xref: /openbmc/linux/kernel/time/timekeeping.c (revision c005e2f62f8421b13b9a31adb9db7281f1a19e68)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  Kernel timekeeping code and accessor functions. Based on code from
4   *  timer.c, moved in commit 8524070b7982.
5   */
6  #include <linux/timekeeper_internal.h>
7  #include <linux/module.h>
8  #include <linux/interrupt.h>
9  #include <linux/percpu.h>
10  #include <linux/init.h>
11  #include <linux/mm.h>
12  #include <linux/nmi.h>
13  #include <linux/sched.h>
14  #include <linux/sched/loadavg.h>
15  #include <linux/sched/clock.h>
16  #include <linux/syscore_ops.h>
17  #include <linux/clocksource.h>
18  #include <linux/jiffies.h>
19  #include <linux/time.h>
20  #include <linux/timex.h>
21  #include <linux/tick.h>
22  #include <linux/stop_machine.h>
23  #include <linux/pvclock_gtod.h>
24  #include <linux/compiler.h>
25  #include <linux/audit.h>
26  #include <linux/random.h>
27  
28  #include "tick-internal.h"
29  #include "ntp_internal.h"
30  #include "timekeeping_internal.h"
31  
32  #define TK_CLEAR_NTP		(1 << 0)
33  #define TK_MIRROR		(1 << 1)
34  #define TK_CLOCK_WAS_SET	(1 << 2)
35  
36  enum timekeeping_adv_mode {
37  	/* Update timekeeper when a tick has passed */
38  	TK_ADV_TICK,
39  
40  	/* Update timekeeper on a direct frequency change */
41  	TK_ADV_FREQ
42  };
43  
44  DEFINE_RAW_SPINLOCK(timekeeper_lock);
45  
46  /*
47   * The most important data for readout fits into a single 64 byte
48   * cache line.
49   */
50  static struct {
51  	seqcount_raw_spinlock_t	seq;
52  	struct timekeeper	timekeeper;
53  } tk_core ____cacheline_aligned = {
54  	.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
55  };
56  
57  static struct timekeeper shadow_timekeeper;
58  
59  /* flag for if timekeeping is suspended */
60  int __read_mostly timekeeping_suspended;
61  
62  /**
63   * struct tk_fast - NMI safe timekeeper
64   * @seq:	Sequence counter for protecting updates. The lowest bit
65   *		is the index for the tk_read_base array
66   * @base:	tk_read_base array. Access is indexed by the lowest bit of
67   *		@seq.
68   *
69   * See @update_fast_timekeeper() below.
70   */
71  struct tk_fast {
72  	seqcount_latch_t	seq;
73  	struct tk_read_base	base[2];
74  };
75  
76  /* Suspend-time cycles value for halted fast timekeeper. */
77  static u64 cycles_at_suspend;
78  
dummy_clock_read(struct clocksource * cs)79  static u64 dummy_clock_read(struct clocksource *cs)
80  {
81  	if (timekeeping_suspended)
82  		return cycles_at_suspend;
83  	return local_clock();
84  }
85  
86  static struct clocksource dummy_clock = {
87  	.read = dummy_clock_read,
88  };
89  
90  /*
91   * Boot time initialization which allows local_clock() to be utilized
92   * during early boot when clocksources are not available. local_clock()
93   * returns nanoseconds already so no conversion is required, hence mult=1
94   * and shift=0. When the first proper clocksource is installed then
95   * the fast time keepers are updated with the correct values.
96   */
97  #define FAST_TK_INIT						\
98  	{							\
99  		.clock		= &dummy_clock,			\
100  		.mask		= CLOCKSOURCE_MASK(64),		\
101  		.mult		= 1,				\
102  		.shift		= 0,				\
103  	}
104  
105  static struct tk_fast tk_fast_mono ____cacheline_aligned = {
106  	.seq     = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
107  	.base[0] = FAST_TK_INIT,
108  	.base[1] = FAST_TK_INIT,
109  };
110  
111  static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
112  	.seq     = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
113  	.base[0] = FAST_TK_INIT,
114  	.base[1] = FAST_TK_INIT,
115  };
116  
tk_normalize_xtime(struct timekeeper * tk)117  static inline void tk_normalize_xtime(struct timekeeper *tk)
118  {
119  	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
120  		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
121  		tk->xtime_sec++;
122  	}
123  	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
124  		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
125  		tk->raw_sec++;
126  	}
127  }
128  
tk_xtime(const struct timekeeper * tk)129  static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
130  {
131  	struct timespec64 ts;
132  
133  	ts.tv_sec = tk->xtime_sec;
134  	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
135  	return ts;
136  }
137  
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)138  static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
139  {
140  	tk->xtime_sec = ts->tv_sec;
141  	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
142  }
143  
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)144  static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
145  {
146  	tk->xtime_sec += ts->tv_sec;
147  	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
148  	tk_normalize_xtime(tk);
149  }
150  
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)151  static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
152  {
153  	struct timespec64 tmp;
154  
155  	/*
156  	 * Verify consistency of: offset_real = -wall_to_monotonic
157  	 * before modifying anything
158  	 */
159  	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
160  					-tk->wall_to_monotonic.tv_nsec);
161  	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
162  	tk->wall_to_monotonic = wtm;
163  	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
164  	tk->offs_real = timespec64_to_ktime(tmp);
165  	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
166  }
167  
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)168  static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
169  {
170  	tk->offs_boot = ktime_add(tk->offs_boot, delta);
171  	/*
172  	 * Timespec representation for VDSO update to avoid 64bit division
173  	 * on every update.
174  	 */
175  	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
176  }
177  
178  /*
179   * tk_clock_read - atomic clocksource read() helper
180   *
181   * This helper is necessary to use in the read paths because, while the
182   * seqcount ensures we don't return a bad value while structures are updated,
183   * it doesn't protect from potential crashes. There is the possibility that
184   * the tkr's clocksource may change between the read reference, and the
185   * clock reference passed to the read function.  This can cause crashes if
186   * the wrong clocksource is passed to the wrong read function.
187   * This isn't necessary to use when holding the timekeeper_lock or doing
188   * a read of the fast-timekeeper tkrs (which is protected by its own locking
189   * and update logic).
190   */
tk_clock_read(const struct tk_read_base * tkr)191  static inline u64 tk_clock_read(const struct tk_read_base *tkr)
192  {
193  	struct clocksource *clock = READ_ONCE(tkr->clock);
194  
195  	return clock->read(clock);
196  }
197  
198  #ifdef CONFIG_DEBUG_TIMEKEEPING
199  #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
200  
timekeeping_check_update(struct timekeeper * tk,u64 offset)201  static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
202  {
203  
204  	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
205  	const char *name = tk->tkr_mono.clock->name;
206  
207  	if (offset > max_cycles) {
208  		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
209  				offset, name, max_cycles);
210  		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
211  	} else {
212  		if (offset > (max_cycles >> 1)) {
213  			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
214  					offset, name, max_cycles >> 1);
215  			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
216  		}
217  	}
218  
219  	if (tk->underflow_seen) {
220  		if (jiffies - tk->last_warning > WARNING_FREQ) {
221  			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
222  			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
223  			printk_deferred("         Your kernel is probably still fine.\n");
224  			tk->last_warning = jiffies;
225  		}
226  		tk->underflow_seen = 0;
227  	}
228  
229  	if (tk->overflow_seen) {
230  		if (jiffies - tk->last_warning > WARNING_FREQ) {
231  			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
232  			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
233  			printk_deferred("         Your kernel is probably still fine.\n");
234  			tk->last_warning = jiffies;
235  		}
236  		tk->overflow_seen = 0;
237  	}
238  }
239  
timekeeping_get_delta(const struct tk_read_base * tkr)240  static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
241  {
242  	struct timekeeper *tk = &tk_core.timekeeper;
243  	u64 now, last, mask, max, delta;
244  	unsigned int seq;
245  
246  	/*
247  	 * Since we're called holding a seqcount, the data may shift
248  	 * under us while we're doing the calculation. This can cause
249  	 * false positives, since we'd note a problem but throw the
250  	 * results away. So nest another seqcount here to atomically
251  	 * grab the points we are checking with.
252  	 */
253  	do {
254  		seq = read_seqcount_begin(&tk_core.seq);
255  		now = tk_clock_read(tkr);
256  		last = tkr->cycle_last;
257  		mask = tkr->mask;
258  		max = tkr->clock->max_cycles;
259  	} while (read_seqcount_retry(&tk_core.seq, seq));
260  
261  	delta = clocksource_delta(now, last, mask);
262  
263  	/*
264  	 * Try to catch underflows by checking if we are seeing small
265  	 * mask-relative negative values.
266  	 */
267  	if (unlikely((~delta & mask) < (mask >> 3))) {
268  		tk->underflow_seen = 1;
269  		delta = 0;
270  	}
271  
272  	/* Cap delta value to the max_cycles values to avoid mult overflows */
273  	if (unlikely(delta > max)) {
274  		tk->overflow_seen = 1;
275  		delta = tkr->clock->max_cycles;
276  	}
277  
278  	return delta;
279  }
280  #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)281  static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
282  {
283  }
timekeeping_get_delta(const struct tk_read_base * tkr)284  static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
285  {
286  	u64 cycle_now, delta;
287  
288  	/* read clocksource */
289  	cycle_now = tk_clock_read(tkr);
290  
291  	/* calculate the delta since the last update_wall_time */
292  	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
293  
294  	return delta;
295  }
296  #endif
297  
298  /**
299   * tk_setup_internals - Set up internals to use clocksource clock.
300   *
301   * @tk:		The target timekeeper to setup.
302   * @clock:		Pointer to clocksource.
303   *
304   * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
305   * pair and interval request.
306   *
307   * Unless you're the timekeeping code, you should not be using this!
308   */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)309  static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
310  {
311  	u64 interval;
312  	u64 tmp, ntpinterval;
313  	struct clocksource *old_clock;
314  
315  	++tk->cs_was_changed_seq;
316  	old_clock = tk->tkr_mono.clock;
317  	tk->tkr_mono.clock = clock;
318  	tk->tkr_mono.mask = clock->mask;
319  	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
320  
321  	tk->tkr_raw.clock = clock;
322  	tk->tkr_raw.mask = clock->mask;
323  	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
324  
325  	/* Do the ns -> cycle conversion first, using original mult */
326  	tmp = NTP_INTERVAL_LENGTH;
327  	tmp <<= clock->shift;
328  	ntpinterval = tmp;
329  	tmp += clock->mult/2;
330  	do_div(tmp, clock->mult);
331  	if (tmp == 0)
332  		tmp = 1;
333  
334  	interval = (u64) tmp;
335  	tk->cycle_interval = interval;
336  
337  	/* Go back from cycles -> shifted ns */
338  	tk->xtime_interval = interval * clock->mult;
339  	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
340  	tk->raw_interval = interval * clock->mult;
341  
342  	 /* if changing clocks, convert xtime_nsec shift units */
343  	if (old_clock) {
344  		int shift_change = clock->shift - old_clock->shift;
345  		if (shift_change < 0) {
346  			tk->tkr_mono.xtime_nsec >>= -shift_change;
347  			tk->tkr_raw.xtime_nsec >>= -shift_change;
348  		} else {
349  			tk->tkr_mono.xtime_nsec <<= shift_change;
350  			tk->tkr_raw.xtime_nsec <<= shift_change;
351  		}
352  	}
353  
354  	tk->tkr_mono.shift = clock->shift;
355  	tk->tkr_raw.shift = clock->shift;
356  
357  	tk->ntp_error = 0;
358  	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
359  	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
360  
361  	/*
362  	 * The timekeeper keeps its own mult values for the currently
363  	 * active clocksource. These value will be adjusted via NTP
364  	 * to counteract clock drifting.
365  	 */
366  	tk->tkr_mono.mult = clock->mult;
367  	tk->tkr_raw.mult = clock->mult;
368  	tk->ntp_err_mult = 0;
369  	tk->skip_second_overflow = 0;
370  }
371  
372  /* Timekeeper helper functions. */
373  
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)374  static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
375  {
376  	u64 nsec;
377  
378  	nsec = delta * tkr->mult + tkr->xtime_nsec;
379  	nsec >>= tkr->shift;
380  
381  	return nsec;
382  }
383  
timekeeping_get_ns(const struct tk_read_base * tkr)384  static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
385  {
386  	u64 delta;
387  
388  	delta = timekeeping_get_delta(tkr);
389  	return timekeeping_delta_to_ns(tkr, delta);
390  }
391  
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)392  static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
393  {
394  	u64 delta;
395  
396  	/* calculate the delta since the last update_wall_time */
397  	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
398  	return timekeeping_delta_to_ns(tkr, delta);
399  }
400  
401  /**
402   * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
403   * @tkr: Timekeeping readout base from which we take the update
404   * @tkf: Pointer to NMI safe timekeeper
405   *
406   * We want to use this from any context including NMI and tracing /
407   * instrumenting the timekeeping code itself.
408   *
409   * Employ the latch technique; see @raw_write_seqcount_latch.
410   *
411   * So if a NMI hits the update of base[0] then it will use base[1]
412   * which is still consistent. In the worst case this can result is a
413   * slightly wrong timestamp (a few nanoseconds). See
414   * @ktime_get_mono_fast_ns.
415   */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)416  static void update_fast_timekeeper(const struct tk_read_base *tkr,
417  				   struct tk_fast *tkf)
418  {
419  	struct tk_read_base *base = tkf->base;
420  
421  	/* Force readers off to base[1] */
422  	raw_write_seqcount_latch(&tkf->seq);
423  
424  	/* Update base[0] */
425  	memcpy(base, tkr, sizeof(*base));
426  
427  	/* Force readers back to base[0] */
428  	raw_write_seqcount_latch(&tkf->seq);
429  
430  	/* Update base[1] */
431  	memcpy(base + 1, base, sizeof(*base));
432  }
433  
fast_tk_get_delta_ns(struct tk_read_base * tkr)434  static __always_inline u64 fast_tk_get_delta_ns(struct tk_read_base *tkr)
435  {
436  	u64 delta, cycles = tk_clock_read(tkr);
437  
438  	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
439  	return timekeeping_delta_to_ns(tkr, delta);
440  }
441  
__ktime_get_fast_ns(struct tk_fast * tkf)442  static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
443  {
444  	struct tk_read_base *tkr;
445  	unsigned int seq;
446  	u64 now;
447  
448  	do {
449  		seq = raw_read_seqcount_latch(&tkf->seq);
450  		tkr = tkf->base + (seq & 0x01);
451  		now = ktime_to_ns(tkr->base);
452  		now += fast_tk_get_delta_ns(tkr);
453  	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
454  
455  	return now;
456  }
457  
458  /**
459   * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
460   *
461   * This timestamp is not guaranteed to be monotonic across an update.
462   * The timestamp is calculated by:
463   *
464   *	now = base_mono + clock_delta * slope
465   *
466   * So if the update lowers the slope, readers who are forced to the
467   * not yet updated second array are still using the old steeper slope.
468   *
469   * tmono
470   * ^
471   * |    o  n
472   * |   o n
473   * |  u
474   * | o
475   * |o
476   * |12345678---> reader order
477   *
478   * o = old slope
479   * u = update
480   * n = new slope
481   *
482   * So reader 6 will observe time going backwards versus reader 5.
483   *
484   * While other CPUs are likely to be able to observe that, the only way
485   * for a CPU local observation is when an NMI hits in the middle of
486   * the update. Timestamps taken from that NMI context might be ahead
487   * of the following timestamps. Callers need to be aware of that and
488   * deal with it.
489   */
ktime_get_mono_fast_ns(void)490  u64 notrace ktime_get_mono_fast_ns(void)
491  {
492  	return __ktime_get_fast_ns(&tk_fast_mono);
493  }
494  EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
495  
496  /**
497   * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
498   *
499   * Contrary to ktime_get_mono_fast_ns() this is always correct because the
500   * conversion factor is not affected by NTP/PTP correction.
501   */
ktime_get_raw_fast_ns(void)502  u64 notrace ktime_get_raw_fast_ns(void)
503  {
504  	return __ktime_get_fast_ns(&tk_fast_raw);
505  }
506  EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
507  
508  /**
509   * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
510   *
511   * To keep it NMI safe since we're accessing from tracing, we're not using a
512   * separate timekeeper with updates to monotonic clock and boot offset
513   * protected with seqcounts. This has the following minor side effects:
514   *
515   * (1) Its possible that a timestamp be taken after the boot offset is updated
516   * but before the timekeeper is updated. If this happens, the new boot offset
517   * is added to the old timekeeping making the clock appear to update slightly
518   * earlier:
519   *    CPU 0                                        CPU 1
520   *    timekeeping_inject_sleeptime64()
521   *    __timekeeping_inject_sleeptime(tk, delta);
522   *                                                 timestamp();
523   *    timekeeping_update(tk, TK_CLEAR_NTP...);
524   *
525   * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
526   * partially updated.  Since the tk->offs_boot update is a rare event, this
527   * should be a rare occurrence which postprocessing should be able to handle.
528   *
529   * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
530   * apply as well.
531   */
ktime_get_boot_fast_ns(void)532  u64 notrace ktime_get_boot_fast_ns(void)
533  {
534  	struct timekeeper *tk = &tk_core.timekeeper;
535  
536  	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot)));
537  }
538  EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
539  
540  /**
541   * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
542   *
543   * The same limitations as described for ktime_get_boot_fast_ns() apply. The
544   * mono time and the TAI offset are not read atomically which may yield wrong
545   * readouts. However, an update of the TAI offset is an rare event e.g., caused
546   * by settime or adjtimex with an offset. The user of this function has to deal
547   * with the possibility of wrong timestamps in post processing.
548   */
ktime_get_tai_fast_ns(void)549  u64 notrace ktime_get_tai_fast_ns(void)
550  {
551  	struct timekeeper *tk = &tk_core.timekeeper;
552  
553  	return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai)));
554  }
555  EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns);
556  
__ktime_get_real_fast(struct tk_fast * tkf,u64 * mono)557  static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
558  {
559  	struct tk_read_base *tkr;
560  	u64 basem, baser, delta;
561  	unsigned int seq;
562  
563  	do {
564  		seq = raw_read_seqcount_latch(&tkf->seq);
565  		tkr = tkf->base + (seq & 0x01);
566  		basem = ktime_to_ns(tkr->base);
567  		baser = ktime_to_ns(tkr->base_real);
568  		delta = fast_tk_get_delta_ns(tkr);
569  	} while (raw_read_seqcount_latch_retry(&tkf->seq, seq));
570  
571  	if (mono)
572  		*mono = basem + delta;
573  	return baser + delta;
574  }
575  
576  /**
577   * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
578   *
579   * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
580   */
ktime_get_real_fast_ns(void)581  u64 ktime_get_real_fast_ns(void)
582  {
583  	return __ktime_get_real_fast(&tk_fast_mono, NULL);
584  }
585  EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
586  
587  /**
588   * ktime_get_fast_timestamps: - NMI safe timestamps
589   * @snapshot:	Pointer to timestamp storage
590   *
591   * Stores clock monotonic, boottime and realtime timestamps.
592   *
593   * Boot time is a racy access on 32bit systems if the sleep time injection
594   * happens late during resume and not in timekeeping_resume(). That could
595   * be avoided by expanding struct tk_read_base with boot offset for 32bit
596   * and adding more overhead to the update. As this is a hard to observe
597   * once per resume event which can be filtered with reasonable effort using
598   * the accurate mono/real timestamps, it's probably not worth the trouble.
599   *
600   * Aside of that it might be possible on 32 and 64 bit to observe the
601   * following when the sleep time injection happens late:
602   *
603   * CPU 0				CPU 1
604   * timekeeping_resume()
605   * ktime_get_fast_timestamps()
606   *	mono, real = __ktime_get_real_fast()
607   *					inject_sleep_time()
608   *					   update boot offset
609   *	boot = mono + bootoffset;
610   *
611   * That means that boot time already has the sleep time adjustment, but
612   * real time does not. On the next readout both are in sync again.
613   *
614   * Preventing this for 64bit is not really feasible without destroying the
615   * careful cache layout of the timekeeper because the sequence count and
616   * struct tk_read_base would then need two cache lines instead of one.
617   *
618   * Access to the time keeper clock source is disabled across the innermost
619   * steps of suspend/resume. The accessors still work, but the timestamps
620   * are frozen until time keeping is resumed which happens very early.
621   *
622   * For regular suspend/resume there is no observable difference vs. sched
623   * clock, but it might affect some of the nasty low level debug printks.
624   *
625   * OTOH, access to sched clock is not guaranteed across suspend/resume on
626   * all systems either so it depends on the hardware in use.
627   *
628   * If that turns out to be a real problem then this could be mitigated by
629   * using sched clock in a similar way as during early boot. But it's not as
630   * trivial as on early boot because it needs some careful protection
631   * against the clock monotonic timestamp jumping backwards on resume.
632   */
ktime_get_fast_timestamps(struct ktime_timestamps * snapshot)633  void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
634  {
635  	struct timekeeper *tk = &tk_core.timekeeper;
636  
637  	snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
638  	snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
639  }
640  
641  /**
642   * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
643   * @tk: Timekeeper to snapshot.
644   *
645   * It generally is unsafe to access the clocksource after timekeeping has been
646   * suspended, so take a snapshot of the readout base of @tk and use it as the
647   * fast timekeeper's readout base while suspended.  It will return the same
648   * number of cycles every time until timekeeping is resumed at which time the
649   * proper readout base for the fast timekeeper will be restored automatically.
650   */
halt_fast_timekeeper(const struct timekeeper * tk)651  static void halt_fast_timekeeper(const struct timekeeper *tk)
652  {
653  	static struct tk_read_base tkr_dummy;
654  	const struct tk_read_base *tkr = &tk->tkr_mono;
655  
656  	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
657  	cycles_at_suspend = tk_clock_read(tkr);
658  	tkr_dummy.clock = &dummy_clock;
659  	tkr_dummy.base_real = tkr->base + tk->offs_real;
660  	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
661  
662  	tkr = &tk->tkr_raw;
663  	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
664  	tkr_dummy.clock = &dummy_clock;
665  	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
666  }
667  
668  static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
669  
update_pvclock_gtod(struct timekeeper * tk,bool was_set)670  static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
671  {
672  	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
673  }
674  
675  /**
676   * pvclock_gtod_register_notifier - register a pvclock timedata update listener
677   * @nb: Pointer to the notifier block to register
678   */
pvclock_gtod_register_notifier(struct notifier_block * nb)679  int pvclock_gtod_register_notifier(struct notifier_block *nb)
680  {
681  	struct timekeeper *tk = &tk_core.timekeeper;
682  	unsigned long flags;
683  	int ret;
684  
685  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
686  	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
687  	update_pvclock_gtod(tk, true);
688  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
689  
690  	return ret;
691  }
692  EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
693  
694  /**
695   * pvclock_gtod_unregister_notifier - unregister a pvclock
696   * timedata update listener
697   * @nb: Pointer to the notifier block to unregister
698   */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)699  int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
700  {
701  	unsigned long flags;
702  	int ret;
703  
704  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
705  	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
706  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
707  
708  	return ret;
709  }
710  EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
711  
712  /*
713   * tk_update_leap_state - helper to update the next_leap_ktime
714   */
tk_update_leap_state(struct timekeeper * tk)715  static inline void tk_update_leap_state(struct timekeeper *tk)
716  {
717  	tk->next_leap_ktime = ntp_get_next_leap();
718  	if (tk->next_leap_ktime != KTIME_MAX)
719  		/* Convert to monotonic time */
720  		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
721  }
722  
723  /*
724   * Update the ktime_t based scalar nsec members of the timekeeper
725   */
tk_update_ktime_data(struct timekeeper * tk)726  static inline void tk_update_ktime_data(struct timekeeper *tk)
727  {
728  	u64 seconds;
729  	u32 nsec;
730  
731  	/*
732  	 * The xtime based monotonic readout is:
733  	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
734  	 * The ktime based monotonic readout is:
735  	 *	nsec = base_mono + now();
736  	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
737  	 */
738  	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
739  	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
740  	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
741  
742  	/*
743  	 * The sum of the nanoseconds portions of xtime and
744  	 * wall_to_monotonic can be greater/equal one second. Take
745  	 * this into account before updating tk->ktime_sec.
746  	 */
747  	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
748  	if (nsec >= NSEC_PER_SEC)
749  		seconds++;
750  	tk->ktime_sec = seconds;
751  
752  	/* Update the monotonic raw base */
753  	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
754  }
755  
756  /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)757  static void timekeeping_update(struct timekeeper *tk, unsigned int action)
758  {
759  	if (action & TK_CLEAR_NTP) {
760  		tk->ntp_error = 0;
761  		ntp_clear();
762  	}
763  
764  	tk_update_leap_state(tk);
765  	tk_update_ktime_data(tk);
766  
767  	update_vsyscall(tk);
768  	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
769  
770  	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
771  	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
772  	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
773  
774  	if (action & TK_CLOCK_WAS_SET)
775  		tk->clock_was_set_seq++;
776  	/*
777  	 * The mirroring of the data to the shadow-timekeeper needs
778  	 * to happen last here to ensure we don't over-write the
779  	 * timekeeper structure on the next update with stale data
780  	 */
781  	if (action & TK_MIRROR)
782  		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
783  		       sizeof(tk_core.timekeeper));
784  }
785  
786  /**
787   * timekeeping_forward_now - update clock to the current time
788   * @tk:		Pointer to the timekeeper to update
789   *
790   * Forward the current clock to update its state since the last call to
791   * update_wall_time(). This is useful before significant clock changes,
792   * as it avoids having to deal with this time offset explicitly.
793   */
timekeeping_forward_now(struct timekeeper * tk)794  static void timekeeping_forward_now(struct timekeeper *tk)
795  {
796  	u64 cycle_now, delta;
797  
798  	cycle_now = tk_clock_read(&tk->tkr_mono);
799  	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
800  	tk->tkr_mono.cycle_last = cycle_now;
801  	tk->tkr_raw.cycle_last  = cycle_now;
802  
803  	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
804  	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
805  
806  	tk_normalize_xtime(tk);
807  }
808  
809  /**
810   * ktime_get_real_ts64 - Returns the time of day in a timespec64.
811   * @ts:		pointer to the timespec to be set
812   *
813   * Returns the time of day in a timespec64 (WARN if suspended).
814   */
ktime_get_real_ts64(struct timespec64 * ts)815  void ktime_get_real_ts64(struct timespec64 *ts)
816  {
817  	struct timekeeper *tk = &tk_core.timekeeper;
818  	unsigned int seq;
819  	u64 nsecs;
820  
821  	WARN_ON(timekeeping_suspended);
822  
823  	do {
824  		seq = read_seqcount_begin(&tk_core.seq);
825  
826  		ts->tv_sec = tk->xtime_sec;
827  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
828  
829  	} while (read_seqcount_retry(&tk_core.seq, seq));
830  
831  	ts->tv_nsec = 0;
832  	timespec64_add_ns(ts, nsecs);
833  }
834  EXPORT_SYMBOL(ktime_get_real_ts64);
835  
ktime_get(void)836  ktime_t ktime_get(void)
837  {
838  	struct timekeeper *tk = &tk_core.timekeeper;
839  	unsigned int seq;
840  	ktime_t base;
841  	u64 nsecs;
842  
843  	WARN_ON(timekeeping_suspended);
844  
845  	do {
846  		seq = read_seqcount_begin(&tk_core.seq);
847  		base = tk->tkr_mono.base;
848  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
849  
850  	} while (read_seqcount_retry(&tk_core.seq, seq));
851  
852  	return ktime_add_ns(base, nsecs);
853  }
854  EXPORT_SYMBOL_GPL(ktime_get);
855  
ktime_get_resolution_ns(void)856  u32 ktime_get_resolution_ns(void)
857  {
858  	struct timekeeper *tk = &tk_core.timekeeper;
859  	unsigned int seq;
860  	u32 nsecs;
861  
862  	WARN_ON(timekeeping_suspended);
863  
864  	do {
865  		seq = read_seqcount_begin(&tk_core.seq);
866  		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
867  	} while (read_seqcount_retry(&tk_core.seq, seq));
868  
869  	return nsecs;
870  }
871  EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
872  
873  static ktime_t *offsets[TK_OFFS_MAX] = {
874  	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
875  	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
876  	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
877  };
878  
ktime_get_with_offset(enum tk_offsets offs)879  ktime_t ktime_get_with_offset(enum tk_offsets offs)
880  {
881  	struct timekeeper *tk = &tk_core.timekeeper;
882  	unsigned int seq;
883  	ktime_t base, *offset = offsets[offs];
884  	u64 nsecs;
885  
886  	WARN_ON(timekeeping_suspended);
887  
888  	do {
889  		seq = read_seqcount_begin(&tk_core.seq);
890  		base = ktime_add(tk->tkr_mono.base, *offset);
891  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
892  
893  	} while (read_seqcount_retry(&tk_core.seq, seq));
894  
895  	return ktime_add_ns(base, nsecs);
896  
897  }
898  EXPORT_SYMBOL_GPL(ktime_get_with_offset);
899  
ktime_get_coarse_with_offset(enum tk_offsets offs)900  ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
901  {
902  	struct timekeeper *tk = &tk_core.timekeeper;
903  	unsigned int seq;
904  	ktime_t base, *offset = offsets[offs];
905  	u64 nsecs;
906  
907  	WARN_ON(timekeeping_suspended);
908  
909  	do {
910  		seq = read_seqcount_begin(&tk_core.seq);
911  		base = ktime_add(tk->tkr_mono.base, *offset);
912  		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
913  
914  	} while (read_seqcount_retry(&tk_core.seq, seq));
915  
916  	return ktime_add_ns(base, nsecs);
917  }
918  EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
919  
920  /**
921   * ktime_mono_to_any() - convert monotonic time to any other time
922   * @tmono:	time to convert.
923   * @offs:	which offset to use
924   */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)925  ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
926  {
927  	ktime_t *offset = offsets[offs];
928  	unsigned int seq;
929  	ktime_t tconv;
930  
931  	do {
932  		seq = read_seqcount_begin(&tk_core.seq);
933  		tconv = ktime_add(tmono, *offset);
934  	} while (read_seqcount_retry(&tk_core.seq, seq));
935  
936  	return tconv;
937  }
938  EXPORT_SYMBOL_GPL(ktime_mono_to_any);
939  
940  /**
941   * ktime_get_raw - Returns the raw monotonic time in ktime_t format
942   */
ktime_get_raw(void)943  ktime_t ktime_get_raw(void)
944  {
945  	struct timekeeper *tk = &tk_core.timekeeper;
946  	unsigned int seq;
947  	ktime_t base;
948  	u64 nsecs;
949  
950  	do {
951  		seq = read_seqcount_begin(&tk_core.seq);
952  		base = tk->tkr_raw.base;
953  		nsecs = timekeeping_get_ns(&tk->tkr_raw);
954  
955  	} while (read_seqcount_retry(&tk_core.seq, seq));
956  
957  	return ktime_add_ns(base, nsecs);
958  }
959  EXPORT_SYMBOL_GPL(ktime_get_raw);
960  
961  /**
962   * ktime_get_ts64 - get the monotonic clock in timespec64 format
963   * @ts:		pointer to timespec variable
964   *
965   * The function calculates the monotonic clock from the realtime
966   * clock and the wall_to_monotonic offset and stores the result
967   * in normalized timespec64 format in the variable pointed to by @ts.
968   */
ktime_get_ts64(struct timespec64 * ts)969  void ktime_get_ts64(struct timespec64 *ts)
970  {
971  	struct timekeeper *tk = &tk_core.timekeeper;
972  	struct timespec64 tomono;
973  	unsigned int seq;
974  	u64 nsec;
975  
976  	WARN_ON(timekeeping_suspended);
977  
978  	do {
979  		seq = read_seqcount_begin(&tk_core.seq);
980  		ts->tv_sec = tk->xtime_sec;
981  		nsec = timekeeping_get_ns(&tk->tkr_mono);
982  		tomono = tk->wall_to_monotonic;
983  
984  	} while (read_seqcount_retry(&tk_core.seq, seq));
985  
986  	ts->tv_sec += tomono.tv_sec;
987  	ts->tv_nsec = 0;
988  	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
989  }
990  EXPORT_SYMBOL_GPL(ktime_get_ts64);
991  
992  /**
993   * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
994   *
995   * Returns the seconds portion of CLOCK_MONOTONIC with a single non
996   * serialized read. tk->ktime_sec is of type 'unsigned long' so this
997   * works on both 32 and 64 bit systems. On 32 bit systems the readout
998   * covers ~136 years of uptime which should be enough to prevent
999   * premature wrap arounds.
1000   */
ktime_get_seconds(void)1001  time64_t ktime_get_seconds(void)
1002  {
1003  	struct timekeeper *tk = &tk_core.timekeeper;
1004  
1005  	WARN_ON(timekeeping_suspended);
1006  	return tk->ktime_sec;
1007  }
1008  EXPORT_SYMBOL_GPL(ktime_get_seconds);
1009  
1010  /**
1011   * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
1012   *
1013   * Returns the wall clock seconds since 1970.
1014   *
1015   * For 64bit systems the fast access to tk->xtime_sec is preserved. On
1016   * 32bit systems the access must be protected with the sequence
1017   * counter to provide "atomic" access to the 64bit tk->xtime_sec
1018   * value.
1019   */
ktime_get_real_seconds(void)1020  time64_t ktime_get_real_seconds(void)
1021  {
1022  	struct timekeeper *tk = &tk_core.timekeeper;
1023  	time64_t seconds;
1024  	unsigned int seq;
1025  
1026  	if (IS_ENABLED(CONFIG_64BIT))
1027  		return tk->xtime_sec;
1028  
1029  	do {
1030  		seq = read_seqcount_begin(&tk_core.seq);
1031  		seconds = tk->xtime_sec;
1032  
1033  	} while (read_seqcount_retry(&tk_core.seq, seq));
1034  
1035  	return seconds;
1036  }
1037  EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
1038  
1039  /**
1040   * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1041   * but without the sequence counter protect. This internal function
1042   * is called just when timekeeping lock is already held.
1043   */
__ktime_get_real_seconds(void)1044  noinstr time64_t __ktime_get_real_seconds(void)
1045  {
1046  	struct timekeeper *tk = &tk_core.timekeeper;
1047  
1048  	return tk->xtime_sec;
1049  }
1050  
1051  /**
1052   * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1053   * @systime_snapshot:	pointer to struct receiving the system time snapshot
1054   */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)1055  void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
1056  {
1057  	struct timekeeper *tk = &tk_core.timekeeper;
1058  	unsigned int seq;
1059  	ktime_t base_raw;
1060  	ktime_t base_real;
1061  	u64 nsec_raw;
1062  	u64 nsec_real;
1063  	u64 now;
1064  
1065  	WARN_ON_ONCE(timekeeping_suspended);
1066  
1067  	do {
1068  		seq = read_seqcount_begin(&tk_core.seq);
1069  		now = tk_clock_read(&tk->tkr_mono);
1070  		systime_snapshot->cs_id = tk->tkr_mono.clock->id;
1071  		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
1072  		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
1073  		base_real = ktime_add(tk->tkr_mono.base,
1074  				      tk_core.timekeeper.offs_real);
1075  		base_raw = tk->tkr_raw.base;
1076  		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
1077  		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
1078  	} while (read_seqcount_retry(&tk_core.seq, seq));
1079  
1080  	systime_snapshot->cycles = now;
1081  	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
1082  	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
1083  }
1084  EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1085  
1086  /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)1087  static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1088  {
1089  	u64 tmp, rem;
1090  
1091  	tmp = div64_u64_rem(*base, div, &rem);
1092  
1093  	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1094  	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1095  		return -EOVERFLOW;
1096  	tmp *= mult;
1097  
1098  	rem = div64_u64(rem * mult, div);
1099  	*base = tmp + rem;
1100  	return 0;
1101  }
1102  
1103  /**
1104   * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1105   * @history:			Snapshot representing start of history
1106   * @partial_history_cycles:	Cycle offset into history (fractional part)
1107   * @total_history_cycles:	Total history length in cycles
1108   * @discontinuity:		True indicates clock was set on history period
1109   * @ts:				Cross timestamp that should be adjusted using
1110   *	partial/total ratio
1111   *
1112   * Helper function used by get_device_system_crosststamp() to correct the
1113   * crosstimestamp corresponding to the start of the current interval to the
1114   * system counter value (timestamp point) provided by the driver. The
1115   * total_history_* quantities are the total history starting at the provided
1116   * reference point and ending at the start of the current interval. The cycle
1117   * count between the driver timestamp point and the start of the current
1118   * interval is partial_history_cycles.
1119   */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1120  static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1121  					 u64 partial_history_cycles,
1122  					 u64 total_history_cycles,
1123  					 bool discontinuity,
1124  					 struct system_device_crosststamp *ts)
1125  {
1126  	struct timekeeper *tk = &tk_core.timekeeper;
1127  	u64 corr_raw, corr_real;
1128  	bool interp_forward;
1129  	int ret;
1130  
1131  	if (total_history_cycles == 0 || partial_history_cycles == 0)
1132  		return 0;
1133  
1134  	/* Interpolate shortest distance from beginning or end of history */
1135  	interp_forward = partial_history_cycles > total_history_cycles / 2;
1136  	partial_history_cycles = interp_forward ?
1137  		total_history_cycles - partial_history_cycles :
1138  		partial_history_cycles;
1139  
1140  	/*
1141  	 * Scale the monotonic raw time delta by:
1142  	 *	partial_history_cycles / total_history_cycles
1143  	 */
1144  	corr_raw = (u64)ktime_to_ns(
1145  		ktime_sub(ts->sys_monoraw, history->raw));
1146  	ret = scale64_check_overflow(partial_history_cycles,
1147  				     total_history_cycles, &corr_raw);
1148  	if (ret)
1149  		return ret;
1150  
1151  	/*
1152  	 * If there is a discontinuity in the history, scale monotonic raw
1153  	 *	correction by:
1154  	 *	mult(real)/mult(raw) yielding the realtime correction
1155  	 * Otherwise, calculate the realtime correction similar to monotonic
1156  	 *	raw calculation
1157  	 */
1158  	if (discontinuity) {
1159  		corr_real = mul_u64_u32_div
1160  			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1161  	} else {
1162  		corr_real = (u64)ktime_to_ns(
1163  			ktime_sub(ts->sys_realtime, history->real));
1164  		ret = scale64_check_overflow(partial_history_cycles,
1165  					     total_history_cycles, &corr_real);
1166  		if (ret)
1167  			return ret;
1168  	}
1169  
1170  	/* Fixup monotonic raw and real time time values */
1171  	if (interp_forward) {
1172  		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1173  		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1174  	} else {
1175  		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1176  		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1177  	}
1178  
1179  	return 0;
1180  }
1181  
1182  /*
1183   * timestamp_in_interval - true if ts is chronologically in [start, end]
1184   *
1185   * True if ts occurs chronologically at or after start, and before or at end.
1186   */
timestamp_in_interval(u64 start,u64 end,u64 ts)1187  static bool timestamp_in_interval(u64 start, u64 end, u64 ts)
1188  {
1189  	if (ts >= start && ts <= end)
1190  		return true;
1191  	if (start > end && (ts >= start || ts <= end))
1192  		return true;
1193  	return false;
1194  }
1195  
1196  /**
1197   * get_device_system_crosststamp - Synchronously capture system/device timestamp
1198   * @get_time_fn:	Callback to get simultaneous device time and
1199   *	system counter from the device driver
1200   * @ctx:		Context passed to get_time_fn()
1201   * @history_begin:	Historical reference point used to interpolate system
1202   *	time when counter provided by the driver is before the current interval
1203   * @xtstamp:		Receives simultaneously captured system and device time
1204   *
1205   * Reads a timestamp from a device and correlates it to system time
1206   */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1207  int get_device_system_crosststamp(int (*get_time_fn)
1208  				  (ktime_t *device_time,
1209  				   struct system_counterval_t *sys_counterval,
1210  				   void *ctx),
1211  				  void *ctx,
1212  				  struct system_time_snapshot *history_begin,
1213  				  struct system_device_crosststamp *xtstamp)
1214  {
1215  	struct system_counterval_t system_counterval;
1216  	struct timekeeper *tk = &tk_core.timekeeper;
1217  	u64 cycles, now, interval_start;
1218  	unsigned int clock_was_set_seq = 0;
1219  	ktime_t base_real, base_raw;
1220  	u64 nsec_real, nsec_raw;
1221  	u8 cs_was_changed_seq;
1222  	unsigned int seq;
1223  	bool do_interp;
1224  	int ret;
1225  
1226  	do {
1227  		seq = read_seqcount_begin(&tk_core.seq);
1228  		/*
1229  		 * Try to synchronously capture device time and a system
1230  		 * counter value calling back into the device driver
1231  		 */
1232  		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1233  		if (ret)
1234  			return ret;
1235  
1236  		/*
1237  		 * Verify that the clocksource associated with the captured
1238  		 * system counter value is the same as the currently installed
1239  		 * timekeeper clocksource
1240  		 */
1241  		if (tk->tkr_mono.clock != system_counterval.cs)
1242  			return -ENODEV;
1243  		cycles = system_counterval.cycles;
1244  
1245  		/*
1246  		 * Check whether the system counter value provided by the
1247  		 * device driver is on the current timekeeping interval.
1248  		 */
1249  		now = tk_clock_read(&tk->tkr_mono);
1250  		interval_start = tk->tkr_mono.cycle_last;
1251  		if (!timestamp_in_interval(interval_start, now, cycles)) {
1252  			clock_was_set_seq = tk->clock_was_set_seq;
1253  			cs_was_changed_seq = tk->cs_was_changed_seq;
1254  			cycles = interval_start;
1255  			do_interp = true;
1256  		} else {
1257  			do_interp = false;
1258  		}
1259  
1260  		base_real = ktime_add(tk->tkr_mono.base,
1261  				      tk_core.timekeeper.offs_real);
1262  		base_raw = tk->tkr_raw.base;
1263  
1264  		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles);
1265  		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles);
1266  	} while (read_seqcount_retry(&tk_core.seq, seq));
1267  
1268  	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1269  	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1270  
1271  	/*
1272  	 * Interpolate if necessary, adjusting back from the start of the
1273  	 * current interval
1274  	 */
1275  	if (do_interp) {
1276  		u64 partial_history_cycles, total_history_cycles;
1277  		bool discontinuity;
1278  
1279  		/*
1280  		 * Check that the counter value is not before the provided
1281  		 * history reference and that the history doesn't cross a
1282  		 * clocksource change
1283  		 */
1284  		if (!history_begin ||
1285  		    !timestamp_in_interval(history_begin->cycles,
1286  					   cycles, system_counterval.cycles) ||
1287  		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1288  			return -EINVAL;
1289  		partial_history_cycles = cycles - system_counterval.cycles;
1290  		total_history_cycles = cycles - history_begin->cycles;
1291  		discontinuity =
1292  			history_begin->clock_was_set_seq != clock_was_set_seq;
1293  
1294  		ret = adjust_historical_crosststamp(history_begin,
1295  						    partial_history_cycles,
1296  						    total_history_cycles,
1297  						    discontinuity, xtstamp);
1298  		if (ret)
1299  			return ret;
1300  	}
1301  
1302  	return 0;
1303  }
1304  EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1305  
1306  /**
1307   * do_settimeofday64 - Sets the time of day.
1308   * @ts:     pointer to the timespec64 variable containing the new time
1309   *
1310   * Sets the time of day to the new time and update NTP and notify hrtimers
1311   */
do_settimeofday64(const struct timespec64 * ts)1312  int do_settimeofday64(const struct timespec64 *ts)
1313  {
1314  	struct timekeeper *tk = &tk_core.timekeeper;
1315  	struct timespec64 ts_delta, xt;
1316  	unsigned long flags;
1317  	int ret = 0;
1318  
1319  	if (!timespec64_valid_settod(ts))
1320  		return -EINVAL;
1321  
1322  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1323  	write_seqcount_begin(&tk_core.seq);
1324  
1325  	timekeeping_forward_now(tk);
1326  
1327  	xt = tk_xtime(tk);
1328  	ts_delta = timespec64_sub(*ts, xt);
1329  
1330  	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1331  		ret = -EINVAL;
1332  		goto out;
1333  	}
1334  
1335  	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1336  
1337  	tk_set_xtime(tk, ts);
1338  out:
1339  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1340  
1341  	write_seqcount_end(&tk_core.seq);
1342  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1343  
1344  	/* Signal hrtimers about time change */
1345  	clock_was_set(CLOCK_SET_WALL);
1346  
1347  	if (!ret) {
1348  		audit_tk_injoffset(ts_delta);
1349  		add_device_randomness(ts, sizeof(*ts));
1350  	}
1351  
1352  	return ret;
1353  }
1354  EXPORT_SYMBOL(do_settimeofday64);
1355  
1356  /**
1357   * timekeeping_inject_offset - Adds or subtracts from the current time.
1358   * @ts:		Pointer to the timespec variable containing the offset
1359   *
1360   * Adds or subtracts an offset value from the current time.
1361   */
timekeeping_inject_offset(const struct timespec64 * ts)1362  static int timekeeping_inject_offset(const struct timespec64 *ts)
1363  {
1364  	struct timekeeper *tk = &tk_core.timekeeper;
1365  	unsigned long flags;
1366  	struct timespec64 tmp;
1367  	int ret = 0;
1368  
1369  	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1370  		return -EINVAL;
1371  
1372  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1373  	write_seqcount_begin(&tk_core.seq);
1374  
1375  	timekeeping_forward_now(tk);
1376  
1377  	/* Make sure the proposed value is valid */
1378  	tmp = timespec64_add(tk_xtime(tk), *ts);
1379  	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1380  	    !timespec64_valid_settod(&tmp)) {
1381  		ret = -EINVAL;
1382  		goto error;
1383  	}
1384  
1385  	tk_xtime_add(tk, ts);
1386  	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1387  
1388  error: /* even if we error out, we forwarded the time, so call update */
1389  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1390  
1391  	write_seqcount_end(&tk_core.seq);
1392  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1393  
1394  	/* Signal hrtimers about time change */
1395  	clock_was_set(CLOCK_SET_WALL);
1396  
1397  	return ret;
1398  }
1399  
1400  /*
1401   * Indicates if there is an offset between the system clock and the hardware
1402   * clock/persistent clock/rtc.
1403   */
1404  int persistent_clock_is_local;
1405  
1406  /*
1407   * Adjust the time obtained from the CMOS to be UTC time instead of
1408   * local time.
1409   *
1410   * This is ugly, but preferable to the alternatives.  Otherwise we
1411   * would either need to write a program to do it in /etc/rc (and risk
1412   * confusion if the program gets run more than once; it would also be
1413   * hard to make the program warp the clock precisely n hours)  or
1414   * compile in the timezone information into the kernel.  Bad, bad....
1415   *
1416   *						- TYT, 1992-01-01
1417   *
1418   * The best thing to do is to keep the CMOS clock in universal time (UTC)
1419   * as real UNIX machines always do it. This avoids all headaches about
1420   * daylight saving times and warping kernel clocks.
1421   */
timekeeping_warp_clock(void)1422  void timekeeping_warp_clock(void)
1423  {
1424  	if (sys_tz.tz_minuteswest != 0) {
1425  		struct timespec64 adjust;
1426  
1427  		persistent_clock_is_local = 1;
1428  		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1429  		adjust.tv_nsec = 0;
1430  		timekeeping_inject_offset(&adjust);
1431  	}
1432  }
1433  
1434  /*
1435   * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1436   */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1437  static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1438  {
1439  	tk->tai_offset = tai_offset;
1440  	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1441  }
1442  
1443  /*
1444   * change_clocksource - Swaps clocksources if a new one is available
1445   *
1446   * Accumulates current time interval and initializes new clocksource
1447   */
change_clocksource(void * data)1448  static int change_clocksource(void *data)
1449  {
1450  	struct timekeeper *tk = &tk_core.timekeeper;
1451  	struct clocksource *new, *old = NULL;
1452  	unsigned long flags;
1453  	bool change = false;
1454  
1455  	new = (struct clocksource *) data;
1456  
1457  	/*
1458  	 * If the cs is in module, get a module reference. Succeeds
1459  	 * for built-in code (owner == NULL) as well.
1460  	 */
1461  	if (try_module_get(new->owner)) {
1462  		if (!new->enable || new->enable(new) == 0)
1463  			change = true;
1464  		else
1465  			module_put(new->owner);
1466  	}
1467  
1468  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1469  	write_seqcount_begin(&tk_core.seq);
1470  
1471  	timekeeping_forward_now(tk);
1472  
1473  	if (change) {
1474  		old = tk->tkr_mono.clock;
1475  		tk_setup_internals(tk, new);
1476  	}
1477  
1478  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1479  
1480  	write_seqcount_end(&tk_core.seq);
1481  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1482  
1483  	if (old) {
1484  		if (old->disable)
1485  			old->disable(old);
1486  
1487  		module_put(old->owner);
1488  	}
1489  
1490  	return 0;
1491  }
1492  
1493  /**
1494   * timekeeping_notify - Install a new clock source
1495   * @clock:		pointer to the clock source
1496   *
1497   * This function is called from clocksource.c after a new, better clock
1498   * source has been registered. The caller holds the clocksource_mutex.
1499   */
timekeeping_notify(struct clocksource * clock)1500  int timekeeping_notify(struct clocksource *clock)
1501  {
1502  	struct timekeeper *tk = &tk_core.timekeeper;
1503  
1504  	if (tk->tkr_mono.clock == clock)
1505  		return 0;
1506  	stop_machine(change_clocksource, clock, NULL);
1507  	tick_clock_notify();
1508  	return tk->tkr_mono.clock == clock ? 0 : -1;
1509  }
1510  
1511  /**
1512   * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1513   * @ts:		pointer to the timespec64 to be set
1514   *
1515   * Returns the raw monotonic time (completely un-modified by ntp)
1516   */
ktime_get_raw_ts64(struct timespec64 * ts)1517  void ktime_get_raw_ts64(struct timespec64 *ts)
1518  {
1519  	struct timekeeper *tk = &tk_core.timekeeper;
1520  	unsigned int seq;
1521  	u64 nsecs;
1522  
1523  	do {
1524  		seq = read_seqcount_begin(&tk_core.seq);
1525  		ts->tv_sec = tk->raw_sec;
1526  		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1527  
1528  	} while (read_seqcount_retry(&tk_core.seq, seq));
1529  
1530  	ts->tv_nsec = 0;
1531  	timespec64_add_ns(ts, nsecs);
1532  }
1533  EXPORT_SYMBOL(ktime_get_raw_ts64);
1534  
1535  
1536  /**
1537   * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1538   */
timekeeping_valid_for_hres(void)1539  int timekeeping_valid_for_hres(void)
1540  {
1541  	struct timekeeper *tk = &tk_core.timekeeper;
1542  	unsigned int seq;
1543  	int ret;
1544  
1545  	do {
1546  		seq = read_seqcount_begin(&tk_core.seq);
1547  
1548  		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1549  
1550  	} while (read_seqcount_retry(&tk_core.seq, seq));
1551  
1552  	return ret;
1553  }
1554  
1555  /**
1556   * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1557   */
timekeeping_max_deferment(void)1558  u64 timekeeping_max_deferment(void)
1559  {
1560  	struct timekeeper *tk = &tk_core.timekeeper;
1561  	unsigned int seq;
1562  	u64 ret;
1563  
1564  	do {
1565  		seq = read_seqcount_begin(&tk_core.seq);
1566  
1567  		ret = tk->tkr_mono.clock->max_idle_ns;
1568  
1569  	} while (read_seqcount_retry(&tk_core.seq, seq));
1570  
1571  	return ret;
1572  }
1573  
1574  /**
1575   * read_persistent_clock64 -  Return time from the persistent clock.
1576   * @ts: Pointer to the storage for the readout value
1577   *
1578   * Weak dummy function for arches that do not yet support it.
1579   * Reads the time from the battery backed persistent clock.
1580   * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1581   *
1582   *  XXX - Do be sure to remove it once all arches implement it.
1583   */
read_persistent_clock64(struct timespec64 * ts)1584  void __weak read_persistent_clock64(struct timespec64 *ts)
1585  {
1586  	ts->tv_sec = 0;
1587  	ts->tv_nsec = 0;
1588  }
1589  
1590  /**
1591   * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1592   *                                        from the boot.
1593   * @wall_time:	  current time as returned by persistent clock
1594   * @boot_offset:  offset that is defined as wall_time - boot_time
1595   *
1596   * Weak dummy function for arches that do not yet support it.
1597   *
1598   * The default function calculates offset based on the current value of
1599   * local_clock(). This way architectures that support sched_clock() but don't
1600   * support dedicated boot time clock will provide the best estimate of the
1601   * boot time.
1602   */
1603  void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1604  read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1605  				     struct timespec64 *boot_offset)
1606  {
1607  	read_persistent_clock64(wall_time);
1608  	*boot_offset = ns_to_timespec64(local_clock());
1609  }
1610  
1611  /*
1612   * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1613   *
1614   * The flag starts of false and is only set when a suspend reaches
1615   * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1616   * timekeeper clocksource is not stopping across suspend and has been
1617   * used to update sleep time. If the timekeeper clocksource has stopped
1618   * then the flag stays true and is used by the RTC resume code to decide
1619   * whether sleeptime must be injected and if so the flag gets false then.
1620   *
1621   * If a suspend fails before reaching timekeeping_resume() then the flag
1622   * stays false and prevents erroneous sleeptime injection.
1623   */
1624  static bool suspend_timing_needed;
1625  
1626  /* Flag for if there is a persistent clock on this platform */
1627  static bool persistent_clock_exists;
1628  
1629  /*
1630   * timekeeping_init - Initializes the clocksource and common timekeeping values
1631   */
timekeeping_init(void)1632  void __init timekeeping_init(void)
1633  {
1634  	struct timespec64 wall_time, boot_offset, wall_to_mono;
1635  	struct timekeeper *tk = &tk_core.timekeeper;
1636  	struct clocksource *clock;
1637  	unsigned long flags;
1638  
1639  	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1640  	if (timespec64_valid_settod(&wall_time) &&
1641  	    timespec64_to_ns(&wall_time) > 0) {
1642  		persistent_clock_exists = true;
1643  	} else if (timespec64_to_ns(&wall_time) != 0) {
1644  		pr_warn("Persistent clock returned invalid value");
1645  		wall_time = (struct timespec64){0};
1646  	}
1647  
1648  	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1649  		boot_offset = (struct timespec64){0};
1650  
1651  	/*
1652  	 * We want set wall_to_mono, so the following is true:
1653  	 * wall time + wall_to_mono = boot time
1654  	 */
1655  	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1656  
1657  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1658  	write_seqcount_begin(&tk_core.seq);
1659  	ntp_init();
1660  
1661  	clock = clocksource_default_clock();
1662  	if (clock->enable)
1663  		clock->enable(clock);
1664  	tk_setup_internals(tk, clock);
1665  
1666  	tk_set_xtime(tk, &wall_time);
1667  	tk->raw_sec = 0;
1668  
1669  	tk_set_wall_to_mono(tk, wall_to_mono);
1670  
1671  	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1672  
1673  	write_seqcount_end(&tk_core.seq);
1674  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1675  }
1676  
1677  /* time in seconds when suspend began for persistent clock */
1678  static struct timespec64 timekeeping_suspend_time;
1679  
1680  /**
1681   * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1682   * @tk:		Pointer to the timekeeper to be updated
1683   * @delta:	Pointer to the delta value in timespec64 format
1684   *
1685   * Takes a timespec offset measuring a suspend interval and properly
1686   * adds the sleep offset to the timekeeping variables.
1687   */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1688  static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1689  					   const struct timespec64 *delta)
1690  {
1691  	if (!timespec64_valid_strict(delta)) {
1692  		printk_deferred(KERN_WARNING
1693  				"__timekeeping_inject_sleeptime: Invalid "
1694  				"sleep delta value!\n");
1695  		return;
1696  	}
1697  	tk_xtime_add(tk, delta);
1698  	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1699  	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1700  	tk_debug_account_sleep_time(delta);
1701  }
1702  
1703  #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1704  /*
1705   * We have three kinds of time sources to use for sleep time
1706   * injection, the preference order is:
1707   * 1) non-stop clocksource
1708   * 2) persistent clock (ie: RTC accessible when irqs are off)
1709   * 3) RTC
1710   *
1711   * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1712   * If system has neither 1) nor 2), 3) will be used finally.
1713   *
1714   *
1715   * If timekeeping has injected sleeptime via either 1) or 2),
1716   * 3) becomes needless, so in this case we don't need to call
1717   * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1718   * means.
1719   */
timekeeping_rtc_skipresume(void)1720  bool timekeeping_rtc_skipresume(void)
1721  {
1722  	return !suspend_timing_needed;
1723  }
1724  
1725  /*
1726   * 1) can be determined whether to use or not only when doing
1727   * timekeeping_resume() which is invoked after rtc_suspend(),
1728   * so we can't skip rtc_suspend() surely if system has 1).
1729   *
1730   * But if system has 2), 2) will definitely be used, so in this
1731   * case we don't need to call rtc_suspend(), and this is what
1732   * timekeeping_rtc_skipsuspend() means.
1733   */
timekeeping_rtc_skipsuspend(void)1734  bool timekeeping_rtc_skipsuspend(void)
1735  {
1736  	return persistent_clock_exists;
1737  }
1738  
1739  /**
1740   * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1741   * @delta: pointer to a timespec64 delta value
1742   *
1743   * This hook is for architectures that cannot support read_persistent_clock64
1744   * because their RTC/persistent clock is only accessible when irqs are enabled.
1745   * and also don't have an effective nonstop clocksource.
1746   *
1747   * This function should only be called by rtc_resume(), and allows
1748   * a suspend offset to be injected into the timekeeping values.
1749   */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1750  void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1751  {
1752  	struct timekeeper *tk = &tk_core.timekeeper;
1753  	unsigned long flags;
1754  
1755  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1756  	write_seqcount_begin(&tk_core.seq);
1757  
1758  	suspend_timing_needed = false;
1759  
1760  	timekeeping_forward_now(tk);
1761  
1762  	__timekeeping_inject_sleeptime(tk, delta);
1763  
1764  	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1765  
1766  	write_seqcount_end(&tk_core.seq);
1767  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1768  
1769  	/* Signal hrtimers about time change */
1770  	clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT);
1771  }
1772  #endif
1773  
1774  /**
1775   * timekeeping_resume - Resumes the generic timekeeping subsystem.
1776   */
timekeeping_resume(void)1777  void timekeeping_resume(void)
1778  {
1779  	struct timekeeper *tk = &tk_core.timekeeper;
1780  	struct clocksource *clock = tk->tkr_mono.clock;
1781  	unsigned long flags;
1782  	struct timespec64 ts_new, ts_delta;
1783  	u64 cycle_now, nsec;
1784  	bool inject_sleeptime = false;
1785  
1786  	read_persistent_clock64(&ts_new);
1787  
1788  	clockevents_resume();
1789  	clocksource_resume();
1790  
1791  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1792  	write_seqcount_begin(&tk_core.seq);
1793  
1794  	/*
1795  	 * After system resumes, we need to calculate the suspended time and
1796  	 * compensate it for the OS time. There are 3 sources that could be
1797  	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1798  	 * device.
1799  	 *
1800  	 * One specific platform may have 1 or 2 or all of them, and the
1801  	 * preference will be:
1802  	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1803  	 * The less preferred source will only be tried if there is no better
1804  	 * usable source. The rtc part is handled separately in rtc core code.
1805  	 */
1806  	cycle_now = tk_clock_read(&tk->tkr_mono);
1807  	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1808  	if (nsec > 0) {
1809  		ts_delta = ns_to_timespec64(nsec);
1810  		inject_sleeptime = true;
1811  	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1812  		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1813  		inject_sleeptime = true;
1814  	}
1815  
1816  	if (inject_sleeptime) {
1817  		suspend_timing_needed = false;
1818  		__timekeeping_inject_sleeptime(tk, &ts_delta);
1819  	}
1820  
1821  	/* Re-base the last cycle value */
1822  	tk->tkr_mono.cycle_last = cycle_now;
1823  	tk->tkr_raw.cycle_last  = cycle_now;
1824  
1825  	tk->ntp_error = 0;
1826  	timekeeping_suspended = 0;
1827  	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1828  	write_seqcount_end(&tk_core.seq);
1829  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1830  
1831  	touch_softlockup_watchdog();
1832  
1833  	/* Resume the clockevent device(s) and hrtimers */
1834  	tick_resume();
1835  	/* Notify timerfd as resume is equivalent to clock_was_set() */
1836  	timerfd_resume();
1837  }
1838  
timekeeping_suspend(void)1839  int timekeeping_suspend(void)
1840  {
1841  	struct timekeeper *tk = &tk_core.timekeeper;
1842  	unsigned long flags;
1843  	struct timespec64		delta, delta_delta;
1844  	static struct timespec64	old_delta;
1845  	struct clocksource *curr_clock;
1846  	u64 cycle_now;
1847  
1848  	read_persistent_clock64(&timekeeping_suspend_time);
1849  
1850  	/*
1851  	 * On some systems the persistent_clock can not be detected at
1852  	 * timekeeping_init by its return value, so if we see a valid
1853  	 * value returned, update the persistent_clock_exists flag.
1854  	 */
1855  	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1856  		persistent_clock_exists = true;
1857  
1858  	suspend_timing_needed = true;
1859  
1860  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861  	write_seqcount_begin(&tk_core.seq);
1862  	timekeeping_forward_now(tk);
1863  	timekeeping_suspended = 1;
1864  
1865  	/*
1866  	 * Since we've called forward_now, cycle_last stores the value
1867  	 * just read from the current clocksource. Save this to potentially
1868  	 * use in suspend timing.
1869  	 */
1870  	curr_clock = tk->tkr_mono.clock;
1871  	cycle_now = tk->tkr_mono.cycle_last;
1872  	clocksource_start_suspend_timing(curr_clock, cycle_now);
1873  
1874  	if (persistent_clock_exists) {
1875  		/*
1876  		 * To avoid drift caused by repeated suspend/resumes,
1877  		 * which each can add ~1 second drift error,
1878  		 * try to compensate so the difference in system time
1879  		 * and persistent_clock time stays close to constant.
1880  		 */
1881  		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1882  		delta_delta = timespec64_sub(delta, old_delta);
1883  		if (abs(delta_delta.tv_sec) >= 2) {
1884  			/*
1885  			 * if delta_delta is too large, assume time correction
1886  			 * has occurred and set old_delta to the current delta.
1887  			 */
1888  			old_delta = delta;
1889  		} else {
1890  			/* Otherwise try to adjust old_system to compensate */
1891  			timekeeping_suspend_time =
1892  				timespec64_add(timekeeping_suspend_time, delta_delta);
1893  		}
1894  	}
1895  
1896  	timekeeping_update(tk, TK_MIRROR);
1897  	halt_fast_timekeeper(tk);
1898  	write_seqcount_end(&tk_core.seq);
1899  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1900  
1901  	tick_suspend();
1902  	clocksource_suspend();
1903  	clockevents_suspend();
1904  
1905  	return 0;
1906  }
1907  
1908  /* sysfs resume/suspend bits for timekeeping */
1909  static struct syscore_ops timekeeping_syscore_ops = {
1910  	.resume		= timekeeping_resume,
1911  	.suspend	= timekeeping_suspend,
1912  };
1913  
timekeeping_init_ops(void)1914  static int __init timekeeping_init_ops(void)
1915  {
1916  	register_syscore_ops(&timekeeping_syscore_ops);
1917  	return 0;
1918  }
1919  device_initcall(timekeeping_init_ops);
1920  
1921  /*
1922   * Apply a multiplier adjustment to the timekeeper
1923   */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1924  static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1925  							 s64 offset,
1926  							 s32 mult_adj)
1927  {
1928  	s64 interval = tk->cycle_interval;
1929  
1930  	if (mult_adj == 0) {
1931  		return;
1932  	} else if (mult_adj == -1) {
1933  		interval = -interval;
1934  		offset = -offset;
1935  	} else if (mult_adj != 1) {
1936  		interval *= mult_adj;
1937  		offset *= mult_adj;
1938  	}
1939  
1940  	/*
1941  	 * So the following can be confusing.
1942  	 *
1943  	 * To keep things simple, lets assume mult_adj == 1 for now.
1944  	 *
1945  	 * When mult_adj != 1, remember that the interval and offset values
1946  	 * have been appropriately scaled so the math is the same.
1947  	 *
1948  	 * The basic idea here is that we're increasing the multiplier
1949  	 * by one, this causes the xtime_interval to be incremented by
1950  	 * one cycle_interval. This is because:
1951  	 *	xtime_interval = cycle_interval * mult
1952  	 * So if mult is being incremented by one:
1953  	 *	xtime_interval = cycle_interval * (mult + 1)
1954  	 * Its the same as:
1955  	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1956  	 * Which can be shortened to:
1957  	 *	xtime_interval += cycle_interval
1958  	 *
1959  	 * So offset stores the non-accumulated cycles. Thus the current
1960  	 * time (in shifted nanoseconds) is:
1961  	 *	now = (offset * adj) + xtime_nsec
1962  	 * Now, even though we're adjusting the clock frequency, we have
1963  	 * to keep time consistent. In other words, we can't jump back
1964  	 * in time, and we also want to avoid jumping forward in time.
1965  	 *
1966  	 * So given the same offset value, we need the time to be the same
1967  	 * both before and after the freq adjustment.
1968  	 *	now = (offset * adj_1) + xtime_nsec_1
1969  	 *	now = (offset * adj_2) + xtime_nsec_2
1970  	 * So:
1971  	 *	(offset * adj_1) + xtime_nsec_1 =
1972  	 *		(offset * adj_2) + xtime_nsec_2
1973  	 * And we know:
1974  	 *	adj_2 = adj_1 + 1
1975  	 * So:
1976  	 *	(offset * adj_1) + xtime_nsec_1 =
1977  	 *		(offset * (adj_1+1)) + xtime_nsec_2
1978  	 *	(offset * adj_1) + xtime_nsec_1 =
1979  	 *		(offset * adj_1) + offset + xtime_nsec_2
1980  	 * Canceling the sides:
1981  	 *	xtime_nsec_1 = offset + xtime_nsec_2
1982  	 * Which gives us:
1983  	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1984  	 * Which simplifies to:
1985  	 *	xtime_nsec -= offset
1986  	 */
1987  	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1988  		/* NTP adjustment caused clocksource mult overflow */
1989  		WARN_ON_ONCE(1);
1990  		return;
1991  	}
1992  
1993  	tk->tkr_mono.mult += mult_adj;
1994  	tk->xtime_interval += interval;
1995  	tk->tkr_mono.xtime_nsec -= offset;
1996  }
1997  
1998  /*
1999   * Adjust the timekeeper's multiplier to the correct frequency
2000   * and also to reduce the accumulated error value.
2001   */
timekeeping_adjust(struct timekeeper * tk,s64 offset)2002  static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
2003  {
2004  	u32 mult;
2005  
2006  	/*
2007  	 * Determine the multiplier from the current NTP tick length.
2008  	 * Avoid expensive division when the tick length doesn't change.
2009  	 */
2010  	if (likely(tk->ntp_tick == ntp_tick_length())) {
2011  		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
2012  	} else {
2013  		tk->ntp_tick = ntp_tick_length();
2014  		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
2015  				 tk->xtime_remainder, tk->cycle_interval);
2016  	}
2017  
2018  	/*
2019  	 * If the clock is behind the NTP time, increase the multiplier by 1
2020  	 * to catch up with it. If it's ahead and there was a remainder in the
2021  	 * tick division, the clock will slow down. Otherwise it will stay
2022  	 * ahead until the tick length changes to a non-divisible value.
2023  	 */
2024  	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
2025  	mult += tk->ntp_err_mult;
2026  
2027  	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
2028  
2029  	if (unlikely(tk->tkr_mono.clock->maxadj &&
2030  		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
2031  			> tk->tkr_mono.clock->maxadj))) {
2032  		printk_once(KERN_WARNING
2033  			"Adjusting %s more than 11%% (%ld vs %ld)\n",
2034  			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
2035  			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
2036  	}
2037  
2038  	/*
2039  	 * It may be possible that when we entered this function, xtime_nsec
2040  	 * was very small.  Further, if we're slightly speeding the clocksource
2041  	 * in the code above, its possible the required corrective factor to
2042  	 * xtime_nsec could cause it to underflow.
2043  	 *
2044  	 * Now, since we have already accumulated the second and the NTP
2045  	 * subsystem has been notified via second_overflow(), we need to skip
2046  	 * the next update.
2047  	 */
2048  	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
2049  		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
2050  							tk->tkr_mono.shift;
2051  		tk->xtime_sec--;
2052  		tk->skip_second_overflow = 1;
2053  	}
2054  }
2055  
2056  /*
2057   * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2058   *
2059   * Helper function that accumulates the nsecs greater than a second
2060   * from the xtime_nsec field to the xtime_secs field.
2061   * It also calls into the NTP code to handle leapsecond processing.
2062   */
accumulate_nsecs_to_secs(struct timekeeper * tk)2063  static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
2064  {
2065  	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
2066  	unsigned int clock_set = 0;
2067  
2068  	while (tk->tkr_mono.xtime_nsec >= nsecps) {
2069  		int leap;
2070  
2071  		tk->tkr_mono.xtime_nsec -= nsecps;
2072  		tk->xtime_sec++;
2073  
2074  		/*
2075  		 * Skip NTP update if this second was accumulated before,
2076  		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2077  		 */
2078  		if (unlikely(tk->skip_second_overflow)) {
2079  			tk->skip_second_overflow = 0;
2080  			continue;
2081  		}
2082  
2083  		/* Figure out if its a leap sec and apply if needed */
2084  		leap = second_overflow(tk->xtime_sec);
2085  		if (unlikely(leap)) {
2086  			struct timespec64 ts;
2087  
2088  			tk->xtime_sec += leap;
2089  
2090  			ts.tv_sec = leap;
2091  			ts.tv_nsec = 0;
2092  			tk_set_wall_to_mono(tk,
2093  				timespec64_sub(tk->wall_to_monotonic, ts));
2094  
2095  			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2096  
2097  			clock_set = TK_CLOCK_WAS_SET;
2098  		}
2099  	}
2100  	return clock_set;
2101  }
2102  
2103  /*
2104   * logarithmic_accumulation - shifted accumulation of cycles
2105   *
2106   * This functions accumulates a shifted interval of cycles into
2107   * a shifted interval nanoseconds. Allows for O(log) accumulation
2108   * loop.
2109   *
2110   * Returns the unconsumed cycles.
2111   */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2112  static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2113  				    u32 shift, unsigned int *clock_set)
2114  {
2115  	u64 interval = tk->cycle_interval << shift;
2116  	u64 snsec_per_sec;
2117  
2118  	/* If the offset is smaller than a shifted interval, do nothing */
2119  	if (offset < interval)
2120  		return offset;
2121  
2122  	/* Accumulate one shifted interval */
2123  	offset -= interval;
2124  	tk->tkr_mono.cycle_last += interval;
2125  	tk->tkr_raw.cycle_last  += interval;
2126  
2127  	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2128  	*clock_set |= accumulate_nsecs_to_secs(tk);
2129  
2130  	/* Accumulate raw time */
2131  	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2132  	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2133  	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2134  		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2135  		tk->raw_sec++;
2136  	}
2137  
2138  	/* Accumulate error between NTP and clock interval */
2139  	tk->ntp_error += tk->ntp_tick << shift;
2140  	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2141  						(tk->ntp_error_shift + shift);
2142  
2143  	return offset;
2144  }
2145  
2146  /*
2147   * timekeeping_advance - Updates the timekeeper to the current time and
2148   * current NTP tick length
2149   */
timekeeping_advance(enum timekeeping_adv_mode mode)2150  static bool timekeeping_advance(enum timekeeping_adv_mode mode)
2151  {
2152  	struct timekeeper *real_tk = &tk_core.timekeeper;
2153  	struct timekeeper *tk = &shadow_timekeeper;
2154  	u64 offset;
2155  	int shift = 0, maxshift;
2156  	unsigned int clock_set = 0;
2157  	unsigned long flags;
2158  
2159  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2160  
2161  	/* Make sure we're fully resumed: */
2162  	if (unlikely(timekeeping_suspended))
2163  		goto out;
2164  
2165  	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2166  				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2167  
2168  	/* Check if there's really nothing to do */
2169  	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2170  		goto out;
2171  
2172  	/* Do some additional sanity checking */
2173  	timekeeping_check_update(tk, offset);
2174  
2175  	/*
2176  	 * With NO_HZ we may have to accumulate many cycle_intervals
2177  	 * (think "ticks") worth of time at once. To do this efficiently,
2178  	 * we calculate the largest doubling multiple of cycle_intervals
2179  	 * that is smaller than the offset.  We then accumulate that
2180  	 * chunk in one go, and then try to consume the next smaller
2181  	 * doubled multiple.
2182  	 */
2183  	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2184  	shift = max(0, shift);
2185  	/* Bound shift to one less than what overflows tick_length */
2186  	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2187  	shift = min(shift, maxshift);
2188  	while (offset >= tk->cycle_interval) {
2189  		offset = logarithmic_accumulation(tk, offset, shift,
2190  							&clock_set);
2191  		if (offset < tk->cycle_interval<<shift)
2192  			shift--;
2193  	}
2194  
2195  	/* Adjust the multiplier to correct NTP error */
2196  	timekeeping_adjust(tk, offset);
2197  
2198  	/*
2199  	 * Finally, make sure that after the rounding
2200  	 * xtime_nsec isn't larger than NSEC_PER_SEC
2201  	 */
2202  	clock_set |= accumulate_nsecs_to_secs(tk);
2203  
2204  	write_seqcount_begin(&tk_core.seq);
2205  	/*
2206  	 * Update the real timekeeper.
2207  	 *
2208  	 * We could avoid this memcpy by switching pointers, but that
2209  	 * requires changes to all other timekeeper usage sites as
2210  	 * well, i.e. move the timekeeper pointer getter into the
2211  	 * spinlocked/seqcount protected sections. And we trade this
2212  	 * memcpy under the tk_core.seq against one before we start
2213  	 * updating.
2214  	 */
2215  	timekeeping_update(tk, clock_set);
2216  	memcpy(real_tk, tk, sizeof(*tk));
2217  	/* The memcpy must come last. Do not put anything here! */
2218  	write_seqcount_end(&tk_core.seq);
2219  out:
2220  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2221  
2222  	return !!clock_set;
2223  }
2224  
2225  /**
2226   * update_wall_time - Uses the current clocksource to increment the wall time
2227   *
2228   */
update_wall_time(void)2229  void update_wall_time(void)
2230  {
2231  	if (timekeeping_advance(TK_ADV_TICK))
2232  		clock_was_set_delayed();
2233  }
2234  
2235  /**
2236   * getboottime64 - Return the real time of system boot.
2237   * @ts:		pointer to the timespec64 to be set
2238   *
2239   * Returns the wall-time of boot in a timespec64.
2240   *
2241   * This is based on the wall_to_monotonic offset and the total suspend
2242   * time. Calls to settimeofday will affect the value returned (which
2243   * basically means that however wrong your real time clock is at boot time,
2244   * you get the right time here).
2245   */
getboottime64(struct timespec64 * ts)2246  void getboottime64(struct timespec64 *ts)
2247  {
2248  	struct timekeeper *tk = &tk_core.timekeeper;
2249  	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2250  
2251  	*ts = ktime_to_timespec64(t);
2252  }
2253  EXPORT_SYMBOL_GPL(getboottime64);
2254  
ktime_get_coarse_real_ts64(struct timespec64 * ts)2255  void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2256  {
2257  	struct timekeeper *tk = &tk_core.timekeeper;
2258  	unsigned int seq;
2259  
2260  	do {
2261  		seq = read_seqcount_begin(&tk_core.seq);
2262  
2263  		*ts = tk_xtime(tk);
2264  	} while (read_seqcount_retry(&tk_core.seq, seq));
2265  }
2266  EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2267  
ktime_get_coarse_ts64(struct timespec64 * ts)2268  void ktime_get_coarse_ts64(struct timespec64 *ts)
2269  {
2270  	struct timekeeper *tk = &tk_core.timekeeper;
2271  	struct timespec64 now, mono;
2272  	unsigned int seq;
2273  
2274  	do {
2275  		seq = read_seqcount_begin(&tk_core.seq);
2276  
2277  		now = tk_xtime(tk);
2278  		mono = tk->wall_to_monotonic;
2279  	} while (read_seqcount_retry(&tk_core.seq, seq));
2280  
2281  	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2282  				now.tv_nsec + mono.tv_nsec);
2283  }
2284  EXPORT_SYMBOL(ktime_get_coarse_ts64);
2285  
2286  /*
2287   * Must hold jiffies_lock
2288   */
do_timer(unsigned long ticks)2289  void do_timer(unsigned long ticks)
2290  {
2291  	jiffies_64 += ticks;
2292  	calc_global_load();
2293  }
2294  
2295  /**
2296   * ktime_get_update_offsets_now - hrtimer helper
2297   * @cwsseq:	pointer to check and store the clock was set sequence number
2298   * @offs_real:	pointer to storage for monotonic -> realtime offset
2299   * @offs_boot:	pointer to storage for monotonic -> boottime offset
2300   * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2301   *
2302   * Returns current monotonic time and updates the offsets if the
2303   * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2304   * different.
2305   *
2306   * Called from hrtimer_interrupt() or retrigger_next_event()
2307   */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2308  ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2309  				     ktime_t *offs_boot, ktime_t *offs_tai)
2310  {
2311  	struct timekeeper *tk = &tk_core.timekeeper;
2312  	unsigned int seq;
2313  	ktime_t base;
2314  	u64 nsecs;
2315  
2316  	do {
2317  		seq = read_seqcount_begin(&tk_core.seq);
2318  
2319  		base = tk->tkr_mono.base;
2320  		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2321  		base = ktime_add_ns(base, nsecs);
2322  
2323  		if (*cwsseq != tk->clock_was_set_seq) {
2324  			*cwsseq = tk->clock_was_set_seq;
2325  			*offs_real = tk->offs_real;
2326  			*offs_boot = tk->offs_boot;
2327  			*offs_tai = tk->offs_tai;
2328  		}
2329  
2330  		/* Handle leapsecond insertion adjustments */
2331  		if (unlikely(base >= tk->next_leap_ktime))
2332  			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2333  
2334  	} while (read_seqcount_retry(&tk_core.seq, seq));
2335  
2336  	return base;
2337  }
2338  
2339  /*
2340   * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2341   */
timekeeping_validate_timex(const struct __kernel_timex * txc)2342  static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2343  {
2344  	if (txc->modes & ADJ_ADJTIME) {
2345  		/* singleshot must not be used with any other mode bits */
2346  		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2347  			return -EINVAL;
2348  		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2349  		    !capable(CAP_SYS_TIME))
2350  			return -EPERM;
2351  	} else {
2352  		/* In order to modify anything, you gotta be super-user! */
2353  		if (txc->modes && !capable(CAP_SYS_TIME))
2354  			return -EPERM;
2355  		/*
2356  		 * if the quartz is off by more than 10% then
2357  		 * something is VERY wrong!
2358  		 */
2359  		if (txc->modes & ADJ_TICK &&
2360  		    (txc->tick <  900000/USER_HZ ||
2361  		     txc->tick > 1100000/USER_HZ))
2362  			return -EINVAL;
2363  	}
2364  
2365  	if (txc->modes & ADJ_SETOFFSET) {
2366  		/* In order to inject time, you gotta be super-user! */
2367  		if (!capable(CAP_SYS_TIME))
2368  			return -EPERM;
2369  
2370  		/*
2371  		 * Validate if a timespec/timeval used to inject a time
2372  		 * offset is valid.  Offsets can be positive or negative, so
2373  		 * we don't check tv_sec. The value of the timeval/timespec
2374  		 * is the sum of its fields,but *NOTE*:
2375  		 * The field tv_usec/tv_nsec must always be non-negative and
2376  		 * we can't have more nanoseconds/microseconds than a second.
2377  		 */
2378  		if (txc->time.tv_usec < 0)
2379  			return -EINVAL;
2380  
2381  		if (txc->modes & ADJ_NANO) {
2382  			if (txc->time.tv_usec >= NSEC_PER_SEC)
2383  				return -EINVAL;
2384  		} else {
2385  			if (txc->time.tv_usec >= USEC_PER_SEC)
2386  				return -EINVAL;
2387  		}
2388  	}
2389  
2390  	/*
2391  	 * Check for potential multiplication overflows that can
2392  	 * only happen on 64-bit systems:
2393  	 */
2394  	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2395  		if (LLONG_MIN / PPM_SCALE > txc->freq)
2396  			return -EINVAL;
2397  		if (LLONG_MAX / PPM_SCALE < txc->freq)
2398  			return -EINVAL;
2399  	}
2400  
2401  	return 0;
2402  }
2403  
2404  /**
2405   * random_get_entropy_fallback - Returns the raw clock source value,
2406   * used by random.c for platforms with no valid random_get_entropy().
2407   */
random_get_entropy_fallback(void)2408  unsigned long random_get_entropy_fallback(void)
2409  {
2410  	struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
2411  	struct clocksource *clock = READ_ONCE(tkr->clock);
2412  
2413  	if (unlikely(timekeeping_suspended || !clock))
2414  		return 0;
2415  	return clock->read(clock);
2416  }
2417  EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
2418  
2419  /**
2420   * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2421   */
do_adjtimex(struct __kernel_timex * txc)2422  int do_adjtimex(struct __kernel_timex *txc)
2423  {
2424  	struct timekeeper *tk = &tk_core.timekeeper;
2425  	struct audit_ntp_data ad;
2426  	bool clock_set = false;
2427  	struct timespec64 ts;
2428  	unsigned long flags;
2429  	s32 orig_tai, tai;
2430  	int ret;
2431  
2432  	/* Validate the data before disabling interrupts */
2433  	ret = timekeeping_validate_timex(txc);
2434  	if (ret)
2435  		return ret;
2436  	add_device_randomness(txc, sizeof(*txc));
2437  
2438  	if (txc->modes & ADJ_SETOFFSET) {
2439  		struct timespec64 delta;
2440  		delta.tv_sec  = txc->time.tv_sec;
2441  		delta.tv_nsec = txc->time.tv_usec;
2442  		if (!(txc->modes & ADJ_NANO))
2443  			delta.tv_nsec *= 1000;
2444  		ret = timekeeping_inject_offset(&delta);
2445  		if (ret)
2446  			return ret;
2447  
2448  		audit_tk_injoffset(delta);
2449  	}
2450  
2451  	audit_ntp_init(&ad);
2452  
2453  	ktime_get_real_ts64(&ts);
2454  	add_device_randomness(&ts, sizeof(ts));
2455  
2456  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2457  	write_seqcount_begin(&tk_core.seq);
2458  
2459  	orig_tai = tai = tk->tai_offset;
2460  	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2461  
2462  	if (tai != orig_tai) {
2463  		__timekeeping_set_tai_offset(tk, tai);
2464  		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2465  		clock_set = true;
2466  	}
2467  	tk_update_leap_state(tk);
2468  
2469  	write_seqcount_end(&tk_core.seq);
2470  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2471  
2472  	audit_ntp_log(&ad);
2473  
2474  	/* Update the multiplier immediately if frequency was set directly */
2475  	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2476  		clock_set |= timekeeping_advance(TK_ADV_FREQ);
2477  
2478  	if (clock_set)
2479  		clock_was_set(CLOCK_SET_WALL);
2480  
2481  	ntp_notify_cmos_timer();
2482  
2483  	return ret;
2484  }
2485  
2486  #ifdef CONFIG_NTP_PPS
2487  /**
2488   * hardpps() - Accessor function to NTP __hardpps function
2489   */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2490  void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2491  {
2492  	unsigned long flags;
2493  
2494  	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2495  	write_seqcount_begin(&tk_core.seq);
2496  
2497  	__hardpps(phase_ts, raw_ts);
2498  
2499  	write_seqcount_end(&tk_core.seq);
2500  	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2501  }
2502  EXPORT_SYMBOL(hardpps);
2503  #endif /* CONFIG_NTP_PPS */
2504