up. We'll be rescheduled
3315 * later.
3316 */
3317
3318 if (!mutex_trylock(&adapter->client_lock))
3319 return;
3320
3321 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
3322 iavf_client_subtask(adapter);
3323 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3324 goto out;
3325 }
3326 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
3327 iavf_notify_client_l2_params(&adapter->vsi);
3328 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
3329 goto out;
3330 }
3331 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
3332 iavf_notify_client_close(&adapter->vsi, false);
3333 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3334 goto out;
3335 }
3336 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
3337 iavf_notify_client_open(&adapter->vsi);
3338 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
3339 }
3340 out:
3341 mutex_unlock(&adapter->client_lock);
3342 }
3343
3344 /**
3345 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
3346 * @adapter: board private structure
3347 *
3348 * Free all transmit software resources
3349 **/
iavf_free_all_tx_resources(struct iavf_adapter * adapter)3350 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
3351 {
3352 int i;
3353
3354 if (!adapter->tx_rings)
3355 return;
3356
3357 for (i = 0; i < adapter->num_active_queues; i++)
3358 if (adapter->tx_rings[i].desc)
3359 iavf_free_tx_resources(&adapter->tx_rings[i]);
3360 }
3361
3362 /**
3363 * iavf_setup_all_tx_resources - allocate all queues Tx resources
3364 * @adapter: board private structure
3365 *
3366 * If this function returns with an error, then it's possible one or
3367 * more of the rings is populated (while the rest are not). It is the
3368 * callers duty to clean those orphaned rings.
3369 *
3370 * Return 0 on success, negative on failure
3371 **/
iavf_setup_all_tx_resources(struct iavf_adapter * adapter)3372 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
3373 {
3374 int i, err = 0;
3375
3376 for (i = 0; i < adapter->num_active_queues; i++) {
3377 adapter->tx_rings[i].count = adapter->tx_desc_count;
3378 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
3379 if (!err)
3380 continue;
3381 dev_err(&adapter->pdev->dev,
3382 "Allocation for Tx Queue %u failed\n", i);
3383 break;
3384 }
3385
3386 return err;
3387 }
3388
3389 /**
3390 * iavf_setup_all_rx_resources - allocate all queues Rx resources
3391 * @adapter: board private structure
3392 *
3393 * If this function returns with an error, then it's possible one or
3394 * more of the rings is populated (while the rest are not). It is the
3395 * callers duty to clean those orphaned rings.
3396 *
3397 * Return 0 on success, negative on failure
3398 **/
iavf_setup_all_rx_resources(struct iavf_adapter * adapter)3399 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
3400 {
3401 int i, err = 0;
3402
3403 for (i = 0; i < adapter->num_active_queues; i++) {
3404 adapter->rx_rings[i].count = adapter->rx_desc_count;
3405 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
3406 if (!err)
3407 continue;
3408 dev_err(&adapter->pdev->dev,
3409 "Allocation for Rx Queue %u failed\n", i);
3410 break;
3411 }
3412 return err;
3413 }
3414
3415 /**
3416 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
3417 * @adapter: board private structure
3418 *
3419 * Free all receive software resources
3420 **/
iavf_free_all_rx_resources(struct iavf_adapter * adapter)3421 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
3422 {
3423 int i;
3424
3425 if (!adapter->rx_rings)
3426 return;
3427
3428 for (i = 0; i < adapter->num_active_queues; i++)
3429 if (adapter->rx_rings[i].desc)
3430 iavf_free_rx_resources(&adapter->rx_rings[i]);
3431 }
3432
3433 /**
3434 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
3435 * @adapter: board private structure
3436 * @max_tx_rate: max Tx bw for a tc
3437 **/
iavf_validate_tx_bandwidth(struct iavf_adapter * adapter,u64 max_tx_rate)3438 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
3439 u64 max_tx_rate)
3440 {
3441 int speed = 0, ret = 0;
3442
3443 if (ADV_LINK_SUPPORT(adapter)) {
3444 if (adapter->link_speed_mbps < U32_MAX) {
3445 speed = adapter->link_speed_mbps;
3446 goto validate_bw;
3447 } else {
3448 dev_err(&adapter->pdev->dev, "Unknown link speed\n");
3449 return -EINVAL;
3450 }
3451 }
3452
3453 switch (adapter->link_speed) {
3454 case VIRTCHNL_LINK_SPEED_40GB:
3455 speed = SPEED_40000;
3456 break;
3457 case VIRTCHNL_LINK_SPEED_25GB:
3458 speed = SPEED_25000;
3459 break;
3460 case VIRTCHNL_LINK_SPEED_20GB:
3461 speed = SPEED_20000;
3462 break;
3463 case VIRTCHNL_LINK_SPEED_10GB:
3464 speed = SPEED_10000;
3465 break;
3466 case VIRTCHNL_LINK_SPEED_5GB:
3467 speed = SPEED_5000;
3468 break;
3469 case VIRTCHNL_LINK_SPEED_2_5GB:
3470 speed = SPEED_2500;
3471 break;
3472 case VIRTCHNL_LINK_SPEED_1GB:
3473 speed = SPEED_1000;
3474 break;
3475 case VIRTCHNL_LINK_SPEED_100MB:
3476 speed = SPEED_100;
3477 break;
3478 default:
3479 break;
3480 }
3481
3482 validate_bw:
3483 if (max_tx_rate > speed) {
3484 dev_err(&adapter->pdev->dev,
3485 "Invalid tx rate specified\n");
3486 ret = -EINVAL;
3487 }
3488
3489 return ret;
3490 }
3491
3492 /**
3493 * iavf_validate_ch_config - validate queue mapping info
3494 * @adapter: board private structure
3495 * @mqprio_qopt: queue parameters
3496 *
3497 * This function validates if the config provided by the user to
3498 * configure queue channels is valid or not. Returns 0 on a valid
3499 * config.
3500 **/
iavf_validate_ch_config(struct iavf_adapter * adapter,struct tc_mqprio_qopt_offload * mqprio_qopt)3501 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
3502 struct tc_mqprio_qopt_offload *mqprio_qopt)
3503 {
3504 u64 total_max_rate = 0;
3505 u32 tx_rate_rem = 0;
3506 int i, num_qps = 0;
3507 u64 tx_rate = 0;
3508 int ret = 0;
3509
3510 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
3511 mqprio_qopt->qopt.num_tc < 1)
3512 return -EINVAL;
3513
3514 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
3515 if (!mqprio_qopt->qopt.count[i] ||
3516 mqprio_qopt->qopt.offset[i] != num_qps)
3517 return -EINVAL;
3518 if (mqprio_qopt->min_rate[i]) {
3519 dev_err(&adapter->pdev->dev,
3520 "Invalid min tx rate (greater than 0) specified for TC%d\n",
3521 i);
3522 return -EINVAL;
3523 }
3524
3525 /* convert to Mbps */
3526 tx_rate = div_u64(mqprio_qopt->max_rate[i],
3527 IAVF_MBPS_DIVISOR);
3528
3529 if (mqprio_qopt->max_rate[i] &&
3530 tx_rate < IAVF_MBPS_QUANTA) {
3531 dev_err(&adapter->pdev->dev,
3532 "Invalid max tx rate for TC%d, minimum %dMbps\n",
3533 i, IAVF_MBPS_QUANTA);
3534 return -EINVAL;
3535 }
3536
3537 (void)div_u64_rem(tx_rate, IAVF_MBPS_QUANTA, &tx_rate_rem);
3538
3539 if (tx_rate_rem != 0) {
3540 dev_err(&adapter->pdev->dev,
3541 "Invalid max tx rate for TC%d, not divisible by %d\n",
3542 i, IAVF_MBPS_QUANTA);
3543 return -EINVAL;
3544 }
3545
3546 total_max_rate += tx_rate;
3547 num_qps += mqprio_qopt->qopt.count[i];
3548 }
3549 if (num_qps > adapter->num_active_queues) {
3550 dev_err(&adapter->pdev->dev,
3551 "Cannot support requested number of queues\n");
3552 return -EINVAL;
3553 }
3554
3555 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
3556 return ret;
3557 }
3558
3559 /**
3560 * iavf_del_all_cloud_filters - delete all cloud filters on the traffic classes
3561 * @adapter: board private structure
3562 **/
iavf_del_all_cloud_filters(struct iavf_adapter * adapter)3563 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
3564 {
3565 struct iavf_cloud_filter *cf, *cftmp;
3566
3567 spin_lock_bh(&adapter->cloud_filter_list_lock);
3568 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
3569 list) {
3570 list_del(&cf->list);
3571 kfree(cf);
3572 adapter->num_cloud_filters--;
3573 }
3574 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3575 }
3576
3577 /**
3578 * iavf_is_tc_config_same - Compare the mqprio TC config with the
3579 * TC config already configured on this adapter.
3580 * @adapter: board private structure
3581 * @mqprio_qopt: TC config received from kernel.
3582 *
3583 * This function compares the TC config received from the kernel
3584 * with the config already configured on the adapter.
3585 *
3586 * Return: True if configuration is same, false otherwise.
3587 **/
iavf_is_tc_config_same(struct iavf_adapter * adapter,struct tc_mqprio_qopt * mqprio_qopt)3588 static bool iavf_is_tc_config_same(struct iavf_adapter *adapter,
3589 struct tc_mqprio_qopt *mqprio_qopt)
3590 {
3591 struct virtchnl_channel_info *ch = &adapter->ch_config.ch_info[0];
3592 int i;
3593
3594 if (adapter->num_tc != mqprio_qopt->num_tc)
3595 return false;
3596
3597 for (i = 0; i < adapter->num_tc; i++) {
3598 if (ch[i].count != mqprio_qopt->count[i] ||
3599 ch[i].offset != mqprio_qopt->offset[i])
3600 return false;
3601 }
3602 return true;
3603 }
3604
3605 /**
3606 * __iavf_setup_tc - configure multiple traffic classes
3607 * @netdev: network interface device structure
3608 * @type_data: tc offload data
3609 *
3610 * This function processes the config information provided by the
3611 * user to configure traffic classes/queue channels and packages the
3612 * information to request the PF to setup traffic classes.
3613 *
3614 * Returns 0 on success.
3615 **/
__iavf_setup_tc(struct net_device * netdev,void * type_data)3616 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
3617 {
3618 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
3619 struct iavf_adapter *adapter = netdev_priv(netdev);
3620 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3621 u8 num_tc = 0, total_qps = 0;
3622 int ret = 0, netdev_tc = 0;
3623 u64 max_tx_rate;
3624 u16 mode;
3625 int i;
3626
3627 num_tc = mqprio_qopt->qopt.num_tc;
3628 mode = mqprio_qopt->mode;
3629
3630 /* delete queue_channel */
3631 if (!mqprio_qopt->qopt.hw) {
3632 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
3633 /* reset the tc configuration */
3634 netdev_reset_tc(netdev);
3635 adapter->num_tc = 0;
3636 netif_tx_stop_all_queues(netdev);
3637 netif_tx_disable(netdev);
3638 iavf_del_all_cloud_filters(adapter);
3639 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
3640 total_qps = adapter->orig_num_active_queues;
3641 goto exit;
3642 } else {
3643 return -EINVAL;
3644 }
3645 }
3646
3647 /* add queue channel */
3648 if (mode == TC_MQPRIO_MODE_CHANNEL) {
3649 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
3650 dev_err(&adapter->pdev->dev, "ADq not supported\n");
3651 return -EOPNOTSUPP;
3652 }
3653 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
3654 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
3655 return -EINVAL;
3656 }
3657
3658 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
3659 if (ret)
3660 return ret;
3661 /* Return if same TC config is requested */
3662 if (iavf_is_tc_config_same(adapter, &mqprio_qopt->qopt))
3663 return 0;
3664 adapter->num_tc = num_tc;
3665
3666 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3667 if (i < num_tc) {
3668 adapter->ch_config.ch_info[i].count =
3669 mqprio_qopt->qopt.count[i];
3670 adapter->ch_config.ch_info[i].offset =
3671 mqprio_qopt->qopt.offset[i];
3672 total_qps += mqprio_qopt->qopt.count[i];
3673 max_tx_rate = mqprio_qopt->max_rate[i];
3674 /* convert to Mbps */
3675 max_tx_rate = div_u64(max_tx_rate,
3676 IAVF_MBPS_DIVISOR);
3677 adapter->ch_config.ch_info[i].max_tx_rate =
3678 max_tx_rate;
3679 } else {
3680 adapter->ch_config.ch_info[i].count = 1;
3681 adapter->ch_config.ch_info[i].offset = 0;
3682 }
3683 }
3684
3685 /* Take snapshot of original config such as "num_active_queues"
3686 * It is used later when delete ADQ flow is exercised, so that
3687 * once delete ADQ flow completes, VF shall go back to its
3688 * original queue configuration
3689 */
3690
3691 adapter->orig_num_active_queues = adapter->num_active_queues;
3692
3693 /* Store queue info based on TC so that VF gets configured
3694 * with correct number of queues when VF completes ADQ config
3695 * flow
3696 */
3697 adapter->ch_config.total_qps = total_qps;
3698
3699 netif_tx_stop_all_queues(netdev);
3700 netif_tx_disable(netdev);
3701 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
3702 netdev_reset_tc(netdev);
3703 /* Report the tc mapping up the stack */
3704 netdev_set_num_tc(adapter->netdev, num_tc);
3705 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
3706 u16 qcount = mqprio_qopt->qopt.count[i];
3707 u16 qoffset = mqprio_qopt->qopt.offset[i];
3708
3709 if (i < num_tc)
3710 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
3711 qoffset);
3712 }
3713 }
3714 exit:
3715 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
3716 return 0;
3717
3718 netif_set_real_num_rx_queues(netdev, total_qps);
3719 netif_set_real_num_tx_queues(netdev, total_qps);
3720
3721 return ret;
3722 }
3723
3724 /**
3725 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
3726 * @adapter: board private structure
3727 * @f: pointer to struct flow_cls_offload
3728 * @filter: pointer to cloud filter structure
3729 */
iavf_parse_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * f,struct iavf_cloud_filter * filter)3730 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
3731 struct flow_cls_offload *f,
3732 struct iavf_cloud_filter *filter)
3733 {
3734 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
3735 struct flow_dissector *dissector = rule->match.dissector;
3736 u16 n_proto_mask = 0;
3737 u16 n_proto_key = 0;
3738 u8 field_flags = 0;
3739 u16 addr_type = 0;
3740 u16 n_proto = 0;
3741 int i = 0;
3742 struct virtchnl_filter *vf = &filter->f;
3743
3744 if (dissector->used_keys &
3745 ~(BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
3746 BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
3747 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
3748 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) |
3749 BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
3750 BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
3751 BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) |
3752 BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
3753 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%llx\n",
3754 dissector->used_keys);
3755 return -EOPNOTSUPP;
3756 }
3757
3758 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
3759 struct flow_match_enc_keyid match;
3760
3761 flow_rule_match_enc_keyid(rule, &match);
3762 if (match.mask->keyid != 0)
3763 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
3764 }
3765
3766 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
3767 struct flow_match_basic match;
3768
3769 flow_rule_match_basic(rule, &match);
3770 n_proto_key = ntohs(match.key->n_proto);
3771 n_proto_mask = ntohs(match.mask->n_proto);
3772
3773 if (n_proto_key == ETH_P_ALL) {
3774 n_proto_key = 0;
3775 n_proto_mask = 0;
3776 }
3777 n_proto = n_proto_key & n_proto_mask;
3778 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
3779 return -EINVAL;
3780 if (n_proto == ETH_P_IPV6) {
3781 /* specify flow type as TCP IPv6 */
3782 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
3783 }
3784
3785 if (match.key->ip_proto != IPPROTO_TCP) {
3786 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
3787 return -EINVAL;
3788 }
3789 }
3790
3791 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
3792 struct flow_match_eth_addrs match;
3793
3794 flow_rule_match_eth_addrs(rule, &match);
3795
3796 /* use is_broadcast and is_zero to check for all 0xf or 0 */
3797 if (!is_zero_ether_addr(match.mask->dst)) {
3798 if (is_broadcast_ether_addr(match.mask->dst)) {
3799 field_flags |= IAVF_CLOUD_FIELD_OMAC;
3800 } else {
3801 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
3802 match.mask->dst);
3803 return -EINVAL;
3804 }
3805 }
3806
3807 if (!is_zero_ether_addr(match.mask->src)) {
3808 if (is_broadcast_ether_addr(match.mask->src)) {
3809 field_flags |= IAVF_CLOUD_FIELD_IMAC;
3810 } else {
3811 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
3812 match.mask->src);
3813 return -EINVAL;
3814 }
3815 }
3816
3817 if (!is_zero_ether_addr(match.key->dst))
3818 if (is_valid_ether_addr(match.key->dst) ||
3819 is_multicast_ether_addr(match.key->dst)) {
3820 /* set the mask if a valid dst_mac address */
3821 for (i = 0; i < ETH_ALEN; i++)
3822 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
3823 ether_addr_copy(vf->data.tcp_spec.dst_mac,
3824 match.key->dst);
3825 }
3826
3827 if (!is_zero_ether_addr(match.key->src))
3828 if (is_valid_ether_addr(match.key->src) ||
3829 is_multicast_ether_addr(match.key->src)) {
3830 /* set the mask if a valid dst_mac address */
3831 for (i = 0; i < ETH_ALEN; i++)
3832 vf->mask.tcp_spec.src_mac[i] |= 0xff;
3833 ether_addr_copy(vf->data.tcp_spec.src_mac,
3834 match.key->src);
3835 }
3836 }
3837
3838 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
3839 struct flow_match_vlan match;
3840
3841 flow_rule_match_vlan(rule, &match);
3842 if (match.mask->vlan_id) {
3843 if (match.mask->vlan_id == VLAN_VID_MASK) {
3844 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
3845 } else {
3846 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
3847 match.mask->vlan_id);
3848 return -EINVAL;
3849 }
3850 }
3851 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
3852 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
3853 }
3854
3855 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
3856 struct flow_match_control match;
3857
3858 flow_rule_match_control(rule, &match);
3859 addr_type = match.key->addr_type;
3860 }
3861
3862 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
3863 struct flow_match_ipv4_addrs match;
3864
3865 flow_rule_match_ipv4_addrs(rule, &match);
3866 if (match.mask->dst) {
3867 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
3868 field_flags |= IAVF_CLOUD_FIELD_IIP;
3869 } else {
3870 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
3871 be32_to_cpu(match.mask->dst));
3872 return -EINVAL;
3873 }
3874 }
3875
3876 if (match.mask->src) {
3877 if (match.mask->src == cpu_to_be32(0xffffffff)) {
3878 field_flags |= IAVF_CLOUD_FIELD_IIP;
3879 } else {
3880 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
3881 be32_to_cpu(match.mask->src));
3882 return -EINVAL;
3883 }
3884 }
3885
3886 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
3887 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
3888 return -EINVAL;
3889 }
3890 if (match.key->dst) {
3891 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
3892 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
3893 }
3894 if (match.key->src) {
3895 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
3896 vf->data.tcp_spec.src_ip[0] = match.key->src;
3897 }
3898 }
3899
3900 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
3901 struct flow_match_ipv6_addrs match;
3902
3903 flow_rule_match_ipv6_addrs(rule, &match);
3904
3905 /* validate mask, make sure it is not IPV6_ADDR_ANY */
3906 if (ipv6_addr_any(&match.mask->dst)) {
3907 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
3908 IPV6_ADDR_ANY);
3909 return -EINVAL;
3910 }
3911
3912 /* src and dest IPv6 address should not be LOOPBACK
3913 * (0:0:0:0:0:0:0:1) which can be represented as ::1
3914 */
3915 if (ipv6_addr_loopback(&match.key->dst) ||
3916 ipv6_addr_loopback(&match.key->src)) {
3917 dev_err(&adapter->pdev->dev,
3918 "ipv6 addr should not be loopback\n");
3919 return -EINVAL;
3920 }
3921 if (!ipv6_addr_any(&match.mask->dst) ||
3922 !ipv6_addr_any(&match.mask->src))
3923 field_flags |= IAVF_CLOUD_FIELD_IIP;
3924
3925 for (i = 0; i < 4; i++)
3926 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
3927 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
3928 sizeof(vf->data.tcp_spec.dst_ip));
3929 for (i = 0; i < 4; i++)
3930 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
3931 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
3932 sizeof(vf->data.tcp_spec.src_ip));
3933 }
3934 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
3935 struct flow_match_ports match;
3936
3937 flow_rule_match_ports(rule, &match);
3938 if (match.mask->src) {
3939 if (match.mask->src == cpu_to_be16(0xffff)) {
3940 field_flags |= IAVF_CLOUD_FIELD_IIP;
3941 } else {
3942 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
3943 be16_to_cpu(match.mask->src));
3944 return -EINVAL;
3945 }
3946 }
3947
3948 if (match.mask->dst) {
3949 if (match.mask->dst == cpu_to_be16(0xffff)) {
3950 field_flags |= IAVF_CLOUD_FIELD_IIP;
3951 } else {
3952 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
3953 be16_to_cpu(match.mask->dst));
3954 return -EINVAL;
3955 }
3956 }
3957 if (match.key->dst) {
3958 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
3959 vf->data.tcp_spec.dst_port = match.key->dst;
3960 }
3961
3962 if (match.key->src) {
3963 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
3964 vf->data.tcp_spec.src_port = match.key->src;
3965 }
3966 }
3967 vf->field_flags = field_flags;
3968
3969 return 0;
3970 }
3971
3972 /**
3973 * iavf_handle_tclass - Forward to a traffic class on the device
3974 * @adapter: board private structure
3975 * @tc: traffic class index on the device
3976 * @filter: pointer to cloud filter structure
3977 */
iavf_handle_tclass(struct iavf_adapter * adapter,u32 tc,struct iavf_cloud_filter * filter)3978 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
3979 struct iavf_cloud_filter *filter)
3980 {
3981 if (tc == 0)
3982 return 0;
3983 if (tc < adapter->num_tc) {
3984 if (!filter->f.data.tcp_spec.dst_port) {
3985 dev_err(&adapter->pdev->dev,
3986 "Specify destination port to redirect to traffic class other than TC0\n");
3987 return -EINVAL;
3988 }
3989 }
3990 /* redirect to a traffic class on the same device */
3991 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
3992 filter->f.action_meta = tc;
3993 return 0;
3994 }
3995
3996 /**
3997 * iavf_find_cf - Find the cloud filter in the list
3998 * @adapter: Board private structure
3999 * @cookie: filter specific cookie
4000 *
4001 * Returns ptr to the filter object or NULL. Must be called while holding the
4002 * cloud_filter_list_lock.
4003 */
iavf_find_cf(struct iavf_adapter * adapter,unsigned long * cookie)4004 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
4005 unsigned long *cookie)
4006 {
4007 struct iavf_cloud_filter *filter = NULL;
4008
4009 if (!cookie)
4010 return NULL;
4011
4012 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
4013 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
4014 return filter;
4015 }
4016 return NULL;
4017 }
4018
4019 /**
4020 * iavf_configure_clsflower - Add tc flower filters
4021 * @adapter: board private structure
4022 * @cls_flower: Pointer to struct flow_cls_offload
4023 */
iavf_configure_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4024 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
4025 struct flow_cls_offload *cls_flower)
4026 {
4027 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
4028 struct iavf_cloud_filter *filter = NULL;
4029 int err = -EINVAL, count = 50;
4030
4031 if (tc < 0) {
4032 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
4033 return -EINVAL;
4034 }
4035
4036 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
4037 if (!filter)
4038 return -ENOMEM;
4039
4040 while (!mutex_trylock(&adapter->crit_lock)) {
4041 if (--count == 0) {
4042 kfree(filter);
4043 return err;
4044 }
4045 udelay(1);
4046 }
4047
4048 filter->cookie = cls_flower->cookie;
4049
4050 /* bail out here if filter already exists */
4051 spin_lock_bh(&adapter->cloud_filter_list_lock);
4052 if (iavf_find_cf(adapter, &cls_flower->cookie)) {
4053 dev_err(&adapter->pdev->dev, "Failed to add TC Flower filter, it already exists\n");
4054 err = -EEXIST;
4055 goto spin_unlock;
4056 }
4057 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4058
4059 /* set the mask to all zeroes to begin with */
4060 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
4061 /* start out with flow type and eth type IPv4 to begin with */
4062 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
4063 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
4064 if (err)
4065 goto err;
4066
4067 err = iavf_handle_tclass(adapter, tc, filter);
4068 if (err)
4069 goto err;
4070
4071 /* add filter to the list */
4072 spin_lock_bh(&adapter->cloud_filter_list_lock);
4073 list_add_tail(&filter->list, &adapter->cloud_filter_list);
4074 adapter->num_cloud_filters++;
4075 filter->add = true;
4076 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
4077 spin_unlock:
4078 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4079 err:
4080 if (err)
4081 kfree(filter);
4082
4083 mutex_unlock(&adapter->crit_lock);
4084 return err;
4085 }
4086
4087 /**
4088 * iavf_delete_clsflower - Remove tc flower filters
4089 * @adapter: board private structure
4090 * @cls_flower: Pointer to struct flow_cls_offload
4091 */
iavf_delete_clsflower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4092 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
4093 struct flow_cls_offload *cls_flower)
4094 {
4095 struct iavf_cloud_filter *filter = NULL;
4096 int err = 0;
4097
4098 spin_lock_bh(&adapter->cloud_filter_list_lock);
4099 filter = iavf_find_cf(adapter, &cls_flower->cookie);
4100 if (filter) {
4101 filter->del = true;
4102 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
4103 } else {
4104 err = -EINVAL;
4105 }
4106 spin_unlock_bh(&adapter->cloud_filter_list_lock);
4107
4108 return err;
4109 }
4110
4111 /**
4112 * iavf_setup_tc_cls_flower - flower classifier offloads
4113 * @adapter: board private structure
4114 * @cls_flower: pointer to flow_cls_offload struct with flow info
4115 */
iavf_setup_tc_cls_flower(struct iavf_adapter * adapter,struct flow_cls_offload * cls_flower)4116 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
4117 struct flow_cls_offload *cls_flower)
4118 {
4119 switch (cls_flower->command) {
4120 case FLOW_CLS_REPLACE:
4121 return iavf_configure_clsflower(adapter, cls_flower);
4122 case FLOW_CLS_DESTROY:
4123 return iavf_delete_clsflower(adapter, cls_flower);
4124 case FLOW_CLS_STATS:
4125 return -EOPNOTSUPP;
4126 default:
4127 return -EOPNOTSUPP;
4128 }
4129 }
4130
4131 /**
4132 * iavf_setup_tc_block_cb - block callback for tc
4133 * @type: type of offload
4134 * @type_data: offload data
4135 * @cb_priv:
4136 *
4137 * This function is the block callback for traffic classes
4138 **/
iavf_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4139 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4140 void *cb_priv)
4141 {
4142 struct iavf_adapter *adapter = cb_priv;
4143
4144 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
4145 return -EOPNOTSUPP;
4146
4147 switch (type) {
4148 case TC_SETUP_CLSFLOWER:
4149 return iavf_setup_tc_cls_flower(cb_priv, type_data);
4150 default:
4151 return -EOPNOTSUPP;
4152 }
4153 }
4154
4155 static LIST_HEAD(iavf_block_cb_list);
4156
4157 /**
4158 * iavf_setup_tc - configure multiple traffic classes
4159 * @netdev: network interface device structure
4160 * @type: type of offload
4161 * @type_data: tc offload data
4162 *
4163 * This function is the callback to ndo_setup_tc in the
4164 * netdev_ops.
4165 *
4166 * Returns 0 on success
4167 **/
iavf_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)4168 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
4169 void *type_data)
4170 {
4171 struct iavf_adapter *adapter = netdev_priv(netdev);
4172
4173 switch (type) {
4174 case TC_SETUP_QDISC_MQPRIO:
4175 return __iavf_setup_tc(netdev, type_data);
4176 case TC_SETUP_BLOCK:
4177 return flow_block_cb_setup_simple(type_data,
4178 &iavf_block_cb_list,
4179 iavf_setup_tc_block_cb,
4180 adapter, adapter, true);
4181 default:
4182 return -EOPNOTSUPP;
4183 }
4184 }
4185
4186 /**
4187 * iavf_restore_fdir_filters
4188 * @adapter: board private structure
4189 *
4190 * Restore existing FDIR filters when VF netdev comes back up.
4191 **/
iavf_restore_fdir_filters(struct iavf_adapter * adapter)4192 static void iavf_restore_fdir_filters(struct iavf_adapter *adapter)
4193 {
4194 struct iavf_fdir_fltr *f;
4195
4196 spin_lock_bh(&adapter->fdir_fltr_lock);
4197 list_for_each_entry(f, &adapter->fdir_list_head, list) {
4198 if (f->state == IAVF_FDIR_FLTR_DIS_REQUEST) {
4199 /* Cancel a request, keep filter as active */
4200 f->state = IAVF_FDIR_FLTR_ACTIVE;
4201 } else if (f->state == IAVF_FDIR_FLTR_DIS_PENDING ||
4202 f->state == IAVF_FDIR_FLTR_INACTIVE) {
4203 /* Add filters which are inactive or have a pending
4204 * request to PF to be deleted
4205 */
4206 f->state = IAVF_FDIR_FLTR_ADD_REQUEST;
4207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
4208 }
4209 }
4210 spin_unlock_bh(&adapter->fdir_fltr_lock);
4211 }
4212
4213 /**
4214 * iavf_open - Called when a network interface is made active
4215 * @netdev: network interface device structure
4216 *
4217 * Returns 0 on success, negative value on failure
4218 *
4219 * The open entry point is called when a network interface is made
4220 * active by the system (IFF_UP). At this point all resources needed
4221 * for transmit and receive operations are allocated, the interrupt
4222 * handler is registered with the OS, the watchdog is started,
4223 * and the stack is notified that the interface is ready.
4224 **/
iavf_open(struct net_device * netdev)4225 static int iavf_open(struct net_device *netdev)
4226 {
4227 struct iavf_adapter *adapter = netdev_priv(netdev);
4228 int err;
4229
4230 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
4231 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
4232 return -EIO;
4233 }
4234
4235 while (!mutex_trylock(&adapter->crit_lock)) {
4236 /* If we are in __IAVF_INIT_CONFIG_ADAPTER state the crit_lock
4237 * is already taken and iavf_open is called from an upper
4238 * device's notifier reacting on NETDEV_REGISTER event.
4239 * We have to leave here to avoid dead lock.
4240 */
4241 if (adapter->state == __IAVF_INIT_CONFIG_ADAPTER)
4242 return -EBUSY;
4243
4244 usleep_range(500, 1000);
4245 }
4246
4247 if (adapter->state != __IAVF_DOWN) {
4248 err = -EBUSY;
4249 goto err_unlock;
4250 }
4251
4252 if (adapter->state == __IAVF_RUNNING &&
4253 !test_bit(__IAVF_VSI_DOWN, adapter->vsi.state)) {
4254 dev_dbg(&adapter->pdev->dev, "VF is already open.\n");
4255 err = 0;
4256 goto err_unlock;
4257 }
4258
4259 /* allocate transmit descriptors */
4260 err = iavf_setup_all_tx_resources(adapter);
4261 if (err)
4262 goto err_setup_tx;
4263
4264 /* allocate receive descriptors */
4265 err = iavf_setup_all_rx_resources(adapter);
4266 if (err)
4267 goto err_setup_rx;
4268
4269 /* clear any pending interrupts, may auto mask */
4270 err = iavf_request_traffic_irqs(adapter, netdev->name);
4271 if (err)
4272 goto err_req_irq;
4273
4274 spin_lock_bh(&adapter->mac_vlan_list_lock);
4275
4276 iavf_add_filter(adapter, adapter->hw.mac.addr);
4277
4278 spin_unlock_bh(&adapter->mac_vlan_list_lock);
4279
4280 /* Restore filters that were removed with IFF_DOWN */
4281 iavf_restore_filters(adapter);
4282 iavf_restore_fdir_filters(adapter);
4283
4284 iavf_configure(adapter);
4285
4286 iavf_up_complete(adapter);
4287
4288 iavf_irq_enable(adapter, true);
4289
4290 mutex_unlock(&adapter->crit_lock);
4291
4292 return 0;
4293
4294 err_req_irq:
4295 iavf_down(adapter);
4296 iavf_free_traffic_irqs(adapter);
4297 err_setup_rx:
4298 iavf_free_all_rx_resources(adapter);
4299 err_setup_tx:
4300 iavf_free_all_tx_resources(adapter);
4301 err_unlock:
4302 mutex_unlock(&adapter->crit_lock);
4303
4304 return err;
4305 }
4306
4307 /**
4308 * iavf_close - Disables a network interface
4309 * @netdev: network interface device structure
4310 *
4311 * Returns 0, this is not allowed to fail
4312 *
4313 * The close entry point is called when an interface is de-activated
4314 * by the OS. The hardware is still under the drivers control, but
4315 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
4316 * are freed, along with all transmit and receive resources.
4317 **/
iavf_close(struct net_device * netdev)4318 static int iavf_close(struct net_device *netdev)
4319 {
4320 struct iavf_adapter *adapter = netdev_priv(netdev);
4321 u64 aq_to_restore;
4322 int status;
4323
4324 mutex_lock(&adapter->crit_lock);
4325
4326 if (adapter->state <= __IAVF_DOWN_PENDING) {
4327 mutex_unlock(&adapter->crit_lock);
4328 return 0;
4329 }
4330
4331 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
4332 if (CLIENT_ENABLED(adapter))
4333 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
4334 /* We cannot send IAVF_FLAG_AQ_GET_OFFLOAD_VLAN_V2_CAPS before
4335 * IAVF_FLAG_AQ_DISABLE_QUEUES because in such case there is rtnl
4336 * deadlock with adminq_task() until iavf_close timeouts. We must send
4337 * IAVF_FLAG_AQ_GET_CONFIG before IAVF_FLAG_AQ_DISABLE_QUEUES to make
4338 * disable queues possible for vf. Give only necessary flags to
4339 * iavf_down and save other to set them right before iavf_close()
4340 * returns, when IAVF_FLAG_AQ_DISABLE_QUEUES will be already sent and
4341 * iavf will be in DOWN state.
4342 */
4343 aq_to_restore = adapter->aq_required;
4344 adapter->aq_required &= IAVF_FLAG_AQ_GET_CONFIG;
4345
4346 /* Remove flags which we do not want to send after close or we want to
4347 * send before disable queues.
4348 */
4349 aq_to_restore &= ~(IAVF_FLAG_AQ_GET_CONFIG |
4350 IAVF_FLAG_AQ_ENABLE_QUEUES |
4351 IAVF_FLAG_AQ_CONFIGURE_QUEUES |
4352 IAVF_FLAG_AQ_ADD_VLAN_FILTER |
4353 IAVF_FLAG_AQ_ADD_MAC_FILTER |
4354 IAVF_FLAG_AQ_ADD_CLOUD_FILTER |
4355 IAVF_FLAG_AQ_ADD_FDIR_FILTER |
4356 IAVF_FLAG_AQ_ADD_ADV_RSS_CFG);
4357
4358 iavf_down(adapter);
4359 iavf_change_state(adapter, __IAVF_DOWN_PENDING);
4360 iavf_free_traffic_irqs(adapter);
4361
4362 mutex_unlock(&adapter->crit_lock);
4363
4364 /* We explicitly don't free resources here because the hardware is
4365 * still active and can DMA into memory. Resources are cleared in
4366 * iavf_virtchnl_completion() after we get confirmation from the PF
4367 * driver that the rings have been stopped.
4368 *
4369 * Also, we wait for state to transition to __IAVF_DOWN before
4370 * returning. State change occurs in iavf_virtchnl_completion() after
4371 * VF resources are released (which occurs after PF driver processes and
4372 * responds to admin queue commands).
4373 */
4374
4375 status = wait_event_timeout(adapter->down_waitqueue,
4376 adapter->state == __IAVF_DOWN,
4377 msecs_to_jiffies(500));
4378 if (!status)
4379 netdev_warn(netdev, "Device resources not yet released\n");
4380
4381 mutex_lock(&adapter->crit_lock);
4382 adapter->aq_required |= aq_to_restore;
4383 mutex_unlock(&adapter->crit_lock);
4384 return 0;
4385 }
4386
4387 /**
4388 * iavf_change_mtu - Change the Maximum Transfer Unit
4389 * @netdev: network interface device structure
4390 * @new_mtu: new value for maximum frame size
4391 *
4392 * Returns 0 on success, negative on failure
4393 **/
iavf_change_mtu(struct net_device * netdev,int new_mtu)4394 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
4395 {
4396 struct iavf_adapter *adapter = netdev_priv(netdev);
4397 int ret = 0;
4398
4399 netdev_dbg(netdev, "changing MTU from %d to %d\n",
4400 netdev->mtu, new_mtu);
4401 netdev->mtu = new_mtu;
4402 if (CLIENT_ENABLED(adapter)) {
4403 iavf_notify_client_l2_params(&adapter->vsi);
4404 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
4405 }
4406
4407 if (netif_running(netdev)) {
4408 iavf_schedule_reset(adapter, IAVF_FLAG_RESET_NEEDED);
4409 ret = iavf_wait_for_reset(adapter);
4410 if (ret < 0)
4411 netdev_warn(netdev, "MTU change interrupted waiting for reset");
4412 else if (ret)
4413 netdev_warn(netdev, "MTU change timed out waiting for reset");
4414 }
4415
4416 return ret;
4417 }
4418
4419 /**
4420 * iavf_disable_fdir - disable Flow Director and clear existing filters
4421 * @adapter: board private structure
4422 **/
iavf_disable_fdir(struct iavf_adapter * adapter)4423 static void iavf_disable_fdir(struct iavf_adapter *adapter)
4424 {
4425 struct iavf_fdir_fltr *fdir, *fdirtmp;
4426 bool del_filters = false;
4427
4428 adapter->flags &= ~IAVF_FLAG_FDIR_ENABLED;
4429
4430 /* remove all Flow Director filters */
4431 spin_lock_bh(&adapter->fdir_fltr_lock);
4432 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head,
4433 list) {
4434 if (fdir->state == IAVF_FDIR_FLTR_ADD_REQUEST ||
4435 fdir->state == IAVF_FDIR_FLTR_INACTIVE) {
4436 /* Delete filters not registered in PF */
4437 list_del(&fdir->list);
4438 kfree(fdir);
4439 adapter->fdir_active_fltr--;
4440 } else if (fdir->state == IAVF_FDIR_FLTR_ADD_PENDING ||
4441 fdir->state == IAVF_FDIR_FLTR_DIS_REQUEST ||
4442 fdir->state == IAVF_FDIR_FLTR_ACTIVE) {
4443 /* Filters registered in PF, schedule their deletion */
4444 fdir->state = IAVF_FDIR_FLTR_DEL_REQUEST;
4445 del_filters = true;
4446 } else if (fdir->state == IAVF_FDIR_FLTR_DIS_PENDING) {
4447 /* Request to delete filter already sent to PF, change
4448 * state to DEL_PENDING to delete filter after PF's
4449 * response, not set as INACTIVE
4450 */
4451 fdir->state = IAVF_FDIR_FLTR_DEL_PENDING;
4452 }
4453 }
4454 spin_unlock_bh(&adapter->fdir_fltr_lock);
4455
4456 if (del_filters) {
4457 adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
4458 mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
4459 }
4460 }
4461
4462 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
4463 NETIF_F_HW_VLAN_CTAG_TX | \
4464 NETIF_F_HW_VLAN_STAG_RX | \
4465 NETIF_F_HW_VLAN_STAG_TX)
4466
4467 /**
4468 * iavf_set_features - set the netdev feature flags
4469 * @netdev: ptr to the netdev being adjusted
4470 * @features: the feature set that the stack is suggesting
4471 * Note: expects to be called while under rtnl_lock()
4472 **/
iavf_set_features(struct net_device * netdev,netdev_features_t features)4473 static int iavf_set_features(struct net_device *netdev,
4474 netdev_features_t features)
4475 {
4476 struct iavf_adapter *adapter = netdev_priv(netdev);
4477
4478 /* trigger update on any VLAN feature change */
4479 if ((netdev->features & NETIF_VLAN_OFFLOAD_FEATURES) ^
4480 (features & NETIF_VLAN_OFFLOAD_FEATURES))
4481 iavf_set_vlan_offload_features(adapter, netdev->features,
4482 features);
4483
4484 if ((netdev->features & NETIF_F_NTUPLE) ^ (features & NETIF_F_NTUPLE)) {
4485 if (features & NETIF_F_NTUPLE)
4486 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4487 else
4488 iavf_disable_fdir(adapter);
4489 }
4490
4491 return 0;
4492 }
4493
4494 /**
4495 * iavf_features_check - Validate encapsulated packet conforms to limits
4496 * @skb: skb buff
4497 * @dev: This physical port's netdev
4498 * @features: Offload features that the stack believes apply
4499 **/
iavf_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)4500 static netdev_features_t iavf_features_check(struct sk_buff *skb,
4501 struct net_device *dev,
4502 netdev_features_t features)
4503 {
4504 size_t len;
4505
4506 /* No point in doing any of this if neither checksum nor GSO are
4507 * being requested for this frame. We can rule out both by just
4508 * checking for CHECKSUM_PARTIAL
4509 */
4510 if (skb->ip_summed != CHECKSUM_PARTIAL)
4511 return features;
4512
4513 /* We cannot support GSO if the MSS is going to be less than
4514 * 64 bytes. If it is then we need to drop support for GSO.
4515 */
4516 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4517 features &= ~NETIF_F_GSO_MASK;
4518
4519 /* MACLEN can support at most 63 words */
4520 len = skb_network_header(skb) - skb->data;
4521 if (len & ~(63 * 2))
4522 goto out_err;
4523
4524 /* IPLEN and EIPLEN can support at most 127 dwords */
4525 len = skb_transport_header(skb) - skb_network_header(skb);
4526 if (len & ~(127 * 4))
4527 goto out_err;
4528
4529 if (skb->encapsulation) {
4530 /* L4TUNLEN can support 127 words */
4531 len = skb_inner_network_header(skb) - skb_transport_header(skb);
4532 if (len & ~(127 * 2))
4533 goto out_err;
4534
4535 /* IPLEN can support at most 127 dwords */
4536 len = skb_inner_transport_header(skb) -
4537 skb_inner_network_header(skb);
4538 if (len & ~(127 * 4))
4539 goto out_err;
4540 }
4541
4542 /* No need to validate L4LEN as TCP is the only protocol with a
4543 * flexible value and we support all possible values supported
4544 * by TCP, which is at most 15 dwords
4545 */
4546
4547 return features;
4548 out_err:
4549 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4550 }
4551
4552 /**
4553 * iavf_get_netdev_vlan_hw_features - get NETDEV VLAN features that can toggle on/off
4554 * @adapter: board private structure
4555 *
4556 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4557 * were negotiated determine the VLAN features that can be toggled on and off.
4558 **/
4559 static netdev_features_t
iavf_get_netdev_vlan_hw_features(struct iavf_adapter * adapter)4560 iavf_get_netdev_vlan_hw_features(struct iavf_adapter *adapter)
4561 {
4562 netdev_features_t hw_features = 0;
4563
4564 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4565 return hw_features;
4566
4567 /* Enable VLAN features if supported */
4568 if (VLAN_ALLOWED(adapter)) {
4569 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
4570 NETIF_F_HW_VLAN_CTAG_RX);
4571 } else if (VLAN_V2_ALLOWED(adapter)) {
4572 struct virtchnl_vlan_caps *vlan_v2_caps =
4573 &adapter->vlan_v2_caps;
4574 struct virtchnl_vlan_supported_caps *stripping_support =
4575 &vlan_v2_caps->offloads.stripping_support;
4576 struct virtchnl_vlan_supported_caps *insertion_support =
4577 &vlan_v2_caps->offloads.insertion_support;
4578
4579 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4580 stripping_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4581 if (stripping_support->outer &
4582 VIRTCHNL_VLAN_ETHERTYPE_8100)
4583 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4584 if (stripping_support->outer &
4585 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4586 hw_features |= NETIF_F_HW_VLAN_STAG_RX;
4587 } else if (stripping_support->inner !=
4588 VIRTCHNL_VLAN_UNSUPPORTED &&
4589 stripping_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4590 if (stripping_support->inner &
4591 VIRTCHNL_VLAN_ETHERTYPE_8100)
4592 hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
4593 }
4594
4595 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED &&
4596 insertion_support->outer & VIRTCHNL_VLAN_TOGGLE) {
4597 if (insertion_support->outer &
4598 VIRTCHNL_VLAN_ETHERTYPE_8100)
4599 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4600 if (insertion_support->outer &
4601 VIRTCHNL_VLAN_ETHERTYPE_88A8)
4602 hw_features |= NETIF_F_HW_VLAN_STAG_TX;
4603 } else if (insertion_support->inner &&
4604 insertion_support->inner & VIRTCHNL_VLAN_TOGGLE) {
4605 if (insertion_support->inner &
4606 VIRTCHNL_VLAN_ETHERTYPE_8100)
4607 hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
4608 }
4609 }
4610
4611 return hw_features;
4612 }
4613
4614 /**
4615 * iavf_get_netdev_vlan_features - get the enabled NETDEV VLAN fetures
4616 * @adapter: board private structure
4617 *
4618 * Depending on whether VIRTHCNL_VF_OFFLOAD_VLAN or VIRTCHNL_VF_OFFLOAD_VLAN_V2
4619 * were negotiated determine the VLAN features that are enabled by default.
4620 **/
4621 static netdev_features_t
iavf_get_netdev_vlan_features(struct iavf_adapter * adapter)4622 iavf_get_netdev_vlan_features(struct iavf_adapter *adapter)
4623 {
4624 netdev_features_t features = 0;
4625
4626 if (!adapter->vf_res || !adapter->vf_res->vf_cap_flags)
4627 return features;
4628
4629 if (VLAN_ALLOWED(adapter)) {
4630 features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4631 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX;
4632 } else if (VLAN_V2_ALLOWED(adapter)) {
4633 struct virtchnl_vlan_caps *vlan_v2_caps =
4634 &adapter->vlan_v2_caps;
4635 struct virtchnl_vlan_supported_caps *filtering_support =
4636 &vlan_v2_caps->filtering.filtering_support;
4637 struct virtchnl_vlan_supported_caps *stripping_support =
4638 &vlan_v2_caps->offloads.stripping_support;
4639 struct virtchnl_vlan_supported_caps *insertion_support =
4640 &vlan_v2_caps->offloads.insertion_support;
4641 u32 ethertype_init;
4642
4643 /* give priority to outer stripping and don't support both outer
4644 * and inner stripping
4645 */
4646 ethertype_init = vlan_v2_caps->offloads.ethertype_init;
4647 if (stripping_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4648 if (stripping_support->outer &
4649 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4650 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4651 features |= NETIF_F_HW_VLAN_CTAG_RX;
4652 else if (stripping_support->outer &
4653 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4654 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4655 features |= NETIF_F_HW_VLAN_STAG_RX;
4656 } else if (stripping_support->inner !=
4657 VIRTCHNL_VLAN_UNSUPPORTED) {
4658 if (stripping_support->inner &
4659 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4660 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4661 features |= NETIF_F_HW_VLAN_CTAG_RX;
4662 }
4663
4664 /* give priority to outer insertion and don't support both outer
4665 * and inner insertion
4666 */
4667 if (insertion_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4668 if (insertion_support->outer &
4669 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4670 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4671 features |= NETIF_F_HW_VLAN_CTAG_TX;
4672 else if (insertion_support->outer &
4673 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4674 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4675 features |= NETIF_F_HW_VLAN_STAG_TX;
4676 } else if (insertion_support->inner !=
4677 VIRTCHNL_VLAN_UNSUPPORTED) {
4678 if (insertion_support->inner &
4679 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4680 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4681 features |= NETIF_F_HW_VLAN_CTAG_TX;
4682 }
4683
4684 /* give priority to outer filtering and don't bother if both
4685 * outer and inner filtering are enabled
4686 */
4687 ethertype_init = vlan_v2_caps->filtering.ethertype_init;
4688 if (filtering_support->outer != VIRTCHNL_VLAN_UNSUPPORTED) {
4689 if (filtering_support->outer &
4690 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4691 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4692 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4693 if (filtering_support->outer &
4694 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4695 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4696 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4697 } else if (filtering_support->inner !=
4698 VIRTCHNL_VLAN_UNSUPPORTED) {
4699 if (filtering_support->inner &
4700 VIRTCHNL_VLAN_ETHERTYPE_8100 &&
4701 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_8100)
4702 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4703 if (filtering_support->inner &
4704 VIRTCHNL_VLAN_ETHERTYPE_88A8 &&
4705 ethertype_init & VIRTCHNL_VLAN_ETHERTYPE_88A8)
4706 features |= NETIF_F_HW_VLAN_STAG_FILTER;
4707 }
4708 }
4709
4710 return features;
4711 }
4712
4713 #define IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested, allowed, feature_bit) \
4714 (!(((requested) & (feature_bit)) && \
4715 !((allowed) & (feature_bit))))
4716
4717 /**
4718 * iavf_fix_netdev_vlan_features - fix NETDEV VLAN features based on support
4719 * @adapter: board private structure
4720 * @requested_features: stack requested NETDEV features
4721 **/
4722 static netdev_features_t
iavf_fix_netdev_vlan_features(struct iavf_adapter * adapter,netdev_features_t requested_features)4723 iavf_fix_netdev_vlan_features(struct iavf_adapter *adapter,
4724 netdev_features_t requested_features)
4725 {
4726 netdev_features_t allowed_features;
4727
4728 allowed_features = iavf_get_netdev_vlan_hw_features(adapter) |
4729 iavf_get_netdev_vlan_features(adapter);
4730
4731 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4732 allowed_features,
4733 NETIF_F_HW_VLAN_CTAG_TX))
4734 requested_features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4735
4736 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4737 allowed_features,
4738 NETIF_F_HW_VLAN_CTAG_RX))
4739 requested_features &= ~NETIF_F_HW_VLAN_CTAG_RX;
4740
4741 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4742 allowed_features,
4743 NETIF_F_HW_VLAN_STAG_TX))
4744 requested_features &= ~NETIF_F_HW_VLAN_STAG_TX;
4745 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4746 allowed_features,
4747 NETIF_F_HW_VLAN_STAG_RX))
4748 requested_features &= ~NETIF_F_HW_VLAN_STAG_RX;
4749
4750 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4751 allowed_features,
4752 NETIF_F_HW_VLAN_CTAG_FILTER))
4753 requested_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
4754
4755 if (!IAVF_NETDEV_VLAN_FEATURE_ALLOWED(requested_features,
4756 allowed_features,
4757 NETIF_F_HW_VLAN_STAG_FILTER))
4758 requested_features &= ~NETIF_F_HW_VLAN_STAG_FILTER;
4759
4760 if ((requested_features &
4761 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
4762 (requested_features &
4763 (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) &&
4764 adapter->vlan_v2_caps.offloads.ethertype_match ==
4765 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION) {
4766 netdev_warn(adapter->netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
4767 requested_features &= ~(NETIF_F_HW_VLAN_STAG_RX |
4768 NETIF_F_HW_VLAN_STAG_TX);
4769 }
4770
4771 return requested_features;
4772 }
4773
4774 /**
4775 * iavf_fix_features - fix up the netdev feature bits
4776 * @netdev: our net device
4777 * @features: desired feature bits
4778 *
4779 * Returns fixed-up features bits
4780 **/
iavf_fix_features(struct net_device * netdev,netdev_features_t features)4781 static netdev_features_t iavf_fix_features(struct net_device *netdev,
4782 netdev_features_t features)
4783 {
4784 struct iavf_adapter *adapter = netdev_priv(netdev);
4785
4786 if (!FDIR_FLTR_SUPPORT(adapter))
4787 features &= ~NETIF_F_NTUPLE;
4788
4789 return iavf_fix_netdev_vlan_features(adapter, features);
4790 }
4791
4792 static const struct net_device_ops iavf_netdev_ops = {
4793 .ndo_open = iavf_open,
4794 .ndo_stop = iavf_close,
4795 .ndo_start_xmit = iavf_xmit_frame,
4796 .ndo_set_rx_mode = iavf_set_rx_mode,
4797 .ndo_validate_addr = eth_validate_addr,
4798 .ndo_set_mac_address = iavf_set_mac,
4799 .ndo_change_mtu = iavf_change_mtu,
4800 .ndo_tx_timeout = iavf_tx_timeout,
4801 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
4802 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
4803 .ndo_features_check = iavf_features_check,
4804 .ndo_fix_features = iavf_fix_features,
4805 .ndo_set_features = iavf_set_features,
4806 .ndo_setup_tc = iavf_setup_tc,
4807 };
4808
4809 /**
4810 * iavf_check_reset_complete - check that VF reset is complete
4811 * @hw: pointer to hw struct
4812 *
4813 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
4814 **/
iavf_check_reset_complete(struct iavf_hw * hw)4815 static int iavf_check_reset_complete(struct iavf_hw *hw)
4816 {
4817 u32 rstat;
4818 int i;
4819
4820 for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
4821 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
4822 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
4823 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
4824 (rstat == VIRTCHNL_VFR_COMPLETED))
4825 return 0;
4826 usleep_range(10, 20);
4827 }
4828 return -EBUSY;
4829 }
4830
4831 /**
4832 * iavf_process_config - Process the config information we got from the PF
4833 * @adapter: board private structure
4834 *
4835 * Verify that we have a valid config struct, and set up our netdev features
4836 * and our VSI struct.
4837 **/
iavf_process_config(struct iavf_adapter * adapter)4838 int iavf_process_config(struct iavf_adapter *adapter)
4839 {
4840 struct virtchnl_vf_resource *vfres = adapter->vf_res;
4841 netdev_features_t hw_vlan_features, vlan_features;
4842 struct net_device *netdev = adapter->netdev;
4843 netdev_features_t hw_enc_features;
4844 netdev_features_t hw_features;
4845
4846 hw_enc_features = NETIF_F_SG |
4847 NETIF_F_IP_CSUM |
4848 NETIF_F_IPV6_CSUM |
4849 NETIF_F_HIGHDMA |
4850 NETIF_F_SOFT_FEATURES |
4851 NETIF_F_TSO |
4852 NETIF_F_TSO_ECN |
4853 NETIF_F_TSO6 |
4854 NETIF_F_SCTP_CRC |
4855 NETIF_F_RXHASH |
4856 NETIF_F_RXCSUM |
4857 0;
4858
4859 /* advertise to stack only if offloads for encapsulated packets is
4860 * supported
4861 */
4862 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
4863 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
4864 NETIF_F_GSO_GRE |
4865 NETIF_F_GSO_GRE_CSUM |
4866 NETIF_F_GSO_IPXIP4 |
4867 NETIF_F_GSO_IPXIP6 |
4868 NETIF_F_GSO_UDP_TUNNEL_CSUM |
4869 NETIF_F_GSO_PARTIAL |
4870 0;
4871
4872 if (!(vfres->vf_cap_flags &
4873 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
4874 netdev->gso_partial_features |=
4875 NETIF_F_GSO_UDP_TUNNEL_CSUM;
4876
4877 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
4878 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
4879 netdev->hw_enc_features |= hw_enc_features;
4880 }
4881 /* record features VLANs can make use of */
4882 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
4883
4884 /* Write features and hw_features separately to avoid polluting
4885 * with, or dropping, features that are set when we registered.
4886 */
4887 hw_features = hw_enc_features;
4888
4889 /* get HW VLAN features that can be toggled */
4890 hw_vlan_features = iavf_get_netdev_vlan_hw_features(adapter);
4891
4892 /* Enable cloud filter if ADQ is supported */
4893 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
4894 hw_features |= NETIF_F_HW_TC;
4895 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_USO)
4896 hw_features |= NETIF_F_GSO_UDP_L4;
4897
4898 netdev->hw_features |= hw_features | hw_vlan_features;
4899 vlan_features = iavf_get_netdev_vlan_features(adapter);
4900
4901 netdev->features |= hw_features | vlan_features;
4902
4903 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
4904 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4905
4906 if (FDIR_FLTR_SUPPORT(adapter)) {
4907 netdev->hw_features |= NETIF_F_NTUPLE;
4908 netdev->features |= NETIF_F_NTUPLE;
4909 adapter->flags |= IAVF_FLAG_FDIR_ENABLED;
4910 }
4911
4912 netdev->priv_flags |= IFF_UNICAST_FLT;
4913
4914 /* Do not turn on offloads when they are requested to be turned off.
4915 * TSO needs minimum 576 bytes to work correctly.
4916 */
4917 if (netdev->wanted_features) {
4918 if (!(netdev->wanted_features & NETIF_F_TSO) ||
4919 netdev->mtu < 576)
4920 netdev->features &= ~NETIF_F_TSO;
4921 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
4922 netdev->mtu < 576)
4923 netdev->features &= ~NETIF_F_TSO6;
4924 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
4925 netdev->features &= ~NETIF_F_TSO_ECN;
4926 if (!(netdev->wanted_features & NETIF_F_GRO))
4927 netdev->features &= ~NETIF_F_GRO;
4928 if (!(netdev->wanted_features & NETIF_F_GSO))
4929 netdev->features &= ~NETIF_F_GSO;
4930 }
4931
4932 return 0;
4933 }
4934
4935 /**
4936 * iavf_probe - Device Initialization Routine
4937 * @pdev: PCI device information struct
4938 * @ent: entry in iavf_pci_tbl
4939 *
4940 * Returns 0 on success, negative on failure
4941 *
4942 * iavf_probe initializes an adapter identified by a pci_dev structure.
4943 * The OS initialization, configuring of the adapter private structure,
4944 * and a hardware reset occur.
4945 **/
iavf_probe(struct pci_dev * pdev,const struct pci_device_id * ent)4946 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4947 {
4948 struct net_device *netdev;
4949 struct iavf_adapter *adapter = NULL;
4950 struct iavf_hw *hw = NULL;
4951 int err;
4952
4953 err = pci_enable_device(pdev);
4954 if (err)
4955 return err;
4956
4957 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4958 if (err) {
4959 dev_err(&pdev->dev,
4960 "DMA configuration failed: 0x%x\n", err);
4961 goto err_dma;
4962 }
4963
4964 err = pci_request_regions(pdev, iavf_driver_name);
4965 if (err) {
4966 dev_err(&pdev->dev,
4967 "pci_request_regions failed 0x%x\n", err);
4968 goto err_pci_reg;
4969 }
4970
4971 pci_set_master(pdev);
4972
4973 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
4974 IAVF_MAX_REQ_QUEUES);
4975 if (!netdev) {
4976 err = -ENOMEM;
4977 goto err_alloc_etherdev;
4978 }
4979
4980 SET_NETDEV_DEV(netdev, &pdev->dev);
4981
4982 pci_set_drvdata(pdev, netdev);
4983 adapter = netdev_priv(netdev);
4984
4985 adapter->netdev = netdev;
4986 adapter->pdev = pdev;
4987
4988 hw = &adapter->hw;
4989 hw->back = adapter;
4990
4991 adapter->wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM,
4992 iavf_driver_name);
4993 if (!adapter->wq) {
4994 err = -ENOMEM;
4995 goto err_alloc_wq;
4996 }
4997
4998 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
4999 iavf_change_state(adapter, __IAVF_STARTUP);
5000
5001 /* Call save state here because it relies on the adapter struct. */
5002 pci_save_state(pdev);
5003
5004 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
5005 pci_resource_len(pdev, 0));
5006 if (!hw->hw_addr) {
5007 err = -EIO;
5008 goto err_ioremap;
5009 }
5010 hw->vendor_id = pdev->vendor;
5011 hw->device_id = pdev->device;
5012 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5013 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5014 hw->subsystem_device_id = pdev->subsystem_device;
5015 hw->bus.device = PCI_SLOT(pdev->devfn);
5016 hw->bus.func = PCI_FUNC(pdev->devfn);
5017 hw->bus.bus_id = pdev->bus->number;
5018
5019 /* set up the locks for the AQ, do this only once in probe
5020 * and destroy them only once in remove
5021 */
5022 mutex_init(&adapter->crit_lock);
5023 mutex_init(&adapter->client_lock);
5024 mutex_init(&hw->aq.asq_mutex);
5025 mutex_init(&hw->aq.arq_mutex);
5026
5027 spin_lock_init(&adapter->mac_vlan_list_lock);
5028 spin_lock_init(&adapter->cloud_filter_list_lock);
5029 spin_lock_init(&adapter->fdir_fltr_lock);
5030 spin_lock_init(&adapter->adv_rss_lock);
5031 spin_lock_init(&adapter->current_netdev_promisc_flags_lock);
5032
5033 INIT_LIST_HEAD(&adapter->mac_filter_list);
5034 INIT_LIST_HEAD(&adapter->vlan_filter_list);
5035 INIT_LIST_HEAD(&adapter->cloud_filter_list);
5036 INIT_LIST_HEAD(&adapter->fdir_list_head);
5037 INIT_LIST_HEAD(&adapter->adv_rss_list_head);
5038
5039 INIT_WORK(&adapter->reset_task, iavf_reset_task);
5040 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
5041 INIT_WORK(&adapter->finish_config, iavf_finish_config);
5042 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
5043 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
5044
5045 /* Setup the wait queue for indicating transition to down status */
5046 init_waitqueue_head(&adapter->down_waitqueue);
5047
5048 /* Setup the wait queue for indicating transition to running state */
5049 init_waitqueue_head(&adapter->reset_waitqueue);
5050
5051 /* Setup the wait queue for indicating virtchannel events */
5052 init_waitqueue_head(&adapter->vc_waitqueue);
5053
5054 queue_delayed_work(adapter->wq, &adapter->watchdog_task,
5055 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
5056 /* Initialization goes on in the work. Do not add more of it below. */
5057 return 0;
5058
5059 err_ioremap:
5060 destroy_workqueue(adapter->wq);
5061 err_alloc_wq:
5062 free_netdev(netdev);
5063 err_alloc_etherdev:
5064 pci_release_regions(pdev);
5065 err_pci_reg:
5066 err_dma:
5067 pci_disable_device(pdev);
5068 return err;
5069 }
5070
5071 /**
5072 * iavf_suspend - Power management suspend routine
5073 * @dev_d: device info pointer
5074 *
5075 * Called when the system (VM) is entering sleep/suspend.
5076 **/
iavf_suspend(struct device * dev_d)5077 static int __maybe_unused iavf_suspend(struct device *dev_d)
5078 {
5079 struct net_device *netdev = dev_get_drvdata(dev_d);
5080 struct iavf_adapter *adapter = netdev_priv(netdev);
5081
5082 netif_device_detach(netdev);
5083
5084 while (!mutex_trylock(&adapter->crit_lock))
5085 usleep_range(500, 1000);
5086
5087 if (netif_running(netdev)) {
5088 rtnl_lock();
5089 iavf_down(adapter);
5090 rtnl_unlock();
5091 }
5092 iavf_free_misc_irq(adapter);
5093 iavf_reset_interrupt_capability(adapter);
5094
5095 mutex_unlock(&adapter->crit_lock);
5096
5097 return 0;
5098 }
5099
5100 /**
5101 * iavf_resume - Power management resume routine
5102 * @dev_d: device info pointer
5103 *
5104 * Called when the system (VM) is resumed from sleep/suspend.
5105 **/
iavf_resume(struct device * dev_d)5106 static int __maybe_unused iavf_resume(struct device *dev_d)
5107 {
5108 struct pci_dev *pdev = to_pci_dev(dev_d);
5109 struct iavf_adapter *adapter;
5110 u32 err;
5111
5112 adapter = iavf_pdev_to_adapter(pdev);
5113
5114 pci_set_master(pdev);
5115
5116 rtnl_lock();
5117 err = iavf_set_interrupt_capability(adapter);
5118 if (err) {
5119 rtnl_unlock();
5120 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
5121 return err;
5122 }
5123 err = iavf_request_misc_irq(adapter);
5124 rtnl_unlock();
5125 if (err) {
5126 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
5127 return err;
5128 }
5129
5130 queue_work(adapter->wq, &adapter->reset_task);
5131
5132 netif_device_attach(adapter->netdev);
5133
5134 return err;
5135 }
5136
5137 /**
5138 * iavf_remove - Device Removal Routine
5139 * @pdev: PCI device information struct
5140 *
5141 * iavf_remove is called by the PCI subsystem to alert the driver
5142 * that it should release a PCI device. The could be caused by a
5143 * Hot-Plug event, or because the driver is going to be removed from
5144 * memory.
5145 **/
iavf_remove(struct pci_dev * pdev)5146 static void iavf_remove(struct pci_dev *pdev)
5147 {
5148 struct iavf_fdir_fltr *fdir, *fdirtmp;
5149 struct iavf_vlan_filter *vlf, *vlftmp;
5150 struct iavf_cloud_filter *cf, *cftmp;
5151 struct iavf_adv_rss *rss, *rsstmp;
5152 struct iavf_mac_filter *f, *ftmp;
5153 struct iavf_adapter *adapter;
5154 struct net_device *netdev;
5155 struct iavf_hw *hw;
5156 int err;
5157
5158 /* Don't proceed with remove if netdev is already freed */
5159 netdev = pci_get_drvdata(pdev);
5160 if (!netdev)
5161 return;
5162
5163 adapter = iavf_pdev_to_adapter(pdev);
5164 hw = &adapter->hw;
5165
5166 if (test_and_set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
5167 return;
5168
5169 /* Wait until port initialization is complete.
5170 * There are flows where register/unregister netdev may race.
5171 */
5172 while (1) {
5173 mutex_lock(&adapter->crit_lock);
5174 if (adapter->state == __IAVF_RUNNING ||
5175 adapter->state == __IAVF_DOWN ||
5176 adapter->state == __IAVF_INIT_FAILED) {
5177 mutex_unlock(&adapter->crit_lock);
5178 break;
5179 }
5180 /* Simply return if we already went through iavf_shutdown */
5181 if (adapter->state == __IAVF_REMOVE) {
5182 mutex_unlock(&adapter->crit_lock);
5183 return;
5184 }
5185
5186 mutex_unlock(&adapter->crit_lock);
5187 usleep_range(500, 1000);
5188 }
5189 cancel_delayed_work_sync(&adapter->watchdog_task);
5190 cancel_work_sync(&adapter->finish_config);
5191
5192 rtnl_lock();
5193 if (adapter->netdev_registered) {
5194 unregister_netdevice(netdev);
5195 adapter->netdev_registered = false;
5196 }
5197 rtnl_unlock();
5198
5199 if (CLIENT_ALLOWED(adapter)) {
5200 err = iavf_lan_del_device(adapter);
5201 if (err)
5202 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
5203 err);
5204 }
5205
5206 mutex_lock(&adapter->crit_lock);
5207 dev_info(&adapter->pdev->dev, "Removing device\n");
5208 iavf_change_state(adapter, __IAVF_REMOVE);
5209
5210 iavf_request_reset(adapter);
5211 msleep(50);
5212 /* If the FW isn't responding, kick it once, but only once. */
5213 if (!iavf_asq_done(hw)) {
5214 iavf_request_reset(adapter);
5215 msleep(50);
5216 }
5217
5218 iavf_misc_irq_disable(adapter);
5219 /* Shut down all the garbage mashers on the detention level */
5220 cancel_work_sync(&adapter->reset_task);
5221 cancel_delayed_work_sync(&adapter->watchdog_task);
5222 cancel_work_sync(&adapter->adminq_task);
5223 cancel_delayed_work_sync(&adapter->client_task);
5224
5225 adapter->aq_required = 0;
5226 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
5227
5228 iavf_free_all_tx_resources(adapter);
5229 iavf_free_all_rx_resources(adapter);
5230 iavf_free_misc_irq(adapter);
5231
5232 iavf_reset_interrupt_capability(adapter);
5233 iavf_free_q_vectors(adapter);
5234
5235 iavf_free_rss(adapter);
5236
5237 if (hw->aq.asq.count)
5238 iavf_shutdown_adminq(hw);
5239
5240 /* destroy the locks only once, here */
5241 mutex_destroy(&hw->aq.arq_mutex);
5242 mutex_destroy(&hw->aq.asq_mutex);
5243 mutex_destroy(&adapter->client_lock);
5244 mutex_unlock(&adapter->crit_lock);
5245 mutex_destroy(&adapter->crit_lock);
5246
5247 iounmap(hw->hw_addr);
5248 pci_release_regions(pdev);
5249 iavf_free_queues(adapter);
5250 kfree(adapter->vf_res);
5251 spin_lock_bh(&adapter->mac_vlan_list_lock);
5252 /* If we got removed before an up/down sequence, we've got a filter
5253 * hanging out there that we need to get rid of.
5254 */
5255 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
5256 list_del(&f->list);
5257 kfree(f);
5258 }
5259 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
5260 list) {
5261 list_del(&vlf->list);
5262 kfree(vlf);
5263 }
5264
5265 spin_unlock_bh(&adapter->mac_vlan_list_lock);
5266
5267 spin_lock_bh(&adapter->cloud_filter_list_lock);
5268 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
5269 list_del(&cf->list);
5270 kfree(cf);
5271 }
5272 spin_unlock_bh(&adapter->cloud_filter_list_lock);
5273
5274 spin_lock_bh(&adapter->fdir_fltr_lock);
5275 list_for_each_entry_safe(fdir, fdirtmp, &adapter->fdir_list_head, list) {
5276 list_del(&fdir->list);
5277 kfree(fdir);
5278 }
5279 spin_unlock_bh(&adapter->fdir_fltr_lock);
5280
5281 spin_lock_bh(&adapter->adv_rss_lock);
5282 list_for_each_entry_safe(rss, rsstmp, &adapter->adv_rss_list_head,
5283 list) {
5284 list_del(&rss->list);
5285 kfree(rss);
5286 }
5287 spin_unlock_bh(&adapter->adv_rss_lock);
5288
5289 destroy_workqueue(adapter->wq);
5290
5291 pci_set_drvdata(pdev, NULL);
5292
5293 free_netdev(netdev);
5294
5295 pci_disable_device(pdev);
5296 }
5297
5298 /**
5299 * iavf_shutdown - Shutdown the device in preparation for a reboot
5300 * @pdev: pci device structure
5301 **/
iavf_shutdown(struct pci_dev * pdev)5302 static void iavf_shutdown(struct pci_dev *pdev)
5303 {
5304 iavf_remove(pdev);
5305
5306 if (system_state == SYSTEM_POWER_OFF)
5307 pci_set_power_state(pdev, PCI_D3hot);
5308 }
5309
5310 static SIMPLE_DEV_PM_OPS(iavf_pm_ops, iavf_suspend, iavf_resume);
5311
5312 static struct pci_driver iavf_driver = {
5313 .name = iavf_driver_name,
5314 .id_table = iavf_pci_tbl,
5315 .probe = iavf_probe,
5316 .remove = iavf_remove,
5317 .driver.pm = &iavf_pm_ops,
5318 .shutdown = iavf_shutdown,
5319 };
5320
5321 /**
5322 * iavf_init_module - Driver Registration Routine
5323 *
5324 * iavf_init_module is the first routine called when the driver is
5325 * loaded. All it does is register with the PCI subsystem.
5326 **/
iavf_init_module(void)5327 static int __init iavf_init_module(void)
5328 {
5329 pr_info("iavf: %s\n", iavf_driver_string);
5330
5331 pr_info("%s\n", iavf_copyright);
5332
5333 return pci_register_driver(&iavf_driver);
5334 }
5335
5336 module_init(iavf_init_module);
5337
5338 /**
5339 * iavf_exit_module - Driver Exit Cleanup Routine
5340 *
5341 * iavf_exit_module is called just before the driver is removed
5342 * from memory.
5343 **/
iavf_exit_module(void)5344 static void __exit iavf_exit_module(void)
5345 {
5346 pci_unregister_driver(&iavf_driver);
5347 }
5348
5349 module_exit(iavf_exit_module);
5350
5351 /* iavf_main.c */
5352