1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
jbd2_journal_init_transaction_cache(void)37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (!transaction_cache) {
46 pr_emerg("JBD2: failed to create transaction cache\n");
47 return -ENOMEM;
48 }
49 return 0;
50 }
51
jbd2_journal_destroy_transaction_cache(void)52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54 kmem_cache_destroy(transaction_cache);
55 transaction_cache = NULL;
56 }
57
jbd2_journal_free_transaction(transaction_t * transaction)58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66 * jbd2_get_transaction: obtain a new transaction_t object.
67 *
68 * Simply initialise a new transaction. Initialize it in
69 * RUNNING state and add it to the current journal (which should not
70 * have an existing running transaction: we only make a new transaction
71 * once we have started to commit the old one).
72 *
73 * Preconditions:
74 * The journal MUST be locked. We don't perform atomic mallocs on the
75 * new transaction and we can't block without protecting against other
76 * processes trying to touch the journal while it is in transition.
77 *
78 */
79
jbd2_get_transaction(journal_t * journal,transaction_t * transaction)80 static void jbd2_get_transaction(journal_t *journal,
81 transaction_t *transaction)
82 {
83 transaction->t_journal = journal;
84 transaction->t_state = T_RUNNING;
85 transaction->t_start_time = ktime_get();
86 transaction->t_tid = journal->j_transaction_sequence++;
87 transaction->t_expires = jiffies + journal->j_commit_interval;
88 atomic_set(&transaction->t_updates, 0);
89 atomic_set(&transaction->t_outstanding_credits,
90 journal->j_transaction_overhead_buffers +
91 atomic_read(&journal->j_reserved_credits));
92 atomic_set(&transaction->t_outstanding_revokes, 0);
93 atomic_set(&transaction->t_handle_count, 0);
94 INIT_LIST_HEAD(&transaction->t_inode_list);
95 INIT_LIST_HEAD(&transaction->t_private_list);
96
97 /* Set up the commit timer for the new transaction. */
98 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99 add_timer(&journal->j_commit_timer);
100
101 J_ASSERT(journal->j_running_transaction == NULL);
102 journal->j_running_transaction = transaction;
103 transaction->t_max_wait = 0;
104 transaction->t_start = jiffies;
105 transaction->t_requested = 0;
106 }
107
108 /*
109 * Handle management.
110 *
111 * A handle_t is an object which represents a single atomic update to a
112 * filesystem, and which tracks all of the modifications which form part
113 * of that one update.
114 */
115
116 /*
117 * Update transaction's maximum wait time, if debugging is enabled.
118 *
119 * t_max_wait is carefully updated here with use of atomic compare exchange.
120 * Note that there could be multiplre threads trying to do this simultaneously
121 * hence using cmpxchg to avoid any use of locks in this case.
122 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
123 */
update_t_max_wait(transaction_t * transaction,unsigned long ts)124 static inline void update_t_max_wait(transaction_t *transaction,
125 unsigned long ts)
126 {
127 unsigned long oldts, newts;
128
129 if (time_after(transaction->t_start, ts)) {
130 newts = jbd2_time_diff(ts, transaction->t_start);
131 oldts = READ_ONCE(transaction->t_max_wait);
132 while (oldts < newts)
133 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
134 }
135 }
136
137 /*
138 * Wait until running transaction passes to T_FLUSH state and new transaction
139 * can thus be started. Also starts the commit if needed. The function expects
140 * running transaction to exist and releases j_state_lock.
141 */
wait_transaction_locked(journal_t * journal)142 static void wait_transaction_locked(journal_t *journal)
143 __releases(journal->j_state_lock)
144 {
145 DEFINE_WAIT(wait);
146 int need_to_start;
147 tid_t tid = journal->j_running_transaction->t_tid;
148
149 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
150 TASK_UNINTERRUPTIBLE);
151 need_to_start = !tid_geq(journal->j_commit_request, tid);
152 read_unlock(&journal->j_state_lock);
153 if (need_to_start)
154 jbd2_log_start_commit(journal, tid);
155 jbd2_might_wait_for_commit(journal);
156 schedule();
157 finish_wait(&journal->j_wait_transaction_locked, &wait);
158 }
159
160 /*
161 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
162 * state and new transaction can thus be started. The function releases
163 * j_state_lock.
164 */
wait_transaction_switching(journal_t * journal)165 static void wait_transaction_switching(journal_t *journal)
166 __releases(journal->j_state_lock)
167 {
168 DEFINE_WAIT(wait);
169
170 if (WARN_ON(!journal->j_running_transaction ||
171 journal->j_running_transaction->t_state != T_SWITCH)) {
172 read_unlock(&journal->j_state_lock);
173 return;
174 }
175 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
176 TASK_UNINTERRUPTIBLE);
177 read_unlock(&journal->j_state_lock);
178 /*
179 * We don't call jbd2_might_wait_for_commit() here as there's no
180 * waiting for outstanding handles happening anymore in T_SWITCH state
181 * and handling of reserved handles actually relies on that for
182 * correctness.
183 */
184 schedule();
185 finish_wait(&journal->j_wait_transaction_locked, &wait);
186 }
187
sub_reserved_credits(journal_t * journal,int blocks)188 static void sub_reserved_credits(journal_t *journal, int blocks)
189 {
190 atomic_sub(blocks, &journal->j_reserved_credits);
191 wake_up(&journal->j_wait_reserved);
192 }
193
194 /* Maximum number of blocks for user transaction payload */
jbd2_max_user_trans_buffers(journal_t * journal)195 static int jbd2_max_user_trans_buffers(journal_t *journal)
196 {
197 return journal->j_max_transaction_buffers -
198 journal->j_transaction_overhead_buffers;
199 }
200
201 /*
202 * Wait until we can add credits for handle to the running transaction. Called
203 * with j_state_lock held for reading. Returns 0 if handle joined the running
204 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
205 * caller must retry.
206 *
207 * Note: because j_state_lock may be dropped depending on the return
208 * value, we need to fake out sparse so ti doesn't complain about a
209 * locking imbalance. Callers of add_transaction_credits will need to
210 * make a similar accomodation.
211 */
add_transaction_credits(journal_t * journal,int blocks,int rsv_blocks)212 static int add_transaction_credits(journal_t *journal, int blocks,
213 int rsv_blocks)
214 __must_hold(&journal->j_state_lock)
215 {
216 transaction_t *t = journal->j_running_transaction;
217 int needed;
218 int total = blocks + rsv_blocks;
219
220 /*
221 * If the current transaction is locked down for commit, wait
222 * for the lock to be released.
223 */
224 if (t->t_state != T_RUNNING) {
225 WARN_ON_ONCE(t->t_state >= T_FLUSH);
226 wait_transaction_locked(journal);
227 __acquire(&journal->j_state_lock); /* fake out sparse */
228 return 1;
229 }
230
231 /*
232 * If there is not enough space left in the log to write all
233 * potential buffers requested by this operation, we need to
234 * stall pending a log checkpoint to free some more log space.
235 */
236 needed = atomic_add_return(total, &t->t_outstanding_credits);
237 if (needed > journal->j_max_transaction_buffers) {
238 /*
239 * If the current transaction is already too large,
240 * then start to commit it: we can then go back and
241 * attach this handle to a new transaction.
242 */
243 atomic_sub(total, &t->t_outstanding_credits);
244
245 /*
246 * Is the number of reserved credits in the current transaction too
247 * big to fit this handle? Wait until reserved credits are freed.
248 */
249 if (atomic_read(&journal->j_reserved_credits) + total >
250 jbd2_max_user_trans_buffers(journal)) {
251 read_unlock(&journal->j_state_lock);
252 jbd2_might_wait_for_commit(journal);
253 wait_event(journal->j_wait_reserved,
254 atomic_read(&journal->j_reserved_credits) + total <=
255 jbd2_max_user_trans_buffers(journal));
256 __acquire(&journal->j_state_lock); /* fake out sparse */
257 return 1;
258 }
259
260 wait_transaction_locked(journal);
261 __acquire(&journal->j_state_lock); /* fake out sparse */
262 return 1;
263 }
264
265 /*
266 * The commit code assumes that it can get enough log space
267 * without forcing a checkpoint. This is *critical* for
268 * correctness: a checkpoint of a buffer which is also
269 * associated with a committing transaction creates a deadlock,
270 * so commit simply cannot force through checkpoints.
271 *
272 * We must therefore ensure the necessary space in the journal
273 * *before* starting to dirty potentially checkpointed buffers
274 * in the new transaction.
275 */
276 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
277 atomic_sub(total, &t->t_outstanding_credits);
278 read_unlock(&journal->j_state_lock);
279 jbd2_might_wait_for_commit(journal);
280 write_lock(&journal->j_state_lock);
281 if (jbd2_log_space_left(journal) <
282 journal->j_max_transaction_buffers)
283 __jbd2_log_wait_for_space(journal);
284 write_unlock(&journal->j_state_lock);
285 __acquire(&journal->j_state_lock); /* fake out sparse */
286 return 1;
287 }
288
289 /* No reservation? We are done... */
290 if (!rsv_blocks)
291 return 0;
292
293 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
294 /* We allow at most half of a transaction to be reserved */
295 if (needed > jbd2_max_user_trans_buffers(journal) / 2) {
296 sub_reserved_credits(journal, rsv_blocks);
297 atomic_sub(total, &t->t_outstanding_credits);
298 read_unlock(&journal->j_state_lock);
299 jbd2_might_wait_for_commit(journal);
300 wait_event(journal->j_wait_reserved,
301 atomic_read(&journal->j_reserved_credits) + rsv_blocks
302 <= jbd2_max_user_trans_buffers(journal) / 2);
303 __acquire(&journal->j_state_lock); /* fake out sparse */
304 return 1;
305 }
306 return 0;
307 }
308
309 /*
310 * start_this_handle: Given a handle, deal with any locking or stalling
311 * needed to make sure that there is enough journal space for the handle
312 * to begin. Attach the handle to a transaction and set up the
313 * transaction's buffer credits.
314 */
315
start_this_handle(journal_t * journal,handle_t * handle,gfp_t gfp_mask)316 static int start_this_handle(journal_t *journal, handle_t *handle,
317 gfp_t gfp_mask)
318 {
319 transaction_t *transaction, *new_transaction = NULL;
320 int blocks = handle->h_total_credits;
321 int rsv_blocks = 0;
322 unsigned long ts = jiffies;
323
324 if (handle->h_rsv_handle)
325 rsv_blocks = handle->h_rsv_handle->h_total_credits;
326
327 /*
328 * Limit the number of reserved credits to 1/2 of maximum transaction
329 * size and limit the number of total credits to not exceed maximum
330 * transaction size per operation.
331 */
332 if (rsv_blocks > jbd2_max_user_trans_buffers(journal) / 2 ||
333 rsv_blocks + blocks > jbd2_max_user_trans_buffers(journal)) {
334 printk(KERN_ERR "JBD2: %s wants too many credits "
335 "credits:%d rsv_credits:%d max:%d\n",
336 current->comm, blocks, rsv_blocks,
337 jbd2_max_user_trans_buffers(journal));
338 WARN_ON(1);
339 return -ENOSPC;
340 }
341
342 alloc_transaction:
343 /*
344 * This check is racy but it is just an optimization of allocating new
345 * transaction early if there are high chances we'll need it. If we
346 * guess wrong, we'll retry or free unused transaction.
347 */
348 if (!data_race(journal->j_running_transaction)) {
349 /*
350 * If __GFP_FS is not present, then we may be being called from
351 * inside the fs writeback layer, so we MUST NOT fail.
352 */
353 if ((gfp_mask & __GFP_FS) == 0)
354 gfp_mask |= __GFP_NOFAIL;
355 new_transaction = kmem_cache_zalloc(transaction_cache,
356 gfp_mask);
357 if (!new_transaction)
358 return -ENOMEM;
359 }
360
361 jbd2_debug(3, "New handle %p going live.\n", handle);
362
363 /*
364 * We need to hold j_state_lock until t_updates has been incremented,
365 * for proper journal barrier handling
366 */
367 repeat:
368 read_lock(&journal->j_state_lock);
369 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
370 if (is_journal_aborted(journal) ||
371 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
372 read_unlock(&journal->j_state_lock);
373 jbd2_journal_free_transaction(new_transaction);
374 return -EROFS;
375 }
376
377 /*
378 * Wait on the journal's transaction barrier if necessary. Specifically
379 * we allow reserved handles to proceed because otherwise commit could
380 * deadlock on page writeback not being able to complete.
381 */
382 if (!handle->h_reserved && journal->j_barrier_count) {
383 read_unlock(&journal->j_state_lock);
384 wait_event(journal->j_wait_transaction_locked,
385 journal->j_barrier_count == 0);
386 goto repeat;
387 }
388
389 if (!journal->j_running_transaction) {
390 read_unlock(&journal->j_state_lock);
391 if (!new_transaction)
392 goto alloc_transaction;
393 write_lock(&journal->j_state_lock);
394 if (!journal->j_running_transaction &&
395 (handle->h_reserved || !journal->j_barrier_count)) {
396 jbd2_get_transaction(journal, new_transaction);
397 new_transaction = NULL;
398 }
399 write_unlock(&journal->j_state_lock);
400 goto repeat;
401 }
402
403 transaction = journal->j_running_transaction;
404
405 if (!handle->h_reserved) {
406 /* We may have dropped j_state_lock - restart in that case */
407 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
408 /*
409 * add_transaction_credits releases
410 * j_state_lock on a non-zero return
411 */
412 __release(&journal->j_state_lock);
413 goto repeat;
414 }
415 } else {
416 /*
417 * We have handle reserved so we are allowed to join T_LOCKED
418 * transaction and we don't have to check for transaction size
419 * and journal space. But we still have to wait while running
420 * transaction is being switched to a committing one as it
421 * won't wait for any handles anymore.
422 */
423 if (transaction->t_state == T_SWITCH) {
424 wait_transaction_switching(journal);
425 goto repeat;
426 }
427 sub_reserved_credits(journal, blocks);
428 handle->h_reserved = 0;
429 }
430
431 /* OK, account for the buffers that this operation expects to
432 * use and add the handle to the running transaction.
433 */
434 update_t_max_wait(transaction, ts);
435 handle->h_transaction = transaction;
436 handle->h_requested_credits = blocks;
437 handle->h_revoke_credits_requested = handle->h_revoke_credits;
438 handle->h_start_jiffies = jiffies;
439 atomic_inc(&transaction->t_updates);
440 atomic_inc(&transaction->t_handle_count);
441 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
442 handle, blocks,
443 atomic_read(&transaction->t_outstanding_credits),
444 jbd2_log_space_left(journal));
445 read_unlock(&journal->j_state_lock);
446 current->journal_info = handle;
447
448 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
449 jbd2_journal_free_transaction(new_transaction);
450 /*
451 * Ensure that no allocations done while the transaction is open are
452 * going to recurse back to the fs layer.
453 */
454 handle->saved_alloc_context = memalloc_nofs_save();
455 return 0;
456 }
457
458 /* Allocate a new handle. This should probably be in a slab... */
new_handle(int nblocks)459 static handle_t *new_handle(int nblocks)
460 {
461 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
462 if (!handle)
463 return NULL;
464 handle->h_total_credits = nblocks;
465 handle->h_ref = 1;
466
467 return handle;
468 }
469
jbd2__journal_start(journal_t * journal,int nblocks,int rsv_blocks,int revoke_records,gfp_t gfp_mask,unsigned int type,unsigned int line_no)470 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
471 int revoke_records, gfp_t gfp_mask,
472 unsigned int type, unsigned int line_no)
473 {
474 handle_t *handle = journal_current_handle();
475 int err;
476
477 if (!journal)
478 return ERR_PTR(-EROFS);
479
480 if (handle) {
481 J_ASSERT(handle->h_transaction->t_journal == journal);
482 handle->h_ref++;
483 return handle;
484 }
485
486 nblocks += DIV_ROUND_UP(revoke_records,
487 journal->j_revoke_records_per_block);
488 handle = new_handle(nblocks);
489 if (!handle)
490 return ERR_PTR(-ENOMEM);
491 if (rsv_blocks) {
492 handle_t *rsv_handle;
493
494 rsv_handle = new_handle(rsv_blocks);
495 if (!rsv_handle) {
496 jbd2_free_handle(handle);
497 return ERR_PTR(-ENOMEM);
498 }
499 rsv_handle->h_reserved = 1;
500 rsv_handle->h_journal = journal;
501 handle->h_rsv_handle = rsv_handle;
502 }
503 handle->h_revoke_credits = revoke_records;
504
505 err = start_this_handle(journal, handle, gfp_mask);
506 if (err < 0) {
507 if (handle->h_rsv_handle)
508 jbd2_free_handle(handle->h_rsv_handle);
509 jbd2_free_handle(handle);
510 return ERR_PTR(err);
511 }
512 handle->h_type = type;
513 handle->h_line_no = line_no;
514 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
515 handle->h_transaction->t_tid, type,
516 line_no, nblocks);
517
518 return handle;
519 }
520 EXPORT_SYMBOL(jbd2__journal_start);
521
522
523 /**
524 * jbd2_journal_start() - Obtain a new handle.
525 * @journal: Journal to start transaction on.
526 * @nblocks: number of block buffer we might modify
527 *
528 * We make sure that the transaction can guarantee at least nblocks of
529 * modified buffers in the log. We block until the log can guarantee
530 * that much space. Additionally, if rsv_blocks > 0, we also create another
531 * handle with rsv_blocks reserved blocks in the journal. This handle is
532 * stored in h_rsv_handle. It is not attached to any particular transaction
533 * and thus doesn't block transaction commit. If the caller uses this reserved
534 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
535 * on the parent handle will dispose the reserved one. Reserved handle has to
536 * be converted to a normal handle using jbd2_journal_start_reserved() before
537 * it can be used.
538 *
539 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
540 * on failure.
541 */
jbd2_journal_start(journal_t * journal,int nblocks)542 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
543 {
544 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
545 }
546 EXPORT_SYMBOL(jbd2_journal_start);
547
__jbd2_journal_unreserve_handle(handle_t * handle,transaction_t * t)548 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
549 {
550 journal_t *journal = handle->h_journal;
551
552 WARN_ON(!handle->h_reserved);
553 sub_reserved_credits(journal, handle->h_total_credits);
554 if (t)
555 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
556 }
557
jbd2_journal_free_reserved(handle_t * handle)558 void jbd2_journal_free_reserved(handle_t *handle)
559 {
560 journal_t *journal = handle->h_journal;
561
562 /* Get j_state_lock to pin running transaction if it exists */
563 read_lock(&journal->j_state_lock);
564 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
565 read_unlock(&journal->j_state_lock);
566 jbd2_free_handle(handle);
567 }
568 EXPORT_SYMBOL(jbd2_journal_free_reserved);
569
570 /**
571 * jbd2_journal_start_reserved() - start reserved handle
572 * @handle: handle to start
573 * @type: for handle statistics
574 * @line_no: for handle statistics
575 *
576 * Start handle that has been previously reserved with jbd2_journal_reserve().
577 * This attaches @handle to the running transaction (or creates one if there's
578 * not transaction running). Unlike jbd2_journal_start() this function cannot
579 * block on journal commit, checkpointing, or similar stuff. It can block on
580 * memory allocation or frozen journal though.
581 *
582 * Return 0 on success, non-zero on error - handle is freed in that case.
583 */
jbd2_journal_start_reserved(handle_t * handle,unsigned int type,unsigned int line_no)584 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
585 unsigned int line_no)
586 {
587 journal_t *journal = handle->h_journal;
588 int ret = -EIO;
589
590 if (WARN_ON(!handle->h_reserved)) {
591 /* Someone passed in normal handle? Just stop it. */
592 jbd2_journal_stop(handle);
593 return ret;
594 }
595 /*
596 * Usefulness of mixing of reserved and unreserved handles is
597 * questionable. So far nobody seems to need it so just error out.
598 */
599 if (WARN_ON(current->journal_info)) {
600 jbd2_journal_free_reserved(handle);
601 return ret;
602 }
603
604 handle->h_journal = NULL;
605 /*
606 * GFP_NOFS is here because callers are likely from writeback or
607 * similarly constrained call sites
608 */
609 ret = start_this_handle(journal, handle, GFP_NOFS);
610 if (ret < 0) {
611 handle->h_journal = journal;
612 jbd2_journal_free_reserved(handle);
613 return ret;
614 }
615 handle->h_type = type;
616 handle->h_line_no = line_no;
617 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
618 handle->h_transaction->t_tid, type,
619 line_no, handle->h_total_credits);
620 return 0;
621 }
622 EXPORT_SYMBOL(jbd2_journal_start_reserved);
623
624 /**
625 * jbd2_journal_extend() - extend buffer credits.
626 * @handle: handle to 'extend'
627 * @nblocks: nr blocks to try to extend by.
628 * @revoke_records: number of revoke records to try to extend by.
629 *
630 * Some transactions, such as large extends and truncates, can be done
631 * atomically all at once or in several stages. The operation requests
632 * a credit for a number of buffer modifications in advance, but can
633 * extend its credit if it needs more.
634 *
635 * jbd2_journal_extend tries to give the running handle more buffer credits.
636 * It does not guarantee that allocation - this is a best-effort only.
637 * The calling process MUST be able to deal cleanly with a failure to
638 * extend here.
639 *
640 * Return 0 on success, non-zero on failure.
641 *
642 * return code < 0 implies an error
643 * return code > 0 implies normal transaction-full status.
644 */
jbd2_journal_extend(handle_t * handle,int nblocks,int revoke_records)645 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
646 {
647 transaction_t *transaction = handle->h_transaction;
648 journal_t *journal;
649 int result;
650 int wanted;
651
652 if (is_handle_aborted(handle))
653 return -EROFS;
654 journal = transaction->t_journal;
655
656 result = 1;
657
658 read_lock(&journal->j_state_lock);
659
660 /* Don't extend a locked-down transaction! */
661 if (transaction->t_state != T_RUNNING) {
662 jbd2_debug(3, "denied handle %p %d blocks: "
663 "transaction not running\n", handle, nblocks);
664 goto error_out;
665 }
666
667 nblocks += DIV_ROUND_UP(
668 handle->h_revoke_credits_requested + revoke_records,
669 journal->j_revoke_records_per_block) -
670 DIV_ROUND_UP(
671 handle->h_revoke_credits_requested,
672 journal->j_revoke_records_per_block);
673 wanted = atomic_add_return(nblocks,
674 &transaction->t_outstanding_credits);
675
676 if (wanted > journal->j_max_transaction_buffers) {
677 jbd2_debug(3, "denied handle %p %d blocks: "
678 "transaction too large\n", handle, nblocks);
679 atomic_sub(nblocks, &transaction->t_outstanding_credits);
680 goto error_out;
681 }
682
683 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
684 transaction->t_tid,
685 handle->h_type, handle->h_line_no,
686 handle->h_total_credits,
687 nblocks);
688
689 handle->h_total_credits += nblocks;
690 handle->h_requested_credits += nblocks;
691 handle->h_revoke_credits += revoke_records;
692 handle->h_revoke_credits_requested += revoke_records;
693 result = 0;
694
695 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
696 error_out:
697 read_unlock(&journal->j_state_lock);
698 return result;
699 }
700
stop_this_handle(handle_t * handle)701 static void stop_this_handle(handle_t *handle)
702 {
703 transaction_t *transaction = handle->h_transaction;
704 journal_t *journal = transaction->t_journal;
705 int revokes;
706
707 J_ASSERT(journal_current_handle() == handle);
708 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
709 current->journal_info = NULL;
710 /*
711 * Subtract necessary revoke descriptor blocks from handle credits. We
712 * take care to account only for revoke descriptor blocks the
713 * transaction will really need as large sequences of transactions with
714 * small numbers of revokes are relatively common.
715 */
716 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
717 if (revokes) {
718 int t_revokes, revoke_descriptors;
719 int rr_per_blk = journal->j_revoke_records_per_block;
720
721 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
722 > handle->h_total_credits);
723 t_revokes = atomic_add_return(revokes,
724 &transaction->t_outstanding_revokes);
725 revoke_descriptors =
726 DIV_ROUND_UP(t_revokes, rr_per_blk) -
727 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
728 handle->h_total_credits -= revoke_descriptors;
729 }
730 atomic_sub(handle->h_total_credits,
731 &transaction->t_outstanding_credits);
732 if (handle->h_rsv_handle)
733 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
734 transaction);
735 if (atomic_dec_and_test(&transaction->t_updates))
736 wake_up(&journal->j_wait_updates);
737
738 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
739 /*
740 * Scope of the GFP_NOFS context is over here and so we can restore the
741 * original alloc context.
742 */
743 memalloc_nofs_restore(handle->saved_alloc_context);
744 }
745
746 /**
747 * jbd2__journal_restart() - restart a handle .
748 * @handle: handle to restart
749 * @nblocks: nr credits requested
750 * @revoke_records: number of revoke record credits requested
751 * @gfp_mask: memory allocation flags (for start_this_handle)
752 *
753 * Restart a handle for a multi-transaction filesystem
754 * operation.
755 *
756 * If the jbd2_journal_extend() call above fails to grant new buffer credits
757 * to a running handle, a call to jbd2_journal_restart will commit the
758 * handle's transaction so far and reattach the handle to a new
759 * transaction capable of guaranteeing the requested number of
760 * credits. We preserve reserved handle if there's any attached to the
761 * passed in handle.
762 */
jbd2__journal_restart(handle_t * handle,int nblocks,int revoke_records,gfp_t gfp_mask)763 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
764 gfp_t gfp_mask)
765 {
766 transaction_t *transaction = handle->h_transaction;
767 journal_t *journal;
768 tid_t tid;
769 int need_to_start;
770 int ret;
771
772 /* If we've had an abort of any type, don't even think about
773 * actually doing the restart! */
774 if (is_handle_aborted(handle))
775 return 0;
776 journal = transaction->t_journal;
777 tid = transaction->t_tid;
778
779 /*
780 * First unlink the handle from its current transaction, and start the
781 * commit on that.
782 */
783 jbd2_debug(2, "restarting handle %p\n", handle);
784 stop_this_handle(handle);
785 handle->h_transaction = NULL;
786
787 /*
788 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
789 * get rid of pointless j_state_lock traffic like this.
790 */
791 read_lock(&journal->j_state_lock);
792 need_to_start = !tid_geq(journal->j_commit_request, tid);
793 read_unlock(&journal->j_state_lock);
794 if (need_to_start)
795 jbd2_log_start_commit(journal, tid);
796 handle->h_total_credits = nblocks +
797 DIV_ROUND_UP(revoke_records,
798 journal->j_revoke_records_per_block);
799 handle->h_revoke_credits = revoke_records;
800 ret = start_this_handle(journal, handle, gfp_mask);
801 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
802 ret ? 0 : handle->h_transaction->t_tid,
803 handle->h_type, handle->h_line_no,
804 handle->h_total_credits);
805 return ret;
806 }
807 EXPORT_SYMBOL(jbd2__journal_restart);
808
809
jbd2_journal_restart(handle_t * handle,int nblocks)810 int jbd2_journal_restart(handle_t *handle, int nblocks)
811 {
812 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
813 }
814 EXPORT_SYMBOL(jbd2_journal_restart);
815
816 /*
817 * Waits for any outstanding t_updates to finish.
818 * This is called with write j_state_lock held.
819 */
jbd2_journal_wait_updates(journal_t * journal)820 void jbd2_journal_wait_updates(journal_t *journal)
821 {
822 DEFINE_WAIT(wait);
823
824 while (1) {
825 /*
826 * Note that the running transaction can get freed under us if
827 * this transaction is getting committed in
828 * jbd2_journal_commit_transaction() ->
829 * jbd2_journal_free_transaction(). This can only happen when we
830 * release j_state_lock -> schedule() -> acquire j_state_lock.
831 * Hence we should everytime retrieve new j_running_transaction
832 * value (after j_state_lock release acquire cycle), else it may
833 * lead to use-after-free of old freed transaction.
834 */
835 transaction_t *transaction = journal->j_running_transaction;
836
837 if (!transaction)
838 break;
839
840 prepare_to_wait(&journal->j_wait_updates, &wait,
841 TASK_UNINTERRUPTIBLE);
842 if (!atomic_read(&transaction->t_updates)) {
843 finish_wait(&journal->j_wait_updates, &wait);
844 break;
845 }
846 write_unlock(&journal->j_state_lock);
847 schedule();
848 finish_wait(&journal->j_wait_updates, &wait);
849 write_lock(&journal->j_state_lock);
850 }
851 }
852
853 /**
854 * jbd2_journal_lock_updates () - establish a transaction barrier.
855 * @journal: Journal to establish a barrier on.
856 *
857 * This locks out any further updates from being started, and blocks
858 * until all existing updates have completed, returning only once the
859 * journal is in a quiescent state with no updates running.
860 *
861 * The journal lock should not be held on entry.
862 */
jbd2_journal_lock_updates(journal_t * journal)863 void jbd2_journal_lock_updates(journal_t *journal)
864 {
865 jbd2_might_wait_for_commit(journal);
866
867 write_lock(&journal->j_state_lock);
868 ++journal->j_barrier_count;
869
870 /* Wait until there are no reserved handles */
871 if (atomic_read(&journal->j_reserved_credits)) {
872 write_unlock(&journal->j_state_lock);
873 wait_event(journal->j_wait_reserved,
874 atomic_read(&journal->j_reserved_credits) == 0);
875 write_lock(&journal->j_state_lock);
876 }
877
878 /* Wait until there are no running t_updates */
879 jbd2_journal_wait_updates(journal);
880
881 write_unlock(&journal->j_state_lock);
882
883 /*
884 * We have now established a barrier against other normal updates, but
885 * we also need to barrier against other jbd2_journal_lock_updates() calls
886 * to make sure that we serialise special journal-locked operations
887 * too.
888 */
889 mutex_lock(&journal->j_barrier);
890 }
891
892 /**
893 * jbd2_journal_unlock_updates () - release barrier
894 * @journal: Journal to release the barrier on.
895 *
896 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
897 *
898 * Should be called without the journal lock held.
899 */
jbd2_journal_unlock_updates(journal_t * journal)900 void jbd2_journal_unlock_updates (journal_t *journal)
901 {
902 J_ASSERT(journal->j_barrier_count != 0);
903
904 mutex_unlock(&journal->j_barrier);
905 write_lock(&journal->j_state_lock);
906 --journal->j_barrier_count;
907 write_unlock(&journal->j_state_lock);
908 wake_up_all(&journal->j_wait_transaction_locked);
909 }
910
warn_dirty_buffer(struct buffer_head * bh)911 static void warn_dirty_buffer(struct buffer_head *bh)
912 {
913 printk(KERN_WARNING
914 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
915 "There's a risk of filesystem corruption in case of system "
916 "crash.\n",
917 bh->b_bdev, (unsigned long long)bh->b_blocknr);
918 }
919
920 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
jbd2_freeze_jh_data(struct journal_head * jh)921 static void jbd2_freeze_jh_data(struct journal_head *jh)
922 {
923 char *source;
924 struct buffer_head *bh = jh2bh(jh);
925
926 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
927 source = kmap_local_folio(bh->b_folio, bh_offset(bh));
928 /* Fire data frozen trigger just before we copy the data */
929 jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
930 memcpy(jh->b_frozen_data, source, bh->b_size);
931 kunmap_local(source);
932
933 /*
934 * Now that the frozen data is saved off, we need to store any matching
935 * triggers.
936 */
937 jh->b_frozen_triggers = jh->b_triggers;
938 }
939
940 /*
941 * If the buffer is already part of the current transaction, then there
942 * is nothing we need to do. If it is already part of a prior
943 * transaction which we are still committing to disk, then we need to
944 * make sure that we do not overwrite the old copy: we do copy-out to
945 * preserve the copy going to disk. We also account the buffer against
946 * the handle's metadata buffer credits (unless the buffer is already
947 * part of the transaction, that is).
948 *
949 */
950 static int
do_get_write_access(handle_t * handle,struct journal_head * jh,int force_copy)951 do_get_write_access(handle_t *handle, struct journal_head *jh,
952 int force_copy)
953 {
954 struct buffer_head *bh;
955 transaction_t *transaction = handle->h_transaction;
956 journal_t *journal;
957 int error;
958 char *frozen_buffer = NULL;
959 unsigned long start_lock, time_lock;
960
961 journal = transaction->t_journal;
962
963 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
964
965 JBUFFER_TRACE(jh, "entry");
966 repeat:
967 bh = jh2bh(jh);
968
969 /* @@@ Need to check for errors here at some point. */
970
971 start_lock = jiffies;
972 lock_buffer(bh);
973 spin_lock(&jh->b_state_lock);
974
975 /* If it takes too long to lock the buffer, trace it */
976 time_lock = jbd2_time_diff(start_lock, jiffies);
977 if (time_lock > HZ/10)
978 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
979 jiffies_to_msecs(time_lock));
980
981 /* We now hold the buffer lock so it is safe to query the buffer
982 * state. Is the buffer dirty?
983 *
984 * If so, there are two possibilities. The buffer may be
985 * non-journaled, and undergoing a quite legitimate writeback.
986 * Otherwise, it is journaled, and we don't expect dirty buffers
987 * in that state (the buffers should be marked JBD_Dirty
988 * instead.) So either the IO is being done under our own
989 * control and this is a bug, or it's a third party IO such as
990 * dump(8) (which may leave the buffer scheduled for read ---
991 * ie. locked but not dirty) or tune2fs (which may actually have
992 * the buffer dirtied, ugh.) */
993
994 if (buffer_dirty(bh) && jh->b_transaction) {
995 warn_dirty_buffer(bh);
996 /*
997 * We need to clean the dirty flag and we must do it under the
998 * buffer lock to be sure we don't race with running write-out.
999 */
1000 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1001 clear_buffer_dirty(bh);
1002 /*
1003 * The buffer is going to be added to BJ_Reserved list now and
1004 * nothing guarantees jbd2_journal_dirty_metadata() will be
1005 * ever called for it. So we need to set jbddirty bit here to
1006 * make sure the buffer is dirtied and written out when the
1007 * journaling machinery is done with it.
1008 */
1009 set_buffer_jbddirty(bh);
1010 }
1011
1012 error = -EROFS;
1013 if (is_handle_aborted(handle)) {
1014 spin_unlock(&jh->b_state_lock);
1015 unlock_buffer(bh);
1016 goto out;
1017 }
1018 error = 0;
1019
1020 /*
1021 * The buffer is already part of this transaction if b_transaction or
1022 * b_next_transaction points to it
1023 */
1024 if (jh->b_transaction == transaction ||
1025 jh->b_next_transaction == transaction) {
1026 unlock_buffer(bh);
1027 goto done;
1028 }
1029
1030 /*
1031 * this is the first time this transaction is touching this buffer,
1032 * reset the modified flag
1033 */
1034 jh->b_modified = 0;
1035
1036 /*
1037 * If the buffer is not journaled right now, we need to make sure it
1038 * doesn't get written to disk before the caller actually commits the
1039 * new data
1040 */
1041 if (!jh->b_transaction) {
1042 JBUFFER_TRACE(jh, "no transaction");
1043 J_ASSERT_JH(jh, !jh->b_next_transaction);
1044 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1045 /*
1046 * Make sure all stores to jh (b_modified, b_frozen_data) are
1047 * visible before attaching it to the running transaction.
1048 * Paired with barrier in jbd2_write_access_granted()
1049 */
1050 smp_wmb();
1051 spin_lock(&journal->j_list_lock);
1052 if (test_clear_buffer_dirty(bh)) {
1053 /*
1054 * Execute buffer dirty clearing and jh->b_transaction
1055 * assignment under journal->j_list_lock locked to
1056 * prevent bh being removed from checkpoint list if
1057 * the buffer is in an intermediate state (not dirty
1058 * and jh->b_transaction is NULL).
1059 */
1060 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1061 set_buffer_jbddirty(bh);
1062 }
1063 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1064 spin_unlock(&journal->j_list_lock);
1065 unlock_buffer(bh);
1066 goto done;
1067 }
1068 unlock_buffer(bh);
1069
1070 /*
1071 * If there is already a copy-out version of this buffer, then we don't
1072 * need to make another one
1073 */
1074 if (jh->b_frozen_data) {
1075 JBUFFER_TRACE(jh, "has frozen data");
1076 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1077 goto attach_next;
1078 }
1079
1080 JBUFFER_TRACE(jh, "owned by older transaction");
1081 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1082 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1083
1084 /*
1085 * There is one case we have to be very careful about. If the
1086 * committing transaction is currently writing this buffer out to disk
1087 * and has NOT made a copy-out, then we cannot modify the buffer
1088 * contents at all right now. The essence of copy-out is that it is
1089 * the extra copy, not the primary copy, which gets journaled. If the
1090 * primary copy is already going to disk then we cannot do copy-out
1091 * here.
1092 */
1093 if (buffer_shadow(bh)) {
1094 JBUFFER_TRACE(jh, "on shadow: sleep");
1095 spin_unlock(&jh->b_state_lock);
1096 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1097 goto repeat;
1098 }
1099
1100 /*
1101 * Only do the copy if the currently-owning transaction still needs it.
1102 * If buffer isn't on BJ_Metadata list, the committing transaction is
1103 * past that stage (here we use the fact that BH_Shadow is set under
1104 * bh_state lock together with refiling to BJ_Shadow list and at this
1105 * point we know the buffer doesn't have BH_Shadow set).
1106 *
1107 * Subtle point, though: if this is a get_undo_access, then we will be
1108 * relying on the frozen_data to contain the new value of the
1109 * committed_data record after the transaction, so we HAVE to force the
1110 * frozen_data copy in that case.
1111 */
1112 if (jh->b_jlist == BJ_Metadata || force_copy) {
1113 JBUFFER_TRACE(jh, "generate frozen data");
1114 if (!frozen_buffer) {
1115 JBUFFER_TRACE(jh, "allocate memory for buffer");
1116 spin_unlock(&jh->b_state_lock);
1117 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1118 GFP_NOFS | __GFP_NOFAIL);
1119 goto repeat;
1120 }
1121 jh->b_frozen_data = frozen_buffer;
1122 frozen_buffer = NULL;
1123 jbd2_freeze_jh_data(jh);
1124 }
1125 attach_next:
1126 /*
1127 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1128 * before attaching it to the running transaction. Paired with barrier
1129 * in jbd2_write_access_granted()
1130 */
1131 smp_wmb();
1132 jh->b_next_transaction = transaction;
1133
1134 done:
1135 spin_unlock(&jh->b_state_lock);
1136
1137 /*
1138 * If we are about to journal a buffer, then any revoke pending on it is
1139 * no longer valid
1140 */
1141 jbd2_journal_cancel_revoke(handle, jh);
1142
1143 out:
1144 if (unlikely(frozen_buffer)) /* It's usually NULL */
1145 jbd2_free(frozen_buffer, bh->b_size);
1146
1147 JBUFFER_TRACE(jh, "exit");
1148 return error;
1149 }
1150
1151 /* Fast check whether buffer is already attached to the required transaction */
jbd2_write_access_granted(handle_t * handle,struct buffer_head * bh,bool undo)1152 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1153 bool undo)
1154 {
1155 struct journal_head *jh;
1156 bool ret = false;
1157
1158 /* Dirty buffers require special handling... */
1159 if (buffer_dirty(bh))
1160 return false;
1161
1162 /*
1163 * RCU protects us from dereferencing freed pages. So the checks we do
1164 * are guaranteed not to oops. However the jh slab object can get freed
1165 * & reallocated while we work with it. So we have to be careful. When
1166 * we see jh attached to the running transaction, we know it must stay
1167 * so until the transaction is committed. Thus jh won't be freed and
1168 * will be attached to the same bh while we run. However it can
1169 * happen jh gets freed, reallocated, and attached to the transaction
1170 * just after we get pointer to it from bh. So we have to be careful
1171 * and recheck jh still belongs to our bh before we return success.
1172 */
1173 rcu_read_lock();
1174 if (!buffer_jbd(bh))
1175 goto out;
1176 /* This should be bh2jh() but that doesn't work with inline functions */
1177 jh = READ_ONCE(bh->b_private);
1178 if (!jh)
1179 goto out;
1180 /* For undo access buffer must have data copied */
1181 if (undo && !jh->b_committed_data)
1182 goto out;
1183 if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1184 READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1185 goto out;
1186 /*
1187 * There are two reasons for the barrier here:
1188 * 1) Make sure to fetch b_bh after we did previous checks so that we
1189 * detect when jh went through free, realloc, attach to transaction
1190 * while we were checking. Paired with implicit barrier in that path.
1191 * 2) So that access to bh done after jbd2_write_access_granted()
1192 * doesn't get reordered and see inconsistent state of concurrent
1193 * do_get_write_access().
1194 */
1195 smp_mb();
1196 if (unlikely(jh->b_bh != bh))
1197 goto out;
1198 ret = true;
1199 out:
1200 rcu_read_unlock();
1201 return ret;
1202 }
1203
1204 /**
1205 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1206 * for metadata (not data) update.
1207 * @handle: transaction to add buffer modifications to
1208 * @bh: bh to be used for metadata writes
1209 *
1210 * Returns: error code or 0 on success.
1211 *
1212 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1213 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1214 */
1215
jbd2_journal_get_write_access(handle_t * handle,struct buffer_head * bh)1216 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1217 {
1218 struct journal_head *jh;
1219 int rc;
1220
1221 if (is_handle_aborted(handle))
1222 return -EROFS;
1223
1224 if (jbd2_write_access_granted(handle, bh, false))
1225 return 0;
1226
1227 jh = jbd2_journal_add_journal_head(bh);
1228 /* We do not want to get caught playing with fields which the
1229 * log thread also manipulates. Make sure that the buffer
1230 * completes any outstanding IO before proceeding. */
1231 rc = do_get_write_access(handle, jh, 0);
1232 jbd2_journal_put_journal_head(jh);
1233 return rc;
1234 }
1235
1236
1237 /*
1238 * When the user wants to journal a newly created buffer_head
1239 * (ie. getblk() returned a new buffer and we are going to populate it
1240 * manually rather than reading off disk), then we need to keep the
1241 * buffer_head locked until it has been completely filled with new
1242 * data. In this case, we should be able to make the assertion that
1243 * the bh is not already part of an existing transaction.
1244 *
1245 * The buffer should already be locked by the caller by this point.
1246 * There is no lock ranking violation: it was a newly created,
1247 * unlocked buffer beforehand. */
1248
1249 /**
1250 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1251 * @handle: transaction to new buffer to
1252 * @bh: new buffer.
1253 *
1254 * Call this if you create a new bh.
1255 */
jbd2_journal_get_create_access(handle_t * handle,struct buffer_head * bh)1256 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1257 {
1258 transaction_t *transaction = handle->h_transaction;
1259 journal_t *journal;
1260 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1261 int err;
1262
1263 jbd2_debug(5, "journal_head %p\n", jh);
1264 err = -EROFS;
1265 if (is_handle_aborted(handle))
1266 goto out;
1267 journal = transaction->t_journal;
1268 err = 0;
1269
1270 JBUFFER_TRACE(jh, "entry");
1271 /*
1272 * The buffer may already belong to this transaction due to pre-zeroing
1273 * in the filesystem's new_block code. It may also be on the previous,
1274 * committing transaction's lists, but it HAS to be in Forget state in
1275 * that case: the transaction must have deleted the buffer for it to be
1276 * reused here.
1277 */
1278 spin_lock(&jh->b_state_lock);
1279 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1280 jh->b_transaction == NULL ||
1281 (jh->b_transaction == journal->j_committing_transaction &&
1282 jh->b_jlist == BJ_Forget)));
1283
1284 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1285 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1286
1287 if (jh->b_transaction == NULL) {
1288 /*
1289 * Previous jbd2_journal_forget() could have left the buffer
1290 * with jbddirty bit set because it was being committed. When
1291 * the commit finished, we've filed the buffer for
1292 * checkpointing and marked it dirty. Now we are reallocating
1293 * the buffer so the transaction freeing it must have
1294 * committed and so it's safe to clear the dirty bit.
1295 */
1296 clear_buffer_dirty(jh2bh(jh));
1297 /* first access by this transaction */
1298 jh->b_modified = 0;
1299
1300 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1301 spin_lock(&journal->j_list_lock);
1302 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1303 spin_unlock(&journal->j_list_lock);
1304 } else if (jh->b_transaction == journal->j_committing_transaction) {
1305 /* first access by this transaction */
1306 jh->b_modified = 0;
1307
1308 JBUFFER_TRACE(jh, "set next transaction");
1309 spin_lock(&journal->j_list_lock);
1310 jh->b_next_transaction = transaction;
1311 spin_unlock(&journal->j_list_lock);
1312 }
1313 spin_unlock(&jh->b_state_lock);
1314
1315 /*
1316 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1317 * blocks which contain freed but then revoked metadata. We need
1318 * to cancel the revoke in case we end up freeing it yet again
1319 * and the reallocating as data - this would cause a second revoke,
1320 * which hits an assertion error.
1321 */
1322 JBUFFER_TRACE(jh, "cancelling revoke");
1323 jbd2_journal_cancel_revoke(handle, jh);
1324 out:
1325 jbd2_journal_put_journal_head(jh);
1326 return err;
1327 }
1328
1329 /**
1330 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1331 * non-rewindable consequences
1332 * @handle: transaction
1333 * @bh: buffer to undo
1334 *
1335 * Sometimes there is a need to distinguish between metadata which has
1336 * been committed to disk and that which has not. The ext3fs code uses
1337 * this for freeing and allocating space, we have to make sure that we
1338 * do not reuse freed space until the deallocation has been committed,
1339 * since if we overwrote that space we would make the delete
1340 * un-rewindable in case of a crash.
1341 *
1342 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1343 * buffer for parts of non-rewindable operations such as delete
1344 * operations on the bitmaps. The journaling code must keep a copy of
1345 * the buffer's contents prior to the undo_access call until such time
1346 * as we know that the buffer has definitely been committed to disk.
1347 *
1348 * We never need to know which transaction the committed data is part
1349 * of, buffers touched here are guaranteed to be dirtied later and so
1350 * will be committed to a new transaction in due course, at which point
1351 * we can discard the old committed data pointer.
1352 *
1353 * Returns error number or 0 on success.
1354 */
jbd2_journal_get_undo_access(handle_t * handle,struct buffer_head * bh)1355 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1356 {
1357 int err;
1358 struct journal_head *jh;
1359 char *committed_data = NULL;
1360
1361 if (is_handle_aborted(handle))
1362 return -EROFS;
1363
1364 if (jbd2_write_access_granted(handle, bh, true))
1365 return 0;
1366
1367 jh = jbd2_journal_add_journal_head(bh);
1368 JBUFFER_TRACE(jh, "entry");
1369
1370 /*
1371 * Do this first --- it can drop the journal lock, so we want to
1372 * make sure that obtaining the committed_data is done
1373 * atomically wrt. completion of any outstanding commits.
1374 */
1375 err = do_get_write_access(handle, jh, 1);
1376 if (err)
1377 goto out;
1378
1379 repeat:
1380 if (!jh->b_committed_data)
1381 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1382 GFP_NOFS|__GFP_NOFAIL);
1383
1384 spin_lock(&jh->b_state_lock);
1385 if (!jh->b_committed_data) {
1386 /* Copy out the current buffer contents into the
1387 * preserved, committed copy. */
1388 JBUFFER_TRACE(jh, "generate b_committed data");
1389 if (!committed_data) {
1390 spin_unlock(&jh->b_state_lock);
1391 goto repeat;
1392 }
1393
1394 jh->b_committed_data = committed_data;
1395 committed_data = NULL;
1396 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1397 }
1398 spin_unlock(&jh->b_state_lock);
1399 out:
1400 jbd2_journal_put_journal_head(jh);
1401 if (unlikely(committed_data))
1402 jbd2_free(committed_data, bh->b_size);
1403 return err;
1404 }
1405
1406 /**
1407 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1408 * @bh: buffer to trigger on
1409 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1410 *
1411 * Set any triggers on this journal_head. This is always safe, because
1412 * triggers for a committing buffer will be saved off, and triggers for
1413 * a running transaction will match the buffer in that transaction.
1414 *
1415 * Call with NULL to clear the triggers.
1416 */
jbd2_journal_set_triggers(struct buffer_head * bh,struct jbd2_buffer_trigger_type * type)1417 void jbd2_journal_set_triggers(struct buffer_head *bh,
1418 struct jbd2_buffer_trigger_type *type)
1419 {
1420 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1421
1422 if (WARN_ON_ONCE(!jh))
1423 return;
1424 jh->b_triggers = type;
1425 jbd2_journal_put_journal_head(jh);
1426 }
1427
jbd2_buffer_frozen_trigger(struct journal_head * jh,void * mapped_data,struct jbd2_buffer_trigger_type * triggers)1428 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1429 struct jbd2_buffer_trigger_type *triggers)
1430 {
1431 struct buffer_head *bh = jh2bh(jh);
1432
1433 if (!triggers || !triggers->t_frozen)
1434 return;
1435
1436 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1437 }
1438
jbd2_buffer_abort_trigger(struct journal_head * jh,struct jbd2_buffer_trigger_type * triggers)1439 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1440 struct jbd2_buffer_trigger_type *triggers)
1441 {
1442 if (!triggers || !triggers->t_abort)
1443 return;
1444
1445 triggers->t_abort(triggers, jh2bh(jh));
1446 }
1447
1448 /**
1449 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1450 * @handle: transaction to add buffer to.
1451 * @bh: buffer to mark
1452 *
1453 * mark dirty metadata which needs to be journaled as part of the current
1454 * transaction.
1455 *
1456 * The buffer must have previously had jbd2_journal_get_write_access()
1457 * called so that it has a valid journal_head attached to the buffer
1458 * head.
1459 *
1460 * The buffer is placed on the transaction's metadata list and is marked
1461 * as belonging to the transaction.
1462 *
1463 * Returns error number or 0 on success.
1464 *
1465 * Special care needs to be taken if the buffer already belongs to the
1466 * current committing transaction (in which case we should have frozen
1467 * data present for that commit). In that case, we don't relink the
1468 * buffer: that only gets done when the old transaction finally
1469 * completes its commit.
1470 */
jbd2_journal_dirty_metadata(handle_t * handle,struct buffer_head * bh)1471 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1472 {
1473 transaction_t *transaction = handle->h_transaction;
1474 journal_t *journal;
1475 struct journal_head *jh;
1476 int ret = 0;
1477
1478 if (!buffer_jbd(bh))
1479 return -EUCLEAN;
1480
1481 /*
1482 * We don't grab jh reference here since the buffer must be part
1483 * of the running transaction.
1484 */
1485 jh = bh2jh(bh);
1486 jbd2_debug(5, "journal_head %p\n", jh);
1487 JBUFFER_TRACE(jh, "entry");
1488
1489 /*
1490 * This and the following assertions are unreliable since we may see jh
1491 * in inconsistent state unless we grab bh_state lock. But this is
1492 * crucial to catch bugs so let's do a reliable check until the
1493 * lockless handling is fully proven.
1494 */
1495 if (data_race(jh->b_transaction != transaction &&
1496 jh->b_next_transaction != transaction)) {
1497 spin_lock(&jh->b_state_lock);
1498 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1499 jh->b_next_transaction == transaction);
1500 spin_unlock(&jh->b_state_lock);
1501 }
1502 if (jh->b_modified == 1) {
1503 /* If it's in our transaction it must be in BJ_Metadata list. */
1504 if (data_race(jh->b_transaction == transaction &&
1505 jh->b_jlist != BJ_Metadata)) {
1506 spin_lock(&jh->b_state_lock);
1507 if (jh->b_transaction == transaction &&
1508 jh->b_jlist != BJ_Metadata)
1509 pr_err("JBD2: assertion failure: h_type=%u "
1510 "h_line_no=%u block_no=%llu jlist=%u\n",
1511 handle->h_type, handle->h_line_no,
1512 (unsigned long long) bh->b_blocknr,
1513 jh->b_jlist);
1514 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1515 jh->b_jlist == BJ_Metadata);
1516 spin_unlock(&jh->b_state_lock);
1517 }
1518 goto out;
1519 }
1520
1521 journal = transaction->t_journal;
1522 spin_lock(&jh->b_state_lock);
1523
1524 if (is_handle_aborted(handle)) {
1525 /*
1526 * Check journal aborting with @jh->b_state_lock locked,
1527 * since 'jh->b_transaction' could be replaced with
1528 * 'jh->b_next_transaction' during old transaction
1529 * committing if journal aborted, which may fail
1530 * assertion on 'jh->b_frozen_data == NULL'.
1531 */
1532 ret = -EROFS;
1533 goto out_unlock_bh;
1534 }
1535
1536 if (jh->b_modified == 0) {
1537 /*
1538 * This buffer's got modified and becoming part
1539 * of the transaction. This needs to be done
1540 * once a transaction -bzzz
1541 */
1542 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1543 ret = -ENOSPC;
1544 goto out_unlock_bh;
1545 }
1546 jh->b_modified = 1;
1547 handle->h_total_credits--;
1548 }
1549
1550 /*
1551 * fastpath, to avoid expensive locking. If this buffer is already
1552 * on the running transaction's metadata list there is nothing to do.
1553 * Nobody can take it off again because there is a handle open.
1554 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1555 * result in this test being false, so we go in and take the locks.
1556 */
1557 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1558 JBUFFER_TRACE(jh, "fastpath");
1559 if (unlikely(jh->b_transaction !=
1560 journal->j_running_transaction)) {
1561 printk(KERN_ERR "JBD2: %s: "
1562 "jh->b_transaction (%llu, %p, %u) != "
1563 "journal->j_running_transaction (%p, %u)\n",
1564 journal->j_devname,
1565 (unsigned long long) bh->b_blocknr,
1566 jh->b_transaction,
1567 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1568 journal->j_running_transaction,
1569 journal->j_running_transaction ?
1570 journal->j_running_transaction->t_tid : 0);
1571 ret = -EINVAL;
1572 }
1573 goto out_unlock_bh;
1574 }
1575
1576 set_buffer_jbddirty(bh);
1577
1578 /*
1579 * Metadata already on the current transaction list doesn't
1580 * need to be filed. Metadata on another transaction's list must
1581 * be committing, and will be refiled once the commit completes:
1582 * leave it alone for now.
1583 */
1584 if (jh->b_transaction != transaction) {
1585 JBUFFER_TRACE(jh, "already on other transaction");
1586 if (unlikely(((jh->b_transaction !=
1587 journal->j_committing_transaction)) ||
1588 (jh->b_next_transaction != transaction))) {
1589 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1590 "bad jh for block %llu: "
1591 "transaction (%p, %u), "
1592 "jh->b_transaction (%p, %u), "
1593 "jh->b_next_transaction (%p, %u), jlist %u\n",
1594 journal->j_devname,
1595 (unsigned long long) bh->b_blocknr,
1596 transaction, transaction->t_tid,
1597 jh->b_transaction,
1598 jh->b_transaction ?
1599 jh->b_transaction->t_tid : 0,
1600 jh->b_next_transaction,
1601 jh->b_next_transaction ?
1602 jh->b_next_transaction->t_tid : 0,
1603 jh->b_jlist);
1604 WARN_ON(1);
1605 ret = -EINVAL;
1606 }
1607 /* And this case is illegal: we can't reuse another
1608 * transaction's data buffer, ever. */
1609 goto out_unlock_bh;
1610 }
1611
1612 /* That test should have eliminated the following case: */
1613 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1614
1615 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1616 spin_lock(&journal->j_list_lock);
1617 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1618 spin_unlock(&journal->j_list_lock);
1619 out_unlock_bh:
1620 spin_unlock(&jh->b_state_lock);
1621 out:
1622 JBUFFER_TRACE(jh, "exit");
1623 return ret;
1624 }
1625
1626 /**
1627 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1628 * @handle: transaction handle
1629 * @bh: bh to 'forget'
1630 *
1631 * We can only do the bforget if there are no commits pending against the
1632 * buffer. If the buffer is dirty in the current running transaction we
1633 * can safely unlink it.
1634 *
1635 * bh may not be a journalled buffer at all - it may be a non-JBD
1636 * buffer which came off the hashtable. Check for this.
1637 *
1638 * Decrements bh->b_count by one.
1639 *
1640 * Allow this call even if the handle has aborted --- it may be part of
1641 * the caller's cleanup after an abort.
1642 */
jbd2_journal_forget(handle_t * handle,struct buffer_head * bh)1643 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1644 {
1645 transaction_t *transaction = handle->h_transaction;
1646 journal_t *journal;
1647 struct journal_head *jh;
1648 int drop_reserve = 0;
1649 int err = 0;
1650 int was_modified = 0;
1651
1652 if (is_handle_aborted(handle))
1653 return -EROFS;
1654 journal = transaction->t_journal;
1655
1656 BUFFER_TRACE(bh, "entry");
1657
1658 jh = jbd2_journal_grab_journal_head(bh);
1659 if (!jh) {
1660 __bforget(bh);
1661 return 0;
1662 }
1663
1664 spin_lock(&jh->b_state_lock);
1665
1666 /* Critical error: attempting to delete a bitmap buffer, maybe?
1667 * Don't do any jbd operations, and return an error. */
1668 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1669 "inconsistent data on disk")) {
1670 err = -EIO;
1671 goto drop;
1672 }
1673
1674 /* keep track of whether or not this transaction modified us */
1675 was_modified = jh->b_modified;
1676
1677 /*
1678 * The buffer's going from the transaction, we must drop
1679 * all references -bzzz
1680 */
1681 jh->b_modified = 0;
1682
1683 if (jh->b_transaction == transaction) {
1684 J_ASSERT_JH(jh, !jh->b_frozen_data);
1685
1686 /* If we are forgetting a buffer which is already part
1687 * of this transaction, then we can just drop it from
1688 * the transaction immediately. */
1689 clear_buffer_dirty(bh);
1690 clear_buffer_jbddirty(bh);
1691
1692 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1693
1694 /*
1695 * we only want to drop a reference if this transaction
1696 * modified the buffer
1697 */
1698 if (was_modified)
1699 drop_reserve = 1;
1700
1701 /*
1702 * We are no longer going to journal this buffer.
1703 * However, the commit of this transaction is still
1704 * important to the buffer: the delete that we are now
1705 * processing might obsolete an old log entry, so by
1706 * committing, we can satisfy the buffer's checkpoint.
1707 *
1708 * So, if we have a checkpoint on the buffer, we should
1709 * now refile the buffer on our BJ_Forget list so that
1710 * we know to remove the checkpoint after we commit.
1711 */
1712
1713 spin_lock(&journal->j_list_lock);
1714 if (jh->b_cp_transaction) {
1715 __jbd2_journal_temp_unlink_buffer(jh);
1716 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1717 } else {
1718 __jbd2_journal_unfile_buffer(jh);
1719 jbd2_journal_put_journal_head(jh);
1720 }
1721 spin_unlock(&journal->j_list_lock);
1722 } else if (jh->b_transaction) {
1723 J_ASSERT_JH(jh, (jh->b_transaction ==
1724 journal->j_committing_transaction));
1725 /* However, if the buffer is still owned by a prior
1726 * (committing) transaction, we can't drop it yet... */
1727 JBUFFER_TRACE(jh, "belongs to older transaction");
1728 /* ... but we CAN drop it from the new transaction through
1729 * marking the buffer as freed and set j_next_transaction to
1730 * the new transaction, so that not only the commit code
1731 * knows it should clear dirty bits when it is done with the
1732 * buffer, but also the buffer can be checkpointed only
1733 * after the new transaction commits. */
1734
1735 set_buffer_freed(bh);
1736
1737 if (!jh->b_next_transaction) {
1738 spin_lock(&journal->j_list_lock);
1739 jh->b_next_transaction = transaction;
1740 spin_unlock(&journal->j_list_lock);
1741 } else {
1742 J_ASSERT(jh->b_next_transaction == transaction);
1743
1744 /*
1745 * only drop a reference if this transaction modified
1746 * the buffer
1747 */
1748 if (was_modified)
1749 drop_reserve = 1;
1750 }
1751 } else {
1752 /*
1753 * Finally, if the buffer is not belongs to any
1754 * transaction, we can just drop it now if it has no
1755 * checkpoint.
1756 */
1757 spin_lock(&journal->j_list_lock);
1758 if (!jh->b_cp_transaction) {
1759 JBUFFER_TRACE(jh, "belongs to none transaction");
1760 spin_unlock(&journal->j_list_lock);
1761 goto drop;
1762 }
1763
1764 /*
1765 * Otherwise, if the buffer has been written to disk,
1766 * it is safe to remove the checkpoint and drop it.
1767 */
1768 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1769 spin_unlock(&journal->j_list_lock);
1770 goto drop;
1771 }
1772
1773 /*
1774 * The buffer is still not written to disk, we should
1775 * attach this buffer to current transaction so that the
1776 * buffer can be checkpointed only after the current
1777 * transaction commits.
1778 */
1779 clear_buffer_dirty(bh);
1780 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1781 spin_unlock(&journal->j_list_lock);
1782 }
1783 drop:
1784 __brelse(bh);
1785 spin_unlock(&jh->b_state_lock);
1786 jbd2_journal_put_journal_head(jh);
1787 if (drop_reserve) {
1788 /* no need to reserve log space for this block -bzzz */
1789 handle->h_total_credits++;
1790 }
1791 return err;
1792 }
1793
1794 /**
1795 * jbd2_journal_stop() - complete a transaction
1796 * @handle: transaction to complete.
1797 *
1798 * All done for a particular handle.
1799 *
1800 * There is not much action needed here. We just return any remaining
1801 * buffer credits to the transaction and remove the handle. The only
1802 * complication is that we need to start a commit operation if the
1803 * filesystem is marked for synchronous update.
1804 *
1805 * jbd2_journal_stop itself will not usually return an error, but it may
1806 * do so in unusual circumstances. In particular, expect it to
1807 * return -EIO if a jbd2_journal_abort has been executed since the
1808 * transaction began.
1809 */
jbd2_journal_stop(handle_t * handle)1810 int jbd2_journal_stop(handle_t *handle)
1811 {
1812 transaction_t *transaction = handle->h_transaction;
1813 journal_t *journal;
1814 int err = 0, wait_for_commit = 0;
1815 tid_t tid;
1816 pid_t pid;
1817
1818 if (--handle->h_ref > 0) {
1819 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1820 handle->h_ref);
1821 if (is_handle_aborted(handle))
1822 return -EIO;
1823 return 0;
1824 }
1825 if (!transaction) {
1826 /*
1827 * Handle is already detached from the transaction so there is
1828 * nothing to do other than free the handle.
1829 */
1830 memalloc_nofs_restore(handle->saved_alloc_context);
1831 goto free_and_exit;
1832 }
1833 journal = transaction->t_journal;
1834 tid = transaction->t_tid;
1835
1836 if (is_handle_aborted(handle))
1837 err = -EIO;
1838
1839 jbd2_debug(4, "Handle %p going down\n", handle);
1840 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1841 tid, handle->h_type, handle->h_line_no,
1842 jiffies - handle->h_start_jiffies,
1843 handle->h_sync, handle->h_requested_credits,
1844 (handle->h_requested_credits -
1845 handle->h_total_credits));
1846
1847 /*
1848 * Implement synchronous transaction batching. If the handle
1849 * was synchronous, don't force a commit immediately. Let's
1850 * yield and let another thread piggyback onto this
1851 * transaction. Keep doing that while new threads continue to
1852 * arrive. It doesn't cost much - we're about to run a commit
1853 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1854 * operations by 30x or more...
1855 *
1856 * We try and optimize the sleep time against what the
1857 * underlying disk can do, instead of having a static sleep
1858 * time. This is useful for the case where our storage is so
1859 * fast that it is more optimal to go ahead and force a flush
1860 * and wait for the transaction to be committed than it is to
1861 * wait for an arbitrary amount of time for new writers to
1862 * join the transaction. We achieve this by measuring how
1863 * long it takes to commit a transaction, and compare it with
1864 * how long this transaction has been running, and if run time
1865 * < commit time then we sleep for the delta and commit. This
1866 * greatly helps super fast disks that would see slowdowns as
1867 * more threads started doing fsyncs.
1868 *
1869 * But don't do this if this process was the most recent one
1870 * to perform a synchronous write. We do this to detect the
1871 * case where a single process is doing a stream of sync
1872 * writes. No point in waiting for joiners in that case.
1873 *
1874 * Setting max_batch_time to 0 disables this completely.
1875 */
1876 pid = current->pid;
1877 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1878 journal->j_max_batch_time) {
1879 u64 commit_time, trans_time;
1880
1881 journal->j_last_sync_writer = pid;
1882
1883 read_lock(&journal->j_state_lock);
1884 commit_time = journal->j_average_commit_time;
1885 read_unlock(&journal->j_state_lock);
1886
1887 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1888 transaction->t_start_time));
1889
1890 commit_time = max_t(u64, commit_time,
1891 1000*journal->j_min_batch_time);
1892 commit_time = min_t(u64, commit_time,
1893 1000*journal->j_max_batch_time);
1894
1895 if (trans_time < commit_time) {
1896 ktime_t expires = ktime_add_ns(ktime_get(),
1897 commit_time);
1898 set_current_state(TASK_UNINTERRUPTIBLE);
1899 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1900 }
1901 }
1902
1903 if (handle->h_sync)
1904 transaction->t_synchronous_commit = 1;
1905
1906 /*
1907 * If the handle is marked SYNC, we need to set another commit
1908 * going! We also want to force a commit if the transaction is too
1909 * old now.
1910 */
1911 if (handle->h_sync ||
1912 time_after_eq(jiffies, transaction->t_expires)) {
1913 /* Do this even for aborted journals: an abort still
1914 * completes the commit thread, it just doesn't write
1915 * anything to disk. */
1916
1917 jbd2_debug(2, "transaction too old, requesting commit for "
1918 "handle %p\n", handle);
1919 /* This is non-blocking */
1920 jbd2_log_start_commit(journal, tid);
1921
1922 /*
1923 * Special case: JBD2_SYNC synchronous updates require us
1924 * to wait for the commit to complete.
1925 */
1926 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1927 wait_for_commit = 1;
1928 }
1929
1930 /*
1931 * Once stop_this_handle() drops t_updates, the transaction could start
1932 * committing on us and eventually disappear. So we must not
1933 * dereference transaction pointer again after calling
1934 * stop_this_handle().
1935 */
1936 stop_this_handle(handle);
1937
1938 if (wait_for_commit)
1939 err = jbd2_log_wait_commit(journal, tid);
1940
1941 free_and_exit:
1942 if (handle->h_rsv_handle)
1943 jbd2_free_handle(handle->h_rsv_handle);
1944 jbd2_free_handle(handle);
1945 return err;
1946 }
1947
1948 /*
1949 *
1950 * List management code snippets: various functions for manipulating the
1951 * transaction buffer lists.
1952 *
1953 */
1954
1955 /*
1956 * Append a buffer to a transaction list, given the transaction's list head
1957 * pointer.
1958 *
1959 * j_list_lock is held.
1960 *
1961 * jh->b_state_lock is held.
1962 */
1963
1964 static inline void
__blist_add_buffer(struct journal_head ** list,struct journal_head * jh)1965 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1966 {
1967 if (!*list) {
1968 jh->b_tnext = jh->b_tprev = jh;
1969 *list = jh;
1970 } else {
1971 /* Insert at the tail of the list to preserve order */
1972 struct journal_head *first = *list, *last = first->b_tprev;
1973 jh->b_tprev = last;
1974 jh->b_tnext = first;
1975 last->b_tnext = first->b_tprev = jh;
1976 }
1977 }
1978
1979 /*
1980 * Remove a buffer from a transaction list, given the transaction's list
1981 * head pointer.
1982 *
1983 * Called with j_list_lock held, and the journal may not be locked.
1984 *
1985 * jh->b_state_lock is held.
1986 */
1987
1988 static inline void
__blist_del_buffer(struct journal_head ** list,struct journal_head * jh)1989 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1990 {
1991 if (*list == jh) {
1992 *list = jh->b_tnext;
1993 if (*list == jh)
1994 *list = NULL;
1995 }
1996 jh->b_tprev->b_tnext = jh->b_tnext;
1997 jh->b_tnext->b_tprev = jh->b_tprev;
1998 }
1999
2000 /*
2001 * Remove a buffer from the appropriate transaction list.
2002 *
2003 * Note that this function can *change* the value of
2004 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2005 * t_reserved_list. If the caller is holding onto a copy of one of these
2006 * pointers, it could go bad. Generally the caller needs to re-read the
2007 * pointer from the transaction_t.
2008 *
2009 * Called under j_list_lock.
2010 */
__jbd2_journal_temp_unlink_buffer(struct journal_head * jh)2011 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2012 {
2013 struct journal_head **list = NULL;
2014 transaction_t *transaction;
2015 struct buffer_head *bh = jh2bh(jh);
2016
2017 lockdep_assert_held(&jh->b_state_lock);
2018 transaction = jh->b_transaction;
2019 if (transaction)
2020 assert_spin_locked(&transaction->t_journal->j_list_lock);
2021
2022 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2023 if (jh->b_jlist != BJ_None)
2024 J_ASSERT_JH(jh, transaction != NULL);
2025
2026 switch (jh->b_jlist) {
2027 case BJ_None:
2028 return;
2029 case BJ_Metadata:
2030 transaction->t_nr_buffers--;
2031 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2032 list = &transaction->t_buffers;
2033 break;
2034 case BJ_Forget:
2035 list = &transaction->t_forget;
2036 break;
2037 case BJ_Shadow:
2038 list = &transaction->t_shadow_list;
2039 break;
2040 case BJ_Reserved:
2041 list = &transaction->t_reserved_list;
2042 break;
2043 }
2044
2045 __blist_del_buffer(list, jh);
2046 jh->b_jlist = BJ_None;
2047 if (transaction && is_journal_aborted(transaction->t_journal))
2048 clear_buffer_jbddirty(bh);
2049 else if (test_clear_buffer_jbddirty(bh))
2050 mark_buffer_dirty(bh); /* Expose it to the VM */
2051 }
2052
2053 /*
2054 * Remove buffer from all transactions. The caller is responsible for dropping
2055 * the jh reference that belonged to the transaction.
2056 *
2057 * Called with bh_state lock and j_list_lock
2058 */
__jbd2_journal_unfile_buffer(struct journal_head * jh)2059 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2060 {
2061 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2062 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2063
2064 __jbd2_journal_temp_unlink_buffer(jh);
2065 jh->b_transaction = NULL;
2066 }
2067
jbd2_journal_unfile_buffer(journal_t * journal,struct journal_head * jh)2068 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2069 {
2070 struct buffer_head *bh = jh2bh(jh);
2071
2072 /* Get reference so that buffer cannot be freed before we unlock it */
2073 get_bh(bh);
2074 spin_lock(&jh->b_state_lock);
2075 spin_lock(&journal->j_list_lock);
2076 __jbd2_journal_unfile_buffer(jh);
2077 spin_unlock(&journal->j_list_lock);
2078 spin_unlock(&jh->b_state_lock);
2079 jbd2_journal_put_journal_head(jh);
2080 __brelse(bh);
2081 }
2082
2083 /**
2084 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2085 * @journal: journal for operation
2086 * @folio: Folio to detach data from.
2087 *
2088 * For all the buffers on this page,
2089 * if they are fully written out ordered data, move them onto BUF_CLEAN
2090 * so try_to_free_buffers() can reap them.
2091 *
2092 * This function returns non-zero if we wish try_to_free_buffers()
2093 * to be called. We do this if the page is releasable by try_to_free_buffers().
2094 * We also do it if the page has locked or dirty buffers and the caller wants
2095 * us to perform sync or async writeout.
2096 *
2097 * This complicates JBD locking somewhat. We aren't protected by the
2098 * BKL here. We wish to remove the buffer from its committing or
2099 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2100 *
2101 * This may *change* the value of transaction_t->t_datalist, so anyone
2102 * who looks at t_datalist needs to lock against this function.
2103 *
2104 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2105 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
2106 * will come out of the lock with the buffer dirty, which makes it
2107 * ineligible for release here.
2108 *
2109 * Who else is affected by this? hmm... Really the only contender
2110 * is do_get_write_access() - it could be looking at the buffer while
2111 * journal_try_to_free_buffer() is changing its state. But that
2112 * cannot happen because we never reallocate freed data as metadata
2113 * while the data is part of a transaction. Yes?
2114 *
2115 * Return false on failure, true on success
2116 */
jbd2_journal_try_to_free_buffers(journal_t * journal,struct folio * folio)2117 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2118 {
2119 struct buffer_head *head;
2120 struct buffer_head *bh;
2121 bool ret = false;
2122
2123 J_ASSERT(folio_test_locked(folio));
2124
2125 head = folio_buffers(folio);
2126 bh = head;
2127 do {
2128 struct journal_head *jh;
2129
2130 /*
2131 * We take our own ref against the journal_head here to avoid
2132 * having to add tons of locking around each instance of
2133 * jbd2_journal_put_journal_head().
2134 */
2135 jh = jbd2_journal_grab_journal_head(bh);
2136 if (!jh)
2137 continue;
2138
2139 spin_lock(&jh->b_state_lock);
2140 if (!jh->b_transaction && !jh->b_next_transaction) {
2141 spin_lock(&journal->j_list_lock);
2142 /* Remove written-back checkpointed metadata buffer */
2143 if (jh->b_cp_transaction != NULL)
2144 jbd2_journal_try_remove_checkpoint(jh);
2145 spin_unlock(&journal->j_list_lock);
2146 }
2147 spin_unlock(&jh->b_state_lock);
2148 jbd2_journal_put_journal_head(jh);
2149 if (buffer_jbd(bh))
2150 goto busy;
2151 } while ((bh = bh->b_this_page) != head);
2152
2153 ret = try_to_free_buffers(folio);
2154 busy:
2155 return ret;
2156 }
2157
2158 /*
2159 * This buffer is no longer needed. If it is on an older transaction's
2160 * checkpoint list we need to record it on this transaction's forget list
2161 * to pin this buffer (and hence its checkpointing transaction) down until
2162 * this transaction commits. If the buffer isn't on a checkpoint list, we
2163 * release it.
2164 * Returns non-zero if JBD no longer has an interest in the buffer.
2165 *
2166 * Called under j_list_lock.
2167 *
2168 * Called under jh->b_state_lock.
2169 */
__dispose_buffer(struct journal_head * jh,transaction_t * transaction)2170 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2171 {
2172 int may_free = 1;
2173 struct buffer_head *bh = jh2bh(jh);
2174
2175 if (jh->b_cp_transaction) {
2176 JBUFFER_TRACE(jh, "on running+cp transaction");
2177 __jbd2_journal_temp_unlink_buffer(jh);
2178 /*
2179 * We don't want to write the buffer anymore, clear the
2180 * bit so that we don't confuse checks in
2181 * __journal_file_buffer
2182 */
2183 clear_buffer_dirty(bh);
2184 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2185 may_free = 0;
2186 } else {
2187 JBUFFER_TRACE(jh, "on running transaction");
2188 __jbd2_journal_unfile_buffer(jh);
2189 jbd2_journal_put_journal_head(jh);
2190 }
2191 return may_free;
2192 }
2193
2194 /*
2195 * jbd2_journal_invalidate_folio
2196 *
2197 * This code is tricky. It has a number of cases to deal with.
2198 *
2199 * There are two invariants which this code relies on:
2200 *
2201 * i_size must be updated on disk before we start calling invalidate_folio
2202 * on the data.
2203 *
2204 * This is done in ext3 by defining an ext3_setattr method which
2205 * updates i_size before truncate gets going. By maintaining this
2206 * invariant, we can be sure that it is safe to throw away any buffers
2207 * attached to the current transaction: once the transaction commits,
2208 * we know that the data will not be needed.
2209 *
2210 * Note however that we can *not* throw away data belonging to the
2211 * previous, committing transaction!
2212 *
2213 * Any disk blocks which *are* part of the previous, committing
2214 * transaction (and which therefore cannot be discarded immediately) are
2215 * not going to be reused in the new running transaction
2216 *
2217 * The bitmap committed_data images guarantee this: any block which is
2218 * allocated in one transaction and removed in the next will be marked
2219 * as in-use in the committed_data bitmap, so cannot be reused until
2220 * the next transaction to delete the block commits. This means that
2221 * leaving committing buffers dirty is quite safe: the disk blocks
2222 * cannot be reallocated to a different file and so buffer aliasing is
2223 * not possible.
2224 *
2225 *
2226 * The above applies mainly to ordered data mode. In writeback mode we
2227 * don't make guarantees about the order in which data hits disk --- in
2228 * particular we don't guarantee that new dirty data is flushed before
2229 * transaction commit --- so it is always safe just to discard data
2230 * immediately in that mode. --sct
2231 */
2232
2233 /*
2234 * The journal_unmap_buffer helper function returns zero if the buffer
2235 * concerned remains pinned as an anonymous buffer belonging to an older
2236 * transaction.
2237 *
2238 * We're outside-transaction here. Either or both of j_running_transaction
2239 * and j_committing_transaction may be NULL.
2240 */
journal_unmap_buffer(journal_t * journal,struct buffer_head * bh,int partial_page)2241 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2242 int partial_page)
2243 {
2244 transaction_t *transaction;
2245 struct journal_head *jh;
2246 int may_free = 1;
2247
2248 BUFFER_TRACE(bh, "entry");
2249
2250 /*
2251 * It is safe to proceed here without the j_list_lock because the
2252 * buffers cannot be stolen by try_to_free_buffers as long as we are
2253 * holding the page lock. --sct
2254 */
2255
2256 jh = jbd2_journal_grab_journal_head(bh);
2257 if (!jh)
2258 goto zap_buffer_unlocked;
2259
2260 /* OK, we have data buffer in journaled mode */
2261 write_lock(&journal->j_state_lock);
2262 spin_lock(&jh->b_state_lock);
2263 spin_lock(&journal->j_list_lock);
2264
2265 /*
2266 * We cannot remove the buffer from checkpoint lists until the
2267 * transaction adding inode to orphan list (let's call it T)
2268 * is committed. Otherwise if the transaction changing the
2269 * buffer would be cleaned from the journal before T is
2270 * committed, a crash will cause that the correct contents of
2271 * the buffer will be lost. On the other hand we have to
2272 * clear the buffer dirty bit at latest at the moment when the
2273 * transaction marking the buffer as freed in the filesystem
2274 * structures is committed because from that moment on the
2275 * block can be reallocated and used by a different page.
2276 * Since the block hasn't been freed yet but the inode has
2277 * already been added to orphan list, it is safe for us to add
2278 * the buffer to BJ_Forget list of the newest transaction.
2279 *
2280 * Also we have to clear buffer_mapped flag of a truncated buffer
2281 * because the buffer_head may be attached to the page straddling
2282 * i_size (can happen only when blocksize < pagesize) and thus the
2283 * buffer_head can be reused when the file is extended again. So we end
2284 * up keeping around invalidated buffers attached to transactions'
2285 * BJ_Forget list just to stop checkpointing code from cleaning up
2286 * the transaction this buffer was modified in.
2287 */
2288 transaction = jh->b_transaction;
2289 if (transaction == NULL) {
2290 /* First case: not on any transaction. If it
2291 * has no checkpoint link, then we can zap it:
2292 * it's a writeback-mode buffer so we don't care
2293 * if it hits disk safely. */
2294 if (!jh->b_cp_transaction) {
2295 JBUFFER_TRACE(jh, "not on any transaction: zap");
2296 goto zap_buffer;
2297 }
2298
2299 if (!buffer_dirty(bh)) {
2300 /* bdflush has written it. We can drop it now */
2301 __jbd2_journal_remove_checkpoint(jh);
2302 goto zap_buffer;
2303 }
2304
2305 /* OK, it must be in the journal but still not
2306 * written fully to disk: it's metadata or
2307 * journaled data... */
2308
2309 if (journal->j_running_transaction) {
2310 /* ... and once the current transaction has
2311 * committed, the buffer won't be needed any
2312 * longer. */
2313 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2314 may_free = __dispose_buffer(jh,
2315 journal->j_running_transaction);
2316 goto zap_buffer;
2317 } else {
2318 /* There is no currently-running transaction. So the
2319 * orphan record which we wrote for this file must have
2320 * passed into commit. We must attach this buffer to
2321 * the committing transaction, if it exists. */
2322 if (journal->j_committing_transaction) {
2323 JBUFFER_TRACE(jh, "give to committing trans");
2324 may_free = __dispose_buffer(jh,
2325 journal->j_committing_transaction);
2326 goto zap_buffer;
2327 } else {
2328 /* The orphan record's transaction has
2329 * committed. We can cleanse this buffer */
2330 clear_buffer_jbddirty(bh);
2331 __jbd2_journal_remove_checkpoint(jh);
2332 goto zap_buffer;
2333 }
2334 }
2335 } else if (transaction == journal->j_committing_transaction) {
2336 JBUFFER_TRACE(jh, "on committing transaction");
2337 /*
2338 * The buffer is committing, we simply cannot touch
2339 * it. If the page is straddling i_size we have to wait
2340 * for commit and try again.
2341 */
2342 if (partial_page) {
2343 spin_unlock(&journal->j_list_lock);
2344 spin_unlock(&jh->b_state_lock);
2345 write_unlock(&journal->j_state_lock);
2346 jbd2_journal_put_journal_head(jh);
2347 /* Already zapped buffer? Nothing to do... */
2348 if (!bh->b_bdev)
2349 return 0;
2350 return -EBUSY;
2351 }
2352 /*
2353 * OK, buffer won't be reachable after truncate. We just clear
2354 * b_modified to not confuse transaction credit accounting, and
2355 * set j_next_transaction to the running transaction (if there
2356 * is one) and mark buffer as freed so that commit code knows
2357 * it should clear dirty bits when it is done with the buffer.
2358 */
2359 set_buffer_freed(bh);
2360 if (journal->j_running_transaction && buffer_jbddirty(bh))
2361 jh->b_next_transaction = journal->j_running_transaction;
2362 jh->b_modified = 0;
2363 spin_unlock(&journal->j_list_lock);
2364 spin_unlock(&jh->b_state_lock);
2365 write_unlock(&journal->j_state_lock);
2366 jbd2_journal_put_journal_head(jh);
2367 return 0;
2368 } else {
2369 /* Good, the buffer belongs to the running transaction.
2370 * We are writing our own transaction's data, not any
2371 * previous one's, so it is safe to throw it away
2372 * (remember that we expect the filesystem to have set
2373 * i_size already for this truncate so recovery will not
2374 * expose the disk blocks we are discarding here.) */
2375 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2376 JBUFFER_TRACE(jh, "on running transaction");
2377 may_free = __dispose_buffer(jh, transaction);
2378 }
2379
2380 zap_buffer:
2381 /*
2382 * This is tricky. Although the buffer is truncated, it may be reused
2383 * if blocksize < pagesize and it is attached to the page straddling
2384 * EOF. Since the buffer might have been added to BJ_Forget list of the
2385 * running transaction, journal_get_write_access() won't clear
2386 * b_modified and credit accounting gets confused. So clear b_modified
2387 * here.
2388 */
2389 jh->b_modified = 0;
2390 spin_unlock(&journal->j_list_lock);
2391 spin_unlock(&jh->b_state_lock);
2392 write_unlock(&journal->j_state_lock);
2393 jbd2_journal_put_journal_head(jh);
2394 zap_buffer_unlocked:
2395 clear_buffer_dirty(bh);
2396 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2397 clear_buffer_mapped(bh);
2398 clear_buffer_req(bh);
2399 clear_buffer_new(bh);
2400 clear_buffer_delay(bh);
2401 clear_buffer_unwritten(bh);
2402 bh->b_bdev = NULL;
2403 return may_free;
2404 }
2405
2406 /**
2407 * jbd2_journal_invalidate_folio()
2408 * @journal: journal to use for flush...
2409 * @folio: folio to flush
2410 * @offset: start of the range to invalidate
2411 * @length: length of the range to invalidate
2412 *
2413 * Reap page buffers containing data after in the specified range in page.
2414 * Can return -EBUSY if buffers are part of the committing transaction and
2415 * the page is straddling i_size. Caller then has to wait for current commit
2416 * and try again.
2417 */
jbd2_journal_invalidate_folio(journal_t * journal,struct folio * folio,size_t offset,size_t length)2418 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2419 size_t offset, size_t length)
2420 {
2421 struct buffer_head *head, *bh, *next;
2422 unsigned int stop = offset + length;
2423 unsigned int curr_off = 0;
2424 int partial_page = (offset || length < folio_size(folio));
2425 int may_free = 1;
2426 int ret = 0;
2427
2428 if (!folio_test_locked(folio))
2429 BUG();
2430 head = folio_buffers(folio);
2431 if (!head)
2432 return 0;
2433
2434 BUG_ON(stop > folio_size(folio) || stop < length);
2435
2436 /* We will potentially be playing with lists other than just the
2437 * data lists (especially for journaled data mode), so be
2438 * cautious in our locking. */
2439
2440 bh = head;
2441 do {
2442 unsigned int next_off = curr_off + bh->b_size;
2443 next = bh->b_this_page;
2444
2445 if (next_off > stop)
2446 return 0;
2447
2448 if (offset <= curr_off) {
2449 /* This block is wholly outside the truncation point */
2450 lock_buffer(bh);
2451 ret = journal_unmap_buffer(journal, bh, partial_page);
2452 unlock_buffer(bh);
2453 if (ret < 0)
2454 return ret;
2455 may_free &= ret;
2456 }
2457 curr_off = next_off;
2458 bh = next;
2459
2460 } while (bh != head);
2461
2462 if (!partial_page) {
2463 if (may_free && try_to_free_buffers(folio))
2464 J_ASSERT(!folio_buffers(folio));
2465 }
2466 return 0;
2467 }
2468
2469 /*
2470 * File a buffer on the given transaction list.
2471 */
__jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2472 void __jbd2_journal_file_buffer(struct journal_head *jh,
2473 transaction_t *transaction, int jlist)
2474 {
2475 struct journal_head **list = NULL;
2476 int was_dirty = 0;
2477 struct buffer_head *bh = jh2bh(jh);
2478
2479 lockdep_assert_held(&jh->b_state_lock);
2480 assert_spin_locked(&transaction->t_journal->j_list_lock);
2481
2482 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2483 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2484 jh->b_transaction == NULL);
2485
2486 if (jh->b_transaction && jh->b_jlist == jlist)
2487 return;
2488
2489 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2490 jlist == BJ_Shadow || jlist == BJ_Forget) {
2491 /*
2492 * For metadata buffers, we track dirty bit in buffer_jbddirty
2493 * instead of buffer_dirty. We should not see a dirty bit set
2494 * here because we clear it in do_get_write_access but e.g.
2495 * tune2fs can modify the sb and set the dirty bit at any time
2496 * so we try to gracefully handle that.
2497 */
2498 if (buffer_dirty(bh))
2499 warn_dirty_buffer(bh);
2500 if (test_clear_buffer_dirty(bh) ||
2501 test_clear_buffer_jbddirty(bh))
2502 was_dirty = 1;
2503 }
2504
2505 if (jh->b_transaction)
2506 __jbd2_journal_temp_unlink_buffer(jh);
2507 else
2508 jbd2_journal_grab_journal_head(bh);
2509 jh->b_transaction = transaction;
2510
2511 switch (jlist) {
2512 case BJ_None:
2513 J_ASSERT_JH(jh, !jh->b_committed_data);
2514 J_ASSERT_JH(jh, !jh->b_frozen_data);
2515 return;
2516 case BJ_Metadata:
2517 transaction->t_nr_buffers++;
2518 list = &transaction->t_buffers;
2519 break;
2520 case BJ_Forget:
2521 list = &transaction->t_forget;
2522 break;
2523 case BJ_Shadow:
2524 list = &transaction->t_shadow_list;
2525 break;
2526 case BJ_Reserved:
2527 list = &transaction->t_reserved_list;
2528 break;
2529 }
2530
2531 __blist_add_buffer(list, jh);
2532 jh->b_jlist = jlist;
2533
2534 if (was_dirty)
2535 set_buffer_jbddirty(bh);
2536 }
2537
jbd2_journal_file_buffer(struct journal_head * jh,transaction_t * transaction,int jlist)2538 void jbd2_journal_file_buffer(struct journal_head *jh,
2539 transaction_t *transaction, int jlist)
2540 {
2541 spin_lock(&jh->b_state_lock);
2542 spin_lock(&transaction->t_journal->j_list_lock);
2543 __jbd2_journal_file_buffer(jh, transaction, jlist);
2544 spin_unlock(&transaction->t_journal->j_list_lock);
2545 spin_unlock(&jh->b_state_lock);
2546 }
2547
2548 /*
2549 * Remove a buffer from its current buffer list in preparation for
2550 * dropping it from its current transaction entirely. If the buffer has
2551 * already started to be used by a subsequent transaction, refile the
2552 * buffer on that transaction's metadata list.
2553 *
2554 * Called under j_list_lock
2555 * Called under jh->b_state_lock
2556 *
2557 * When this function returns true, there's no next transaction to refile to
2558 * and the caller has to drop jh reference through
2559 * jbd2_journal_put_journal_head().
2560 */
__jbd2_journal_refile_buffer(struct journal_head * jh)2561 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2562 {
2563 int was_dirty, jlist;
2564 struct buffer_head *bh = jh2bh(jh);
2565
2566 lockdep_assert_held(&jh->b_state_lock);
2567 if (jh->b_transaction)
2568 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2569
2570 /* If the buffer is now unused, just drop it. */
2571 if (jh->b_next_transaction == NULL) {
2572 __jbd2_journal_unfile_buffer(jh);
2573 return true;
2574 }
2575
2576 /*
2577 * It has been modified by a later transaction: add it to the new
2578 * transaction's metadata list.
2579 */
2580
2581 was_dirty = test_clear_buffer_jbddirty(bh);
2582 __jbd2_journal_temp_unlink_buffer(jh);
2583
2584 /*
2585 * b_transaction must be set, otherwise the new b_transaction won't
2586 * be holding jh reference
2587 */
2588 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2589
2590 /*
2591 * We set b_transaction here because b_next_transaction will inherit
2592 * our jh reference and thus __jbd2_journal_file_buffer() must not
2593 * take a new one.
2594 */
2595 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2596 WRITE_ONCE(jh->b_next_transaction, NULL);
2597 if (buffer_freed(bh))
2598 jlist = BJ_Forget;
2599 else if (jh->b_modified)
2600 jlist = BJ_Metadata;
2601 else
2602 jlist = BJ_Reserved;
2603 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2604 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2605
2606 if (was_dirty)
2607 set_buffer_jbddirty(bh);
2608 return false;
2609 }
2610
2611 /*
2612 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2613 * bh reference so that we can safely unlock bh.
2614 *
2615 * The jh and bh may be freed by this call.
2616 */
jbd2_journal_refile_buffer(journal_t * journal,struct journal_head * jh)2617 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2618 {
2619 bool drop;
2620
2621 spin_lock(&jh->b_state_lock);
2622 spin_lock(&journal->j_list_lock);
2623 drop = __jbd2_journal_refile_buffer(jh);
2624 spin_unlock(&jh->b_state_lock);
2625 spin_unlock(&journal->j_list_lock);
2626 if (drop)
2627 jbd2_journal_put_journal_head(jh);
2628 }
2629
2630 /*
2631 * File inode in the inode list of the handle's transaction
2632 */
jbd2_journal_file_inode(handle_t * handle,struct jbd2_inode * jinode,unsigned long flags,loff_t start_byte,loff_t end_byte)2633 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2634 unsigned long flags, loff_t start_byte, loff_t end_byte)
2635 {
2636 transaction_t *transaction = handle->h_transaction;
2637 journal_t *journal;
2638
2639 if (is_handle_aborted(handle))
2640 return -EROFS;
2641 journal = transaction->t_journal;
2642
2643 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2644 transaction->t_tid);
2645
2646 spin_lock(&journal->j_list_lock);
2647 jinode->i_flags |= flags;
2648
2649 if (jinode->i_dirty_end) {
2650 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2651 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2652 } else {
2653 jinode->i_dirty_start = start_byte;
2654 jinode->i_dirty_end = end_byte;
2655 }
2656
2657 /* Is inode already attached where we need it? */
2658 if (jinode->i_transaction == transaction ||
2659 jinode->i_next_transaction == transaction)
2660 goto done;
2661
2662 /*
2663 * We only ever set this variable to 1 so the test is safe. Since
2664 * t_need_data_flush is likely to be set, we do the test to save some
2665 * cacheline bouncing
2666 */
2667 if (!transaction->t_need_data_flush)
2668 transaction->t_need_data_flush = 1;
2669 /* On some different transaction's list - should be
2670 * the committing one */
2671 if (jinode->i_transaction) {
2672 J_ASSERT(jinode->i_next_transaction == NULL);
2673 J_ASSERT(jinode->i_transaction ==
2674 journal->j_committing_transaction);
2675 jinode->i_next_transaction = transaction;
2676 goto done;
2677 }
2678 /* Not on any transaction list... */
2679 J_ASSERT(!jinode->i_next_transaction);
2680 jinode->i_transaction = transaction;
2681 list_add(&jinode->i_list, &transaction->t_inode_list);
2682 done:
2683 spin_unlock(&journal->j_list_lock);
2684
2685 return 0;
2686 }
2687
jbd2_journal_inode_ranged_write(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2688 int jbd2_journal_inode_ranged_write(handle_t *handle,
2689 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2690 {
2691 return jbd2_journal_file_inode(handle, jinode,
2692 JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2693 start_byte + length - 1);
2694 }
2695
jbd2_journal_inode_ranged_wait(handle_t * handle,struct jbd2_inode * jinode,loff_t start_byte,loff_t length)2696 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2697 loff_t start_byte, loff_t length)
2698 {
2699 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2700 start_byte, start_byte + length - 1);
2701 }
2702
2703 /*
2704 * File truncate and transaction commit interact with each other in a
2705 * non-trivial way. If a transaction writing data block A is
2706 * committing, we cannot discard the data by truncate until we have
2707 * written them. Otherwise if we crashed after the transaction with
2708 * write has committed but before the transaction with truncate has
2709 * committed, we could see stale data in block A. This function is a
2710 * helper to solve this problem. It starts writeout of the truncated
2711 * part in case it is in the committing transaction.
2712 *
2713 * Filesystem code must call this function when inode is journaled in
2714 * ordered mode before truncation happens and after the inode has been
2715 * placed on orphan list with the new inode size. The second condition
2716 * avoids the race that someone writes new data and we start
2717 * committing the transaction after this function has been called but
2718 * before a transaction for truncate is started (and furthermore it
2719 * allows us to optimize the case where the addition to orphan list
2720 * happens in the same transaction as write --- we don't have to write
2721 * any data in such case).
2722 */
jbd2_journal_begin_ordered_truncate(journal_t * journal,struct jbd2_inode * jinode,loff_t new_size)2723 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2724 struct jbd2_inode *jinode,
2725 loff_t new_size)
2726 {
2727 transaction_t *inode_trans, *commit_trans;
2728 int ret = 0;
2729
2730 /* This is a quick check to avoid locking if not necessary */
2731 if (!jinode->i_transaction)
2732 goto out;
2733 /* Locks are here just to force reading of recent values, it is
2734 * enough that the transaction was not committing before we started
2735 * a transaction adding the inode to orphan list */
2736 read_lock(&journal->j_state_lock);
2737 commit_trans = journal->j_committing_transaction;
2738 read_unlock(&journal->j_state_lock);
2739 spin_lock(&journal->j_list_lock);
2740 inode_trans = jinode->i_transaction;
2741 spin_unlock(&journal->j_list_lock);
2742 if (inode_trans == commit_trans) {
2743 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2744 new_size, LLONG_MAX);
2745 if (ret)
2746 jbd2_journal_abort(journal, ret);
2747 }
2748 out:
2749 return ret;
2750 }
2751