1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "exec/exec-all.h"
4 #include "sysemu/kvm.h"
5 #include "sysemu/tcg.h"
6 #include "helper_regs.h"
7 #include "mmu-hash64.h"
8 #include "migration/cpu.h"
9 #include "qapi/error.h"
10 #include "kvm_ppc.h"
11 #include "power8-pmu.h"
12 #include "sysemu/replay.h"
13
post_load_update_msr(CPUPPCState * env)14 static void post_load_update_msr(CPUPPCState *env)
15 {
16 target_ulong msr = env->msr;
17
18 /*
19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
20 * before restoring. Note that this recomputes hflags.
21 */
22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
23 ppc_store_msr(env, msr);
24 }
25
get_avr(QEMUFile * f,void * pv,size_t size,const VMStateField * field)26 static int get_avr(QEMUFile *f, void *pv, size_t size,
27 const VMStateField *field)
28 {
29 ppc_avr_t *v = pv;
30
31 v->u64[0] = qemu_get_be64(f);
32 v->u64[1] = qemu_get_be64(f);
33
34 return 0;
35 }
36
put_avr(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)37 static int put_avr(QEMUFile *f, void *pv, size_t size,
38 const VMStateField *field, JSONWriter *vmdesc)
39 {
40 ppc_avr_t *v = pv;
41
42 qemu_put_be64(f, v->u64[0]);
43 qemu_put_be64(f, v->u64[1]);
44 return 0;
45 }
46
47 static const VMStateInfo vmstate_info_avr = {
48 .name = "avr",
49 .get = get_avr,
50 .put = put_avr,
51 };
52
53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
54 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
55
56 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \
57 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
58
get_fpr(QEMUFile * f,void * pv,size_t size,const VMStateField * field)59 static int get_fpr(QEMUFile *f, void *pv, size_t size,
60 const VMStateField *field)
61 {
62 ppc_vsr_t *v = pv;
63
64 v->VsrD(0) = qemu_get_be64(f);
65
66 return 0;
67 }
68
put_fpr(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)69 static int put_fpr(QEMUFile *f, void *pv, size_t size,
70 const VMStateField *field, JSONWriter *vmdesc)
71 {
72 ppc_vsr_t *v = pv;
73
74 qemu_put_be64(f, v->VsrD(0));
75 return 0;
76 }
77
78 static const VMStateInfo vmstate_info_fpr = {
79 .name = "fpr",
80 .get = get_fpr,
81 .put = put_fpr,
82 };
83
84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
85 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
86
87 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \
88 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
89
get_vsr(QEMUFile * f,void * pv,size_t size,const VMStateField * field)90 static int get_vsr(QEMUFile *f, void *pv, size_t size,
91 const VMStateField *field)
92 {
93 ppc_vsr_t *v = pv;
94
95 v->VsrD(1) = qemu_get_be64(f);
96
97 return 0;
98 }
99
put_vsr(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)100 static int put_vsr(QEMUFile *f, void *pv, size_t size,
101 const VMStateField *field, JSONWriter *vmdesc)
102 {
103 ppc_vsr_t *v = pv;
104
105 qemu_put_be64(f, v->VsrD(1));
106 return 0;
107 }
108
109 static const VMStateInfo vmstate_info_vsr = {
110 .name = "vsr",
111 .get = get_vsr,
112 .put = put_vsr,
113 };
114
115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
116 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
117
118 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \
119 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
120
cpu_pre_2_8_migration(void * opaque,int version_id)121 static bool cpu_pre_2_8_migration(void *opaque, int version_id)
122 {
123 PowerPCCPU *cpu = opaque;
124
125 return cpu->pre_2_8_migration;
126 }
127
128 #if defined(TARGET_PPC64)
cpu_pre_3_0_migration(void * opaque,int version_id)129 static bool cpu_pre_3_0_migration(void *opaque, int version_id)
130 {
131 PowerPCCPU *cpu = opaque;
132
133 return cpu->pre_3_0_migration;
134 }
135 #endif
136
cpu_pre_save(void * opaque)137 static int cpu_pre_save(void *opaque)
138 {
139 PowerPCCPU *cpu = opaque;
140 CPUPPCState *env = &cpu->env;
141 int i;
142 uint64_t insns_compat_mask =
143 PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
144 | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
145 | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
146 | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
147 | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
148 | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
149 | PPC_64B | PPC_64BX | PPC_ALTIVEC
150 | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
151 uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
152 | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
153 | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
154 | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
155 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
156 | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM
157 | PPC2_MEM_LWSYNC;
158
159 env->spr[SPR_LR] = env->lr;
160 env->spr[SPR_CTR] = env->ctr;
161 env->spr[SPR_XER] = cpu_read_xer(env);
162 #if defined(TARGET_PPC64)
163 env->spr[SPR_CFAR] = env->cfar;
164 #endif
165 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
166
167 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
168 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
169 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
170 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
171 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
172 }
173 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
174 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
175 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
176 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
177 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
178 }
179
180 /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
181 if (cpu->pre_2_8_migration) {
182 /*
183 * Mask out bits that got added to msr_mask since the versions
184 * which stupidly included it in the migration stream.
185 */
186 target_ulong metamask = 0
187 #if defined(TARGET_PPC64)
188 | (1ULL << MSR_TS0)
189 | (1ULL << MSR_TS1)
190 #endif
191 ;
192 cpu->mig_msr_mask = env->msr_mask & ~metamask;
193 cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
194 /*
195 * CPU models supported by old machines all have
196 * PPC_MEM_TLBIE, so we set it unconditionally to allow
197 * backward migration from a POWER9 host to a POWER8 host.
198 */
199 cpu->mig_insns_flags |= PPC_MEM_TLBIE;
200 cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
201 cpu->mig_nb_BATs = env->nb_BATs;
202 }
203 if (cpu->pre_3_0_migration) {
204 if (cpu->hash64_opts) {
205 cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
206 }
207 }
208
209 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
210 env->hflags_compat_nmsr = 0;
211
212 if (tcg_enabled()) {
213 /*
214 * TCG does not maintain the DECR spr (unlike KVM) so have to save
215 * it here.
216 */
217 env->spr[SPR_DECR] = cpu_ppc_load_decr(env);
218 }
219
220 return 0;
221 }
222
223 /*
224 * Determine if a given PVR is a "close enough" match to the CPU
225 * object. For TCG and KVM PR it would probably be sufficient to
226 * require an exact PVR match. However for KVM HV the user is
227 * restricted to a PVR exactly matching the host CPU. The correct way
228 * to handle this is to put the guest into an architected
229 * compatibility mode. However, to allow a more forgiving transition
230 * and migration from before this was widely done, we allow migration
231 * between sufficiently similar PVRs, as determined by the CPU class's
232 * pvr_match() hook.
233 */
pvr_match(PowerPCCPU * cpu,uint32_t pvr)234 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
235 {
236 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
237
238 if (pvr == pcc->pvr) {
239 return true;
240 }
241 return pcc->pvr_match(pcc, pvr, true);
242 }
243
cpu_post_load(void * opaque,int version_id)244 static int cpu_post_load(void *opaque, int version_id)
245 {
246 PowerPCCPU *cpu = opaque;
247 CPUPPCState *env = &cpu->env;
248 int i;
249
250 /*
251 * If we're operating in compat mode, we should be ok as long as
252 * the destination supports the same compatibility mode.
253 *
254 * Otherwise, however, we require that the destination has exactly
255 * the same CPU model as the source.
256 */
257
258 #if defined(TARGET_PPC64)
259 if (cpu->compat_pvr) {
260 uint32_t compat_pvr = cpu->compat_pvr;
261 Error *local_err = NULL;
262 int ret;
263
264 cpu->compat_pvr = 0;
265 ret = ppc_set_compat(cpu, compat_pvr, &local_err);
266 if (ret < 0) {
267 error_report_err(local_err);
268 return ret;
269 }
270 } else
271 #endif
272 {
273 if (!pvr_match(cpu, env->spr[SPR_PVR])) {
274 return -EINVAL;
275 }
276 }
277
278 /*
279 * If we're running with KVM HV, there is a chance that the guest
280 * is running with KVM HV and its kernel does not have the
281 * capability of dealing with a different PVR other than this
282 * exact host PVR in KVM_SET_SREGS. If that happens, the
283 * guest freezes after migration.
284 *
285 * The function kvmppc_pvr_workaround_required does this verification
286 * by first checking if the kernel has the cap, returning true immediately
287 * if that is the case. Otherwise, it checks if we're running in KVM PR.
288 * If the guest kernel does not have the cap and we're not running KVM-PR
289 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
290 * receive the PVR it expects as a workaround.
291 *
292 */
293 if (kvmppc_pvr_workaround_required(cpu)) {
294 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
295 }
296
297 env->lr = env->spr[SPR_LR];
298 env->ctr = env->spr[SPR_CTR];
299 cpu_write_xer(env, env->spr[SPR_XER]);
300 #if defined(TARGET_PPC64)
301 env->cfar = env->spr[SPR_CFAR];
302 #endif
303 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
304
305 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
306 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
307 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
308 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
309 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
310 }
311 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
312 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
313 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
314 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
315 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
316 }
317
318 if (!cpu->vhyp) {
319 ppc_store_sdr1(env, env->spr[SPR_SDR1]);
320 }
321
322 post_load_update_msr(env);
323
324 if (tcg_enabled()) {
325 /* Re-set breaks based on regs */
326 #if defined(TARGET_PPC64)
327 ppc_update_ciabr(env);
328 ppc_update_daw0(env);
329 #endif
330 /*
331 * TCG needs to re-start the decrementer timer and/or raise the
332 * interrupt. This works for level-triggered decrementer. Edge
333 * triggered types (including HDEC) would need to carry more state.
334 */
335 cpu_ppc_store_decr(env, env->spr[SPR_DECR]);
336 pmu_mmcr01a_updated(env);
337 }
338
339 return 0;
340 }
341
fpu_needed(void * opaque)342 static bool fpu_needed(void *opaque)
343 {
344 PowerPCCPU *cpu = opaque;
345
346 return cpu->env.insns_flags & PPC_FLOAT;
347 }
348
349 static const VMStateDescription vmstate_fpu = {
350 .name = "cpu/fpu",
351 .version_id = 1,
352 .minimum_version_id = 1,
353 .needed = fpu_needed,
354 .fields = (const VMStateField[]) {
355 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
356 VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
357 VMSTATE_END_OF_LIST()
358 },
359 };
360
altivec_needed(void * opaque)361 static bool altivec_needed(void *opaque)
362 {
363 PowerPCCPU *cpu = opaque;
364
365 return cpu->env.insns_flags & PPC_ALTIVEC;
366 }
367
get_vscr(QEMUFile * f,void * opaque,size_t size,const VMStateField * field)368 static int get_vscr(QEMUFile *f, void *opaque, size_t size,
369 const VMStateField *field)
370 {
371 PowerPCCPU *cpu = opaque;
372 ppc_store_vscr(&cpu->env, qemu_get_be32(f));
373 return 0;
374 }
375
put_vscr(QEMUFile * f,void * opaque,size_t size,const VMStateField * field,JSONWriter * vmdesc)376 static int put_vscr(QEMUFile *f, void *opaque, size_t size,
377 const VMStateField *field, JSONWriter *vmdesc)
378 {
379 PowerPCCPU *cpu = opaque;
380 qemu_put_be32(f, ppc_get_vscr(&cpu->env));
381 return 0;
382 }
383
384 static const VMStateInfo vmstate_vscr = {
385 .name = "cpu/altivec/vscr",
386 .get = get_vscr,
387 .put = put_vscr,
388 };
389
390 static const VMStateDescription vmstate_altivec = {
391 .name = "cpu/altivec",
392 .version_id = 1,
393 .minimum_version_id = 1,
394 .needed = altivec_needed,
395 .fields = (const VMStateField[]) {
396 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
397 /*
398 * Save the architecture value of the vscr, not the internally
399 * expanded version. Since this architecture value does not
400 * exist in memory to be stored, this requires a but of hoop
401 * jumping. We want OFFSET=0 so that we effectively pass CPU
402 * to the helper functions.
403 */
404 {
405 .name = "vscr",
406 .version_id = 0,
407 .size = sizeof(uint32_t),
408 .info = &vmstate_vscr,
409 .flags = VMS_SINGLE,
410 .offset = 0
411 },
412 VMSTATE_END_OF_LIST()
413 },
414 };
415
vsx_needed(void * opaque)416 static bool vsx_needed(void *opaque)
417 {
418 PowerPCCPU *cpu = opaque;
419
420 return cpu->env.insns_flags2 & PPC2_VSX;
421 }
422
423 static const VMStateDescription vmstate_vsx = {
424 .name = "cpu/vsx",
425 .version_id = 1,
426 .minimum_version_id = 1,
427 .needed = vsx_needed,
428 .fields = (const VMStateField[]) {
429 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
430 VMSTATE_END_OF_LIST()
431 },
432 };
433
434 #ifdef TARGET_PPC64
435 /* Transactional memory state */
tm_needed(void * opaque)436 static bool tm_needed(void *opaque)
437 {
438 PowerPCCPU *cpu = opaque;
439 CPUPPCState *env = &cpu->env;
440 return FIELD_EX64(env->msr, MSR, TS);
441 }
442
443 static const VMStateDescription vmstate_tm = {
444 .name = "cpu/tm",
445 .version_id = 1,
446 .minimum_version_id = 1,
447 .needed = tm_needed,
448 .fields = (const VMStateField []) {
449 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
450 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
451 VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
452 VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
453 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
454 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
455 VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
456 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
457 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
458 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
459 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
460 VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
461 VMSTATE_END_OF_LIST()
462 },
463 };
464 #endif
465
sr_needed(void * opaque)466 static bool sr_needed(void *opaque)
467 {
468 #ifdef TARGET_PPC64
469 PowerPCCPU *cpu = opaque;
470
471 return !mmu_is_64bit(cpu->env.mmu_model);
472 #else
473 return true;
474 #endif
475 }
476
477 static const VMStateDescription vmstate_sr = {
478 .name = "cpu/sr",
479 .version_id = 1,
480 .minimum_version_id = 1,
481 .needed = sr_needed,
482 .fields = (const VMStateField[]) {
483 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
484 VMSTATE_END_OF_LIST()
485 },
486 };
487
488 #ifdef TARGET_PPC64
get_slbe(QEMUFile * f,void * pv,size_t size,const VMStateField * field)489 static int get_slbe(QEMUFile *f, void *pv, size_t size,
490 const VMStateField *field)
491 {
492 ppc_slb_t *v = pv;
493
494 v->esid = qemu_get_be64(f);
495 v->vsid = qemu_get_be64(f);
496
497 return 0;
498 }
499
put_slbe(QEMUFile * f,void * pv,size_t size,const VMStateField * field,JSONWriter * vmdesc)500 static int put_slbe(QEMUFile *f, void *pv, size_t size,
501 const VMStateField *field, JSONWriter *vmdesc)
502 {
503 ppc_slb_t *v = pv;
504
505 qemu_put_be64(f, v->esid);
506 qemu_put_be64(f, v->vsid);
507 return 0;
508 }
509
510 static const VMStateInfo vmstate_info_slbe = {
511 .name = "slbe",
512 .get = get_slbe,
513 .put = put_slbe,
514 };
515
516 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
517 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
518
519 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \
520 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
521
slb_needed(void * opaque)522 static bool slb_needed(void *opaque)
523 {
524 PowerPCCPU *cpu = opaque;
525
526 /* We don't support any of the old segment table based 64-bit CPUs */
527 return mmu_is_64bit(cpu->env.mmu_model);
528 }
529
slb_post_load(void * opaque,int version_id)530 static int slb_post_load(void *opaque, int version_id)
531 {
532 PowerPCCPU *cpu = opaque;
533 CPUPPCState *env = &cpu->env;
534 int i;
535
536 /*
537 * We've pulled in the raw esid and vsid values from the migration
538 * stream, but we need to recompute the page size pointers
539 */
540 for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
541 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
542 /* Migration source had bad values in its SLB */
543 return -1;
544 }
545 }
546
547 return 0;
548 }
549
550 static const VMStateDescription vmstate_slb = {
551 .name = "cpu/slb",
552 .version_id = 1,
553 .minimum_version_id = 1,
554 .needed = slb_needed,
555 .post_load = slb_post_load,
556 .fields = (const VMStateField[]) {
557 VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
558 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
559 VMSTATE_END_OF_LIST()
560 }
561 };
562 #endif /* TARGET_PPC64 */
563
564 static const VMStateDescription vmstate_tlb6xx_entry = {
565 .name = "cpu/tlb6xx_entry",
566 .version_id = 1,
567 .minimum_version_id = 1,
568 .fields = (const VMStateField[]) {
569 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
570 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
571 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
572 VMSTATE_END_OF_LIST()
573 },
574 };
575
tlb6xx_needed(void * opaque)576 static bool tlb6xx_needed(void *opaque)
577 {
578 PowerPCCPU *cpu = opaque;
579 CPUPPCState *env = &cpu->env;
580
581 return env->nb_tlb && (env->tlb_type == TLB_6XX);
582 }
583
584 static const VMStateDescription vmstate_tlb6xx = {
585 .name = "cpu/tlb6xx",
586 .version_id = 1,
587 .minimum_version_id = 1,
588 .needed = tlb6xx_needed,
589 .fields = (const VMStateField[]) {
590 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
591 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
592 env.nb_tlb,
593 vmstate_tlb6xx_entry,
594 ppc6xx_tlb_t),
595 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
596 VMSTATE_END_OF_LIST()
597 }
598 };
599
600 static const VMStateDescription vmstate_tlbemb_entry = {
601 .name = "cpu/tlbemb_entry",
602 .version_id = 1,
603 .minimum_version_id = 1,
604 .fields = (const VMStateField[]) {
605 VMSTATE_UINT64(RPN, ppcemb_tlb_t),
606 VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
607 VMSTATE_UINTTL(PID, ppcemb_tlb_t),
608 VMSTATE_UINTTL(size, ppcemb_tlb_t),
609 VMSTATE_UINT32(prot, ppcemb_tlb_t),
610 VMSTATE_UINT32(attr, ppcemb_tlb_t),
611 VMSTATE_END_OF_LIST()
612 },
613 };
614
tlbemb_needed(void * opaque)615 static bool tlbemb_needed(void *opaque)
616 {
617 PowerPCCPU *cpu = opaque;
618 CPUPPCState *env = &cpu->env;
619
620 return env->nb_tlb && (env->tlb_type == TLB_EMB);
621 }
622
623 static const VMStateDescription vmstate_tlbemb = {
624 .name = "cpu/tlbemb",
625 .version_id = 1,
626 .minimum_version_id = 1,
627 .needed = tlbemb_needed,
628 .fields = (const VMStateField[]) {
629 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
630 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
631 env.nb_tlb,
632 vmstate_tlbemb_entry,
633 ppcemb_tlb_t),
634 VMSTATE_END_OF_LIST()
635 },
636 };
637
638 static const VMStateDescription vmstate_tlbmas_entry = {
639 .name = "cpu/tlbmas_entry",
640 .version_id = 1,
641 .minimum_version_id = 1,
642 .fields = (const VMStateField[]) {
643 VMSTATE_UINT32(mas8, ppcmas_tlb_t),
644 VMSTATE_UINT32(mas1, ppcmas_tlb_t),
645 VMSTATE_UINT64(mas2, ppcmas_tlb_t),
646 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
647 VMSTATE_END_OF_LIST()
648 },
649 };
650
tlbmas_needed(void * opaque)651 static bool tlbmas_needed(void *opaque)
652 {
653 PowerPCCPU *cpu = opaque;
654 CPUPPCState *env = &cpu->env;
655
656 return env->nb_tlb && (env->tlb_type == TLB_MAS);
657 }
658
659 static const VMStateDescription vmstate_tlbmas = {
660 .name = "cpu/tlbmas",
661 .version_id = 1,
662 .minimum_version_id = 1,
663 .needed = tlbmas_needed,
664 .fields = (const VMStateField[]) {
665 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
666 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
667 env.nb_tlb,
668 vmstate_tlbmas_entry,
669 ppcmas_tlb_t),
670 VMSTATE_END_OF_LIST()
671 }
672 };
673
compat_needed(void * opaque)674 static bool compat_needed(void *opaque)
675 {
676 PowerPCCPU *cpu = opaque;
677
678 assert(!(cpu->compat_pvr && !cpu->vhyp));
679 return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
680 }
681
682 static const VMStateDescription vmstate_compat = {
683 .name = "cpu/compat",
684 .version_id = 1,
685 .minimum_version_id = 1,
686 .needed = compat_needed,
687 .fields = (const VMStateField[]) {
688 VMSTATE_UINT32(compat_pvr, PowerPCCPU),
689 VMSTATE_END_OF_LIST()
690 }
691 };
692
reservation_needed(void * opaque)693 static bool reservation_needed(void *opaque)
694 {
695 return (replay_mode != REPLAY_MODE_NONE);
696 }
697
698 static const VMStateDescription vmstate_reservation = {
699 .name = "cpu/reservation",
700 .version_id = 1,
701 .minimum_version_id = 1,
702 .needed = reservation_needed,
703 .fields = (const VMStateField[]) {
704 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
705 VMSTATE_UINTTL(env.reserve_length, PowerPCCPU),
706 VMSTATE_UINTTL(env.reserve_val, PowerPCCPU),
707 #if defined(TARGET_PPC64)
708 VMSTATE_UINTTL(env.reserve_val2, PowerPCCPU),
709 #endif
710 VMSTATE_END_OF_LIST()
711 }
712 };
713
714 #ifdef TARGET_PPC64
bhrb_needed(void * opaque)715 static bool bhrb_needed(void *opaque)
716 {
717 PowerPCCPU *cpu = opaque;
718 return (cpu->env.flags & POWERPC_FLAG_BHRB) != 0;
719 }
720
721 static const VMStateDescription vmstate_bhrb = {
722 .name = "cpu/bhrb",
723 .version_id = 1,
724 .minimum_version_id = 1,
725 .needed = bhrb_needed,
726 .fields = (VMStateField[]) {
727 VMSTATE_UINTTL(env.bhrb_offset, PowerPCCPU),
728 VMSTATE_UINT64_ARRAY(env.bhrb, PowerPCCPU, BHRB_MAX_NUM_ENTRIES),
729 VMSTATE_END_OF_LIST()
730 }
731 };
732 #endif
733
734 const VMStateDescription vmstate_ppc_cpu = {
735 .name = "cpu",
736 .version_id = 5,
737 .minimum_version_id = 5,
738 .pre_save = cpu_pre_save,
739 .post_load = cpu_post_load,
740 .fields = (const VMStateField[]) {
741 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
742
743 /* User mode architected state */
744 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
745 #if !defined(TARGET_PPC64)
746 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
747 #endif
748 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
749 VMSTATE_UINTTL(env.nip, PowerPCCPU),
750
751 /* SPRs */
752 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
753 VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
754
755 VMSTATE_UNUSED(sizeof(target_ulong)), /* was env.reserve_addr */
756
757 /* Supervisor mode architected state */
758 VMSTATE_UINTTL(env.msr, PowerPCCPU),
759
760 /* Backward compatible internal state */
761 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),
762
763 /* Sanity checking */
764 VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
765 VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
766 VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
767 cpu_pre_2_8_migration),
768 VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
769 VMSTATE_END_OF_LIST()
770 },
771 .subsections = (const VMStateDescription * const []) {
772 &vmstate_fpu,
773 &vmstate_altivec,
774 &vmstate_vsx,
775 &vmstate_sr,
776 #ifdef TARGET_PPC64
777 &vmstate_tm,
778 &vmstate_slb,
779 &vmstate_bhrb,
780 #endif /* TARGET_PPC64 */
781 &vmstate_tlb6xx,
782 &vmstate_tlbemb,
783 &vmstate_tlbmas,
784 &vmstate_compat,
785 &vmstate_reservation,
786 NULL
787 }
788 };
789