1 /*
2 * NUMA parameter parsing routines
3 *
4 * Copyright (c) 2014 Fujitsu Ltd.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "sysemu/hostmem.h"
28 #include "sysemu/numa.h"
29 #include "exec/cpu-common.h"
30 #include "exec/ramlist.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 #include "qapi/opts-visitor.h"
34 #include "qapi/qapi-visit-machine.h"
35 #include "sysemu/qtest.h"
36 #include "hw/core/cpu.h"
37 #include "hw/mem/pc-dimm.h"
38 #include "hw/boards.h"
39 #include "hw/mem/memory-device.h"
40 #include "qemu/option.h"
41 #include "qemu/config-file.h"
42 #include "qemu/cutils.h"
43
44 QemuOptsList qemu_numa_opts = {
45 .name = "numa",
46 .implied_opt_name = "type",
47 .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head),
48 .desc = { { 0 } } /* validated with OptsVisitor */
49 };
50
51 static int have_memdevs;
numa_uses_legacy_mem(void)52 bool numa_uses_legacy_mem(void)
53 {
54 return !have_memdevs;
55 }
56
57 static int have_mem;
58 static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one.
59 * For all nodes, nodeid < max_numa_nodeid
60 */
61
parse_numa_node(MachineState * ms,NumaNodeOptions * node,Error ** errp)62 static void parse_numa_node(MachineState *ms, NumaNodeOptions *node,
63 Error **errp)
64 {
65 Error *err = NULL;
66 uint16_t nodenr;
67 uint16List *cpus = NULL;
68 MachineClass *mc = MACHINE_GET_CLASS(ms);
69 unsigned int max_cpus = ms->smp.max_cpus;
70 NodeInfo *numa_info = ms->numa_state->nodes;
71
72 if (node->has_nodeid) {
73 nodenr = node->nodeid;
74 } else {
75 nodenr = ms->numa_state->num_nodes;
76 }
77
78 if (nodenr >= MAX_NODES) {
79 error_setg(errp, "Max number of NUMA nodes reached: %"
80 PRIu16 "", nodenr);
81 return;
82 }
83
84 if (numa_info[nodenr].present) {
85 error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr);
86 return;
87 }
88
89 /*
90 * If not set the initiator, set it to MAX_NODES. And if
91 * HMAT is enabled and this node has no cpus, QEMU will raise error.
92 */
93 numa_info[nodenr].initiator = MAX_NODES;
94 if (node->has_initiator) {
95 if (!ms->numa_state->hmat_enabled) {
96 error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
97 "(HMAT) is disabled, enable it with -machine hmat=on "
98 "before using any of hmat specific options");
99 return;
100 }
101
102 if (node->initiator >= MAX_NODES) {
103 error_report("The initiator id %" PRIu16 " expects an integer "
104 "between 0 and %d", node->initiator,
105 MAX_NODES - 1);
106 return;
107 }
108
109 numa_info[nodenr].initiator = node->initiator;
110 }
111
112 for (cpus = node->cpus; cpus; cpus = cpus->next) {
113 CpuInstanceProperties props;
114 if (cpus->value >= max_cpus) {
115 error_setg(errp,
116 "CPU index (%" PRIu16 ")"
117 " should be smaller than maxcpus (%d)",
118 cpus->value, max_cpus);
119 return;
120 }
121 props = mc->cpu_index_to_instance_props(ms, cpus->value);
122 props.node_id = nodenr;
123 props.has_node_id = true;
124 machine_set_cpu_numa_node(ms, &props, &err);
125 if (err) {
126 error_propagate(errp, err);
127 return;
128 }
129 }
130
131 have_memdevs = have_memdevs || node->memdev;
132 have_mem = have_mem || node->has_mem;
133 if ((node->has_mem && have_memdevs) || (node->memdev && have_mem)) {
134 error_setg(errp, "numa configuration should use either mem= or memdev=,"
135 "mixing both is not allowed");
136 return;
137 }
138
139 if (node->has_mem) {
140 if (!mc->numa_mem_supported) {
141 error_setg(errp, "Parameter -numa node,mem is not supported by this"
142 " machine type");
143 error_append_hint(errp, "Use -numa node,memdev instead\n");
144 return;
145 }
146
147 numa_info[nodenr].node_mem = node->mem;
148 if (!qtest_enabled()) {
149 warn_report("Parameter -numa node,mem is deprecated,"
150 " use -numa node,memdev instead");
151 }
152 }
153 if (node->memdev) {
154 Object *o;
155 o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL);
156 if (!o) {
157 error_setg(errp, "memdev=%s is ambiguous", node->memdev);
158 return;
159 }
160
161 object_ref(o);
162 numa_info[nodenr].node_mem = object_property_get_uint(o, "size", NULL);
163 numa_info[nodenr].node_memdev = MEMORY_BACKEND(o);
164 }
165
166 numa_info[nodenr].present = true;
167 max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1);
168 ms->numa_state->num_nodes++;
169 }
170
171 static
parse_numa_distance(MachineState * ms,NumaDistOptions * dist,Error ** errp)172 void parse_numa_distance(MachineState *ms, NumaDistOptions *dist, Error **errp)
173 {
174 uint16_t src = dist->src;
175 uint16_t dst = dist->dst;
176 uint8_t val = dist->val;
177 NodeInfo *numa_info = ms->numa_state->nodes;
178
179 if (src >= MAX_NODES || dst >= MAX_NODES) {
180 error_setg(errp, "Parameter '%s' expects an integer between 0 and %d",
181 src >= MAX_NODES ? "src" : "dst", MAX_NODES - 1);
182 return;
183 }
184
185 if (!numa_info[src].present || !numa_info[dst].present) {
186 error_setg(errp, "Source/Destination NUMA node is missing. "
187 "Please use '-numa node' option to declare it first.");
188 return;
189 }
190
191 if (val < NUMA_DISTANCE_MIN) {
192 error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, "
193 "it shouldn't be less than %d.",
194 val, NUMA_DISTANCE_MIN);
195 return;
196 }
197
198 if (src == dst && val != NUMA_DISTANCE_MIN) {
199 error_setg(errp, "Local distance of node %d should be %d.",
200 src, NUMA_DISTANCE_MIN);
201 return;
202 }
203
204 numa_info[src].distance[dst] = val;
205 ms->numa_state->have_numa_distance = true;
206 }
207
parse_numa_hmat_lb(NumaState * numa_state,NumaHmatLBOptions * node,Error ** errp)208 void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node,
209 Error **errp)
210 {
211 int i, first_bit, last_bit;
212 uint64_t max_entry, temp_base, bitmap_copy;
213 NodeInfo *numa_info = numa_state->nodes;
214 HMAT_LB_Info *hmat_lb =
215 numa_state->hmat_lb[node->hierarchy][node->data_type];
216 HMAT_LB_Data lb_data = {};
217 HMAT_LB_Data *lb_temp;
218
219 /* Error checking */
220 if (node->initiator > numa_state->num_nodes) {
221 error_setg(errp, "Invalid initiator=%d, it should be less than %d",
222 node->initiator, numa_state->num_nodes);
223 return;
224 }
225 if (node->target > numa_state->num_nodes) {
226 error_setg(errp, "Invalid target=%d, it should be less than %d",
227 node->target, numa_state->num_nodes);
228 return;
229 }
230 if (!numa_info[node->initiator].has_cpu &&
231 !numa_info[node->initiator].has_gi) {
232 error_setg(errp, "Invalid initiator=%d, it isn't an "
233 "initiator proximity domain", node->initiator);
234 return;
235 }
236 if (!numa_info[node->target].present) {
237 error_setg(errp, "The target=%d should point to an existing node",
238 node->target);
239 return;
240 }
241
242 if (!hmat_lb) {
243 hmat_lb = g_malloc0(sizeof(*hmat_lb));
244 numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb;
245 hmat_lb->list = g_array_new(false, true, sizeof(HMAT_LB_Data));
246 }
247 hmat_lb->hierarchy = node->hierarchy;
248 hmat_lb->data_type = node->data_type;
249 lb_data.initiator = node->initiator;
250 lb_data.target = node->target;
251
252 if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) {
253 /* Input latency data */
254
255 if (!node->has_latency) {
256 error_setg(errp, "Missing 'latency' option");
257 return;
258 }
259 if (node->has_bandwidth) {
260 error_setg(errp, "Invalid option 'bandwidth' since "
261 "the data type is latency");
262 return;
263 }
264
265 /* Detect duplicate configuration */
266 for (i = 0; i < hmat_lb->list->len; i++) {
267 lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i);
268
269 if (node->initiator == lb_temp->initiator &&
270 node->target == lb_temp->target) {
271 error_setg(errp, "Duplicate configuration of the latency for "
272 "initiator=%d and target=%d", node->initiator,
273 node->target);
274 return;
275 }
276 }
277
278 hmat_lb->base = hmat_lb->base ? hmat_lb->base : UINT64_MAX;
279
280 if (node->latency) {
281 /* Calculate the temporary base and compressed latency */
282 max_entry = node->latency;
283 temp_base = 1;
284 while (QEMU_IS_ALIGNED(max_entry, 10)) {
285 max_entry /= 10;
286 temp_base *= 10;
287 }
288
289 /* Calculate the max compressed latency */
290 temp_base = MIN(hmat_lb->base, temp_base);
291 max_entry = node->latency / hmat_lb->base;
292 max_entry = MAX(hmat_lb->range_bitmap, max_entry);
293
294 /*
295 * For latency hmat_lb->range_bitmap record the max compressed
296 * latency which should be less than 0xFFFF (UINT16_MAX)
297 */
298 if (max_entry >= UINT16_MAX) {
299 error_setg(errp, "Latency %" PRIu64 " between initiator=%d and "
300 "target=%d should not differ from previously entered "
301 "min or max values on more than %d", node->latency,
302 node->initiator, node->target, UINT16_MAX - 1);
303 return;
304 } else {
305 hmat_lb->base = temp_base;
306 hmat_lb->range_bitmap = max_entry;
307 }
308
309 /*
310 * Set lb_info_provided bit 0 as 1,
311 * latency information is provided
312 */
313 numa_info[node->target].lb_info_provided |= BIT(0);
314 }
315 lb_data.data = node->latency;
316 } else if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) {
317 /* Input bandwidth data */
318 if (!node->has_bandwidth) {
319 error_setg(errp, "Missing 'bandwidth' option");
320 return;
321 }
322 if (node->has_latency) {
323 error_setg(errp, "Invalid option 'latency' since "
324 "the data type is bandwidth");
325 return;
326 }
327 if (!QEMU_IS_ALIGNED(node->bandwidth, MiB)) {
328 error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and "
329 "target=%d should be 1MB aligned", node->bandwidth,
330 node->initiator, node->target);
331 return;
332 }
333
334 /* Detect duplicate configuration */
335 for (i = 0; i < hmat_lb->list->len; i++) {
336 lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i);
337
338 if (node->initiator == lb_temp->initiator &&
339 node->target == lb_temp->target) {
340 error_setg(errp, "Duplicate configuration of the bandwidth for "
341 "initiator=%d and target=%d", node->initiator,
342 node->target);
343 return;
344 }
345 }
346
347 hmat_lb->base = hmat_lb->base ? hmat_lb->base : 1;
348
349 if (node->bandwidth) {
350 /* Keep bitmap unchanged when bandwidth out of range */
351 bitmap_copy = hmat_lb->range_bitmap;
352 bitmap_copy |= node->bandwidth;
353 first_bit = ctz64(bitmap_copy);
354 temp_base = UINT64_C(1) << first_bit;
355 max_entry = node->bandwidth / temp_base;
356 last_bit = 64 - clz64(bitmap_copy);
357
358 /*
359 * For bandwidth, first_bit record the base unit of bandwidth bits,
360 * last_bit record the last bit of the max bandwidth. The max
361 * compressed bandwidth should be less than 0xFFFF (UINT16_MAX)
362 */
363 if ((last_bit - first_bit) > UINT16_BITS ||
364 max_entry >= UINT16_MAX) {
365 error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d "
366 "and target=%d should not differ from previously "
367 "entered values on more than %d", node->bandwidth,
368 node->initiator, node->target, UINT16_MAX - 1);
369 return;
370 } else {
371 hmat_lb->base = temp_base;
372 hmat_lb->range_bitmap = bitmap_copy;
373 }
374
375 /*
376 * Set lb_info_provided bit 1 as 1,
377 * bandwidth information is provided
378 */
379 numa_info[node->target].lb_info_provided |= BIT(1);
380 }
381 lb_data.data = node->bandwidth;
382 } else {
383 assert(0);
384 }
385
386 g_array_append_val(hmat_lb->list, lb_data);
387 }
388
parse_numa_hmat_cache(MachineState * ms,NumaHmatCacheOptions * node,Error ** errp)389 void parse_numa_hmat_cache(MachineState *ms, NumaHmatCacheOptions *node,
390 Error **errp)
391 {
392 int nb_numa_nodes = ms->numa_state->num_nodes;
393 NodeInfo *numa_info = ms->numa_state->nodes;
394 NumaHmatCacheOptions *hmat_cache = NULL;
395
396 if (node->node_id >= nb_numa_nodes) {
397 error_setg(errp, "Invalid node-id=%" PRIu32 ", it should be less "
398 "than %d", node->node_id, nb_numa_nodes);
399 return;
400 }
401
402 if (numa_info[node->node_id].lb_info_provided != (BIT(0) | BIT(1))) {
403 error_setg(errp, "The latency and bandwidth information of "
404 "node-id=%" PRIu32 " should be provided before memory side "
405 "cache attributes", node->node_id);
406 return;
407 }
408
409 if (node->level < 1 || node->level >= HMAT_LB_LEVELS) {
410 error_setg(errp, "Invalid level=%" PRIu8 ", it should be larger than 0 "
411 "and less than or equal to %d", node->level,
412 HMAT_LB_LEVELS - 1);
413 return;
414 }
415
416 assert(node->associativity < HMAT_CACHE_ASSOCIATIVITY__MAX);
417 assert(node->policy < HMAT_CACHE_WRITE_POLICY__MAX);
418 if (ms->numa_state->hmat_cache[node->node_id][node->level]) {
419 error_setg(errp, "Duplicate configuration of the side cache for "
420 "node-id=%" PRIu32 " and level=%" PRIu8,
421 node->node_id, node->level);
422 return;
423 }
424
425 if ((node->level > 1) &&
426 ms->numa_state->hmat_cache[node->node_id][node->level - 1] == NULL) {
427 error_setg(errp, "Cache level=%u shall be defined first",
428 node->level - 1);
429 return;
430 }
431
432 if ((node->level > 1) &&
433 (node->size <=
434 ms->numa_state->hmat_cache[node->node_id][node->level - 1]->size)) {
435 error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8
436 " should be larger than the size(%" PRIu64 ") of "
437 "level=%u", node->size, node->level,
438 ms->numa_state->hmat_cache[node->node_id]
439 [node->level - 1]->size,
440 node->level - 1);
441 return;
442 }
443
444 if ((node->level < HMAT_LB_LEVELS - 1) &&
445 ms->numa_state->hmat_cache[node->node_id][node->level + 1] &&
446 (node->size >=
447 ms->numa_state->hmat_cache[node->node_id][node->level + 1]->size)) {
448 error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8
449 " should be less than the size(%" PRIu64 ") of "
450 "level=%u", node->size, node->level,
451 ms->numa_state->hmat_cache[node->node_id]
452 [node->level + 1]->size,
453 node->level + 1);
454 return;
455 }
456
457 hmat_cache = g_malloc0(sizeof(*hmat_cache));
458 memcpy(hmat_cache, node, sizeof(*hmat_cache));
459 ms->numa_state->hmat_cache[node->node_id][node->level] = hmat_cache;
460 }
461
set_numa_options(MachineState * ms,NumaOptions * object,Error ** errp)462 void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp)
463 {
464 if (!ms->numa_state) {
465 error_setg(errp, "NUMA is not supported by this machine-type");
466 return;
467 }
468
469 switch (object->type) {
470 case NUMA_OPTIONS_TYPE_NODE:
471 parse_numa_node(ms, &object->u.node, errp);
472 break;
473 case NUMA_OPTIONS_TYPE_DIST:
474 parse_numa_distance(ms, &object->u.dist, errp);
475 break;
476 case NUMA_OPTIONS_TYPE_CPU:
477 if (!object->u.cpu.has_node_id) {
478 error_setg(errp, "Missing mandatory node-id property");
479 return;
480 }
481 if (!ms->numa_state->nodes[object->u.cpu.node_id].present) {
482 error_setg(errp, "Invalid node-id=%" PRId64 ", NUMA node must be "
483 "defined with -numa node,nodeid=ID before it's used with "
484 "-numa cpu,node-id=ID", object->u.cpu.node_id);
485 return;
486 }
487
488 machine_set_cpu_numa_node(ms,
489 qapi_NumaCpuOptions_base(&object->u.cpu),
490 errp);
491 break;
492 case NUMA_OPTIONS_TYPE_HMAT_LB:
493 if (!ms->numa_state->hmat_enabled) {
494 error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
495 "(HMAT) is disabled, enable it with -machine hmat=on "
496 "before using any of hmat specific options");
497 return;
498 }
499
500 parse_numa_hmat_lb(ms->numa_state, &object->u.hmat_lb, errp);
501 break;
502 case NUMA_OPTIONS_TYPE_HMAT_CACHE:
503 if (!ms->numa_state->hmat_enabled) {
504 error_setg(errp, "ACPI Heterogeneous Memory Attribute Table "
505 "(HMAT) is disabled, enable it with -machine hmat=on "
506 "before using any of hmat specific options");
507 return;
508 }
509
510 parse_numa_hmat_cache(ms, &object->u.hmat_cache, errp);
511 break;
512 default:
513 abort();
514 }
515 }
516
parse_numa(void * opaque,QemuOpts * opts,Error ** errp)517 static int parse_numa(void *opaque, QemuOpts *opts, Error **errp)
518 {
519 NumaOptions *object = NULL;
520 MachineState *ms = MACHINE(opaque);
521 Error *err = NULL;
522 Visitor *v = opts_visitor_new(opts);
523
524 visit_type_NumaOptions(v, NULL, &object, errp);
525 visit_free(v);
526 if (!object) {
527 return -1;
528 }
529
530 /* Fix up legacy suffix-less format */
531 if ((object->type == NUMA_OPTIONS_TYPE_NODE) && object->u.node.has_mem) {
532 const char *mem_str = qemu_opt_get(opts, "mem");
533 int ret = qemu_strtosz_MiB(mem_str, NULL, &object->u.node.mem);
534
535 if (ret < 0) {
536 error_setg_errno(&err, -ret, "could not parse memory size '%s'",
537 mem_str);
538 }
539 }
540
541 if (!err) {
542 set_numa_options(ms, object, &err);
543 }
544
545 qapi_free_NumaOptions(object);
546 if (err) {
547 error_propagate(errp, err);
548 return -1;
549 }
550
551 return 0;
552 }
553
554 /* If all node pair distances are symmetric, then only distances
555 * in one direction are enough. If there is even one asymmetric
556 * pair, though, then all distances must be provided. The
557 * distance from a node to itself is always NUMA_DISTANCE_MIN,
558 * so providing it is never necessary.
559 */
validate_numa_distance(MachineState * ms)560 static void validate_numa_distance(MachineState *ms)
561 {
562 int src, dst;
563 bool is_asymmetrical = false;
564 int nb_numa_nodes = ms->numa_state->num_nodes;
565 NodeInfo *numa_info = ms->numa_state->nodes;
566
567 for (src = 0; src < nb_numa_nodes; src++) {
568 for (dst = src; dst < nb_numa_nodes; dst++) {
569 if (numa_info[src].distance[dst] == 0 &&
570 numa_info[dst].distance[src] == 0) {
571 if (src != dst) {
572 error_report("The distance between node %d and %d is "
573 "missing, at least one distance value "
574 "between each nodes should be provided.",
575 src, dst);
576 exit(EXIT_FAILURE);
577 }
578 }
579
580 if (numa_info[src].distance[dst] != 0 &&
581 numa_info[dst].distance[src] != 0 &&
582 numa_info[src].distance[dst] !=
583 numa_info[dst].distance[src]) {
584 is_asymmetrical = true;
585 }
586 }
587 }
588
589 if (is_asymmetrical) {
590 for (src = 0; src < nb_numa_nodes; src++) {
591 for (dst = 0; dst < nb_numa_nodes; dst++) {
592 if (src != dst && numa_info[src].distance[dst] == 0) {
593 error_report("At least one asymmetrical pair of "
594 "distances is given, please provide distances "
595 "for both directions of all node pairs.");
596 exit(EXIT_FAILURE);
597 }
598 }
599 }
600 }
601 }
602
complete_init_numa_distance(MachineState * ms)603 static void complete_init_numa_distance(MachineState *ms)
604 {
605 int src, dst;
606 NodeInfo *numa_info = ms->numa_state->nodes;
607
608 /* Fixup NUMA distance by symmetric policy because if it is an
609 * asymmetric distance table, it should be a complete table and
610 * there would not be any missing distance except local node, which
611 * is verified by validate_numa_distance above.
612 */
613 for (src = 0; src < ms->numa_state->num_nodes; src++) {
614 for (dst = 0; dst < ms->numa_state->num_nodes; dst++) {
615 if (numa_info[src].distance[dst] == 0) {
616 if (src == dst) {
617 numa_info[src].distance[dst] = NUMA_DISTANCE_MIN;
618 } else {
619 numa_info[src].distance[dst] = numa_info[dst].distance[src];
620 }
621 }
622 }
623 }
624 }
625
numa_init_memdev_container(MachineState * ms,MemoryRegion * ram)626 static void numa_init_memdev_container(MachineState *ms, MemoryRegion *ram)
627 {
628 int i;
629 uint64_t addr = 0;
630
631 for (i = 0; i < ms->numa_state->num_nodes; i++) {
632 uint64_t size = ms->numa_state->nodes[i].node_mem;
633 HostMemoryBackend *backend = ms->numa_state->nodes[i].node_memdev;
634 if (!backend) {
635 continue;
636 }
637 MemoryRegion *seg = machine_consume_memdev(ms, backend);
638 memory_region_add_subregion(ram, addr, seg);
639 addr += size;
640 }
641 }
642
numa_complete_configuration(MachineState * ms)643 void numa_complete_configuration(MachineState *ms)
644 {
645 int i;
646 MachineClass *mc = MACHINE_GET_CLASS(ms);
647 NodeInfo *numa_info = ms->numa_state->nodes;
648
649 /*
650 * If memory hotplug is enabled (slot > 0) or memory devices are enabled
651 * (ms->maxram_size > ms->ram_size) but without '-numa' options explicitly on
652 * CLI, guests will break.
653 *
654 * Windows: won't enable memory hotplug without SRAT table at all
655 *
656 * Linux: if QEMU is started with initial memory all below 4Gb
657 * and no SRAT table present, guest kernel will use nommu DMA ops,
658 * which breaks 32bit hw drivers when memory is hotplugged and
659 * guest tries to use it with that drivers.
660 *
661 * Enable NUMA implicitly by adding a new NUMA node automatically.
662 *
663 * Or if MachineClass::auto_enable_numa is true and no NUMA nodes,
664 * assume there is just one node with whole RAM.
665 */
666 if (ms->numa_state->num_nodes == 0 &&
667 ((ms->ram_slots && mc->auto_enable_numa_with_memhp) ||
668 (ms->maxram_size > ms->ram_size && mc->auto_enable_numa_with_memdev) ||
669 mc->auto_enable_numa)) {
670 NumaNodeOptions node = { };
671 parse_numa_node(ms, &node, &error_abort);
672 numa_info[0].node_mem = ms->ram_size;
673 }
674
675 assert(max_numa_nodeid <= MAX_NODES);
676
677 /* No support for sparse NUMA node IDs yet: */
678 for (i = max_numa_nodeid - 1; i >= 0; i--) {
679 /* Report large node IDs first, to make mistakes easier to spot */
680 if (!numa_info[i].present) {
681 error_report("numa: Node ID missing: %d", i);
682 exit(1);
683 }
684 }
685
686 /* This must be always true if all nodes are present: */
687 assert(ms->numa_state->num_nodes == max_numa_nodeid);
688
689 if (ms->numa_state->num_nodes > 0) {
690 uint64_t numa_total;
691
692 numa_total = 0;
693 for (i = 0; i < ms->numa_state->num_nodes; i++) {
694 numa_total += numa_info[i].node_mem;
695 }
696 if (numa_total != ms->ram_size) {
697 error_report("total memory for NUMA nodes (0x%" PRIx64 ")"
698 " should equal RAM size (0x" RAM_ADDR_FMT ")",
699 numa_total, ms->ram_size);
700 exit(1);
701 }
702
703 if (!numa_uses_legacy_mem() && mc->default_ram_id) {
704 if (ms->memdev) {
705 error_report("'-machine memory-backend' and '-numa memdev'"
706 " properties are mutually exclusive");
707 exit(1);
708 }
709 ms->ram = g_new(MemoryRegion, 1);
710 memory_region_init(ms->ram, OBJECT(ms), mc->default_ram_id,
711 ms->ram_size);
712 numa_init_memdev_container(ms, ms->ram);
713 }
714 /* QEMU needs at least all unique node pair distances to build
715 * the whole NUMA distance table. QEMU treats the distance table
716 * as symmetric by default, i.e. distance A->B == distance B->A.
717 * Thus, QEMU is able to complete the distance table
718 * initialization even though only distance A->B is provided and
719 * distance B->A is not. QEMU knows the distance of a node to
720 * itself is always 10, so A->A distances may be omitted. When
721 * the distances of two nodes of a pair differ, i.e. distance
722 * A->B != distance B->A, then that means the distance table is
723 * asymmetric. In this case, the distances for both directions
724 * of all node pairs are required.
725 */
726 if (ms->numa_state->have_numa_distance) {
727 /* Validate enough NUMA distance information was provided. */
728 validate_numa_distance(ms);
729
730 /* Validation succeeded, now fill in any missing distances. */
731 complete_init_numa_distance(ms);
732 }
733 }
734 }
735
parse_numa_opts(MachineState * ms)736 void parse_numa_opts(MachineState *ms)
737 {
738 qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, &error_fatal);
739 }
740
numa_cpu_pre_plug(const CPUArchId * slot,DeviceState * dev,Error ** errp)741 void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp)
742 {
743 int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort);
744
745 if (node_id == CPU_UNSET_NUMA_NODE_ID) {
746 /* due to bug in libvirt, it doesn't pass node-id from props on
747 * device_add as expected, so we have to fix it up here */
748 if (slot->props.has_node_id) {
749 object_property_set_int(OBJECT(dev), "node-id",
750 slot->props.node_id, errp);
751 }
752 } else if (node_id != slot->props.node_id) {
753 error_setg(errp, "invalid node-id, must be %"PRId64,
754 slot->props.node_id);
755 }
756 }
757
numa_stat_memory_devices(NumaNodeMem node_mem[])758 static void numa_stat_memory_devices(NumaNodeMem node_mem[])
759 {
760 MemoryDeviceInfoList *info_list = qmp_memory_device_list();
761 MemoryDeviceInfoList *info;
762 PCDIMMDeviceInfo *pcdimm_info;
763 VirtioPMEMDeviceInfo *vpi;
764 VirtioMEMDeviceInfo *vmi;
765 SgxEPCDeviceInfo *se;
766
767 for (info = info_list; info; info = info->next) {
768 MemoryDeviceInfo *value = info->value;
769
770 if (value) {
771 switch (value->type) {
772 case MEMORY_DEVICE_INFO_KIND_DIMM:
773 case MEMORY_DEVICE_INFO_KIND_NVDIMM:
774 pcdimm_info = value->type == MEMORY_DEVICE_INFO_KIND_DIMM ?
775 value->u.dimm.data : value->u.nvdimm.data;
776 node_mem[pcdimm_info->node].node_mem += pcdimm_info->size;
777 node_mem[pcdimm_info->node].node_plugged_mem +=
778 pcdimm_info->size;
779 break;
780 case MEMORY_DEVICE_INFO_KIND_VIRTIO_PMEM:
781 vpi = value->u.virtio_pmem.data;
782 /* TODO: once we support numa, assign to right node */
783 node_mem[0].node_mem += vpi->size;
784 node_mem[0].node_plugged_mem += vpi->size;
785 break;
786 case MEMORY_DEVICE_INFO_KIND_VIRTIO_MEM:
787 vmi = value->u.virtio_mem.data;
788 node_mem[vmi->node].node_mem += vmi->size;
789 node_mem[vmi->node].node_plugged_mem += vmi->size;
790 break;
791 case MEMORY_DEVICE_INFO_KIND_SGX_EPC:
792 se = value->u.sgx_epc.data;
793 node_mem[se->node].node_mem += se->size;
794 node_mem[se->node].node_plugged_mem = 0;
795 break;
796 default:
797 g_assert_not_reached();
798 }
799 }
800 }
801 qapi_free_MemoryDeviceInfoList(info_list);
802 }
803
query_numa_node_mem(NumaNodeMem node_mem[],MachineState * ms)804 void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms)
805 {
806 int i;
807
808 if (ms->numa_state == NULL || ms->numa_state->num_nodes <= 0) {
809 return;
810 }
811
812 numa_stat_memory_devices(node_mem);
813 for (i = 0; i < ms->numa_state->num_nodes; i++) {
814 node_mem[i].node_mem += ms->numa_state->nodes[i].node_mem;
815 }
816 }
817
ram_block_notify_add_single(RAMBlock * rb,void * opaque)818 static int ram_block_notify_add_single(RAMBlock *rb, void *opaque)
819 {
820 const ram_addr_t max_size = qemu_ram_get_max_length(rb);
821 const ram_addr_t size = qemu_ram_get_used_length(rb);
822 void *host = qemu_ram_get_host_addr(rb);
823 RAMBlockNotifier *notifier = opaque;
824
825 if (host) {
826 notifier->ram_block_added(notifier, host, size, max_size);
827 }
828 return 0;
829 }
830
ram_block_notify_remove_single(RAMBlock * rb,void * opaque)831 static int ram_block_notify_remove_single(RAMBlock *rb, void *opaque)
832 {
833 const ram_addr_t max_size = qemu_ram_get_max_length(rb);
834 const ram_addr_t size = qemu_ram_get_used_length(rb);
835 void *host = qemu_ram_get_host_addr(rb);
836 RAMBlockNotifier *notifier = opaque;
837
838 if (host) {
839 notifier->ram_block_removed(notifier, host, size, max_size);
840 }
841 return 0;
842 }
843
ram_block_notifier_add(RAMBlockNotifier * n)844 void ram_block_notifier_add(RAMBlockNotifier *n)
845 {
846 QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next);
847
848 /* Notify about all existing ram blocks. */
849 if (n->ram_block_added) {
850 qemu_ram_foreach_block(ram_block_notify_add_single, n);
851 }
852 }
853
ram_block_notifier_remove(RAMBlockNotifier * n)854 void ram_block_notifier_remove(RAMBlockNotifier *n)
855 {
856 QLIST_REMOVE(n, next);
857
858 if (n->ram_block_removed) {
859 qemu_ram_foreach_block(ram_block_notify_remove_single, n);
860 }
861 }
862
ram_block_notify_add(void * host,size_t size,size_t max_size)863 void ram_block_notify_add(void *host, size_t size, size_t max_size)
864 {
865 RAMBlockNotifier *notifier;
866 RAMBlockNotifier *next;
867
868 QLIST_FOREACH_SAFE(notifier, &ram_list.ramblock_notifiers, next, next) {
869 if (notifier->ram_block_added) {
870 notifier->ram_block_added(notifier, host, size, max_size);
871 }
872 }
873 }
874
ram_block_notify_remove(void * host,size_t size,size_t max_size)875 void ram_block_notify_remove(void *host, size_t size, size_t max_size)
876 {
877 RAMBlockNotifier *notifier;
878 RAMBlockNotifier *next;
879
880 QLIST_FOREACH_SAFE(notifier, &ram_list.ramblock_notifiers, next, next) {
881 if (notifier->ram_block_removed) {
882 notifier->ram_block_removed(notifier, host, size, max_size);
883 }
884 }
885 }
886
ram_block_notify_resize(void * host,size_t old_size,size_t new_size)887 void ram_block_notify_resize(void *host, size_t old_size, size_t new_size)
888 {
889 RAMBlockNotifier *notifier;
890 RAMBlockNotifier *next;
891
892 QLIST_FOREACH_SAFE(notifier, &ram_list.ramblock_notifiers, next, next) {
893 if (notifier->ram_block_resized) {
894 notifier->ram_block_resized(notifier, host, old_size, new_size);
895 }
896 }
897 }
898