xref: /openbmc/linux/net/core/filter.c (revision 797a4c1f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <linux/un.h>
85 #include <net/xdp_sock_drv.h>
86 
87 static const struct bpf_func_proto *
88 bpf_sk_base_func_proto(enum bpf_func_id func_id);
89 
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)90 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
91 {
92 	if (in_compat_syscall()) {
93 		struct compat_sock_fprog f32;
94 
95 		if (len != sizeof(f32))
96 			return -EINVAL;
97 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
98 			return -EFAULT;
99 		memset(dst, 0, sizeof(*dst));
100 		dst->len = f32.len;
101 		dst->filter = compat_ptr(f32.filter);
102 	} else {
103 		if (len != sizeof(*dst))
104 			return -EINVAL;
105 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
106 			return -EFAULT;
107 	}
108 
109 	return 0;
110 }
111 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
112 
113 /**
114  *	sk_filter_trim_cap - run a packet through a socket filter
115  *	@sk: sock associated with &sk_buff
116  *	@skb: buffer to filter
117  *	@cap: limit on how short the eBPF program may trim the packet
118  *
119  * Run the eBPF program and then cut skb->data to correct size returned by
120  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
121  * than pkt_len we keep whole skb->data. This is the socket level
122  * wrapper to bpf_prog_run. It returns 0 if the packet should
123  * be accepted or -EPERM if the packet should be tossed.
124  *
125  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)126 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
127 {
128 	int err;
129 	struct sk_filter *filter;
130 
131 	/*
132 	 * If the skb was allocated from pfmemalloc reserves, only
133 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
134 	 * helping free memory
135 	 */
136 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
137 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
138 		return -ENOMEM;
139 	}
140 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
141 	if (err)
142 		return err;
143 
144 	err = security_sock_rcv_skb(sk, skb);
145 	if (err)
146 		return err;
147 
148 	rcu_read_lock();
149 	filter = rcu_dereference(sk->sk_filter);
150 	if (filter) {
151 		struct sock *save_sk = skb->sk;
152 		unsigned int pkt_len;
153 
154 		skb->sk = sk;
155 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
156 		skb->sk = save_sk;
157 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
158 	}
159 	rcu_read_unlock();
160 
161 	return err;
162 }
163 EXPORT_SYMBOL(sk_filter_trim_cap);
164 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)165 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
166 {
167 	return skb_get_poff(skb);
168 }
169 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)170 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
171 {
172 	struct nlattr *nla;
173 
174 	if (skb_is_nonlinear(skb))
175 		return 0;
176 
177 	if (skb->len < sizeof(struct nlattr))
178 		return 0;
179 
180 	if (a > skb->len - sizeof(struct nlattr))
181 		return 0;
182 
183 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
184 	if (nla)
185 		return (void *) nla - (void *) skb->data;
186 
187 	return 0;
188 }
189 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)190 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
191 {
192 	struct nlattr *nla;
193 
194 	if (skb_is_nonlinear(skb))
195 		return 0;
196 
197 	if (skb->len < sizeof(struct nlattr))
198 		return 0;
199 
200 	if (a > skb->len - sizeof(struct nlattr))
201 		return 0;
202 
203 	nla = (struct nlattr *) &skb->data[a];
204 	if (nla->nla_len > skb->len - a)
205 		return 0;
206 
207 	nla = nla_find_nested(nla, x);
208 	if (nla)
209 		return (void *) nla - (void *) skb->data;
210 
211 	return 0;
212 }
213 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)214 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
215 	   data, int, headlen, int, offset)
216 {
217 	u8 tmp, *ptr;
218 	const int len = sizeof(tmp);
219 
220 	if (offset >= 0) {
221 		if (headlen - offset >= len)
222 			return *(u8 *)(data + offset);
223 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
224 			return tmp;
225 	} else {
226 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
227 		if (likely(ptr))
228 			return *(u8 *)ptr;
229 	}
230 
231 	return -EFAULT;
232 }
233 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)234 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
235 	   int, offset)
236 {
237 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
238 					 offset);
239 }
240 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)241 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
242 	   data, int, headlen, int, offset)
243 {
244 	__be16 tmp, *ptr;
245 	const int len = sizeof(tmp);
246 
247 	if (offset >= 0) {
248 		if (headlen - offset >= len)
249 			return get_unaligned_be16(data + offset);
250 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
251 			return be16_to_cpu(tmp);
252 	} else {
253 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
254 		if (likely(ptr))
255 			return get_unaligned_be16(ptr);
256 	}
257 
258 	return -EFAULT;
259 }
260 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)261 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
262 	   int, offset)
263 {
264 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
265 					  offset);
266 }
267 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)268 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
269 	   data, int, headlen, int, offset)
270 {
271 	__be32 tmp, *ptr;
272 	const int len = sizeof(tmp);
273 
274 	if (likely(offset >= 0)) {
275 		if (headlen - offset >= len)
276 			return get_unaligned_be32(data + offset);
277 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
278 			return be32_to_cpu(tmp);
279 	} else {
280 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
281 		if (likely(ptr))
282 			return get_unaligned_be32(ptr);
283 	}
284 
285 	return -EFAULT;
286 }
287 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)288 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
289 	   int, offset)
290 {
291 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
292 					  offset);
293 }
294 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)295 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
296 			      struct bpf_insn *insn_buf)
297 {
298 	struct bpf_insn *insn = insn_buf;
299 
300 	switch (skb_field) {
301 	case SKF_AD_MARK:
302 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
303 
304 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
305 				      offsetof(struct sk_buff, mark));
306 		break;
307 
308 	case SKF_AD_PKTTYPE:
309 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
310 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
311 #ifdef __BIG_ENDIAN_BITFIELD
312 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
313 #endif
314 		break;
315 
316 	case SKF_AD_QUEUE:
317 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
318 
319 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
320 				      offsetof(struct sk_buff, queue_mapping));
321 		break;
322 
323 	case SKF_AD_VLAN_TAG:
324 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
325 
326 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
328 				      offsetof(struct sk_buff, vlan_tci));
329 		break;
330 	case SKF_AD_VLAN_TAG_PRESENT:
331 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
332 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
333 				      offsetof(struct sk_buff, vlan_all));
334 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
335 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
336 		break;
337 	}
338 
339 	return insn - insn_buf;
340 }
341 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)342 static bool convert_bpf_extensions(struct sock_filter *fp,
343 				   struct bpf_insn **insnp)
344 {
345 	struct bpf_insn *insn = *insnp;
346 	u32 cnt;
347 
348 	switch (fp->k) {
349 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
350 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
351 
352 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
353 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
354 				      offsetof(struct sk_buff, protocol));
355 		/* A = ntohs(A) [emitting a nop or swap16] */
356 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
357 		break;
358 
359 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
360 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
361 		insn += cnt - 1;
362 		break;
363 
364 	case SKF_AD_OFF + SKF_AD_IFINDEX:
365 	case SKF_AD_OFF + SKF_AD_HATYPE:
366 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
367 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
368 
369 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
370 				      BPF_REG_TMP, BPF_REG_CTX,
371 				      offsetof(struct sk_buff, dev));
372 		/* if (tmp != 0) goto pc + 1 */
373 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
374 		*insn++ = BPF_EXIT_INSN();
375 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
376 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
377 					    offsetof(struct net_device, ifindex));
378 		else
379 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
380 					    offsetof(struct net_device, type));
381 		break;
382 
383 	case SKF_AD_OFF + SKF_AD_MARK:
384 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
385 		insn += cnt - 1;
386 		break;
387 
388 	case SKF_AD_OFF + SKF_AD_RXHASH:
389 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
390 
391 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
392 				    offsetof(struct sk_buff, hash));
393 		break;
394 
395 	case SKF_AD_OFF + SKF_AD_QUEUE:
396 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
397 		insn += cnt - 1;
398 		break;
399 
400 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
401 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
402 					 BPF_REG_A, BPF_REG_CTX, insn);
403 		insn += cnt - 1;
404 		break;
405 
406 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
407 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
408 					 BPF_REG_A, BPF_REG_CTX, insn);
409 		insn += cnt - 1;
410 		break;
411 
412 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
413 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
414 
415 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
416 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
417 				      offsetof(struct sk_buff, vlan_proto));
418 		/* A = ntohs(A) [emitting a nop or swap16] */
419 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
420 		break;
421 
422 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
423 	case SKF_AD_OFF + SKF_AD_NLATTR:
424 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
425 	case SKF_AD_OFF + SKF_AD_CPU:
426 	case SKF_AD_OFF + SKF_AD_RANDOM:
427 		/* arg1 = CTX */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
429 		/* arg2 = A */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
431 		/* arg3 = X */
432 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
433 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
434 		switch (fp->k) {
435 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_NLATTR:
439 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
442 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
443 			break;
444 		case SKF_AD_OFF + SKF_AD_CPU:
445 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
446 			break;
447 		case SKF_AD_OFF + SKF_AD_RANDOM:
448 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
449 			bpf_user_rnd_init_once();
450 			break;
451 		}
452 		break;
453 
454 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
455 		/* A ^= X */
456 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
457 		break;
458 
459 	default:
460 		/* This is just a dummy call to avoid letting the compiler
461 		 * evict __bpf_call_base() as an optimization. Placed here
462 		 * where no-one bothers.
463 		 */
464 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
465 		return false;
466 	}
467 
468 	*insnp = insn;
469 	return true;
470 }
471 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)472 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
473 {
474 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
475 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
476 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
477 		      BPF_SIZE(fp->code) == BPF_W;
478 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
479 	const int ip_align = NET_IP_ALIGN;
480 	struct bpf_insn *insn = *insnp;
481 	int offset = fp->k;
482 
483 	if (!indirect &&
484 	    ((unaligned_ok && offset >= 0) ||
485 	     (!unaligned_ok && offset >= 0 &&
486 	      offset + ip_align >= 0 &&
487 	      offset + ip_align % size == 0))) {
488 		bool ldx_off_ok = offset <= S16_MAX;
489 
490 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
491 		if (offset)
492 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
493 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
494 				      size, 2 + endian + (!ldx_off_ok * 2));
495 		if (ldx_off_ok) {
496 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
497 					      BPF_REG_D, offset);
498 		} else {
499 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
500 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
501 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
502 					      BPF_REG_TMP, 0);
503 		}
504 		if (endian)
505 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
506 		*insn++ = BPF_JMP_A(8);
507 	}
508 
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
510 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
511 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
512 	if (!indirect) {
513 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
514 	} else {
515 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
516 		if (fp->k)
517 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
518 	}
519 
520 	switch (BPF_SIZE(fp->code)) {
521 	case BPF_B:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
523 		break;
524 	case BPF_H:
525 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
526 		break;
527 	case BPF_W:
528 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
529 		break;
530 	default:
531 		return false;
532 	}
533 
534 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
535 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
536 	*insn   = BPF_EXIT_INSN();
537 
538 	*insnp = insn;
539 	return true;
540 }
541 
542 /**
543  *	bpf_convert_filter - convert filter program
544  *	@prog: the user passed filter program
545  *	@len: the length of the user passed filter program
546  *	@new_prog: allocated 'struct bpf_prog' or NULL
547  *	@new_len: pointer to store length of converted program
548  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
549  *
550  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
551  * style extended BPF (eBPF).
552  * Conversion workflow:
553  *
554  * 1) First pass for calculating the new program length:
555  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
556  *
557  * 2) 2nd pass to remap in two passes: 1st pass finds new
558  *    jump offsets, 2nd pass remapping:
559  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
560  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)561 static int bpf_convert_filter(struct sock_filter *prog, int len,
562 			      struct bpf_prog *new_prog, int *new_len,
563 			      bool *seen_ld_abs)
564 {
565 	int new_flen = 0, pass = 0, target, i, stack_off;
566 	struct bpf_insn *new_insn, *first_insn = NULL;
567 	struct sock_filter *fp;
568 	int *addrs = NULL;
569 	u8 bpf_src;
570 
571 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
572 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
573 
574 	if (len <= 0 || len > BPF_MAXINSNS)
575 		return -EINVAL;
576 
577 	if (new_prog) {
578 		first_insn = new_prog->insnsi;
579 		addrs = kcalloc(len, sizeof(*addrs),
580 				GFP_KERNEL | __GFP_NOWARN);
581 		if (!addrs)
582 			return -ENOMEM;
583 	}
584 
585 do_pass:
586 	new_insn = first_insn;
587 	fp = prog;
588 
589 	/* Classic BPF related prologue emission. */
590 	if (new_prog) {
591 		/* Classic BPF expects A and X to be reset first. These need
592 		 * to be guaranteed to be the first two instructions.
593 		 */
594 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
595 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
596 
597 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
598 		 * In eBPF case it's done by the compiler, here we need to
599 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
600 		 */
601 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
602 		if (*seen_ld_abs) {
603 			/* For packet access in classic BPF, cache skb->data
604 			 * in callee-saved BPF R8 and skb->len - skb->data_len
605 			 * (headlen) in BPF R9. Since classic BPF is read-only
606 			 * on CTX, we only need to cache it once.
607 			 */
608 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
609 						  BPF_REG_D, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, data));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, len));
613 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
614 						  offsetof(struct sk_buff, data_len));
615 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
616 		}
617 	} else {
618 		new_insn += 3;
619 	}
620 
621 	for (i = 0; i < len; fp++, i++) {
622 		struct bpf_insn tmp_insns[32] = { };
623 		struct bpf_insn *insn = tmp_insns;
624 
625 		if (addrs)
626 			addrs[i] = new_insn - first_insn;
627 
628 		switch (fp->code) {
629 		/* All arithmetic insns and skb loads map as-is. */
630 		case BPF_ALU | BPF_ADD | BPF_X:
631 		case BPF_ALU | BPF_ADD | BPF_K:
632 		case BPF_ALU | BPF_SUB | BPF_X:
633 		case BPF_ALU | BPF_SUB | BPF_K:
634 		case BPF_ALU | BPF_AND | BPF_X:
635 		case BPF_ALU | BPF_AND | BPF_K:
636 		case BPF_ALU | BPF_OR | BPF_X:
637 		case BPF_ALU | BPF_OR | BPF_K:
638 		case BPF_ALU | BPF_LSH | BPF_X:
639 		case BPF_ALU | BPF_LSH | BPF_K:
640 		case BPF_ALU | BPF_RSH | BPF_X:
641 		case BPF_ALU | BPF_RSH | BPF_K:
642 		case BPF_ALU | BPF_XOR | BPF_X:
643 		case BPF_ALU | BPF_XOR | BPF_K:
644 		case BPF_ALU | BPF_MUL | BPF_X:
645 		case BPF_ALU | BPF_MUL | BPF_K:
646 		case BPF_ALU | BPF_DIV | BPF_X:
647 		case BPF_ALU | BPF_DIV | BPF_K:
648 		case BPF_ALU | BPF_MOD | BPF_X:
649 		case BPF_ALU | BPF_MOD | BPF_K:
650 		case BPF_ALU | BPF_NEG:
651 		case BPF_LD | BPF_ABS | BPF_W:
652 		case BPF_LD | BPF_ABS | BPF_H:
653 		case BPF_LD | BPF_ABS | BPF_B:
654 		case BPF_LD | BPF_IND | BPF_W:
655 		case BPF_LD | BPF_IND | BPF_H:
656 		case BPF_LD | BPF_IND | BPF_B:
657 			/* Check for overloaded BPF extension and
658 			 * directly convert it if found, otherwise
659 			 * just move on with mapping.
660 			 */
661 			if (BPF_CLASS(fp->code) == BPF_LD &&
662 			    BPF_MODE(fp->code) == BPF_ABS &&
663 			    convert_bpf_extensions(fp, &insn))
664 				break;
665 			if (BPF_CLASS(fp->code) == BPF_LD &&
666 			    convert_bpf_ld_abs(fp, &insn)) {
667 				*seen_ld_abs = true;
668 				break;
669 			}
670 
671 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
672 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
673 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
674 				/* Error with exception code on div/mod by 0.
675 				 * For cBPF programs, this was always return 0.
676 				 */
677 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
678 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
679 				*insn++ = BPF_EXIT_INSN();
680 			}
681 
682 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
683 			break;
684 
685 		/* Jump transformation cannot use BPF block macros
686 		 * everywhere as offset calculation and target updates
687 		 * require a bit more work than the rest, i.e. jump
688 		 * opcodes map as-is, but offsets need adjustment.
689 		 */
690 
691 #define BPF_EMIT_JMP							\
692 	do {								\
693 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
694 		s32 off;						\
695 									\
696 		if (target >= len || target < 0)			\
697 			goto err;					\
698 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
699 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
700 		off -= insn - tmp_insns;				\
701 		/* Reject anything not fitting into insn->off. */	\
702 		if (off < off_min || off > off_max)			\
703 			goto err;					\
704 		insn->off = off;					\
705 	} while (0)
706 
707 		case BPF_JMP | BPF_JA:
708 			target = i + fp->k + 1;
709 			insn->code = fp->code;
710 			BPF_EMIT_JMP;
711 			break;
712 
713 		case BPF_JMP | BPF_JEQ | BPF_K:
714 		case BPF_JMP | BPF_JEQ | BPF_X:
715 		case BPF_JMP | BPF_JSET | BPF_K:
716 		case BPF_JMP | BPF_JSET | BPF_X:
717 		case BPF_JMP | BPF_JGT | BPF_K:
718 		case BPF_JMP | BPF_JGT | BPF_X:
719 		case BPF_JMP | BPF_JGE | BPF_K:
720 		case BPF_JMP | BPF_JGE | BPF_X:
721 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
722 				/* BPF immediates are signed, zero extend
723 				 * immediate into tmp register and use it
724 				 * in compare insn.
725 				 */
726 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
727 
728 				insn->dst_reg = BPF_REG_A;
729 				insn->src_reg = BPF_REG_TMP;
730 				bpf_src = BPF_X;
731 			} else {
732 				insn->dst_reg = BPF_REG_A;
733 				insn->imm = fp->k;
734 				bpf_src = BPF_SRC(fp->code);
735 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
736 			}
737 
738 			/* Common case where 'jump_false' is next insn. */
739 			if (fp->jf == 0) {
740 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
741 				target = i + fp->jt + 1;
742 				BPF_EMIT_JMP;
743 				break;
744 			}
745 
746 			/* Convert some jumps when 'jump_true' is next insn. */
747 			if (fp->jt == 0) {
748 				switch (BPF_OP(fp->code)) {
749 				case BPF_JEQ:
750 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
751 					break;
752 				case BPF_JGT:
753 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
754 					break;
755 				case BPF_JGE:
756 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
757 					break;
758 				default:
759 					goto jmp_rest;
760 				}
761 
762 				target = i + fp->jf + 1;
763 				BPF_EMIT_JMP;
764 				break;
765 			}
766 jmp_rest:
767 			/* Other jumps are mapped into two insns: Jxx and JA. */
768 			target = i + fp->jt + 1;
769 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
770 			BPF_EMIT_JMP;
771 			insn++;
772 
773 			insn->code = BPF_JMP | BPF_JA;
774 			target = i + fp->jf + 1;
775 			BPF_EMIT_JMP;
776 			break;
777 
778 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
779 		case BPF_LDX | BPF_MSH | BPF_B: {
780 			struct sock_filter tmp = {
781 				.code	= BPF_LD | BPF_ABS | BPF_B,
782 				.k	= fp->k,
783 			};
784 
785 			*seen_ld_abs = true;
786 
787 			/* X = A */
788 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
789 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
790 			convert_bpf_ld_abs(&tmp, &insn);
791 			insn++;
792 			/* A &= 0xf */
793 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
794 			/* A <<= 2 */
795 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
796 			/* tmp = X */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
798 			/* X = A */
799 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
800 			/* A = tmp */
801 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
802 			break;
803 		}
804 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
805 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
806 		 */
807 		case BPF_RET | BPF_A:
808 		case BPF_RET | BPF_K:
809 			if (BPF_RVAL(fp->code) == BPF_K)
810 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
811 							0, fp->k);
812 			*insn = BPF_EXIT_INSN();
813 			break;
814 
815 		/* Store to stack. */
816 		case BPF_ST:
817 		case BPF_STX:
818 			stack_off = fp->k * 4  + 4;
819 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
820 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
821 					    -stack_off);
822 			/* check_load_and_stores() verifies that classic BPF can
823 			 * load from stack only after write, so tracking
824 			 * stack_depth for ST|STX insns is enough
825 			 */
826 			if (new_prog && new_prog->aux->stack_depth < stack_off)
827 				new_prog->aux->stack_depth = stack_off;
828 			break;
829 
830 		/* Load from stack. */
831 		case BPF_LD | BPF_MEM:
832 		case BPF_LDX | BPF_MEM:
833 			stack_off = fp->k * 4  + 4;
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
836 					    -stack_off);
837 			break;
838 
839 		/* A = K or X = K */
840 		case BPF_LD | BPF_IMM:
841 		case BPF_LDX | BPF_IMM:
842 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
843 					      BPF_REG_A : BPF_REG_X, fp->k);
844 			break;
845 
846 		/* X = A */
847 		case BPF_MISC | BPF_TAX:
848 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
849 			break;
850 
851 		/* A = X */
852 		case BPF_MISC | BPF_TXA:
853 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
854 			break;
855 
856 		/* A = skb->len or X = skb->len */
857 		case BPF_LD | BPF_W | BPF_LEN:
858 		case BPF_LDX | BPF_W | BPF_LEN:
859 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
860 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
861 					    offsetof(struct sk_buff, len));
862 			break;
863 
864 		/* Access seccomp_data fields. */
865 		case BPF_LDX | BPF_ABS | BPF_W:
866 			/* A = *(u32 *) (ctx + K) */
867 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
868 			break;
869 
870 		/* Unknown instruction. */
871 		default:
872 			goto err;
873 		}
874 
875 		insn++;
876 		if (new_prog)
877 			memcpy(new_insn, tmp_insns,
878 			       sizeof(*insn) * (insn - tmp_insns));
879 		new_insn += insn - tmp_insns;
880 	}
881 
882 	if (!new_prog) {
883 		/* Only calculating new length. */
884 		*new_len = new_insn - first_insn;
885 		if (*seen_ld_abs)
886 			*new_len += 4; /* Prologue bits. */
887 		return 0;
888 	}
889 
890 	pass++;
891 	if (new_flen != new_insn - first_insn) {
892 		new_flen = new_insn - first_insn;
893 		if (pass > 2)
894 			goto err;
895 		goto do_pass;
896 	}
897 
898 	kfree(addrs);
899 	BUG_ON(*new_len != new_flen);
900 	return 0;
901 err:
902 	kfree(addrs);
903 	return -EINVAL;
904 }
905 
906 /* Security:
907  *
908  * As we dont want to clear mem[] array for each packet going through
909  * __bpf_prog_run(), we check that filter loaded by user never try to read
910  * a cell if not previously written, and we check all branches to be sure
911  * a malicious user doesn't try to abuse us.
912  */
check_load_and_stores(const struct sock_filter * filter,int flen)913 static int check_load_and_stores(const struct sock_filter *filter, int flen)
914 {
915 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
916 	int pc, ret = 0;
917 
918 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
919 
920 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
921 	if (!masks)
922 		return -ENOMEM;
923 
924 	memset(masks, 0xff, flen * sizeof(*masks));
925 
926 	for (pc = 0; pc < flen; pc++) {
927 		memvalid &= masks[pc];
928 
929 		switch (filter[pc].code) {
930 		case BPF_ST:
931 		case BPF_STX:
932 			memvalid |= (1 << filter[pc].k);
933 			break;
934 		case BPF_LD | BPF_MEM:
935 		case BPF_LDX | BPF_MEM:
936 			if (!(memvalid & (1 << filter[pc].k))) {
937 				ret = -EINVAL;
938 				goto error;
939 			}
940 			break;
941 		case BPF_JMP | BPF_JA:
942 			/* A jump must set masks on target */
943 			masks[pc + 1 + filter[pc].k] &= memvalid;
944 			memvalid = ~0;
945 			break;
946 		case BPF_JMP | BPF_JEQ | BPF_K:
947 		case BPF_JMP | BPF_JEQ | BPF_X:
948 		case BPF_JMP | BPF_JGE | BPF_K:
949 		case BPF_JMP | BPF_JGE | BPF_X:
950 		case BPF_JMP | BPF_JGT | BPF_K:
951 		case BPF_JMP | BPF_JGT | BPF_X:
952 		case BPF_JMP | BPF_JSET | BPF_K:
953 		case BPF_JMP | BPF_JSET | BPF_X:
954 			/* A jump must set masks on targets */
955 			masks[pc + 1 + filter[pc].jt] &= memvalid;
956 			masks[pc + 1 + filter[pc].jf] &= memvalid;
957 			memvalid = ~0;
958 			break;
959 		}
960 	}
961 error:
962 	kfree(masks);
963 	return ret;
964 }
965 
chk_code_allowed(u16 code_to_probe)966 static bool chk_code_allowed(u16 code_to_probe)
967 {
968 	static const bool codes[] = {
969 		/* 32 bit ALU operations */
970 		[BPF_ALU | BPF_ADD | BPF_K] = true,
971 		[BPF_ALU | BPF_ADD | BPF_X] = true,
972 		[BPF_ALU | BPF_SUB | BPF_K] = true,
973 		[BPF_ALU | BPF_SUB | BPF_X] = true,
974 		[BPF_ALU | BPF_MUL | BPF_K] = true,
975 		[BPF_ALU | BPF_MUL | BPF_X] = true,
976 		[BPF_ALU | BPF_DIV | BPF_K] = true,
977 		[BPF_ALU | BPF_DIV | BPF_X] = true,
978 		[BPF_ALU | BPF_MOD | BPF_K] = true,
979 		[BPF_ALU | BPF_MOD | BPF_X] = true,
980 		[BPF_ALU | BPF_AND | BPF_K] = true,
981 		[BPF_ALU | BPF_AND | BPF_X] = true,
982 		[BPF_ALU | BPF_OR | BPF_K] = true,
983 		[BPF_ALU | BPF_OR | BPF_X] = true,
984 		[BPF_ALU | BPF_XOR | BPF_K] = true,
985 		[BPF_ALU | BPF_XOR | BPF_X] = true,
986 		[BPF_ALU | BPF_LSH | BPF_K] = true,
987 		[BPF_ALU | BPF_LSH | BPF_X] = true,
988 		[BPF_ALU | BPF_RSH | BPF_K] = true,
989 		[BPF_ALU | BPF_RSH | BPF_X] = true,
990 		[BPF_ALU | BPF_NEG] = true,
991 		/* Load instructions */
992 		[BPF_LD | BPF_W | BPF_ABS] = true,
993 		[BPF_LD | BPF_H | BPF_ABS] = true,
994 		[BPF_LD | BPF_B | BPF_ABS] = true,
995 		[BPF_LD | BPF_W | BPF_LEN] = true,
996 		[BPF_LD | BPF_W | BPF_IND] = true,
997 		[BPF_LD | BPF_H | BPF_IND] = true,
998 		[BPF_LD | BPF_B | BPF_IND] = true,
999 		[BPF_LD | BPF_IMM] = true,
1000 		[BPF_LD | BPF_MEM] = true,
1001 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1002 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1003 		[BPF_LDX | BPF_IMM] = true,
1004 		[BPF_LDX | BPF_MEM] = true,
1005 		/* Store instructions */
1006 		[BPF_ST] = true,
1007 		[BPF_STX] = true,
1008 		/* Misc instructions */
1009 		[BPF_MISC | BPF_TAX] = true,
1010 		[BPF_MISC | BPF_TXA] = true,
1011 		/* Return instructions */
1012 		[BPF_RET | BPF_K] = true,
1013 		[BPF_RET | BPF_A] = true,
1014 		/* Jump instructions */
1015 		[BPF_JMP | BPF_JA] = true,
1016 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1017 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1020 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1021 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1022 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1023 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1024 	};
1025 
1026 	if (code_to_probe >= ARRAY_SIZE(codes))
1027 		return false;
1028 
1029 	return codes[code_to_probe];
1030 }
1031 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1032 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1033 				unsigned int flen)
1034 {
1035 	if (filter == NULL)
1036 		return false;
1037 	if (flen == 0 || flen > BPF_MAXINSNS)
1038 		return false;
1039 
1040 	return true;
1041 }
1042 
1043 /**
1044  *	bpf_check_classic - verify socket filter code
1045  *	@filter: filter to verify
1046  *	@flen: length of filter
1047  *
1048  * Check the user's filter code. If we let some ugly
1049  * filter code slip through kaboom! The filter must contain
1050  * no references or jumps that are out of range, no illegal
1051  * instructions, and must end with a RET instruction.
1052  *
1053  * All jumps are forward as they are not signed.
1054  *
1055  * Returns 0 if the rule set is legal or -EINVAL if not.
1056  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1057 static int bpf_check_classic(const struct sock_filter *filter,
1058 			     unsigned int flen)
1059 {
1060 	bool anc_found;
1061 	int pc;
1062 
1063 	/* Check the filter code now */
1064 	for (pc = 0; pc < flen; pc++) {
1065 		const struct sock_filter *ftest = &filter[pc];
1066 
1067 		/* May we actually operate on this code? */
1068 		if (!chk_code_allowed(ftest->code))
1069 			return -EINVAL;
1070 
1071 		/* Some instructions need special checks */
1072 		switch (ftest->code) {
1073 		case BPF_ALU | BPF_DIV | BPF_K:
1074 		case BPF_ALU | BPF_MOD | BPF_K:
1075 			/* Check for division by zero */
1076 			if (ftest->k == 0)
1077 				return -EINVAL;
1078 			break;
1079 		case BPF_ALU | BPF_LSH | BPF_K:
1080 		case BPF_ALU | BPF_RSH | BPF_K:
1081 			if (ftest->k >= 32)
1082 				return -EINVAL;
1083 			break;
1084 		case BPF_LD | BPF_MEM:
1085 		case BPF_LDX | BPF_MEM:
1086 		case BPF_ST:
1087 		case BPF_STX:
1088 			/* Check for invalid memory addresses */
1089 			if (ftest->k >= BPF_MEMWORDS)
1090 				return -EINVAL;
1091 			break;
1092 		case BPF_JMP | BPF_JA:
1093 			/* Note, the large ftest->k might cause loops.
1094 			 * Compare this with conditional jumps below,
1095 			 * where offsets are limited. --ANK (981016)
1096 			 */
1097 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1098 				return -EINVAL;
1099 			break;
1100 		case BPF_JMP | BPF_JEQ | BPF_K:
1101 		case BPF_JMP | BPF_JEQ | BPF_X:
1102 		case BPF_JMP | BPF_JGE | BPF_K:
1103 		case BPF_JMP | BPF_JGE | BPF_X:
1104 		case BPF_JMP | BPF_JGT | BPF_K:
1105 		case BPF_JMP | BPF_JGT | BPF_X:
1106 		case BPF_JMP | BPF_JSET | BPF_K:
1107 		case BPF_JMP | BPF_JSET | BPF_X:
1108 			/* Both conditionals must be safe */
1109 			if (pc + ftest->jt + 1 >= flen ||
1110 			    pc + ftest->jf + 1 >= flen)
1111 				return -EINVAL;
1112 			break;
1113 		case BPF_LD | BPF_W | BPF_ABS:
1114 		case BPF_LD | BPF_H | BPF_ABS:
1115 		case BPF_LD | BPF_B | BPF_ABS:
1116 			anc_found = false;
1117 			if (bpf_anc_helper(ftest) & BPF_ANC)
1118 				anc_found = true;
1119 			/* Ancillary operation unknown or unsupported */
1120 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1121 				return -EINVAL;
1122 		}
1123 	}
1124 
1125 	/* Last instruction must be a RET code */
1126 	switch (filter[flen - 1].code) {
1127 	case BPF_RET | BPF_K:
1128 	case BPF_RET | BPF_A:
1129 		return check_load_and_stores(filter, flen);
1130 	}
1131 
1132 	return -EINVAL;
1133 }
1134 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1135 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1136 				      const struct sock_fprog *fprog)
1137 {
1138 	unsigned int fsize = bpf_classic_proglen(fprog);
1139 	struct sock_fprog_kern *fkprog;
1140 
1141 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1142 	if (!fp->orig_prog)
1143 		return -ENOMEM;
1144 
1145 	fkprog = fp->orig_prog;
1146 	fkprog->len = fprog->len;
1147 
1148 	fkprog->filter = kmemdup(fp->insns, fsize,
1149 				 GFP_KERNEL | __GFP_NOWARN);
1150 	if (!fkprog->filter) {
1151 		kfree(fp->orig_prog);
1152 		return -ENOMEM;
1153 	}
1154 
1155 	return 0;
1156 }
1157 
bpf_release_orig_filter(struct bpf_prog * fp)1158 static void bpf_release_orig_filter(struct bpf_prog *fp)
1159 {
1160 	struct sock_fprog_kern *fprog = fp->orig_prog;
1161 
1162 	if (fprog) {
1163 		kfree(fprog->filter);
1164 		kfree(fprog);
1165 	}
1166 }
1167 
__bpf_prog_release(struct bpf_prog * prog)1168 static void __bpf_prog_release(struct bpf_prog *prog)
1169 {
1170 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1171 		bpf_prog_put(prog);
1172 	} else {
1173 		bpf_release_orig_filter(prog);
1174 		bpf_prog_free(prog);
1175 	}
1176 }
1177 
__sk_filter_release(struct sk_filter * fp)1178 static void __sk_filter_release(struct sk_filter *fp)
1179 {
1180 	__bpf_prog_release(fp->prog);
1181 	kfree(fp);
1182 }
1183 
1184 /**
1185  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1186  *	@rcu: rcu_head that contains the sk_filter to free
1187  */
sk_filter_release_rcu(struct rcu_head * rcu)1188 static void sk_filter_release_rcu(struct rcu_head *rcu)
1189 {
1190 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1191 
1192 	__sk_filter_release(fp);
1193 }
1194 
1195 /**
1196  *	sk_filter_release - release a socket filter
1197  *	@fp: filter to remove
1198  *
1199  *	Remove a filter from a socket and release its resources.
1200  */
sk_filter_release(struct sk_filter * fp)1201 static void sk_filter_release(struct sk_filter *fp)
1202 {
1203 	if (refcount_dec_and_test(&fp->refcnt))
1204 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1205 }
1206 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1207 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1208 {
1209 	u32 filter_size = bpf_prog_size(fp->prog->len);
1210 
1211 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1212 	sk_filter_release(fp);
1213 }
1214 
1215 /* try to charge the socket memory if there is space available
1216  * return true on success
1217  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1218 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1219 {
1220 	u32 filter_size = bpf_prog_size(fp->prog->len);
1221 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1222 
1223 	/* same check as in sock_kmalloc() */
1224 	if (filter_size <= optmem_max &&
1225 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1226 		atomic_add(filter_size, &sk->sk_omem_alloc);
1227 		return true;
1228 	}
1229 	return false;
1230 }
1231 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1232 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1233 {
1234 	if (!refcount_inc_not_zero(&fp->refcnt))
1235 		return false;
1236 
1237 	if (!__sk_filter_charge(sk, fp)) {
1238 		sk_filter_release(fp);
1239 		return false;
1240 	}
1241 	return true;
1242 }
1243 
bpf_migrate_filter(struct bpf_prog * fp)1244 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1245 {
1246 	struct sock_filter *old_prog;
1247 	struct bpf_prog *old_fp;
1248 	int err, new_len, old_len = fp->len;
1249 	bool seen_ld_abs = false;
1250 
1251 	/* We are free to overwrite insns et al right here as it won't be used at
1252 	 * this point in time anymore internally after the migration to the eBPF
1253 	 * instruction representation.
1254 	 */
1255 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1256 		     sizeof(struct bpf_insn));
1257 
1258 	/* Conversion cannot happen on overlapping memory areas,
1259 	 * so we need to keep the user BPF around until the 2nd
1260 	 * pass. At this time, the user BPF is stored in fp->insns.
1261 	 */
1262 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1263 			   GFP_KERNEL | __GFP_NOWARN);
1264 	if (!old_prog) {
1265 		err = -ENOMEM;
1266 		goto out_err;
1267 	}
1268 
1269 	/* 1st pass: calculate the new program length. */
1270 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1271 				 &seen_ld_abs);
1272 	if (err)
1273 		goto out_err_free;
1274 
1275 	/* Expand fp for appending the new filter representation. */
1276 	old_fp = fp;
1277 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1278 	if (!fp) {
1279 		/* The old_fp is still around in case we couldn't
1280 		 * allocate new memory, so uncharge on that one.
1281 		 */
1282 		fp = old_fp;
1283 		err = -ENOMEM;
1284 		goto out_err_free;
1285 	}
1286 
1287 	fp->len = new_len;
1288 
1289 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1290 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1291 				 &seen_ld_abs);
1292 	if (err)
1293 		/* 2nd bpf_convert_filter() can fail only if it fails
1294 		 * to allocate memory, remapping must succeed. Note,
1295 		 * that at this time old_fp has already been released
1296 		 * by krealloc().
1297 		 */
1298 		goto out_err_free;
1299 
1300 	fp = bpf_prog_select_runtime(fp, &err);
1301 	if (err)
1302 		goto out_err_free;
1303 
1304 	kfree(old_prog);
1305 	return fp;
1306 
1307 out_err_free:
1308 	kfree(old_prog);
1309 out_err:
1310 	__bpf_prog_release(fp);
1311 	return ERR_PTR(err);
1312 }
1313 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1314 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1315 					   bpf_aux_classic_check_t trans)
1316 {
1317 	int err;
1318 
1319 	fp->bpf_func = NULL;
1320 	fp->jited = 0;
1321 
1322 	err = bpf_check_classic(fp->insns, fp->len);
1323 	if (err) {
1324 		__bpf_prog_release(fp);
1325 		return ERR_PTR(err);
1326 	}
1327 
1328 	/* There might be additional checks and transformations
1329 	 * needed on classic filters, f.e. in case of seccomp.
1330 	 */
1331 	if (trans) {
1332 		err = trans(fp->insns, fp->len);
1333 		if (err) {
1334 			__bpf_prog_release(fp);
1335 			return ERR_PTR(err);
1336 		}
1337 	}
1338 
1339 	/* Probe if we can JIT compile the filter and if so, do
1340 	 * the compilation of the filter.
1341 	 */
1342 	bpf_jit_compile(fp);
1343 
1344 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1345 	 * for the optimized interpreter.
1346 	 */
1347 	if (!fp->jited)
1348 		fp = bpf_migrate_filter(fp);
1349 
1350 	return fp;
1351 }
1352 
1353 /**
1354  *	bpf_prog_create - create an unattached filter
1355  *	@pfp: the unattached filter that is created
1356  *	@fprog: the filter program
1357  *
1358  * Create a filter independent of any socket. We first run some
1359  * sanity checks on it to make sure it does not explode on us later.
1360  * If an error occurs or there is insufficient memory for the filter
1361  * a negative errno code is returned. On success the return is zero.
1362  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1363 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1364 {
1365 	unsigned int fsize = bpf_classic_proglen(fprog);
1366 	struct bpf_prog *fp;
1367 
1368 	/* Make sure new filter is there and in the right amounts. */
1369 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1370 		return -EINVAL;
1371 
1372 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1373 	if (!fp)
1374 		return -ENOMEM;
1375 
1376 	memcpy(fp->insns, fprog->filter, fsize);
1377 
1378 	fp->len = fprog->len;
1379 	/* Since unattached filters are not copied back to user
1380 	 * space through sk_get_filter(), we do not need to hold
1381 	 * a copy here, and can spare us the work.
1382 	 */
1383 	fp->orig_prog = NULL;
1384 
1385 	/* bpf_prepare_filter() already takes care of freeing
1386 	 * memory in case something goes wrong.
1387 	 */
1388 	fp = bpf_prepare_filter(fp, NULL);
1389 	if (IS_ERR(fp))
1390 		return PTR_ERR(fp);
1391 
1392 	*pfp = fp;
1393 	return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(bpf_prog_create);
1396 
1397 /**
1398  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1399  *	@pfp: the unattached filter that is created
1400  *	@fprog: the filter program
1401  *	@trans: post-classic verifier transformation handler
1402  *	@save_orig: save classic BPF program
1403  *
1404  * This function effectively does the same as bpf_prog_create(), only
1405  * that it builds up its insns buffer from user space provided buffer.
1406  * It also allows for passing a bpf_aux_classic_check_t handler.
1407  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1408 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1409 			      bpf_aux_classic_check_t trans, bool save_orig)
1410 {
1411 	unsigned int fsize = bpf_classic_proglen(fprog);
1412 	struct bpf_prog *fp;
1413 	int err;
1414 
1415 	/* Make sure new filter is there and in the right amounts. */
1416 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1417 		return -EINVAL;
1418 
1419 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1420 	if (!fp)
1421 		return -ENOMEM;
1422 
1423 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1424 		__bpf_prog_free(fp);
1425 		return -EFAULT;
1426 	}
1427 
1428 	fp->len = fprog->len;
1429 	fp->orig_prog = NULL;
1430 
1431 	if (save_orig) {
1432 		err = bpf_prog_store_orig_filter(fp, fprog);
1433 		if (err) {
1434 			__bpf_prog_free(fp);
1435 			return -ENOMEM;
1436 		}
1437 	}
1438 
1439 	/* bpf_prepare_filter() already takes care of freeing
1440 	 * memory in case something goes wrong.
1441 	 */
1442 	fp = bpf_prepare_filter(fp, trans);
1443 	if (IS_ERR(fp))
1444 		return PTR_ERR(fp);
1445 
1446 	*pfp = fp;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1450 
bpf_prog_destroy(struct bpf_prog * fp)1451 void bpf_prog_destroy(struct bpf_prog *fp)
1452 {
1453 	__bpf_prog_release(fp);
1454 }
1455 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1456 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1457 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1458 {
1459 	struct sk_filter *fp, *old_fp;
1460 
1461 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1462 	if (!fp)
1463 		return -ENOMEM;
1464 
1465 	fp->prog = prog;
1466 
1467 	if (!__sk_filter_charge(sk, fp)) {
1468 		kfree(fp);
1469 		return -ENOMEM;
1470 	}
1471 	refcount_set(&fp->refcnt, 1);
1472 
1473 	old_fp = rcu_dereference_protected(sk->sk_filter,
1474 					   lockdep_sock_is_held(sk));
1475 	rcu_assign_pointer(sk->sk_filter, fp);
1476 
1477 	if (old_fp)
1478 		sk_filter_uncharge(sk, old_fp);
1479 
1480 	return 0;
1481 }
1482 
1483 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1484 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1485 {
1486 	unsigned int fsize = bpf_classic_proglen(fprog);
1487 	struct bpf_prog *prog;
1488 	int err;
1489 
1490 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1491 		return ERR_PTR(-EPERM);
1492 
1493 	/* Make sure new filter is there and in the right amounts. */
1494 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1495 		return ERR_PTR(-EINVAL);
1496 
1497 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1498 	if (!prog)
1499 		return ERR_PTR(-ENOMEM);
1500 
1501 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1502 		__bpf_prog_free(prog);
1503 		return ERR_PTR(-EFAULT);
1504 	}
1505 
1506 	prog->len = fprog->len;
1507 
1508 	err = bpf_prog_store_orig_filter(prog, fprog);
1509 	if (err) {
1510 		__bpf_prog_free(prog);
1511 		return ERR_PTR(-ENOMEM);
1512 	}
1513 
1514 	/* bpf_prepare_filter() already takes care of freeing
1515 	 * memory in case something goes wrong.
1516 	 */
1517 	return bpf_prepare_filter(prog, NULL);
1518 }
1519 
1520 /**
1521  *	sk_attach_filter - attach a socket filter
1522  *	@fprog: the filter program
1523  *	@sk: the socket to use
1524  *
1525  * Attach the user's filter code. We first run some sanity checks on
1526  * it to make sure it does not explode on us later. If an error
1527  * occurs or there is insufficient memory for the filter a negative
1528  * errno code is returned. On success the return is zero.
1529  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1530 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1531 {
1532 	struct bpf_prog *prog = __get_filter(fprog, sk);
1533 	int err;
1534 
1535 	if (IS_ERR(prog))
1536 		return PTR_ERR(prog);
1537 
1538 	err = __sk_attach_prog(prog, sk);
1539 	if (err < 0) {
1540 		__bpf_prog_release(prog);
1541 		return err;
1542 	}
1543 
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(sk_attach_filter);
1547 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1548 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1549 {
1550 	struct bpf_prog *prog = __get_filter(fprog, sk);
1551 	int err;
1552 
1553 	if (IS_ERR(prog))
1554 		return PTR_ERR(prog);
1555 
1556 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1557 		err = -ENOMEM;
1558 	else
1559 		err = reuseport_attach_prog(sk, prog);
1560 
1561 	if (err)
1562 		__bpf_prog_release(prog);
1563 
1564 	return err;
1565 }
1566 
__get_bpf(u32 ufd,struct sock * sk)1567 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1570 		return ERR_PTR(-EPERM);
1571 
1572 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1573 }
1574 
sk_attach_bpf(u32 ufd,struct sock * sk)1575 int sk_attach_bpf(u32 ufd, struct sock *sk)
1576 {
1577 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1578 	int err;
1579 
1580 	if (IS_ERR(prog))
1581 		return PTR_ERR(prog);
1582 
1583 	err = __sk_attach_prog(prog, sk);
1584 	if (err < 0) {
1585 		bpf_prog_put(prog);
1586 		return err;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1592 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1593 {
1594 	struct bpf_prog *prog;
1595 	int err;
1596 
1597 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1598 		return -EPERM;
1599 
1600 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1601 	if (PTR_ERR(prog) == -EINVAL)
1602 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1603 	if (IS_ERR(prog))
1604 		return PTR_ERR(prog);
1605 
1606 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1607 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1608 		 * bpf prog (e.g. sockmap).  It depends on the
1609 		 * limitation imposed by bpf_prog_load().
1610 		 * Hence, sysctl_optmem_max is not checked.
1611 		 */
1612 		if ((sk->sk_type != SOCK_STREAM &&
1613 		     sk->sk_type != SOCK_DGRAM) ||
1614 		    (sk->sk_protocol != IPPROTO_UDP &&
1615 		     sk->sk_protocol != IPPROTO_TCP) ||
1616 		    (sk->sk_family != AF_INET &&
1617 		     sk->sk_family != AF_INET6)) {
1618 			err = -ENOTSUPP;
1619 			goto err_prog_put;
1620 		}
1621 	} else {
1622 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1623 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1624 			err = -ENOMEM;
1625 			goto err_prog_put;
1626 		}
1627 	}
1628 
1629 	err = reuseport_attach_prog(sk, prog);
1630 err_prog_put:
1631 	if (err)
1632 		bpf_prog_put(prog);
1633 
1634 	return err;
1635 }
1636 
sk_reuseport_prog_free(struct bpf_prog * prog)1637 void sk_reuseport_prog_free(struct bpf_prog *prog)
1638 {
1639 	if (!prog)
1640 		return;
1641 
1642 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1643 		bpf_prog_put(prog);
1644 	else
1645 		bpf_prog_destroy(prog);
1646 }
1647 
1648 struct bpf_scratchpad {
1649 	union {
1650 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1651 		u8     buff[MAX_BPF_STACK];
1652 	};
1653 };
1654 
1655 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1656 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1657 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1658 					  unsigned int write_len)
1659 {
1660 #ifdef CONFIG_DEBUG_NET
1661 	/* Avoid a splat in pskb_may_pull_reason() */
1662 	if (write_len > INT_MAX)
1663 		return -EINVAL;
1664 #endif
1665 	return skb_ensure_writable(skb, write_len);
1666 }
1667 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1668 static inline int bpf_try_make_writable(struct sk_buff *skb,
1669 					unsigned int write_len)
1670 {
1671 	int err = __bpf_try_make_writable(skb, write_len);
1672 
1673 	bpf_compute_data_pointers(skb);
1674 	return err;
1675 }
1676 
bpf_try_make_head_writable(struct sk_buff * skb)1677 static int bpf_try_make_head_writable(struct sk_buff *skb)
1678 {
1679 	return bpf_try_make_writable(skb, skb_headlen(skb));
1680 }
1681 
bpf_push_mac_rcsum(struct sk_buff * skb)1682 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683 {
1684 	if (skb_at_tc_ingress(skb))
1685 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1686 }
1687 
bpf_pull_mac_rcsum(struct sk_buff * skb)1688 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689 {
1690 	if (skb_at_tc_ingress(skb))
1691 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1692 }
1693 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1694 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695 	   const void *, from, u32, len, u64, flags)
1696 {
1697 	void *ptr;
1698 
1699 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700 		return -EINVAL;
1701 	if (unlikely(offset > INT_MAX))
1702 		return -EFAULT;
1703 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704 		return -EFAULT;
1705 
1706 	ptr = skb->data + offset;
1707 	if (flags & BPF_F_RECOMPUTE_CSUM)
1708 		__skb_postpull_rcsum(skb, ptr, len, offset);
1709 
1710 	memcpy(ptr, from, len);
1711 
1712 	if (flags & BPF_F_RECOMPUTE_CSUM)
1713 		__skb_postpush_rcsum(skb, ptr, len, offset);
1714 	if (flags & BPF_F_INVALIDATE_HASH)
1715 		skb_clear_hash(skb);
1716 
1717 	return 0;
1718 }
1719 
1720 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721 	.func		= bpf_skb_store_bytes,
1722 	.gpl_only	= false,
1723 	.ret_type	= RET_INTEGER,
1724 	.arg1_type	= ARG_PTR_TO_CTX,
1725 	.arg2_type	= ARG_ANYTHING,
1726 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1727 	.arg4_type	= ARG_CONST_SIZE,
1728 	.arg5_type	= ARG_ANYTHING,
1729 };
1730 
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1731 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732 			  u32 len, u64 flags)
1733 {
1734 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735 }
1736 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1737 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738 	   void *, to, u32, len)
1739 {
1740 	void *ptr;
1741 
1742 	if (unlikely(offset > INT_MAX))
1743 		goto err_clear;
1744 
1745 	ptr = skb_header_pointer(skb, offset, len, to);
1746 	if (unlikely(!ptr))
1747 		goto err_clear;
1748 	if (ptr != to)
1749 		memcpy(to, ptr, len);
1750 
1751 	return 0;
1752 err_clear:
1753 	memset(to, 0, len);
1754 	return -EFAULT;
1755 }
1756 
1757 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758 	.func		= bpf_skb_load_bytes,
1759 	.gpl_only	= false,
1760 	.ret_type	= RET_INTEGER,
1761 	.arg1_type	= ARG_PTR_TO_CTX,
1762 	.arg2_type	= ARG_ANYTHING,
1763 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1764 	.arg4_type	= ARG_CONST_SIZE,
1765 };
1766 
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1767 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768 {
1769 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1770 }
1771 
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1772 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1774 	   void *, to, u32, len)
1775 {
1776 	void *ptr;
1777 
1778 	if (unlikely(offset > 0xffff))
1779 		goto err_clear;
1780 
1781 	if (unlikely(!ctx->skb))
1782 		goto err_clear;
1783 
1784 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1785 	if (unlikely(!ptr))
1786 		goto err_clear;
1787 	if (ptr != to)
1788 		memcpy(to, ptr, len);
1789 
1790 	return 0;
1791 err_clear:
1792 	memset(to, 0, len);
1793 	return -EFAULT;
1794 }
1795 
1796 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797 	.func		= bpf_flow_dissector_load_bytes,
1798 	.gpl_only	= false,
1799 	.ret_type	= RET_INTEGER,
1800 	.arg1_type	= ARG_PTR_TO_CTX,
1801 	.arg2_type	= ARG_ANYTHING,
1802 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1803 	.arg4_type	= ARG_CONST_SIZE,
1804 };
1805 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1806 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807 	   u32, offset, void *, to, u32, len, u32, start_header)
1808 {
1809 	u8 *end = skb_tail_pointer(skb);
1810 	u8 *start, *ptr;
1811 
1812 	if (unlikely(offset > 0xffff))
1813 		goto err_clear;
1814 
1815 	switch (start_header) {
1816 	case BPF_HDR_START_MAC:
1817 		if (unlikely(!skb_mac_header_was_set(skb)))
1818 			goto err_clear;
1819 		start = skb_mac_header(skb);
1820 		break;
1821 	case BPF_HDR_START_NET:
1822 		start = skb_network_header(skb);
1823 		break;
1824 	default:
1825 		goto err_clear;
1826 	}
1827 
1828 	ptr = start + offset;
1829 
1830 	if (likely(ptr + len <= end)) {
1831 		memcpy(to, ptr, len);
1832 		return 0;
1833 	}
1834 
1835 err_clear:
1836 	memset(to, 0, len);
1837 	return -EFAULT;
1838 }
1839 
1840 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841 	.func		= bpf_skb_load_bytes_relative,
1842 	.gpl_only	= false,
1843 	.ret_type	= RET_INTEGER,
1844 	.arg1_type	= ARG_PTR_TO_CTX,
1845 	.arg2_type	= ARG_ANYTHING,
1846 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1847 	.arg4_type	= ARG_CONST_SIZE,
1848 	.arg5_type	= ARG_ANYTHING,
1849 };
1850 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1851 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866 	.func		= bpf_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1873 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874 {
1875 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876 }
1877 
1878 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879 	.func		= bpf_sk_fullsock,
1880 	.gpl_only	= false,
1881 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1882 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1883 };
1884 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1885 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886 					   unsigned int write_len)
1887 {
1888 	return __bpf_try_make_writable(skb, write_len);
1889 }
1890 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1891 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892 {
1893 	/* Idea is the following: should the needed direct read/write
1894 	 * test fail during runtime, we can pull in more data and redo
1895 	 * again, since implicitly, we invalidate previous checks here.
1896 	 *
1897 	 * Or, since we know how much we need to make read/writeable,
1898 	 * this can be done once at the program beginning for direct
1899 	 * access case. By this we overcome limitations of only current
1900 	 * headroom being accessible.
1901 	 */
1902 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1903 }
1904 
1905 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906 	.func		= sk_skb_pull_data,
1907 	.gpl_only	= false,
1908 	.ret_type	= RET_INTEGER,
1909 	.arg1_type	= ARG_PTR_TO_CTX,
1910 	.arg2_type	= ARG_ANYTHING,
1911 };
1912 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1913 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914 	   u64, from, u64, to, u64, flags)
1915 {
1916 	__sum16 *ptr;
1917 
1918 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919 		return -EINVAL;
1920 	if (unlikely(offset > 0xffff || offset & 1))
1921 		return -EFAULT;
1922 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923 		return -EFAULT;
1924 
1925 	ptr = (__sum16 *)(skb->data + offset);
1926 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1927 	case 0:
1928 		if (unlikely(from != 0))
1929 			return -EINVAL;
1930 
1931 		csum_replace_by_diff(ptr, to);
1932 		break;
1933 	case 2:
1934 		csum_replace2(ptr, from, to);
1935 		break;
1936 	case 4:
1937 		csum_replace4(ptr, from, to);
1938 		break;
1939 	default:
1940 		return -EINVAL;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947 	.func		= bpf_l3_csum_replace,
1948 	.gpl_only	= false,
1949 	.ret_type	= RET_INTEGER,
1950 	.arg1_type	= ARG_PTR_TO_CTX,
1951 	.arg2_type	= ARG_ANYTHING,
1952 	.arg3_type	= ARG_ANYTHING,
1953 	.arg4_type	= ARG_ANYTHING,
1954 	.arg5_type	= ARG_ANYTHING,
1955 };
1956 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1957 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958 	   u64, from, u64, to, u64, flags)
1959 {
1960 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963 	__sum16 *ptr;
1964 
1965 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967 		return -EINVAL;
1968 	if (unlikely(offset > 0xffff || offset & 1))
1969 		return -EFAULT;
1970 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971 		return -EFAULT;
1972 
1973 	ptr = (__sum16 *)(skb->data + offset);
1974 	if (is_mmzero && !do_mforce && !*ptr)
1975 		return 0;
1976 
1977 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1978 	case 0:
1979 		if (unlikely(from != 0))
1980 			return -EINVAL;
1981 
1982 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1983 		break;
1984 	case 2:
1985 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1986 		break;
1987 	case 4:
1988 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1989 		break;
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 
1994 	if (is_mmzero && !*ptr)
1995 		*ptr = CSUM_MANGLED_0;
1996 	return 0;
1997 }
1998 
1999 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000 	.func		= bpf_l4_csum_replace,
2001 	.gpl_only	= false,
2002 	.ret_type	= RET_INTEGER,
2003 	.arg1_type	= ARG_PTR_TO_CTX,
2004 	.arg2_type	= ARG_ANYTHING,
2005 	.arg3_type	= ARG_ANYTHING,
2006 	.arg4_type	= ARG_ANYTHING,
2007 	.arg5_type	= ARG_ANYTHING,
2008 };
2009 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2010 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011 	   __be32 *, to, u32, to_size, __wsum, seed)
2012 {
2013 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2014 	u32 diff_size = from_size + to_size;
2015 	int i, j = 0;
2016 
2017 	/* This is quite flexible, some examples:
2018 	 *
2019 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2020 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2021 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2022 	 *
2023 	 * Even for diffing, from_size and to_size don't need to be equal.
2024 	 */
2025 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2026 		     diff_size > sizeof(sp->diff)))
2027 		return -EINVAL;
2028 
2029 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2030 		sp->diff[j] = ~from[i];
2031 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2032 		sp->diff[j] = to[i];
2033 
2034 	return csum_partial(sp->diff, diff_size, seed);
2035 }
2036 
2037 static const struct bpf_func_proto bpf_csum_diff_proto = {
2038 	.func		= bpf_csum_diff,
2039 	.gpl_only	= false,
2040 	.pkt_access	= true,
2041 	.ret_type	= RET_INTEGER,
2042 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2043 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2044 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2045 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2046 	.arg5_type	= ARG_ANYTHING,
2047 };
2048 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2049 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2050 {
2051 	/* The interface is to be used in combination with bpf_csum_diff()
2052 	 * for direct packet writes. csum rotation for alignment as well
2053 	 * as emulating csum_sub() can be done from the eBPF program.
2054 	 */
2055 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2056 		return (skb->csum = csum_add(skb->csum, csum));
2057 
2058 	return -ENOTSUPP;
2059 }
2060 
2061 static const struct bpf_func_proto bpf_csum_update_proto = {
2062 	.func		= bpf_csum_update,
2063 	.gpl_only	= false,
2064 	.ret_type	= RET_INTEGER,
2065 	.arg1_type	= ARG_PTR_TO_CTX,
2066 	.arg2_type	= ARG_ANYTHING,
2067 };
2068 
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2069 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2070 {
2071 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2072 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2073 	 * is passed as flags, for example.
2074 	 */
2075 	switch (level) {
2076 	case BPF_CSUM_LEVEL_INC:
2077 		__skb_incr_checksum_unnecessary(skb);
2078 		break;
2079 	case BPF_CSUM_LEVEL_DEC:
2080 		__skb_decr_checksum_unnecessary(skb);
2081 		break;
2082 	case BPF_CSUM_LEVEL_RESET:
2083 		__skb_reset_checksum_unnecessary(skb);
2084 		break;
2085 	case BPF_CSUM_LEVEL_QUERY:
2086 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2087 		       skb->csum_level : -EACCES;
2088 	default:
2089 		return -EINVAL;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static const struct bpf_func_proto bpf_csum_level_proto = {
2096 	.func		= bpf_csum_level,
2097 	.gpl_only	= false,
2098 	.ret_type	= RET_INTEGER,
2099 	.arg1_type	= ARG_PTR_TO_CTX,
2100 	.arg2_type	= ARG_ANYTHING,
2101 };
2102 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2103 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	return dev_forward_skb_nomtu(dev, skb);
2106 }
2107 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2108 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2109 				      struct sk_buff *skb)
2110 {
2111 	int ret = ____dev_forward_skb(dev, skb, false);
2112 
2113 	if (likely(!ret)) {
2114 		skb->dev = dev;
2115 		ret = netif_rx(skb);
2116 	}
2117 
2118 	return ret;
2119 }
2120 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2121 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2122 {
2123 	int ret;
2124 
2125 	if (dev_xmit_recursion()) {
2126 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2127 		kfree_skb(skb);
2128 		return -ENETDOWN;
2129 	}
2130 
2131 	skb->dev = dev;
2132 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2133 	skb_clear_tstamp(skb);
2134 
2135 	dev_xmit_recursion_inc();
2136 	ret = dev_queue_xmit(skb);
2137 	dev_xmit_recursion_dec();
2138 
2139 	return ret;
2140 }
2141 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2142 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	unsigned int mlen = skb_network_offset(skb);
2146 
2147 	if (unlikely(skb->len <= mlen)) {
2148 		kfree_skb(skb);
2149 		return -ERANGE;
2150 	}
2151 
2152 	if (mlen) {
2153 		__skb_pull(skb, mlen);
2154 
2155 		/* At ingress, the mac header has already been pulled once.
2156 		 * At egress, skb_pospull_rcsum has to be done in case that
2157 		 * the skb is originated from ingress (i.e. a forwarded skb)
2158 		 * to ensure that rcsum starts at net header.
2159 		 */
2160 		if (!skb_at_tc_ingress(skb))
2161 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2162 	}
2163 	skb_pop_mac_header(skb);
2164 	skb_reset_mac_len(skb);
2165 	return flags & BPF_F_INGRESS ?
2166 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2167 }
2168 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2169 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2170 				 u32 flags)
2171 {
2172 	/* Verify that a link layer header is carried */
2173 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2174 		kfree_skb(skb);
2175 		return -ERANGE;
2176 	}
2177 
2178 	bpf_push_mac_rcsum(skb);
2179 	return flags & BPF_F_INGRESS ?
2180 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2181 }
2182 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2183 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2184 			  u32 flags)
2185 {
2186 	if (dev_is_mac_header_xmit(dev))
2187 		return __bpf_redirect_common(skb, dev, flags);
2188 	else
2189 		return __bpf_redirect_no_mac(skb, dev, flags);
2190 }
2191 
2192 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2193 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2194 			    struct net_device *dev, struct bpf_nh_params *nh)
2195 {
2196 	u32 hh_len = LL_RESERVED_SPACE(dev);
2197 	const struct in6_addr *nexthop;
2198 	struct dst_entry *dst = NULL;
2199 	struct neighbour *neigh;
2200 
2201 	if (dev_xmit_recursion()) {
2202 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2203 		goto out_drop;
2204 	}
2205 
2206 	skb->dev = dev;
2207 	skb_clear_tstamp(skb);
2208 
2209 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2210 		skb = skb_expand_head(skb, hh_len);
2211 		if (!skb)
2212 			return -ENOMEM;
2213 	}
2214 
2215 	rcu_read_lock();
2216 	if (!nh) {
2217 		dst = skb_dst(skb);
2218 		nexthop = rt6_nexthop(dst_rt6_info(dst),
2219 				      &ipv6_hdr(skb)->daddr);
2220 	} else {
2221 		nexthop = &nh->ipv6_nh;
2222 	}
2223 	neigh = ip_neigh_gw6(dev, nexthop);
2224 	if (likely(!IS_ERR(neigh))) {
2225 		int ret;
2226 
2227 		sock_confirm_neigh(skb, neigh);
2228 		local_bh_disable();
2229 		dev_xmit_recursion_inc();
2230 		ret = neigh_output(neigh, skb, false);
2231 		dev_xmit_recursion_dec();
2232 		local_bh_enable();
2233 		rcu_read_unlock();
2234 		return ret;
2235 	}
2236 	rcu_read_unlock();
2237 	if (dst)
2238 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2239 out_drop:
2240 	kfree_skb(skb);
2241 	return -ENETDOWN;
2242 }
2243 
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2244 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2245 				   struct bpf_nh_params *nh)
2246 {
2247 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2248 	struct net *net = dev_net(dev);
2249 	int err, ret = NET_XMIT_DROP;
2250 
2251 	if (!nh) {
2252 		struct dst_entry *dst;
2253 		struct flowi6 fl6 = {
2254 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2255 			.flowi6_mark  = skb->mark,
2256 			.flowlabel    = ip6_flowinfo(ip6h),
2257 			.flowi6_oif   = dev->ifindex,
2258 			.flowi6_proto = ip6h->nexthdr,
2259 			.daddr	      = ip6h->daddr,
2260 			.saddr	      = ip6h->saddr,
2261 		};
2262 
2263 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2264 		if (IS_ERR(dst))
2265 			goto out_drop;
2266 
2267 		skb_dst_set(skb, dst);
2268 	} else if (nh->nh_family != AF_INET6) {
2269 		goto out_drop;
2270 	}
2271 
2272 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2273 	if (unlikely(net_xmit_eval(err)))
2274 		DEV_STATS_INC(dev, tx_errors);
2275 	else
2276 		ret = NET_XMIT_SUCCESS;
2277 	goto out_xmit;
2278 out_drop:
2279 	DEV_STATS_INC(dev, tx_errors);
2280 	kfree_skb(skb);
2281 out_xmit:
2282 	return ret;
2283 }
2284 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2285 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2286 				   struct bpf_nh_params *nh)
2287 {
2288 	kfree_skb(skb);
2289 	return NET_XMIT_DROP;
2290 }
2291 #endif /* CONFIG_IPV6 */
2292 
2293 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2294 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2295 			    struct net_device *dev, struct bpf_nh_params *nh)
2296 {
2297 	u32 hh_len = LL_RESERVED_SPACE(dev);
2298 	struct neighbour *neigh;
2299 	bool is_v6gw = false;
2300 
2301 	if (dev_xmit_recursion()) {
2302 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2303 		goto out_drop;
2304 	}
2305 
2306 	skb->dev = dev;
2307 	skb_clear_tstamp(skb);
2308 
2309 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2310 		skb = skb_expand_head(skb, hh_len);
2311 		if (!skb)
2312 			return -ENOMEM;
2313 	}
2314 
2315 	rcu_read_lock();
2316 	if (!nh) {
2317 		struct dst_entry *dst = skb_dst(skb);
2318 		struct rtable *rt = container_of(dst, struct rtable, dst);
2319 
2320 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321 	} else if (nh->nh_family == AF_INET6) {
2322 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323 		is_v6gw = true;
2324 	} else if (nh->nh_family == AF_INET) {
2325 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326 	} else {
2327 		rcu_read_unlock();
2328 		goto out_drop;
2329 	}
2330 
2331 	if (likely(!IS_ERR(neigh))) {
2332 		int ret;
2333 
2334 		sock_confirm_neigh(skb, neigh);
2335 		local_bh_disable();
2336 		dev_xmit_recursion_inc();
2337 		ret = neigh_output(neigh, skb, is_v6gw);
2338 		dev_xmit_recursion_dec();
2339 		local_bh_enable();
2340 		rcu_read_unlock();
2341 		return ret;
2342 	}
2343 	rcu_read_unlock();
2344 out_drop:
2345 	kfree_skb(skb);
2346 	return -ENETDOWN;
2347 }
2348 
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2349 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2350 				   struct bpf_nh_params *nh)
2351 {
2352 	const struct iphdr *ip4h = ip_hdr(skb);
2353 	struct net *net = dev_net(dev);
2354 	int err, ret = NET_XMIT_DROP;
2355 
2356 	if (!nh) {
2357 		struct flowi4 fl4 = {
2358 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2359 			.flowi4_mark  = skb->mark,
2360 			.flowi4_tos   = RT_TOS(ip4h->tos),
2361 			.flowi4_oif   = dev->ifindex,
2362 			.flowi4_proto = ip4h->protocol,
2363 			.daddr	      = ip4h->daddr,
2364 			.saddr	      = ip4h->saddr,
2365 		};
2366 		struct rtable *rt;
2367 
2368 		rt = ip_route_output_flow(net, &fl4, NULL);
2369 		if (IS_ERR(rt))
2370 			goto out_drop;
2371 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2372 			ip_rt_put(rt);
2373 			goto out_drop;
2374 		}
2375 
2376 		skb_dst_set(skb, &rt->dst);
2377 	}
2378 
2379 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2380 	if (unlikely(net_xmit_eval(err)))
2381 		DEV_STATS_INC(dev, tx_errors);
2382 	else
2383 		ret = NET_XMIT_SUCCESS;
2384 	goto out_xmit;
2385 out_drop:
2386 	DEV_STATS_INC(dev, tx_errors);
2387 	kfree_skb(skb);
2388 out_xmit:
2389 	return ret;
2390 }
2391 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2392 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2393 				   struct bpf_nh_params *nh)
2394 {
2395 	kfree_skb(skb);
2396 	return NET_XMIT_DROP;
2397 }
2398 #endif /* CONFIG_INET */
2399 
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2400 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2401 				struct bpf_nh_params *nh)
2402 {
2403 	struct ethhdr *ethh = eth_hdr(skb);
2404 
2405 	if (unlikely(skb->mac_header >= skb->network_header))
2406 		goto out;
2407 	bpf_push_mac_rcsum(skb);
2408 	if (is_multicast_ether_addr(ethh->h_dest))
2409 		goto out;
2410 
2411 	skb_pull(skb, sizeof(*ethh));
2412 	skb_unset_mac_header(skb);
2413 	skb_reset_network_header(skb);
2414 
2415 	if (skb->protocol == htons(ETH_P_IP))
2416 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2417 	else if (skb->protocol == htons(ETH_P_IPV6))
2418 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2419 out:
2420 	kfree_skb(skb);
2421 	return -ENOTSUPP;
2422 }
2423 
2424 /* Internal, non-exposed redirect flags. */
2425 enum {
2426 	BPF_F_NEIGH	= (1ULL << 16),
2427 	BPF_F_PEER	= (1ULL << 17),
2428 	BPF_F_NEXTHOP	= (1ULL << 18),
2429 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2430 };
2431 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2432 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2433 {
2434 	struct net_device *dev;
2435 	struct sk_buff *clone;
2436 	int ret;
2437 
2438 	BUILD_BUG_ON(BPF_F_REDIRECT_INTERNAL & BPF_F_REDIRECT_FLAGS);
2439 
2440 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2441 		return -EINVAL;
2442 
2443 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2444 	if (unlikely(!dev))
2445 		return -EINVAL;
2446 
2447 	clone = skb_clone(skb, GFP_ATOMIC);
2448 	if (unlikely(!clone))
2449 		return -ENOMEM;
2450 
2451 	/* For direct write, we need to keep the invariant that the skbs
2452 	 * we're dealing with need to be uncloned. Should uncloning fail
2453 	 * here, we need to free the just generated clone to unclone once
2454 	 * again.
2455 	 */
2456 	ret = bpf_try_make_head_writable(skb);
2457 	if (unlikely(ret)) {
2458 		kfree_skb(clone);
2459 		return -ENOMEM;
2460 	}
2461 
2462 	return __bpf_redirect(clone, dev, flags);
2463 }
2464 
2465 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2466 	.func           = bpf_clone_redirect,
2467 	.gpl_only       = false,
2468 	.ret_type       = RET_INTEGER,
2469 	.arg1_type      = ARG_PTR_TO_CTX,
2470 	.arg2_type      = ARG_ANYTHING,
2471 	.arg3_type      = ARG_ANYTHING,
2472 };
2473 
2474 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2475 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2476 
skb_do_redirect(struct sk_buff * skb)2477 int skb_do_redirect(struct sk_buff *skb)
2478 {
2479 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2480 	struct net *net = dev_net(skb->dev);
2481 	struct net_device *dev;
2482 	u32 flags = ri->flags;
2483 
2484 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2485 	ri->tgt_index = 0;
2486 	ri->flags = 0;
2487 	if (unlikely(!dev))
2488 		goto out_drop;
2489 	if (flags & BPF_F_PEER) {
2490 		const struct net_device_ops *ops = dev->netdev_ops;
2491 
2492 		if (unlikely(!ops->ndo_get_peer_dev ||
2493 			     !skb_at_tc_ingress(skb)))
2494 			goto out_drop;
2495 		dev = ops->ndo_get_peer_dev(dev);
2496 		if (unlikely(!dev ||
2497 			     !(dev->flags & IFF_UP) ||
2498 			     net_eq(net, dev_net(dev))))
2499 			goto out_drop;
2500 		skb->dev = dev;
2501 		dev_sw_netstats_rx_add(dev, skb->len);
2502 		return -EAGAIN;
2503 	}
2504 	return flags & BPF_F_NEIGH ?
2505 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2506 				    &ri->nh : NULL) :
2507 	       __bpf_redirect(skb, dev, flags);
2508 out_drop:
2509 	kfree_skb(skb);
2510 	return -EINVAL;
2511 }
2512 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2513 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2514 {
2515 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2516 
2517 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2518 		return TC_ACT_SHOT;
2519 
2520 	ri->flags = flags;
2521 	ri->tgt_index = ifindex;
2522 
2523 	return TC_ACT_REDIRECT;
2524 }
2525 
2526 static const struct bpf_func_proto bpf_redirect_proto = {
2527 	.func           = bpf_redirect,
2528 	.gpl_only       = false,
2529 	.ret_type       = RET_INTEGER,
2530 	.arg1_type      = ARG_ANYTHING,
2531 	.arg2_type      = ARG_ANYTHING,
2532 };
2533 
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2534 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2535 {
2536 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2537 
2538 	if (unlikely(flags))
2539 		return TC_ACT_SHOT;
2540 
2541 	ri->flags = BPF_F_PEER;
2542 	ri->tgt_index = ifindex;
2543 
2544 	return TC_ACT_REDIRECT;
2545 }
2546 
2547 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2548 	.func           = bpf_redirect_peer,
2549 	.gpl_only       = false,
2550 	.ret_type       = RET_INTEGER,
2551 	.arg1_type      = ARG_ANYTHING,
2552 	.arg2_type      = ARG_ANYTHING,
2553 };
2554 
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2555 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2556 	   int, plen, u64, flags)
2557 {
2558 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2559 
2560 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2561 		return TC_ACT_SHOT;
2562 
2563 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2564 	ri->tgt_index = ifindex;
2565 
2566 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2567 	if (plen)
2568 		memcpy(&ri->nh, params, sizeof(ri->nh));
2569 
2570 	return TC_ACT_REDIRECT;
2571 }
2572 
2573 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2574 	.func		= bpf_redirect_neigh,
2575 	.gpl_only	= false,
2576 	.ret_type	= RET_INTEGER,
2577 	.arg1_type	= ARG_ANYTHING,
2578 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2579 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2580 	.arg4_type	= ARG_ANYTHING,
2581 };
2582 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2583 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2584 {
2585 	msg->apply_bytes = bytes;
2586 	return 0;
2587 }
2588 
2589 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2590 	.func           = bpf_msg_apply_bytes,
2591 	.gpl_only       = false,
2592 	.ret_type       = RET_INTEGER,
2593 	.arg1_type	= ARG_PTR_TO_CTX,
2594 	.arg2_type      = ARG_ANYTHING,
2595 };
2596 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2597 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2598 {
2599 	msg->cork_bytes = bytes;
2600 	return 0;
2601 }
2602 
sk_msg_reset_curr(struct sk_msg * msg)2603 static void sk_msg_reset_curr(struct sk_msg *msg)
2604 {
2605 	if (!msg->sg.size) {
2606 		msg->sg.curr = msg->sg.start;
2607 		msg->sg.copybreak = 0;
2608 	} else {
2609 		u32 i = msg->sg.end;
2610 
2611 		sk_msg_iter_var_prev(i);
2612 		msg->sg.curr = i;
2613 		msg->sg.copybreak = msg->sg.data[i].length;
2614 	}
2615 }
2616 
2617 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2618 	.func           = bpf_msg_cork_bytes,
2619 	.gpl_only       = false,
2620 	.ret_type       = RET_INTEGER,
2621 	.arg1_type	= ARG_PTR_TO_CTX,
2622 	.arg2_type      = ARG_ANYTHING,
2623 };
2624 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2625 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2626 	   u32, end, u64, flags)
2627 {
2628 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2629 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2630 	struct scatterlist *sge;
2631 	u8 *raw, *to, *from;
2632 	struct page *page;
2633 
2634 	if (unlikely(flags || end <= start))
2635 		return -EINVAL;
2636 
2637 	/* First find the starting scatterlist element */
2638 	i = msg->sg.start;
2639 	do {
2640 		offset += len;
2641 		len = sk_msg_elem(msg, i)->length;
2642 		if (start < offset + len)
2643 			break;
2644 		sk_msg_iter_var_next(i);
2645 	} while (i != msg->sg.end);
2646 
2647 	if (unlikely(start >= offset + len))
2648 		return -EINVAL;
2649 
2650 	first_sge = i;
2651 	/* The start may point into the sg element so we need to also
2652 	 * account for the headroom.
2653 	 */
2654 	bytes_sg_total = start - offset + bytes;
2655 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2656 		goto out;
2657 
2658 	/* At this point we need to linearize multiple scatterlist
2659 	 * elements or a single shared page. Either way we need to
2660 	 * copy into a linear buffer exclusively owned by BPF. Then
2661 	 * place the buffer in the scatterlist and fixup the original
2662 	 * entries by removing the entries now in the linear buffer
2663 	 * and shifting the remaining entries. For now we do not try
2664 	 * to copy partial entries to avoid complexity of running out
2665 	 * of sg_entry slots. The downside is reading a single byte
2666 	 * will copy the entire sg entry.
2667 	 */
2668 	do {
2669 		copy += sk_msg_elem(msg, i)->length;
2670 		sk_msg_iter_var_next(i);
2671 		if (bytes_sg_total <= copy)
2672 			break;
2673 	} while (i != msg->sg.end);
2674 	last_sge = i;
2675 
2676 	if (unlikely(bytes_sg_total > copy))
2677 		return -EINVAL;
2678 
2679 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2680 			   get_order(copy));
2681 	if (unlikely(!page))
2682 		return -ENOMEM;
2683 
2684 	raw = page_address(page);
2685 	i = first_sge;
2686 	do {
2687 		sge = sk_msg_elem(msg, i);
2688 		from = sg_virt(sge);
2689 		len = sge->length;
2690 		to = raw + poffset;
2691 
2692 		memcpy(to, from, len);
2693 		poffset += len;
2694 		sge->length = 0;
2695 		put_page(sg_page(sge));
2696 
2697 		sk_msg_iter_var_next(i);
2698 	} while (i != last_sge);
2699 
2700 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2701 
2702 	/* To repair sg ring we need to shift entries. If we only
2703 	 * had a single entry though we can just replace it and
2704 	 * be done. Otherwise walk the ring and shift the entries.
2705 	 */
2706 	WARN_ON_ONCE(last_sge == first_sge);
2707 	shift = last_sge > first_sge ?
2708 		last_sge - first_sge - 1 :
2709 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2710 	if (!shift)
2711 		goto out;
2712 
2713 	i = first_sge;
2714 	sk_msg_iter_var_next(i);
2715 	do {
2716 		u32 move_from;
2717 
2718 		if (i + shift >= NR_MSG_FRAG_IDS)
2719 			move_from = i + shift - NR_MSG_FRAG_IDS;
2720 		else
2721 			move_from = i + shift;
2722 		if (move_from == msg->sg.end)
2723 			break;
2724 
2725 		msg->sg.data[i] = msg->sg.data[move_from];
2726 		msg->sg.data[move_from].length = 0;
2727 		msg->sg.data[move_from].page_link = 0;
2728 		msg->sg.data[move_from].offset = 0;
2729 		sk_msg_iter_var_next(i);
2730 	} while (1);
2731 
2732 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2733 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2734 		      msg->sg.end - shift;
2735 out:
2736 	sk_msg_reset_curr(msg);
2737 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2738 	msg->data_end = msg->data + bytes;
2739 	return 0;
2740 }
2741 
2742 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2743 	.func		= bpf_msg_pull_data,
2744 	.gpl_only	= false,
2745 	.ret_type	= RET_INTEGER,
2746 	.arg1_type	= ARG_PTR_TO_CTX,
2747 	.arg2_type	= ARG_ANYTHING,
2748 	.arg3_type	= ARG_ANYTHING,
2749 	.arg4_type	= ARG_ANYTHING,
2750 };
2751 
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2752 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2753 	   u32, len, u64, flags)
2754 {
2755 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2756 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2757 	u8 *raw, *to, *from;
2758 	struct page *page;
2759 
2760 	if (unlikely(flags))
2761 		return -EINVAL;
2762 
2763 	if (unlikely(len == 0))
2764 		return 0;
2765 
2766 	/* First find the starting scatterlist element */
2767 	i = msg->sg.start;
2768 	do {
2769 		offset += l;
2770 		l = sk_msg_elem(msg, i)->length;
2771 
2772 		if (start < offset + l)
2773 			break;
2774 		sk_msg_iter_var_next(i);
2775 	} while (i != msg->sg.end);
2776 
2777 	if (start > offset + l)
2778 		return -EINVAL;
2779 
2780 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2781 
2782 	/* If no space available will fallback to copy, we need at
2783 	 * least one scatterlist elem available to push data into
2784 	 * when start aligns to the beginning of an element or two
2785 	 * when it falls inside an element. We handle the start equals
2786 	 * offset case because its the common case for inserting a
2787 	 * header.
2788 	 */
2789 	if (!space || (space == 1 && start != offset))
2790 		copy = msg->sg.data[i].length;
2791 
2792 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2793 			   get_order(copy + len));
2794 	if (unlikely(!page))
2795 		return -ENOMEM;
2796 
2797 	if (copy) {
2798 		int front, back;
2799 
2800 		raw = page_address(page);
2801 
2802 		if (i == msg->sg.end)
2803 			sk_msg_iter_var_prev(i);
2804 		psge = sk_msg_elem(msg, i);
2805 		front = start - offset;
2806 		back = psge->length - front;
2807 		from = sg_virt(psge);
2808 
2809 		if (front)
2810 			memcpy(raw, from, front);
2811 
2812 		if (back) {
2813 			from += front;
2814 			to = raw + front + len;
2815 
2816 			memcpy(to, from, back);
2817 		}
2818 
2819 		put_page(sg_page(psge));
2820 		new = i;
2821 		goto place_new;
2822 	}
2823 
2824 	if (start - offset) {
2825 		if (i == msg->sg.end)
2826 			sk_msg_iter_var_prev(i);
2827 		psge = sk_msg_elem(msg, i);
2828 		rsge = sk_msg_elem_cpy(msg, i);
2829 
2830 		psge->length = start - offset;
2831 		rsge.length -= psge->length;
2832 		rsge.offset += start;
2833 
2834 		sk_msg_iter_var_next(i);
2835 		sg_unmark_end(psge);
2836 		sg_unmark_end(&rsge);
2837 	}
2838 
2839 	/* Slot(s) to place newly allocated data */
2840 	sk_msg_iter_next(msg, end);
2841 	new = i;
2842 	sk_msg_iter_var_next(i);
2843 
2844 	if (i == msg->sg.end) {
2845 		if (!rsge.length)
2846 			goto place_new;
2847 		sk_msg_iter_next(msg, end);
2848 		goto place_new;
2849 	}
2850 
2851 	/* Shift one or two slots as needed */
2852 	sge = sk_msg_elem_cpy(msg, new);
2853 	sg_unmark_end(&sge);
2854 
2855 	nsge = sk_msg_elem_cpy(msg, i);
2856 	if (rsge.length) {
2857 		sk_msg_iter_var_next(i);
2858 		nnsge = sk_msg_elem_cpy(msg, i);
2859 		sk_msg_iter_next(msg, end);
2860 	}
2861 
2862 	while (i != msg->sg.end) {
2863 		msg->sg.data[i] = sge;
2864 		sge = nsge;
2865 		sk_msg_iter_var_next(i);
2866 		if (rsge.length) {
2867 			nsge = nnsge;
2868 			nnsge = sk_msg_elem_cpy(msg, i);
2869 		} else {
2870 			nsge = sk_msg_elem_cpy(msg, i);
2871 		}
2872 	}
2873 
2874 place_new:
2875 	/* Place newly allocated data buffer */
2876 	sk_mem_charge(msg->sk, len);
2877 	msg->sg.size += len;
2878 	__clear_bit(new, msg->sg.copy);
2879 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2880 	if (rsge.length) {
2881 		get_page(sg_page(&rsge));
2882 		sk_msg_iter_var_next(new);
2883 		msg->sg.data[new] = rsge;
2884 	}
2885 
2886 	sk_msg_reset_curr(msg);
2887 	sk_msg_compute_data_pointers(msg);
2888 	return 0;
2889 }
2890 
2891 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2892 	.func		= bpf_msg_push_data,
2893 	.gpl_only	= false,
2894 	.ret_type	= RET_INTEGER,
2895 	.arg1_type	= ARG_PTR_TO_CTX,
2896 	.arg2_type	= ARG_ANYTHING,
2897 	.arg3_type	= ARG_ANYTHING,
2898 	.arg4_type	= ARG_ANYTHING,
2899 };
2900 
sk_msg_shift_left(struct sk_msg * msg,int i)2901 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2902 {
2903 	struct scatterlist *sge = sk_msg_elem(msg, i);
2904 	int prev;
2905 
2906 	put_page(sg_page(sge));
2907 	do {
2908 		prev = i;
2909 		sk_msg_iter_var_next(i);
2910 		msg->sg.data[prev] = msg->sg.data[i];
2911 	} while (i != msg->sg.end);
2912 
2913 	sk_msg_iter_prev(msg, end);
2914 }
2915 
sk_msg_shift_right(struct sk_msg * msg,int i)2916 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2917 {
2918 	struct scatterlist tmp, sge;
2919 
2920 	sk_msg_iter_next(msg, end);
2921 	sge = sk_msg_elem_cpy(msg, i);
2922 	sk_msg_iter_var_next(i);
2923 	tmp = sk_msg_elem_cpy(msg, i);
2924 
2925 	while (i != msg->sg.end) {
2926 		msg->sg.data[i] = sge;
2927 		sk_msg_iter_var_next(i);
2928 		sge = tmp;
2929 		tmp = sk_msg_elem_cpy(msg, i);
2930 	}
2931 }
2932 
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2933 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2934 	   u32, len, u64, flags)
2935 {
2936 	u32 i = 0, l = 0, space, offset = 0;
2937 	u64 last = start + len;
2938 	int pop;
2939 
2940 	if (unlikely(flags))
2941 		return -EINVAL;
2942 
2943 	if (unlikely(len == 0))
2944 		return 0;
2945 
2946 	/* First find the starting scatterlist element */
2947 	i = msg->sg.start;
2948 	do {
2949 		offset += l;
2950 		l = sk_msg_elem(msg, i)->length;
2951 
2952 		if (start < offset + l)
2953 			break;
2954 		sk_msg_iter_var_next(i);
2955 	} while (i != msg->sg.end);
2956 
2957 	/* Bounds checks: start and pop must be inside message */
2958 	if (start >= offset + l || last > msg->sg.size)
2959 		return -EINVAL;
2960 
2961 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2962 
2963 	pop = len;
2964 	/* --------------| offset
2965 	 * -| start      |-------- len -------|
2966 	 *
2967 	 *  |----- a ----|-------- pop -------|----- b ----|
2968 	 *  |______________________________________________| length
2969 	 *
2970 	 *
2971 	 * a:   region at front of scatter element to save
2972 	 * b:   region at back of scatter element to save when length > A + pop
2973 	 * pop: region to pop from element, same as input 'pop' here will be
2974 	 *      decremented below per iteration.
2975 	 *
2976 	 * Two top-level cases to handle when start != offset, first B is non
2977 	 * zero and second B is zero corresponding to when a pop includes more
2978 	 * than one element.
2979 	 *
2980 	 * Then if B is non-zero AND there is no space allocate space and
2981 	 * compact A, B regions into page. If there is space shift ring to
2982 	 * the rigth free'ing the next element in ring to place B, leaving
2983 	 * A untouched except to reduce length.
2984 	 */
2985 	if (start != offset) {
2986 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2987 		int a = start - offset;
2988 		int b = sge->length - pop - a;
2989 
2990 		sk_msg_iter_var_next(i);
2991 
2992 		if (b > 0) {
2993 			if (space) {
2994 				sge->length = a;
2995 				sk_msg_shift_right(msg, i);
2996 				nsge = sk_msg_elem(msg, i);
2997 				get_page(sg_page(sge));
2998 				sg_set_page(nsge,
2999 					    sg_page(sge),
3000 					    b, sge->offset + pop + a);
3001 			} else {
3002 				struct page *page, *orig;
3003 				u8 *to, *from;
3004 
3005 				page = alloc_pages(__GFP_NOWARN |
3006 						   __GFP_COMP   | GFP_ATOMIC,
3007 						   get_order(a + b));
3008 				if (unlikely(!page))
3009 					return -ENOMEM;
3010 
3011 				orig = sg_page(sge);
3012 				from = sg_virt(sge);
3013 				to = page_address(page);
3014 				memcpy(to, from, a);
3015 				memcpy(to + a, from + a + pop, b);
3016 				sg_set_page(sge, page, a + b, 0);
3017 				put_page(orig);
3018 			}
3019 			pop = 0;
3020 		} else {
3021 			pop -= (sge->length - a);
3022 			sge->length = a;
3023 		}
3024 	}
3025 
3026 	/* From above the current layout _must_ be as follows,
3027 	 *
3028 	 * -| offset
3029 	 * -| start
3030 	 *
3031 	 *  |---- pop ---|---------------- b ------------|
3032 	 *  |____________________________________________| length
3033 	 *
3034 	 * Offset and start of the current msg elem are equal because in the
3035 	 * previous case we handled offset != start and either consumed the
3036 	 * entire element and advanced to the next element OR pop == 0.
3037 	 *
3038 	 * Two cases to handle here are first pop is less than the length
3039 	 * leaving some remainder b above. Simply adjust the element's layout
3040 	 * in this case. Or pop >= length of the element so that b = 0. In this
3041 	 * case advance to next element decrementing pop.
3042 	 */
3043 	while (pop) {
3044 		struct scatterlist *sge = sk_msg_elem(msg, i);
3045 
3046 		if (pop < sge->length) {
3047 			sge->length -= pop;
3048 			sge->offset += pop;
3049 			pop = 0;
3050 		} else {
3051 			pop -= sge->length;
3052 			sk_msg_shift_left(msg, i);
3053 		}
3054 	}
3055 
3056 	sk_mem_uncharge(msg->sk, len - pop);
3057 	msg->sg.size -= (len - pop);
3058 	sk_msg_reset_curr(msg);
3059 	sk_msg_compute_data_pointers(msg);
3060 	return 0;
3061 }
3062 
3063 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3064 	.func		= bpf_msg_pop_data,
3065 	.gpl_only	= false,
3066 	.ret_type	= RET_INTEGER,
3067 	.arg1_type	= ARG_PTR_TO_CTX,
3068 	.arg2_type	= ARG_ANYTHING,
3069 	.arg3_type	= ARG_ANYTHING,
3070 	.arg4_type	= ARG_ANYTHING,
3071 };
3072 
3073 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3074 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3075 {
3076 	return __task_get_classid(current);
3077 }
3078 
3079 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3080 	.func		= bpf_get_cgroup_classid_curr,
3081 	.gpl_only	= false,
3082 	.ret_type	= RET_INTEGER,
3083 };
3084 
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3085 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3086 {
3087 	struct sock *sk = skb_to_full_sk(skb);
3088 
3089 	if (!sk || !sk_fullsock(sk))
3090 		return 0;
3091 
3092 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3093 }
3094 
3095 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3096 	.func		= bpf_skb_cgroup_classid,
3097 	.gpl_only	= false,
3098 	.ret_type	= RET_INTEGER,
3099 	.arg1_type	= ARG_PTR_TO_CTX,
3100 };
3101 #endif
3102 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3103 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3104 {
3105 	return task_get_classid(skb);
3106 }
3107 
3108 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3109 	.func           = bpf_get_cgroup_classid,
3110 	.gpl_only       = false,
3111 	.ret_type       = RET_INTEGER,
3112 	.arg1_type      = ARG_PTR_TO_CTX,
3113 };
3114 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3115 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3116 {
3117 	return dst_tclassid(skb);
3118 }
3119 
3120 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3121 	.func           = bpf_get_route_realm,
3122 	.gpl_only       = false,
3123 	.ret_type       = RET_INTEGER,
3124 	.arg1_type      = ARG_PTR_TO_CTX,
3125 };
3126 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3127 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3128 {
3129 	/* If skb_clear_hash() was called due to mangling, we can
3130 	 * trigger SW recalculation here. Later access to hash
3131 	 * can then use the inline skb->hash via context directly
3132 	 * instead of calling this helper again.
3133 	 */
3134 	return skb_get_hash(skb);
3135 }
3136 
3137 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3138 	.func		= bpf_get_hash_recalc,
3139 	.gpl_only	= false,
3140 	.ret_type	= RET_INTEGER,
3141 	.arg1_type	= ARG_PTR_TO_CTX,
3142 };
3143 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3144 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3145 {
3146 	/* After all direct packet write, this can be used once for
3147 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3148 	 */
3149 	skb_clear_hash(skb);
3150 	return 0;
3151 }
3152 
3153 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3154 	.func		= bpf_set_hash_invalid,
3155 	.gpl_only	= false,
3156 	.ret_type	= RET_INTEGER,
3157 	.arg1_type	= ARG_PTR_TO_CTX,
3158 };
3159 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3160 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3161 {
3162 	/* Set user specified hash as L4(+), so that it gets returned
3163 	 * on skb_get_hash() call unless BPF prog later on triggers a
3164 	 * skb_clear_hash().
3165 	 */
3166 	__skb_set_sw_hash(skb, hash, true);
3167 	return 0;
3168 }
3169 
3170 static const struct bpf_func_proto bpf_set_hash_proto = {
3171 	.func		= bpf_set_hash,
3172 	.gpl_only	= false,
3173 	.ret_type	= RET_INTEGER,
3174 	.arg1_type	= ARG_PTR_TO_CTX,
3175 	.arg2_type	= ARG_ANYTHING,
3176 };
3177 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3178 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3179 	   u16, vlan_tci)
3180 {
3181 	int ret;
3182 
3183 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3184 		     vlan_proto != htons(ETH_P_8021AD)))
3185 		vlan_proto = htons(ETH_P_8021Q);
3186 
3187 	bpf_push_mac_rcsum(skb);
3188 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3189 	bpf_pull_mac_rcsum(skb);
3190 
3191 	bpf_compute_data_pointers(skb);
3192 	return ret;
3193 }
3194 
3195 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3196 	.func           = bpf_skb_vlan_push,
3197 	.gpl_only       = false,
3198 	.ret_type       = RET_INTEGER,
3199 	.arg1_type      = ARG_PTR_TO_CTX,
3200 	.arg2_type      = ARG_ANYTHING,
3201 	.arg3_type      = ARG_ANYTHING,
3202 };
3203 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3204 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3205 {
3206 	int ret;
3207 
3208 	bpf_push_mac_rcsum(skb);
3209 	ret = skb_vlan_pop(skb);
3210 	bpf_pull_mac_rcsum(skb);
3211 
3212 	bpf_compute_data_pointers(skb);
3213 	return ret;
3214 }
3215 
3216 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3217 	.func           = bpf_skb_vlan_pop,
3218 	.gpl_only       = false,
3219 	.ret_type       = RET_INTEGER,
3220 	.arg1_type      = ARG_PTR_TO_CTX,
3221 };
3222 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3223 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3224 {
3225 	/* Caller already did skb_cow() with len as headroom,
3226 	 * so no need to do it here.
3227 	 */
3228 	skb_push(skb, len);
3229 	memmove(skb->data, skb->data + len, off);
3230 	memset(skb->data + off, 0, len);
3231 
3232 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3233 	 * needed here as it does not change the skb->csum
3234 	 * result for checksum complete when summing over
3235 	 * zeroed blocks.
3236 	 */
3237 	return 0;
3238 }
3239 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3240 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3241 {
3242 	void *old_data;
3243 
3244 	/* skb_ensure_writable() is not needed here, as we're
3245 	 * already working on an uncloned skb.
3246 	 */
3247 	if (unlikely(!pskb_may_pull(skb, off + len)))
3248 		return -ENOMEM;
3249 
3250 	old_data = skb->data;
3251 	__skb_pull(skb, len);
3252 	skb_postpull_rcsum(skb, old_data + off, len);
3253 	memmove(skb->data, old_data, off);
3254 
3255 	return 0;
3256 }
3257 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3258 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3259 {
3260 	bool trans_same = skb->transport_header == skb->network_header;
3261 	int ret;
3262 
3263 	/* There's no need for __skb_push()/__skb_pull() pair to
3264 	 * get to the start of the mac header as we're guaranteed
3265 	 * to always start from here under eBPF.
3266 	 */
3267 	ret = bpf_skb_generic_push(skb, off, len);
3268 	if (likely(!ret)) {
3269 		skb->mac_header -= len;
3270 		skb->network_header -= len;
3271 		if (trans_same)
3272 			skb->transport_header = skb->network_header;
3273 	}
3274 
3275 	return ret;
3276 }
3277 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3278 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3279 {
3280 	bool trans_same = skb->transport_header == skb->network_header;
3281 	int ret;
3282 
3283 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3284 	ret = bpf_skb_generic_pop(skb, off, len);
3285 	if (likely(!ret)) {
3286 		skb->mac_header += len;
3287 		skb->network_header += len;
3288 		if (trans_same)
3289 			skb->transport_header = skb->network_header;
3290 	}
3291 
3292 	return ret;
3293 }
3294 
bpf_skb_proto_4_to_6(struct sk_buff * skb)3295 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3296 {
3297 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3298 	u32 off = skb_mac_header_len(skb);
3299 	int ret;
3300 
3301 	ret = skb_cow(skb, len_diff);
3302 	if (unlikely(ret < 0))
3303 		return ret;
3304 
3305 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3306 	if (unlikely(ret < 0))
3307 		return ret;
3308 
3309 	if (skb_is_gso(skb)) {
3310 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3311 
3312 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3313 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3314 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3315 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3316 		}
3317 	}
3318 
3319 	skb->protocol = htons(ETH_P_IPV6);
3320 	skb_clear_hash(skb);
3321 
3322 	return 0;
3323 }
3324 
bpf_skb_proto_6_to_4(struct sk_buff * skb)3325 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3326 {
3327 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3328 	u32 off = skb_mac_header_len(skb);
3329 	int ret;
3330 
3331 	ret = skb_unclone(skb, GFP_ATOMIC);
3332 	if (unlikely(ret < 0))
3333 		return ret;
3334 
3335 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3336 	if (unlikely(ret < 0))
3337 		return ret;
3338 
3339 	if (skb_is_gso(skb)) {
3340 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3341 
3342 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3343 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3344 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3345 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3346 		}
3347 	}
3348 
3349 	skb->protocol = htons(ETH_P_IP);
3350 	skb_clear_hash(skb);
3351 
3352 	return 0;
3353 }
3354 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3355 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3356 {
3357 	__be16 from_proto = skb->protocol;
3358 
3359 	if (from_proto == htons(ETH_P_IP) &&
3360 	      to_proto == htons(ETH_P_IPV6))
3361 		return bpf_skb_proto_4_to_6(skb);
3362 
3363 	if (from_proto == htons(ETH_P_IPV6) &&
3364 	      to_proto == htons(ETH_P_IP))
3365 		return bpf_skb_proto_6_to_4(skb);
3366 
3367 	return -ENOTSUPP;
3368 }
3369 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3370 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3371 	   u64, flags)
3372 {
3373 	int ret;
3374 
3375 	if (unlikely(flags))
3376 		return -EINVAL;
3377 
3378 	/* General idea is that this helper does the basic groundwork
3379 	 * needed for changing the protocol, and eBPF program fills the
3380 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3381 	 * and other helpers, rather than passing a raw buffer here.
3382 	 *
3383 	 * The rationale is to keep this minimal and without a need to
3384 	 * deal with raw packet data. F.e. even if we would pass buffers
3385 	 * here, the program still needs to call the bpf_lX_csum_replace()
3386 	 * helpers anyway. Plus, this way we keep also separation of
3387 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3388 	 * care of stores.
3389 	 *
3390 	 * Currently, additional options and extension header space are
3391 	 * not supported, but flags register is reserved so we can adapt
3392 	 * that. For offloads, we mark packet as dodgy, so that headers
3393 	 * need to be verified first.
3394 	 */
3395 	ret = bpf_skb_proto_xlat(skb, proto);
3396 	bpf_compute_data_pointers(skb);
3397 	return ret;
3398 }
3399 
3400 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3401 	.func		= bpf_skb_change_proto,
3402 	.gpl_only	= false,
3403 	.ret_type	= RET_INTEGER,
3404 	.arg1_type	= ARG_PTR_TO_CTX,
3405 	.arg2_type	= ARG_ANYTHING,
3406 	.arg3_type	= ARG_ANYTHING,
3407 };
3408 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3409 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3410 {
3411 	/* We only allow a restricted subset to be changed for now. */
3412 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3413 		     !skb_pkt_type_ok(pkt_type)))
3414 		return -EINVAL;
3415 
3416 	skb->pkt_type = pkt_type;
3417 	return 0;
3418 }
3419 
3420 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3421 	.func		= bpf_skb_change_type,
3422 	.gpl_only	= false,
3423 	.ret_type	= RET_INTEGER,
3424 	.arg1_type	= ARG_PTR_TO_CTX,
3425 	.arg2_type	= ARG_ANYTHING,
3426 };
3427 
bpf_skb_net_base_len(const struct sk_buff * skb)3428 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3429 {
3430 	switch (skb->protocol) {
3431 	case htons(ETH_P_IP):
3432 		return sizeof(struct iphdr);
3433 	case htons(ETH_P_IPV6):
3434 		return sizeof(struct ipv6hdr);
3435 	default:
3436 		return ~0U;
3437 	}
3438 }
3439 
3440 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3441 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3442 
3443 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3444 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3445 
3446 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3447 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3448 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3449 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3450 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3451 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3452 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3453 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3454 
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3455 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3456 			    u64 flags)
3457 {
3458 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3459 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3460 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3461 	unsigned int gso_type = SKB_GSO_DODGY;
3462 	int ret;
3463 
3464 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3465 		/* udp gso_size delineates datagrams, only allow if fixed */
3466 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3467 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3468 			return -ENOTSUPP;
3469 	}
3470 
3471 	ret = skb_cow_head(skb, len_diff);
3472 	if (unlikely(ret < 0))
3473 		return ret;
3474 
3475 	if (encap) {
3476 		if (skb->protocol != htons(ETH_P_IP) &&
3477 		    skb->protocol != htons(ETH_P_IPV6))
3478 			return -ENOTSUPP;
3479 
3480 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3481 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3482 			return -EINVAL;
3483 
3484 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3485 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3486 			return -EINVAL;
3487 
3488 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3489 		    inner_mac_len < ETH_HLEN)
3490 			return -EINVAL;
3491 
3492 		if (skb->encapsulation)
3493 			return -EALREADY;
3494 
3495 		mac_len = skb->network_header - skb->mac_header;
3496 		inner_net = skb->network_header;
3497 		if (inner_mac_len > len_diff)
3498 			return -EINVAL;
3499 		inner_trans = skb->transport_header;
3500 	}
3501 
3502 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3503 	if (unlikely(ret < 0))
3504 		return ret;
3505 
3506 	if (encap) {
3507 		skb->inner_mac_header = inner_net - inner_mac_len;
3508 		skb->inner_network_header = inner_net;
3509 		skb->inner_transport_header = inner_trans;
3510 
3511 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3512 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3513 		else
3514 			skb_set_inner_protocol(skb, skb->protocol);
3515 
3516 		skb->encapsulation = 1;
3517 		skb_set_network_header(skb, mac_len);
3518 
3519 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3520 			gso_type |= SKB_GSO_UDP_TUNNEL;
3521 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3522 			gso_type |= SKB_GSO_GRE;
3523 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3524 			gso_type |= SKB_GSO_IPXIP6;
3525 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3526 			gso_type |= SKB_GSO_IPXIP4;
3527 
3528 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3529 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3530 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3531 					sizeof(struct ipv6hdr) :
3532 					sizeof(struct iphdr);
3533 
3534 			skb_set_transport_header(skb, mac_len + nh_len);
3535 		}
3536 
3537 		/* Match skb->protocol to new outer l3 protocol */
3538 		if (skb->protocol == htons(ETH_P_IP) &&
3539 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3540 			skb->protocol = htons(ETH_P_IPV6);
3541 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3542 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3543 			skb->protocol = htons(ETH_P_IP);
3544 	}
3545 
3546 	if (skb_is_gso(skb)) {
3547 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3548 
3549 		/* Header must be checked, and gso_segs recomputed. */
3550 		shinfo->gso_type |= gso_type;
3551 		shinfo->gso_segs = 0;
3552 
3553 		/* Due to header growth, MSS needs to be downgraded.
3554 		 * There is a BUG_ON() when segmenting the frag_list with
3555 		 * head_frag true, so linearize the skb after downgrading
3556 		 * the MSS.
3557 		 */
3558 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO)) {
3559 			skb_decrease_gso_size(shinfo, len_diff);
3560 			if (shinfo->frag_list)
3561 				return skb_linearize(skb);
3562 		}
3563 	}
3564 
3565 	return 0;
3566 }
3567 
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3568 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3569 			      u64 flags)
3570 {
3571 	int ret;
3572 
3573 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3574 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3575 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3576 		return -EINVAL;
3577 
3578 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3579 		/* udp gso_size delineates datagrams, only allow if fixed */
3580 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3581 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3582 			return -ENOTSUPP;
3583 	}
3584 
3585 	ret = skb_unclone(skb, GFP_ATOMIC);
3586 	if (unlikely(ret < 0))
3587 		return ret;
3588 
3589 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3590 	if (unlikely(ret < 0))
3591 		return ret;
3592 
3593 	/* Match skb->protocol to new outer l3 protocol */
3594 	if (skb->protocol == htons(ETH_P_IP) &&
3595 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3596 		skb->protocol = htons(ETH_P_IPV6);
3597 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3598 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3599 		skb->protocol = htons(ETH_P_IP);
3600 
3601 	if (skb_is_gso(skb)) {
3602 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3603 
3604 		/* Due to header shrink, MSS can be upgraded. */
3605 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3606 			skb_increase_gso_size(shinfo, len_diff);
3607 
3608 		/* Header must be checked, and gso_segs recomputed. */
3609 		shinfo->gso_type |= SKB_GSO_DODGY;
3610 		shinfo->gso_segs = 0;
3611 	}
3612 
3613 	return 0;
3614 }
3615 
3616 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3617 
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3618 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3619 	   u32, mode, u64, flags)
3620 {
3621 	u32 len_diff_abs = abs(len_diff);
3622 	bool shrink = len_diff < 0;
3623 	int ret = 0;
3624 
3625 	if (unlikely(flags || mode))
3626 		return -EINVAL;
3627 	if (unlikely(len_diff_abs > 0xfffU))
3628 		return -EFAULT;
3629 
3630 	if (!shrink) {
3631 		ret = skb_cow(skb, len_diff);
3632 		if (unlikely(ret < 0))
3633 			return ret;
3634 		__skb_push(skb, len_diff_abs);
3635 		memset(skb->data, 0, len_diff_abs);
3636 	} else {
3637 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3638 			return -ENOMEM;
3639 		__skb_pull(skb, len_diff_abs);
3640 	}
3641 	if (tls_sw_has_ctx_rx(skb->sk)) {
3642 		struct strp_msg *rxm = strp_msg(skb);
3643 
3644 		rxm->full_len += len_diff;
3645 	}
3646 	return ret;
3647 }
3648 
3649 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3650 	.func		= sk_skb_adjust_room,
3651 	.gpl_only	= false,
3652 	.ret_type	= RET_INTEGER,
3653 	.arg1_type	= ARG_PTR_TO_CTX,
3654 	.arg2_type	= ARG_ANYTHING,
3655 	.arg3_type	= ARG_ANYTHING,
3656 	.arg4_type	= ARG_ANYTHING,
3657 };
3658 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3659 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3660 	   u32, mode, u64, flags)
3661 {
3662 	u32 len_cur, len_diff_abs = abs(len_diff);
3663 	u32 len_min = bpf_skb_net_base_len(skb);
3664 	u32 len_max = BPF_SKB_MAX_LEN;
3665 	__be16 proto = skb->protocol;
3666 	bool shrink = len_diff < 0;
3667 	u32 off;
3668 	int ret;
3669 
3670 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3671 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3672 		return -EINVAL;
3673 	if (unlikely(len_diff_abs > 0xfffU))
3674 		return -EFAULT;
3675 	if (unlikely(proto != htons(ETH_P_IP) &&
3676 		     proto != htons(ETH_P_IPV6)))
3677 		return -ENOTSUPP;
3678 
3679 	off = skb_mac_header_len(skb);
3680 	switch (mode) {
3681 	case BPF_ADJ_ROOM_NET:
3682 		off += bpf_skb_net_base_len(skb);
3683 		break;
3684 	case BPF_ADJ_ROOM_MAC:
3685 		break;
3686 	default:
3687 		return -ENOTSUPP;
3688 	}
3689 
3690 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3691 		if (!shrink)
3692 			return -EINVAL;
3693 
3694 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3695 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3696 			len_min = sizeof(struct iphdr);
3697 			break;
3698 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3699 			len_min = sizeof(struct ipv6hdr);
3700 			break;
3701 		default:
3702 			return -EINVAL;
3703 		}
3704 	}
3705 
3706 	len_cur = skb->len - skb_network_offset(skb);
3707 	if ((shrink && (len_diff_abs >= len_cur ||
3708 			len_cur - len_diff_abs < len_min)) ||
3709 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3710 			 !skb_is_gso(skb))))
3711 		return -ENOTSUPP;
3712 
3713 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3714 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3715 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3716 		__skb_reset_checksum_unnecessary(skb);
3717 
3718 	bpf_compute_data_pointers(skb);
3719 	return ret;
3720 }
3721 
3722 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3723 	.func		= bpf_skb_adjust_room,
3724 	.gpl_only	= false,
3725 	.ret_type	= RET_INTEGER,
3726 	.arg1_type	= ARG_PTR_TO_CTX,
3727 	.arg2_type	= ARG_ANYTHING,
3728 	.arg3_type	= ARG_ANYTHING,
3729 	.arg4_type	= ARG_ANYTHING,
3730 };
3731 
__bpf_skb_min_len(const struct sk_buff * skb)3732 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3733 {
3734 	u32 min_len = skb_network_offset(skb);
3735 
3736 	if (skb_transport_header_was_set(skb))
3737 		min_len = skb_transport_offset(skb);
3738 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3739 		min_len = skb_checksum_start_offset(skb) +
3740 			  skb->csum_offset + sizeof(__sum16);
3741 	return min_len;
3742 }
3743 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3744 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3745 {
3746 	unsigned int old_len = skb->len;
3747 	int ret;
3748 
3749 	ret = __skb_grow_rcsum(skb, new_len);
3750 	if (!ret)
3751 		memset(skb->data + old_len, 0, new_len - old_len);
3752 	return ret;
3753 }
3754 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3755 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3756 {
3757 	return __skb_trim_rcsum(skb, new_len);
3758 }
3759 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3760 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3761 					u64 flags)
3762 {
3763 	u32 max_len = BPF_SKB_MAX_LEN;
3764 	u32 min_len = __bpf_skb_min_len(skb);
3765 	int ret;
3766 
3767 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3768 		return -EINVAL;
3769 	if (skb->encapsulation)
3770 		return -ENOTSUPP;
3771 
3772 	/* The basic idea of this helper is that it's performing the
3773 	 * needed work to either grow or trim an skb, and eBPF program
3774 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3775 	 * bpf_lX_csum_replace() and others rather than passing a raw
3776 	 * buffer here. This one is a slow path helper and intended
3777 	 * for replies with control messages.
3778 	 *
3779 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3780 	 * minimal and without protocol specifics so that we are able
3781 	 * to separate concerns as in bpf_skb_store_bytes() should only
3782 	 * be the one responsible for writing buffers.
3783 	 *
3784 	 * It's really expected to be a slow path operation here for
3785 	 * control message replies, so we're implicitly linearizing,
3786 	 * uncloning and drop offloads from the skb by this.
3787 	 */
3788 	ret = __bpf_try_make_writable(skb, skb->len);
3789 	if (!ret) {
3790 		if (new_len > skb->len)
3791 			ret = bpf_skb_grow_rcsum(skb, new_len);
3792 		else if (new_len < skb->len)
3793 			ret = bpf_skb_trim_rcsum(skb, new_len);
3794 		if (!ret && skb_is_gso(skb))
3795 			skb_gso_reset(skb);
3796 	}
3797 	return ret;
3798 }
3799 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3800 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3801 	   u64, flags)
3802 {
3803 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3804 
3805 	bpf_compute_data_pointers(skb);
3806 	return ret;
3807 }
3808 
3809 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3810 	.func		= bpf_skb_change_tail,
3811 	.gpl_only	= false,
3812 	.ret_type	= RET_INTEGER,
3813 	.arg1_type	= ARG_PTR_TO_CTX,
3814 	.arg2_type	= ARG_ANYTHING,
3815 	.arg3_type	= ARG_ANYTHING,
3816 };
3817 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3818 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3819 	   u64, flags)
3820 {
3821 	return __bpf_skb_change_tail(skb, new_len, flags);
3822 }
3823 
3824 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3825 	.func		= sk_skb_change_tail,
3826 	.gpl_only	= false,
3827 	.ret_type	= RET_INTEGER,
3828 	.arg1_type	= ARG_PTR_TO_CTX,
3829 	.arg2_type	= ARG_ANYTHING,
3830 	.arg3_type	= ARG_ANYTHING,
3831 };
3832 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3833 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3834 					u64 flags)
3835 {
3836 	u32 max_len = BPF_SKB_MAX_LEN;
3837 	u32 new_len = skb->len + head_room;
3838 	int ret;
3839 
3840 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3841 		     new_len < skb->len))
3842 		return -EINVAL;
3843 
3844 	ret = skb_cow(skb, head_room);
3845 	if (likely(!ret)) {
3846 		/* Idea for this helper is that we currently only
3847 		 * allow to expand on mac header. This means that
3848 		 * skb->protocol network header, etc, stay as is.
3849 		 * Compared to bpf_skb_change_tail(), we're more
3850 		 * flexible due to not needing to linearize or
3851 		 * reset GSO. Intention for this helper is to be
3852 		 * used by an L3 skb that needs to push mac header
3853 		 * for redirection into L2 device.
3854 		 */
3855 		__skb_push(skb, head_room);
3856 		memset(skb->data, 0, head_room);
3857 		skb_reset_mac_header(skb);
3858 		skb_reset_mac_len(skb);
3859 	}
3860 
3861 	return ret;
3862 }
3863 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3864 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3865 	   u64, flags)
3866 {
3867 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3868 
3869 	bpf_compute_data_pointers(skb);
3870 	return ret;
3871 }
3872 
3873 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3874 	.func		= bpf_skb_change_head,
3875 	.gpl_only	= false,
3876 	.ret_type	= RET_INTEGER,
3877 	.arg1_type	= ARG_PTR_TO_CTX,
3878 	.arg2_type	= ARG_ANYTHING,
3879 	.arg3_type	= ARG_ANYTHING,
3880 };
3881 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3882 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3883 	   u64, flags)
3884 {
3885 	return __bpf_skb_change_head(skb, head_room, flags);
3886 }
3887 
3888 static const struct bpf_func_proto sk_skb_change_head_proto = {
3889 	.func		= sk_skb_change_head,
3890 	.gpl_only	= false,
3891 	.ret_type	= RET_INTEGER,
3892 	.arg1_type	= ARG_PTR_TO_CTX,
3893 	.arg2_type	= ARG_ANYTHING,
3894 	.arg3_type	= ARG_ANYTHING,
3895 };
3896 
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3897 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3898 {
3899 	return xdp_get_buff_len(xdp);
3900 }
3901 
3902 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3903 	.func		= bpf_xdp_get_buff_len,
3904 	.gpl_only	= false,
3905 	.ret_type	= RET_INTEGER,
3906 	.arg1_type	= ARG_PTR_TO_CTX,
3907 };
3908 
3909 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3910 
3911 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3912 	.func		= bpf_xdp_get_buff_len,
3913 	.gpl_only	= false,
3914 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3915 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3916 };
3917 
xdp_get_metalen(const struct xdp_buff * xdp)3918 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3919 {
3920 	return xdp_data_meta_unsupported(xdp) ? 0 :
3921 	       xdp->data - xdp->data_meta;
3922 }
3923 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3924 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3925 {
3926 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3927 	unsigned long metalen = xdp_get_metalen(xdp);
3928 	void *data_start = xdp_frame_end + metalen;
3929 	void *data = xdp->data + offset;
3930 
3931 	if (unlikely(data < data_start ||
3932 		     data > xdp->data_end - ETH_HLEN))
3933 		return -EINVAL;
3934 
3935 	if (metalen)
3936 		memmove(xdp->data_meta + offset,
3937 			xdp->data_meta, metalen);
3938 	xdp->data_meta += offset;
3939 	xdp->data = data;
3940 
3941 	return 0;
3942 }
3943 
3944 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3945 	.func		= bpf_xdp_adjust_head,
3946 	.gpl_only	= false,
3947 	.ret_type	= RET_INTEGER,
3948 	.arg1_type	= ARG_PTR_TO_CTX,
3949 	.arg2_type	= ARG_ANYTHING,
3950 };
3951 
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3952 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3953 		      void *buf, unsigned long len, bool flush)
3954 {
3955 	unsigned long ptr_len, ptr_off = 0;
3956 	skb_frag_t *next_frag, *end_frag;
3957 	struct skb_shared_info *sinfo;
3958 	void *src, *dst;
3959 	u8 *ptr_buf;
3960 
3961 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3962 		src = flush ? buf : xdp->data + off;
3963 		dst = flush ? xdp->data + off : buf;
3964 		memcpy(dst, src, len);
3965 		return;
3966 	}
3967 
3968 	sinfo = xdp_get_shared_info_from_buff(xdp);
3969 	end_frag = &sinfo->frags[sinfo->nr_frags];
3970 	next_frag = &sinfo->frags[0];
3971 
3972 	ptr_len = xdp->data_end - xdp->data;
3973 	ptr_buf = xdp->data;
3974 
3975 	while (true) {
3976 		if (off < ptr_off + ptr_len) {
3977 			unsigned long copy_off = off - ptr_off;
3978 			unsigned long copy_len = min(len, ptr_len - copy_off);
3979 
3980 			src = flush ? buf : ptr_buf + copy_off;
3981 			dst = flush ? ptr_buf + copy_off : buf;
3982 			memcpy(dst, src, copy_len);
3983 
3984 			off += copy_len;
3985 			len -= copy_len;
3986 			buf += copy_len;
3987 		}
3988 
3989 		if (!len || next_frag == end_frag)
3990 			break;
3991 
3992 		ptr_off += ptr_len;
3993 		ptr_buf = skb_frag_address(next_frag);
3994 		ptr_len = skb_frag_size(next_frag);
3995 		next_frag++;
3996 	}
3997 }
3998 
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3999 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
4000 {
4001 	u32 size = xdp->data_end - xdp->data;
4002 	struct skb_shared_info *sinfo;
4003 	void *addr = xdp->data;
4004 	int i;
4005 
4006 	if (unlikely(offset > 0xffff || len > 0xffff))
4007 		return ERR_PTR(-EFAULT);
4008 
4009 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
4010 		return ERR_PTR(-EINVAL);
4011 
4012 	if (likely(offset < size)) /* linear area */
4013 		goto out;
4014 
4015 	sinfo = xdp_get_shared_info_from_buff(xdp);
4016 	offset -= size;
4017 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4018 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4019 
4020 		if  (offset < frag_size) {
4021 			addr = skb_frag_address(&sinfo->frags[i]);
4022 			size = frag_size;
4023 			break;
4024 		}
4025 		offset -= frag_size;
4026 	}
4027 out:
4028 	return offset + len <= size ? addr + offset : NULL;
4029 }
4030 
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4031 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4032 	   void *, buf, u32, len)
4033 {
4034 	void *ptr;
4035 
4036 	ptr = bpf_xdp_pointer(xdp, offset, len);
4037 	if (IS_ERR(ptr))
4038 		return PTR_ERR(ptr);
4039 
4040 	if (!ptr)
4041 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4042 	else
4043 		memcpy(buf, ptr, len);
4044 
4045 	return 0;
4046 }
4047 
4048 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4049 	.func		= bpf_xdp_load_bytes,
4050 	.gpl_only	= false,
4051 	.ret_type	= RET_INTEGER,
4052 	.arg1_type	= ARG_PTR_TO_CTX,
4053 	.arg2_type	= ARG_ANYTHING,
4054 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4055 	.arg4_type	= ARG_CONST_SIZE,
4056 };
4057 
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4058 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4059 {
4060 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4061 }
4062 
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4063 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4064 	   void *, buf, u32, len)
4065 {
4066 	void *ptr;
4067 
4068 	ptr = bpf_xdp_pointer(xdp, offset, len);
4069 	if (IS_ERR(ptr))
4070 		return PTR_ERR(ptr);
4071 
4072 	if (!ptr)
4073 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4074 	else
4075 		memcpy(ptr, buf, len);
4076 
4077 	return 0;
4078 }
4079 
4080 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4081 	.func		= bpf_xdp_store_bytes,
4082 	.gpl_only	= false,
4083 	.ret_type	= RET_INTEGER,
4084 	.arg1_type	= ARG_PTR_TO_CTX,
4085 	.arg2_type	= ARG_ANYTHING,
4086 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4087 	.arg4_type	= ARG_CONST_SIZE,
4088 };
4089 
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4090 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4091 {
4092 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4093 }
4094 
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4095 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4096 {
4097 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4098 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4099 	struct xdp_rxq_info *rxq = xdp->rxq;
4100 	unsigned int tailroom;
4101 
4102 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4103 		return -EOPNOTSUPP;
4104 
4105 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4106 	if (unlikely(offset > tailroom))
4107 		return -EINVAL;
4108 
4109 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4110 	skb_frag_size_add(frag, offset);
4111 	sinfo->xdp_frags_size += offset;
4112 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4113 		xsk_buff_get_tail(xdp)->data_end += offset;
4114 
4115 	return 0;
4116 }
4117 
bpf_xdp_shrink_data_zc(struct xdp_buff * xdp,int shrink,struct xdp_mem_info * mem_info,bool release)4118 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4119 				   struct xdp_mem_info *mem_info, bool release)
4120 {
4121 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4122 
4123 	if (release) {
4124 		xsk_buff_del_tail(zc_frag);
4125 		__xdp_return(NULL, mem_info, false, zc_frag);
4126 	} else {
4127 		zc_frag->data_end -= shrink;
4128 	}
4129 }
4130 
bpf_xdp_shrink_data(struct xdp_buff * xdp,skb_frag_t * frag,int shrink)4131 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4132 				int shrink)
4133 {
4134 	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4135 	bool release = skb_frag_size(frag) == shrink;
4136 
4137 	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4138 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4139 		goto out;
4140 	}
4141 
4142 	if (release) {
4143 		struct page *page = skb_frag_page(frag);
4144 
4145 		__xdp_return(page_address(page), mem_info, false, NULL);
4146 	}
4147 
4148 out:
4149 	return release;
4150 }
4151 
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4152 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4153 {
4154 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4155 	int i, n_frags_free = 0, len_free = 0;
4156 
4157 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4158 		return -EINVAL;
4159 
4160 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4161 		skb_frag_t *frag = &sinfo->frags[i];
4162 		int shrink = min_t(int, offset, skb_frag_size(frag));
4163 
4164 		len_free += shrink;
4165 		offset -= shrink;
4166 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4167 			n_frags_free++;
4168 		} else {
4169 			skb_frag_size_sub(frag, shrink);
4170 			break;
4171 		}
4172 	}
4173 	sinfo->nr_frags -= n_frags_free;
4174 	sinfo->xdp_frags_size -= len_free;
4175 
4176 	if (unlikely(!sinfo->nr_frags)) {
4177 		xdp_buff_clear_frags_flag(xdp);
4178 		xdp->data_end -= offset;
4179 	}
4180 
4181 	return 0;
4182 }
4183 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4184 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4185 {
4186 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4187 	void *data_end = xdp->data_end + offset;
4188 
4189 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4190 		if (offset < 0)
4191 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4192 
4193 		return bpf_xdp_frags_increase_tail(xdp, offset);
4194 	}
4195 
4196 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4197 	if (unlikely(data_end > data_hard_end))
4198 		return -EINVAL;
4199 
4200 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4201 		return -EINVAL;
4202 
4203 	/* Clear memory area on grow, can contain uninit kernel memory */
4204 	if (offset > 0)
4205 		memset(xdp->data_end, 0, offset);
4206 
4207 	xdp->data_end = data_end;
4208 
4209 	return 0;
4210 }
4211 
4212 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4213 	.func		= bpf_xdp_adjust_tail,
4214 	.gpl_only	= false,
4215 	.ret_type	= RET_INTEGER,
4216 	.arg1_type	= ARG_PTR_TO_CTX,
4217 	.arg2_type	= ARG_ANYTHING,
4218 };
4219 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4220 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4221 {
4222 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4223 	void *meta = xdp->data_meta + offset;
4224 	unsigned long metalen = xdp->data - meta;
4225 
4226 	if (xdp_data_meta_unsupported(xdp))
4227 		return -ENOTSUPP;
4228 	if (unlikely(meta < xdp_frame_end ||
4229 		     meta > xdp->data))
4230 		return -EINVAL;
4231 	if (unlikely(xdp_metalen_invalid(metalen)))
4232 		return -EACCES;
4233 
4234 	xdp->data_meta = meta;
4235 
4236 	return 0;
4237 }
4238 
4239 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4240 	.func		= bpf_xdp_adjust_meta,
4241 	.gpl_only	= false,
4242 	.ret_type	= RET_INTEGER,
4243 	.arg1_type	= ARG_PTR_TO_CTX,
4244 	.arg2_type	= ARG_ANYTHING,
4245 };
4246 
4247 /**
4248  * DOC: xdp redirect
4249  *
4250  * XDP_REDIRECT works by a three-step process, implemented in the functions
4251  * below:
4252  *
4253  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4254  *    of the redirect and store it (along with some other metadata) in a per-CPU
4255  *    struct bpf_redirect_info.
4256  *
4257  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4258  *    call xdp_do_redirect() which will use the information in struct
4259  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4260  *    bulk queue structure.
4261  *
4262  * 3. Before exiting its NAPI poll loop, the driver will call
4263  *    xdp_do_flush(), which will flush all the different bulk queues,
4264  *    thus completing the redirect. Note that xdp_do_flush() must be
4265  *    called before napi_complete_done() in the driver, as the
4266  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4267  *    through to the xdp_do_flush() call for RCU protection of all
4268  *    in-kernel data structures.
4269  */
4270 /*
4271  * Pointers to the map entries will be kept around for this whole sequence of
4272  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4273  * the core code; instead, the RCU protection relies on everything happening
4274  * inside a single NAPI poll sequence, which means it's between a pair of calls
4275  * to local_bh_disable()/local_bh_enable().
4276  *
4277  * The map entries are marked as __rcu and the map code makes sure to
4278  * dereference those pointers with rcu_dereference_check() in a way that works
4279  * for both sections that to hold an rcu_read_lock() and sections that are
4280  * called from NAPI without a separate rcu_read_lock(). The code below does not
4281  * use RCU annotations, but relies on those in the map code.
4282  */
xdp_do_flush(void)4283 void xdp_do_flush(void)
4284 {
4285 	__dev_flush();
4286 	__cpu_map_flush();
4287 	__xsk_map_flush();
4288 }
4289 EXPORT_SYMBOL_GPL(xdp_do_flush);
4290 
bpf_clear_redirect_map(struct bpf_map * map)4291 void bpf_clear_redirect_map(struct bpf_map *map)
4292 {
4293 	struct bpf_redirect_info *ri;
4294 	int cpu;
4295 
4296 	for_each_possible_cpu(cpu) {
4297 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4298 		/* Avoid polluting remote cacheline due to writes if
4299 		 * not needed. Once we pass this test, we need the
4300 		 * cmpxchg() to make sure it hasn't been changed in
4301 		 * the meantime by remote CPU.
4302 		 */
4303 		if (unlikely(READ_ONCE(ri->map) == map))
4304 			cmpxchg(&ri->map, map, NULL);
4305 	}
4306 }
4307 
4308 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4309 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4310 
xdp_master_redirect(struct xdp_buff * xdp)4311 u32 xdp_master_redirect(struct xdp_buff *xdp)
4312 {
4313 	struct net_device *master, *slave;
4314 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4315 
4316 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4317 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4318 	if (slave && slave != xdp->rxq->dev) {
4319 		/* The target device is different from the receiving device, so
4320 		 * redirect it to the new device.
4321 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4322 		 * drivers to unmap the packet from their rx ring.
4323 		 */
4324 		ri->tgt_index = slave->ifindex;
4325 		ri->map_id = INT_MAX;
4326 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4327 		return XDP_REDIRECT;
4328 	}
4329 	return XDP_TX;
4330 }
4331 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4332 
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4333 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4334 					struct net_device *dev,
4335 					struct xdp_buff *xdp,
4336 					struct bpf_prog *xdp_prog)
4337 {
4338 	enum bpf_map_type map_type = ri->map_type;
4339 	void *fwd = ri->tgt_value;
4340 	u32 map_id = ri->map_id;
4341 	int err;
4342 
4343 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4344 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4345 
4346 	err = __xsk_map_redirect(fwd, xdp);
4347 	if (unlikely(err))
4348 		goto err;
4349 
4350 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4351 	return 0;
4352 err:
4353 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4354 	return err;
4355 }
4356 
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4357 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4358 						   struct net_device *dev,
4359 						   struct xdp_frame *xdpf,
4360 						   struct bpf_prog *xdp_prog)
4361 {
4362 	enum bpf_map_type map_type = ri->map_type;
4363 	void *fwd = ri->tgt_value;
4364 	u32 map_id = ri->map_id;
4365 	u32 flags = ri->flags;
4366 	struct bpf_map *map;
4367 	int err;
4368 
4369 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4370 	ri->flags = 0;
4371 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4372 
4373 	if (unlikely(!xdpf)) {
4374 		err = -EOVERFLOW;
4375 		goto err;
4376 	}
4377 
4378 	switch (map_type) {
4379 	case BPF_MAP_TYPE_DEVMAP:
4380 		fallthrough;
4381 	case BPF_MAP_TYPE_DEVMAP_HASH:
4382 		if (unlikely(flags & BPF_F_BROADCAST)) {
4383 			map = READ_ONCE(ri->map);
4384 
4385 			/* The map pointer is cleared when the map is being torn
4386 			 * down by bpf_clear_redirect_map()
4387 			 */
4388 			if (unlikely(!map)) {
4389 				err = -ENOENT;
4390 				break;
4391 			}
4392 
4393 			WRITE_ONCE(ri->map, NULL);
4394 			err = dev_map_enqueue_multi(xdpf, dev, map,
4395 						    flags & BPF_F_EXCLUDE_INGRESS);
4396 		} else {
4397 			err = dev_map_enqueue(fwd, xdpf, dev);
4398 		}
4399 		break;
4400 	case BPF_MAP_TYPE_CPUMAP:
4401 		err = cpu_map_enqueue(fwd, xdpf, dev);
4402 		break;
4403 	case BPF_MAP_TYPE_UNSPEC:
4404 		if (map_id == INT_MAX) {
4405 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4406 			if (unlikely(!fwd)) {
4407 				err = -EINVAL;
4408 				break;
4409 			}
4410 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4411 			break;
4412 		}
4413 		fallthrough;
4414 	default:
4415 		err = -EBADRQC;
4416 	}
4417 
4418 	if (unlikely(err))
4419 		goto err;
4420 
4421 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4422 	return 0;
4423 err:
4424 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4425 	return err;
4426 }
4427 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4428 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4429 		    struct bpf_prog *xdp_prog)
4430 {
4431 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4432 	enum bpf_map_type map_type = ri->map_type;
4433 
4434 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4435 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4436 
4437 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4438 				       xdp_prog);
4439 }
4440 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4441 
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4442 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4443 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4444 {
4445 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4446 	enum bpf_map_type map_type = ri->map_type;
4447 
4448 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4449 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4450 
4451 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4452 }
4453 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4454 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id,u32 flags)4455 static int xdp_do_generic_redirect_map(struct net_device *dev,
4456 				       struct sk_buff *skb,
4457 				       struct xdp_buff *xdp,
4458 				       struct bpf_prog *xdp_prog, void *fwd,
4459 				       enum bpf_map_type map_type, u32 map_id,
4460 				       u32 flags)
4461 {
4462 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4463 	struct bpf_map *map;
4464 	int err;
4465 
4466 	switch (map_type) {
4467 	case BPF_MAP_TYPE_DEVMAP:
4468 		fallthrough;
4469 	case BPF_MAP_TYPE_DEVMAP_HASH:
4470 		if (unlikely(flags & BPF_F_BROADCAST)) {
4471 			map = READ_ONCE(ri->map);
4472 
4473 			/* The map pointer is cleared when the map is being torn
4474 			 * down by bpf_clear_redirect_map()
4475 			 */
4476 			if (unlikely(!map)) {
4477 				err = -ENOENT;
4478 				break;
4479 			}
4480 
4481 			WRITE_ONCE(ri->map, NULL);
4482 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4483 						     flags & BPF_F_EXCLUDE_INGRESS);
4484 		} else {
4485 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4486 		}
4487 		if (unlikely(err))
4488 			goto err;
4489 		break;
4490 	case BPF_MAP_TYPE_XSKMAP:
4491 		err = xsk_generic_rcv(fwd, xdp);
4492 		if (err)
4493 			goto err;
4494 		consume_skb(skb);
4495 		break;
4496 	case BPF_MAP_TYPE_CPUMAP:
4497 		err = cpu_map_generic_redirect(fwd, skb);
4498 		if (unlikely(err))
4499 			goto err;
4500 		break;
4501 	default:
4502 		err = -EBADRQC;
4503 		goto err;
4504 	}
4505 
4506 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4507 	return 0;
4508 err:
4509 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4510 	return err;
4511 }
4512 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4513 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4514 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4515 {
4516 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4517 	enum bpf_map_type map_type = ri->map_type;
4518 	void *fwd = ri->tgt_value;
4519 	u32 map_id = ri->map_id;
4520 	u32 flags = ri->flags;
4521 	int err;
4522 
4523 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4524 	ri->flags = 0;
4525 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4526 
4527 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4528 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4529 		if (unlikely(!fwd)) {
4530 			err = -EINVAL;
4531 			goto err;
4532 		}
4533 
4534 		err = xdp_ok_fwd_dev(fwd, skb->len);
4535 		if (unlikely(err))
4536 			goto err;
4537 
4538 		skb->dev = fwd;
4539 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4540 		generic_xdp_tx(skb, xdp_prog);
4541 		return 0;
4542 	}
4543 
4544 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id, flags);
4545 err:
4546 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4547 	return err;
4548 }
4549 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4550 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4551 {
4552 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4553 
4554 	if (unlikely(flags))
4555 		return XDP_ABORTED;
4556 
4557 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4558 	 * by map_idr) is used for ifindex based XDP redirect.
4559 	 */
4560 	ri->tgt_index = ifindex;
4561 	ri->map_id = INT_MAX;
4562 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4563 
4564 	return XDP_REDIRECT;
4565 }
4566 
4567 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4568 	.func           = bpf_xdp_redirect,
4569 	.gpl_only       = false,
4570 	.ret_type       = RET_INTEGER,
4571 	.arg1_type      = ARG_ANYTHING,
4572 	.arg2_type      = ARG_ANYTHING,
4573 };
4574 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4575 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4576 	   u64, flags)
4577 {
4578 	return map->ops->map_redirect(map, key, flags);
4579 }
4580 
4581 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4582 	.func           = bpf_xdp_redirect_map,
4583 	.gpl_only       = false,
4584 	.ret_type       = RET_INTEGER,
4585 	.arg1_type      = ARG_CONST_MAP_PTR,
4586 	.arg2_type      = ARG_ANYTHING,
4587 	.arg3_type      = ARG_ANYTHING,
4588 };
4589 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4590 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4591 				  unsigned long off, unsigned long len)
4592 {
4593 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4594 
4595 	if (unlikely(!ptr))
4596 		return len;
4597 	if (ptr != dst_buff)
4598 		memcpy(dst_buff, ptr, len);
4599 
4600 	return 0;
4601 }
4602 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4603 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4604 	   u64, flags, void *, meta, u64, meta_size)
4605 {
4606 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4607 
4608 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4609 		return -EINVAL;
4610 	if (unlikely(!skb || skb_size > skb->len))
4611 		return -EFAULT;
4612 
4613 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4614 				bpf_skb_copy);
4615 }
4616 
4617 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4618 	.func		= bpf_skb_event_output,
4619 	.gpl_only	= true,
4620 	.ret_type	= RET_INTEGER,
4621 	.arg1_type	= ARG_PTR_TO_CTX,
4622 	.arg2_type	= ARG_CONST_MAP_PTR,
4623 	.arg3_type	= ARG_ANYTHING,
4624 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4625 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4626 };
4627 
4628 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4629 
4630 const struct bpf_func_proto bpf_skb_output_proto = {
4631 	.func		= bpf_skb_event_output,
4632 	.gpl_only	= true,
4633 	.ret_type	= RET_INTEGER,
4634 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4635 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4636 	.arg2_type	= ARG_CONST_MAP_PTR,
4637 	.arg3_type	= ARG_ANYTHING,
4638 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4639 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4640 };
4641 
bpf_tunnel_key_af(u64 flags)4642 static unsigned short bpf_tunnel_key_af(u64 flags)
4643 {
4644 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4645 }
4646 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4647 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4648 	   u32, size, u64, flags)
4649 {
4650 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4651 	u8 compat[sizeof(struct bpf_tunnel_key)];
4652 	void *to_orig = to;
4653 	int err;
4654 
4655 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4656 					 BPF_F_TUNINFO_FLAGS)))) {
4657 		err = -EINVAL;
4658 		goto err_clear;
4659 	}
4660 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4661 		err = -EPROTO;
4662 		goto err_clear;
4663 	}
4664 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4665 		err = -EINVAL;
4666 		switch (size) {
4667 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4668 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4669 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4670 			goto set_compat;
4671 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4672 			/* Fixup deprecated structure layouts here, so we have
4673 			 * a common path later on.
4674 			 */
4675 			if (ip_tunnel_info_af(info) != AF_INET)
4676 				goto err_clear;
4677 set_compat:
4678 			to = (struct bpf_tunnel_key *)compat;
4679 			break;
4680 		default:
4681 			goto err_clear;
4682 		}
4683 	}
4684 
4685 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4686 	to->tunnel_tos = info->key.tos;
4687 	to->tunnel_ttl = info->key.ttl;
4688 	if (flags & BPF_F_TUNINFO_FLAGS)
4689 		to->tunnel_flags = info->key.tun_flags;
4690 	else
4691 		to->tunnel_ext = 0;
4692 
4693 	if (flags & BPF_F_TUNINFO_IPV6) {
4694 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4695 		       sizeof(to->remote_ipv6));
4696 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4697 		       sizeof(to->local_ipv6));
4698 		to->tunnel_label = be32_to_cpu(info->key.label);
4699 	} else {
4700 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4701 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4702 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4703 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4704 		to->tunnel_label = 0;
4705 	}
4706 
4707 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4708 		memcpy(to_orig, to, size);
4709 
4710 	return 0;
4711 err_clear:
4712 	memset(to_orig, 0, size);
4713 	return err;
4714 }
4715 
4716 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4717 	.func		= bpf_skb_get_tunnel_key,
4718 	.gpl_only	= false,
4719 	.ret_type	= RET_INTEGER,
4720 	.arg1_type	= ARG_PTR_TO_CTX,
4721 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4722 	.arg3_type	= ARG_CONST_SIZE,
4723 	.arg4_type	= ARG_ANYTHING,
4724 };
4725 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4726 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4727 {
4728 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4729 	int err;
4730 
4731 	if (unlikely(!info ||
4732 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4733 		err = -ENOENT;
4734 		goto err_clear;
4735 	}
4736 	if (unlikely(size < info->options_len)) {
4737 		err = -ENOMEM;
4738 		goto err_clear;
4739 	}
4740 
4741 	ip_tunnel_info_opts_get(to, info);
4742 	if (size > info->options_len)
4743 		memset(to + info->options_len, 0, size - info->options_len);
4744 
4745 	return info->options_len;
4746 err_clear:
4747 	memset(to, 0, size);
4748 	return err;
4749 }
4750 
4751 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4752 	.func		= bpf_skb_get_tunnel_opt,
4753 	.gpl_only	= false,
4754 	.ret_type	= RET_INTEGER,
4755 	.arg1_type	= ARG_PTR_TO_CTX,
4756 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4757 	.arg3_type	= ARG_CONST_SIZE,
4758 };
4759 
4760 static struct metadata_dst __percpu *md_dst;
4761 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4762 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4763 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4764 {
4765 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4766 	u8 compat[sizeof(struct bpf_tunnel_key)];
4767 	struct ip_tunnel_info *info;
4768 
4769 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4770 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4771 			       BPF_F_NO_TUNNEL_KEY)))
4772 		return -EINVAL;
4773 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4774 		switch (size) {
4775 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4776 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4777 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4778 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4779 			/* Fixup deprecated structure layouts here, so we have
4780 			 * a common path later on.
4781 			 */
4782 			memcpy(compat, from, size);
4783 			memset(compat + size, 0, sizeof(compat) - size);
4784 			from = (const struct bpf_tunnel_key *) compat;
4785 			break;
4786 		default:
4787 			return -EINVAL;
4788 		}
4789 	}
4790 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4791 		     from->tunnel_ext))
4792 		return -EINVAL;
4793 
4794 	skb_dst_drop(skb);
4795 	dst_hold((struct dst_entry *) md);
4796 	skb_dst_set(skb, (struct dst_entry *) md);
4797 
4798 	info = &md->u.tun_info;
4799 	memset(info, 0, sizeof(*info));
4800 	info->mode = IP_TUNNEL_INFO_TX;
4801 
4802 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4803 	if (flags & BPF_F_DONT_FRAGMENT)
4804 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4805 	if (flags & BPF_F_ZERO_CSUM_TX)
4806 		info->key.tun_flags &= ~TUNNEL_CSUM;
4807 	if (flags & BPF_F_SEQ_NUMBER)
4808 		info->key.tun_flags |= TUNNEL_SEQ;
4809 	if (flags & BPF_F_NO_TUNNEL_KEY)
4810 		info->key.tun_flags &= ~TUNNEL_KEY;
4811 
4812 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4813 	info->key.tos = from->tunnel_tos;
4814 	info->key.ttl = from->tunnel_ttl;
4815 
4816 	if (flags & BPF_F_TUNINFO_IPV6) {
4817 		info->mode |= IP_TUNNEL_INFO_IPV6;
4818 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4819 		       sizeof(from->remote_ipv6));
4820 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4821 		       sizeof(from->local_ipv6));
4822 		info->key.label = cpu_to_be32(from->tunnel_label) &
4823 				  IPV6_FLOWLABEL_MASK;
4824 	} else {
4825 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4826 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4827 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4828 	}
4829 
4830 	return 0;
4831 }
4832 
4833 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4834 	.func		= bpf_skb_set_tunnel_key,
4835 	.gpl_only	= false,
4836 	.ret_type	= RET_INTEGER,
4837 	.arg1_type	= ARG_PTR_TO_CTX,
4838 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4839 	.arg3_type	= ARG_CONST_SIZE,
4840 	.arg4_type	= ARG_ANYTHING,
4841 };
4842 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4843 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4844 	   const u8 *, from, u32, size)
4845 {
4846 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4847 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4848 
4849 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4850 		return -EINVAL;
4851 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4852 		return -ENOMEM;
4853 
4854 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4855 
4856 	return 0;
4857 }
4858 
4859 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4860 	.func		= bpf_skb_set_tunnel_opt,
4861 	.gpl_only	= false,
4862 	.ret_type	= RET_INTEGER,
4863 	.arg1_type	= ARG_PTR_TO_CTX,
4864 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4865 	.arg3_type	= ARG_CONST_SIZE,
4866 };
4867 
4868 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4869 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4870 {
4871 	if (!md_dst) {
4872 		struct metadata_dst __percpu *tmp;
4873 
4874 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4875 						METADATA_IP_TUNNEL,
4876 						GFP_KERNEL);
4877 		if (!tmp)
4878 			return NULL;
4879 		if (cmpxchg(&md_dst, NULL, tmp))
4880 			metadata_dst_free_percpu(tmp);
4881 	}
4882 
4883 	switch (which) {
4884 	case BPF_FUNC_skb_set_tunnel_key:
4885 		return &bpf_skb_set_tunnel_key_proto;
4886 	case BPF_FUNC_skb_set_tunnel_opt:
4887 		return &bpf_skb_set_tunnel_opt_proto;
4888 	default:
4889 		return NULL;
4890 	}
4891 }
4892 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4893 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4894 	   u32, idx)
4895 {
4896 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4897 	struct cgroup *cgrp;
4898 	struct sock *sk;
4899 
4900 	sk = skb_to_full_sk(skb);
4901 	if (!sk || !sk_fullsock(sk))
4902 		return -ENOENT;
4903 	if (unlikely(idx >= array->map.max_entries))
4904 		return -E2BIG;
4905 
4906 	cgrp = READ_ONCE(array->ptrs[idx]);
4907 	if (unlikely(!cgrp))
4908 		return -EAGAIN;
4909 
4910 	return sk_under_cgroup_hierarchy(sk, cgrp);
4911 }
4912 
4913 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4914 	.func		= bpf_skb_under_cgroup,
4915 	.gpl_only	= false,
4916 	.ret_type	= RET_INTEGER,
4917 	.arg1_type	= ARG_PTR_TO_CTX,
4918 	.arg2_type	= ARG_CONST_MAP_PTR,
4919 	.arg3_type	= ARG_ANYTHING,
4920 };
4921 
4922 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4923 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4924 {
4925 	struct cgroup *cgrp;
4926 
4927 	sk = sk_to_full_sk(sk);
4928 	if (!sk || !sk_fullsock(sk))
4929 		return 0;
4930 
4931 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4932 	return cgroup_id(cgrp);
4933 }
4934 
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4935 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4936 {
4937 	return __bpf_sk_cgroup_id(skb->sk);
4938 }
4939 
4940 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4941 	.func           = bpf_skb_cgroup_id,
4942 	.gpl_only       = false,
4943 	.ret_type       = RET_INTEGER,
4944 	.arg1_type      = ARG_PTR_TO_CTX,
4945 };
4946 
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4947 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4948 					      int ancestor_level)
4949 {
4950 	struct cgroup *ancestor;
4951 	struct cgroup *cgrp;
4952 
4953 	sk = sk_to_full_sk(sk);
4954 	if (!sk || !sk_fullsock(sk))
4955 		return 0;
4956 
4957 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4958 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4959 	if (!ancestor)
4960 		return 0;
4961 
4962 	return cgroup_id(ancestor);
4963 }
4964 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4965 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4966 	   ancestor_level)
4967 {
4968 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4969 }
4970 
4971 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4972 	.func           = bpf_skb_ancestor_cgroup_id,
4973 	.gpl_only       = false,
4974 	.ret_type       = RET_INTEGER,
4975 	.arg1_type      = ARG_PTR_TO_CTX,
4976 	.arg2_type      = ARG_ANYTHING,
4977 };
4978 
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4979 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4980 {
4981 	return __bpf_sk_cgroup_id(sk);
4982 }
4983 
4984 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4985 	.func           = bpf_sk_cgroup_id,
4986 	.gpl_only       = false,
4987 	.ret_type       = RET_INTEGER,
4988 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4989 };
4990 
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4991 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4992 {
4993 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4994 }
4995 
4996 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4997 	.func           = bpf_sk_ancestor_cgroup_id,
4998 	.gpl_only       = false,
4999 	.ret_type       = RET_INTEGER,
5000 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5001 	.arg2_type      = ARG_ANYTHING,
5002 };
5003 #endif
5004 
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)5005 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
5006 				  unsigned long off, unsigned long len)
5007 {
5008 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
5009 
5010 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
5011 	return 0;
5012 }
5013 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)5014 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
5015 	   u64, flags, void *, meta, u64, meta_size)
5016 {
5017 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
5018 
5019 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
5020 		return -EINVAL;
5021 
5022 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
5023 		return -EFAULT;
5024 
5025 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5026 				xdp_size, bpf_xdp_copy);
5027 }
5028 
5029 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5030 	.func		= bpf_xdp_event_output,
5031 	.gpl_only	= true,
5032 	.ret_type	= RET_INTEGER,
5033 	.arg1_type	= ARG_PTR_TO_CTX,
5034 	.arg2_type	= ARG_CONST_MAP_PTR,
5035 	.arg3_type	= ARG_ANYTHING,
5036 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5037 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5038 };
5039 
5040 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5041 
5042 const struct bpf_func_proto bpf_xdp_output_proto = {
5043 	.func		= bpf_xdp_event_output,
5044 	.gpl_only	= true,
5045 	.ret_type	= RET_INTEGER,
5046 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5047 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5048 	.arg2_type	= ARG_CONST_MAP_PTR,
5049 	.arg3_type	= ARG_ANYTHING,
5050 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5051 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5052 };
5053 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)5054 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5055 {
5056 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5057 }
5058 
5059 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5060 	.func           = bpf_get_socket_cookie,
5061 	.gpl_only       = false,
5062 	.ret_type       = RET_INTEGER,
5063 	.arg1_type      = ARG_PTR_TO_CTX,
5064 };
5065 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5066 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5067 {
5068 	return __sock_gen_cookie(ctx->sk);
5069 }
5070 
5071 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5072 	.func		= bpf_get_socket_cookie_sock_addr,
5073 	.gpl_only	= false,
5074 	.ret_type	= RET_INTEGER,
5075 	.arg1_type	= ARG_PTR_TO_CTX,
5076 };
5077 
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)5078 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5079 {
5080 	return __sock_gen_cookie(ctx);
5081 }
5082 
5083 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5084 	.func		= bpf_get_socket_cookie_sock,
5085 	.gpl_only	= false,
5086 	.ret_type	= RET_INTEGER,
5087 	.arg1_type	= ARG_PTR_TO_CTX,
5088 };
5089 
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)5090 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5091 {
5092 	return sk ? sock_gen_cookie(sk) : 0;
5093 }
5094 
5095 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5096 	.func		= bpf_get_socket_ptr_cookie,
5097 	.gpl_only	= false,
5098 	.ret_type	= RET_INTEGER,
5099 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5100 };
5101 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5102 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5103 {
5104 	return __sock_gen_cookie(ctx->sk);
5105 }
5106 
5107 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5108 	.func		= bpf_get_socket_cookie_sock_ops,
5109 	.gpl_only	= false,
5110 	.ret_type	= RET_INTEGER,
5111 	.arg1_type	= ARG_PTR_TO_CTX,
5112 };
5113 
__bpf_get_netns_cookie(struct sock * sk)5114 static u64 __bpf_get_netns_cookie(struct sock *sk)
5115 {
5116 	const struct net *net = sk ? sock_net(sk) : &init_net;
5117 
5118 	return net->net_cookie;
5119 }
5120 
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5121 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5122 {
5123 	return __bpf_get_netns_cookie(ctx);
5124 }
5125 
5126 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5127 	.func		= bpf_get_netns_cookie_sock,
5128 	.gpl_only	= false,
5129 	.ret_type	= RET_INTEGER,
5130 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5131 };
5132 
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5133 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5134 {
5135 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5136 }
5137 
5138 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5139 	.func		= bpf_get_netns_cookie_sock_addr,
5140 	.gpl_only	= false,
5141 	.ret_type	= RET_INTEGER,
5142 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5143 };
5144 
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5145 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5146 {
5147 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5148 }
5149 
5150 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5151 	.func		= bpf_get_netns_cookie_sock_ops,
5152 	.gpl_only	= false,
5153 	.ret_type	= RET_INTEGER,
5154 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5155 };
5156 
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5157 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5158 {
5159 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5160 }
5161 
5162 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5163 	.func		= bpf_get_netns_cookie_sk_msg,
5164 	.gpl_only	= false,
5165 	.ret_type	= RET_INTEGER,
5166 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5167 };
5168 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5169 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5170 {
5171 	struct sock *sk = sk_to_full_sk(skb->sk);
5172 	kuid_t kuid;
5173 
5174 	if (!sk || !sk_fullsock(sk))
5175 		return overflowuid;
5176 	kuid = sock_net_uid(sock_net(sk), sk);
5177 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5178 }
5179 
5180 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5181 	.func           = bpf_get_socket_uid,
5182 	.gpl_only       = false,
5183 	.ret_type       = RET_INTEGER,
5184 	.arg1_type      = ARG_PTR_TO_CTX,
5185 };
5186 
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5187 static int sol_socket_sockopt(struct sock *sk, int optname,
5188 			      char *optval, int *optlen,
5189 			      bool getopt)
5190 {
5191 	switch (optname) {
5192 	case SO_REUSEADDR:
5193 	case SO_SNDBUF:
5194 	case SO_RCVBUF:
5195 	case SO_KEEPALIVE:
5196 	case SO_PRIORITY:
5197 	case SO_REUSEPORT:
5198 	case SO_RCVLOWAT:
5199 	case SO_MARK:
5200 	case SO_MAX_PACING_RATE:
5201 	case SO_BINDTOIFINDEX:
5202 	case SO_TXREHASH:
5203 		if (*optlen != sizeof(int))
5204 			return -EINVAL;
5205 		break;
5206 	case SO_BINDTODEVICE:
5207 		break;
5208 	default:
5209 		return -EINVAL;
5210 	}
5211 
5212 	if (getopt) {
5213 		if (optname == SO_BINDTODEVICE)
5214 			return -EINVAL;
5215 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5216 				     KERNEL_SOCKPTR(optval),
5217 				     KERNEL_SOCKPTR(optlen));
5218 	}
5219 
5220 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5221 			     KERNEL_SOCKPTR(optval), *optlen);
5222 }
5223 
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5224 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5225 				  char *optval, int optlen)
5226 {
5227 	struct tcp_sock *tp = tcp_sk(sk);
5228 	unsigned long timeout;
5229 	int val;
5230 
5231 	if (optlen != sizeof(int))
5232 		return -EINVAL;
5233 
5234 	val = *(int *)optval;
5235 
5236 	/* Only some options are supported */
5237 	switch (optname) {
5238 	case TCP_BPF_IW:
5239 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5240 			return -EINVAL;
5241 		tcp_snd_cwnd_set(tp, val);
5242 		break;
5243 	case TCP_BPF_SNDCWND_CLAMP:
5244 		if (val <= 0)
5245 			return -EINVAL;
5246 		tp->snd_cwnd_clamp = val;
5247 		tp->snd_ssthresh = val;
5248 		break;
5249 	case TCP_BPF_DELACK_MAX:
5250 		timeout = usecs_to_jiffies(val);
5251 		if (timeout > TCP_DELACK_MAX ||
5252 		    timeout < TCP_TIMEOUT_MIN)
5253 			return -EINVAL;
5254 		inet_csk(sk)->icsk_delack_max = timeout;
5255 		break;
5256 	case TCP_BPF_RTO_MIN:
5257 		timeout = usecs_to_jiffies(val);
5258 		if (timeout > TCP_RTO_MIN ||
5259 		    timeout < TCP_TIMEOUT_MIN)
5260 			return -EINVAL;
5261 		inet_csk(sk)->icsk_rto_min = timeout;
5262 		break;
5263 	default:
5264 		return -EINVAL;
5265 	}
5266 
5267 	return 0;
5268 }
5269 
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5270 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5271 				      int *optlen, bool getopt)
5272 {
5273 	struct tcp_sock *tp;
5274 	int ret;
5275 
5276 	if (*optlen < 2)
5277 		return -EINVAL;
5278 
5279 	if (getopt) {
5280 		if (!inet_csk(sk)->icsk_ca_ops)
5281 			return -EINVAL;
5282 		/* BPF expects NULL-terminated tcp-cc string */
5283 		optval[--(*optlen)] = '\0';
5284 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5285 					 KERNEL_SOCKPTR(optval),
5286 					 KERNEL_SOCKPTR(optlen));
5287 	}
5288 
5289 	/* "cdg" is the only cc that alloc a ptr
5290 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5291 	 * overwrite this ptr after switching to cdg.
5292 	 */
5293 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5294 		return -ENOTSUPP;
5295 
5296 	/* It stops this looping
5297 	 *
5298 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5299 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5300 	 *
5301 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5302 	 * in order to break the loop when both .init
5303 	 * are the same bpf prog.
5304 	 *
5305 	 * This applies even the second bpf_setsockopt(tcp_cc)
5306 	 * does not cause a loop.  This limits only the first
5307 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5308 	 * pick a fallback cc (eg. peer does not support ECN)
5309 	 * and the second '.init' cannot fallback to
5310 	 * another.
5311 	 */
5312 	tp = tcp_sk(sk);
5313 	if (tp->bpf_chg_cc_inprogress)
5314 		return -EBUSY;
5315 
5316 	tp->bpf_chg_cc_inprogress = 1;
5317 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5318 				KERNEL_SOCKPTR(optval), *optlen);
5319 	tp->bpf_chg_cc_inprogress = 0;
5320 	return ret;
5321 }
5322 
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5323 static int sol_tcp_sockopt(struct sock *sk, int optname,
5324 			   char *optval, int *optlen,
5325 			   bool getopt)
5326 {
5327 	if (sk->sk_protocol != IPPROTO_TCP)
5328 		return -EINVAL;
5329 
5330 	switch (optname) {
5331 	case TCP_NODELAY:
5332 	case TCP_MAXSEG:
5333 	case TCP_KEEPIDLE:
5334 	case TCP_KEEPINTVL:
5335 	case TCP_KEEPCNT:
5336 	case TCP_SYNCNT:
5337 	case TCP_WINDOW_CLAMP:
5338 	case TCP_THIN_LINEAR_TIMEOUTS:
5339 	case TCP_USER_TIMEOUT:
5340 	case TCP_NOTSENT_LOWAT:
5341 	case TCP_SAVE_SYN:
5342 		if (*optlen != sizeof(int))
5343 			return -EINVAL;
5344 		break;
5345 	case TCP_CONGESTION:
5346 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5347 	case TCP_SAVED_SYN:
5348 		if (*optlen < 1)
5349 			return -EINVAL;
5350 		break;
5351 	default:
5352 		if (getopt)
5353 			return -EINVAL;
5354 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5355 	}
5356 
5357 	if (getopt) {
5358 		if (optname == TCP_SAVED_SYN) {
5359 			struct tcp_sock *tp = tcp_sk(sk);
5360 
5361 			if (!tp->saved_syn ||
5362 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5363 				return -EINVAL;
5364 			memcpy(optval, tp->saved_syn->data, *optlen);
5365 			/* It cannot free tp->saved_syn here because it
5366 			 * does not know if the user space still needs it.
5367 			 */
5368 			return 0;
5369 		}
5370 
5371 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5372 					 KERNEL_SOCKPTR(optval),
5373 					 KERNEL_SOCKPTR(optlen));
5374 	}
5375 
5376 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5377 				 KERNEL_SOCKPTR(optval), *optlen);
5378 }
5379 
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5380 static int sol_ip_sockopt(struct sock *sk, int optname,
5381 			  char *optval, int *optlen,
5382 			  bool getopt)
5383 {
5384 	if (sk->sk_family != AF_INET)
5385 		return -EINVAL;
5386 
5387 	switch (optname) {
5388 	case IP_TOS:
5389 		if (*optlen != sizeof(int))
5390 			return -EINVAL;
5391 		break;
5392 	default:
5393 		return -EINVAL;
5394 	}
5395 
5396 	if (getopt)
5397 		return do_ip_getsockopt(sk, SOL_IP, optname,
5398 					KERNEL_SOCKPTR(optval),
5399 					KERNEL_SOCKPTR(optlen));
5400 
5401 	return do_ip_setsockopt(sk, SOL_IP, optname,
5402 				KERNEL_SOCKPTR(optval), *optlen);
5403 }
5404 
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5405 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5406 			    char *optval, int *optlen,
5407 			    bool getopt)
5408 {
5409 	if (sk->sk_family != AF_INET6)
5410 		return -EINVAL;
5411 
5412 	switch (optname) {
5413 	case IPV6_TCLASS:
5414 	case IPV6_AUTOFLOWLABEL:
5415 		if (*optlen != sizeof(int))
5416 			return -EINVAL;
5417 		break;
5418 	default:
5419 		return -EINVAL;
5420 	}
5421 
5422 	if (getopt)
5423 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5424 						      KERNEL_SOCKPTR(optval),
5425 						      KERNEL_SOCKPTR(optlen));
5426 
5427 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5428 					      KERNEL_SOCKPTR(optval), *optlen);
5429 }
5430 
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5431 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5432 			    char *optval, int optlen)
5433 {
5434 	if (!sk_fullsock(sk))
5435 		return -EINVAL;
5436 
5437 	if (level == SOL_SOCKET)
5438 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5439 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5440 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5441 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5442 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5443 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5444 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5445 
5446 	return -EINVAL;
5447 }
5448 
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5449 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5450 			   char *optval, int optlen)
5451 {
5452 	if (sk_fullsock(sk))
5453 		sock_owned_by_me(sk);
5454 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5455 }
5456 
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5457 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5458 			    char *optval, int optlen)
5459 {
5460 	int err, saved_optlen = optlen;
5461 
5462 	if (!sk_fullsock(sk)) {
5463 		err = -EINVAL;
5464 		goto done;
5465 	}
5466 
5467 	if (level == SOL_SOCKET)
5468 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5469 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5470 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5471 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5472 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5473 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5474 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5475 	else
5476 		err = -EINVAL;
5477 
5478 done:
5479 	if (err)
5480 		optlen = 0;
5481 	if (optlen < saved_optlen)
5482 		memset(optval + optlen, 0, saved_optlen - optlen);
5483 	return err;
5484 }
5485 
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5486 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5487 			   char *optval, int optlen)
5488 {
5489 	if (sk_fullsock(sk))
5490 		sock_owned_by_me(sk);
5491 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5492 }
5493 
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5494 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5495 	   int, optname, char *, optval, int, optlen)
5496 {
5497 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5498 }
5499 
5500 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5501 	.func		= bpf_sk_setsockopt,
5502 	.gpl_only	= false,
5503 	.ret_type	= RET_INTEGER,
5504 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5505 	.arg2_type	= ARG_ANYTHING,
5506 	.arg3_type	= ARG_ANYTHING,
5507 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5508 	.arg5_type	= ARG_CONST_SIZE,
5509 };
5510 
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5511 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5512 	   int, optname, char *, optval, int, optlen)
5513 {
5514 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5515 }
5516 
5517 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5518 	.func		= bpf_sk_getsockopt,
5519 	.gpl_only	= false,
5520 	.ret_type	= RET_INTEGER,
5521 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5522 	.arg2_type	= ARG_ANYTHING,
5523 	.arg3_type	= ARG_ANYTHING,
5524 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5525 	.arg5_type	= ARG_CONST_SIZE,
5526 };
5527 
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5528 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5529 	   int, optname, char *, optval, int, optlen)
5530 {
5531 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5532 }
5533 
5534 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5535 	.func		= bpf_unlocked_sk_setsockopt,
5536 	.gpl_only	= false,
5537 	.ret_type	= RET_INTEGER,
5538 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5539 	.arg2_type	= ARG_ANYTHING,
5540 	.arg3_type	= ARG_ANYTHING,
5541 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5542 	.arg5_type	= ARG_CONST_SIZE,
5543 };
5544 
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5545 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5546 	   int, optname, char *, optval, int, optlen)
5547 {
5548 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5549 }
5550 
5551 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5552 	.func		= bpf_unlocked_sk_getsockopt,
5553 	.gpl_only	= false,
5554 	.ret_type	= RET_INTEGER,
5555 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5556 	.arg2_type	= ARG_ANYTHING,
5557 	.arg3_type	= ARG_ANYTHING,
5558 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5559 	.arg5_type	= ARG_CONST_SIZE,
5560 };
5561 
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5562 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5563 	   int, level, int, optname, char *, optval, int, optlen)
5564 {
5565 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5566 }
5567 
5568 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5569 	.func		= bpf_sock_addr_setsockopt,
5570 	.gpl_only	= false,
5571 	.ret_type	= RET_INTEGER,
5572 	.arg1_type	= ARG_PTR_TO_CTX,
5573 	.arg2_type	= ARG_ANYTHING,
5574 	.arg3_type	= ARG_ANYTHING,
5575 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5576 	.arg5_type	= ARG_CONST_SIZE,
5577 };
5578 
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5579 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5580 	   int, level, int, optname, char *, optval, int, optlen)
5581 {
5582 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5583 }
5584 
5585 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5586 	.func		= bpf_sock_addr_getsockopt,
5587 	.gpl_only	= false,
5588 	.ret_type	= RET_INTEGER,
5589 	.arg1_type	= ARG_PTR_TO_CTX,
5590 	.arg2_type	= ARG_ANYTHING,
5591 	.arg3_type	= ARG_ANYTHING,
5592 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5593 	.arg5_type	= ARG_CONST_SIZE,
5594 };
5595 
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5596 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5597 	   int, level, int, optname, char *, optval, int, optlen)
5598 {
5599 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5600 }
5601 
5602 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5603 	.func		= bpf_sock_ops_setsockopt,
5604 	.gpl_only	= false,
5605 	.ret_type	= RET_INTEGER,
5606 	.arg1_type	= ARG_PTR_TO_CTX,
5607 	.arg2_type	= ARG_ANYTHING,
5608 	.arg3_type	= ARG_ANYTHING,
5609 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5610 	.arg5_type	= ARG_CONST_SIZE,
5611 };
5612 
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5613 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5614 				int optname, const u8 **start)
5615 {
5616 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5617 	const u8 *hdr_start;
5618 	int ret;
5619 
5620 	if (syn_skb) {
5621 		/* sk is a request_sock here */
5622 
5623 		if (optname == TCP_BPF_SYN) {
5624 			hdr_start = syn_skb->data;
5625 			ret = tcp_hdrlen(syn_skb);
5626 		} else if (optname == TCP_BPF_SYN_IP) {
5627 			hdr_start = skb_network_header(syn_skb);
5628 			ret = skb_network_header_len(syn_skb) +
5629 				tcp_hdrlen(syn_skb);
5630 		} else {
5631 			/* optname == TCP_BPF_SYN_MAC */
5632 			hdr_start = skb_mac_header(syn_skb);
5633 			ret = skb_mac_header_len(syn_skb) +
5634 				skb_network_header_len(syn_skb) +
5635 				tcp_hdrlen(syn_skb);
5636 		}
5637 	} else {
5638 		struct sock *sk = bpf_sock->sk;
5639 		struct saved_syn *saved_syn;
5640 
5641 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5642 			/* synack retransmit. bpf_sock->syn_skb will
5643 			 * not be available.  It has to resort to
5644 			 * saved_syn (if it is saved).
5645 			 */
5646 			saved_syn = inet_reqsk(sk)->saved_syn;
5647 		else
5648 			saved_syn = tcp_sk(sk)->saved_syn;
5649 
5650 		if (!saved_syn)
5651 			return -ENOENT;
5652 
5653 		if (optname == TCP_BPF_SYN) {
5654 			hdr_start = saved_syn->data +
5655 				saved_syn->mac_hdrlen +
5656 				saved_syn->network_hdrlen;
5657 			ret = saved_syn->tcp_hdrlen;
5658 		} else if (optname == TCP_BPF_SYN_IP) {
5659 			hdr_start = saved_syn->data +
5660 				saved_syn->mac_hdrlen;
5661 			ret = saved_syn->network_hdrlen +
5662 				saved_syn->tcp_hdrlen;
5663 		} else {
5664 			/* optname == TCP_BPF_SYN_MAC */
5665 
5666 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5667 			if (!saved_syn->mac_hdrlen)
5668 				return -ENOENT;
5669 
5670 			hdr_start = saved_syn->data;
5671 			ret = saved_syn->mac_hdrlen +
5672 				saved_syn->network_hdrlen +
5673 				saved_syn->tcp_hdrlen;
5674 		}
5675 	}
5676 
5677 	*start = hdr_start;
5678 	return ret;
5679 }
5680 
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5681 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5682 	   int, level, int, optname, char *, optval, int, optlen)
5683 {
5684 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5685 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5686 		int ret, copy_len = 0;
5687 		const u8 *start;
5688 
5689 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5690 		if (ret > 0) {
5691 			copy_len = ret;
5692 			if (optlen < copy_len) {
5693 				copy_len = optlen;
5694 				ret = -ENOSPC;
5695 			}
5696 
5697 			memcpy(optval, start, copy_len);
5698 		}
5699 
5700 		/* Zero out unused buffer at the end */
5701 		memset(optval + copy_len, 0, optlen - copy_len);
5702 
5703 		return ret;
5704 	}
5705 
5706 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5707 }
5708 
5709 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5710 	.func		= bpf_sock_ops_getsockopt,
5711 	.gpl_only	= false,
5712 	.ret_type	= RET_INTEGER,
5713 	.arg1_type	= ARG_PTR_TO_CTX,
5714 	.arg2_type	= ARG_ANYTHING,
5715 	.arg3_type	= ARG_ANYTHING,
5716 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5717 	.arg5_type	= ARG_CONST_SIZE,
5718 };
5719 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5720 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5721 	   int, argval)
5722 {
5723 	struct sock *sk = bpf_sock->sk;
5724 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5725 
5726 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5727 		return -EINVAL;
5728 
5729 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5730 
5731 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5732 }
5733 
5734 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5735 	.func		= bpf_sock_ops_cb_flags_set,
5736 	.gpl_only	= false,
5737 	.ret_type	= RET_INTEGER,
5738 	.arg1_type	= ARG_PTR_TO_CTX,
5739 	.arg2_type	= ARG_ANYTHING,
5740 };
5741 
5742 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5743 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5744 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5745 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5746 	   int, addr_len)
5747 {
5748 #ifdef CONFIG_INET
5749 	struct sock *sk = ctx->sk;
5750 	u32 flags = BIND_FROM_BPF;
5751 	int err;
5752 
5753 	err = -EINVAL;
5754 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5755 		return err;
5756 	if (addr->sa_family == AF_INET) {
5757 		if (addr_len < sizeof(struct sockaddr_in))
5758 			return err;
5759 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5760 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5761 		return __inet_bind(sk, addr, addr_len, flags);
5762 #if IS_ENABLED(CONFIG_IPV6)
5763 	} else if (addr->sa_family == AF_INET6) {
5764 		if (addr_len < SIN6_LEN_RFC2133)
5765 			return err;
5766 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5767 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5768 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5769 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5770 		 */
5771 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5772 #endif /* CONFIG_IPV6 */
5773 	}
5774 #endif /* CONFIG_INET */
5775 
5776 	return -EAFNOSUPPORT;
5777 }
5778 
5779 static const struct bpf_func_proto bpf_bind_proto = {
5780 	.func		= bpf_bind,
5781 	.gpl_only	= false,
5782 	.ret_type	= RET_INTEGER,
5783 	.arg1_type	= ARG_PTR_TO_CTX,
5784 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5785 	.arg3_type	= ARG_CONST_SIZE,
5786 };
5787 
5788 #ifdef CONFIG_XFRM
5789 
5790 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5791     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5792 
5793 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5794 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5795 
5796 #endif
5797 
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5798 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5799 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5800 {
5801 	const struct sec_path *sp = skb_sec_path(skb);
5802 	const struct xfrm_state *x;
5803 
5804 	if (!sp || unlikely(index >= sp->len || flags))
5805 		goto err_clear;
5806 
5807 	x = sp->xvec[index];
5808 
5809 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5810 		goto err_clear;
5811 
5812 	to->reqid = x->props.reqid;
5813 	to->spi = x->id.spi;
5814 	to->family = x->props.family;
5815 	to->ext = 0;
5816 
5817 	if (to->family == AF_INET6) {
5818 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5819 		       sizeof(to->remote_ipv6));
5820 	} else {
5821 		to->remote_ipv4 = x->props.saddr.a4;
5822 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5823 	}
5824 
5825 	return 0;
5826 err_clear:
5827 	memset(to, 0, size);
5828 	return -EINVAL;
5829 }
5830 
5831 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5832 	.func		= bpf_skb_get_xfrm_state,
5833 	.gpl_only	= false,
5834 	.ret_type	= RET_INTEGER,
5835 	.arg1_type	= ARG_PTR_TO_CTX,
5836 	.arg2_type	= ARG_ANYTHING,
5837 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5838 	.arg4_type	= ARG_CONST_SIZE,
5839 	.arg5_type	= ARG_ANYTHING,
5840 };
5841 #endif
5842 
5843 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5844 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5845 {
5846 	params->h_vlan_TCI = 0;
5847 	params->h_vlan_proto = 0;
5848 	if (mtu)
5849 		params->mtu_result = mtu; /* union with tot_len */
5850 
5851 	return 0;
5852 }
5853 #endif
5854 
5855 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5856 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5857 			       u32 flags, bool check_mtu)
5858 {
5859 	struct fib_nh_common *nhc;
5860 	struct in_device *in_dev;
5861 	struct neighbour *neigh;
5862 	struct net_device *dev;
5863 	struct fib_result res;
5864 	struct flowi4 fl4;
5865 	u32 mtu = 0;
5866 	int err;
5867 
5868 	dev = dev_get_by_index_rcu(net, params->ifindex);
5869 	if (unlikely(!dev))
5870 		return -ENODEV;
5871 
5872 	/* verify forwarding is enabled on this interface */
5873 	in_dev = __in_dev_get_rcu(dev);
5874 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5875 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5876 
5877 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5878 		fl4.flowi4_iif = 1;
5879 		fl4.flowi4_oif = params->ifindex;
5880 	} else {
5881 		fl4.flowi4_iif = params->ifindex;
5882 		fl4.flowi4_oif = 0;
5883 	}
5884 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5885 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5886 	fl4.flowi4_flags = 0;
5887 
5888 	fl4.flowi4_proto = params->l4_protocol;
5889 	fl4.daddr = params->ipv4_dst;
5890 	fl4.saddr = params->ipv4_src;
5891 	fl4.fl4_sport = params->sport;
5892 	fl4.fl4_dport = params->dport;
5893 	fl4.flowi4_multipath_hash = 0;
5894 
5895 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5896 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5897 		struct fib_table *tb;
5898 
5899 		if (flags & BPF_FIB_LOOKUP_TBID) {
5900 			tbid = params->tbid;
5901 			/* zero out for vlan output */
5902 			params->tbid = 0;
5903 		}
5904 
5905 		tb = fib_get_table(net, tbid);
5906 		if (unlikely(!tb))
5907 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5908 
5909 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5910 	} else {
5911 		fl4.flowi4_mark = 0;
5912 		fl4.flowi4_secid = 0;
5913 		fl4.flowi4_tun_key.tun_id = 0;
5914 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5915 
5916 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5917 	}
5918 
5919 	if (err) {
5920 		/* map fib lookup errors to RTN_ type */
5921 		if (err == -EINVAL)
5922 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5923 		if (err == -EHOSTUNREACH)
5924 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5925 		if (err == -EACCES)
5926 			return BPF_FIB_LKUP_RET_PROHIBIT;
5927 
5928 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5929 	}
5930 
5931 	if (res.type != RTN_UNICAST)
5932 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5933 
5934 	if (fib_info_num_path(res.fi) > 1)
5935 		fib_select_path(net, &res, &fl4, NULL);
5936 
5937 	if (check_mtu) {
5938 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5939 		if (params->tot_len > mtu) {
5940 			params->mtu_result = mtu; /* union with tot_len */
5941 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5942 		}
5943 	}
5944 
5945 	nhc = res.nhc;
5946 
5947 	/* do not handle lwt encaps right now */
5948 	if (nhc->nhc_lwtstate)
5949 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5950 
5951 	dev = nhc->nhc_dev;
5952 
5953 	params->rt_metric = res.fi->fib_priority;
5954 	params->ifindex = dev->ifindex;
5955 
5956 	if (flags & BPF_FIB_LOOKUP_SRC)
5957 		params->ipv4_src = fib_result_prefsrc(net, &res);
5958 
5959 	/* xdp and cls_bpf programs are run in RCU-bh so
5960 	 * rcu_read_lock_bh is not needed here
5961 	 */
5962 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5963 		if (nhc->nhc_gw_family)
5964 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5965 	} else {
5966 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5967 
5968 		params->family = AF_INET6;
5969 		*dst = nhc->nhc_gw.ipv6;
5970 	}
5971 
5972 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5973 		goto set_fwd_params;
5974 
5975 	if (likely(nhc->nhc_gw_family != AF_INET6))
5976 		neigh = __ipv4_neigh_lookup_noref(dev,
5977 						  (__force u32)params->ipv4_dst);
5978 	else
5979 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5980 
5981 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5982 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5983 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5984 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5985 
5986 set_fwd_params:
5987 	return bpf_fib_set_fwd_params(params, mtu);
5988 }
5989 #endif
5990 
5991 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5992 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5993 			       u32 flags, bool check_mtu)
5994 {
5995 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5996 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5997 	struct fib6_result res = {};
5998 	struct neighbour *neigh;
5999 	struct net_device *dev;
6000 	struct inet6_dev *idev;
6001 	struct flowi6 fl6;
6002 	int strict = 0;
6003 	int oif, err;
6004 	u32 mtu = 0;
6005 
6006 	/* link local addresses are never forwarded */
6007 	if (rt6_need_strict(dst) || rt6_need_strict(src))
6008 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6009 
6010 	dev = dev_get_by_index_rcu(net, params->ifindex);
6011 	if (unlikely(!dev))
6012 		return -ENODEV;
6013 
6014 	idev = __in6_dev_get_safely(dev);
6015 	if (unlikely(!idev || !idev->cnf.forwarding))
6016 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
6017 
6018 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
6019 		fl6.flowi6_iif = 1;
6020 		oif = fl6.flowi6_oif = params->ifindex;
6021 	} else {
6022 		oif = fl6.flowi6_iif = params->ifindex;
6023 		fl6.flowi6_oif = 0;
6024 		strict = RT6_LOOKUP_F_HAS_SADDR;
6025 	}
6026 	fl6.flowlabel = params->flowinfo;
6027 	fl6.flowi6_scope = 0;
6028 	fl6.flowi6_flags = 0;
6029 	fl6.mp_hash = 0;
6030 
6031 	fl6.flowi6_proto = params->l4_protocol;
6032 	fl6.daddr = *dst;
6033 	fl6.saddr = *src;
6034 	fl6.fl6_sport = params->sport;
6035 	fl6.fl6_dport = params->dport;
6036 
6037 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6038 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6039 		struct fib6_table *tb;
6040 
6041 		if (flags & BPF_FIB_LOOKUP_TBID) {
6042 			tbid = params->tbid;
6043 			/* zero out for vlan output */
6044 			params->tbid = 0;
6045 		}
6046 
6047 		tb = ipv6_stub->fib6_get_table(net, tbid);
6048 		if (unlikely(!tb))
6049 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6050 
6051 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6052 						   strict);
6053 	} else {
6054 		fl6.flowi6_mark = 0;
6055 		fl6.flowi6_secid = 0;
6056 		fl6.flowi6_tun_key.tun_id = 0;
6057 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6058 
6059 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6060 	}
6061 
6062 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6063 		     res.f6i == net->ipv6.fib6_null_entry))
6064 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6065 
6066 	switch (res.fib6_type) {
6067 	/* only unicast is forwarded */
6068 	case RTN_UNICAST:
6069 		break;
6070 	case RTN_BLACKHOLE:
6071 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6072 	case RTN_UNREACHABLE:
6073 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6074 	case RTN_PROHIBIT:
6075 		return BPF_FIB_LKUP_RET_PROHIBIT;
6076 	default:
6077 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6078 	}
6079 
6080 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6081 				    fl6.flowi6_oif != 0, NULL, strict);
6082 
6083 	if (check_mtu) {
6084 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6085 		if (params->tot_len > mtu) {
6086 			params->mtu_result = mtu; /* union with tot_len */
6087 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6088 		}
6089 	}
6090 
6091 	if (res.nh->fib_nh_lws)
6092 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6093 
6094 	if (res.nh->fib_nh_gw_family)
6095 		*dst = res.nh->fib_nh_gw6;
6096 
6097 	dev = res.nh->fib_nh_dev;
6098 	params->rt_metric = res.f6i->fib6_metric;
6099 	params->ifindex = dev->ifindex;
6100 
6101 	if (flags & BPF_FIB_LOOKUP_SRC) {
6102 		if (res.f6i->fib6_prefsrc.plen) {
6103 			*src = res.f6i->fib6_prefsrc.addr;
6104 		} else {
6105 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6106 								&fl6.daddr, 0,
6107 								src);
6108 			if (err)
6109 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6110 		}
6111 	}
6112 
6113 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6114 		goto set_fwd_params;
6115 
6116 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6117 	 * not needed here.
6118 	 */
6119 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6120 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6121 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6122 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6123 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6124 
6125 set_fwd_params:
6126 	return bpf_fib_set_fwd_params(params, mtu);
6127 }
6128 #endif
6129 
6130 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6131 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6132 			     BPF_FIB_LOOKUP_SRC)
6133 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6134 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6135 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6136 {
6137 	if (plen < sizeof(*params))
6138 		return -EINVAL;
6139 
6140 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6141 		return -EINVAL;
6142 
6143 	switch (params->family) {
6144 #if IS_ENABLED(CONFIG_INET)
6145 	case AF_INET:
6146 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6147 					   flags, true);
6148 #endif
6149 #if IS_ENABLED(CONFIG_IPV6)
6150 	case AF_INET6:
6151 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6152 					   flags, true);
6153 #endif
6154 	}
6155 	return -EAFNOSUPPORT;
6156 }
6157 
6158 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6159 	.func		= bpf_xdp_fib_lookup,
6160 	.gpl_only	= true,
6161 	.ret_type	= RET_INTEGER,
6162 	.arg1_type      = ARG_PTR_TO_CTX,
6163 	.arg2_type      = ARG_PTR_TO_MEM,
6164 	.arg3_type      = ARG_CONST_SIZE,
6165 	.arg4_type	= ARG_ANYTHING,
6166 };
6167 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6168 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6169 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6170 {
6171 	struct net *net = dev_net(skb->dev);
6172 	int rc = -EAFNOSUPPORT;
6173 	bool check_mtu = false;
6174 
6175 	if (plen < sizeof(*params))
6176 		return -EINVAL;
6177 
6178 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6179 		return -EINVAL;
6180 
6181 	if (params->tot_len)
6182 		check_mtu = true;
6183 
6184 	switch (params->family) {
6185 #if IS_ENABLED(CONFIG_INET)
6186 	case AF_INET:
6187 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6188 		break;
6189 #endif
6190 #if IS_ENABLED(CONFIG_IPV6)
6191 	case AF_INET6:
6192 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6193 		break;
6194 #endif
6195 	}
6196 
6197 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6198 		struct net_device *dev;
6199 
6200 		/* When tot_len isn't provided by user, check skb
6201 		 * against MTU of FIB lookup resulting net_device
6202 		 */
6203 		dev = dev_get_by_index_rcu(net, params->ifindex);
6204 		if (!is_skb_forwardable(dev, skb))
6205 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6206 
6207 		params->mtu_result = dev->mtu; /* union with tot_len */
6208 	}
6209 
6210 	return rc;
6211 }
6212 
6213 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6214 	.func		= bpf_skb_fib_lookup,
6215 	.gpl_only	= true,
6216 	.ret_type	= RET_INTEGER,
6217 	.arg1_type      = ARG_PTR_TO_CTX,
6218 	.arg2_type      = ARG_PTR_TO_MEM,
6219 	.arg3_type      = ARG_CONST_SIZE,
6220 	.arg4_type	= ARG_ANYTHING,
6221 };
6222 
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6223 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6224 					    u32 ifindex)
6225 {
6226 	struct net *netns = dev_net(dev_curr);
6227 
6228 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6229 	if (ifindex == 0)
6230 		return dev_curr;
6231 
6232 	return dev_get_by_index_rcu(netns, ifindex);
6233 }
6234 
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6235 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6236 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6237 {
6238 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6239 	struct net_device *dev = skb->dev;
6240 	int mtu, dev_len, skb_len;
6241 
6242 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6243 		return -EINVAL;
6244 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6245 		return -EINVAL;
6246 
6247 	dev = __dev_via_ifindex(dev, ifindex);
6248 	if (unlikely(!dev))
6249 		return -ENODEV;
6250 
6251 	mtu = READ_ONCE(dev->mtu);
6252 	dev_len = mtu + dev->hard_header_len;
6253 
6254 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6255 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6256 
6257 	skb_len += len_diff; /* minus result pass check */
6258 	if (skb_len <= dev_len) {
6259 		ret = BPF_MTU_CHK_RET_SUCCESS;
6260 		goto out;
6261 	}
6262 	/* At this point, skb->len exceed MTU, but as it include length of all
6263 	 * segments, it can still be below MTU.  The SKB can possibly get
6264 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6265 	 * must choose if segs are to be MTU checked.
6266 	 */
6267 	if (skb_is_gso(skb)) {
6268 		ret = BPF_MTU_CHK_RET_SUCCESS;
6269 		if (flags & BPF_MTU_CHK_SEGS &&
6270 		    !skb_gso_validate_network_len(skb, mtu))
6271 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6272 	}
6273 out:
6274 	*mtu_len = mtu;
6275 	return ret;
6276 }
6277 
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6278 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6279 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6280 {
6281 	struct net_device *dev = xdp->rxq->dev;
6282 	int xdp_len = xdp->data_end - xdp->data;
6283 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6284 	int mtu, dev_len;
6285 
6286 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6287 	if (unlikely(flags))
6288 		return -EINVAL;
6289 
6290 	dev = __dev_via_ifindex(dev, ifindex);
6291 	if (unlikely(!dev))
6292 		return -ENODEV;
6293 
6294 	mtu = READ_ONCE(dev->mtu);
6295 	dev_len = mtu + dev->hard_header_len;
6296 
6297 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6298 	if (*mtu_len)
6299 		xdp_len = *mtu_len + dev->hard_header_len;
6300 
6301 	xdp_len += len_diff; /* minus result pass check */
6302 	if (xdp_len > dev_len)
6303 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6304 
6305 	*mtu_len = mtu;
6306 	return ret;
6307 }
6308 
6309 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6310 	.func		= bpf_skb_check_mtu,
6311 	.gpl_only	= true,
6312 	.ret_type	= RET_INTEGER,
6313 	.arg1_type      = ARG_PTR_TO_CTX,
6314 	.arg2_type      = ARG_ANYTHING,
6315 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6316 	.arg3_size	= sizeof(u32),
6317 	.arg4_type      = ARG_ANYTHING,
6318 	.arg5_type      = ARG_ANYTHING,
6319 };
6320 
6321 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6322 	.func		= bpf_xdp_check_mtu,
6323 	.gpl_only	= true,
6324 	.ret_type	= RET_INTEGER,
6325 	.arg1_type      = ARG_PTR_TO_CTX,
6326 	.arg2_type      = ARG_ANYTHING,
6327 	.arg3_type      = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_WRITE | MEM_ALIGNED,
6328 	.arg3_size	= sizeof(u32),
6329 	.arg4_type      = ARG_ANYTHING,
6330 	.arg5_type      = ARG_ANYTHING,
6331 };
6332 
6333 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6334 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6335 {
6336 	int err;
6337 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6338 
6339 	if (!seg6_validate_srh(srh, len, false))
6340 		return -EINVAL;
6341 
6342 	switch (type) {
6343 	case BPF_LWT_ENCAP_SEG6_INLINE:
6344 		if (skb->protocol != htons(ETH_P_IPV6))
6345 			return -EBADMSG;
6346 
6347 		err = seg6_do_srh_inline(skb, srh);
6348 		break;
6349 	case BPF_LWT_ENCAP_SEG6:
6350 		skb_reset_inner_headers(skb);
6351 		skb->encapsulation = 1;
6352 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6353 		break;
6354 	default:
6355 		return -EINVAL;
6356 	}
6357 
6358 	bpf_compute_data_pointers(skb);
6359 	if (err)
6360 		return err;
6361 
6362 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6363 
6364 	return seg6_lookup_nexthop(skb, NULL, 0);
6365 }
6366 #endif /* CONFIG_IPV6_SEG6_BPF */
6367 
6368 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6369 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6370 			     bool ingress)
6371 {
6372 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6373 }
6374 #endif
6375 
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6376 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6377 	   u32, len)
6378 {
6379 	switch (type) {
6380 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6381 	case BPF_LWT_ENCAP_SEG6:
6382 	case BPF_LWT_ENCAP_SEG6_INLINE:
6383 		return bpf_push_seg6_encap(skb, type, hdr, len);
6384 #endif
6385 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6386 	case BPF_LWT_ENCAP_IP:
6387 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6388 #endif
6389 	default:
6390 		return -EINVAL;
6391 	}
6392 }
6393 
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6394 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6395 	   void *, hdr, u32, len)
6396 {
6397 	switch (type) {
6398 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6399 	case BPF_LWT_ENCAP_IP:
6400 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6401 #endif
6402 	default:
6403 		return -EINVAL;
6404 	}
6405 }
6406 
6407 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6408 	.func		= bpf_lwt_in_push_encap,
6409 	.gpl_only	= false,
6410 	.ret_type	= RET_INTEGER,
6411 	.arg1_type	= ARG_PTR_TO_CTX,
6412 	.arg2_type	= ARG_ANYTHING,
6413 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6414 	.arg4_type	= ARG_CONST_SIZE
6415 };
6416 
6417 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6418 	.func		= bpf_lwt_xmit_push_encap,
6419 	.gpl_only	= false,
6420 	.ret_type	= RET_INTEGER,
6421 	.arg1_type	= ARG_PTR_TO_CTX,
6422 	.arg2_type	= ARG_ANYTHING,
6423 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6424 	.arg4_type	= ARG_CONST_SIZE
6425 };
6426 
6427 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6428 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6429 	   const void *, from, u32, len)
6430 {
6431 	struct seg6_bpf_srh_state *srh_state =
6432 		this_cpu_ptr(&seg6_bpf_srh_states);
6433 	struct ipv6_sr_hdr *srh = srh_state->srh;
6434 	void *srh_tlvs, *srh_end, *ptr;
6435 	int srhoff = 0;
6436 
6437 	if (srh == NULL)
6438 		return -EINVAL;
6439 
6440 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6441 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6442 
6443 	ptr = skb->data + offset;
6444 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6445 		srh_state->valid = false;
6446 	else if (ptr < (void *)&srh->flags ||
6447 		 ptr + len > (void *)&srh->segments)
6448 		return -EFAULT;
6449 
6450 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6451 		return -EFAULT;
6452 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6453 		return -EINVAL;
6454 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6455 
6456 	memcpy(skb->data + offset, from, len);
6457 	return 0;
6458 }
6459 
6460 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6461 	.func		= bpf_lwt_seg6_store_bytes,
6462 	.gpl_only	= false,
6463 	.ret_type	= RET_INTEGER,
6464 	.arg1_type	= ARG_PTR_TO_CTX,
6465 	.arg2_type	= ARG_ANYTHING,
6466 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6467 	.arg4_type	= ARG_CONST_SIZE
6468 };
6469 
bpf_update_srh_state(struct sk_buff * skb)6470 static void bpf_update_srh_state(struct sk_buff *skb)
6471 {
6472 	struct seg6_bpf_srh_state *srh_state =
6473 		this_cpu_ptr(&seg6_bpf_srh_states);
6474 	int srhoff = 0;
6475 
6476 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6477 		srh_state->srh = NULL;
6478 	} else {
6479 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6480 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6481 		srh_state->valid = true;
6482 	}
6483 }
6484 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6485 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6486 	   u32, action, void *, param, u32, param_len)
6487 {
6488 	struct seg6_bpf_srh_state *srh_state =
6489 		this_cpu_ptr(&seg6_bpf_srh_states);
6490 	int hdroff = 0;
6491 	int err;
6492 
6493 	switch (action) {
6494 	case SEG6_LOCAL_ACTION_END_X:
6495 		if (!seg6_bpf_has_valid_srh(skb))
6496 			return -EBADMSG;
6497 		if (param_len != sizeof(struct in6_addr))
6498 			return -EINVAL;
6499 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6500 	case SEG6_LOCAL_ACTION_END_T:
6501 		if (!seg6_bpf_has_valid_srh(skb))
6502 			return -EBADMSG;
6503 		if (param_len != sizeof(int))
6504 			return -EINVAL;
6505 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6506 	case SEG6_LOCAL_ACTION_END_DT6:
6507 		if (!seg6_bpf_has_valid_srh(skb))
6508 			return -EBADMSG;
6509 		if (param_len != sizeof(int))
6510 			return -EINVAL;
6511 
6512 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6513 			return -EBADMSG;
6514 		if (!pskb_pull(skb, hdroff))
6515 			return -EBADMSG;
6516 
6517 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6518 		skb_reset_network_header(skb);
6519 		skb_reset_transport_header(skb);
6520 		skb->encapsulation = 0;
6521 
6522 		bpf_compute_data_pointers(skb);
6523 		bpf_update_srh_state(skb);
6524 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6525 	case SEG6_LOCAL_ACTION_END_B6:
6526 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6527 			return -EBADMSG;
6528 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6529 					  param, param_len);
6530 		if (!err)
6531 			bpf_update_srh_state(skb);
6532 
6533 		return err;
6534 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6535 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6536 			return -EBADMSG;
6537 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6538 					  param, param_len);
6539 		if (!err)
6540 			bpf_update_srh_state(skb);
6541 
6542 		return err;
6543 	default:
6544 		return -EINVAL;
6545 	}
6546 }
6547 
6548 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6549 	.func		= bpf_lwt_seg6_action,
6550 	.gpl_only	= false,
6551 	.ret_type	= RET_INTEGER,
6552 	.arg1_type	= ARG_PTR_TO_CTX,
6553 	.arg2_type	= ARG_ANYTHING,
6554 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6555 	.arg4_type	= ARG_CONST_SIZE
6556 };
6557 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6558 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6559 	   s32, len)
6560 {
6561 	struct seg6_bpf_srh_state *srh_state =
6562 		this_cpu_ptr(&seg6_bpf_srh_states);
6563 	struct ipv6_sr_hdr *srh = srh_state->srh;
6564 	void *srh_end, *srh_tlvs, *ptr;
6565 	struct ipv6hdr *hdr;
6566 	int srhoff = 0;
6567 	int ret;
6568 
6569 	if (unlikely(srh == NULL))
6570 		return -EINVAL;
6571 
6572 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6573 			((srh->first_segment + 1) << 4));
6574 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6575 			srh_state->hdrlen);
6576 	ptr = skb->data + offset;
6577 
6578 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6579 		return -EFAULT;
6580 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6581 		return -EFAULT;
6582 
6583 	if (len > 0) {
6584 		ret = skb_cow_head(skb, len);
6585 		if (unlikely(ret < 0))
6586 			return ret;
6587 
6588 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6589 	} else {
6590 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6591 	}
6592 
6593 	bpf_compute_data_pointers(skb);
6594 	if (unlikely(ret < 0))
6595 		return ret;
6596 
6597 	hdr = (struct ipv6hdr *)skb->data;
6598 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6599 
6600 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6601 		return -EINVAL;
6602 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6603 	srh_state->hdrlen += len;
6604 	srh_state->valid = false;
6605 	return 0;
6606 }
6607 
6608 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6609 	.func		= bpf_lwt_seg6_adjust_srh,
6610 	.gpl_only	= false,
6611 	.ret_type	= RET_INTEGER,
6612 	.arg1_type	= ARG_PTR_TO_CTX,
6613 	.arg2_type	= ARG_ANYTHING,
6614 	.arg3_type	= ARG_ANYTHING,
6615 };
6616 #endif /* CONFIG_IPV6_SEG6_BPF */
6617 
6618 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6619 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6620 			      int dif, int sdif, u8 family, u8 proto)
6621 {
6622 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6623 	bool refcounted = false;
6624 	struct sock *sk = NULL;
6625 
6626 	if (family == AF_INET) {
6627 		__be32 src4 = tuple->ipv4.saddr;
6628 		__be32 dst4 = tuple->ipv4.daddr;
6629 
6630 		if (proto == IPPROTO_TCP)
6631 			sk = __inet_lookup(net, hinfo, NULL, 0,
6632 					   src4, tuple->ipv4.sport,
6633 					   dst4, tuple->ipv4.dport,
6634 					   dif, sdif, &refcounted);
6635 		else
6636 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6637 					       dst4, tuple->ipv4.dport,
6638 					       dif, sdif, net->ipv4.udp_table, NULL);
6639 #if IS_ENABLED(CONFIG_IPV6)
6640 	} else {
6641 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6642 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6643 
6644 		if (proto == IPPROTO_TCP)
6645 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6646 					    src6, tuple->ipv6.sport,
6647 					    dst6, ntohs(tuple->ipv6.dport),
6648 					    dif, sdif, &refcounted);
6649 		else if (likely(ipv6_bpf_stub))
6650 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6651 							    src6, tuple->ipv6.sport,
6652 							    dst6, tuple->ipv6.dport,
6653 							    dif, sdif,
6654 							    net->ipv4.udp_table, NULL);
6655 #endif
6656 	}
6657 
6658 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6659 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6660 		sk = NULL;
6661 	}
6662 	return sk;
6663 }
6664 
6665 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6666  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6667  */
6668 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6669 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6670 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6671 		 u64 flags, int sdif)
6672 {
6673 	struct sock *sk = NULL;
6674 	struct net *net;
6675 	u8 family;
6676 
6677 	if (len == sizeof(tuple->ipv4))
6678 		family = AF_INET;
6679 	else if (len == sizeof(tuple->ipv6))
6680 		family = AF_INET6;
6681 	else
6682 		return NULL;
6683 
6684 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6685 		goto out;
6686 
6687 	if (sdif < 0) {
6688 		if (family == AF_INET)
6689 			sdif = inet_sdif(skb);
6690 		else
6691 			sdif = inet6_sdif(skb);
6692 	}
6693 
6694 	if ((s32)netns_id < 0) {
6695 		net = caller_net;
6696 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6697 	} else {
6698 		net = get_net_ns_by_id(caller_net, netns_id);
6699 		if (unlikely(!net))
6700 			goto out;
6701 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6702 		put_net(net);
6703 	}
6704 
6705 out:
6706 	return sk;
6707 }
6708 
6709 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6710 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6711 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6712 		u64 flags, int sdif)
6713 {
6714 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6715 					   ifindex, proto, netns_id, flags,
6716 					   sdif);
6717 
6718 	if (sk) {
6719 		struct sock *sk2 = sk_to_full_sk(sk);
6720 
6721 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6722 		 * sock refcnt is decremented to prevent a request_sock leak.
6723 		 */
6724 		if (!sk_fullsock(sk2))
6725 			sk2 = NULL;
6726 		if (sk2 != sk) {
6727 			sock_gen_put(sk);
6728 			/* Ensure there is no need to bump sk2 refcnt */
6729 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6730 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6731 				return NULL;
6732 			}
6733 			sk = sk2;
6734 		}
6735 	}
6736 
6737 	return sk;
6738 }
6739 
6740 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6741 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6742 	       u8 proto, u64 netns_id, u64 flags)
6743 {
6744 	struct net *caller_net;
6745 	int ifindex;
6746 
6747 	if (skb->dev) {
6748 		caller_net = dev_net(skb->dev);
6749 		ifindex = skb->dev->ifindex;
6750 	} else {
6751 		caller_net = sock_net(skb->sk);
6752 		ifindex = 0;
6753 	}
6754 
6755 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6756 				netns_id, flags, -1);
6757 }
6758 
6759 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6760 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6761 	      u8 proto, u64 netns_id, u64 flags)
6762 {
6763 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6764 					 flags);
6765 
6766 	if (sk) {
6767 		struct sock *sk2 = sk_to_full_sk(sk);
6768 
6769 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6770 		 * sock refcnt is decremented to prevent a request_sock leak.
6771 		 */
6772 		if (!sk_fullsock(sk2))
6773 			sk2 = NULL;
6774 		if (sk2 != sk) {
6775 			sock_gen_put(sk);
6776 			/* Ensure there is no need to bump sk2 refcnt */
6777 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6778 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6779 				return NULL;
6780 			}
6781 			sk = sk2;
6782 		}
6783 	}
6784 
6785 	return sk;
6786 }
6787 
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6788 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6789 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6790 {
6791 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6792 					     netns_id, flags);
6793 }
6794 
6795 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6796 	.func		= bpf_skc_lookup_tcp,
6797 	.gpl_only	= false,
6798 	.pkt_access	= true,
6799 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6800 	.arg1_type	= ARG_PTR_TO_CTX,
6801 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6802 	.arg3_type	= ARG_CONST_SIZE,
6803 	.arg4_type	= ARG_ANYTHING,
6804 	.arg5_type	= ARG_ANYTHING,
6805 };
6806 
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6807 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6808 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6809 {
6810 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6811 					    netns_id, flags);
6812 }
6813 
6814 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6815 	.func		= bpf_sk_lookup_tcp,
6816 	.gpl_only	= false,
6817 	.pkt_access	= true,
6818 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6819 	.arg1_type	= ARG_PTR_TO_CTX,
6820 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6821 	.arg3_type	= ARG_CONST_SIZE,
6822 	.arg4_type	= ARG_ANYTHING,
6823 	.arg5_type	= ARG_ANYTHING,
6824 };
6825 
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6826 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6827 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6828 {
6829 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6830 					    netns_id, flags);
6831 }
6832 
6833 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6834 	.func		= bpf_sk_lookup_udp,
6835 	.gpl_only	= false,
6836 	.pkt_access	= true,
6837 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6838 	.arg1_type	= ARG_PTR_TO_CTX,
6839 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6840 	.arg3_type	= ARG_CONST_SIZE,
6841 	.arg4_type	= ARG_ANYTHING,
6842 	.arg5_type	= ARG_ANYTHING,
6843 };
6844 
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6845 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6846 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6847 {
6848 	struct net_device *dev = skb->dev;
6849 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6850 	struct net *caller_net = dev_net(dev);
6851 
6852 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6853 					       ifindex, IPPROTO_TCP, netns_id,
6854 					       flags, sdif);
6855 }
6856 
6857 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6858 	.func		= bpf_tc_skc_lookup_tcp,
6859 	.gpl_only	= false,
6860 	.pkt_access	= true,
6861 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6862 	.arg1_type	= ARG_PTR_TO_CTX,
6863 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6864 	.arg3_type	= ARG_CONST_SIZE,
6865 	.arg4_type	= ARG_ANYTHING,
6866 	.arg5_type	= ARG_ANYTHING,
6867 };
6868 
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6869 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6870 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6871 {
6872 	struct net_device *dev = skb->dev;
6873 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6874 	struct net *caller_net = dev_net(dev);
6875 
6876 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6877 					      ifindex, IPPROTO_TCP, netns_id,
6878 					      flags, sdif);
6879 }
6880 
6881 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6882 	.func		= bpf_tc_sk_lookup_tcp,
6883 	.gpl_only	= false,
6884 	.pkt_access	= true,
6885 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6886 	.arg1_type	= ARG_PTR_TO_CTX,
6887 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6888 	.arg3_type	= ARG_CONST_SIZE,
6889 	.arg4_type	= ARG_ANYTHING,
6890 	.arg5_type	= ARG_ANYTHING,
6891 };
6892 
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6893 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6894 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6895 {
6896 	struct net_device *dev = skb->dev;
6897 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6898 	struct net *caller_net = dev_net(dev);
6899 
6900 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6901 					      ifindex, IPPROTO_UDP, netns_id,
6902 					      flags, sdif);
6903 }
6904 
6905 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6906 	.func		= bpf_tc_sk_lookup_udp,
6907 	.gpl_only	= false,
6908 	.pkt_access	= true,
6909 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6910 	.arg1_type	= ARG_PTR_TO_CTX,
6911 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6912 	.arg3_type	= ARG_CONST_SIZE,
6913 	.arg4_type	= ARG_ANYTHING,
6914 	.arg5_type	= ARG_ANYTHING,
6915 };
6916 
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6917 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6918 {
6919 	if (sk && sk_is_refcounted(sk))
6920 		sock_gen_put(sk);
6921 	return 0;
6922 }
6923 
6924 static const struct bpf_func_proto bpf_sk_release_proto = {
6925 	.func		= bpf_sk_release,
6926 	.gpl_only	= false,
6927 	.ret_type	= RET_INTEGER,
6928 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6929 };
6930 
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6931 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6932 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6933 {
6934 	struct net_device *dev = ctx->rxq->dev;
6935 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6936 	struct net *caller_net = dev_net(dev);
6937 
6938 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6939 					      ifindex, IPPROTO_UDP, netns_id,
6940 					      flags, sdif);
6941 }
6942 
6943 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6944 	.func           = bpf_xdp_sk_lookup_udp,
6945 	.gpl_only       = false,
6946 	.pkt_access     = true,
6947 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6948 	.arg1_type      = ARG_PTR_TO_CTX,
6949 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6950 	.arg3_type      = ARG_CONST_SIZE,
6951 	.arg4_type      = ARG_ANYTHING,
6952 	.arg5_type      = ARG_ANYTHING,
6953 };
6954 
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6955 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6956 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6957 {
6958 	struct net_device *dev = ctx->rxq->dev;
6959 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6960 	struct net *caller_net = dev_net(dev);
6961 
6962 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6963 					       ifindex, IPPROTO_TCP, netns_id,
6964 					       flags, sdif);
6965 }
6966 
6967 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6968 	.func           = bpf_xdp_skc_lookup_tcp,
6969 	.gpl_only       = false,
6970 	.pkt_access     = true,
6971 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6972 	.arg1_type      = ARG_PTR_TO_CTX,
6973 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6974 	.arg3_type      = ARG_CONST_SIZE,
6975 	.arg4_type      = ARG_ANYTHING,
6976 	.arg5_type      = ARG_ANYTHING,
6977 };
6978 
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6979 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6980 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6981 {
6982 	struct net_device *dev = ctx->rxq->dev;
6983 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6984 	struct net *caller_net = dev_net(dev);
6985 
6986 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6987 					      ifindex, IPPROTO_TCP, netns_id,
6988 					      flags, sdif);
6989 }
6990 
6991 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6992 	.func           = bpf_xdp_sk_lookup_tcp,
6993 	.gpl_only       = false,
6994 	.pkt_access     = true,
6995 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6996 	.arg1_type      = ARG_PTR_TO_CTX,
6997 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6998 	.arg3_type      = ARG_CONST_SIZE,
6999 	.arg4_type      = ARG_ANYTHING,
7000 	.arg5_type      = ARG_ANYTHING,
7001 };
7002 
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7003 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7004 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7005 {
7006 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
7007 					       sock_net(ctx->sk), 0,
7008 					       IPPROTO_TCP, netns_id, flags,
7009 					       -1);
7010 }
7011 
7012 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
7013 	.func		= bpf_sock_addr_skc_lookup_tcp,
7014 	.gpl_only	= false,
7015 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7016 	.arg1_type	= ARG_PTR_TO_CTX,
7017 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7018 	.arg3_type	= ARG_CONST_SIZE,
7019 	.arg4_type	= ARG_ANYTHING,
7020 	.arg5_type	= ARG_ANYTHING,
7021 };
7022 
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7023 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7024 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7025 {
7026 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7027 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7028 					      netns_id, flags, -1);
7029 }
7030 
7031 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7032 	.func		= bpf_sock_addr_sk_lookup_tcp,
7033 	.gpl_only	= false,
7034 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7035 	.arg1_type	= ARG_PTR_TO_CTX,
7036 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7037 	.arg3_type	= ARG_CONST_SIZE,
7038 	.arg4_type	= ARG_ANYTHING,
7039 	.arg5_type	= ARG_ANYTHING,
7040 };
7041 
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)7042 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7043 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7044 {
7045 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7046 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7047 					      netns_id, flags, -1);
7048 }
7049 
7050 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7051 	.func		= bpf_sock_addr_sk_lookup_udp,
7052 	.gpl_only	= false,
7053 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7054 	.arg1_type	= ARG_PTR_TO_CTX,
7055 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7056 	.arg3_type	= ARG_CONST_SIZE,
7057 	.arg4_type	= ARG_ANYTHING,
7058 	.arg5_type	= ARG_ANYTHING,
7059 };
7060 
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7061 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7062 				  struct bpf_insn_access_aux *info)
7063 {
7064 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7065 					  icsk_retransmits))
7066 		return false;
7067 
7068 	if (off % size != 0)
7069 		return false;
7070 
7071 	switch (off) {
7072 	case offsetof(struct bpf_tcp_sock, bytes_received):
7073 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7074 		return size == sizeof(__u64);
7075 	default:
7076 		return size == sizeof(__u32);
7077 	}
7078 }
7079 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7080 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7081 				    const struct bpf_insn *si,
7082 				    struct bpf_insn *insn_buf,
7083 				    struct bpf_prog *prog, u32 *target_size)
7084 {
7085 	struct bpf_insn *insn = insn_buf;
7086 
7087 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7088 	do {								\
7089 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7090 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7091 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7092 				      si->dst_reg, si->src_reg,		\
7093 				      offsetof(struct tcp_sock, FIELD)); \
7094 	} while (0)
7095 
7096 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7097 	do {								\
7098 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7099 					  FIELD) >			\
7100 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7101 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7102 					struct inet_connection_sock,	\
7103 					FIELD),				\
7104 				      si->dst_reg, si->src_reg,		\
7105 				      offsetof(				\
7106 					struct inet_connection_sock,	\
7107 					FIELD));			\
7108 	} while (0)
7109 
7110 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7111 
7112 	switch (si->off) {
7113 	case offsetof(struct bpf_tcp_sock, rtt_min):
7114 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7115 			     sizeof(struct minmax));
7116 		BUILD_BUG_ON(sizeof(struct minmax) <
7117 			     sizeof(struct minmax_sample));
7118 
7119 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7120 				      offsetof(struct tcp_sock, rtt_min) +
7121 				      offsetof(struct minmax_sample, v));
7122 		break;
7123 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7124 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7125 		break;
7126 	case offsetof(struct bpf_tcp_sock, srtt_us):
7127 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7128 		break;
7129 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7130 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7131 		break;
7132 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7133 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7134 		break;
7135 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7136 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7137 		break;
7138 	case offsetof(struct bpf_tcp_sock, snd_una):
7139 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7140 		break;
7141 	case offsetof(struct bpf_tcp_sock, mss_cache):
7142 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7143 		break;
7144 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7145 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7146 		break;
7147 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7148 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7149 		break;
7150 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7151 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7152 		break;
7153 	case offsetof(struct bpf_tcp_sock, packets_out):
7154 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7155 		break;
7156 	case offsetof(struct bpf_tcp_sock, retrans_out):
7157 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7158 		break;
7159 	case offsetof(struct bpf_tcp_sock, total_retrans):
7160 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7161 		break;
7162 	case offsetof(struct bpf_tcp_sock, segs_in):
7163 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7164 		break;
7165 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7166 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7167 		break;
7168 	case offsetof(struct bpf_tcp_sock, segs_out):
7169 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7170 		break;
7171 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7172 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7173 		break;
7174 	case offsetof(struct bpf_tcp_sock, lost_out):
7175 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7176 		break;
7177 	case offsetof(struct bpf_tcp_sock, sacked_out):
7178 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7179 		break;
7180 	case offsetof(struct bpf_tcp_sock, bytes_received):
7181 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7182 		break;
7183 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7184 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7185 		break;
7186 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7187 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7188 		break;
7189 	case offsetof(struct bpf_tcp_sock, delivered):
7190 		BPF_TCP_SOCK_GET_COMMON(delivered);
7191 		break;
7192 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7193 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7194 		break;
7195 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7196 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7197 		break;
7198 	}
7199 
7200 	return insn - insn_buf;
7201 }
7202 
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7203 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7204 {
7205 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7206 		return (unsigned long)sk;
7207 
7208 	return (unsigned long)NULL;
7209 }
7210 
7211 const struct bpf_func_proto bpf_tcp_sock_proto = {
7212 	.func		= bpf_tcp_sock,
7213 	.gpl_only	= false,
7214 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7215 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7216 };
7217 
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7218 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7219 {
7220 	sk = sk_to_full_sk(sk);
7221 
7222 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7223 		return (unsigned long)sk;
7224 
7225 	return (unsigned long)NULL;
7226 }
7227 
7228 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7229 	.func		= bpf_get_listener_sock,
7230 	.gpl_only	= false,
7231 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7232 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7233 };
7234 
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7235 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7236 {
7237 	unsigned int iphdr_len;
7238 
7239 	switch (skb_protocol(skb, true)) {
7240 	case cpu_to_be16(ETH_P_IP):
7241 		iphdr_len = sizeof(struct iphdr);
7242 		break;
7243 	case cpu_to_be16(ETH_P_IPV6):
7244 		iphdr_len = sizeof(struct ipv6hdr);
7245 		break;
7246 	default:
7247 		return 0;
7248 	}
7249 
7250 	if (skb_headlen(skb) < iphdr_len)
7251 		return 0;
7252 
7253 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7254 		return 0;
7255 
7256 	return INET_ECN_set_ce(skb);
7257 }
7258 
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7259 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7260 				  struct bpf_insn_access_aux *info)
7261 {
7262 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7263 		return false;
7264 
7265 	if (off % size != 0)
7266 		return false;
7267 
7268 	switch (off) {
7269 	default:
7270 		return size == sizeof(__u32);
7271 	}
7272 }
7273 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7274 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7275 				    const struct bpf_insn *si,
7276 				    struct bpf_insn *insn_buf,
7277 				    struct bpf_prog *prog, u32 *target_size)
7278 {
7279 	struct bpf_insn *insn = insn_buf;
7280 
7281 #define BPF_XDP_SOCK_GET(FIELD)						\
7282 	do {								\
7283 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7284 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7285 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7286 				      si->dst_reg, si->src_reg,		\
7287 				      offsetof(struct xdp_sock, FIELD)); \
7288 	} while (0)
7289 
7290 	switch (si->off) {
7291 	case offsetof(struct bpf_xdp_sock, queue_id):
7292 		BPF_XDP_SOCK_GET(queue_id);
7293 		break;
7294 	}
7295 
7296 	return insn - insn_buf;
7297 }
7298 
7299 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7300 	.func           = bpf_skb_ecn_set_ce,
7301 	.gpl_only       = false,
7302 	.ret_type       = RET_INTEGER,
7303 	.arg1_type      = ARG_PTR_TO_CTX,
7304 };
7305 
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7306 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7307 	   struct tcphdr *, th, u32, th_len)
7308 {
7309 #ifdef CONFIG_SYN_COOKIES
7310 	u32 cookie;
7311 	int ret;
7312 
7313 	if (unlikely(!sk || th_len < sizeof(*th)))
7314 		return -EINVAL;
7315 
7316 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7317 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7318 		return -EINVAL;
7319 
7320 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7321 		return -EINVAL;
7322 
7323 	if (!th->ack || th->rst || th->syn)
7324 		return -ENOENT;
7325 
7326 	if (unlikely(iph_len < sizeof(struct iphdr)))
7327 		return -EINVAL;
7328 
7329 	if (tcp_synq_no_recent_overflow(sk))
7330 		return -ENOENT;
7331 
7332 	cookie = ntohl(th->ack_seq) - 1;
7333 
7334 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7335 	 * same offset so we can cast to the shorter header (struct iphdr).
7336 	 */
7337 	switch (((struct iphdr *)iph)->version) {
7338 	case 4:
7339 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7340 			return -EINVAL;
7341 
7342 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7343 		break;
7344 
7345 #if IS_BUILTIN(CONFIG_IPV6)
7346 	case 6:
7347 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7348 			return -EINVAL;
7349 
7350 		if (sk->sk_family != AF_INET6)
7351 			return -EINVAL;
7352 
7353 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7354 		break;
7355 #endif /* CONFIG_IPV6 */
7356 
7357 	default:
7358 		return -EPROTONOSUPPORT;
7359 	}
7360 
7361 	if (ret > 0)
7362 		return 0;
7363 
7364 	return -ENOENT;
7365 #else
7366 	return -ENOTSUPP;
7367 #endif
7368 }
7369 
7370 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7371 	.func		= bpf_tcp_check_syncookie,
7372 	.gpl_only	= true,
7373 	.pkt_access	= true,
7374 	.ret_type	= RET_INTEGER,
7375 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7376 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7377 	.arg3_type	= ARG_CONST_SIZE,
7378 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7379 	.arg5_type	= ARG_CONST_SIZE,
7380 };
7381 
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7382 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7383 	   struct tcphdr *, th, u32, th_len)
7384 {
7385 #ifdef CONFIG_SYN_COOKIES
7386 	u32 cookie;
7387 	u16 mss;
7388 
7389 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7390 		return -EINVAL;
7391 
7392 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7393 		return -EINVAL;
7394 
7395 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7396 		return -ENOENT;
7397 
7398 	if (!th->syn || th->ack || th->fin || th->rst)
7399 		return -EINVAL;
7400 
7401 	if (unlikely(iph_len < sizeof(struct iphdr)))
7402 		return -EINVAL;
7403 
7404 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7405 	 * same offset so we can cast to the shorter header (struct iphdr).
7406 	 */
7407 	switch (((struct iphdr *)iph)->version) {
7408 	case 4:
7409 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7410 			return -EINVAL;
7411 
7412 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7413 		break;
7414 
7415 #if IS_BUILTIN(CONFIG_IPV6)
7416 	case 6:
7417 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7418 			return -EINVAL;
7419 
7420 		if (sk->sk_family != AF_INET6)
7421 			return -EINVAL;
7422 
7423 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7424 		break;
7425 #endif /* CONFIG_IPV6 */
7426 
7427 	default:
7428 		return -EPROTONOSUPPORT;
7429 	}
7430 	if (mss == 0)
7431 		return -ENOENT;
7432 
7433 	return cookie | ((u64)mss << 32);
7434 #else
7435 	return -EOPNOTSUPP;
7436 #endif /* CONFIG_SYN_COOKIES */
7437 }
7438 
7439 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7440 	.func		= bpf_tcp_gen_syncookie,
7441 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7442 	.pkt_access	= true,
7443 	.ret_type	= RET_INTEGER,
7444 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7445 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7446 	.arg3_type	= ARG_CONST_SIZE,
7447 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7448 	.arg5_type	= ARG_CONST_SIZE,
7449 };
7450 
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7451 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7452 {
7453 	if (!sk || flags != 0)
7454 		return -EINVAL;
7455 	if (!skb_at_tc_ingress(skb))
7456 		return -EOPNOTSUPP;
7457 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7458 		return -ENETUNREACH;
7459 	if (sk_unhashed(sk))
7460 		return -EOPNOTSUPP;
7461 	if (sk_is_refcounted(sk) &&
7462 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7463 		return -ENOENT;
7464 
7465 	skb_orphan(skb);
7466 	skb->sk = sk;
7467 	skb->destructor = sock_pfree;
7468 
7469 	return 0;
7470 }
7471 
7472 static const struct bpf_func_proto bpf_sk_assign_proto = {
7473 	.func		= bpf_sk_assign,
7474 	.gpl_only	= false,
7475 	.ret_type	= RET_INTEGER,
7476 	.arg1_type      = ARG_PTR_TO_CTX,
7477 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7478 	.arg3_type	= ARG_ANYTHING,
7479 };
7480 
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7481 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7482 				    u8 search_kind, const u8 *magic,
7483 				    u8 magic_len, bool *eol)
7484 {
7485 	u8 kind, kind_len;
7486 
7487 	*eol = false;
7488 
7489 	while (op < opend) {
7490 		kind = op[0];
7491 
7492 		if (kind == TCPOPT_EOL) {
7493 			*eol = true;
7494 			return ERR_PTR(-ENOMSG);
7495 		} else if (kind == TCPOPT_NOP) {
7496 			op++;
7497 			continue;
7498 		}
7499 
7500 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7501 			/* Something is wrong in the received header.
7502 			 * Follow the TCP stack's tcp_parse_options()
7503 			 * and just bail here.
7504 			 */
7505 			return ERR_PTR(-EFAULT);
7506 
7507 		kind_len = op[1];
7508 		if (search_kind == kind) {
7509 			if (!magic_len)
7510 				return op;
7511 
7512 			if (magic_len > kind_len - 2)
7513 				return ERR_PTR(-ENOMSG);
7514 
7515 			if (!memcmp(&op[2], magic, magic_len))
7516 				return op;
7517 		}
7518 
7519 		op += kind_len;
7520 	}
7521 
7522 	return ERR_PTR(-ENOMSG);
7523 }
7524 
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7525 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7526 	   void *, search_res, u32, len, u64, flags)
7527 {
7528 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7529 	const u8 *op, *opend, *magic, *search = search_res;
7530 	u8 search_kind, search_len, copy_len, magic_len;
7531 	int ret;
7532 
7533 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7534 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7535 	 * and this helper disallow loading them also.
7536 	 */
7537 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7538 		return -EINVAL;
7539 
7540 	search_kind = search[0];
7541 	search_len = search[1];
7542 
7543 	if (search_len > len || search_kind == TCPOPT_NOP ||
7544 	    search_kind == TCPOPT_EOL)
7545 		return -EINVAL;
7546 
7547 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7548 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7549 		if (search_len != 4 && search_len != 6)
7550 			return -EINVAL;
7551 		magic = &search[2];
7552 		magic_len = search_len - 2;
7553 	} else {
7554 		if (search_len)
7555 			return -EINVAL;
7556 		magic = NULL;
7557 		magic_len = 0;
7558 	}
7559 
7560 	if (load_syn) {
7561 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7562 		if (ret < 0)
7563 			return ret;
7564 
7565 		opend = op + ret;
7566 		op += sizeof(struct tcphdr);
7567 	} else {
7568 		if (!bpf_sock->skb ||
7569 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7570 			/* This bpf_sock->op cannot call this helper */
7571 			return -EPERM;
7572 
7573 		opend = bpf_sock->skb_data_end;
7574 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7575 	}
7576 
7577 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7578 				&eol);
7579 	if (IS_ERR(op))
7580 		return PTR_ERR(op);
7581 
7582 	copy_len = op[1];
7583 	ret = copy_len;
7584 	if (copy_len > len) {
7585 		ret = -ENOSPC;
7586 		copy_len = len;
7587 	}
7588 
7589 	memcpy(search_res, op, copy_len);
7590 	return ret;
7591 }
7592 
7593 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7594 	.func		= bpf_sock_ops_load_hdr_opt,
7595 	.gpl_only	= false,
7596 	.ret_type	= RET_INTEGER,
7597 	.arg1_type	= ARG_PTR_TO_CTX,
7598 	.arg2_type	= ARG_PTR_TO_MEM,
7599 	.arg3_type	= ARG_CONST_SIZE,
7600 	.arg4_type	= ARG_ANYTHING,
7601 };
7602 
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7603 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7604 	   const void *, from, u32, len, u64, flags)
7605 {
7606 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7607 	const u8 *op, *new_op, *magic = NULL;
7608 	struct sk_buff *skb;
7609 	bool eol;
7610 
7611 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7612 		return -EPERM;
7613 
7614 	if (len < 2 || flags)
7615 		return -EINVAL;
7616 
7617 	new_op = from;
7618 	new_kind = new_op[0];
7619 	new_kind_len = new_op[1];
7620 
7621 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7622 	    new_kind == TCPOPT_EOL)
7623 		return -EINVAL;
7624 
7625 	if (new_kind_len > bpf_sock->remaining_opt_len)
7626 		return -ENOSPC;
7627 
7628 	/* 253 is another experimental kind */
7629 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7630 		if (new_kind_len < 4)
7631 			return -EINVAL;
7632 		/* Match for the 2 byte magic also.
7633 		 * RFC 6994: the magic could be 2 or 4 bytes.
7634 		 * Hence, matching by 2 byte only is on the
7635 		 * conservative side but it is the right
7636 		 * thing to do for the 'search-for-duplication'
7637 		 * purpose.
7638 		 */
7639 		magic = &new_op[2];
7640 		magic_len = 2;
7641 	}
7642 
7643 	/* Check for duplication */
7644 	skb = bpf_sock->skb;
7645 	op = skb->data + sizeof(struct tcphdr);
7646 	opend = bpf_sock->skb_data_end;
7647 
7648 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7649 				&eol);
7650 	if (!IS_ERR(op))
7651 		return -EEXIST;
7652 
7653 	if (PTR_ERR(op) != -ENOMSG)
7654 		return PTR_ERR(op);
7655 
7656 	if (eol)
7657 		/* The option has been ended.  Treat it as no more
7658 		 * header option can be written.
7659 		 */
7660 		return -ENOSPC;
7661 
7662 	/* No duplication found.  Store the header option. */
7663 	memcpy(opend, from, new_kind_len);
7664 
7665 	bpf_sock->remaining_opt_len -= new_kind_len;
7666 	bpf_sock->skb_data_end += new_kind_len;
7667 
7668 	return 0;
7669 }
7670 
7671 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7672 	.func		= bpf_sock_ops_store_hdr_opt,
7673 	.gpl_only	= false,
7674 	.ret_type	= RET_INTEGER,
7675 	.arg1_type	= ARG_PTR_TO_CTX,
7676 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7677 	.arg3_type	= ARG_CONST_SIZE,
7678 	.arg4_type	= ARG_ANYTHING,
7679 };
7680 
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7681 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7682 	   u32, len, u64, flags)
7683 {
7684 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7685 		return -EPERM;
7686 
7687 	if (flags || len < 2)
7688 		return -EINVAL;
7689 
7690 	if (len > bpf_sock->remaining_opt_len)
7691 		return -ENOSPC;
7692 
7693 	bpf_sock->remaining_opt_len -= len;
7694 
7695 	return 0;
7696 }
7697 
7698 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7699 	.func		= bpf_sock_ops_reserve_hdr_opt,
7700 	.gpl_only	= false,
7701 	.ret_type	= RET_INTEGER,
7702 	.arg1_type	= ARG_PTR_TO_CTX,
7703 	.arg2_type	= ARG_ANYTHING,
7704 	.arg3_type	= ARG_ANYTHING,
7705 };
7706 
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7707 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7708 	   u64, tstamp, u32, tstamp_type)
7709 {
7710 	/* skb_clear_delivery_time() is done for inet protocol */
7711 	if (skb->protocol != htons(ETH_P_IP) &&
7712 	    skb->protocol != htons(ETH_P_IPV6))
7713 		return -EOPNOTSUPP;
7714 
7715 	switch (tstamp_type) {
7716 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7717 		if (!tstamp)
7718 			return -EINVAL;
7719 		skb->tstamp = tstamp;
7720 		skb->mono_delivery_time = 1;
7721 		break;
7722 	case BPF_SKB_TSTAMP_UNSPEC:
7723 		if (tstamp)
7724 			return -EINVAL;
7725 		skb->tstamp = 0;
7726 		skb->mono_delivery_time = 0;
7727 		break;
7728 	default:
7729 		return -EINVAL;
7730 	}
7731 
7732 	return 0;
7733 }
7734 
7735 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7736 	.func           = bpf_skb_set_tstamp,
7737 	.gpl_only       = false,
7738 	.ret_type       = RET_INTEGER,
7739 	.arg1_type      = ARG_PTR_TO_CTX,
7740 	.arg2_type      = ARG_ANYTHING,
7741 	.arg3_type      = ARG_ANYTHING,
7742 };
7743 
7744 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7745 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7746 	   struct tcphdr *, th, u32, th_len)
7747 {
7748 	u32 cookie;
7749 	u16 mss;
7750 
7751 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7752 		return -EINVAL;
7753 
7754 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7755 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7756 
7757 	return cookie | ((u64)mss << 32);
7758 }
7759 
7760 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7761 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7762 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7763 	.pkt_access	= true,
7764 	.ret_type	= RET_INTEGER,
7765 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7766 	.arg1_size	= sizeof(struct iphdr),
7767 	.arg2_type	= ARG_PTR_TO_MEM,
7768 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7769 };
7770 
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7771 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7772 	   struct tcphdr *, th, u32, th_len)
7773 {
7774 #if IS_BUILTIN(CONFIG_IPV6)
7775 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7776 		sizeof(struct ipv6hdr);
7777 	u32 cookie;
7778 	u16 mss;
7779 
7780 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7781 		return -EINVAL;
7782 
7783 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7784 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7785 
7786 	return cookie | ((u64)mss << 32);
7787 #else
7788 	return -EPROTONOSUPPORT;
7789 #endif
7790 }
7791 
7792 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7793 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7794 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7795 	.pkt_access	= true,
7796 	.ret_type	= RET_INTEGER,
7797 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7798 	.arg1_size	= sizeof(struct ipv6hdr),
7799 	.arg2_type	= ARG_PTR_TO_MEM,
7800 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7801 };
7802 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7803 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7804 	   struct tcphdr *, th)
7805 {
7806 	u32 cookie = ntohl(th->ack_seq) - 1;
7807 
7808 	if (__cookie_v4_check(iph, th, cookie) > 0)
7809 		return 0;
7810 
7811 	return -EACCES;
7812 }
7813 
7814 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7815 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7816 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7817 	.pkt_access	= true,
7818 	.ret_type	= RET_INTEGER,
7819 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7820 	.arg1_size	= sizeof(struct iphdr),
7821 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7822 	.arg2_size	= sizeof(struct tcphdr),
7823 };
7824 
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7825 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7826 	   struct tcphdr *, th)
7827 {
7828 #if IS_BUILTIN(CONFIG_IPV6)
7829 	u32 cookie = ntohl(th->ack_seq) - 1;
7830 
7831 	if (__cookie_v6_check(iph, th, cookie) > 0)
7832 		return 0;
7833 
7834 	return -EACCES;
7835 #else
7836 	return -EPROTONOSUPPORT;
7837 #endif
7838 }
7839 
7840 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7841 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7842 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7843 	.pkt_access	= true,
7844 	.ret_type	= RET_INTEGER,
7845 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7846 	.arg1_size	= sizeof(struct ipv6hdr),
7847 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7848 	.arg2_size	= sizeof(struct tcphdr),
7849 };
7850 #endif /* CONFIG_SYN_COOKIES */
7851 
7852 #endif /* CONFIG_INET */
7853 
bpf_helper_changes_pkt_data(void * func)7854 bool bpf_helper_changes_pkt_data(void *func)
7855 {
7856 	if (func == bpf_skb_vlan_push ||
7857 	    func == bpf_skb_vlan_pop ||
7858 	    func == bpf_skb_store_bytes ||
7859 	    func == bpf_skb_change_proto ||
7860 	    func == bpf_skb_change_head ||
7861 	    func == sk_skb_change_head ||
7862 	    func == bpf_skb_change_tail ||
7863 	    func == sk_skb_change_tail ||
7864 	    func == bpf_skb_adjust_room ||
7865 	    func == sk_skb_adjust_room ||
7866 	    func == bpf_skb_pull_data ||
7867 	    func == sk_skb_pull_data ||
7868 	    func == bpf_clone_redirect ||
7869 	    func == bpf_l3_csum_replace ||
7870 	    func == bpf_l4_csum_replace ||
7871 	    func == bpf_xdp_adjust_head ||
7872 	    func == bpf_xdp_adjust_meta ||
7873 	    func == bpf_msg_pull_data ||
7874 	    func == bpf_msg_push_data ||
7875 	    func == bpf_msg_pop_data ||
7876 	    func == bpf_xdp_adjust_tail ||
7877 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7878 	    func == bpf_lwt_seg6_store_bytes ||
7879 	    func == bpf_lwt_seg6_adjust_srh ||
7880 	    func == bpf_lwt_seg6_action ||
7881 #endif
7882 #ifdef CONFIG_INET
7883 	    func == bpf_sock_ops_store_hdr_opt ||
7884 #endif
7885 	    func == bpf_lwt_in_push_encap ||
7886 	    func == bpf_lwt_xmit_push_encap)
7887 		return true;
7888 
7889 	return false;
7890 }
7891 
7892 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7893 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7894 
7895 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7896 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7897 {
7898 	const struct bpf_func_proto *func_proto;
7899 
7900 	func_proto = cgroup_common_func_proto(func_id, prog);
7901 	if (func_proto)
7902 		return func_proto;
7903 
7904 	func_proto = cgroup_current_func_proto(func_id, prog);
7905 	if (func_proto)
7906 		return func_proto;
7907 
7908 	switch (func_id) {
7909 	case BPF_FUNC_get_socket_cookie:
7910 		return &bpf_get_socket_cookie_sock_proto;
7911 	case BPF_FUNC_get_netns_cookie:
7912 		return &bpf_get_netns_cookie_sock_proto;
7913 	case BPF_FUNC_perf_event_output:
7914 		return &bpf_event_output_data_proto;
7915 	case BPF_FUNC_sk_storage_get:
7916 		return &bpf_sk_storage_get_cg_sock_proto;
7917 	case BPF_FUNC_ktime_get_coarse_ns:
7918 		return &bpf_ktime_get_coarse_ns_proto;
7919 	default:
7920 		return bpf_base_func_proto(func_id);
7921 	}
7922 }
7923 
7924 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7925 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7926 {
7927 	const struct bpf_func_proto *func_proto;
7928 
7929 	func_proto = cgroup_common_func_proto(func_id, prog);
7930 	if (func_proto)
7931 		return func_proto;
7932 
7933 	func_proto = cgroup_current_func_proto(func_id, prog);
7934 	if (func_proto)
7935 		return func_proto;
7936 
7937 	switch (func_id) {
7938 	case BPF_FUNC_bind:
7939 		switch (prog->expected_attach_type) {
7940 		case BPF_CGROUP_INET4_CONNECT:
7941 		case BPF_CGROUP_INET6_CONNECT:
7942 			return &bpf_bind_proto;
7943 		default:
7944 			return NULL;
7945 		}
7946 	case BPF_FUNC_get_socket_cookie:
7947 		return &bpf_get_socket_cookie_sock_addr_proto;
7948 	case BPF_FUNC_get_netns_cookie:
7949 		return &bpf_get_netns_cookie_sock_addr_proto;
7950 	case BPF_FUNC_perf_event_output:
7951 		return &bpf_event_output_data_proto;
7952 #ifdef CONFIG_INET
7953 	case BPF_FUNC_sk_lookup_tcp:
7954 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7955 	case BPF_FUNC_sk_lookup_udp:
7956 		return &bpf_sock_addr_sk_lookup_udp_proto;
7957 	case BPF_FUNC_sk_release:
7958 		return &bpf_sk_release_proto;
7959 	case BPF_FUNC_skc_lookup_tcp:
7960 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7961 #endif /* CONFIG_INET */
7962 	case BPF_FUNC_sk_storage_get:
7963 		return &bpf_sk_storage_get_proto;
7964 	case BPF_FUNC_sk_storage_delete:
7965 		return &bpf_sk_storage_delete_proto;
7966 	case BPF_FUNC_setsockopt:
7967 		switch (prog->expected_attach_type) {
7968 		case BPF_CGROUP_INET4_BIND:
7969 		case BPF_CGROUP_INET6_BIND:
7970 		case BPF_CGROUP_INET4_CONNECT:
7971 		case BPF_CGROUP_INET6_CONNECT:
7972 		case BPF_CGROUP_UDP4_RECVMSG:
7973 		case BPF_CGROUP_UDP6_RECVMSG:
7974 		case BPF_CGROUP_UDP4_SENDMSG:
7975 		case BPF_CGROUP_UDP6_SENDMSG:
7976 		case BPF_CGROUP_INET4_GETPEERNAME:
7977 		case BPF_CGROUP_INET6_GETPEERNAME:
7978 		case BPF_CGROUP_INET4_GETSOCKNAME:
7979 		case BPF_CGROUP_INET6_GETSOCKNAME:
7980 			return &bpf_sock_addr_setsockopt_proto;
7981 		default:
7982 			return NULL;
7983 		}
7984 	case BPF_FUNC_getsockopt:
7985 		switch (prog->expected_attach_type) {
7986 		case BPF_CGROUP_INET4_BIND:
7987 		case BPF_CGROUP_INET6_BIND:
7988 		case BPF_CGROUP_INET4_CONNECT:
7989 		case BPF_CGROUP_INET6_CONNECT:
7990 		case BPF_CGROUP_UDP4_RECVMSG:
7991 		case BPF_CGROUP_UDP6_RECVMSG:
7992 		case BPF_CGROUP_UDP4_SENDMSG:
7993 		case BPF_CGROUP_UDP6_SENDMSG:
7994 		case BPF_CGROUP_INET4_GETPEERNAME:
7995 		case BPF_CGROUP_INET6_GETPEERNAME:
7996 		case BPF_CGROUP_INET4_GETSOCKNAME:
7997 		case BPF_CGROUP_INET6_GETSOCKNAME:
7998 			return &bpf_sock_addr_getsockopt_proto;
7999 		default:
8000 			return NULL;
8001 		}
8002 	default:
8003 		return bpf_sk_base_func_proto(func_id);
8004 	}
8005 }
8006 
8007 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8008 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8009 {
8010 	switch (func_id) {
8011 	case BPF_FUNC_skb_load_bytes:
8012 		return &bpf_skb_load_bytes_proto;
8013 	case BPF_FUNC_skb_load_bytes_relative:
8014 		return &bpf_skb_load_bytes_relative_proto;
8015 	case BPF_FUNC_get_socket_cookie:
8016 		return &bpf_get_socket_cookie_proto;
8017 	case BPF_FUNC_get_socket_uid:
8018 		return &bpf_get_socket_uid_proto;
8019 	case BPF_FUNC_perf_event_output:
8020 		return &bpf_skb_event_output_proto;
8021 	default:
8022 		return bpf_sk_base_func_proto(func_id);
8023 	}
8024 }
8025 
8026 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8027 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8028 
8029 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8030 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8031 {
8032 	const struct bpf_func_proto *func_proto;
8033 
8034 	func_proto = cgroup_common_func_proto(func_id, prog);
8035 	if (func_proto)
8036 		return func_proto;
8037 
8038 	switch (func_id) {
8039 	case BPF_FUNC_sk_fullsock:
8040 		return &bpf_sk_fullsock_proto;
8041 	case BPF_FUNC_sk_storage_get:
8042 		return &bpf_sk_storage_get_proto;
8043 	case BPF_FUNC_sk_storage_delete:
8044 		return &bpf_sk_storage_delete_proto;
8045 	case BPF_FUNC_perf_event_output:
8046 		return &bpf_skb_event_output_proto;
8047 #ifdef CONFIG_SOCK_CGROUP_DATA
8048 	case BPF_FUNC_skb_cgroup_id:
8049 		return &bpf_skb_cgroup_id_proto;
8050 	case BPF_FUNC_skb_ancestor_cgroup_id:
8051 		return &bpf_skb_ancestor_cgroup_id_proto;
8052 	case BPF_FUNC_sk_cgroup_id:
8053 		return &bpf_sk_cgroup_id_proto;
8054 	case BPF_FUNC_sk_ancestor_cgroup_id:
8055 		return &bpf_sk_ancestor_cgroup_id_proto;
8056 #endif
8057 #ifdef CONFIG_INET
8058 	case BPF_FUNC_sk_lookup_tcp:
8059 		return &bpf_sk_lookup_tcp_proto;
8060 	case BPF_FUNC_sk_lookup_udp:
8061 		return &bpf_sk_lookup_udp_proto;
8062 	case BPF_FUNC_sk_release:
8063 		return &bpf_sk_release_proto;
8064 	case BPF_FUNC_skc_lookup_tcp:
8065 		return &bpf_skc_lookup_tcp_proto;
8066 	case BPF_FUNC_tcp_sock:
8067 		return &bpf_tcp_sock_proto;
8068 	case BPF_FUNC_get_listener_sock:
8069 		return &bpf_get_listener_sock_proto;
8070 	case BPF_FUNC_skb_ecn_set_ce:
8071 		return &bpf_skb_ecn_set_ce_proto;
8072 #endif
8073 	default:
8074 		return sk_filter_func_proto(func_id, prog);
8075 	}
8076 }
8077 
8078 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8079 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8080 {
8081 	switch (func_id) {
8082 	case BPF_FUNC_skb_store_bytes:
8083 		return &bpf_skb_store_bytes_proto;
8084 	case BPF_FUNC_skb_load_bytes:
8085 		return &bpf_skb_load_bytes_proto;
8086 	case BPF_FUNC_skb_load_bytes_relative:
8087 		return &bpf_skb_load_bytes_relative_proto;
8088 	case BPF_FUNC_skb_pull_data:
8089 		return &bpf_skb_pull_data_proto;
8090 	case BPF_FUNC_csum_diff:
8091 		return &bpf_csum_diff_proto;
8092 	case BPF_FUNC_csum_update:
8093 		return &bpf_csum_update_proto;
8094 	case BPF_FUNC_csum_level:
8095 		return &bpf_csum_level_proto;
8096 	case BPF_FUNC_l3_csum_replace:
8097 		return &bpf_l3_csum_replace_proto;
8098 	case BPF_FUNC_l4_csum_replace:
8099 		return &bpf_l4_csum_replace_proto;
8100 	case BPF_FUNC_clone_redirect:
8101 		return &bpf_clone_redirect_proto;
8102 	case BPF_FUNC_get_cgroup_classid:
8103 		return &bpf_get_cgroup_classid_proto;
8104 	case BPF_FUNC_skb_vlan_push:
8105 		return &bpf_skb_vlan_push_proto;
8106 	case BPF_FUNC_skb_vlan_pop:
8107 		return &bpf_skb_vlan_pop_proto;
8108 	case BPF_FUNC_skb_change_proto:
8109 		return &bpf_skb_change_proto_proto;
8110 	case BPF_FUNC_skb_change_type:
8111 		return &bpf_skb_change_type_proto;
8112 	case BPF_FUNC_skb_adjust_room:
8113 		return &bpf_skb_adjust_room_proto;
8114 	case BPF_FUNC_skb_change_tail:
8115 		return &bpf_skb_change_tail_proto;
8116 	case BPF_FUNC_skb_change_head:
8117 		return &bpf_skb_change_head_proto;
8118 	case BPF_FUNC_skb_get_tunnel_key:
8119 		return &bpf_skb_get_tunnel_key_proto;
8120 	case BPF_FUNC_skb_set_tunnel_key:
8121 		return bpf_get_skb_set_tunnel_proto(func_id);
8122 	case BPF_FUNC_skb_get_tunnel_opt:
8123 		return &bpf_skb_get_tunnel_opt_proto;
8124 	case BPF_FUNC_skb_set_tunnel_opt:
8125 		return bpf_get_skb_set_tunnel_proto(func_id);
8126 	case BPF_FUNC_redirect:
8127 		return &bpf_redirect_proto;
8128 	case BPF_FUNC_redirect_neigh:
8129 		return &bpf_redirect_neigh_proto;
8130 	case BPF_FUNC_redirect_peer:
8131 		return &bpf_redirect_peer_proto;
8132 	case BPF_FUNC_get_route_realm:
8133 		return &bpf_get_route_realm_proto;
8134 	case BPF_FUNC_get_hash_recalc:
8135 		return &bpf_get_hash_recalc_proto;
8136 	case BPF_FUNC_set_hash_invalid:
8137 		return &bpf_set_hash_invalid_proto;
8138 	case BPF_FUNC_set_hash:
8139 		return &bpf_set_hash_proto;
8140 	case BPF_FUNC_perf_event_output:
8141 		return &bpf_skb_event_output_proto;
8142 	case BPF_FUNC_get_smp_processor_id:
8143 		return &bpf_get_smp_processor_id_proto;
8144 	case BPF_FUNC_skb_under_cgroup:
8145 		return &bpf_skb_under_cgroup_proto;
8146 	case BPF_FUNC_get_socket_cookie:
8147 		return &bpf_get_socket_cookie_proto;
8148 	case BPF_FUNC_get_socket_uid:
8149 		return &bpf_get_socket_uid_proto;
8150 	case BPF_FUNC_fib_lookup:
8151 		return &bpf_skb_fib_lookup_proto;
8152 	case BPF_FUNC_check_mtu:
8153 		return &bpf_skb_check_mtu_proto;
8154 	case BPF_FUNC_sk_fullsock:
8155 		return &bpf_sk_fullsock_proto;
8156 	case BPF_FUNC_sk_storage_get:
8157 		return &bpf_sk_storage_get_proto;
8158 	case BPF_FUNC_sk_storage_delete:
8159 		return &bpf_sk_storage_delete_proto;
8160 #ifdef CONFIG_XFRM
8161 	case BPF_FUNC_skb_get_xfrm_state:
8162 		return &bpf_skb_get_xfrm_state_proto;
8163 #endif
8164 #ifdef CONFIG_CGROUP_NET_CLASSID
8165 	case BPF_FUNC_skb_cgroup_classid:
8166 		return &bpf_skb_cgroup_classid_proto;
8167 #endif
8168 #ifdef CONFIG_SOCK_CGROUP_DATA
8169 	case BPF_FUNC_skb_cgroup_id:
8170 		return &bpf_skb_cgroup_id_proto;
8171 	case BPF_FUNC_skb_ancestor_cgroup_id:
8172 		return &bpf_skb_ancestor_cgroup_id_proto;
8173 #endif
8174 #ifdef CONFIG_INET
8175 	case BPF_FUNC_sk_lookup_tcp:
8176 		return &bpf_tc_sk_lookup_tcp_proto;
8177 	case BPF_FUNC_sk_lookup_udp:
8178 		return &bpf_tc_sk_lookup_udp_proto;
8179 	case BPF_FUNC_sk_release:
8180 		return &bpf_sk_release_proto;
8181 	case BPF_FUNC_tcp_sock:
8182 		return &bpf_tcp_sock_proto;
8183 	case BPF_FUNC_get_listener_sock:
8184 		return &bpf_get_listener_sock_proto;
8185 	case BPF_FUNC_skc_lookup_tcp:
8186 		return &bpf_tc_skc_lookup_tcp_proto;
8187 	case BPF_FUNC_tcp_check_syncookie:
8188 		return &bpf_tcp_check_syncookie_proto;
8189 	case BPF_FUNC_skb_ecn_set_ce:
8190 		return &bpf_skb_ecn_set_ce_proto;
8191 	case BPF_FUNC_tcp_gen_syncookie:
8192 		return &bpf_tcp_gen_syncookie_proto;
8193 	case BPF_FUNC_sk_assign:
8194 		return &bpf_sk_assign_proto;
8195 	case BPF_FUNC_skb_set_tstamp:
8196 		return &bpf_skb_set_tstamp_proto;
8197 #ifdef CONFIG_SYN_COOKIES
8198 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8199 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8200 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8201 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8202 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8203 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8204 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8205 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8206 #endif
8207 #endif
8208 	default:
8209 		return bpf_sk_base_func_proto(func_id);
8210 	}
8211 }
8212 
8213 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8214 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8215 {
8216 	switch (func_id) {
8217 	case BPF_FUNC_perf_event_output:
8218 		return &bpf_xdp_event_output_proto;
8219 	case BPF_FUNC_get_smp_processor_id:
8220 		return &bpf_get_smp_processor_id_proto;
8221 	case BPF_FUNC_csum_diff:
8222 		return &bpf_csum_diff_proto;
8223 	case BPF_FUNC_xdp_adjust_head:
8224 		return &bpf_xdp_adjust_head_proto;
8225 	case BPF_FUNC_xdp_adjust_meta:
8226 		return &bpf_xdp_adjust_meta_proto;
8227 	case BPF_FUNC_redirect:
8228 		return &bpf_xdp_redirect_proto;
8229 	case BPF_FUNC_redirect_map:
8230 		return &bpf_xdp_redirect_map_proto;
8231 	case BPF_FUNC_xdp_adjust_tail:
8232 		return &bpf_xdp_adjust_tail_proto;
8233 	case BPF_FUNC_xdp_get_buff_len:
8234 		return &bpf_xdp_get_buff_len_proto;
8235 	case BPF_FUNC_xdp_load_bytes:
8236 		return &bpf_xdp_load_bytes_proto;
8237 	case BPF_FUNC_xdp_store_bytes:
8238 		return &bpf_xdp_store_bytes_proto;
8239 	case BPF_FUNC_fib_lookup:
8240 		return &bpf_xdp_fib_lookup_proto;
8241 	case BPF_FUNC_check_mtu:
8242 		return &bpf_xdp_check_mtu_proto;
8243 #ifdef CONFIG_INET
8244 	case BPF_FUNC_sk_lookup_udp:
8245 		return &bpf_xdp_sk_lookup_udp_proto;
8246 	case BPF_FUNC_sk_lookup_tcp:
8247 		return &bpf_xdp_sk_lookup_tcp_proto;
8248 	case BPF_FUNC_sk_release:
8249 		return &bpf_sk_release_proto;
8250 	case BPF_FUNC_skc_lookup_tcp:
8251 		return &bpf_xdp_skc_lookup_tcp_proto;
8252 	case BPF_FUNC_tcp_check_syncookie:
8253 		return &bpf_tcp_check_syncookie_proto;
8254 	case BPF_FUNC_tcp_gen_syncookie:
8255 		return &bpf_tcp_gen_syncookie_proto;
8256 #ifdef CONFIG_SYN_COOKIES
8257 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8258 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8259 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8260 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8261 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8262 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8263 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8264 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8265 #endif
8266 #endif
8267 	default:
8268 		return bpf_sk_base_func_proto(func_id);
8269 	}
8270 
8271 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8272 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8273 	 * kfuncs are defined in two different modules, and we want to be able
8274 	 * to use them interchangably with the same BTF type ID. Because modules
8275 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8276 	 * referenced in the vmlinux BTF or the verifier will get confused about
8277 	 * the different types. So we add this dummy type reference which will
8278 	 * be included in vmlinux BTF, allowing both modules to refer to the
8279 	 * same type ID.
8280 	 */
8281 	BTF_TYPE_EMIT(struct nf_conn___init);
8282 #endif
8283 }
8284 
8285 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8286 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8287 
8288 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8289 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8290 {
8291 	const struct bpf_func_proto *func_proto;
8292 
8293 	func_proto = cgroup_common_func_proto(func_id, prog);
8294 	if (func_proto)
8295 		return func_proto;
8296 
8297 	switch (func_id) {
8298 	case BPF_FUNC_setsockopt:
8299 		return &bpf_sock_ops_setsockopt_proto;
8300 	case BPF_FUNC_getsockopt:
8301 		return &bpf_sock_ops_getsockopt_proto;
8302 	case BPF_FUNC_sock_ops_cb_flags_set:
8303 		return &bpf_sock_ops_cb_flags_set_proto;
8304 	case BPF_FUNC_sock_map_update:
8305 		return &bpf_sock_map_update_proto;
8306 	case BPF_FUNC_sock_hash_update:
8307 		return &bpf_sock_hash_update_proto;
8308 	case BPF_FUNC_get_socket_cookie:
8309 		return &bpf_get_socket_cookie_sock_ops_proto;
8310 	case BPF_FUNC_perf_event_output:
8311 		return &bpf_event_output_data_proto;
8312 	case BPF_FUNC_sk_storage_get:
8313 		return &bpf_sk_storage_get_proto;
8314 	case BPF_FUNC_sk_storage_delete:
8315 		return &bpf_sk_storage_delete_proto;
8316 	case BPF_FUNC_get_netns_cookie:
8317 		return &bpf_get_netns_cookie_sock_ops_proto;
8318 #ifdef CONFIG_INET
8319 	case BPF_FUNC_load_hdr_opt:
8320 		return &bpf_sock_ops_load_hdr_opt_proto;
8321 	case BPF_FUNC_store_hdr_opt:
8322 		return &bpf_sock_ops_store_hdr_opt_proto;
8323 	case BPF_FUNC_reserve_hdr_opt:
8324 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8325 	case BPF_FUNC_tcp_sock:
8326 		return &bpf_tcp_sock_proto;
8327 #endif /* CONFIG_INET */
8328 	default:
8329 		return bpf_sk_base_func_proto(func_id);
8330 	}
8331 }
8332 
8333 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8334 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8335 
8336 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8337 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8338 {
8339 	switch (func_id) {
8340 	case BPF_FUNC_msg_redirect_map:
8341 		return &bpf_msg_redirect_map_proto;
8342 	case BPF_FUNC_msg_redirect_hash:
8343 		return &bpf_msg_redirect_hash_proto;
8344 	case BPF_FUNC_msg_apply_bytes:
8345 		return &bpf_msg_apply_bytes_proto;
8346 	case BPF_FUNC_msg_cork_bytes:
8347 		return &bpf_msg_cork_bytes_proto;
8348 	case BPF_FUNC_msg_pull_data:
8349 		return &bpf_msg_pull_data_proto;
8350 	case BPF_FUNC_msg_push_data:
8351 		return &bpf_msg_push_data_proto;
8352 	case BPF_FUNC_msg_pop_data:
8353 		return &bpf_msg_pop_data_proto;
8354 	case BPF_FUNC_perf_event_output:
8355 		return &bpf_event_output_data_proto;
8356 	case BPF_FUNC_get_current_uid_gid:
8357 		return &bpf_get_current_uid_gid_proto;
8358 	case BPF_FUNC_get_current_pid_tgid:
8359 		return &bpf_get_current_pid_tgid_proto;
8360 	case BPF_FUNC_sk_storage_get:
8361 		return &bpf_sk_storage_get_proto;
8362 	case BPF_FUNC_sk_storage_delete:
8363 		return &bpf_sk_storage_delete_proto;
8364 	case BPF_FUNC_get_netns_cookie:
8365 		return &bpf_get_netns_cookie_sk_msg_proto;
8366 #ifdef CONFIG_CGROUP_NET_CLASSID
8367 	case BPF_FUNC_get_cgroup_classid:
8368 		return &bpf_get_cgroup_classid_curr_proto;
8369 #endif
8370 	default:
8371 		return bpf_sk_base_func_proto(func_id);
8372 	}
8373 }
8374 
8375 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8376 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8377 
8378 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8379 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8380 {
8381 	switch (func_id) {
8382 	case BPF_FUNC_skb_store_bytes:
8383 		return &bpf_skb_store_bytes_proto;
8384 	case BPF_FUNC_skb_load_bytes:
8385 		return &bpf_skb_load_bytes_proto;
8386 	case BPF_FUNC_skb_pull_data:
8387 		return &sk_skb_pull_data_proto;
8388 	case BPF_FUNC_skb_change_tail:
8389 		return &sk_skb_change_tail_proto;
8390 	case BPF_FUNC_skb_change_head:
8391 		return &sk_skb_change_head_proto;
8392 	case BPF_FUNC_skb_adjust_room:
8393 		return &sk_skb_adjust_room_proto;
8394 	case BPF_FUNC_get_socket_cookie:
8395 		return &bpf_get_socket_cookie_proto;
8396 	case BPF_FUNC_get_socket_uid:
8397 		return &bpf_get_socket_uid_proto;
8398 	case BPF_FUNC_sk_redirect_map:
8399 		return &bpf_sk_redirect_map_proto;
8400 	case BPF_FUNC_sk_redirect_hash:
8401 		return &bpf_sk_redirect_hash_proto;
8402 	case BPF_FUNC_perf_event_output:
8403 		return &bpf_skb_event_output_proto;
8404 #ifdef CONFIG_INET
8405 	case BPF_FUNC_sk_lookup_tcp:
8406 		return &bpf_sk_lookup_tcp_proto;
8407 	case BPF_FUNC_sk_lookup_udp:
8408 		return &bpf_sk_lookup_udp_proto;
8409 	case BPF_FUNC_sk_release:
8410 		return &bpf_sk_release_proto;
8411 	case BPF_FUNC_skc_lookup_tcp:
8412 		return &bpf_skc_lookup_tcp_proto;
8413 #endif
8414 	default:
8415 		return bpf_sk_base_func_proto(func_id);
8416 	}
8417 }
8418 
8419 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8420 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8421 {
8422 	switch (func_id) {
8423 	case BPF_FUNC_skb_load_bytes:
8424 		return &bpf_flow_dissector_load_bytes_proto;
8425 	default:
8426 		return bpf_sk_base_func_proto(func_id);
8427 	}
8428 }
8429 
8430 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8431 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8432 {
8433 	switch (func_id) {
8434 	case BPF_FUNC_skb_load_bytes:
8435 		return &bpf_skb_load_bytes_proto;
8436 	case BPF_FUNC_skb_pull_data:
8437 		return &bpf_skb_pull_data_proto;
8438 	case BPF_FUNC_csum_diff:
8439 		return &bpf_csum_diff_proto;
8440 	case BPF_FUNC_get_cgroup_classid:
8441 		return &bpf_get_cgroup_classid_proto;
8442 	case BPF_FUNC_get_route_realm:
8443 		return &bpf_get_route_realm_proto;
8444 	case BPF_FUNC_get_hash_recalc:
8445 		return &bpf_get_hash_recalc_proto;
8446 	case BPF_FUNC_perf_event_output:
8447 		return &bpf_skb_event_output_proto;
8448 	case BPF_FUNC_get_smp_processor_id:
8449 		return &bpf_get_smp_processor_id_proto;
8450 	case BPF_FUNC_skb_under_cgroup:
8451 		return &bpf_skb_under_cgroup_proto;
8452 	default:
8453 		return bpf_sk_base_func_proto(func_id);
8454 	}
8455 }
8456 
8457 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8458 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8459 {
8460 	switch (func_id) {
8461 	case BPF_FUNC_lwt_push_encap:
8462 		return &bpf_lwt_in_push_encap_proto;
8463 	default:
8464 		return lwt_out_func_proto(func_id, prog);
8465 	}
8466 }
8467 
8468 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8469 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8470 {
8471 	switch (func_id) {
8472 	case BPF_FUNC_skb_get_tunnel_key:
8473 		return &bpf_skb_get_tunnel_key_proto;
8474 	case BPF_FUNC_skb_set_tunnel_key:
8475 		return bpf_get_skb_set_tunnel_proto(func_id);
8476 	case BPF_FUNC_skb_get_tunnel_opt:
8477 		return &bpf_skb_get_tunnel_opt_proto;
8478 	case BPF_FUNC_skb_set_tunnel_opt:
8479 		return bpf_get_skb_set_tunnel_proto(func_id);
8480 	case BPF_FUNC_redirect:
8481 		return &bpf_redirect_proto;
8482 	case BPF_FUNC_clone_redirect:
8483 		return &bpf_clone_redirect_proto;
8484 	case BPF_FUNC_skb_change_tail:
8485 		return &bpf_skb_change_tail_proto;
8486 	case BPF_FUNC_skb_change_head:
8487 		return &bpf_skb_change_head_proto;
8488 	case BPF_FUNC_skb_store_bytes:
8489 		return &bpf_skb_store_bytes_proto;
8490 	case BPF_FUNC_csum_update:
8491 		return &bpf_csum_update_proto;
8492 	case BPF_FUNC_csum_level:
8493 		return &bpf_csum_level_proto;
8494 	case BPF_FUNC_l3_csum_replace:
8495 		return &bpf_l3_csum_replace_proto;
8496 	case BPF_FUNC_l4_csum_replace:
8497 		return &bpf_l4_csum_replace_proto;
8498 	case BPF_FUNC_set_hash_invalid:
8499 		return &bpf_set_hash_invalid_proto;
8500 	case BPF_FUNC_lwt_push_encap:
8501 		return &bpf_lwt_xmit_push_encap_proto;
8502 	default:
8503 		return lwt_out_func_proto(func_id, prog);
8504 	}
8505 }
8506 
8507 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8508 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8509 {
8510 	switch (func_id) {
8511 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8512 	case BPF_FUNC_lwt_seg6_store_bytes:
8513 		return &bpf_lwt_seg6_store_bytes_proto;
8514 	case BPF_FUNC_lwt_seg6_action:
8515 		return &bpf_lwt_seg6_action_proto;
8516 	case BPF_FUNC_lwt_seg6_adjust_srh:
8517 		return &bpf_lwt_seg6_adjust_srh_proto;
8518 #endif
8519 	default:
8520 		return lwt_out_func_proto(func_id, prog);
8521 	}
8522 }
8523 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8524 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8525 				    const struct bpf_prog *prog,
8526 				    struct bpf_insn_access_aux *info)
8527 {
8528 	const int size_default = sizeof(__u32);
8529 
8530 	if (off < 0 || off >= sizeof(struct __sk_buff))
8531 		return false;
8532 
8533 	/* The verifier guarantees that size > 0. */
8534 	if (off % size != 0)
8535 		return false;
8536 
8537 	switch (off) {
8538 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8539 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8540 			return false;
8541 		break;
8542 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8543 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8544 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8545 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8546 	case bpf_ctx_range(struct __sk_buff, data):
8547 	case bpf_ctx_range(struct __sk_buff, data_meta):
8548 	case bpf_ctx_range(struct __sk_buff, data_end):
8549 		if (size != size_default)
8550 			return false;
8551 		break;
8552 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8553 		return false;
8554 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8555 		if (type == BPF_WRITE || size != sizeof(__u64))
8556 			return false;
8557 		break;
8558 	case bpf_ctx_range(struct __sk_buff, tstamp):
8559 		if (size != sizeof(__u64))
8560 			return false;
8561 		break;
8562 	case offsetof(struct __sk_buff, sk):
8563 		if (type == BPF_WRITE || size != sizeof(__u64))
8564 			return false;
8565 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8566 		break;
8567 	case offsetof(struct __sk_buff, tstamp_type):
8568 		return false;
8569 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8570 		/* Explicitly prohibit access to padding in __sk_buff. */
8571 		return false;
8572 	default:
8573 		/* Only narrow read access allowed for now. */
8574 		if (type == BPF_WRITE) {
8575 			if (size != size_default)
8576 				return false;
8577 		} else {
8578 			bpf_ctx_record_field_size(info, size_default);
8579 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8580 				return false;
8581 		}
8582 	}
8583 
8584 	return true;
8585 }
8586 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8587 static bool sk_filter_is_valid_access(int off, int size,
8588 				      enum bpf_access_type type,
8589 				      const struct bpf_prog *prog,
8590 				      struct bpf_insn_access_aux *info)
8591 {
8592 	switch (off) {
8593 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8594 	case bpf_ctx_range(struct __sk_buff, data):
8595 	case bpf_ctx_range(struct __sk_buff, data_meta):
8596 	case bpf_ctx_range(struct __sk_buff, data_end):
8597 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8598 	case bpf_ctx_range(struct __sk_buff, tstamp):
8599 	case bpf_ctx_range(struct __sk_buff, wire_len):
8600 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8601 		return false;
8602 	}
8603 
8604 	if (type == BPF_WRITE) {
8605 		switch (off) {
8606 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8607 			break;
8608 		default:
8609 			return false;
8610 		}
8611 	}
8612 
8613 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8614 }
8615 
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8616 static bool cg_skb_is_valid_access(int off, int size,
8617 				   enum bpf_access_type type,
8618 				   const struct bpf_prog *prog,
8619 				   struct bpf_insn_access_aux *info)
8620 {
8621 	switch (off) {
8622 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8623 	case bpf_ctx_range(struct __sk_buff, data_meta):
8624 	case bpf_ctx_range(struct __sk_buff, wire_len):
8625 		return false;
8626 	case bpf_ctx_range(struct __sk_buff, data):
8627 	case bpf_ctx_range(struct __sk_buff, data_end):
8628 		if (!bpf_capable())
8629 			return false;
8630 		break;
8631 	}
8632 
8633 	if (type == BPF_WRITE) {
8634 		switch (off) {
8635 		case bpf_ctx_range(struct __sk_buff, mark):
8636 		case bpf_ctx_range(struct __sk_buff, priority):
8637 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8638 			break;
8639 		case bpf_ctx_range(struct __sk_buff, tstamp):
8640 			if (!bpf_capable())
8641 				return false;
8642 			break;
8643 		default:
8644 			return false;
8645 		}
8646 	}
8647 
8648 	switch (off) {
8649 	case bpf_ctx_range(struct __sk_buff, data):
8650 		info->reg_type = PTR_TO_PACKET;
8651 		break;
8652 	case bpf_ctx_range(struct __sk_buff, data_end):
8653 		info->reg_type = PTR_TO_PACKET_END;
8654 		break;
8655 	}
8656 
8657 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8658 }
8659 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8660 static bool lwt_is_valid_access(int off, int size,
8661 				enum bpf_access_type type,
8662 				const struct bpf_prog *prog,
8663 				struct bpf_insn_access_aux *info)
8664 {
8665 	switch (off) {
8666 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8667 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8668 	case bpf_ctx_range(struct __sk_buff, data_meta):
8669 	case bpf_ctx_range(struct __sk_buff, tstamp):
8670 	case bpf_ctx_range(struct __sk_buff, wire_len):
8671 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8672 		return false;
8673 	}
8674 
8675 	if (type == BPF_WRITE) {
8676 		switch (off) {
8677 		case bpf_ctx_range(struct __sk_buff, mark):
8678 		case bpf_ctx_range(struct __sk_buff, priority):
8679 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8680 			break;
8681 		default:
8682 			return false;
8683 		}
8684 	}
8685 
8686 	switch (off) {
8687 	case bpf_ctx_range(struct __sk_buff, data):
8688 		info->reg_type = PTR_TO_PACKET;
8689 		break;
8690 	case bpf_ctx_range(struct __sk_buff, data_end):
8691 		info->reg_type = PTR_TO_PACKET_END;
8692 		break;
8693 	}
8694 
8695 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8696 }
8697 
8698 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8699 static bool __sock_filter_check_attach_type(int off,
8700 					    enum bpf_access_type access_type,
8701 					    enum bpf_attach_type attach_type)
8702 {
8703 	switch (off) {
8704 	case offsetof(struct bpf_sock, bound_dev_if):
8705 	case offsetof(struct bpf_sock, mark):
8706 	case offsetof(struct bpf_sock, priority):
8707 		switch (attach_type) {
8708 		case BPF_CGROUP_INET_SOCK_CREATE:
8709 		case BPF_CGROUP_INET_SOCK_RELEASE:
8710 			goto full_access;
8711 		default:
8712 			return false;
8713 		}
8714 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8715 		switch (attach_type) {
8716 		case BPF_CGROUP_INET4_POST_BIND:
8717 			goto read_only;
8718 		default:
8719 			return false;
8720 		}
8721 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8722 		switch (attach_type) {
8723 		case BPF_CGROUP_INET6_POST_BIND:
8724 			goto read_only;
8725 		default:
8726 			return false;
8727 		}
8728 	case bpf_ctx_range(struct bpf_sock, src_port):
8729 		switch (attach_type) {
8730 		case BPF_CGROUP_INET4_POST_BIND:
8731 		case BPF_CGROUP_INET6_POST_BIND:
8732 			goto read_only;
8733 		default:
8734 			return false;
8735 		}
8736 	}
8737 read_only:
8738 	return access_type == BPF_READ;
8739 full_access:
8740 	return true;
8741 }
8742 
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8743 bool bpf_sock_common_is_valid_access(int off, int size,
8744 				     enum bpf_access_type type,
8745 				     struct bpf_insn_access_aux *info)
8746 {
8747 	switch (off) {
8748 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8749 		return false;
8750 	default:
8751 		return bpf_sock_is_valid_access(off, size, type, info);
8752 	}
8753 }
8754 
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8755 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8756 			      struct bpf_insn_access_aux *info)
8757 {
8758 	const int size_default = sizeof(__u32);
8759 	int field_size;
8760 
8761 	if (off < 0 || off >= sizeof(struct bpf_sock))
8762 		return false;
8763 	if (off % size != 0)
8764 		return false;
8765 
8766 	switch (off) {
8767 	case offsetof(struct bpf_sock, state):
8768 	case offsetof(struct bpf_sock, family):
8769 	case offsetof(struct bpf_sock, type):
8770 	case offsetof(struct bpf_sock, protocol):
8771 	case offsetof(struct bpf_sock, src_port):
8772 	case offsetof(struct bpf_sock, rx_queue_mapping):
8773 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8774 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8775 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8776 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8777 		bpf_ctx_record_field_size(info, size_default);
8778 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8779 	case bpf_ctx_range(struct bpf_sock, dst_port):
8780 		field_size = size == size_default ?
8781 			size_default : sizeof_field(struct bpf_sock, dst_port);
8782 		bpf_ctx_record_field_size(info, field_size);
8783 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8784 	case offsetofend(struct bpf_sock, dst_port) ...
8785 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8786 		return false;
8787 	}
8788 
8789 	return size == size_default;
8790 }
8791 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8792 static bool sock_filter_is_valid_access(int off, int size,
8793 					enum bpf_access_type type,
8794 					const struct bpf_prog *prog,
8795 					struct bpf_insn_access_aux *info)
8796 {
8797 	if (!bpf_sock_is_valid_access(off, size, type, info))
8798 		return false;
8799 	return __sock_filter_check_attach_type(off, type,
8800 					       prog->expected_attach_type);
8801 }
8802 
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8803 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8804 			     const struct bpf_prog *prog)
8805 {
8806 	/* Neither direct read nor direct write requires any preliminary
8807 	 * action.
8808 	 */
8809 	return 0;
8810 }
8811 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8812 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8813 				const struct bpf_prog *prog, int drop_verdict)
8814 {
8815 	struct bpf_insn *insn = insn_buf;
8816 
8817 	if (!direct_write)
8818 		return 0;
8819 
8820 	/* if (!skb->cloned)
8821 	 *       goto start;
8822 	 *
8823 	 * (Fast-path, otherwise approximation that we might be
8824 	 *  a clone, do the rest in helper.)
8825 	 */
8826 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8827 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8828 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8829 
8830 	/* ret = bpf_skb_pull_data(skb, 0); */
8831 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8832 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8833 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8834 			       BPF_FUNC_skb_pull_data);
8835 	/* if (!ret)
8836 	 *      goto restore;
8837 	 * return TC_ACT_SHOT;
8838 	 */
8839 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8840 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8841 	*insn++ = BPF_EXIT_INSN();
8842 
8843 	/* restore: */
8844 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8845 	/* start: */
8846 	*insn++ = prog->insnsi[0];
8847 
8848 	return insn - insn_buf;
8849 }
8850 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8851 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8852 			  struct bpf_insn *insn_buf)
8853 {
8854 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8855 	struct bpf_insn *insn = insn_buf;
8856 
8857 	if (!indirect) {
8858 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8859 	} else {
8860 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8861 		if (orig->imm)
8862 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8863 	}
8864 	/* We're guaranteed here that CTX is in R6. */
8865 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8866 
8867 	switch (BPF_SIZE(orig->code)) {
8868 	case BPF_B:
8869 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8870 		break;
8871 	case BPF_H:
8872 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8873 		break;
8874 	case BPF_W:
8875 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8876 		break;
8877 	}
8878 
8879 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8880 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8881 	*insn++ = BPF_EXIT_INSN();
8882 
8883 	return insn - insn_buf;
8884 }
8885 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8886 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8887 			       const struct bpf_prog *prog)
8888 {
8889 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8890 }
8891 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8892 static bool tc_cls_act_is_valid_access(int off, int size,
8893 				       enum bpf_access_type type,
8894 				       const struct bpf_prog *prog,
8895 				       struct bpf_insn_access_aux *info)
8896 {
8897 	if (type == BPF_WRITE) {
8898 		switch (off) {
8899 		case bpf_ctx_range(struct __sk_buff, mark):
8900 		case bpf_ctx_range(struct __sk_buff, tc_index):
8901 		case bpf_ctx_range(struct __sk_buff, priority):
8902 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8903 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8904 		case bpf_ctx_range(struct __sk_buff, tstamp):
8905 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8906 			break;
8907 		default:
8908 			return false;
8909 		}
8910 	}
8911 
8912 	switch (off) {
8913 	case bpf_ctx_range(struct __sk_buff, data):
8914 		info->reg_type = PTR_TO_PACKET;
8915 		break;
8916 	case bpf_ctx_range(struct __sk_buff, data_meta):
8917 		info->reg_type = PTR_TO_PACKET_META;
8918 		break;
8919 	case bpf_ctx_range(struct __sk_buff, data_end):
8920 		info->reg_type = PTR_TO_PACKET_END;
8921 		break;
8922 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8923 		return false;
8924 	case offsetof(struct __sk_buff, tstamp_type):
8925 		/* The convert_ctx_access() on reading and writing
8926 		 * __sk_buff->tstamp depends on whether the bpf prog
8927 		 * has used __sk_buff->tstamp_type or not.
8928 		 * Thus, we need to set prog->tstamp_type_access
8929 		 * earlier during is_valid_access() here.
8930 		 */
8931 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8932 		return size == sizeof(__u8);
8933 	}
8934 
8935 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8936 }
8937 
8938 DEFINE_MUTEX(nf_conn_btf_access_lock);
8939 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8940 
8941 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8942 			      const struct bpf_reg_state *reg,
8943 			      int off, int size);
8944 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8945 
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8946 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8947 					const struct bpf_reg_state *reg,
8948 					int off, int size)
8949 {
8950 	int ret = -EACCES;
8951 
8952 	mutex_lock(&nf_conn_btf_access_lock);
8953 	if (nfct_btf_struct_access)
8954 		ret = nfct_btf_struct_access(log, reg, off, size);
8955 	mutex_unlock(&nf_conn_btf_access_lock);
8956 
8957 	return ret;
8958 }
8959 
__is_valid_xdp_access(int off,int size)8960 static bool __is_valid_xdp_access(int off, int size)
8961 {
8962 	if (off < 0 || off >= sizeof(struct xdp_md))
8963 		return false;
8964 	if (off % size != 0)
8965 		return false;
8966 	if (size != sizeof(__u32))
8967 		return false;
8968 
8969 	return true;
8970 }
8971 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8972 static bool xdp_is_valid_access(int off, int size,
8973 				enum bpf_access_type type,
8974 				const struct bpf_prog *prog,
8975 				struct bpf_insn_access_aux *info)
8976 {
8977 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8978 		switch (off) {
8979 		case offsetof(struct xdp_md, egress_ifindex):
8980 			return false;
8981 		}
8982 	}
8983 
8984 	if (type == BPF_WRITE) {
8985 		if (bpf_prog_is_offloaded(prog->aux)) {
8986 			switch (off) {
8987 			case offsetof(struct xdp_md, rx_queue_index):
8988 				return __is_valid_xdp_access(off, size);
8989 			}
8990 		}
8991 		return false;
8992 	}
8993 
8994 	switch (off) {
8995 	case offsetof(struct xdp_md, data):
8996 		info->reg_type = PTR_TO_PACKET;
8997 		break;
8998 	case offsetof(struct xdp_md, data_meta):
8999 		info->reg_type = PTR_TO_PACKET_META;
9000 		break;
9001 	case offsetof(struct xdp_md, data_end):
9002 		info->reg_type = PTR_TO_PACKET_END;
9003 		break;
9004 	}
9005 
9006 	return __is_valid_xdp_access(off, size);
9007 }
9008 
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)9009 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
9010 {
9011 	const u32 act_max = XDP_REDIRECT;
9012 
9013 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9014 		     act > act_max ? "Illegal" : "Driver unsupported",
9015 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9016 }
9017 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9018 
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)9019 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9020 				 const struct bpf_reg_state *reg,
9021 				 int off, int size)
9022 {
9023 	int ret = -EACCES;
9024 
9025 	mutex_lock(&nf_conn_btf_access_lock);
9026 	if (nfct_btf_struct_access)
9027 		ret = nfct_btf_struct_access(log, reg, off, size);
9028 	mutex_unlock(&nf_conn_btf_access_lock);
9029 
9030 	return ret;
9031 }
9032 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9033 static bool sock_addr_is_valid_access(int off, int size,
9034 				      enum bpf_access_type type,
9035 				      const struct bpf_prog *prog,
9036 				      struct bpf_insn_access_aux *info)
9037 {
9038 	const int size_default = sizeof(__u32);
9039 
9040 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9041 		return false;
9042 	if (off % size != 0)
9043 		return false;
9044 
9045 	/* Disallow access to IPv6 fields from IPv4 contex and vise
9046 	 * versa.
9047 	 */
9048 	switch (off) {
9049 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9050 		switch (prog->expected_attach_type) {
9051 		case BPF_CGROUP_INET4_BIND:
9052 		case BPF_CGROUP_INET4_CONNECT:
9053 		case BPF_CGROUP_INET4_GETPEERNAME:
9054 		case BPF_CGROUP_INET4_GETSOCKNAME:
9055 		case BPF_CGROUP_UDP4_SENDMSG:
9056 		case BPF_CGROUP_UDP4_RECVMSG:
9057 			break;
9058 		default:
9059 			return false;
9060 		}
9061 		break;
9062 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9063 		switch (prog->expected_attach_type) {
9064 		case BPF_CGROUP_INET6_BIND:
9065 		case BPF_CGROUP_INET6_CONNECT:
9066 		case BPF_CGROUP_INET6_GETPEERNAME:
9067 		case BPF_CGROUP_INET6_GETSOCKNAME:
9068 		case BPF_CGROUP_UDP6_SENDMSG:
9069 		case BPF_CGROUP_UDP6_RECVMSG:
9070 			break;
9071 		default:
9072 			return false;
9073 		}
9074 		break;
9075 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9076 		switch (prog->expected_attach_type) {
9077 		case BPF_CGROUP_UDP4_SENDMSG:
9078 			break;
9079 		default:
9080 			return false;
9081 		}
9082 		break;
9083 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9084 				msg_src_ip6[3]):
9085 		switch (prog->expected_attach_type) {
9086 		case BPF_CGROUP_UDP6_SENDMSG:
9087 			break;
9088 		default:
9089 			return false;
9090 		}
9091 		break;
9092 	}
9093 
9094 	switch (off) {
9095 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9096 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9097 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9098 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9099 				msg_src_ip6[3]):
9100 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9101 		if (type == BPF_READ) {
9102 			bpf_ctx_record_field_size(info, size_default);
9103 
9104 			if (bpf_ctx_wide_access_ok(off, size,
9105 						   struct bpf_sock_addr,
9106 						   user_ip6))
9107 				return true;
9108 
9109 			if (bpf_ctx_wide_access_ok(off, size,
9110 						   struct bpf_sock_addr,
9111 						   msg_src_ip6))
9112 				return true;
9113 
9114 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9115 				return false;
9116 		} else {
9117 			if (bpf_ctx_wide_access_ok(off, size,
9118 						   struct bpf_sock_addr,
9119 						   user_ip6))
9120 				return true;
9121 
9122 			if (bpf_ctx_wide_access_ok(off, size,
9123 						   struct bpf_sock_addr,
9124 						   msg_src_ip6))
9125 				return true;
9126 
9127 			if (size != size_default)
9128 				return false;
9129 		}
9130 		break;
9131 	case offsetof(struct bpf_sock_addr, sk):
9132 		if (type != BPF_READ)
9133 			return false;
9134 		if (size != sizeof(__u64))
9135 			return false;
9136 		info->reg_type = PTR_TO_SOCKET;
9137 		break;
9138 	default:
9139 		if (type == BPF_READ) {
9140 			if (size != size_default)
9141 				return false;
9142 		} else {
9143 			return false;
9144 		}
9145 	}
9146 
9147 	return true;
9148 }
9149 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9150 static bool sock_ops_is_valid_access(int off, int size,
9151 				     enum bpf_access_type type,
9152 				     const struct bpf_prog *prog,
9153 				     struct bpf_insn_access_aux *info)
9154 {
9155 	const int size_default = sizeof(__u32);
9156 
9157 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9158 		return false;
9159 
9160 	/* The verifier guarantees that size > 0. */
9161 	if (off % size != 0)
9162 		return false;
9163 
9164 	if (type == BPF_WRITE) {
9165 		switch (off) {
9166 		case offsetof(struct bpf_sock_ops, reply):
9167 		case offsetof(struct bpf_sock_ops, sk_txhash):
9168 			if (size != size_default)
9169 				return false;
9170 			break;
9171 		default:
9172 			return false;
9173 		}
9174 	} else {
9175 		switch (off) {
9176 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9177 					bytes_acked):
9178 			if (size != sizeof(__u64))
9179 				return false;
9180 			break;
9181 		case offsetof(struct bpf_sock_ops, sk):
9182 			if (size != sizeof(__u64))
9183 				return false;
9184 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9185 			break;
9186 		case offsetof(struct bpf_sock_ops, skb_data):
9187 			if (size != sizeof(__u64))
9188 				return false;
9189 			info->reg_type = PTR_TO_PACKET;
9190 			break;
9191 		case offsetof(struct bpf_sock_ops, skb_data_end):
9192 			if (size != sizeof(__u64))
9193 				return false;
9194 			info->reg_type = PTR_TO_PACKET_END;
9195 			break;
9196 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9197 			bpf_ctx_record_field_size(info, size_default);
9198 			return bpf_ctx_narrow_access_ok(off, size,
9199 							size_default);
9200 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9201 			if (size != sizeof(__u64))
9202 				return false;
9203 			break;
9204 		default:
9205 			if (size != size_default)
9206 				return false;
9207 			break;
9208 		}
9209 	}
9210 
9211 	return true;
9212 }
9213 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9214 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9215 			   const struct bpf_prog *prog)
9216 {
9217 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9218 }
9219 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9220 static bool sk_skb_is_valid_access(int off, int size,
9221 				   enum bpf_access_type type,
9222 				   const struct bpf_prog *prog,
9223 				   struct bpf_insn_access_aux *info)
9224 {
9225 	switch (off) {
9226 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9227 	case bpf_ctx_range(struct __sk_buff, data_meta):
9228 	case bpf_ctx_range(struct __sk_buff, tstamp):
9229 	case bpf_ctx_range(struct __sk_buff, wire_len):
9230 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9231 		return false;
9232 	}
9233 
9234 	if (type == BPF_WRITE) {
9235 		switch (off) {
9236 		case bpf_ctx_range(struct __sk_buff, tc_index):
9237 		case bpf_ctx_range(struct __sk_buff, priority):
9238 			break;
9239 		default:
9240 			return false;
9241 		}
9242 	}
9243 
9244 	switch (off) {
9245 	case bpf_ctx_range(struct __sk_buff, mark):
9246 		return false;
9247 	case bpf_ctx_range(struct __sk_buff, data):
9248 		info->reg_type = PTR_TO_PACKET;
9249 		break;
9250 	case bpf_ctx_range(struct __sk_buff, data_end):
9251 		info->reg_type = PTR_TO_PACKET_END;
9252 		break;
9253 	}
9254 
9255 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9256 }
9257 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9258 static bool sk_msg_is_valid_access(int off, int size,
9259 				   enum bpf_access_type type,
9260 				   const struct bpf_prog *prog,
9261 				   struct bpf_insn_access_aux *info)
9262 {
9263 	if (type == BPF_WRITE)
9264 		return false;
9265 
9266 	if (off % size != 0)
9267 		return false;
9268 
9269 	switch (off) {
9270 	case offsetof(struct sk_msg_md, data):
9271 		info->reg_type = PTR_TO_PACKET;
9272 		if (size != sizeof(__u64))
9273 			return false;
9274 		break;
9275 	case offsetof(struct sk_msg_md, data_end):
9276 		info->reg_type = PTR_TO_PACKET_END;
9277 		if (size != sizeof(__u64))
9278 			return false;
9279 		break;
9280 	case offsetof(struct sk_msg_md, sk):
9281 		if (size != sizeof(__u64))
9282 			return false;
9283 		info->reg_type = PTR_TO_SOCKET;
9284 		break;
9285 	case bpf_ctx_range(struct sk_msg_md, family):
9286 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9287 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9288 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9289 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9290 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9291 	case bpf_ctx_range(struct sk_msg_md, local_port):
9292 	case bpf_ctx_range(struct sk_msg_md, size):
9293 		if (size != sizeof(__u32))
9294 			return false;
9295 		break;
9296 	default:
9297 		return false;
9298 	}
9299 	return true;
9300 }
9301 
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9302 static bool flow_dissector_is_valid_access(int off, int size,
9303 					   enum bpf_access_type type,
9304 					   const struct bpf_prog *prog,
9305 					   struct bpf_insn_access_aux *info)
9306 {
9307 	const int size_default = sizeof(__u32);
9308 
9309 	if (off < 0 || off >= sizeof(struct __sk_buff))
9310 		return false;
9311 
9312 	if (type == BPF_WRITE)
9313 		return false;
9314 
9315 	switch (off) {
9316 	case bpf_ctx_range(struct __sk_buff, data):
9317 		if (size != size_default)
9318 			return false;
9319 		info->reg_type = PTR_TO_PACKET;
9320 		return true;
9321 	case bpf_ctx_range(struct __sk_buff, data_end):
9322 		if (size != size_default)
9323 			return false;
9324 		info->reg_type = PTR_TO_PACKET_END;
9325 		return true;
9326 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9327 		if (size != sizeof(__u64))
9328 			return false;
9329 		info->reg_type = PTR_TO_FLOW_KEYS;
9330 		return true;
9331 	default:
9332 		return false;
9333 	}
9334 }
9335 
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9336 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9337 					     const struct bpf_insn *si,
9338 					     struct bpf_insn *insn_buf,
9339 					     struct bpf_prog *prog,
9340 					     u32 *target_size)
9341 
9342 {
9343 	struct bpf_insn *insn = insn_buf;
9344 
9345 	switch (si->off) {
9346 	case offsetof(struct __sk_buff, data):
9347 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9348 				      si->dst_reg, si->src_reg,
9349 				      offsetof(struct bpf_flow_dissector, data));
9350 		break;
9351 
9352 	case offsetof(struct __sk_buff, data_end):
9353 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9354 				      si->dst_reg, si->src_reg,
9355 				      offsetof(struct bpf_flow_dissector, data_end));
9356 		break;
9357 
9358 	case offsetof(struct __sk_buff, flow_keys):
9359 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9360 				      si->dst_reg, si->src_reg,
9361 				      offsetof(struct bpf_flow_dissector, flow_keys));
9362 		break;
9363 	}
9364 
9365 	return insn - insn_buf;
9366 }
9367 
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9368 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9369 						     struct bpf_insn *insn)
9370 {
9371 	__u8 value_reg = si->dst_reg;
9372 	__u8 skb_reg = si->src_reg;
9373 	/* AX is needed because src_reg and dst_reg could be the same */
9374 	__u8 tmp_reg = BPF_REG_AX;
9375 
9376 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9377 			      SKB_BF_MONO_TC_OFFSET);
9378 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9379 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9380 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9381 	*insn++ = BPF_JMP_A(1);
9382 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9383 
9384 	return insn;
9385 }
9386 
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9387 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9388 						  struct bpf_insn *insn)
9389 {
9390 	/* si->dst_reg = skb_shinfo(SKB); */
9391 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9392 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9393 			      BPF_REG_AX, skb_reg,
9394 			      offsetof(struct sk_buff, end));
9395 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9396 			      dst_reg, skb_reg,
9397 			      offsetof(struct sk_buff, head));
9398 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9399 #else
9400 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9401 			      dst_reg, skb_reg,
9402 			      offsetof(struct sk_buff, end));
9403 #endif
9404 
9405 	return insn;
9406 }
9407 
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9408 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9409 						const struct bpf_insn *si,
9410 						struct bpf_insn *insn)
9411 {
9412 	__u8 value_reg = si->dst_reg;
9413 	__u8 skb_reg = si->src_reg;
9414 
9415 #ifdef CONFIG_NET_XGRESS
9416 	/* If the tstamp_type is read,
9417 	 * the bpf prog is aware the tstamp could have delivery time.
9418 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9419 	 */
9420 	if (!prog->tstamp_type_access) {
9421 		/* AX is needed because src_reg and dst_reg could be the same */
9422 		__u8 tmp_reg = BPF_REG_AX;
9423 
9424 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9425 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9426 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9427 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9428 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9429 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9430 		 * read 0 as the (rcv) timestamp.
9431 		 */
9432 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9433 		*insn++ = BPF_JMP_A(1);
9434 	}
9435 #endif
9436 
9437 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9438 			      offsetof(struct sk_buff, tstamp));
9439 	return insn;
9440 }
9441 
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9442 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9443 						 const struct bpf_insn *si,
9444 						 struct bpf_insn *insn)
9445 {
9446 	__u8 value_reg = si->src_reg;
9447 	__u8 skb_reg = si->dst_reg;
9448 
9449 #ifdef CONFIG_NET_XGRESS
9450 	/* If the tstamp_type is read,
9451 	 * the bpf prog is aware the tstamp could have delivery time.
9452 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9453 	 * Otherwise, writing at ingress will have to clear the
9454 	 * mono_delivery_time bit also.
9455 	 */
9456 	if (!prog->tstamp_type_access) {
9457 		__u8 tmp_reg = BPF_REG_AX;
9458 
9459 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9460 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9461 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9462 		/* goto <store> */
9463 		*insn++ = BPF_JMP_A(2);
9464 		/* <clear>: mono_delivery_time */
9465 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9466 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9467 	}
9468 #endif
9469 
9470 	/* <store>: skb->tstamp = tstamp */
9471 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9472 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9473 	return insn;
9474 }
9475 
9476 #define BPF_EMIT_STORE(size, si, off)					\
9477 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9478 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9479 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9480 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9481 				  const struct bpf_insn *si,
9482 				  struct bpf_insn *insn_buf,
9483 				  struct bpf_prog *prog, u32 *target_size)
9484 {
9485 	struct bpf_insn *insn = insn_buf;
9486 	int off;
9487 
9488 	switch (si->off) {
9489 	case offsetof(struct __sk_buff, len):
9490 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9491 				      bpf_target_off(struct sk_buff, len, 4,
9492 						     target_size));
9493 		break;
9494 
9495 	case offsetof(struct __sk_buff, protocol):
9496 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9497 				      bpf_target_off(struct sk_buff, protocol, 2,
9498 						     target_size));
9499 		break;
9500 
9501 	case offsetof(struct __sk_buff, vlan_proto):
9502 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9503 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9504 						     target_size));
9505 		break;
9506 
9507 	case offsetof(struct __sk_buff, priority):
9508 		if (type == BPF_WRITE)
9509 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9510 						 bpf_target_off(struct sk_buff, priority, 4,
9511 								target_size));
9512 		else
9513 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9514 					      bpf_target_off(struct sk_buff, priority, 4,
9515 							     target_size));
9516 		break;
9517 
9518 	case offsetof(struct __sk_buff, ingress_ifindex):
9519 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9520 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9521 						     target_size));
9522 		break;
9523 
9524 	case offsetof(struct __sk_buff, ifindex):
9525 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9526 				      si->dst_reg, si->src_reg,
9527 				      offsetof(struct sk_buff, dev));
9528 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9529 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9530 				      bpf_target_off(struct net_device, ifindex, 4,
9531 						     target_size));
9532 		break;
9533 
9534 	case offsetof(struct __sk_buff, hash):
9535 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9536 				      bpf_target_off(struct sk_buff, hash, 4,
9537 						     target_size));
9538 		break;
9539 
9540 	case offsetof(struct __sk_buff, mark):
9541 		if (type == BPF_WRITE)
9542 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9543 						 bpf_target_off(struct sk_buff, mark, 4,
9544 								target_size));
9545 		else
9546 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9547 					      bpf_target_off(struct sk_buff, mark, 4,
9548 							     target_size));
9549 		break;
9550 
9551 	case offsetof(struct __sk_buff, pkt_type):
9552 		*target_size = 1;
9553 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9554 				      PKT_TYPE_OFFSET);
9555 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9556 #ifdef __BIG_ENDIAN_BITFIELD
9557 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9558 #endif
9559 		break;
9560 
9561 	case offsetof(struct __sk_buff, queue_mapping):
9562 		if (type == BPF_WRITE) {
9563 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9564 
9565 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9566 				*insn++ = BPF_JMP_A(0); /* noop */
9567 				break;
9568 			}
9569 
9570 			if (BPF_CLASS(si->code) == BPF_STX)
9571 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9572 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9573 		} else {
9574 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9575 					      bpf_target_off(struct sk_buff,
9576 							     queue_mapping,
9577 							     2, target_size));
9578 		}
9579 		break;
9580 
9581 	case offsetof(struct __sk_buff, vlan_present):
9582 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9583 				      bpf_target_off(struct sk_buff,
9584 						     vlan_all, 4, target_size));
9585 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9586 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9587 		break;
9588 
9589 	case offsetof(struct __sk_buff, vlan_tci):
9590 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9591 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9592 						     target_size));
9593 		break;
9594 
9595 	case offsetof(struct __sk_buff, cb[0]) ...
9596 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9597 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9598 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9599 			      offsetof(struct qdisc_skb_cb, data)) %
9600 			     sizeof(__u64));
9601 
9602 		prog->cb_access = 1;
9603 		off  = si->off;
9604 		off -= offsetof(struct __sk_buff, cb[0]);
9605 		off += offsetof(struct sk_buff, cb);
9606 		off += offsetof(struct qdisc_skb_cb, data);
9607 		if (type == BPF_WRITE)
9608 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9609 		else
9610 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9611 					      si->src_reg, off);
9612 		break;
9613 
9614 	case offsetof(struct __sk_buff, tc_classid):
9615 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9616 
9617 		off  = si->off;
9618 		off -= offsetof(struct __sk_buff, tc_classid);
9619 		off += offsetof(struct sk_buff, cb);
9620 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9621 		*target_size = 2;
9622 		if (type == BPF_WRITE)
9623 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9624 		else
9625 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9626 					      si->src_reg, off);
9627 		break;
9628 
9629 	case offsetof(struct __sk_buff, data):
9630 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9631 				      si->dst_reg, si->src_reg,
9632 				      offsetof(struct sk_buff, data));
9633 		break;
9634 
9635 	case offsetof(struct __sk_buff, data_meta):
9636 		off  = si->off;
9637 		off -= offsetof(struct __sk_buff, data_meta);
9638 		off += offsetof(struct sk_buff, cb);
9639 		off += offsetof(struct bpf_skb_data_end, data_meta);
9640 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9641 				      si->src_reg, off);
9642 		break;
9643 
9644 	case offsetof(struct __sk_buff, data_end):
9645 		off  = si->off;
9646 		off -= offsetof(struct __sk_buff, data_end);
9647 		off += offsetof(struct sk_buff, cb);
9648 		off += offsetof(struct bpf_skb_data_end, data_end);
9649 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9650 				      si->src_reg, off);
9651 		break;
9652 
9653 	case offsetof(struct __sk_buff, tc_index):
9654 #ifdef CONFIG_NET_SCHED
9655 		if (type == BPF_WRITE)
9656 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9657 						 bpf_target_off(struct sk_buff, tc_index, 2,
9658 								target_size));
9659 		else
9660 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9661 					      bpf_target_off(struct sk_buff, tc_index, 2,
9662 							     target_size));
9663 #else
9664 		*target_size = 2;
9665 		if (type == BPF_WRITE)
9666 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9667 		else
9668 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9669 #endif
9670 		break;
9671 
9672 	case offsetof(struct __sk_buff, napi_id):
9673 #if defined(CONFIG_NET_RX_BUSY_POLL)
9674 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9675 				      bpf_target_off(struct sk_buff, napi_id, 4,
9676 						     target_size));
9677 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9678 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9679 #else
9680 		*target_size = 4;
9681 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9682 #endif
9683 		break;
9684 	case offsetof(struct __sk_buff, family):
9685 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9686 
9687 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9688 				      si->dst_reg, si->src_reg,
9689 				      offsetof(struct sk_buff, sk));
9690 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9691 				      bpf_target_off(struct sock_common,
9692 						     skc_family,
9693 						     2, target_size));
9694 		break;
9695 	case offsetof(struct __sk_buff, remote_ip4):
9696 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9697 
9698 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9699 				      si->dst_reg, si->src_reg,
9700 				      offsetof(struct sk_buff, sk));
9701 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9702 				      bpf_target_off(struct sock_common,
9703 						     skc_daddr,
9704 						     4, target_size));
9705 		break;
9706 	case offsetof(struct __sk_buff, local_ip4):
9707 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9708 					  skc_rcv_saddr) != 4);
9709 
9710 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9711 				      si->dst_reg, si->src_reg,
9712 				      offsetof(struct sk_buff, sk));
9713 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9714 				      bpf_target_off(struct sock_common,
9715 						     skc_rcv_saddr,
9716 						     4, target_size));
9717 		break;
9718 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9719 	     offsetof(struct __sk_buff, remote_ip6[3]):
9720 #if IS_ENABLED(CONFIG_IPV6)
9721 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9722 					  skc_v6_daddr.s6_addr32[0]) != 4);
9723 
9724 		off = si->off;
9725 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9726 
9727 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9728 				      si->dst_reg, si->src_reg,
9729 				      offsetof(struct sk_buff, sk));
9730 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9731 				      offsetof(struct sock_common,
9732 					       skc_v6_daddr.s6_addr32[0]) +
9733 				      off);
9734 #else
9735 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9736 #endif
9737 		break;
9738 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9739 	     offsetof(struct __sk_buff, local_ip6[3]):
9740 #if IS_ENABLED(CONFIG_IPV6)
9741 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9742 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9743 
9744 		off = si->off;
9745 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9746 
9747 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9748 				      si->dst_reg, si->src_reg,
9749 				      offsetof(struct sk_buff, sk));
9750 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9751 				      offsetof(struct sock_common,
9752 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9753 				      off);
9754 #else
9755 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9756 #endif
9757 		break;
9758 
9759 	case offsetof(struct __sk_buff, remote_port):
9760 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9761 
9762 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9763 				      si->dst_reg, si->src_reg,
9764 				      offsetof(struct sk_buff, sk));
9765 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9766 				      bpf_target_off(struct sock_common,
9767 						     skc_dport,
9768 						     2, target_size));
9769 #ifndef __BIG_ENDIAN_BITFIELD
9770 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9771 #endif
9772 		break;
9773 
9774 	case offsetof(struct __sk_buff, local_port):
9775 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9776 
9777 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9778 				      si->dst_reg, si->src_reg,
9779 				      offsetof(struct sk_buff, sk));
9780 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9781 				      bpf_target_off(struct sock_common,
9782 						     skc_num, 2, target_size));
9783 		break;
9784 
9785 	case offsetof(struct __sk_buff, tstamp):
9786 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9787 
9788 		if (type == BPF_WRITE)
9789 			insn = bpf_convert_tstamp_write(prog, si, insn);
9790 		else
9791 			insn = bpf_convert_tstamp_read(prog, si, insn);
9792 		break;
9793 
9794 	case offsetof(struct __sk_buff, tstamp_type):
9795 		insn = bpf_convert_tstamp_type_read(si, insn);
9796 		break;
9797 
9798 	case offsetof(struct __sk_buff, gso_segs):
9799 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9800 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9801 				      si->dst_reg, si->dst_reg,
9802 				      bpf_target_off(struct skb_shared_info,
9803 						     gso_segs, 2,
9804 						     target_size));
9805 		break;
9806 	case offsetof(struct __sk_buff, gso_size):
9807 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9808 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9809 				      si->dst_reg, si->dst_reg,
9810 				      bpf_target_off(struct skb_shared_info,
9811 						     gso_size, 2,
9812 						     target_size));
9813 		break;
9814 	case offsetof(struct __sk_buff, wire_len):
9815 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9816 
9817 		off = si->off;
9818 		off -= offsetof(struct __sk_buff, wire_len);
9819 		off += offsetof(struct sk_buff, cb);
9820 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9821 		*target_size = 4;
9822 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9823 		break;
9824 
9825 	case offsetof(struct __sk_buff, sk):
9826 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9827 				      si->dst_reg, si->src_reg,
9828 				      offsetof(struct sk_buff, sk));
9829 		break;
9830 	case offsetof(struct __sk_buff, hwtstamp):
9831 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9832 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9833 
9834 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9835 		*insn++ = BPF_LDX_MEM(BPF_DW,
9836 				      si->dst_reg, si->dst_reg,
9837 				      bpf_target_off(struct skb_shared_info,
9838 						     hwtstamps, 8,
9839 						     target_size));
9840 		break;
9841 	}
9842 
9843 	return insn - insn_buf;
9844 }
9845 
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9846 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9847 				const struct bpf_insn *si,
9848 				struct bpf_insn *insn_buf,
9849 				struct bpf_prog *prog, u32 *target_size)
9850 {
9851 	struct bpf_insn *insn = insn_buf;
9852 	int off;
9853 
9854 	switch (si->off) {
9855 	case offsetof(struct bpf_sock, bound_dev_if):
9856 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9857 
9858 		if (type == BPF_WRITE)
9859 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9860 						 offsetof(struct sock, sk_bound_dev_if));
9861 		else
9862 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9863 				      offsetof(struct sock, sk_bound_dev_if));
9864 		break;
9865 
9866 	case offsetof(struct bpf_sock, mark):
9867 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9868 
9869 		if (type == BPF_WRITE)
9870 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9871 						 offsetof(struct sock, sk_mark));
9872 		else
9873 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9874 				      offsetof(struct sock, sk_mark));
9875 		break;
9876 
9877 	case offsetof(struct bpf_sock, priority):
9878 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9879 
9880 		if (type == BPF_WRITE)
9881 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9882 						 offsetof(struct sock, sk_priority));
9883 		else
9884 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9885 				      offsetof(struct sock, sk_priority));
9886 		break;
9887 
9888 	case offsetof(struct bpf_sock, family):
9889 		*insn++ = BPF_LDX_MEM(
9890 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9891 			si->dst_reg, si->src_reg,
9892 			bpf_target_off(struct sock_common,
9893 				       skc_family,
9894 				       sizeof_field(struct sock_common,
9895 						    skc_family),
9896 				       target_size));
9897 		break;
9898 
9899 	case offsetof(struct bpf_sock, type):
9900 		*insn++ = BPF_LDX_MEM(
9901 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9902 			si->dst_reg, si->src_reg,
9903 			bpf_target_off(struct sock, sk_type,
9904 				       sizeof_field(struct sock, sk_type),
9905 				       target_size));
9906 		break;
9907 
9908 	case offsetof(struct bpf_sock, protocol):
9909 		*insn++ = BPF_LDX_MEM(
9910 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9911 			si->dst_reg, si->src_reg,
9912 			bpf_target_off(struct sock, sk_protocol,
9913 				       sizeof_field(struct sock, sk_protocol),
9914 				       target_size));
9915 		break;
9916 
9917 	case offsetof(struct bpf_sock, src_ip4):
9918 		*insn++ = BPF_LDX_MEM(
9919 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9920 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9921 				       sizeof_field(struct sock_common,
9922 						    skc_rcv_saddr),
9923 				       target_size));
9924 		break;
9925 
9926 	case offsetof(struct bpf_sock, dst_ip4):
9927 		*insn++ = BPF_LDX_MEM(
9928 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9929 			bpf_target_off(struct sock_common, skc_daddr,
9930 				       sizeof_field(struct sock_common,
9931 						    skc_daddr),
9932 				       target_size));
9933 		break;
9934 
9935 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9936 #if IS_ENABLED(CONFIG_IPV6)
9937 		off = si->off;
9938 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9939 		*insn++ = BPF_LDX_MEM(
9940 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9941 			bpf_target_off(
9942 				struct sock_common,
9943 				skc_v6_rcv_saddr.s6_addr32[0],
9944 				sizeof_field(struct sock_common,
9945 					     skc_v6_rcv_saddr.s6_addr32[0]),
9946 				target_size) + off);
9947 #else
9948 		(void)off;
9949 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9950 #endif
9951 		break;
9952 
9953 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9954 #if IS_ENABLED(CONFIG_IPV6)
9955 		off = si->off;
9956 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9957 		*insn++ = BPF_LDX_MEM(
9958 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9959 			bpf_target_off(struct sock_common,
9960 				       skc_v6_daddr.s6_addr32[0],
9961 				       sizeof_field(struct sock_common,
9962 						    skc_v6_daddr.s6_addr32[0]),
9963 				       target_size) + off);
9964 #else
9965 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9966 		*target_size = 4;
9967 #endif
9968 		break;
9969 
9970 	case offsetof(struct bpf_sock, src_port):
9971 		*insn++ = BPF_LDX_MEM(
9972 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9973 			si->dst_reg, si->src_reg,
9974 			bpf_target_off(struct sock_common, skc_num,
9975 				       sizeof_field(struct sock_common,
9976 						    skc_num),
9977 				       target_size));
9978 		break;
9979 
9980 	case offsetof(struct bpf_sock, dst_port):
9981 		*insn++ = BPF_LDX_MEM(
9982 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9983 			si->dst_reg, si->src_reg,
9984 			bpf_target_off(struct sock_common, skc_dport,
9985 				       sizeof_field(struct sock_common,
9986 						    skc_dport),
9987 				       target_size));
9988 		break;
9989 
9990 	case offsetof(struct bpf_sock, state):
9991 		*insn++ = BPF_LDX_MEM(
9992 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9993 			si->dst_reg, si->src_reg,
9994 			bpf_target_off(struct sock_common, skc_state,
9995 				       sizeof_field(struct sock_common,
9996 						    skc_state),
9997 				       target_size));
9998 		break;
9999 	case offsetof(struct bpf_sock, rx_queue_mapping):
10000 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
10001 		*insn++ = BPF_LDX_MEM(
10002 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
10003 			si->dst_reg, si->src_reg,
10004 			bpf_target_off(struct sock, sk_rx_queue_mapping,
10005 				       sizeof_field(struct sock,
10006 						    sk_rx_queue_mapping),
10007 				       target_size));
10008 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
10009 				      1);
10010 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10011 #else
10012 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10013 		*target_size = 2;
10014 #endif
10015 		break;
10016 	}
10017 
10018 	return insn - insn_buf;
10019 }
10020 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10021 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10022 					 const struct bpf_insn *si,
10023 					 struct bpf_insn *insn_buf,
10024 					 struct bpf_prog *prog, u32 *target_size)
10025 {
10026 	struct bpf_insn *insn = insn_buf;
10027 
10028 	switch (si->off) {
10029 	case offsetof(struct __sk_buff, ifindex):
10030 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10031 				      si->dst_reg, si->src_reg,
10032 				      offsetof(struct sk_buff, dev));
10033 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10034 				      bpf_target_off(struct net_device, ifindex, 4,
10035 						     target_size));
10036 		break;
10037 	default:
10038 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10039 					      target_size);
10040 	}
10041 
10042 	return insn - insn_buf;
10043 }
10044 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10045 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10046 				  const struct bpf_insn *si,
10047 				  struct bpf_insn *insn_buf,
10048 				  struct bpf_prog *prog, u32 *target_size)
10049 {
10050 	struct bpf_insn *insn = insn_buf;
10051 
10052 	switch (si->off) {
10053 	case offsetof(struct xdp_md, data):
10054 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10055 				      si->dst_reg, si->src_reg,
10056 				      offsetof(struct xdp_buff, data));
10057 		break;
10058 	case offsetof(struct xdp_md, data_meta):
10059 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10060 				      si->dst_reg, si->src_reg,
10061 				      offsetof(struct xdp_buff, data_meta));
10062 		break;
10063 	case offsetof(struct xdp_md, data_end):
10064 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10065 				      si->dst_reg, si->src_reg,
10066 				      offsetof(struct xdp_buff, data_end));
10067 		break;
10068 	case offsetof(struct xdp_md, ingress_ifindex):
10069 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10070 				      si->dst_reg, si->src_reg,
10071 				      offsetof(struct xdp_buff, rxq));
10072 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10073 				      si->dst_reg, si->dst_reg,
10074 				      offsetof(struct xdp_rxq_info, dev));
10075 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10076 				      offsetof(struct net_device, ifindex));
10077 		break;
10078 	case offsetof(struct xdp_md, rx_queue_index):
10079 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10080 				      si->dst_reg, si->src_reg,
10081 				      offsetof(struct xdp_buff, rxq));
10082 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10083 				      offsetof(struct xdp_rxq_info,
10084 					       queue_index));
10085 		break;
10086 	case offsetof(struct xdp_md, egress_ifindex):
10087 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10088 				      si->dst_reg, si->src_reg,
10089 				      offsetof(struct xdp_buff, txq));
10090 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10091 				      si->dst_reg, si->dst_reg,
10092 				      offsetof(struct xdp_txq_info, dev));
10093 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10094 				      offsetof(struct net_device, ifindex));
10095 		break;
10096 	}
10097 
10098 	return insn - insn_buf;
10099 }
10100 
10101 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10102  * context Structure, F is Field in context structure that contains a pointer
10103  * to Nested Structure of type NS that has the field NF.
10104  *
10105  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10106  * sure that SIZE is not greater than actual size of S.F.NF.
10107  *
10108  * If offset OFF is provided, the load happens from that offset relative to
10109  * offset of NF.
10110  */
10111 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10112 	do {								       \
10113 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10114 				      si->src_reg, offsetof(S, F));	       \
10115 		*insn++ = BPF_LDX_MEM(					       \
10116 			SIZE, si->dst_reg, si->dst_reg,			       \
10117 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10118 				       target_size)			       \
10119 				+ OFF);					       \
10120 	} while (0)
10121 
10122 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10123 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10124 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10125 
10126 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10127  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10128  *
10129  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10130  * "register" since two registers available in convert_ctx_access are not
10131  * enough: we can't override neither SRC, since it contains value to store, nor
10132  * DST since it contains pointer to context that may be used by later
10133  * instructions. But we need a temporary place to save pointer to nested
10134  * structure whose field we want to store to.
10135  */
10136 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10137 	do {								       \
10138 		int tmp_reg = BPF_REG_9;				       \
10139 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10140 			--tmp_reg;					       \
10141 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10142 			--tmp_reg;					       \
10143 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10144 				      offsetof(S, TF));			       \
10145 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10146 				      si->dst_reg, offsetof(S, F));	       \
10147 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10148 				       tmp_reg, si->src_reg,		       \
10149 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10150 				       target_size)			       \
10151 				       + OFF,				       \
10152 				       si->imm);			       \
10153 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10154 				      offsetof(S, TF));			       \
10155 	} while (0)
10156 
10157 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10158 						      TF)		       \
10159 	do {								       \
10160 		if (type == BPF_WRITE) {				       \
10161 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10162 							 OFF, TF);	       \
10163 		} else {						       \
10164 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10165 				S, NS, F, NF, SIZE, OFF);  \
10166 		}							       \
10167 	} while (0)
10168 
10169 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10170 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10171 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10172 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10173 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10174 					const struct bpf_insn *si,
10175 					struct bpf_insn *insn_buf,
10176 					struct bpf_prog *prog, u32 *target_size)
10177 {
10178 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10179 	struct bpf_insn *insn = insn_buf;
10180 
10181 	switch (si->off) {
10182 	case offsetof(struct bpf_sock_addr, user_family):
10183 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10184 					    struct sockaddr, uaddr, sa_family);
10185 		break;
10186 
10187 	case offsetof(struct bpf_sock_addr, user_ip4):
10188 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10189 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10190 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10191 		break;
10192 
10193 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10194 		off = si->off;
10195 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10196 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10197 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10198 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10199 			tmp_reg);
10200 		break;
10201 
10202 	case offsetof(struct bpf_sock_addr, user_port):
10203 		/* To get port we need to know sa_family first and then treat
10204 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10205 		 * Though we can simplify since port field has same offset and
10206 		 * size in both structures.
10207 		 * Here we check this invariant and use just one of the
10208 		 * structures if it's true.
10209 		 */
10210 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10211 			     offsetof(struct sockaddr_in6, sin6_port));
10212 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10213 			     sizeof_field(struct sockaddr_in6, sin6_port));
10214 		/* Account for sin6_port being smaller than user_port. */
10215 		port_size = min(port_size, BPF_LDST_BYTES(si));
10216 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10217 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10218 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10219 		break;
10220 
10221 	case offsetof(struct bpf_sock_addr, family):
10222 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10223 					    struct sock, sk, sk_family);
10224 		break;
10225 
10226 	case offsetof(struct bpf_sock_addr, type):
10227 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10228 					    struct sock, sk, sk_type);
10229 		break;
10230 
10231 	case offsetof(struct bpf_sock_addr, protocol):
10232 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10233 					    struct sock, sk, sk_protocol);
10234 		break;
10235 
10236 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10237 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10238 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10239 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10240 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10241 		break;
10242 
10243 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10244 				msg_src_ip6[3]):
10245 		off = si->off;
10246 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10247 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10248 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10249 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10250 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10251 		break;
10252 	case offsetof(struct bpf_sock_addr, sk):
10253 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10254 				      si->dst_reg, si->src_reg,
10255 				      offsetof(struct bpf_sock_addr_kern, sk));
10256 		break;
10257 	}
10258 
10259 	return insn - insn_buf;
10260 }
10261 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10262 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10263 				       const struct bpf_insn *si,
10264 				       struct bpf_insn *insn_buf,
10265 				       struct bpf_prog *prog,
10266 				       u32 *target_size)
10267 {
10268 	struct bpf_insn *insn = insn_buf;
10269 	int off;
10270 
10271 /* Helper macro for adding read access to tcp_sock or sock fields. */
10272 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10273 	do {								      \
10274 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10275 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10276 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10277 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10278 			reg--;						      \
10279 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10280 			reg--;						      \
10281 		if (si->dst_reg == si->src_reg) {			      \
10282 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10283 					  offsetof(struct bpf_sock_ops_kern,  \
10284 					  temp));			      \
10285 			fullsock_reg = reg;				      \
10286 			jmp += 2;					      \
10287 		}							      \
10288 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10289 						struct bpf_sock_ops_kern,     \
10290 						is_fullsock),		      \
10291 				      fullsock_reg, si->src_reg,	      \
10292 				      offsetof(struct bpf_sock_ops_kern,      \
10293 					       is_fullsock));		      \
10294 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10295 		if (si->dst_reg == si->src_reg)				      \
10296 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10297 				      offsetof(struct bpf_sock_ops_kern,      \
10298 				      temp));				      \
10299 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10300 						struct bpf_sock_ops_kern, sk),\
10301 				      si->dst_reg, si->src_reg,		      \
10302 				      offsetof(struct bpf_sock_ops_kern, sk));\
10303 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10304 						       OBJ_FIELD),	      \
10305 				      si->dst_reg, si->dst_reg,		      \
10306 				      offsetof(OBJ, OBJ_FIELD));	      \
10307 		if (si->dst_reg == si->src_reg)	{			      \
10308 			*insn++ = BPF_JMP_A(1);				      \
10309 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10310 				      offsetof(struct bpf_sock_ops_kern,      \
10311 				      temp));				      \
10312 		}							      \
10313 	} while (0)
10314 
10315 #define SOCK_OPS_GET_SK()							      \
10316 	do {								      \
10317 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10318 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10319 			reg--;						      \
10320 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10321 			reg--;						      \
10322 		if (si->dst_reg == si->src_reg) {			      \
10323 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10324 					  offsetof(struct bpf_sock_ops_kern,  \
10325 					  temp));			      \
10326 			fullsock_reg = reg;				      \
10327 			jmp += 2;					      \
10328 		}							      \
10329 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10330 						struct bpf_sock_ops_kern,     \
10331 						is_fullsock),		      \
10332 				      fullsock_reg, si->src_reg,	      \
10333 				      offsetof(struct bpf_sock_ops_kern,      \
10334 					       is_fullsock));		      \
10335 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10336 		if (si->dst_reg == si->src_reg)				      \
10337 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10338 				      offsetof(struct bpf_sock_ops_kern,      \
10339 				      temp));				      \
10340 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10341 						struct bpf_sock_ops_kern, sk),\
10342 				      si->dst_reg, si->src_reg,		      \
10343 				      offsetof(struct bpf_sock_ops_kern, sk));\
10344 		if (si->dst_reg == si->src_reg)	{			      \
10345 			*insn++ = BPF_JMP_A(1);				      \
10346 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10347 				      offsetof(struct bpf_sock_ops_kern,      \
10348 				      temp));				      \
10349 		}							      \
10350 	} while (0)
10351 
10352 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10353 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10354 
10355 /* Helper macro for adding write access to tcp_sock or sock fields.
10356  * The macro is called with two registers, dst_reg which contains a pointer
10357  * to ctx (context) and src_reg which contains the value that should be
10358  * stored. However, we need an additional register since we cannot overwrite
10359  * dst_reg because it may be used later in the program.
10360  * Instead we "borrow" one of the other register. We first save its value
10361  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10362  * it at the end of the macro.
10363  */
10364 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10365 	do {								      \
10366 		int reg = BPF_REG_9;					      \
10367 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10368 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10369 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10370 			reg--;						      \
10371 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10372 			reg--;						      \
10373 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10374 				      offsetof(struct bpf_sock_ops_kern,      \
10375 					       temp));			      \
10376 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10377 						struct bpf_sock_ops_kern,     \
10378 						is_fullsock),		      \
10379 				      reg, si->dst_reg,			      \
10380 				      offsetof(struct bpf_sock_ops_kern,      \
10381 					       is_fullsock));		      \
10382 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10384 						struct bpf_sock_ops_kern, sk),\
10385 				      reg, si->dst_reg,			      \
10386 				      offsetof(struct bpf_sock_ops_kern, sk));\
10387 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10388 				       BPF_MEM | BPF_CLASS(si->code),	      \
10389 				       reg, si->src_reg,		      \
10390 				       offsetof(OBJ, OBJ_FIELD),	      \
10391 				       si->imm);			      \
10392 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10393 				      offsetof(struct bpf_sock_ops_kern,      \
10394 					       temp));			      \
10395 	} while (0)
10396 
10397 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10398 	do {								      \
10399 		if (TYPE == BPF_WRITE)					      \
10400 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10401 		else							      \
10402 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10403 	} while (0)
10404 
10405 	switch (si->off) {
10406 	case offsetof(struct bpf_sock_ops, op):
10407 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10408 						       op),
10409 				      si->dst_reg, si->src_reg,
10410 				      offsetof(struct bpf_sock_ops_kern, op));
10411 		break;
10412 
10413 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10414 	     offsetof(struct bpf_sock_ops, replylong[3]):
10415 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10416 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10417 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10418 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10419 		off = si->off;
10420 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10421 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10422 		if (type == BPF_WRITE)
10423 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10424 		else
10425 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10426 					      off);
10427 		break;
10428 
10429 	case offsetof(struct bpf_sock_ops, family):
10430 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10431 
10432 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10433 					      struct bpf_sock_ops_kern, sk),
10434 				      si->dst_reg, si->src_reg,
10435 				      offsetof(struct bpf_sock_ops_kern, sk));
10436 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10437 				      offsetof(struct sock_common, skc_family));
10438 		break;
10439 
10440 	case offsetof(struct bpf_sock_ops, remote_ip4):
10441 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10442 
10443 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10444 						struct bpf_sock_ops_kern, sk),
10445 				      si->dst_reg, si->src_reg,
10446 				      offsetof(struct bpf_sock_ops_kern, sk));
10447 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10448 				      offsetof(struct sock_common, skc_daddr));
10449 		break;
10450 
10451 	case offsetof(struct bpf_sock_ops, local_ip4):
10452 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10453 					  skc_rcv_saddr) != 4);
10454 
10455 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10456 					      struct bpf_sock_ops_kern, sk),
10457 				      si->dst_reg, si->src_reg,
10458 				      offsetof(struct bpf_sock_ops_kern, sk));
10459 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10460 				      offsetof(struct sock_common,
10461 					       skc_rcv_saddr));
10462 		break;
10463 
10464 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10465 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10466 #if IS_ENABLED(CONFIG_IPV6)
10467 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10468 					  skc_v6_daddr.s6_addr32[0]) != 4);
10469 
10470 		off = si->off;
10471 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10472 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10473 						struct bpf_sock_ops_kern, sk),
10474 				      si->dst_reg, si->src_reg,
10475 				      offsetof(struct bpf_sock_ops_kern, sk));
10476 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10477 				      offsetof(struct sock_common,
10478 					       skc_v6_daddr.s6_addr32[0]) +
10479 				      off);
10480 #else
10481 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10482 #endif
10483 		break;
10484 
10485 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10486 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10487 #if IS_ENABLED(CONFIG_IPV6)
10488 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10489 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10490 
10491 		off = si->off;
10492 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10493 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10494 						struct bpf_sock_ops_kern, sk),
10495 				      si->dst_reg, si->src_reg,
10496 				      offsetof(struct bpf_sock_ops_kern, sk));
10497 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10498 				      offsetof(struct sock_common,
10499 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10500 				      off);
10501 #else
10502 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10503 #endif
10504 		break;
10505 
10506 	case offsetof(struct bpf_sock_ops, remote_port):
10507 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10508 
10509 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10510 						struct bpf_sock_ops_kern, sk),
10511 				      si->dst_reg, si->src_reg,
10512 				      offsetof(struct bpf_sock_ops_kern, sk));
10513 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10514 				      offsetof(struct sock_common, skc_dport));
10515 #ifndef __BIG_ENDIAN_BITFIELD
10516 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10517 #endif
10518 		break;
10519 
10520 	case offsetof(struct bpf_sock_ops, local_port):
10521 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10522 
10523 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10524 						struct bpf_sock_ops_kern, sk),
10525 				      si->dst_reg, si->src_reg,
10526 				      offsetof(struct bpf_sock_ops_kern, sk));
10527 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10528 				      offsetof(struct sock_common, skc_num));
10529 		break;
10530 
10531 	case offsetof(struct bpf_sock_ops, is_fullsock):
10532 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10533 						struct bpf_sock_ops_kern,
10534 						is_fullsock),
10535 				      si->dst_reg, si->src_reg,
10536 				      offsetof(struct bpf_sock_ops_kern,
10537 					       is_fullsock));
10538 		break;
10539 
10540 	case offsetof(struct bpf_sock_ops, state):
10541 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10542 
10543 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10544 						struct bpf_sock_ops_kern, sk),
10545 				      si->dst_reg, si->src_reg,
10546 				      offsetof(struct bpf_sock_ops_kern, sk));
10547 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10548 				      offsetof(struct sock_common, skc_state));
10549 		break;
10550 
10551 	case offsetof(struct bpf_sock_ops, rtt_min):
10552 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10553 			     sizeof(struct minmax));
10554 		BUILD_BUG_ON(sizeof(struct minmax) <
10555 			     sizeof(struct minmax_sample));
10556 
10557 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10558 						struct bpf_sock_ops_kern, sk),
10559 				      si->dst_reg, si->src_reg,
10560 				      offsetof(struct bpf_sock_ops_kern, sk));
10561 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10562 				      offsetof(struct tcp_sock, rtt_min) +
10563 				      sizeof_field(struct minmax_sample, t));
10564 		break;
10565 
10566 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10567 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10568 				   struct tcp_sock);
10569 		break;
10570 
10571 	case offsetof(struct bpf_sock_ops, sk_txhash):
10572 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10573 					  struct sock, type);
10574 		break;
10575 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10576 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10577 		break;
10578 	case offsetof(struct bpf_sock_ops, srtt_us):
10579 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10580 		break;
10581 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10582 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10583 		break;
10584 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10585 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10586 		break;
10587 	case offsetof(struct bpf_sock_ops, snd_nxt):
10588 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10589 		break;
10590 	case offsetof(struct bpf_sock_ops, snd_una):
10591 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10592 		break;
10593 	case offsetof(struct bpf_sock_ops, mss_cache):
10594 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10595 		break;
10596 	case offsetof(struct bpf_sock_ops, ecn_flags):
10597 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10598 		break;
10599 	case offsetof(struct bpf_sock_ops, rate_delivered):
10600 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10601 		break;
10602 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10603 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10604 		break;
10605 	case offsetof(struct bpf_sock_ops, packets_out):
10606 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10607 		break;
10608 	case offsetof(struct bpf_sock_ops, retrans_out):
10609 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10610 		break;
10611 	case offsetof(struct bpf_sock_ops, total_retrans):
10612 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10613 		break;
10614 	case offsetof(struct bpf_sock_ops, segs_in):
10615 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10616 		break;
10617 	case offsetof(struct bpf_sock_ops, data_segs_in):
10618 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10619 		break;
10620 	case offsetof(struct bpf_sock_ops, segs_out):
10621 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10622 		break;
10623 	case offsetof(struct bpf_sock_ops, data_segs_out):
10624 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10625 		break;
10626 	case offsetof(struct bpf_sock_ops, lost_out):
10627 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10628 		break;
10629 	case offsetof(struct bpf_sock_ops, sacked_out):
10630 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10631 		break;
10632 	case offsetof(struct bpf_sock_ops, bytes_received):
10633 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10634 		break;
10635 	case offsetof(struct bpf_sock_ops, bytes_acked):
10636 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10637 		break;
10638 	case offsetof(struct bpf_sock_ops, sk):
10639 		SOCK_OPS_GET_SK();
10640 		break;
10641 	case offsetof(struct bpf_sock_ops, skb_data_end):
10642 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10643 						       skb_data_end),
10644 				      si->dst_reg, si->src_reg,
10645 				      offsetof(struct bpf_sock_ops_kern,
10646 					       skb_data_end));
10647 		break;
10648 	case offsetof(struct bpf_sock_ops, skb_data):
10649 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10650 						       skb),
10651 				      si->dst_reg, si->src_reg,
10652 				      offsetof(struct bpf_sock_ops_kern,
10653 					       skb));
10654 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10655 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10656 				      si->dst_reg, si->dst_reg,
10657 				      offsetof(struct sk_buff, data));
10658 		break;
10659 	case offsetof(struct bpf_sock_ops, skb_len):
10660 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10661 						       skb),
10662 				      si->dst_reg, si->src_reg,
10663 				      offsetof(struct bpf_sock_ops_kern,
10664 					       skb));
10665 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10666 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10667 				      si->dst_reg, si->dst_reg,
10668 				      offsetof(struct sk_buff, len));
10669 		break;
10670 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10671 		off = offsetof(struct sk_buff, cb);
10672 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10673 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10674 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10675 						       skb),
10676 				      si->dst_reg, si->src_reg,
10677 				      offsetof(struct bpf_sock_ops_kern,
10678 					       skb));
10679 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10680 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10681 						       tcp_flags),
10682 				      si->dst_reg, si->dst_reg, off);
10683 		break;
10684 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10685 		struct bpf_insn *jmp_on_null_skb;
10686 
10687 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10688 						       skb),
10689 				      si->dst_reg, si->src_reg,
10690 				      offsetof(struct bpf_sock_ops_kern,
10691 					       skb));
10692 		/* Reserve one insn to test skb == NULL */
10693 		jmp_on_null_skb = insn++;
10694 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10695 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10696 				      bpf_target_off(struct skb_shared_info,
10697 						     hwtstamps, 8,
10698 						     target_size));
10699 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10700 					       insn - jmp_on_null_skb - 1);
10701 		break;
10702 	}
10703 	}
10704 	return insn - insn_buf;
10705 }
10706 
10707 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10708 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10709 						    struct bpf_insn *insn)
10710 {
10711 	int reg;
10712 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10713 			   offsetof(struct sk_skb_cb, temp_reg);
10714 
10715 	if (si->src_reg == si->dst_reg) {
10716 		/* We need an extra register, choose and save a register. */
10717 		reg = BPF_REG_9;
10718 		if (si->src_reg == reg || si->dst_reg == reg)
10719 			reg--;
10720 		if (si->src_reg == reg || si->dst_reg == reg)
10721 			reg--;
10722 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10723 	} else {
10724 		reg = si->dst_reg;
10725 	}
10726 
10727 	/* reg = skb->data */
10728 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10729 			      reg, si->src_reg,
10730 			      offsetof(struct sk_buff, data));
10731 	/* AX = skb->len */
10732 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10733 			      BPF_REG_AX, si->src_reg,
10734 			      offsetof(struct sk_buff, len));
10735 	/* reg = skb->data + skb->len */
10736 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10737 	/* AX = skb->data_len */
10738 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10739 			      BPF_REG_AX, si->src_reg,
10740 			      offsetof(struct sk_buff, data_len));
10741 
10742 	/* reg = skb->data + skb->len - skb->data_len */
10743 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10744 
10745 	if (si->src_reg == si->dst_reg) {
10746 		/* Restore the saved register */
10747 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10748 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10749 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10750 	}
10751 
10752 	return insn;
10753 }
10754 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10755 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10756 				     const struct bpf_insn *si,
10757 				     struct bpf_insn *insn_buf,
10758 				     struct bpf_prog *prog, u32 *target_size)
10759 {
10760 	struct bpf_insn *insn = insn_buf;
10761 	int off;
10762 
10763 	switch (si->off) {
10764 	case offsetof(struct __sk_buff, data_end):
10765 		insn = bpf_convert_data_end_access(si, insn);
10766 		break;
10767 	case offsetof(struct __sk_buff, cb[0]) ...
10768 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10769 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10770 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10771 			      offsetof(struct sk_skb_cb, data)) %
10772 			     sizeof(__u64));
10773 
10774 		prog->cb_access = 1;
10775 		off  = si->off;
10776 		off -= offsetof(struct __sk_buff, cb[0]);
10777 		off += offsetof(struct sk_buff, cb);
10778 		off += offsetof(struct sk_skb_cb, data);
10779 		if (type == BPF_WRITE)
10780 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10781 		else
10782 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10783 					      si->src_reg, off);
10784 		break;
10785 
10786 
10787 	default:
10788 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10789 					      target_size);
10790 	}
10791 
10792 	return insn - insn_buf;
10793 }
10794 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10795 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10796 				     const struct bpf_insn *si,
10797 				     struct bpf_insn *insn_buf,
10798 				     struct bpf_prog *prog, u32 *target_size)
10799 {
10800 	struct bpf_insn *insn = insn_buf;
10801 #if IS_ENABLED(CONFIG_IPV6)
10802 	int off;
10803 #endif
10804 
10805 	/* convert ctx uses the fact sg element is first in struct */
10806 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10807 
10808 	switch (si->off) {
10809 	case offsetof(struct sk_msg_md, data):
10810 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10811 				      si->dst_reg, si->src_reg,
10812 				      offsetof(struct sk_msg, data));
10813 		break;
10814 	case offsetof(struct sk_msg_md, data_end):
10815 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10816 				      si->dst_reg, si->src_reg,
10817 				      offsetof(struct sk_msg, data_end));
10818 		break;
10819 	case offsetof(struct sk_msg_md, family):
10820 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10821 
10822 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10823 					      struct sk_msg, sk),
10824 				      si->dst_reg, si->src_reg,
10825 				      offsetof(struct sk_msg, sk));
10826 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10827 				      offsetof(struct sock_common, skc_family));
10828 		break;
10829 
10830 	case offsetof(struct sk_msg_md, remote_ip4):
10831 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10832 
10833 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10834 						struct sk_msg, sk),
10835 				      si->dst_reg, si->src_reg,
10836 				      offsetof(struct sk_msg, sk));
10837 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10838 				      offsetof(struct sock_common, skc_daddr));
10839 		break;
10840 
10841 	case offsetof(struct sk_msg_md, local_ip4):
10842 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10843 					  skc_rcv_saddr) != 4);
10844 
10845 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10846 					      struct sk_msg, sk),
10847 				      si->dst_reg, si->src_reg,
10848 				      offsetof(struct sk_msg, sk));
10849 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10850 				      offsetof(struct sock_common,
10851 					       skc_rcv_saddr));
10852 		break;
10853 
10854 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10855 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10856 #if IS_ENABLED(CONFIG_IPV6)
10857 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10858 					  skc_v6_daddr.s6_addr32[0]) != 4);
10859 
10860 		off = si->off;
10861 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10862 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10863 						struct sk_msg, sk),
10864 				      si->dst_reg, si->src_reg,
10865 				      offsetof(struct sk_msg, sk));
10866 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10867 				      offsetof(struct sock_common,
10868 					       skc_v6_daddr.s6_addr32[0]) +
10869 				      off);
10870 #else
10871 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10872 #endif
10873 		break;
10874 
10875 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10876 	     offsetof(struct sk_msg_md, local_ip6[3]):
10877 #if IS_ENABLED(CONFIG_IPV6)
10878 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10879 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10880 
10881 		off = si->off;
10882 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10883 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10884 						struct sk_msg, sk),
10885 				      si->dst_reg, si->src_reg,
10886 				      offsetof(struct sk_msg, sk));
10887 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10888 				      offsetof(struct sock_common,
10889 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10890 				      off);
10891 #else
10892 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10893 #endif
10894 		break;
10895 
10896 	case offsetof(struct sk_msg_md, remote_port):
10897 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10898 
10899 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10900 						struct sk_msg, sk),
10901 				      si->dst_reg, si->src_reg,
10902 				      offsetof(struct sk_msg, sk));
10903 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10904 				      offsetof(struct sock_common, skc_dport));
10905 #ifndef __BIG_ENDIAN_BITFIELD
10906 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10907 #endif
10908 		break;
10909 
10910 	case offsetof(struct sk_msg_md, local_port):
10911 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10912 
10913 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10914 						struct sk_msg, sk),
10915 				      si->dst_reg, si->src_reg,
10916 				      offsetof(struct sk_msg, sk));
10917 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10918 				      offsetof(struct sock_common, skc_num));
10919 		break;
10920 
10921 	case offsetof(struct sk_msg_md, size):
10922 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10923 				      si->dst_reg, si->src_reg,
10924 				      offsetof(struct sk_msg_sg, size));
10925 		break;
10926 
10927 	case offsetof(struct sk_msg_md, sk):
10928 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10929 				      si->dst_reg, si->src_reg,
10930 				      offsetof(struct sk_msg, sk));
10931 		break;
10932 	}
10933 
10934 	return insn - insn_buf;
10935 }
10936 
10937 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10938 	.get_func_proto		= sk_filter_func_proto,
10939 	.is_valid_access	= sk_filter_is_valid_access,
10940 	.convert_ctx_access	= bpf_convert_ctx_access,
10941 	.gen_ld_abs		= bpf_gen_ld_abs,
10942 };
10943 
10944 const struct bpf_prog_ops sk_filter_prog_ops = {
10945 	.test_run		= bpf_prog_test_run_skb,
10946 };
10947 
10948 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10949 	.get_func_proto		= tc_cls_act_func_proto,
10950 	.is_valid_access	= tc_cls_act_is_valid_access,
10951 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10952 	.gen_prologue		= tc_cls_act_prologue,
10953 	.gen_ld_abs		= bpf_gen_ld_abs,
10954 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10955 };
10956 
10957 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10958 	.test_run		= bpf_prog_test_run_skb,
10959 };
10960 
10961 const struct bpf_verifier_ops xdp_verifier_ops = {
10962 	.get_func_proto		= xdp_func_proto,
10963 	.is_valid_access	= xdp_is_valid_access,
10964 	.convert_ctx_access	= xdp_convert_ctx_access,
10965 	.gen_prologue		= bpf_noop_prologue,
10966 	.btf_struct_access	= xdp_btf_struct_access,
10967 };
10968 
10969 const struct bpf_prog_ops xdp_prog_ops = {
10970 	.test_run		= bpf_prog_test_run_xdp,
10971 };
10972 
10973 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10974 	.get_func_proto		= cg_skb_func_proto,
10975 	.is_valid_access	= cg_skb_is_valid_access,
10976 	.convert_ctx_access	= bpf_convert_ctx_access,
10977 };
10978 
10979 const struct bpf_prog_ops cg_skb_prog_ops = {
10980 	.test_run		= bpf_prog_test_run_skb,
10981 };
10982 
10983 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10984 	.get_func_proto		= lwt_in_func_proto,
10985 	.is_valid_access	= lwt_is_valid_access,
10986 	.convert_ctx_access	= bpf_convert_ctx_access,
10987 };
10988 
10989 const struct bpf_prog_ops lwt_in_prog_ops = {
10990 	.test_run		= bpf_prog_test_run_skb,
10991 };
10992 
10993 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10994 	.get_func_proto		= lwt_out_func_proto,
10995 	.is_valid_access	= lwt_is_valid_access,
10996 	.convert_ctx_access	= bpf_convert_ctx_access,
10997 };
10998 
10999 const struct bpf_prog_ops lwt_out_prog_ops = {
11000 	.test_run		= bpf_prog_test_run_skb,
11001 };
11002 
11003 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
11004 	.get_func_proto		= lwt_xmit_func_proto,
11005 	.is_valid_access	= lwt_is_valid_access,
11006 	.convert_ctx_access	= bpf_convert_ctx_access,
11007 	.gen_prologue		= tc_cls_act_prologue,
11008 };
11009 
11010 const struct bpf_prog_ops lwt_xmit_prog_ops = {
11011 	.test_run		= bpf_prog_test_run_skb,
11012 };
11013 
11014 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11015 	.get_func_proto		= lwt_seg6local_func_proto,
11016 	.is_valid_access	= lwt_is_valid_access,
11017 	.convert_ctx_access	= bpf_convert_ctx_access,
11018 };
11019 
11020 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11021 	.test_run		= bpf_prog_test_run_skb,
11022 };
11023 
11024 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11025 	.get_func_proto		= sock_filter_func_proto,
11026 	.is_valid_access	= sock_filter_is_valid_access,
11027 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11028 };
11029 
11030 const struct bpf_prog_ops cg_sock_prog_ops = {
11031 };
11032 
11033 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11034 	.get_func_proto		= sock_addr_func_proto,
11035 	.is_valid_access	= sock_addr_is_valid_access,
11036 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11037 };
11038 
11039 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11040 };
11041 
11042 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11043 	.get_func_proto		= sock_ops_func_proto,
11044 	.is_valid_access	= sock_ops_is_valid_access,
11045 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11046 };
11047 
11048 const struct bpf_prog_ops sock_ops_prog_ops = {
11049 };
11050 
11051 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11052 	.get_func_proto		= sk_skb_func_proto,
11053 	.is_valid_access	= sk_skb_is_valid_access,
11054 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11055 	.gen_prologue		= sk_skb_prologue,
11056 };
11057 
11058 const struct bpf_prog_ops sk_skb_prog_ops = {
11059 };
11060 
11061 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11062 	.get_func_proto		= sk_msg_func_proto,
11063 	.is_valid_access	= sk_msg_is_valid_access,
11064 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11065 	.gen_prologue		= bpf_noop_prologue,
11066 };
11067 
11068 const struct bpf_prog_ops sk_msg_prog_ops = {
11069 };
11070 
11071 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11072 	.get_func_proto		= flow_dissector_func_proto,
11073 	.is_valid_access	= flow_dissector_is_valid_access,
11074 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11075 };
11076 
11077 const struct bpf_prog_ops flow_dissector_prog_ops = {
11078 	.test_run		= bpf_prog_test_run_flow_dissector,
11079 };
11080 
sk_detach_filter(struct sock * sk)11081 int sk_detach_filter(struct sock *sk)
11082 {
11083 	int ret = -ENOENT;
11084 	struct sk_filter *filter;
11085 
11086 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11087 		return -EPERM;
11088 
11089 	filter = rcu_dereference_protected(sk->sk_filter,
11090 					   lockdep_sock_is_held(sk));
11091 	if (filter) {
11092 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11093 		sk_filter_uncharge(sk, filter);
11094 		ret = 0;
11095 	}
11096 
11097 	return ret;
11098 }
11099 EXPORT_SYMBOL_GPL(sk_detach_filter);
11100 
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)11101 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11102 {
11103 	struct sock_fprog_kern *fprog;
11104 	struct sk_filter *filter;
11105 	int ret = 0;
11106 
11107 	sockopt_lock_sock(sk);
11108 	filter = rcu_dereference_protected(sk->sk_filter,
11109 					   lockdep_sock_is_held(sk));
11110 	if (!filter)
11111 		goto out;
11112 
11113 	/* We're copying the filter that has been originally attached,
11114 	 * so no conversion/decode needed anymore. eBPF programs that
11115 	 * have no original program cannot be dumped through this.
11116 	 */
11117 	ret = -EACCES;
11118 	fprog = filter->prog->orig_prog;
11119 	if (!fprog)
11120 		goto out;
11121 
11122 	ret = fprog->len;
11123 	if (!len)
11124 		/* User space only enquires number of filter blocks. */
11125 		goto out;
11126 
11127 	ret = -EINVAL;
11128 	if (len < fprog->len)
11129 		goto out;
11130 
11131 	ret = -EFAULT;
11132 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11133 		goto out;
11134 
11135 	/* Instead of bytes, the API requests to return the number
11136 	 * of filter blocks.
11137 	 */
11138 	ret = fprog->len;
11139 out:
11140 	sockopt_release_sock(sk);
11141 	return ret;
11142 }
11143 
11144 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11145 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11146 				    struct sock_reuseport *reuse,
11147 				    struct sock *sk, struct sk_buff *skb,
11148 				    struct sock *migrating_sk,
11149 				    u32 hash)
11150 {
11151 	reuse_kern->skb = skb;
11152 	reuse_kern->sk = sk;
11153 	reuse_kern->selected_sk = NULL;
11154 	reuse_kern->migrating_sk = migrating_sk;
11155 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11156 	reuse_kern->hash = hash;
11157 	reuse_kern->reuseport_id = reuse->reuseport_id;
11158 	reuse_kern->bind_inany = reuse->bind_inany;
11159 }
11160 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11161 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11162 				  struct bpf_prog *prog, struct sk_buff *skb,
11163 				  struct sock *migrating_sk,
11164 				  u32 hash)
11165 {
11166 	struct sk_reuseport_kern reuse_kern;
11167 	enum sk_action action;
11168 
11169 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11170 	action = bpf_prog_run(prog, &reuse_kern);
11171 
11172 	if (action == SK_PASS)
11173 		return reuse_kern.selected_sk;
11174 	else
11175 		return ERR_PTR(-ECONNREFUSED);
11176 }
11177 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11178 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11179 	   struct bpf_map *, map, void *, key, u32, flags)
11180 {
11181 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11182 	struct sock_reuseport *reuse;
11183 	struct sock *selected_sk;
11184 
11185 	selected_sk = map->ops->map_lookup_elem(map, key);
11186 	if (!selected_sk)
11187 		return -ENOENT;
11188 
11189 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11190 	if (!reuse) {
11191 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11192 		if (sk_is_refcounted(selected_sk))
11193 			sock_put(selected_sk);
11194 
11195 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11196 		 * The only (!reuse) case here is - the sk has already been
11197 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11198 		 *
11199 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11200 		 * the sk may never be in the reuseport group to begin with.
11201 		 */
11202 		return is_sockarray ? -ENOENT : -EINVAL;
11203 	}
11204 
11205 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11206 		struct sock *sk = reuse_kern->sk;
11207 
11208 		if (sk->sk_protocol != selected_sk->sk_protocol)
11209 			return -EPROTOTYPE;
11210 		else if (sk->sk_family != selected_sk->sk_family)
11211 			return -EAFNOSUPPORT;
11212 
11213 		/* Catch all. Likely bound to a different sockaddr. */
11214 		return -EBADFD;
11215 	}
11216 
11217 	reuse_kern->selected_sk = selected_sk;
11218 
11219 	return 0;
11220 }
11221 
11222 static const struct bpf_func_proto sk_select_reuseport_proto = {
11223 	.func           = sk_select_reuseport,
11224 	.gpl_only       = false,
11225 	.ret_type       = RET_INTEGER,
11226 	.arg1_type	= ARG_PTR_TO_CTX,
11227 	.arg2_type      = ARG_CONST_MAP_PTR,
11228 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11229 	.arg4_type	= ARG_ANYTHING,
11230 };
11231 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11232 BPF_CALL_4(sk_reuseport_load_bytes,
11233 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11234 	   void *, to, u32, len)
11235 {
11236 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11237 }
11238 
11239 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11240 	.func		= sk_reuseport_load_bytes,
11241 	.gpl_only	= false,
11242 	.ret_type	= RET_INTEGER,
11243 	.arg1_type	= ARG_PTR_TO_CTX,
11244 	.arg2_type	= ARG_ANYTHING,
11245 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11246 	.arg4_type	= ARG_CONST_SIZE,
11247 };
11248 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11249 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11250 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11251 	   void *, to, u32, len, u32, start_header)
11252 {
11253 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11254 					       len, start_header);
11255 }
11256 
11257 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11258 	.func		= sk_reuseport_load_bytes_relative,
11259 	.gpl_only	= false,
11260 	.ret_type	= RET_INTEGER,
11261 	.arg1_type	= ARG_PTR_TO_CTX,
11262 	.arg2_type	= ARG_ANYTHING,
11263 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11264 	.arg4_type	= ARG_CONST_SIZE,
11265 	.arg5_type	= ARG_ANYTHING,
11266 };
11267 
11268 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11269 sk_reuseport_func_proto(enum bpf_func_id func_id,
11270 			const struct bpf_prog *prog)
11271 {
11272 	switch (func_id) {
11273 	case BPF_FUNC_sk_select_reuseport:
11274 		return &sk_select_reuseport_proto;
11275 	case BPF_FUNC_skb_load_bytes:
11276 		return &sk_reuseport_load_bytes_proto;
11277 	case BPF_FUNC_skb_load_bytes_relative:
11278 		return &sk_reuseport_load_bytes_relative_proto;
11279 	case BPF_FUNC_get_socket_cookie:
11280 		return &bpf_get_socket_ptr_cookie_proto;
11281 	case BPF_FUNC_ktime_get_coarse_ns:
11282 		return &bpf_ktime_get_coarse_ns_proto;
11283 	default:
11284 		return bpf_base_func_proto(func_id);
11285 	}
11286 }
11287 
11288 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11289 sk_reuseport_is_valid_access(int off, int size,
11290 			     enum bpf_access_type type,
11291 			     const struct bpf_prog *prog,
11292 			     struct bpf_insn_access_aux *info)
11293 {
11294 	const u32 size_default = sizeof(__u32);
11295 
11296 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11297 	    off % size || type != BPF_READ)
11298 		return false;
11299 
11300 	switch (off) {
11301 	case offsetof(struct sk_reuseport_md, data):
11302 		info->reg_type = PTR_TO_PACKET;
11303 		return size == sizeof(__u64);
11304 
11305 	case offsetof(struct sk_reuseport_md, data_end):
11306 		info->reg_type = PTR_TO_PACKET_END;
11307 		return size == sizeof(__u64);
11308 
11309 	case offsetof(struct sk_reuseport_md, hash):
11310 		return size == size_default;
11311 
11312 	case offsetof(struct sk_reuseport_md, sk):
11313 		info->reg_type = PTR_TO_SOCKET;
11314 		return size == sizeof(__u64);
11315 
11316 	case offsetof(struct sk_reuseport_md, migrating_sk):
11317 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11318 		return size == sizeof(__u64);
11319 
11320 	/* Fields that allow narrowing */
11321 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11322 		if (size < sizeof_field(struct sk_buff, protocol))
11323 			return false;
11324 		fallthrough;
11325 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11326 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11327 	case bpf_ctx_range(struct sk_reuseport_md, len):
11328 		bpf_ctx_record_field_size(info, size_default);
11329 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11330 
11331 	default:
11332 		return false;
11333 	}
11334 }
11335 
11336 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11337 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11338 			      si->dst_reg, si->src_reg,			\
11339 			      bpf_target_off(struct sk_reuseport_kern, F, \
11340 					     sizeof_field(struct sk_reuseport_kern, F), \
11341 					     target_size));		\
11342 	})
11343 
11344 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11345 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11346 				    struct sk_buff,			\
11347 				    skb,				\
11348 				    SKB_FIELD)
11349 
11350 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11351 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11352 				    struct sock,			\
11353 				    sk,					\
11354 				    SK_FIELD)
11355 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11356 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11357 					   const struct bpf_insn *si,
11358 					   struct bpf_insn *insn_buf,
11359 					   struct bpf_prog *prog,
11360 					   u32 *target_size)
11361 {
11362 	struct bpf_insn *insn = insn_buf;
11363 
11364 	switch (si->off) {
11365 	case offsetof(struct sk_reuseport_md, data):
11366 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11367 		break;
11368 
11369 	case offsetof(struct sk_reuseport_md, len):
11370 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11371 		break;
11372 
11373 	case offsetof(struct sk_reuseport_md, eth_protocol):
11374 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11375 		break;
11376 
11377 	case offsetof(struct sk_reuseport_md, ip_protocol):
11378 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11379 		break;
11380 
11381 	case offsetof(struct sk_reuseport_md, data_end):
11382 		SK_REUSEPORT_LOAD_FIELD(data_end);
11383 		break;
11384 
11385 	case offsetof(struct sk_reuseport_md, hash):
11386 		SK_REUSEPORT_LOAD_FIELD(hash);
11387 		break;
11388 
11389 	case offsetof(struct sk_reuseport_md, bind_inany):
11390 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11391 		break;
11392 
11393 	case offsetof(struct sk_reuseport_md, sk):
11394 		SK_REUSEPORT_LOAD_FIELD(sk);
11395 		break;
11396 
11397 	case offsetof(struct sk_reuseport_md, migrating_sk):
11398 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11399 		break;
11400 	}
11401 
11402 	return insn - insn_buf;
11403 }
11404 
11405 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11406 	.get_func_proto		= sk_reuseport_func_proto,
11407 	.is_valid_access	= sk_reuseport_is_valid_access,
11408 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11409 };
11410 
11411 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11412 };
11413 
11414 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11415 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11416 
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11417 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11418 	   struct sock *, sk, u64, flags)
11419 {
11420 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11421 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11422 		return -EINVAL;
11423 	if (unlikely(sk && sk_is_refcounted(sk)))
11424 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11425 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11426 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11427 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11428 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11429 
11430 	/* Check if socket is suitable for packet L3/L4 protocol */
11431 	if (sk && sk->sk_protocol != ctx->protocol)
11432 		return -EPROTOTYPE;
11433 	if (sk && sk->sk_family != ctx->family &&
11434 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11435 		return -EAFNOSUPPORT;
11436 
11437 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11438 		return -EEXIST;
11439 
11440 	/* Select socket as lookup result */
11441 	ctx->selected_sk = sk;
11442 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11443 	return 0;
11444 }
11445 
11446 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11447 	.func		= bpf_sk_lookup_assign,
11448 	.gpl_only	= false,
11449 	.ret_type	= RET_INTEGER,
11450 	.arg1_type	= ARG_PTR_TO_CTX,
11451 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11452 	.arg3_type	= ARG_ANYTHING,
11453 };
11454 
11455 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11456 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11457 {
11458 	switch (func_id) {
11459 	case BPF_FUNC_perf_event_output:
11460 		return &bpf_event_output_data_proto;
11461 	case BPF_FUNC_sk_assign:
11462 		return &bpf_sk_lookup_assign_proto;
11463 	case BPF_FUNC_sk_release:
11464 		return &bpf_sk_release_proto;
11465 	default:
11466 		return bpf_sk_base_func_proto(func_id);
11467 	}
11468 }
11469 
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11470 static bool sk_lookup_is_valid_access(int off, int size,
11471 				      enum bpf_access_type type,
11472 				      const struct bpf_prog *prog,
11473 				      struct bpf_insn_access_aux *info)
11474 {
11475 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11476 		return false;
11477 	if (off % size != 0)
11478 		return false;
11479 	if (type != BPF_READ)
11480 		return false;
11481 
11482 	switch (off) {
11483 	case offsetof(struct bpf_sk_lookup, sk):
11484 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11485 		return size == sizeof(__u64);
11486 
11487 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11488 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11489 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11490 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11491 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11492 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11493 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11494 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11495 		bpf_ctx_record_field_size(info, sizeof(__u32));
11496 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11497 
11498 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11499 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11500 		if (size == sizeof(__u32))
11501 			return true;
11502 		bpf_ctx_record_field_size(info, sizeof(__be16));
11503 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11504 
11505 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11506 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11507 		/* Allow access to zero padding for backward compatibility */
11508 		bpf_ctx_record_field_size(info, sizeof(__u16));
11509 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11510 
11511 	default:
11512 		return false;
11513 	}
11514 }
11515 
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11516 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11517 					const struct bpf_insn *si,
11518 					struct bpf_insn *insn_buf,
11519 					struct bpf_prog *prog,
11520 					u32 *target_size)
11521 {
11522 	struct bpf_insn *insn = insn_buf;
11523 
11524 	switch (si->off) {
11525 	case offsetof(struct bpf_sk_lookup, sk):
11526 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11527 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11528 		break;
11529 
11530 	case offsetof(struct bpf_sk_lookup, family):
11531 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11532 				      bpf_target_off(struct bpf_sk_lookup_kern,
11533 						     family, 2, target_size));
11534 		break;
11535 
11536 	case offsetof(struct bpf_sk_lookup, protocol):
11537 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11538 				      bpf_target_off(struct bpf_sk_lookup_kern,
11539 						     protocol, 2, target_size));
11540 		break;
11541 
11542 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11543 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11544 				      bpf_target_off(struct bpf_sk_lookup_kern,
11545 						     v4.saddr, 4, target_size));
11546 		break;
11547 
11548 	case offsetof(struct bpf_sk_lookup, local_ip4):
11549 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11550 				      bpf_target_off(struct bpf_sk_lookup_kern,
11551 						     v4.daddr, 4, target_size));
11552 		break;
11553 
11554 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11555 				remote_ip6[0], remote_ip6[3]): {
11556 #if IS_ENABLED(CONFIG_IPV6)
11557 		int off = si->off;
11558 
11559 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11560 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11561 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11562 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11563 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11564 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11565 #else
11566 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11567 #endif
11568 		break;
11569 	}
11570 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11571 				local_ip6[0], local_ip6[3]): {
11572 #if IS_ENABLED(CONFIG_IPV6)
11573 		int off = si->off;
11574 
11575 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11576 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11577 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11578 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11579 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11580 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11581 #else
11582 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11583 #endif
11584 		break;
11585 	}
11586 	case offsetof(struct bpf_sk_lookup, remote_port):
11587 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11588 				      bpf_target_off(struct bpf_sk_lookup_kern,
11589 						     sport, 2, target_size));
11590 		break;
11591 
11592 	case offsetofend(struct bpf_sk_lookup, remote_port):
11593 		*target_size = 2;
11594 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11595 		break;
11596 
11597 	case offsetof(struct bpf_sk_lookup, local_port):
11598 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11599 				      bpf_target_off(struct bpf_sk_lookup_kern,
11600 						     dport, 2, target_size));
11601 		break;
11602 
11603 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11604 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11605 				      bpf_target_off(struct bpf_sk_lookup_kern,
11606 						     ingress_ifindex, 4, target_size));
11607 		break;
11608 	}
11609 
11610 	return insn - insn_buf;
11611 }
11612 
11613 const struct bpf_prog_ops sk_lookup_prog_ops = {
11614 	.test_run = bpf_prog_test_run_sk_lookup,
11615 };
11616 
11617 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11618 	.get_func_proto		= sk_lookup_func_proto,
11619 	.is_valid_access	= sk_lookup_is_valid_access,
11620 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11621 };
11622 
11623 #endif /* CONFIG_INET */
11624 
DEFINE_BPF_DISPATCHER(xdp)11625 DEFINE_BPF_DISPATCHER(xdp)
11626 
11627 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11628 {
11629 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11630 }
11631 
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11632 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11633 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11634 BTF_SOCK_TYPE_xxx
11635 #undef BTF_SOCK_TYPE
11636 
11637 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11638 {
11639 	/* tcp6_sock type is not generated in dwarf and hence btf,
11640 	 * trigger an explicit type generation here.
11641 	 */
11642 	BTF_TYPE_EMIT(struct tcp6_sock);
11643 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11644 	    sk->sk_family == AF_INET6)
11645 		return (unsigned long)sk;
11646 
11647 	return (unsigned long)NULL;
11648 }
11649 
11650 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11651 	.func			= bpf_skc_to_tcp6_sock,
11652 	.gpl_only		= false,
11653 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11654 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11655 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11656 };
11657 
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11658 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11659 {
11660 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11661 		return (unsigned long)sk;
11662 
11663 	return (unsigned long)NULL;
11664 }
11665 
11666 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11667 	.func			= bpf_skc_to_tcp_sock,
11668 	.gpl_only		= false,
11669 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11670 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11671 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11672 };
11673 
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11674 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11675 {
11676 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11677 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11678 	 */
11679 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11680 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11681 
11682 #ifdef CONFIG_INET
11683 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11684 		return (unsigned long)sk;
11685 #endif
11686 
11687 #if IS_BUILTIN(CONFIG_IPV6)
11688 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11689 		return (unsigned long)sk;
11690 #endif
11691 
11692 	return (unsigned long)NULL;
11693 }
11694 
11695 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11696 	.func			= bpf_skc_to_tcp_timewait_sock,
11697 	.gpl_only		= false,
11698 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11699 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11700 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11701 };
11702 
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11703 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11704 {
11705 #ifdef CONFIG_INET
11706 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11707 		return (unsigned long)sk;
11708 #endif
11709 
11710 #if IS_BUILTIN(CONFIG_IPV6)
11711 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11712 		return (unsigned long)sk;
11713 #endif
11714 
11715 	return (unsigned long)NULL;
11716 }
11717 
11718 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11719 	.func			= bpf_skc_to_tcp_request_sock,
11720 	.gpl_only		= false,
11721 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11722 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11723 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11724 };
11725 
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11726 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11727 {
11728 	/* udp6_sock type is not generated in dwarf and hence btf,
11729 	 * trigger an explicit type generation here.
11730 	 */
11731 	BTF_TYPE_EMIT(struct udp6_sock);
11732 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11733 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11734 		return (unsigned long)sk;
11735 
11736 	return (unsigned long)NULL;
11737 }
11738 
11739 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11740 	.func			= bpf_skc_to_udp6_sock,
11741 	.gpl_only		= false,
11742 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11743 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11744 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11745 };
11746 
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11747 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11748 {
11749 	/* unix_sock type is not generated in dwarf and hence btf,
11750 	 * trigger an explicit type generation here.
11751 	 */
11752 	BTF_TYPE_EMIT(struct unix_sock);
11753 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11754 		return (unsigned long)sk;
11755 
11756 	return (unsigned long)NULL;
11757 }
11758 
11759 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11760 	.func			= bpf_skc_to_unix_sock,
11761 	.gpl_only		= false,
11762 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11763 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11764 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11765 };
11766 
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11767 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11768 {
11769 	BTF_TYPE_EMIT(struct mptcp_sock);
11770 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11771 }
11772 
11773 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11774 	.func		= bpf_skc_to_mptcp_sock,
11775 	.gpl_only	= false,
11776 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11777 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11778 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11779 };
11780 
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11781 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11782 {
11783 	return (unsigned long)sock_from_file(file);
11784 }
11785 
11786 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11787 BTF_ID(struct, socket)
11788 BTF_ID(struct, file)
11789 
11790 const struct bpf_func_proto bpf_sock_from_file_proto = {
11791 	.func		= bpf_sock_from_file,
11792 	.gpl_only	= false,
11793 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11794 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11795 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11796 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11797 };
11798 
11799 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11800 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11801 {
11802 	const struct bpf_func_proto *func;
11803 
11804 	switch (func_id) {
11805 	case BPF_FUNC_skc_to_tcp6_sock:
11806 		func = &bpf_skc_to_tcp6_sock_proto;
11807 		break;
11808 	case BPF_FUNC_skc_to_tcp_sock:
11809 		func = &bpf_skc_to_tcp_sock_proto;
11810 		break;
11811 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11812 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11813 		break;
11814 	case BPF_FUNC_skc_to_tcp_request_sock:
11815 		func = &bpf_skc_to_tcp_request_sock_proto;
11816 		break;
11817 	case BPF_FUNC_skc_to_udp6_sock:
11818 		func = &bpf_skc_to_udp6_sock_proto;
11819 		break;
11820 	case BPF_FUNC_skc_to_unix_sock:
11821 		func = &bpf_skc_to_unix_sock_proto;
11822 		break;
11823 	case BPF_FUNC_skc_to_mptcp_sock:
11824 		func = &bpf_skc_to_mptcp_sock_proto;
11825 		break;
11826 	case BPF_FUNC_ktime_get_coarse_ns:
11827 		return &bpf_ktime_get_coarse_ns_proto;
11828 	default:
11829 		return bpf_base_func_proto(func_id);
11830 	}
11831 
11832 	if (!perfmon_capable())
11833 		return NULL;
11834 
11835 	return func;
11836 }
11837 
11838 __diag_push();
11839 __diag_ignore_all("-Wmissing-prototypes",
11840 		  "Global functions as their definitions will be in vmlinux BTF");
bpf_dynptr_from_skb(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11841 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11842 				    struct bpf_dynptr_kern *ptr__uninit)
11843 {
11844 	if (flags) {
11845 		bpf_dynptr_set_null(ptr__uninit);
11846 		return -EINVAL;
11847 	}
11848 
11849 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11850 
11851 	return 0;
11852 }
11853 
bpf_dynptr_from_xdp(struct xdp_buff * xdp,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11854 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11855 				    struct bpf_dynptr_kern *ptr__uninit)
11856 {
11857 	if (flags) {
11858 		bpf_dynptr_set_null(ptr__uninit);
11859 		return -EINVAL;
11860 	}
11861 
11862 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11863 
11864 	return 0;
11865 }
11866 
bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern * sa_kern,const u8 * sun_path,u32 sun_path__sz)11867 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11868 					   const u8 *sun_path, u32 sun_path__sz)
11869 {
11870 	struct sockaddr_un *un;
11871 
11872 	if (sa_kern->sk->sk_family != AF_UNIX)
11873 		return -EINVAL;
11874 
11875 	/* We do not allow changing the address to unnamed or larger than the
11876 	 * maximum allowed address size for a unix sockaddr.
11877 	 */
11878 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11879 		return -EINVAL;
11880 
11881 	un = (struct sockaddr_un *)sa_kern->uaddr;
11882 	memcpy(un->sun_path, sun_path, sun_path__sz);
11883 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11884 
11885 	return 0;
11886 }
11887 __diag_pop();
11888 
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11889 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11890 			       struct bpf_dynptr_kern *ptr__uninit)
11891 {
11892 	int err;
11893 
11894 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11895 	if (err)
11896 		return err;
11897 
11898 	bpf_dynptr_set_rdonly(ptr__uninit);
11899 
11900 	return 0;
11901 }
11902 
11903 BTF_SET8_START(bpf_kfunc_check_set_skb)
11904 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11905 BTF_SET8_END(bpf_kfunc_check_set_skb)
11906 
11907 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11908 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11909 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11910 
11911 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11912 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11913 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11914 
11915 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11916 	.owner = THIS_MODULE,
11917 	.set = &bpf_kfunc_check_set_skb,
11918 };
11919 
11920 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11921 	.owner = THIS_MODULE,
11922 	.set = &bpf_kfunc_check_set_xdp,
11923 };
11924 
11925 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11926 	.owner = THIS_MODULE,
11927 	.set = &bpf_kfunc_check_set_sock_addr,
11928 };
11929 
bpf_kfunc_init(void)11930 static int __init bpf_kfunc_init(void)
11931 {
11932 	int ret;
11933 
11934 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11935 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11936 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11937 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11938 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11939 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11940 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11941 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11942 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11943 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11944 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11945 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11946 						&bpf_kfunc_set_sock_addr);
11947 }
11948 late_initcall(bpf_kfunc_init);
11949 
11950 /* Disables missing prototype warnings */
11951 __diag_push();
11952 __diag_ignore_all("-Wmissing-prototypes",
11953 		  "Global functions as their definitions will be in vmlinux BTF");
11954 
11955 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11956  *
11957  * The function expects a non-NULL pointer to a socket, and invokes the
11958  * protocol specific socket destroy handlers.
11959  *
11960  * The helper can only be called from BPF contexts that have acquired the socket
11961  * locks.
11962  *
11963  * Parameters:
11964  * @sock: Pointer to socket to be destroyed
11965  *
11966  * Return:
11967  * On error, may return EPROTONOSUPPORT, EINVAL.
11968  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11969  * 0 otherwise
11970  */
bpf_sock_destroy(struct sock_common * sock)11971 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11972 {
11973 	struct sock *sk = (struct sock *)sock;
11974 
11975 	/* The locking semantics that allow for synchronous execution of the
11976 	 * destroy handlers are only supported for TCP and UDP.
11977 	 * Supporting protocols will need to acquire sock lock in the BPF context
11978 	 * prior to invoking this kfunc.
11979 	 */
11980 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11981 					   sk->sk_protocol != IPPROTO_UDP))
11982 		return -EOPNOTSUPP;
11983 
11984 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11985 }
11986 
11987 __diag_pop()
11988 
BTF_SET8_START(bpf_sk_iter_kfunc_ids)11989 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11990 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11991 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11992 
11993 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11994 {
11995 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11996 	    prog->expected_attach_type != BPF_TRACE_ITER)
11997 		return -EACCES;
11998 	return 0;
11999 }
12000 
12001 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
12002 	.owner = THIS_MODULE,
12003 	.set   = &bpf_sk_iter_kfunc_ids,
12004 	.filter = tracing_iter_filter,
12005 };
12006 
init_subsystem(void)12007 static int init_subsystem(void)
12008 {
12009 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
12010 }
12011 late_initcall(init_subsystem);
12012