1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI EDMA DMA engine driver
4 *
5 * Copyright 2012 Texas Instruments
6 */
7
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/pm_runtime.h>
24
25 #include <linux/platform_data/edma.h>
26
27 #include "../dmaengine.h"
28 #include "../virt-dma.h"
29
30 /* Offsets matching "struct edmacc_param" */
31 #define PARM_OPT 0x00
32 #define PARM_SRC 0x04
33 #define PARM_A_B_CNT 0x08
34 #define PARM_DST 0x0c
35 #define PARM_SRC_DST_BIDX 0x10
36 #define PARM_LINK_BCNTRLD 0x14
37 #define PARM_SRC_DST_CIDX 0x18
38 #define PARM_CCNT 0x1c
39
40 #define PARM_SIZE 0x20
41
42 /* Offsets for EDMA CC global channel registers and their shadows */
43 #define SH_ER 0x00 /* 64 bits */
44 #define SH_ECR 0x08 /* 64 bits */
45 #define SH_ESR 0x10 /* 64 bits */
46 #define SH_CER 0x18 /* 64 bits */
47 #define SH_EER 0x20 /* 64 bits */
48 #define SH_EECR 0x28 /* 64 bits */
49 #define SH_EESR 0x30 /* 64 bits */
50 #define SH_SER 0x38 /* 64 bits */
51 #define SH_SECR 0x40 /* 64 bits */
52 #define SH_IER 0x50 /* 64 bits */
53 #define SH_IECR 0x58 /* 64 bits */
54 #define SH_IESR 0x60 /* 64 bits */
55 #define SH_IPR 0x68 /* 64 bits */
56 #define SH_ICR 0x70 /* 64 bits */
57 #define SH_IEVAL 0x78
58 #define SH_QER 0x80
59 #define SH_QEER 0x84
60 #define SH_QEECR 0x88
61 #define SH_QEESR 0x8c
62 #define SH_QSER 0x90
63 #define SH_QSECR 0x94
64 #define SH_SIZE 0x200
65
66 /* Offsets for EDMA CC global registers */
67 #define EDMA_REV 0x0000
68 #define EDMA_CCCFG 0x0004
69 #define EDMA_QCHMAP 0x0200 /* 8 registers */
70 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
71 #define EDMA_QDMAQNUM 0x0260
72 #define EDMA_QUETCMAP 0x0280
73 #define EDMA_QUEPRI 0x0284
74 #define EDMA_EMR 0x0300 /* 64 bits */
75 #define EDMA_EMCR 0x0308 /* 64 bits */
76 #define EDMA_QEMR 0x0310
77 #define EDMA_QEMCR 0x0314
78 #define EDMA_CCERR 0x0318
79 #define EDMA_CCERRCLR 0x031c
80 #define EDMA_EEVAL 0x0320
81 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
82 #define EDMA_QRAE 0x0380 /* 4 registers */
83 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
84 #define EDMA_QSTAT 0x0600 /* 2 registers */
85 #define EDMA_QWMTHRA 0x0620
86 #define EDMA_QWMTHRB 0x0624
87 #define EDMA_CCSTAT 0x0640
88
89 #define EDMA_M 0x1000 /* global channel registers */
90 #define EDMA_ECR 0x1008
91 #define EDMA_ECRH 0x100C
92 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
93 #define EDMA_PARM 0x4000 /* PaRAM entries */
94
95 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
96
97 #define EDMA_DCHMAP 0x0100 /* 64 registers */
98
99 /* CCCFG register */
100 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
101 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
102 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
103 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
104 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
105 #define CHMAP_EXIST BIT(24)
106
107 /* CCSTAT register */
108 #define EDMA_CCSTAT_ACTV BIT(4)
109
110 /*
111 * Max of 20 segments per channel to conserve PaRAM slots
112 * Also note that MAX_NR_SG should be at least the no.of periods
113 * that are required for ASoC, otherwise DMA prep calls will
114 * fail. Today davinci-pcm is the only user of this driver and
115 * requires at least 17 slots, so we setup the default to 20.
116 */
117 #define MAX_NR_SG 20
118 #define EDMA_MAX_SLOTS MAX_NR_SG
119 #define EDMA_DESCRIPTORS 16
120
121 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
122 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
123 #define EDMA_CONT_PARAMS_ANY 1001
124 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
125 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
126
127 /*
128 * 64bit array registers are split into two 32bit registers:
129 * reg0: channel/event 0-31
130 * reg1: channel/event 32-63
131 *
132 * bit 5 in the channel number tells the array index (0/1)
133 * bit 0-4 (0x1f) is the bit offset within the register
134 */
135 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5)
136 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f))
137
138 /* PaRAM slots are laid out like this */
139 struct edmacc_param {
140 u32 opt;
141 u32 src;
142 u32 a_b_cnt;
143 u32 dst;
144 u32 src_dst_bidx;
145 u32 link_bcntrld;
146 u32 src_dst_cidx;
147 u32 ccnt;
148 } __packed;
149
150 /* fields in edmacc_param.opt */
151 #define SAM BIT(0)
152 #define DAM BIT(1)
153 #define SYNCDIM BIT(2)
154 #define STATIC BIT(3)
155 #define EDMA_FWID (0x07 << 8)
156 #define TCCMODE BIT(11)
157 #define EDMA_TCC(t) ((t) << 12)
158 #define TCINTEN BIT(20)
159 #define ITCINTEN BIT(21)
160 #define TCCHEN BIT(22)
161 #define ITCCHEN BIT(23)
162
163 struct edma_pset {
164 u32 len;
165 dma_addr_t addr;
166 struct edmacc_param param;
167 };
168
169 struct edma_desc {
170 struct virt_dma_desc vdesc;
171 struct list_head node;
172 enum dma_transfer_direction direction;
173 int cyclic;
174 bool polled;
175 int absync;
176 int pset_nr;
177 struct edma_chan *echan;
178 int processed;
179
180 /*
181 * The following 4 elements are used for residue accounting.
182 *
183 * - processed_stat: the number of SG elements we have traversed
184 * so far to cover accounting. This is updated directly to processed
185 * during edma_callback and is always <= processed, because processed
186 * refers to the number of pending transfer (programmed to EDMA
187 * controller), where as processed_stat tracks number of transfers
188 * accounted for so far.
189 *
190 * - residue: The amount of bytes we have left to transfer for this desc
191 *
192 * - residue_stat: The residue in bytes of data we have covered
193 * so far for accounting. This is updated directly to residue
194 * during callbacks to keep it current.
195 *
196 * - sg_len: Tracks the length of the current intermediate transfer,
197 * this is required to update the residue during intermediate transfer
198 * completion callback.
199 */
200 int processed_stat;
201 u32 sg_len;
202 u32 residue;
203 u32 residue_stat;
204
205 struct edma_pset pset[];
206 };
207
208 struct edma_cc;
209
210 struct edma_tc {
211 struct device_node *node;
212 u16 id;
213 };
214
215 struct edma_chan {
216 struct virt_dma_chan vchan;
217 struct list_head node;
218 struct edma_desc *edesc;
219 struct edma_cc *ecc;
220 struct edma_tc *tc;
221 int ch_num;
222 bool alloced;
223 bool hw_triggered;
224 int slot[EDMA_MAX_SLOTS];
225 int missed;
226 struct dma_slave_config cfg;
227 };
228
229 struct edma_cc {
230 struct device *dev;
231 struct edma_soc_info *info;
232 void __iomem *base;
233 int id;
234 bool legacy_mode;
235
236 /* eDMA3 resource information */
237 unsigned num_channels;
238 unsigned num_qchannels;
239 unsigned num_region;
240 unsigned num_slots;
241 unsigned num_tc;
242 bool chmap_exist;
243 enum dma_event_q default_queue;
244
245 unsigned int ccint;
246 unsigned int ccerrint;
247
248 /*
249 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
250 * in use by Linux or if it is allocated to be used by DSP.
251 */
252 unsigned long *slot_inuse;
253
254 /*
255 * For tracking reserved channels used by DSP.
256 * If the bit is cleared, the channel is allocated to be used by DSP
257 * and Linux must not touch it.
258 */
259 unsigned long *channels_mask;
260
261 struct dma_device dma_slave;
262 struct dma_device *dma_memcpy;
263 struct edma_chan *slave_chans;
264 struct edma_tc *tc_list;
265 int dummy_slot;
266 };
267
268 /* dummy param set used to (re)initialize parameter RAM slots */
269 static const struct edmacc_param dummy_paramset = {
270 .link_bcntrld = 0xffff,
271 .ccnt = 1,
272 };
273
274 #define EDMA_BINDING_LEGACY 0
275 #define EDMA_BINDING_TPCC 1
276 static const u32 edma_binding_type[] = {
277 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
278 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
279 };
280
281 static const struct of_device_id edma_of_ids[] = {
282 {
283 .compatible = "ti,edma3",
284 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
285 },
286 {
287 .compatible = "ti,edma3-tpcc",
288 .data = &edma_binding_type[EDMA_BINDING_TPCC],
289 },
290 {}
291 };
292 MODULE_DEVICE_TABLE(of, edma_of_ids);
293
294 static const struct of_device_id edma_tptc_of_ids[] = {
295 { .compatible = "ti,edma3-tptc", },
296 {}
297 };
298 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
299
edma_read(struct edma_cc * ecc,int offset)300 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
301 {
302 return (unsigned int)__raw_readl(ecc->base + offset);
303 }
304
edma_write(struct edma_cc * ecc,int offset,int val)305 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
306 {
307 __raw_writel(val, ecc->base + offset);
308 }
309
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)310 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
311 unsigned or)
312 {
313 unsigned val = edma_read(ecc, offset);
314
315 val &= and;
316 val |= or;
317 edma_write(ecc, offset, val);
318 }
319
edma_or(struct edma_cc * ecc,int offset,unsigned or)320 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
321 {
322 unsigned val = edma_read(ecc, offset);
323
324 val |= or;
325 edma_write(ecc, offset, val);
326 }
327
edma_read_array(struct edma_cc * ecc,int offset,int i)328 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
329 int i)
330 {
331 return edma_read(ecc, offset + (i << 2));
332 }
333
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)334 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
335 unsigned val)
336 {
337 edma_write(ecc, offset + (i << 2), val);
338 }
339
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)340 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
341 unsigned and, unsigned or)
342 {
343 edma_modify(ecc, offset + (i << 2), and, or);
344 }
345
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)346 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
347 unsigned or)
348 {
349 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
350 }
351
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)352 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
353 int j, unsigned val)
354 {
355 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
356 }
357
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)358 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
359 int offset, int i)
360 {
361 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
362 }
363
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)364 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
365 unsigned val)
366 {
367 edma_write(ecc, EDMA_SHADOW0 + offset, val);
368 }
369
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)370 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
371 int i, unsigned val)
372 {
373 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
374 }
375
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)376 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
377 int param_no, unsigned and, unsigned or)
378 {
379 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
380 }
381
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)382 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
383 int priority)
384 {
385 int bit = queue_no * 4;
386
387 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
388 }
389
edma_set_chmap(struct edma_chan * echan,int slot)390 static void edma_set_chmap(struct edma_chan *echan, int slot)
391 {
392 struct edma_cc *ecc = echan->ecc;
393 int channel = EDMA_CHAN_SLOT(echan->ch_num);
394
395 if (ecc->chmap_exist) {
396 slot = EDMA_CHAN_SLOT(slot);
397 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
398 }
399 }
400
edma_setup_interrupt(struct edma_chan * echan,bool enable)401 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
402 {
403 struct edma_cc *ecc = echan->ecc;
404 int channel = EDMA_CHAN_SLOT(echan->ch_num);
405 int idx = EDMA_REG_ARRAY_INDEX(channel);
406 int ch_bit = EDMA_CHANNEL_BIT(channel);
407
408 if (enable) {
409 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
410 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
411 } else {
412 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
413 }
414 }
415
416 /*
417 * paRAM slot management functions
418 */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)419 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
420 const struct edmacc_param *param)
421 {
422 slot = EDMA_CHAN_SLOT(slot);
423 if (slot >= ecc->num_slots)
424 return;
425 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
426 }
427
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)428 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
429 struct edmacc_param *param)
430 {
431 slot = EDMA_CHAN_SLOT(slot);
432 if (slot >= ecc->num_slots)
433 return -EINVAL;
434 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
435
436 return 0;
437 }
438
439 /**
440 * edma_alloc_slot - allocate DMA parameter RAM
441 * @ecc: pointer to edma_cc struct
442 * @slot: specific slot to allocate; negative for "any unused slot"
443 *
444 * This allocates a parameter RAM slot, initializing it to hold a
445 * dummy transfer. Slots allocated using this routine have not been
446 * mapped to a hardware DMA channel, and will normally be used by
447 * linking to them from a slot associated with a DMA channel.
448 *
449 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
450 * slots may be allocated on behalf of DSP firmware.
451 *
452 * Returns the number of the slot, else negative errno.
453 */
edma_alloc_slot(struct edma_cc * ecc,int slot)454 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
455 {
456 if (slot >= 0) {
457 slot = EDMA_CHAN_SLOT(slot);
458 /* Requesting entry paRAM slot for a HW triggered channel. */
459 if (ecc->chmap_exist && slot < ecc->num_channels)
460 slot = EDMA_SLOT_ANY;
461 }
462
463 if (slot < 0) {
464 if (ecc->chmap_exist)
465 slot = 0;
466 else
467 slot = ecc->num_channels;
468 for (;;) {
469 slot = find_next_zero_bit(ecc->slot_inuse,
470 ecc->num_slots,
471 slot);
472 if (slot == ecc->num_slots)
473 return -ENOMEM;
474 if (!test_and_set_bit(slot, ecc->slot_inuse))
475 break;
476 }
477 } else if (slot >= ecc->num_slots) {
478 return -EINVAL;
479 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
480 return -EBUSY;
481 }
482
483 edma_write_slot(ecc, slot, &dummy_paramset);
484
485 return EDMA_CTLR_CHAN(ecc->id, slot);
486 }
487
edma_free_slot(struct edma_cc * ecc,unsigned slot)488 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
489 {
490 slot = EDMA_CHAN_SLOT(slot);
491 if (slot >= ecc->num_slots)
492 return;
493
494 edma_write_slot(ecc, slot, &dummy_paramset);
495 clear_bit(slot, ecc->slot_inuse);
496 }
497
498 /**
499 * edma_link - link one parameter RAM slot to another
500 * @ecc: pointer to edma_cc struct
501 * @from: parameter RAM slot originating the link
502 * @to: parameter RAM slot which is the link target
503 *
504 * The originating slot should not be part of any active DMA transfer.
505 */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)506 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
507 {
508 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
509 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
510
511 from = EDMA_CHAN_SLOT(from);
512 to = EDMA_CHAN_SLOT(to);
513 if (from >= ecc->num_slots || to >= ecc->num_slots)
514 return;
515
516 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
517 PARM_OFFSET(to));
518 }
519
520 /**
521 * edma_get_position - returns the current transfer point
522 * @ecc: pointer to edma_cc struct
523 * @slot: parameter RAM slot being examined
524 * @dst: true selects the dest position, false the source
525 *
526 * Returns the position of the current active slot
527 */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)528 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
529 bool dst)
530 {
531 u32 offs;
532
533 slot = EDMA_CHAN_SLOT(slot);
534 offs = PARM_OFFSET(slot);
535 offs += dst ? PARM_DST : PARM_SRC;
536
537 return edma_read(ecc, offs);
538 }
539
540 /*
541 * Channels with event associations will be triggered by their hardware
542 * events, and channels without such associations will be triggered by
543 * software. (At this writing there is no interface for using software
544 * triggers except with channels that don't support hardware triggers.)
545 */
edma_start(struct edma_chan * echan)546 static void edma_start(struct edma_chan *echan)
547 {
548 struct edma_cc *ecc = echan->ecc;
549 int channel = EDMA_CHAN_SLOT(echan->ch_num);
550 int idx = EDMA_REG_ARRAY_INDEX(channel);
551 int ch_bit = EDMA_CHANNEL_BIT(channel);
552
553 if (!echan->hw_triggered) {
554 /* EDMA channels without event association */
555 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
556 edma_shadow0_read_array(ecc, SH_ESR, idx));
557 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
558 } else {
559 /* EDMA channel with event association */
560 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
561 edma_shadow0_read_array(ecc, SH_ER, idx));
562 /* Clear any pending event or error */
563 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
564 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
565 /* Clear any SER */
566 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
567 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
568 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
569 edma_shadow0_read_array(ecc, SH_EER, idx));
570 }
571 }
572
edma_stop(struct edma_chan * echan)573 static void edma_stop(struct edma_chan *echan)
574 {
575 struct edma_cc *ecc = echan->ecc;
576 int channel = EDMA_CHAN_SLOT(echan->ch_num);
577 int idx = EDMA_REG_ARRAY_INDEX(channel);
578 int ch_bit = EDMA_CHANNEL_BIT(channel);
579
580 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
581 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
582 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
583 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
584
585 /* clear possibly pending completion interrupt */
586 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
587
588 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
589 edma_shadow0_read_array(ecc, SH_EER, idx));
590
591 /* REVISIT: consider guarding against inappropriate event
592 * chaining by overwriting with dummy_paramset.
593 */
594 }
595
596 /*
597 * Temporarily disable EDMA hardware events on the specified channel,
598 * preventing them from triggering new transfers
599 */
edma_pause(struct edma_chan * echan)600 static void edma_pause(struct edma_chan *echan)
601 {
602 int channel = EDMA_CHAN_SLOT(echan->ch_num);
603
604 edma_shadow0_write_array(echan->ecc, SH_EECR,
605 EDMA_REG_ARRAY_INDEX(channel),
606 EDMA_CHANNEL_BIT(channel));
607 }
608
609 /* Re-enable EDMA hardware events on the specified channel. */
edma_resume(struct edma_chan * echan)610 static void edma_resume(struct edma_chan *echan)
611 {
612 int channel = EDMA_CHAN_SLOT(echan->ch_num);
613
614 edma_shadow0_write_array(echan->ecc, SH_EESR,
615 EDMA_REG_ARRAY_INDEX(channel),
616 EDMA_CHANNEL_BIT(channel));
617 }
618
edma_trigger_channel(struct edma_chan * echan)619 static void edma_trigger_channel(struct edma_chan *echan)
620 {
621 struct edma_cc *ecc = echan->ecc;
622 int channel = EDMA_CHAN_SLOT(echan->ch_num);
623 int idx = EDMA_REG_ARRAY_INDEX(channel);
624 int ch_bit = EDMA_CHANNEL_BIT(channel);
625
626 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
627
628 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
629 edma_shadow0_read_array(ecc, SH_ESR, idx));
630 }
631
edma_clean_channel(struct edma_chan * echan)632 static void edma_clean_channel(struct edma_chan *echan)
633 {
634 struct edma_cc *ecc = echan->ecc;
635 int channel = EDMA_CHAN_SLOT(echan->ch_num);
636 int idx = EDMA_REG_ARRAY_INDEX(channel);
637 int ch_bit = EDMA_CHANNEL_BIT(channel);
638
639 dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
640 edma_read_array(ecc, EDMA_EMR, idx));
641 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
642 /* Clear the corresponding EMR bits */
643 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
644 /* Clear any SER */
645 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
646 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
647 }
648
649 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)650 static void edma_assign_channel_eventq(struct edma_chan *echan,
651 enum dma_event_q eventq_no)
652 {
653 struct edma_cc *ecc = echan->ecc;
654 int channel = EDMA_CHAN_SLOT(echan->ch_num);
655 int bit = (channel & 0x7) * 4;
656
657 /* default to low priority queue */
658 if (eventq_no == EVENTQ_DEFAULT)
659 eventq_no = ecc->default_queue;
660 if (eventq_no >= ecc->num_tc)
661 return;
662
663 eventq_no &= 7;
664 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
665 eventq_no << bit);
666 }
667
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)668 static int edma_alloc_channel(struct edma_chan *echan,
669 enum dma_event_q eventq_no)
670 {
671 struct edma_cc *ecc = echan->ecc;
672 int channel = EDMA_CHAN_SLOT(echan->ch_num);
673
674 if (!test_bit(echan->ch_num, ecc->channels_mask)) {
675 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
676 echan->ch_num);
677 return -EINVAL;
678 }
679
680 /* ensure access through shadow region 0 */
681 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
682 EDMA_CHANNEL_BIT(channel));
683
684 /* ensure no events are pending */
685 edma_stop(echan);
686
687 edma_setup_interrupt(echan, true);
688
689 edma_assign_channel_eventq(echan, eventq_no);
690
691 return 0;
692 }
693
edma_free_channel(struct edma_chan * echan)694 static void edma_free_channel(struct edma_chan *echan)
695 {
696 /* ensure no events are pending */
697 edma_stop(echan);
698 /* REVISIT should probably take out of shadow region 0 */
699 edma_setup_interrupt(echan, false);
700 }
701
to_edma_chan(struct dma_chan * c)702 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
703 {
704 return container_of(c, struct edma_chan, vchan.chan);
705 }
706
to_edma_desc(struct dma_async_tx_descriptor * tx)707 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
708 {
709 return container_of(tx, struct edma_desc, vdesc.tx);
710 }
711
edma_desc_free(struct virt_dma_desc * vdesc)712 static void edma_desc_free(struct virt_dma_desc *vdesc)
713 {
714 kfree(container_of(vdesc, struct edma_desc, vdesc));
715 }
716
717 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)718 static void edma_execute(struct edma_chan *echan)
719 {
720 struct edma_cc *ecc = echan->ecc;
721 struct virt_dma_desc *vdesc;
722 struct edma_desc *edesc;
723 struct device *dev = echan->vchan.chan.device->dev;
724 int i, j, left, nslots;
725
726 if (!echan->edesc) {
727 /* Setup is needed for the first transfer */
728 vdesc = vchan_next_desc(&echan->vchan);
729 if (!vdesc)
730 return;
731 list_del(&vdesc->node);
732 echan->edesc = to_edma_desc(&vdesc->tx);
733 }
734
735 edesc = echan->edesc;
736
737 /* Find out how many left */
738 left = edesc->pset_nr - edesc->processed;
739 nslots = min(MAX_NR_SG, left);
740 edesc->sg_len = 0;
741
742 /* Write descriptor PaRAM set(s) */
743 for (i = 0; i < nslots; i++) {
744 j = i + edesc->processed;
745 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
746 edesc->sg_len += edesc->pset[j].len;
747 dev_vdbg(dev,
748 "\n pset[%d]:\n"
749 " chnum\t%d\n"
750 " slot\t%d\n"
751 " opt\t%08x\n"
752 " src\t%08x\n"
753 " dst\t%08x\n"
754 " abcnt\t%08x\n"
755 " ccnt\t%08x\n"
756 " bidx\t%08x\n"
757 " cidx\t%08x\n"
758 " lkrld\t%08x\n",
759 j, echan->ch_num, echan->slot[i],
760 edesc->pset[j].param.opt,
761 edesc->pset[j].param.src,
762 edesc->pset[j].param.dst,
763 edesc->pset[j].param.a_b_cnt,
764 edesc->pset[j].param.ccnt,
765 edesc->pset[j].param.src_dst_bidx,
766 edesc->pset[j].param.src_dst_cidx,
767 edesc->pset[j].param.link_bcntrld);
768 /* Link to the previous slot if not the last set */
769 if (i != (nslots - 1))
770 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
771 }
772
773 edesc->processed += nslots;
774
775 /*
776 * If this is either the last set in a set of SG-list transactions
777 * then setup a link to the dummy slot, this results in all future
778 * events being absorbed and that's OK because we're done
779 */
780 if (edesc->processed == edesc->pset_nr) {
781 if (edesc->cyclic)
782 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
783 else
784 edma_link(ecc, echan->slot[nslots - 1],
785 echan->ecc->dummy_slot);
786 }
787
788 if (echan->missed) {
789 /*
790 * This happens due to setup times between intermediate
791 * transfers in long SG lists which have to be broken up into
792 * transfers of MAX_NR_SG
793 */
794 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
795 edma_clean_channel(echan);
796 edma_stop(echan);
797 edma_start(echan);
798 edma_trigger_channel(echan);
799 echan->missed = 0;
800 } else if (edesc->processed <= MAX_NR_SG) {
801 dev_dbg(dev, "first transfer starting on channel %d\n",
802 echan->ch_num);
803 edma_start(echan);
804 } else {
805 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
806 echan->ch_num, edesc->processed);
807 edma_resume(echan);
808 }
809 }
810
edma_terminate_all(struct dma_chan * chan)811 static int edma_terminate_all(struct dma_chan *chan)
812 {
813 struct edma_chan *echan = to_edma_chan(chan);
814 unsigned long flags;
815 LIST_HEAD(head);
816
817 spin_lock_irqsave(&echan->vchan.lock, flags);
818
819 /*
820 * Stop DMA activity: we assume the callback will not be called
821 * after edma_dma() returns (even if it does, it will see
822 * echan->edesc is NULL and exit.)
823 */
824 if (echan->edesc) {
825 edma_stop(echan);
826 /* Move the cyclic channel back to default queue */
827 if (!echan->tc && echan->edesc->cyclic)
828 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
829
830 vchan_terminate_vdesc(&echan->edesc->vdesc);
831 echan->edesc = NULL;
832 }
833
834 vchan_get_all_descriptors(&echan->vchan, &head);
835 spin_unlock_irqrestore(&echan->vchan.lock, flags);
836 vchan_dma_desc_free_list(&echan->vchan, &head);
837
838 return 0;
839 }
840
edma_synchronize(struct dma_chan * chan)841 static void edma_synchronize(struct dma_chan *chan)
842 {
843 struct edma_chan *echan = to_edma_chan(chan);
844
845 vchan_synchronize(&echan->vchan);
846 }
847
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)848 static int edma_slave_config(struct dma_chan *chan,
849 struct dma_slave_config *cfg)
850 {
851 struct edma_chan *echan = to_edma_chan(chan);
852
853 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
854 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
855 return -EINVAL;
856
857 if (cfg->src_maxburst > chan->device->max_burst ||
858 cfg->dst_maxburst > chan->device->max_burst)
859 return -EINVAL;
860
861 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
862
863 return 0;
864 }
865
edma_dma_pause(struct dma_chan * chan)866 static int edma_dma_pause(struct dma_chan *chan)
867 {
868 struct edma_chan *echan = to_edma_chan(chan);
869
870 if (!echan->edesc)
871 return -EINVAL;
872
873 edma_pause(echan);
874 return 0;
875 }
876
edma_dma_resume(struct dma_chan * chan)877 static int edma_dma_resume(struct dma_chan *chan)
878 {
879 struct edma_chan *echan = to_edma_chan(chan);
880
881 edma_resume(echan);
882 return 0;
883 }
884
885 /*
886 * A PaRAM set configuration abstraction used by other modes
887 * @chan: Channel who's PaRAM set we're configuring
888 * @pset: PaRAM set to initialize and setup.
889 * @src_addr: Source address of the DMA
890 * @dst_addr: Destination address of the DMA
891 * @burst: In units of dev_width, how much to send
892 * @dev_width: How much is the dev_width
893 * @dma_length: Total length of the DMA transfer
894 * @direction: Direction of the transfer
895 */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)896 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
897 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
898 unsigned int acnt, unsigned int dma_length,
899 enum dma_transfer_direction direction)
900 {
901 struct edma_chan *echan = to_edma_chan(chan);
902 struct device *dev = chan->device->dev;
903 struct edmacc_param *param = &epset->param;
904 int bcnt, ccnt, cidx;
905 int src_bidx, dst_bidx, src_cidx, dst_cidx;
906 int absync;
907
908 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
909 if (!burst)
910 burst = 1;
911 /*
912 * If the maxburst is equal to the fifo width, use
913 * A-synced transfers. This allows for large contiguous
914 * buffer transfers using only one PaRAM set.
915 */
916 if (burst == 1) {
917 /*
918 * For the A-sync case, bcnt and ccnt are the remainder
919 * and quotient respectively of the division of:
920 * (dma_length / acnt) by (SZ_64K -1). This is so
921 * that in case bcnt over flows, we have ccnt to use.
922 * Note: In A-sync transfer only, bcntrld is used, but it
923 * only applies for sg_dma_len(sg) >= SZ_64K.
924 * In this case, the best way adopted is- bccnt for the
925 * first frame will be the remainder below. Then for
926 * every successive frame, bcnt will be SZ_64K-1. This
927 * is assured as bcntrld = 0xffff in end of function.
928 */
929 absync = false;
930 ccnt = dma_length / acnt / (SZ_64K - 1);
931 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
932 /*
933 * If bcnt is non-zero, we have a remainder and hence an
934 * extra frame to transfer, so increment ccnt.
935 */
936 if (bcnt)
937 ccnt++;
938 else
939 bcnt = SZ_64K - 1;
940 cidx = acnt;
941 } else {
942 /*
943 * If maxburst is greater than the fifo address_width,
944 * use AB-synced transfers where A count is the fifo
945 * address_width and B count is the maxburst. In this
946 * case, we are limited to transfers of C count frames
947 * of (address_width * maxburst) where C count is limited
948 * to SZ_64K-1. This places an upper bound on the length
949 * of an SG segment that can be handled.
950 */
951 absync = true;
952 bcnt = burst;
953 ccnt = dma_length / (acnt * bcnt);
954 if (ccnt > (SZ_64K - 1)) {
955 dev_err(dev, "Exceeded max SG segment size\n");
956 return -EINVAL;
957 }
958 cidx = acnt * bcnt;
959 }
960
961 epset->len = dma_length;
962
963 if (direction == DMA_MEM_TO_DEV) {
964 src_bidx = acnt;
965 src_cidx = cidx;
966 dst_bidx = 0;
967 dst_cidx = 0;
968 epset->addr = src_addr;
969 } else if (direction == DMA_DEV_TO_MEM) {
970 src_bidx = 0;
971 src_cidx = 0;
972 dst_bidx = acnt;
973 dst_cidx = cidx;
974 epset->addr = dst_addr;
975 } else if (direction == DMA_MEM_TO_MEM) {
976 src_bidx = acnt;
977 src_cidx = cidx;
978 dst_bidx = acnt;
979 dst_cidx = cidx;
980 epset->addr = src_addr;
981 } else {
982 dev_err(dev, "%s: direction not implemented yet\n", __func__);
983 return -EINVAL;
984 }
985
986 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
987 /* Configure A or AB synchronized transfers */
988 if (absync)
989 param->opt |= SYNCDIM;
990
991 param->src = src_addr;
992 param->dst = dst_addr;
993
994 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
995 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
996
997 param->a_b_cnt = bcnt << 16 | acnt;
998 param->ccnt = ccnt;
999 /*
1000 * Only time when (bcntrld) auto reload is required is for
1001 * A-sync case, and in this case, a requirement of reload value
1002 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1003 * and then later will be populated by edma_execute.
1004 */
1005 param->link_bcntrld = 0xffffffff;
1006 return absync;
1007 }
1008
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1009 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1010 struct dma_chan *chan, struct scatterlist *sgl,
1011 unsigned int sg_len, enum dma_transfer_direction direction,
1012 unsigned long tx_flags, void *context)
1013 {
1014 struct edma_chan *echan = to_edma_chan(chan);
1015 struct device *dev = chan->device->dev;
1016 struct edma_desc *edesc;
1017 dma_addr_t src_addr = 0, dst_addr = 0;
1018 enum dma_slave_buswidth dev_width;
1019 u32 burst;
1020 struct scatterlist *sg;
1021 int i, nslots, ret;
1022
1023 if (unlikely(!echan || !sgl || !sg_len))
1024 return NULL;
1025
1026 if (direction == DMA_DEV_TO_MEM) {
1027 src_addr = echan->cfg.src_addr;
1028 dev_width = echan->cfg.src_addr_width;
1029 burst = echan->cfg.src_maxburst;
1030 } else if (direction == DMA_MEM_TO_DEV) {
1031 dst_addr = echan->cfg.dst_addr;
1032 dev_width = echan->cfg.dst_addr_width;
1033 burst = echan->cfg.dst_maxburst;
1034 } else {
1035 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1036 return NULL;
1037 }
1038
1039 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1040 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1041 return NULL;
1042 }
1043
1044 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1045 if (!edesc)
1046 return NULL;
1047
1048 edesc->pset_nr = sg_len;
1049 edesc->residue = 0;
1050 edesc->direction = direction;
1051 edesc->echan = echan;
1052
1053 /* Allocate a PaRAM slot, if needed */
1054 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1055
1056 for (i = 0; i < nslots; i++) {
1057 if (echan->slot[i] < 0) {
1058 echan->slot[i] =
1059 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1060 if (echan->slot[i] < 0) {
1061 kfree(edesc);
1062 dev_err(dev, "%s: Failed to allocate slot\n",
1063 __func__);
1064 return NULL;
1065 }
1066 }
1067 }
1068
1069 /* Configure PaRAM sets for each SG */
1070 for_each_sg(sgl, sg, sg_len, i) {
1071 /* Get address for each SG */
1072 if (direction == DMA_DEV_TO_MEM)
1073 dst_addr = sg_dma_address(sg);
1074 else
1075 src_addr = sg_dma_address(sg);
1076
1077 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1078 dst_addr, burst, dev_width,
1079 sg_dma_len(sg), direction);
1080 if (ret < 0) {
1081 kfree(edesc);
1082 return NULL;
1083 }
1084
1085 edesc->absync = ret;
1086 edesc->residue += sg_dma_len(sg);
1087
1088 if (i == sg_len - 1)
1089 /* Enable completion interrupt */
1090 edesc->pset[i].param.opt |= TCINTEN;
1091 else if (!((i+1) % MAX_NR_SG))
1092 /*
1093 * Enable early completion interrupt for the
1094 * intermediateset. In this case the driver will be
1095 * notified when the paRAM set is submitted to TC. This
1096 * will allow more time to set up the next set of slots.
1097 */
1098 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1099 }
1100 edesc->residue_stat = edesc->residue;
1101
1102 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1103 }
1104
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1105 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1106 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1107 size_t len, unsigned long tx_flags)
1108 {
1109 int ret, nslots;
1110 struct edma_desc *edesc;
1111 struct device *dev = chan->device->dev;
1112 struct edma_chan *echan = to_edma_chan(chan);
1113 unsigned int width, pset_len, array_size;
1114
1115 if (unlikely(!echan || !len))
1116 return NULL;
1117
1118 /* Align the array size (acnt block) with the transfer properties */
1119 switch (__ffs((src | dest | len))) {
1120 case 0:
1121 array_size = SZ_32K - 1;
1122 break;
1123 case 1:
1124 array_size = SZ_32K - 2;
1125 break;
1126 default:
1127 array_size = SZ_32K - 4;
1128 break;
1129 }
1130
1131 if (len < SZ_64K) {
1132 /*
1133 * Transfer size less than 64K can be handled with one paRAM
1134 * slot and with one burst.
1135 * ACNT = length
1136 */
1137 width = len;
1138 pset_len = len;
1139 nslots = 1;
1140 } else {
1141 /*
1142 * Transfer size bigger than 64K will be handled with maximum of
1143 * two paRAM slots.
1144 * slot1: (full_length / 32767) times 32767 bytes bursts.
1145 * ACNT = 32767, length1: (full_length / 32767) * 32767
1146 * slot2: the remaining amount of data after slot1.
1147 * ACNT = full_length - length1, length2 = ACNT
1148 *
1149 * When the full_length is a multiple of 32767 one slot can be
1150 * used to complete the transfer.
1151 */
1152 width = array_size;
1153 pset_len = rounddown(len, width);
1154 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1155 if (unlikely(pset_len == len))
1156 nslots = 1;
1157 else
1158 nslots = 2;
1159 }
1160
1161 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1162 if (!edesc)
1163 return NULL;
1164
1165 edesc->pset_nr = nslots;
1166 edesc->residue = edesc->residue_stat = len;
1167 edesc->direction = DMA_MEM_TO_MEM;
1168 edesc->echan = echan;
1169
1170 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1171 width, pset_len, DMA_MEM_TO_MEM);
1172 if (ret < 0) {
1173 kfree(edesc);
1174 return NULL;
1175 }
1176
1177 edesc->absync = ret;
1178
1179 edesc->pset[0].param.opt |= ITCCHEN;
1180 if (nslots == 1) {
1181 /* Enable transfer complete interrupt if requested */
1182 if (tx_flags & DMA_PREP_INTERRUPT)
1183 edesc->pset[0].param.opt |= TCINTEN;
1184 } else {
1185 /* Enable transfer complete chaining for the first slot */
1186 edesc->pset[0].param.opt |= TCCHEN;
1187
1188 if (echan->slot[1] < 0) {
1189 echan->slot[1] = edma_alloc_slot(echan->ecc,
1190 EDMA_SLOT_ANY);
1191 if (echan->slot[1] < 0) {
1192 kfree(edesc);
1193 dev_err(dev, "%s: Failed to allocate slot\n",
1194 __func__);
1195 return NULL;
1196 }
1197 }
1198 dest += pset_len;
1199 src += pset_len;
1200 pset_len = width = len % array_size;
1201
1202 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1203 width, pset_len, DMA_MEM_TO_MEM);
1204 if (ret < 0) {
1205 kfree(edesc);
1206 return NULL;
1207 }
1208
1209 edesc->pset[1].param.opt |= ITCCHEN;
1210 /* Enable transfer complete interrupt if requested */
1211 if (tx_flags & DMA_PREP_INTERRUPT)
1212 edesc->pset[1].param.opt |= TCINTEN;
1213 }
1214
1215 if (!(tx_flags & DMA_PREP_INTERRUPT))
1216 edesc->polled = true;
1217
1218 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1219 }
1220
1221 static struct dma_async_tx_descriptor *
edma_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long tx_flags)1222 edma_prep_dma_interleaved(struct dma_chan *chan,
1223 struct dma_interleaved_template *xt,
1224 unsigned long tx_flags)
1225 {
1226 struct device *dev = chan->device->dev;
1227 struct edma_chan *echan = to_edma_chan(chan);
1228 struct edmacc_param *param;
1229 struct edma_desc *edesc;
1230 size_t src_icg, dst_icg;
1231 int src_bidx, dst_bidx;
1232
1233 /* Slave mode is not supported */
1234 if (is_slave_direction(xt->dir))
1235 return NULL;
1236
1237 if (xt->frame_size != 1 || xt->numf == 0)
1238 return NULL;
1239
1240 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1241 return NULL;
1242
1243 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1244 if (src_icg) {
1245 src_bidx = src_icg + xt->sgl[0].size;
1246 } else if (xt->src_inc) {
1247 src_bidx = xt->sgl[0].size;
1248 } else {
1249 dev_err(dev, "%s: SRC constant addressing is not supported\n",
1250 __func__);
1251 return NULL;
1252 }
1253
1254 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1255 if (dst_icg) {
1256 dst_bidx = dst_icg + xt->sgl[0].size;
1257 } else if (xt->dst_inc) {
1258 dst_bidx = xt->sgl[0].size;
1259 } else {
1260 dev_err(dev, "%s: DST constant addressing is not supported\n",
1261 __func__);
1262 return NULL;
1263 }
1264
1265 if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1266 return NULL;
1267
1268 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1269 if (!edesc)
1270 return NULL;
1271
1272 edesc->direction = DMA_MEM_TO_MEM;
1273 edesc->echan = echan;
1274 edesc->pset_nr = 1;
1275
1276 param = &edesc->pset[0].param;
1277
1278 param->src = xt->src_start;
1279 param->dst = xt->dst_start;
1280 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1281 param->ccnt = 1;
1282 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1283 param->src_dst_cidx = 0;
1284
1285 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1286 param->opt |= ITCCHEN;
1287 /* Enable transfer complete interrupt if requested */
1288 if (tx_flags & DMA_PREP_INTERRUPT)
1289 param->opt |= TCINTEN;
1290 else
1291 edesc->polled = true;
1292
1293 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1294 }
1295
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1296 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1297 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1298 size_t period_len, enum dma_transfer_direction direction,
1299 unsigned long tx_flags)
1300 {
1301 struct edma_chan *echan = to_edma_chan(chan);
1302 struct device *dev = chan->device->dev;
1303 struct edma_desc *edesc;
1304 dma_addr_t src_addr, dst_addr;
1305 enum dma_slave_buswidth dev_width;
1306 bool use_intermediate = false;
1307 u32 burst;
1308 int i, ret, nslots;
1309
1310 if (unlikely(!echan || !buf_len || !period_len))
1311 return NULL;
1312
1313 if (direction == DMA_DEV_TO_MEM) {
1314 src_addr = echan->cfg.src_addr;
1315 dst_addr = buf_addr;
1316 dev_width = echan->cfg.src_addr_width;
1317 burst = echan->cfg.src_maxburst;
1318 } else if (direction == DMA_MEM_TO_DEV) {
1319 src_addr = buf_addr;
1320 dst_addr = echan->cfg.dst_addr;
1321 dev_width = echan->cfg.dst_addr_width;
1322 burst = echan->cfg.dst_maxburst;
1323 } else {
1324 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1325 return NULL;
1326 }
1327
1328 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1329 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1330 return NULL;
1331 }
1332
1333 if (unlikely(buf_len % period_len)) {
1334 dev_err(dev, "Period should be multiple of Buffer length\n");
1335 return NULL;
1336 }
1337
1338 nslots = (buf_len / period_len) + 1;
1339
1340 /*
1341 * Cyclic DMA users such as audio cannot tolerate delays introduced
1342 * by cases where the number of periods is more than the maximum
1343 * number of SGs the EDMA driver can handle at a time. For DMA types
1344 * such as Slave SGs, such delays are tolerable and synchronized,
1345 * but the synchronization is difficult to achieve with Cyclic and
1346 * cannot be guaranteed, so we error out early.
1347 */
1348 if (nslots > MAX_NR_SG) {
1349 /*
1350 * If the burst and period sizes are the same, we can put
1351 * the full buffer into a single period and activate
1352 * intermediate interrupts. This will produce interrupts
1353 * after each burst, which is also after each desired period.
1354 */
1355 if (burst == period_len) {
1356 period_len = buf_len;
1357 nslots = 2;
1358 use_intermediate = true;
1359 } else {
1360 return NULL;
1361 }
1362 }
1363
1364 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1365 if (!edesc)
1366 return NULL;
1367
1368 edesc->cyclic = 1;
1369 edesc->pset_nr = nslots;
1370 edesc->residue = edesc->residue_stat = buf_len;
1371 edesc->direction = direction;
1372 edesc->echan = echan;
1373
1374 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1375 __func__, echan->ch_num, nslots, period_len, buf_len);
1376
1377 for (i = 0; i < nslots; i++) {
1378 /* Allocate a PaRAM slot, if needed */
1379 if (echan->slot[i] < 0) {
1380 echan->slot[i] =
1381 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1382 if (echan->slot[i] < 0) {
1383 kfree(edesc);
1384 dev_err(dev, "%s: Failed to allocate slot\n",
1385 __func__);
1386 return NULL;
1387 }
1388 }
1389
1390 if (i == nslots - 1) {
1391 memcpy(&edesc->pset[i], &edesc->pset[0],
1392 sizeof(edesc->pset[0]));
1393 break;
1394 }
1395
1396 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1397 dst_addr, burst, dev_width, period_len,
1398 direction);
1399 if (ret < 0) {
1400 kfree(edesc);
1401 return NULL;
1402 }
1403
1404 if (direction == DMA_DEV_TO_MEM)
1405 dst_addr += period_len;
1406 else
1407 src_addr += period_len;
1408
1409 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1410 dev_vdbg(dev,
1411 "\n pset[%d]:\n"
1412 " chnum\t%d\n"
1413 " slot\t%d\n"
1414 " opt\t%08x\n"
1415 " src\t%08x\n"
1416 " dst\t%08x\n"
1417 " abcnt\t%08x\n"
1418 " ccnt\t%08x\n"
1419 " bidx\t%08x\n"
1420 " cidx\t%08x\n"
1421 " lkrld\t%08x\n",
1422 i, echan->ch_num, echan->slot[i],
1423 edesc->pset[i].param.opt,
1424 edesc->pset[i].param.src,
1425 edesc->pset[i].param.dst,
1426 edesc->pset[i].param.a_b_cnt,
1427 edesc->pset[i].param.ccnt,
1428 edesc->pset[i].param.src_dst_bidx,
1429 edesc->pset[i].param.src_dst_cidx,
1430 edesc->pset[i].param.link_bcntrld);
1431
1432 edesc->absync = ret;
1433
1434 /*
1435 * Enable period interrupt only if it is requested
1436 */
1437 if (tx_flags & DMA_PREP_INTERRUPT) {
1438 edesc->pset[i].param.opt |= TCINTEN;
1439
1440 /* Also enable intermediate interrupts if necessary */
1441 if (use_intermediate)
1442 edesc->pset[i].param.opt |= ITCINTEN;
1443 }
1444 }
1445
1446 /* Place the cyclic channel to highest priority queue */
1447 if (!echan->tc)
1448 edma_assign_channel_eventq(echan, EVENTQ_0);
1449
1450 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1451 }
1452
edma_completion_handler(struct edma_chan * echan)1453 static void edma_completion_handler(struct edma_chan *echan)
1454 {
1455 struct device *dev = echan->vchan.chan.device->dev;
1456 struct edma_desc *edesc;
1457
1458 spin_lock(&echan->vchan.lock);
1459 edesc = echan->edesc;
1460 if (edesc) {
1461 if (edesc->cyclic) {
1462 vchan_cyclic_callback(&edesc->vdesc);
1463 spin_unlock(&echan->vchan.lock);
1464 return;
1465 } else if (edesc->processed == edesc->pset_nr) {
1466 edesc->residue = 0;
1467 edma_stop(echan);
1468 vchan_cookie_complete(&edesc->vdesc);
1469 echan->edesc = NULL;
1470
1471 dev_dbg(dev, "Transfer completed on channel %d\n",
1472 echan->ch_num);
1473 } else {
1474 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1475 echan->ch_num);
1476
1477 edma_pause(echan);
1478
1479 /* Update statistics for tx_status */
1480 edesc->residue -= edesc->sg_len;
1481 edesc->residue_stat = edesc->residue;
1482 edesc->processed_stat = edesc->processed;
1483 }
1484 edma_execute(echan);
1485 }
1486
1487 spin_unlock(&echan->vchan.lock);
1488 }
1489
1490 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1491 static irqreturn_t dma_irq_handler(int irq, void *data)
1492 {
1493 struct edma_cc *ecc = data;
1494 int ctlr;
1495 u32 sh_ier;
1496 u32 sh_ipr;
1497 u32 bank;
1498
1499 ctlr = ecc->id;
1500 if (ctlr < 0)
1501 return IRQ_NONE;
1502
1503 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1504
1505 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1506 if (!sh_ipr) {
1507 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1508 if (!sh_ipr)
1509 return IRQ_NONE;
1510 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1511 bank = 1;
1512 } else {
1513 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1514 bank = 0;
1515 }
1516
1517 do {
1518 u32 slot;
1519 u32 channel;
1520
1521 slot = __ffs(sh_ipr);
1522 sh_ipr &= ~(BIT(slot));
1523
1524 if (sh_ier & BIT(slot)) {
1525 channel = (bank << 5) | slot;
1526 /* Clear the corresponding IPR bits */
1527 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1528 edma_completion_handler(&ecc->slave_chans[channel]);
1529 }
1530 } while (sh_ipr);
1531
1532 edma_shadow0_write(ecc, SH_IEVAL, 1);
1533 return IRQ_HANDLED;
1534 }
1535
edma_error_handler(struct edma_chan * echan)1536 static void edma_error_handler(struct edma_chan *echan)
1537 {
1538 struct edma_cc *ecc = echan->ecc;
1539 struct device *dev = echan->vchan.chan.device->dev;
1540 struct edmacc_param p;
1541 int err;
1542
1543 if (!echan->edesc)
1544 return;
1545
1546 spin_lock(&echan->vchan.lock);
1547
1548 err = edma_read_slot(ecc, echan->slot[0], &p);
1549
1550 /*
1551 * Issue later based on missed flag which will be sure
1552 * to happen as:
1553 * (1) we finished transmitting an intermediate slot and
1554 * edma_execute is coming up.
1555 * (2) or we finished current transfer and issue will
1556 * call edma_execute.
1557 *
1558 * Important note: issuing can be dangerous here and
1559 * lead to some nasty recursion when we are in a NULL
1560 * slot. So we avoid doing so and set the missed flag.
1561 */
1562 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1563 dev_dbg(dev, "Error on null slot, setting miss\n");
1564 echan->missed = 1;
1565 } else {
1566 /*
1567 * The slot is already programmed but the event got
1568 * missed, so its safe to issue it here.
1569 */
1570 dev_dbg(dev, "Missed event, TRIGGERING\n");
1571 edma_clean_channel(echan);
1572 edma_stop(echan);
1573 edma_start(echan);
1574 edma_trigger_channel(echan);
1575 }
1576 spin_unlock(&echan->vchan.lock);
1577 }
1578
edma_error_pending(struct edma_cc * ecc)1579 static inline bool edma_error_pending(struct edma_cc *ecc)
1580 {
1581 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1582 edma_read_array(ecc, EDMA_EMR, 1) ||
1583 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1584 return true;
1585
1586 return false;
1587 }
1588
1589 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1590 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1591 {
1592 struct edma_cc *ecc = data;
1593 int i, j;
1594 int ctlr;
1595 unsigned int cnt = 0;
1596 unsigned int val;
1597
1598 ctlr = ecc->id;
1599 if (ctlr < 0)
1600 return IRQ_NONE;
1601
1602 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1603
1604 if (!edma_error_pending(ecc)) {
1605 /*
1606 * The registers indicate no pending error event but the irq
1607 * handler has been called.
1608 * Ask eDMA to re-evaluate the error registers.
1609 */
1610 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1611 __func__);
1612 edma_write(ecc, EDMA_EEVAL, 1);
1613 return IRQ_NONE;
1614 }
1615
1616 while (1) {
1617 /* Event missed register(s) */
1618 for (j = 0; j < 2; j++) {
1619 unsigned long emr;
1620
1621 val = edma_read_array(ecc, EDMA_EMR, j);
1622 if (!val)
1623 continue;
1624
1625 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1626 emr = val;
1627 for_each_set_bit(i, &emr, 32) {
1628 int k = (j << 5) + i;
1629
1630 /* Clear the corresponding EMR bits */
1631 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1632 /* Clear any SER */
1633 edma_shadow0_write_array(ecc, SH_SECR, j,
1634 BIT(i));
1635 edma_error_handler(&ecc->slave_chans[k]);
1636 }
1637 }
1638
1639 val = edma_read(ecc, EDMA_QEMR);
1640 if (val) {
1641 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1642 /* Not reported, just clear the interrupt reason. */
1643 edma_write(ecc, EDMA_QEMCR, val);
1644 edma_shadow0_write(ecc, SH_QSECR, val);
1645 }
1646
1647 val = edma_read(ecc, EDMA_CCERR);
1648 if (val) {
1649 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1650 /* Not reported, just clear the interrupt reason. */
1651 edma_write(ecc, EDMA_CCERRCLR, val);
1652 }
1653
1654 if (!edma_error_pending(ecc))
1655 break;
1656 cnt++;
1657 if (cnt > 10)
1658 break;
1659 }
1660 edma_write(ecc, EDMA_EEVAL, 1);
1661 return IRQ_HANDLED;
1662 }
1663
1664 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1665 static int edma_alloc_chan_resources(struct dma_chan *chan)
1666 {
1667 struct edma_chan *echan = to_edma_chan(chan);
1668 struct edma_cc *ecc = echan->ecc;
1669 struct device *dev = ecc->dev;
1670 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1671 int ret;
1672
1673 if (echan->tc) {
1674 eventq_no = echan->tc->id;
1675 } else if (ecc->tc_list) {
1676 /* memcpy channel */
1677 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1678 eventq_no = echan->tc->id;
1679 }
1680
1681 ret = edma_alloc_channel(echan, eventq_no);
1682 if (ret)
1683 return ret;
1684
1685 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1686 if (echan->slot[0] < 0) {
1687 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1688 EDMA_CHAN_SLOT(echan->ch_num));
1689 ret = echan->slot[0];
1690 goto err_slot;
1691 }
1692
1693 /* Set up channel -> slot mapping for the entry slot */
1694 edma_set_chmap(echan, echan->slot[0]);
1695 echan->alloced = true;
1696
1697 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1698 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1699 echan->hw_triggered ? "HW" : "SW");
1700
1701 return 0;
1702
1703 err_slot:
1704 edma_free_channel(echan);
1705 return ret;
1706 }
1707
1708 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1709 static void edma_free_chan_resources(struct dma_chan *chan)
1710 {
1711 struct edma_chan *echan = to_edma_chan(chan);
1712 struct device *dev = echan->ecc->dev;
1713 int i;
1714
1715 /* Terminate transfers */
1716 edma_stop(echan);
1717
1718 vchan_free_chan_resources(&echan->vchan);
1719
1720 /* Free EDMA PaRAM slots */
1721 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1722 if (echan->slot[i] >= 0) {
1723 edma_free_slot(echan->ecc, echan->slot[i]);
1724 echan->slot[i] = -1;
1725 }
1726 }
1727
1728 /* Set entry slot to the dummy slot */
1729 edma_set_chmap(echan, echan->ecc->dummy_slot);
1730
1731 /* Free EDMA channel */
1732 if (echan->alloced) {
1733 edma_free_channel(echan);
1734 echan->alloced = false;
1735 }
1736
1737 echan->tc = NULL;
1738 echan->hw_triggered = false;
1739
1740 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1741 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1742 }
1743
1744 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1745 static void edma_issue_pending(struct dma_chan *chan)
1746 {
1747 struct edma_chan *echan = to_edma_chan(chan);
1748 unsigned long flags;
1749
1750 spin_lock_irqsave(&echan->vchan.lock, flags);
1751 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1752 edma_execute(echan);
1753 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1754 }
1755
1756 /*
1757 * This limit exists to avoid a possible infinite loop when waiting for proof
1758 * that a particular transfer is completed. This limit can be hit if there
1759 * are large bursts to/from slow devices or the CPU is never able to catch
1760 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1761 * RX-FIFO, as many as 55 loops have been seen.
1762 */
1763 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1764
edma_residue(struct edma_desc * edesc)1765 static u32 edma_residue(struct edma_desc *edesc)
1766 {
1767 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1768 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1769 struct edma_chan *echan = edesc->echan;
1770 struct edma_pset *pset = edesc->pset;
1771 dma_addr_t done, pos, pos_old;
1772 int channel = EDMA_CHAN_SLOT(echan->ch_num);
1773 int idx = EDMA_REG_ARRAY_INDEX(channel);
1774 int ch_bit = EDMA_CHANNEL_BIT(channel);
1775 int event_reg;
1776 int i;
1777
1778 /*
1779 * We always read the dst/src position from the first RamPar
1780 * pset. That's the one which is active now.
1781 */
1782 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783
1784 /*
1785 * "pos" may represent a transfer request that is still being
1786 * processed by the EDMACC or EDMATC. We will busy wait until
1787 * any one of the situations occurs:
1788 * 1. while and event is pending for the channel
1789 * 2. a position updated
1790 * 3. we hit the loop limit
1791 */
1792 if (is_slave_direction(edesc->direction))
1793 event_reg = SH_ER;
1794 else
1795 event_reg = SH_ESR;
1796
1797 pos_old = pos;
1798 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1799 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1800 if (pos != pos_old)
1801 break;
1802
1803 if (!--loop_count) {
1804 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1805 "%s: timeout waiting for PaRAM update\n",
1806 __func__);
1807 break;
1808 }
1809
1810 cpu_relax();
1811 }
1812
1813 /*
1814 * Cyclic is simple. Just subtract pset[0].addr from pos.
1815 *
1816 * We never update edesc->residue in the cyclic case, so we
1817 * can tell the remaining room to the end of the circular
1818 * buffer.
1819 */
1820 if (edesc->cyclic) {
1821 done = pos - pset->addr;
1822 edesc->residue_stat = edesc->residue - done;
1823 return edesc->residue_stat;
1824 }
1825
1826 /*
1827 * If the position is 0, then EDMA loaded the closing dummy slot, the
1828 * transfer is completed
1829 */
1830 if (!pos)
1831 return 0;
1832 /*
1833 * For SG operation we catch up with the last processed
1834 * status.
1835 */
1836 pset += edesc->processed_stat;
1837
1838 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1839 /*
1840 * If we are inside this pset address range, we know
1841 * this is the active one. Get the current delta and
1842 * stop walking the psets.
1843 */
1844 if (pos >= pset->addr && pos < pset->addr + pset->len)
1845 return edesc->residue_stat - (pos - pset->addr);
1846
1847 /* Otherwise mark it done and update residue_stat. */
1848 edesc->processed_stat++;
1849 edesc->residue_stat -= pset->len;
1850 }
1851 return edesc->residue_stat;
1852 }
1853
1854 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1855 static enum dma_status edma_tx_status(struct dma_chan *chan,
1856 dma_cookie_t cookie,
1857 struct dma_tx_state *txstate)
1858 {
1859 struct edma_chan *echan = to_edma_chan(chan);
1860 struct dma_tx_state txstate_tmp;
1861 enum dma_status ret;
1862 unsigned long flags;
1863
1864 ret = dma_cookie_status(chan, cookie, txstate);
1865
1866 if (ret == DMA_COMPLETE)
1867 return ret;
1868
1869 /* Provide a dummy dma_tx_state for completion checking */
1870 if (!txstate)
1871 txstate = &txstate_tmp;
1872
1873 spin_lock_irqsave(&echan->vchan.lock, flags);
1874 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1875 txstate->residue = edma_residue(echan->edesc);
1876 } else {
1877 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1878 cookie);
1879
1880 if (vdesc)
1881 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1882 else
1883 txstate->residue = 0;
1884 }
1885
1886 /*
1887 * Mark the cookie completed if the residue is 0 for non cyclic
1888 * transfers
1889 */
1890 if (ret != DMA_COMPLETE && !txstate->residue &&
1891 echan->edesc && echan->edesc->polled &&
1892 echan->edesc->vdesc.tx.cookie == cookie) {
1893 edma_stop(echan);
1894 vchan_cookie_complete(&echan->edesc->vdesc);
1895 echan->edesc = NULL;
1896 edma_execute(echan);
1897 ret = DMA_COMPLETE;
1898 }
1899
1900 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1901
1902 return ret;
1903 }
1904
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1905 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1906 {
1907 if (!memcpy_channels)
1908 return false;
1909 while (*memcpy_channels != -1) {
1910 if (*memcpy_channels == ch_num)
1911 return true;
1912 memcpy_channels++;
1913 }
1914 return false;
1915 }
1916
1917 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1918 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1919 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1920 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1921
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1922 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1923 {
1924 struct dma_device *s_ddev = &ecc->dma_slave;
1925 struct dma_device *m_ddev = NULL;
1926 s32 *memcpy_channels = ecc->info->memcpy_channels;
1927 int i, j;
1928
1929 dma_cap_zero(s_ddev->cap_mask);
1930 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1931 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1932 if (ecc->legacy_mode && !memcpy_channels) {
1933 dev_warn(ecc->dev,
1934 "Legacy memcpy is enabled, things might not work\n");
1935
1936 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1937 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1938 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1939 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1940 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1941 }
1942
1943 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1944 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1945 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1946 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1947 s_ddev->device_issue_pending = edma_issue_pending;
1948 s_ddev->device_tx_status = edma_tx_status;
1949 s_ddev->device_config = edma_slave_config;
1950 s_ddev->device_pause = edma_dma_pause;
1951 s_ddev->device_resume = edma_dma_resume;
1952 s_ddev->device_terminate_all = edma_terminate_all;
1953 s_ddev->device_synchronize = edma_synchronize;
1954
1955 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1956 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1957 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1958 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1959 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1960
1961 s_ddev->dev = ecc->dev;
1962 INIT_LIST_HEAD(&s_ddev->channels);
1963
1964 if (memcpy_channels) {
1965 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1966 if (!m_ddev) {
1967 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1968 memcpy_channels = NULL;
1969 goto ch_setup;
1970 }
1971 ecc->dma_memcpy = m_ddev;
1972
1973 dma_cap_zero(m_ddev->cap_mask);
1974 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1975 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1976
1977 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1978 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1979 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1980 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1981 m_ddev->device_issue_pending = edma_issue_pending;
1982 m_ddev->device_tx_status = edma_tx_status;
1983 m_ddev->device_config = edma_slave_config;
1984 m_ddev->device_pause = edma_dma_pause;
1985 m_ddev->device_resume = edma_dma_resume;
1986 m_ddev->device_terminate_all = edma_terminate_all;
1987 m_ddev->device_synchronize = edma_synchronize;
1988
1989 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1990 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1991 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1992 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1993
1994 m_ddev->dev = ecc->dev;
1995 INIT_LIST_HEAD(&m_ddev->channels);
1996 } else if (!ecc->legacy_mode) {
1997 dev_info(ecc->dev, "memcpy is disabled\n");
1998 }
1999
2000 ch_setup:
2001 for (i = 0; i < ecc->num_channels; i++) {
2002 struct edma_chan *echan = &ecc->slave_chans[i];
2003 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2004 echan->ecc = ecc;
2005 echan->vchan.desc_free = edma_desc_free;
2006
2007 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2008 vchan_init(&echan->vchan, m_ddev);
2009 else
2010 vchan_init(&echan->vchan, s_ddev);
2011
2012 INIT_LIST_HEAD(&echan->node);
2013 for (j = 0; j < EDMA_MAX_SLOTS; j++)
2014 echan->slot[j] = -1;
2015 }
2016 }
2017
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)2018 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2019 struct edma_cc *ecc)
2020 {
2021 int i;
2022 u32 value, cccfg;
2023 s8 (*queue_priority_map)[2];
2024
2025 /* Decode the eDMA3 configuration from CCCFG register */
2026 cccfg = edma_read(ecc, EDMA_CCCFG);
2027
2028 value = GET_NUM_REGN(cccfg);
2029 ecc->num_region = BIT(value);
2030
2031 value = GET_NUM_DMACH(cccfg);
2032 ecc->num_channels = BIT(value + 1);
2033
2034 value = GET_NUM_QDMACH(cccfg);
2035 ecc->num_qchannels = value * 2;
2036
2037 value = GET_NUM_PAENTRY(cccfg);
2038 ecc->num_slots = BIT(value + 4);
2039
2040 value = GET_NUM_EVQUE(cccfg);
2041 ecc->num_tc = value + 1;
2042
2043 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2044
2045 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2046 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2047 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2048 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2049 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2050 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2051 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2052
2053 /* Nothing need to be done if queue priority is provided */
2054 if (pdata->queue_priority_mapping)
2055 return 0;
2056
2057 /*
2058 * Configure TC/queue priority as follows:
2059 * Q0 - priority 0
2060 * Q1 - priority 1
2061 * Q2 - priority 2
2062 * ...
2063 * The meaning of priority numbers: 0 highest priority, 7 lowest
2064 * priority. So Q0 is the highest priority queue and the last queue has
2065 * the lowest priority.
2066 */
2067 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2068 GFP_KERNEL);
2069 if (!queue_priority_map)
2070 return -ENOMEM;
2071
2072 for (i = 0; i < ecc->num_tc; i++) {
2073 queue_priority_map[i][0] = i;
2074 queue_priority_map[i][1] = i;
2075 }
2076 queue_priority_map[i][0] = -1;
2077 queue_priority_map[i][1] = -1;
2078
2079 pdata->queue_priority_mapping = queue_priority_map;
2080 /* Default queue has the lowest priority */
2081 pdata->default_queue = i - 1;
2082
2083 return 0;
2084 }
2085
2086 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)2087 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2088 size_t sz)
2089 {
2090 const char pname[] = "ti,edma-xbar-event-map";
2091 struct resource res;
2092 void __iomem *xbar;
2093 s16 (*xbar_chans)[2];
2094 size_t nelm = sz / sizeof(s16);
2095 u32 shift, offset, mux;
2096 int ret, i;
2097
2098 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2099 if (!xbar_chans)
2100 return -ENOMEM;
2101
2102 ret = of_address_to_resource(dev->of_node, 1, &res);
2103 if (ret)
2104 return -ENOMEM;
2105
2106 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2107 if (!xbar)
2108 return -ENOMEM;
2109
2110 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2111 nelm);
2112 if (ret)
2113 return -EIO;
2114
2115 /* Invalidate last entry for the other user of this mess */
2116 nelm >>= 1;
2117 xbar_chans[nelm][0] = -1;
2118 xbar_chans[nelm][1] = -1;
2119
2120 for (i = 0; i < nelm; i++) {
2121 shift = (xbar_chans[i][1] & 0x03) << 3;
2122 offset = xbar_chans[i][1] & 0xfffffffc;
2123 mux = readl(xbar + offset);
2124 mux &= ~(0xff << shift);
2125 mux |= xbar_chans[i][0] << shift;
2126 writel(mux, (xbar + offset));
2127 }
2128
2129 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2130 return 0;
2131 }
2132
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2133 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2134 bool legacy_mode)
2135 {
2136 struct edma_soc_info *info;
2137 struct property *prop;
2138 int sz, ret;
2139
2140 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2141 if (!info)
2142 return ERR_PTR(-ENOMEM);
2143
2144 if (legacy_mode) {
2145 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2146 &sz);
2147 if (prop) {
2148 ret = edma_xbar_event_map(dev, info, sz);
2149 if (ret)
2150 return ERR_PTR(ret);
2151 }
2152 return info;
2153 }
2154
2155 /* Get the list of channels allocated to be used for memcpy */
2156 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2157 if (prop) {
2158 const char pname[] = "ti,edma-memcpy-channels";
2159 size_t nelm = sz / sizeof(s32);
2160 s32 *memcpy_ch;
2161
2162 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2163 GFP_KERNEL);
2164 if (!memcpy_ch)
2165 return ERR_PTR(-ENOMEM);
2166
2167 ret = of_property_read_u32_array(dev->of_node, pname,
2168 (u32 *)memcpy_ch, nelm);
2169 if (ret)
2170 return ERR_PTR(ret);
2171
2172 memcpy_ch[nelm] = -1;
2173 info->memcpy_channels = memcpy_ch;
2174 }
2175
2176 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2177 &sz);
2178 if (prop) {
2179 const char pname[] = "ti,edma-reserved-slot-ranges";
2180 u32 (*tmp)[2];
2181 s16 (*rsv_slots)[2];
2182 size_t nelm = sz / sizeof(*tmp);
2183 struct edma_rsv_info *rsv_info;
2184 int i;
2185
2186 if (!nelm)
2187 return info;
2188
2189 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2190 if (!tmp)
2191 return ERR_PTR(-ENOMEM);
2192
2193 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2194 if (!rsv_info) {
2195 kfree(tmp);
2196 return ERR_PTR(-ENOMEM);
2197 }
2198
2199 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2200 GFP_KERNEL);
2201 if (!rsv_slots) {
2202 kfree(tmp);
2203 return ERR_PTR(-ENOMEM);
2204 }
2205
2206 ret = of_property_read_u32_array(dev->of_node, pname,
2207 (u32 *)tmp, nelm * 2);
2208 if (ret) {
2209 kfree(tmp);
2210 return ERR_PTR(ret);
2211 }
2212
2213 for (i = 0; i < nelm; i++) {
2214 rsv_slots[i][0] = tmp[i][0];
2215 rsv_slots[i][1] = tmp[i][1];
2216 }
2217 rsv_slots[nelm][0] = -1;
2218 rsv_slots[nelm][1] = -1;
2219
2220 info->rsv = rsv_info;
2221 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2222
2223 kfree(tmp);
2224 }
2225
2226 return info;
2227 }
2228
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2229 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2230 struct of_dma *ofdma)
2231 {
2232 struct edma_cc *ecc = ofdma->of_dma_data;
2233 struct dma_chan *chan = NULL;
2234 struct edma_chan *echan;
2235 int i;
2236
2237 if (!ecc || dma_spec->args_count < 1)
2238 return NULL;
2239
2240 for (i = 0; i < ecc->num_channels; i++) {
2241 echan = &ecc->slave_chans[i];
2242 if (echan->ch_num == dma_spec->args[0]) {
2243 chan = &echan->vchan.chan;
2244 break;
2245 }
2246 }
2247
2248 if (!chan)
2249 return NULL;
2250
2251 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2252 goto out;
2253
2254 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2255 dma_spec->args[1] < echan->ecc->num_tc) {
2256 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2257 goto out;
2258 }
2259
2260 return NULL;
2261 out:
2262 /* The channel is going to be used as HW synchronized */
2263 echan->hw_triggered = true;
2264 return dma_get_slave_channel(chan);
2265 }
2266 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2267 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2268 bool legacy_mode)
2269 {
2270 return ERR_PTR(-EINVAL);
2271 }
2272
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2273 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2274 struct of_dma *ofdma)
2275 {
2276 return NULL;
2277 }
2278 #endif
2279
2280 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2281
edma_probe(struct platform_device * pdev)2282 static int edma_probe(struct platform_device *pdev)
2283 {
2284 struct edma_soc_info *info = pdev->dev.platform_data;
2285 s8 (*queue_priority_mapping)[2];
2286 const s16 (*reserved)[2];
2287 int i, irq;
2288 char *irq_name;
2289 struct resource *mem;
2290 struct device_node *node = pdev->dev.of_node;
2291 struct device *dev = &pdev->dev;
2292 struct edma_cc *ecc;
2293 bool legacy_mode = true;
2294 int ret;
2295
2296 if (node) {
2297 const struct of_device_id *match;
2298
2299 match = of_match_node(edma_of_ids, node);
2300 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2301 legacy_mode = false;
2302
2303 info = edma_setup_info_from_dt(dev, legacy_mode);
2304 if (IS_ERR(info)) {
2305 dev_err(dev, "failed to get DT data\n");
2306 return PTR_ERR(info);
2307 }
2308 }
2309
2310 if (!info)
2311 return -ENODEV;
2312
2313 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2314 if (ret)
2315 return ret;
2316
2317 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2318 if (!ecc)
2319 return -ENOMEM;
2320
2321 ecc->dev = dev;
2322 ecc->id = pdev->id;
2323 ecc->legacy_mode = legacy_mode;
2324 /* When booting with DT the pdev->id is -1 */
2325 if (ecc->id < 0)
2326 ecc->id = 0;
2327
2328 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2329 if (!mem) {
2330 dev_dbg(dev, "mem resource not found, using index 0\n");
2331 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2332 if (!mem) {
2333 dev_err(dev, "no mem resource?\n");
2334 return -ENODEV;
2335 }
2336 }
2337 ecc->base = devm_ioremap_resource(dev, mem);
2338 if (IS_ERR(ecc->base))
2339 return PTR_ERR(ecc->base);
2340
2341 platform_set_drvdata(pdev, ecc);
2342
2343 pm_runtime_enable(dev);
2344 ret = pm_runtime_get_sync(dev);
2345 if (ret < 0) {
2346 dev_err(dev, "pm_runtime_get_sync() failed\n");
2347 pm_runtime_disable(dev);
2348 return ret;
2349 }
2350
2351 /* Get eDMA3 configuration from IP */
2352 ret = edma_setup_from_hw(dev, info, ecc);
2353 if (ret)
2354 goto err_disable_pm;
2355
2356 /* Allocate memory based on the information we got from the IP */
2357 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2358 sizeof(*ecc->slave_chans), GFP_KERNEL);
2359
2360 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2361 sizeof(unsigned long), GFP_KERNEL);
2362
2363 ecc->channels_mask = devm_kcalloc(dev,
2364 BITS_TO_LONGS(ecc->num_channels),
2365 sizeof(unsigned long), GFP_KERNEL);
2366 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2367 ret = -ENOMEM;
2368 goto err_disable_pm;
2369 }
2370
2371 /* Mark all channels available initially */
2372 bitmap_fill(ecc->channels_mask, ecc->num_channels);
2373
2374 ecc->default_queue = info->default_queue;
2375
2376 if (info->rsv) {
2377 /* Set the reserved slots in inuse list */
2378 reserved = info->rsv->rsv_slots;
2379 if (reserved) {
2380 for (i = 0; reserved[i][0] != -1; i++)
2381 bitmap_set(ecc->slot_inuse, reserved[i][0],
2382 reserved[i][1]);
2383 }
2384
2385 /* Clear channels not usable for Linux */
2386 reserved = info->rsv->rsv_chans;
2387 if (reserved) {
2388 for (i = 0; reserved[i][0] != -1; i++)
2389 bitmap_clear(ecc->channels_mask, reserved[i][0],
2390 reserved[i][1]);
2391 }
2392 }
2393
2394 for (i = 0; i < ecc->num_slots; i++) {
2395 /* Reset only unused - not reserved - paRAM slots */
2396 if (!test_bit(i, ecc->slot_inuse))
2397 edma_write_slot(ecc, i, &dummy_paramset);
2398 }
2399
2400 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2401 if (irq < 0 && node)
2402 irq = irq_of_parse_and_map(node, 0);
2403
2404 if (irq > 0) {
2405 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2406 dev_name(dev));
2407 if (!irq_name) {
2408 ret = -ENOMEM;
2409 goto err_disable_pm;
2410 }
2411
2412 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2413 ecc);
2414 if (ret) {
2415 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2416 goto err_disable_pm;
2417 }
2418 ecc->ccint = irq;
2419 }
2420
2421 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2422 if (irq < 0 && node)
2423 irq = irq_of_parse_and_map(node, 2);
2424
2425 if (irq > 0) {
2426 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2427 dev_name(dev));
2428 if (!irq_name) {
2429 ret = -ENOMEM;
2430 goto err_disable_pm;
2431 }
2432
2433 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2434 ecc);
2435 if (ret) {
2436 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2437 goto err_disable_pm;
2438 }
2439 ecc->ccerrint = irq;
2440 }
2441
2442 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2443 if (ecc->dummy_slot < 0) {
2444 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2445 ret = ecc->dummy_slot;
2446 goto err_disable_pm;
2447 }
2448
2449 queue_priority_mapping = info->queue_priority_mapping;
2450
2451 if (!ecc->legacy_mode) {
2452 int lowest_priority = 0;
2453 unsigned int array_max;
2454 struct of_phandle_args tc_args;
2455
2456 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2457 sizeof(*ecc->tc_list), GFP_KERNEL);
2458 if (!ecc->tc_list) {
2459 ret = -ENOMEM;
2460 goto err_reg1;
2461 }
2462
2463 for (i = 0;; i++) {
2464 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2465 1, i, &tc_args);
2466 if (ret || i == ecc->num_tc)
2467 break;
2468
2469 ecc->tc_list[i].node = tc_args.np;
2470 ecc->tc_list[i].id = i;
2471 queue_priority_mapping[i][1] = tc_args.args[0];
2472 if (queue_priority_mapping[i][1] > lowest_priority) {
2473 lowest_priority = queue_priority_mapping[i][1];
2474 info->default_queue = i;
2475 }
2476 }
2477
2478 /* See if we have optional dma-channel-mask array */
2479 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2480 ret = of_property_read_variable_u32_array(node,
2481 "dma-channel-mask",
2482 (u32 *)ecc->channels_mask,
2483 1, array_max);
2484 if (ret > 0 && ret != array_max)
2485 dev_warn(dev, "dma-channel-mask is not complete.\n");
2486 else if (ret == -EOVERFLOW || ret == -ENODATA)
2487 dev_warn(dev,
2488 "dma-channel-mask is out of range or empty\n");
2489 }
2490
2491 /* Event queue priority mapping */
2492 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2493 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2494 queue_priority_mapping[i][1]);
2495
2496 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2497 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2498 edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2499
2500 ecc->info = info;
2501
2502 /* Init the dma device and channels */
2503 edma_dma_init(ecc, legacy_mode);
2504
2505 for (i = 0; i < ecc->num_channels; i++) {
2506 /* Do not touch reserved channels */
2507 if (!test_bit(i, ecc->channels_mask))
2508 continue;
2509
2510 /* Assign all channels to the default queue */
2511 edma_assign_channel_eventq(&ecc->slave_chans[i],
2512 info->default_queue);
2513 /* Set entry slot to the dummy slot */
2514 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2515 }
2516
2517 ecc->dma_slave.filter.map = info->slave_map;
2518 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2519 ecc->dma_slave.filter.fn = edma_filter_fn;
2520
2521 ret = dma_async_device_register(&ecc->dma_slave);
2522 if (ret) {
2523 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2524 goto err_reg1;
2525 }
2526
2527 if (ecc->dma_memcpy) {
2528 ret = dma_async_device_register(ecc->dma_memcpy);
2529 if (ret) {
2530 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2531 ret);
2532 dma_async_device_unregister(&ecc->dma_slave);
2533 goto err_reg1;
2534 }
2535 }
2536
2537 if (node)
2538 of_dma_controller_register(node, of_edma_xlate, ecc);
2539
2540 dev_info(dev, "TI EDMA DMA engine driver\n");
2541
2542 return 0;
2543
2544 err_reg1:
2545 edma_free_slot(ecc, ecc->dummy_slot);
2546 err_disable_pm:
2547 pm_runtime_put_sync(dev);
2548 pm_runtime_disable(dev);
2549 return ret;
2550 }
2551
edma_cleanupp_vchan(struct dma_device * dmadev)2552 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2553 {
2554 struct edma_chan *echan, *_echan;
2555
2556 list_for_each_entry_safe(echan, _echan,
2557 &dmadev->channels, vchan.chan.device_node) {
2558 list_del(&echan->vchan.chan.device_node);
2559 tasklet_kill(&echan->vchan.task);
2560 }
2561 }
2562
edma_remove(struct platform_device * pdev)2563 static int edma_remove(struct platform_device *pdev)
2564 {
2565 struct device *dev = &pdev->dev;
2566 struct edma_cc *ecc = dev_get_drvdata(dev);
2567
2568 devm_free_irq(dev, ecc->ccint, ecc);
2569 devm_free_irq(dev, ecc->ccerrint, ecc);
2570
2571 edma_cleanupp_vchan(&ecc->dma_slave);
2572
2573 if (dev->of_node)
2574 of_dma_controller_free(dev->of_node);
2575 dma_async_device_unregister(&ecc->dma_slave);
2576 if (ecc->dma_memcpy)
2577 dma_async_device_unregister(ecc->dma_memcpy);
2578 edma_free_slot(ecc, ecc->dummy_slot);
2579 pm_runtime_put_sync(dev);
2580 pm_runtime_disable(dev);
2581
2582 return 0;
2583 }
2584
2585 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2586 static int edma_pm_suspend(struct device *dev)
2587 {
2588 struct edma_cc *ecc = dev_get_drvdata(dev);
2589 struct edma_chan *echan = ecc->slave_chans;
2590 int i;
2591
2592 for (i = 0; i < ecc->num_channels; i++) {
2593 if (echan[i].alloced)
2594 edma_setup_interrupt(&echan[i], false);
2595 }
2596
2597 return 0;
2598 }
2599
edma_pm_resume(struct device * dev)2600 static int edma_pm_resume(struct device *dev)
2601 {
2602 struct edma_cc *ecc = dev_get_drvdata(dev);
2603 struct edma_chan *echan = ecc->slave_chans;
2604 int i;
2605 s8 (*queue_priority_mapping)[2];
2606
2607 /* re initialize dummy slot to dummy param set */
2608 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2609
2610 queue_priority_mapping = ecc->info->queue_priority_mapping;
2611
2612 /* Event queue priority mapping */
2613 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2614 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2615 queue_priority_mapping[i][1]);
2616
2617 for (i = 0; i < ecc->num_channels; i++) {
2618 if (echan[i].alloced) {
2619 /* ensure access through shadow region 0 */
2620 edma_or_array2(ecc, EDMA_DRAE, 0,
2621 EDMA_REG_ARRAY_INDEX(i),
2622 EDMA_CHANNEL_BIT(i));
2623
2624 edma_setup_interrupt(&echan[i], true);
2625
2626 /* Set up channel -> slot mapping for the entry slot */
2627 edma_set_chmap(&echan[i], echan[i].slot[0]);
2628 }
2629 }
2630
2631 return 0;
2632 }
2633 #endif
2634
2635 static const struct dev_pm_ops edma_pm_ops = {
2636 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2637 };
2638
2639 static struct platform_driver edma_driver = {
2640 .probe = edma_probe,
2641 .remove = edma_remove,
2642 .driver = {
2643 .name = "edma",
2644 .pm = &edma_pm_ops,
2645 .of_match_table = edma_of_ids,
2646 },
2647 };
2648
edma_tptc_probe(struct platform_device * pdev)2649 static int edma_tptc_probe(struct platform_device *pdev)
2650 {
2651 pm_runtime_enable(&pdev->dev);
2652 return pm_runtime_get_sync(&pdev->dev);
2653 }
2654
2655 static struct platform_driver edma_tptc_driver = {
2656 .probe = edma_tptc_probe,
2657 .driver = {
2658 .name = "edma3-tptc",
2659 .of_match_table = edma_tptc_of_ids,
2660 },
2661 };
2662
edma_filter_fn(struct dma_chan * chan,void * param)2663 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2664 {
2665 bool match = false;
2666
2667 if (chan->device->dev->driver == &edma_driver.driver) {
2668 struct edma_chan *echan = to_edma_chan(chan);
2669 unsigned ch_req = *(unsigned *)param;
2670 if (ch_req == echan->ch_num) {
2671 /* The channel is going to be used as HW synchronized */
2672 echan->hw_triggered = true;
2673 match = true;
2674 }
2675 }
2676 return match;
2677 }
2678
edma_init(void)2679 static int edma_init(void)
2680 {
2681 int ret;
2682
2683 ret = platform_driver_register(&edma_tptc_driver);
2684 if (ret)
2685 return ret;
2686
2687 return platform_driver_register(&edma_driver);
2688 }
2689 subsys_initcall(edma_init);
2690
edma_exit(void)2691 static void __exit edma_exit(void)
2692 {
2693 platform_driver_unregister(&edma_driver);
2694 platform_driver_unregister(&edma_tptc_driver);
2695 }
2696 module_exit(edma_exit);
2697
2698 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2699 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2700 MODULE_LICENSE("GPL v2");
2701