1 /* 2 * ARM virtual CPU header 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #ifndef ARM_CPU_H 21 #define ARM_CPU_H 22 23 #include "kvm-consts.h" 24 #include "qemu/cpu-float.h" 25 #include "hw/registerfields.h" 26 #include "cpu-qom.h" 27 #include "exec/cpu-defs.h" 28 #include "exec/gdbstub.h" 29 #include "exec/page-protection.h" 30 #include "qapi/qapi-types-common.h" 31 #include "target/arm/multiprocessing.h" 32 #include "target/arm/gtimer.h" 33 34 #ifdef TARGET_AARCH64 35 #define KVM_HAVE_MCE_INJECTION 1 36 #endif 37 38 #define EXCP_UDEF 1 /* undefined instruction */ 39 #define EXCP_SWI 2 /* software interrupt */ 40 #define EXCP_PREFETCH_ABORT 3 41 #define EXCP_DATA_ABORT 4 42 #define EXCP_IRQ 5 43 #define EXCP_FIQ 6 44 #define EXCP_BKPT 7 45 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */ 46 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */ 47 #define EXCP_HVC 11 /* HyperVisor Call */ 48 #define EXCP_HYP_TRAP 12 49 #define EXCP_SMC 13 /* Secure Monitor Call */ 50 #define EXCP_VIRQ 14 51 #define EXCP_VFIQ 15 52 #define EXCP_SEMIHOST 16 /* semihosting call */ 53 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */ 54 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */ 55 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */ 56 #define EXCP_LAZYFP 20 /* v7M fault during lazy FP stacking */ 57 #define EXCP_LSERR 21 /* v8M LSERR SecureFault */ 58 #define EXCP_UNALIGNED 22 /* v7M UNALIGNED UsageFault */ 59 #define EXCP_DIVBYZERO 23 /* v7M DIVBYZERO UsageFault */ 60 #define EXCP_VSERR 24 61 #define EXCP_GPC 25 /* v9 Granule Protection Check Fault */ 62 #define EXCP_NMI 26 63 #define EXCP_VINMI 27 64 #define EXCP_VFNMI 28 65 #define EXCP_MON_TRAP 29 /* AArch32 trap to Monitor mode */ 66 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */ 67 68 #define ARMV7M_EXCP_RESET 1 69 #define ARMV7M_EXCP_NMI 2 70 #define ARMV7M_EXCP_HARD 3 71 #define ARMV7M_EXCP_MEM 4 72 #define ARMV7M_EXCP_BUS 5 73 #define ARMV7M_EXCP_USAGE 6 74 #define ARMV7M_EXCP_SECURE 7 75 #define ARMV7M_EXCP_SVC 11 76 #define ARMV7M_EXCP_DEBUG 12 77 #define ARMV7M_EXCP_PENDSV 14 78 #define ARMV7M_EXCP_SYSTICK 15 79 80 /* ARM-specific interrupt pending bits. */ 81 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1 82 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2 83 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3 84 #define CPU_INTERRUPT_VSERR CPU_INTERRUPT_TGT_INT_0 85 #define CPU_INTERRUPT_NMI CPU_INTERRUPT_TGT_EXT_4 86 #define CPU_INTERRUPT_VINMI CPU_INTERRUPT_TGT_EXT_0 87 #define CPU_INTERRUPT_VFNMI CPU_INTERRUPT_TGT_INT_1 88 89 /* The usual mapping for an AArch64 system register to its AArch32 90 * counterpart is for the 32 bit world to have access to the lower 91 * half only (with writes leaving the upper half untouched). It's 92 * therefore useful to be able to pass TCG the offset of the least 93 * significant half of a uint64_t struct member. 94 */ 95 #if HOST_BIG_ENDIAN 96 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 97 #define offsetofhigh32(S, M) offsetof(S, M) 98 #else 99 #define offsetoflow32(S, M) offsetof(S, M) 100 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t)) 101 #endif 102 103 /* ARM-specific extra insn start words: 104 * 1: Conditional execution bits 105 * 2: Partial exception syndrome for data aborts 106 */ 107 #define TARGET_INSN_START_EXTRA_WORDS 2 108 109 /* The 2nd extra word holding syndrome info for data aborts does not use 110 * the upper 6 bits nor the lower 13 bits. We mask and shift it down to 111 * help the sleb128 encoder do a better job. 112 * When restoring the CPU state, we shift it back up. 113 */ 114 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1) 115 #define ARM_INSN_START_WORD2_SHIFT 13 116 117 /* We currently assume float and double are IEEE single and double 118 precision respectively. 119 Doing runtime conversions is tricky because VFP registers may contain 120 integer values (eg. as the result of a FTOSI instruction). 121 s<2n> maps to the least significant half of d<n> 122 s<2n+1> maps to the most significant half of d<n> 123 */ 124 125 /** 126 * DynamicGDBFeatureInfo: 127 * @desc: Contains the feature descriptions. 128 * @data: A union with data specific to the set of registers 129 * @cpregs_keys: Array that contains the corresponding Key of 130 * a given cpreg with the same order of the cpreg 131 * in the XML description. 132 */ 133 typedef struct DynamicGDBFeatureInfo { 134 GDBFeature desc; 135 union { 136 struct { 137 uint32_t *keys; 138 } cpregs; 139 } data; 140 } DynamicGDBFeatureInfo; 141 142 /* CPU state for each instance of a generic timer (in cp15 c14) */ 143 typedef struct ARMGenericTimer { 144 uint64_t cval; /* Timer CompareValue register */ 145 uint64_t ctl; /* Timer Control register */ 146 } ARMGenericTimer; 147 148 /* Define a maximum sized vector register. 149 * For 32-bit, this is a 128-bit NEON/AdvSIMD register. 150 * For 64-bit, this is a 2048-bit SVE register. 151 * 152 * Note that the mapping between S, D, and Q views of the register bank 153 * differs between AArch64 and AArch32. 154 * In AArch32: 155 * Qn = regs[n].d[1]:regs[n].d[0] 156 * Dn = regs[n / 2].d[n & 1] 157 * Sn = regs[n / 4].d[n % 4 / 2], 158 * bits 31..0 for even n, and bits 63..32 for odd n 159 * (and regs[16] to regs[31] are inaccessible) 160 * In AArch64: 161 * Zn = regs[n].d[*] 162 * Qn = regs[n].d[1]:regs[n].d[0] 163 * Dn = regs[n].d[0] 164 * Sn = regs[n].d[0] bits 31..0 165 * Hn = regs[n].d[0] bits 15..0 166 * 167 * This corresponds to the architecturally defined mapping between 168 * the two execution states, and means we do not need to explicitly 169 * map these registers when changing states. 170 * 171 * Align the data for use with TCG host vector operations. 172 */ 173 174 #ifdef TARGET_AARCH64 175 # define ARM_MAX_VQ 16 176 #else 177 # define ARM_MAX_VQ 1 178 #endif 179 180 typedef struct ARMVectorReg { 181 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16); 182 } ARMVectorReg; 183 184 #ifdef TARGET_AARCH64 185 /* In AArch32 mode, predicate registers do not exist at all. */ 186 typedef struct ARMPredicateReg { 187 uint64_t p[DIV_ROUND_UP(2 * ARM_MAX_VQ, 8)] QEMU_ALIGNED(16); 188 } ARMPredicateReg; 189 190 /* In AArch32 mode, PAC keys do not exist at all. */ 191 typedef struct ARMPACKey { 192 uint64_t lo, hi; 193 } ARMPACKey; 194 #endif 195 196 /* See the commentary above the TBFLAG field definitions. */ 197 typedef struct CPUARMTBFlags { 198 uint32_t flags; 199 target_ulong flags2; 200 } CPUARMTBFlags; 201 202 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; 203 204 typedef struct NVICState NVICState; 205 206 typedef struct CPUArchState { 207 /* Regs for current mode. */ 208 uint32_t regs[16]; 209 210 /* 32/64 switch only happens when taking and returning from 211 * exceptions so the overlap semantics are taken care of then 212 * instead of having a complicated union. 213 */ 214 /* Regs for A64 mode. */ 215 uint64_t xregs[32]; 216 uint64_t pc; 217 /* PSTATE isn't an architectural register for ARMv8. However, it is 218 * convenient for us to assemble the underlying state into a 32 bit format 219 * identical to the architectural format used for the SPSR. (This is also 220 * what the Linux kernel's 'pstate' field in signal handlers and KVM's 221 * 'pstate' register are.) Of the PSTATE bits: 222 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same 223 * semantics as for AArch32, as described in the comments on each field) 224 * nRW (also known as M[4]) is kept, inverted, in env->aarch64 225 * DAIF (exception masks) are kept in env->daif 226 * BTYPE is kept in env->btype 227 * SM and ZA are kept in env->svcr 228 * all other bits are stored in their correct places in env->pstate 229 */ 230 uint32_t pstate; 231 bool aarch64; /* True if CPU is in aarch64 state; inverse of PSTATE.nRW */ 232 bool thumb; /* True if CPU is in thumb mode; cpsr[5] */ 233 234 /* Cached TBFLAGS state. See below for which bits are included. */ 235 CPUARMTBFlags hflags; 236 237 /* Frequently accessed CPSR bits are stored separately for efficiency. 238 This contains all the other bits. Use cpsr_{read,write} to access 239 the whole CPSR. */ 240 uint32_t uncached_cpsr; 241 uint32_t spsr; 242 243 /* Banked registers. */ 244 uint64_t banked_spsr[8]; 245 uint32_t banked_r13[8]; 246 uint32_t banked_r14[8]; 247 248 /* These hold r8-r12. */ 249 uint32_t usr_regs[5]; 250 uint32_t fiq_regs[5]; 251 252 /* cpsr flag cache for faster execution */ 253 uint32_t CF; /* 0 or 1 */ 254 uint32_t VF; /* V is the bit 31. All other bits are undefined */ 255 uint32_t NF; /* N is bit 31. All other bits are undefined. */ 256 uint32_t ZF; /* Z set if zero. */ 257 uint32_t QF; /* 0 or 1 */ 258 uint32_t GE; /* cpsr[19:16] */ 259 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */ 260 uint32_t btype; /* BTI branch type. spsr[11:10]. */ 261 uint64_t daif; /* exception masks, in the bits they are in PSTATE */ 262 uint64_t svcr; /* PSTATE.{SM,ZA} in the bits they are in SVCR */ 263 264 uint64_t elr_el[4]; /* AArch64 exception link regs */ 265 uint64_t sp_el[4]; /* AArch64 banked stack pointers */ 266 267 /* System control coprocessor (cp15) */ 268 struct { 269 uint32_t c0_cpuid; 270 union { /* Cache size selection */ 271 struct { 272 uint64_t _unused_csselr0; 273 uint64_t csselr_ns; 274 uint64_t _unused_csselr1; 275 uint64_t csselr_s; 276 }; 277 uint64_t csselr_el[4]; 278 }; 279 union { /* System control register. */ 280 struct { 281 uint64_t _unused_sctlr; 282 uint64_t sctlr_ns; 283 uint64_t hsctlr; 284 uint64_t sctlr_s; 285 }; 286 uint64_t sctlr_el[4]; 287 }; 288 uint64_t vsctlr; /* Virtualization System control register. */ 289 uint64_t cpacr_el1; /* Architectural feature access control register */ 290 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */ 291 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */ 292 uint64_t sder; /* Secure debug enable register. */ 293 uint32_t nsacr; /* Non-secure access control register. */ 294 union { /* MMU translation table base 0. */ 295 struct { 296 uint64_t _unused_ttbr0_0; 297 uint64_t ttbr0_ns; 298 uint64_t _unused_ttbr0_1; 299 uint64_t ttbr0_s; 300 }; 301 uint64_t ttbr0_el[4]; 302 }; 303 union { /* MMU translation table base 1. */ 304 struct { 305 uint64_t _unused_ttbr1_0; 306 uint64_t ttbr1_ns; 307 uint64_t _unused_ttbr1_1; 308 uint64_t ttbr1_s; 309 }; 310 uint64_t ttbr1_el[4]; 311 }; 312 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */ 313 uint64_t vsttbr_el2; /* Secure Virtualization Translation Table. */ 314 /* MMU translation table base control. */ 315 uint64_t tcr_el[4]; 316 uint64_t vtcr_el2; /* Virtualization Translation Control. */ 317 uint64_t vstcr_el2; /* Secure Virtualization Translation Control. */ 318 uint32_t c2_data; /* MPU data cacheable bits. */ 319 uint32_t c2_insn; /* MPU instruction cacheable bits. */ 320 union { /* MMU domain access control register 321 * MPU write buffer control. 322 */ 323 struct { 324 uint64_t dacr_ns; 325 uint64_t dacr_s; 326 }; 327 struct { 328 uint64_t dacr32_el2; 329 }; 330 }; 331 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */ 332 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */ 333 uint64_t hcr_el2; /* Hypervisor configuration register */ 334 uint64_t hcrx_el2; /* Extended Hypervisor configuration register */ 335 uint64_t scr_el3; /* Secure configuration register. */ 336 union { /* Fault status registers. */ 337 struct { 338 uint64_t ifsr_ns; 339 uint64_t ifsr_s; 340 }; 341 struct { 342 uint64_t ifsr32_el2; 343 }; 344 }; 345 union { 346 struct { 347 uint64_t _unused_dfsr; 348 uint64_t dfsr_ns; 349 uint64_t hsr; 350 uint64_t dfsr_s; 351 }; 352 uint64_t esr_el[4]; 353 }; 354 uint32_t c6_region[8]; /* MPU base/size registers. */ 355 union { /* Fault address registers. */ 356 struct { 357 uint64_t _unused_far0; 358 #if HOST_BIG_ENDIAN 359 uint32_t ifar_ns; 360 uint32_t dfar_ns; 361 uint32_t ifar_s; 362 uint32_t dfar_s; 363 #else 364 uint32_t dfar_ns; 365 uint32_t ifar_ns; 366 uint32_t dfar_s; 367 uint32_t ifar_s; 368 #endif 369 uint64_t _unused_far3; 370 }; 371 uint64_t far_el[4]; 372 }; 373 uint64_t hpfar_el2; 374 uint64_t hstr_el2; 375 union { /* Translation result. */ 376 struct { 377 uint64_t _unused_par_0; 378 uint64_t par_ns; 379 uint64_t _unused_par_1; 380 uint64_t par_s; 381 }; 382 uint64_t par_el[4]; 383 }; 384 385 uint32_t c9_insn; /* Cache lockdown registers. */ 386 uint32_t c9_data; 387 uint64_t c9_pmcr; /* performance monitor control register */ 388 uint64_t c9_pmcnten; /* perf monitor counter enables */ 389 uint64_t c9_pmovsr; /* perf monitor overflow status */ 390 uint64_t c9_pmuserenr; /* perf monitor user enable */ 391 uint64_t c9_pmselr; /* perf monitor counter selection register */ 392 uint64_t c9_pminten; /* perf monitor interrupt enables */ 393 union { /* Memory attribute redirection */ 394 struct { 395 #if HOST_BIG_ENDIAN 396 uint64_t _unused_mair_0; 397 uint32_t mair1_ns; 398 uint32_t mair0_ns; 399 uint64_t _unused_mair_1; 400 uint32_t mair1_s; 401 uint32_t mair0_s; 402 #else 403 uint64_t _unused_mair_0; 404 uint32_t mair0_ns; 405 uint32_t mair1_ns; 406 uint64_t _unused_mair_1; 407 uint32_t mair0_s; 408 uint32_t mair1_s; 409 #endif 410 }; 411 uint64_t mair_el[4]; 412 }; 413 union { /* vector base address register */ 414 struct { 415 uint64_t _unused_vbar; 416 uint64_t vbar_ns; 417 uint64_t hvbar; 418 uint64_t vbar_s; 419 }; 420 uint64_t vbar_el[4]; 421 }; 422 uint32_t mvbar; /* (monitor) vector base address register */ 423 uint64_t rvbar; /* rvbar sampled from rvbar property at reset */ 424 struct { /* FCSE PID. */ 425 uint32_t fcseidr_ns; 426 uint32_t fcseidr_s; 427 }; 428 union { /* Context ID. */ 429 struct { 430 uint64_t _unused_contextidr_0; 431 uint64_t contextidr_ns; 432 uint64_t _unused_contextidr_1; 433 uint64_t contextidr_s; 434 }; 435 uint64_t contextidr_el[4]; 436 }; 437 union { /* User RW Thread register. */ 438 struct { 439 uint64_t tpidrurw_ns; 440 uint64_t tpidrprw_ns; 441 uint64_t htpidr; 442 uint64_t _tpidr_el3; 443 }; 444 uint64_t tpidr_el[4]; 445 }; 446 uint64_t tpidr2_el0; 447 /* The secure banks of these registers don't map anywhere */ 448 uint64_t tpidrurw_s; 449 uint64_t tpidrprw_s; 450 uint64_t tpidruro_s; 451 452 union { /* User RO Thread register. */ 453 uint64_t tpidruro_ns; 454 uint64_t tpidrro_el[1]; 455 }; 456 uint64_t c14_cntfrq; /* Counter Frequency register */ 457 uint64_t c14_cntkctl; /* Timer Control register */ 458 uint64_t cnthctl_el2; /* Counter/Timer Hyp Control register */ 459 uint64_t cntvoff_el2; /* Counter Virtual Offset register */ 460 uint64_t cntpoff_el2; /* Counter Physical Offset register */ 461 ARMGenericTimer c14_timer[NUM_GTIMERS]; 462 uint32_t c15_cpar; /* XScale Coprocessor Access Register */ 463 uint32_t c15_ticonfig; /* TI925T configuration byte. */ 464 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */ 465 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */ 466 uint32_t c15_threadid; /* TI debugger thread-ID. */ 467 uint32_t c15_config_base_address; /* SCU base address. */ 468 uint32_t c15_diagnostic; /* diagnostic register */ 469 uint32_t c15_power_diagnostic; 470 uint32_t c15_power_control; /* power control */ 471 uint64_t dbgbvr[16]; /* breakpoint value registers */ 472 uint64_t dbgbcr[16]; /* breakpoint control registers */ 473 uint64_t dbgwvr[16]; /* watchpoint value registers */ 474 uint64_t dbgwcr[16]; /* watchpoint control registers */ 475 uint64_t dbgclaim; /* DBGCLAIM bits */ 476 uint64_t mdscr_el1; 477 uint64_t oslsr_el1; /* OS Lock Status */ 478 uint64_t osdlr_el1; /* OS DoubleLock status */ 479 uint64_t mdcr_el2; 480 uint64_t mdcr_el3; 481 /* Stores the architectural value of the counter *the last time it was 482 * updated* by pmccntr_op_start. Accesses should always be surrounded 483 * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest 484 * architecturally-correct value is being read/set. 485 */ 486 uint64_t c15_ccnt; 487 /* Stores the delta between the architectural value and the underlying 488 * cycle count during normal operation. It is used to update c15_ccnt 489 * to be the correct architectural value before accesses. During 490 * accesses, c15_ccnt_delta contains the underlying count being used 491 * for the access, after which it reverts to the delta value in 492 * pmccntr_op_finish. 493 */ 494 uint64_t c15_ccnt_delta; 495 uint64_t c14_pmevcntr[31]; 496 uint64_t c14_pmevcntr_delta[31]; 497 uint64_t c14_pmevtyper[31]; 498 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */ 499 uint64_t vpidr_el2; /* Virtualization Processor ID Register */ 500 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */ 501 uint64_t tfsr_el[4]; /* tfsre0_el1 is index 0. */ 502 uint64_t gcr_el1; 503 uint64_t rgsr_el1; 504 505 /* Minimal RAS registers */ 506 uint64_t disr_el1; 507 uint64_t vdisr_el2; 508 uint64_t vsesr_el2; 509 510 /* 511 * Fine-Grained Trap registers. We store these as arrays so the 512 * access checking code doesn't have to manually select 513 * HFGRTR_EL2 vs HFDFGRTR_EL2 etc when looking up the bit to test. 514 * FEAT_FGT2 will add more elements to these arrays. 515 */ 516 uint64_t fgt_read[2]; /* HFGRTR, HDFGRTR */ 517 uint64_t fgt_write[2]; /* HFGWTR, HDFGWTR */ 518 uint64_t fgt_exec[1]; /* HFGITR */ 519 520 /* RME registers */ 521 uint64_t gpccr_el3; 522 uint64_t gptbr_el3; 523 uint64_t mfar_el3; 524 525 /* NV2 register */ 526 uint64_t vncr_el2; 527 } cp15; 528 529 struct { 530 /* M profile has up to 4 stack pointers: 531 * a Main Stack Pointer and a Process Stack Pointer for each 532 * of the Secure and Non-Secure states. (If the CPU doesn't support 533 * the security extension then it has only two SPs.) 534 * In QEMU we always store the currently active SP in regs[13], 535 * and the non-active SP for the current security state in 536 * v7m.other_sp. The stack pointers for the inactive security state 537 * are stored in other_ss_msp and other_ss_psp. 538 * switch_v7m_security_state() is responsible for rearranging them 539 * when we change security state. 540 */ 541 uint32_t other_sp; 542 uint32_t other_ss_msp; 543 uint32_t other_ss_psp; 544 uint32_t vecbase[M_REG_NUM_BANKS]; 545 uint32_t basepri[M_REG_NUM_BANKS]; 546 uint32_t control[M_REG_NUM_BANKS]; 547 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */ 548 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */ 549 uint32_t hfsr; /* HardFault Status */ 550 uint32_t dfsr; /* Debug Fault Status Register */ 551 uint32_t sfsr; /* Secure Fault Status Register */ 552 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */ 553 uint32_t bfar; /* BusFault Address */ 554 uint32_t sfar; /* Secure Fault Address Register */ 555 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */ 556 int exception; 557 uint32_t primask[M_REG_NUM_BANKS]; 558 uint32_t faultmask[M_REG_NUM_BANKS]; 559 uint32_t aircr; /* only holds r/w state if security extn implemented */ 560 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */ 561 uint32_t csselr[M_REG_NUM_BANKS]; 562 uint32_t scr[M_REG_NUM_BANKS]; 563 uint32_t msplim[M_REG_NUM_BANKS]; 564 uint32_t psplim[M_REG_NUM_BANKS]; 565 uint32_t fpcar[M_REG_NUM_BANKS]; 566 uint32_t fpccr[M_REG_NUM_BANKS]; 567 uint32_t fpdscr[M_REG_NUM_BANKS]; 568 uint32_t cpacr[M_REG_NUM_BANKS]; 569 uint32_t nsacr; 570 uint32_t ltpsize; 571 uint32_t vpr; 572 } v7m; 573 574 /* Information associated with an exception about to be taken: 575 * code which raises an exception must set cs->exception_index and 576 * the relevant parts of this structure; the cpu_do_interrupt function 577 * will then set the guest-visible registers as part of the exception 578 * entry process. 579 */ 580 struct { 581 uint32_t syndrome; /* AArch64 format syndrome register */ 582 uint32_t fsr; /* AArch32 format fault status register info */ 583 uint64_t vaddress; /* virtual addr associated with exception, if any */ 584 uint32_t target_el; /* EL the exception should be targeted for */ 585 /* If we implement EL2 we will also need to store information 586 * about the intermediate physical address for stage 2 faults. 587 */ 588 } exception; 589 590 /* Information associated with an SError */ 591 struct { 592 uint8_t pending; 593 uint8_t has_esr; 594 uint64_t esr; 595 } serror; 596 597 uint8_t ext_dabt_raised; /* Tracking/verifying injection of ext DABT */ 598 599 /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */ 600 uint32_t irq_line_state; 601 602 /* Thumb-2 EE state. */ 603 uint32_t teecr; 604 uint32_t teehbr; 605 606 /* VFP coprocessor state. */ 607 struct { 608 ARMVectorReg zregs[32]; 609 610 #ifdef TARGET_AARCH64 611 /* Store FFR as pregs[16] to make it easier to treat as any other. */ 612 #define FFR_PRED_NUM 16 613 ARMPredicateReg pregs[17]; 614 /* Scratch space for aa64 sve predicate temporary. */ 615 ARMPredicateReg preg_tmp; 616 #endif 617 618 /* We store these fpcsr fields separately for convenience. */ 619 uint32_t qc[4] QEMU_ALIGNED(16); 620 int vec_len; 621 int vec_stride; 622 623 /* 624 * Floating point status and control registers. Some bits are 625 * stored separately in other fields or in the float_status below. 626 */ 627 uint64_t fpsr; 628 uint64_t fpcr; 629 630 uint32_t xregs[16]; 631 632 /* Scratch space for aa32 neon expansion. */ 633 uint32_t scratch[8]; 634 635 /* There are a number of distinct float control structures: 636 * 637 * fp_status: is the "normal" fp status. 638 * fp_status_fp16: used for half-precision calculations 639 * standard_fp_status : the ARM "Standard FPSCR Value" 640 * standard_fp_status_fp16 : used for half-precision 641 * calculations with the ARM "Standard FPSCR Value" 642 * 643 * Half-precision operations are governed by a separate 644 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate 645 * status structure to control this. 646 * 647 * The "Standard FPSCR", ie default-NaN, flush-to-zero, 648 * round-to-nearest and is used by any operations (generally 649 * Neon) which the architecture defines as controlled by the 650 * standard FPSCR value rather than the FPSCR. 651 * 652 * The "standard FPSCR but for fp16 ops" is needed because 653 * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than 654 * using a fixed value for it. 655 * 656 * To avoid having to transfer exception bits around, we simply 657 * say that the FPSCR cumulative exception flags are the logical 658 * OR of the flags in the four fp statuses. This relies on the 659 * only thing which needs to read the exception flags being 660 * an explicit FPSCR read. 661 */ 662 float_status fp_status; 663 float_status fp_status_f16; 664 float_status standard_fp_status; 665 float_status standard_fp_status_f16; 666 667 uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ 668 uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ 669 } vfp; 670 671 uint64_t exclusive_addr; 672 uint64_t exclusive_val; 673 /* 674 * Contains the 'val' for the second 64-bit register of LDXP, which comes 675 * from the higher address, not the high part of a complete 128-bit value. 676 * In some ways it might be more convenient to record the exclusive value 677 * as the low and high halves of a 128 bit data value, but the current 678 * semantics of these fields are baked into the migration format. 679 */ 680 uint64_t exclusive_high; 681 682 /* iwMMXt coprocessor state. */ 683 struct { 684 uint64_t regs[16]; 685 uint64_t val; 686 687 uint32_t cregs[16]; 688 } iwmmxt; 689 690 #ifdef TARGET_AARCH64 691 struct { 692 ARMPACKey apia; 693 ARMPACKey apib; 694 ARMPACKey apda; 695 ARMPACKey apdb; 696 ARMPACKey apga; 697 } keys; 698 699 uint64_t scxtnum_el[4]; 700 701 /* 702 * SME ZA storage -- 256 x 256 byte array, with bytes in host word order, 703 * as we do with vfp.zregs[]. This corresponds to the architectural ZA 704 * array, where ZA[N] is in the least-significant bytes of env->zarray[N]. 705 * When SVL is less than the architectural maximum, the accessible 706 * storage is restricted, such that if the SVL is X bytes the guest can 707 * see only the bottom X elements of zarray[], and only the least 708 * significant X bytes of each element of the array. (In other words, 709 * the observable part is always square.) 710 * 711 * The ZA storage can also be considered as a set of square tiles of 712 * elements of different sizes. The mapping from tiles to the ZA array 713 * is architecturally defined, such that for tiles of elements of esz 714 * bytes, the Nth row (or "horizontal slice") of tile T is in 715 * ZA[T + N * esz]. Note that this means that each tile is not contiguous 716 * in the ZA storage, because its rows are striped through the ZA array. 717 * 718 * Because this is so large, keep this toward the end of the reset area, 719 * to keep the offsets into the rest of the structure smaller. 720 */ 721 ARMVectorReg zarray[ARM_MAX_VQ * 16]; 722 #endif 723 724 struct CPUBreakpoint *cpu_breakpoint[16]; 725 struct CPUWatchpoint *cpu_watchpoint[16]; 726 727 /* Optional fault info across tlb lookup. */ 728 ARMMMUFaultInfo *tlb_fi; 729 730 /* Fields up to this point are cleared by a CPU reset */ 731 struct {} end_reset_fields; 732 733 /* Fields after this point are preserved across CPU reset. */ 734 735 /* Internal CPU feature flags. */ 736 uint64_t features; 737 738 /* PMSAv7 MPU */ 739 struct { 740 uint32_t *drbar; 741 uint32_t *drsr; 742 uint32_t *dracr; 743 uint32_t rnr[M_REG_NUM_BANKS]; 744 } pmsav7; 745 746 /* PMSAv8 MPU */ 747 struct { 748 /* The PMSAv8 implementation also shares some PMSAv7 config 749 * and state: 750 * pmsav7.rnr (region number register) 751 * pmsav7_dregion (number of configured regions) 752 */ 753 uint32_t *rbar[M_REG_NUM_BANKS]; 754 uint32_t *rlar[M_REG_NUM_BANKS]; 755 uint32_t *hprbar; 756 uint32_t *hprlar; 757 uint32_t mair0[M_REG_NUM_BANKS]; 758 uint32_t mair1[M_REG_NUM_BANKS]; 759 uint32_t hprselr; 760 } pmsav8; 761 762 /* v8M SAU */ 763 struct { 764 uint32_t *rbar; 765 uint32_t *rlar; 766 uint32_t rnr; 767 uint32_t ctrl; 768 } sau; 769 770 #if !defined(CONFIG_USER_ONLY) 771 NVICState *nvic; 772 const struct arm_boot_info *boot_info; 773 /* Store GICv3CPUState to access from this struct */ 774 void *gicv3state; 775 #else /* CONFIG_USER_ONLY */ 776 /* For usermode syscall translation. */ 777 bool eabi; 778 #endif /* CONFIG_USER_ONLY */ 779 780 #ifdef TARGET_TAGGED_ADDRESSES 781 /* Linux syscall tagged address support */ 782 bool tagged_addr_enable; 783 #endif 784 } CPUARMState; 785 set_feature(CPUARMState * env,int feature)786 static inline void set_feature(CPUARMState *env, int feature) 787 { 788 env->features |= 1ULL << feature; 789 } 790 unset_feature(CPUARMState * env,int feature)791 static inline void unset_feature(CPUARMState *env, int feature) 792 { 793 env->features &= ~(1ULL << feature); 794 } 795 796 /** 797 * ARMELChangeHookFn: 798 * type of a function which can be registered via arm_register_el_change_hook() 799 * to get callbacks when the CPU changes its exception level or mode. 800 */ 801 typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque); 802 typedef struct ARMELChangeHook ARMELChangeHook; 803 struct ARMELChangeHook { 804 ARMELChangeHookFn *hook; 805 void *opaque; 806 QLIST_ENTRY(ARMELChangeHook) node; 807 }; 808 809 /* These values map onto the return values for 810 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */ 811 typedef enum ARMPSCIState { 812 PSCI_ON = 0, 813 PSCI_OFF = 1, 814 PSCI_ON_PENDING = 2 815 } ARMPSCIState; 816 817 typedef struct ARMISARegisters ARMISARegisters; 818 819 /* 820 * In map, each set bit is a supported vector length of (bit-number + 1) * 16 821 * bytes, i.e. each bit number + 1 is the vector length in quadwords. 822 * 823 * While processing properties during initialization, corresponding init bits 824 * are set for bits in sve_vq_map that have been set by properties. 825 * 826 * Bits set in supported represent valid vector lengths for the CPU type. 827 */ 828 typedef struct { 829 uint32_t map, init, supported; 830 } ARMVQMap; 831 832 /** 833 * ARMCPU: 834 * @env: #CPUARMState 835 * 836 * An ARM CPU core. 837 */ 838 struct ArchCPU { 839 CPUState parent_obj; 840 841 CPUARMState env; 842 843 /* Coprocessor information */ 844 GHashTable *cp_regs; 845 /* For marshalling (mostly coprocessor) register state between the 846 * kernel and QEMU (for KVM) and between two QEMUs (for migration), 847 * we use these arrays. 848 */ 849 /* List of register indexes managed via these arrays; (full KVM style 850 * 64 bit indexes, not CPRegInfo 32 bit indexes) 851 */ 852 uint64_t *cpreg_indexes; 853 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */ 854 uint64_t *cpreg_values; 855 /* Length of the indexes, values, reset_values arrays */ 856 int32_t cpreg_array_len; 857 /* These are used only for migration: incoming data arrives in 858 * these fields and is sanity checked in post_load before copying 859 * to the working data structures above. 860 */ 861 uint64_t *cpreg_vmstate_indexes; 862 uint64_t *cpreg_vmstate_values; 863 int32_t cpreg_vmstate_array_len; 864 865 DynamicGDBFeatureInfo dyn_sysreg_feature; 866 DynamicGDBFeatureInfo dyn_svereg_feature; 867 DynamicGDBFeatureInfo dyn_m_systemreg_feature; 868 DynamicGDBFeatureInfo dyn_m_secextreg_feature; 869 870 /* Timers used by the generic (architected) timer */ 871 QEMUTimer *gt_timer[NUM_GTIMERS]; 872 /* 873 * Timer used by the PMU. Its state is restored after migration by 874 * pmu_op_finish() - it does not need other handling during migration 875 */ 876 QEMUTimer *pmu_timer; 877 /* Timer used for WFxT timeouts */ 878 QEMUTimer *wfxt_timer; 879 880 /* GPIO outputs for generic timer */ 881 qemu_irq gt_timer_outputs[NUM_GTIMERS]; 882 /* GPIO output for GICv3 maintenance interrupt signal */ 883 qemu_irq gicv3_maintenance_interrupt; 884 /* GPIO output for the PMU interrupt */ 885 qemu_irq pmu_interrupt; 886 887 /* MemoryRegion to use for secure physical accesses */ 888 MemoryRegion *secure_memory; 889 890 /* MemoryRegion to use for allocation tag accesses */ 891 MemoryRegion *tag_memory; 892 MemoryRegion *secure_tag_memory; 893 894 /* For v8M, pointer to the IDAU interface provided by board/SoC */ 895 Object *idau; 896 897 /* 'compatible' string for this CPU for Linux device trees */ 898 const char *dtb_compatible; 899 900 /* PSCI version for this CPU 901 * Bits[31:16] = Major Version 902 * Bits[15:0] = Minor Version 903 */ 904 uint32_t psci_version; 905 906 /* Current power state, access guarded by BQL */ 907 ARMPSCIState power_state; 908 909 /* CPU has virtualization extension */ 910 bool has_el2; 911 /* CPU has security extension */ 912 bool has_el3; 913 /* CPU has PMU (Performance Monitor Unit) */ 914 bool has_pmu; 915 /* CPU has VFP */ 916 bool has_vfp; 917 /* CPU has 32 VFP registers */ 918 bool has_vfp_d32; 919 /* CPU has Neon */ 920 bool has_neon; 921 /* CPU has M-profile DSP extension */ 922 bool has_dsp; 923 924 /* CPU has memory protection unit */ 925 bool has_mpu; 926 /* CPU has MTE enabled in KVM mode */ 927 bool kvm_mte; 928 /* PMSAv7 MPU number of supported regions */ 929 uint32_t pmsav7_dregion; 930 /* PMSAv8 MPU number of supported hyp regions */ 931 uint32_t pmsav8r_hdregion; 932 /* v8M SAU number of supported regions */ 933 uint32_t sau_sregion; 934 935 /* PSCI conduit used to invoke PSCI methods 936 * 0 - disabled, 1 - smc, 2 - hvc 937 */ 938 uint32_t psci_conduit; 939 940 /* For v8M, initial value of the Secure VTOR */ 941 uint32_t init_svtor; 942 /* For v8M, initial value of the Non-secure VTOR */ 943 uint32_t init_nsvtor; 944 945 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or 946 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type. 947 */ 948 uint32_t kvm_target; 949 950 #ifdef CONFIG_KVM 951 /* KVM init features for this CPU */ 952 uint32_t kvm_init_features[7]; 953 954 /* KVM CPU state */ 955 956 /* KVM virtual time adjustment */ 957 bool kvm_adjvtime; 958 bool kvm_vtime_dirty; 959 uint64_t kvm_vtime; 960 961 /* KVM steal time */ 962 OnOffAuto kvm_steal_time; 963 #endif /* CONFIG_KVM */ 964 965 /* Uniprocessor system with MP extensions */ 966 bool mp_is_up; 967 968 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init 969 * and the probe failed (so we need to report the error in realize) 970 */ 971 bool host_cpu_probe_failed; 972 973 /* QOM property to indicate we should use the back-compat CNTFRQ default */ 974 bool backcompat_cntfrq; 975 976 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR 977 * register. 978 */ 979 int32_t core_count; 980 981 /* The instance init functions for implementation-specific subclasses 982 * set these fields to specify the implementation-dependent values of 983 * various constant registers and reset values of non-constant 984 * registers. 985 * Some of these might become QOM properties eventually. 986 * Field names match the official register names as defined in the 987 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix 988 * is used for reset values of non-constant registers; no reset_ 989 * prefix means a constant register. 990 * Some of these registers are split out into a substructure that 991 * is shared with the translators to control the ISA. 992 * 993 * Note that if you add an ID register to the ARMISARegisters struct 994 * you need to also update the 32-bit and 64-bit versions of the 995 * kvm_arm_get_host_cpu_features() function to correctly populate the 996 * field by reading the value from the KVM vCPU. 997 */ 998 struct ARMISARegisters { 999 uint32_t id_isar0; 1000 uint32_t id_isar1; 1001 uint32_t id_isar2; 1002 uint32_t id_isar3; 1003 uint32_t id_isar4; 1004 uint32_t id_isar5; 1005 uint32_t id_isar6; 1006 uint32_t id_mmfr0; 1007 uint32_t id_mmfr1; 1008 uint32_t id_mmfr2; 1009 uint32_t id_mmfr3; 1010 uint32_t id_mmfr4; 1011 uint32_t id_mmfr5; 1012 uint32_t id_pfr0; 1013 uint32_t id_pfr1; 1014 uint32_t id_pfr2; 1015 uint32_t mvfr0; 1016 uint32_t mvfr1; 1017 uint32_t mvfr2; 1018 uint32_t id_dfr0; 1019 uint32_t id_dfr1; 1020 uint32_t dbgdidr; 1021 uint32_t dbgdevid; 1022 uint32_t dbgdevid1; 1023 uint64_t id_aa64isar0; 1024 uint64_t id_aa64isar1; 1025 uint64_t id_aa64isar2; 1026 uint64_t id_aa64pfr0; 1027 uint64_t id_aa64pfr1; 1028 uint64_t id_aa64mmfr0; 1029 uint64_t id_aa64mmfr1; 1030 uint64_t id_aa64mmfr2; 1031 uint64_t id_aa64mmfr3; 1032 uint64_t id_aa64dfr0; 1033 uint64_t id_aa64dfr1; 1034 uint64_t id_aa64zfr0; 1035 uint64_t id_aa64smfr0; 1036 uint64_t reset_pmcr_el0; 1037 } isar; 1038 uint64_t midr; 1039 uint32_t revidr; 1040 uint32_t reset_fpsid; 1041 uint64_t ctr; 1042 uint32_t reset_sctlr; 1043 uint64_t pmceid0; 1044 uint64_t pmceid1; 1045 uint32_t id_afr0; 1046 uint64_t id_aa64afr0; 1047 uint64_t id_aa64afr1; 1048 uint64_t clidr; 1049 uint64_t mp_affinity; /* MP ID without feature bits */ 1050 /* The elements of this array are the CCSIDR values for each cache, 1051 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc. 1052 */ 1053 uint64_t ccsidr[16]; 1054 uint64_t reset_cbar; 1055 uint32_t reset_auxcr; 1056 bool reset_hivecs; 1057 uint8_t reset_l0gptsz; 1058 1059 /* 1060 * Intermediate values used during property parsing. 1061 * Once finalized, the values should be read from ID_AA64*. 1062 */ 1063 bool prop_pauth; 1064 bool prop_pauth_impdef; 1065 bool prop_pauth_qarma3; 1066 bool prop_lpa2; 1067 1068 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */ 1069 uint8_t dcz_blocksize; 1070 /* GM blocksize, in log_2(words), ie low 4 bits of GMID_EL0 */ 1071 uint8_t gm_blocksize; 1072 1073 uint64_t rvbar_prop; /* Property/input signals. */ 1074 1075 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */ 1076 int gic_num_lrs; /* number of list registers */ 1077 int gic_vpribits; /* number of virtual priority bits */ 1078 int gic_vprebits; /* number of virtual preemption bits */ 1079 int gic_pribits; /* number of physical priority bits */ 1080 1081 /* Whether the cfgend input is high (i.e. this CPU should reset into 1082 * big-endian mode). This setting isn't used directly: instead it modifies 1083 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the 1084 * architecture version. 1085 */ 1086 bool cfgend; 1087 1088 QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks; 1089 QLIST_HEAD(, ARMELChangeHook) el_change_hooks; 1090 1091 int32_t node_id; /* NUMA node this CPU belongs to */ 1092 1093 /* Used to synchronize KVM and QEMU in-kernel device levels */ 1094 uint8_t device_irq_level; 1095 1096 /* Used to set the maximum vector length the cpu will support. */ 1097 uint32_t sve_max_vq; 1098 1099 #ifdef CONFIG_USER_ONLY 1100 /* Used to set the default vector length at process start. */ 1101 uint32_t sve_default_vq; 1102 uint32_t sme_default_vq; 1103 #endif 1104 1105 ARMVQMap sve_vq; 1106 ARMVQMap sme_vq; 1107 1108 /* Generic timer counter frequency, in Hz */ 1109 uint64_t gt_cntfrq_hz; 1110 }; 1111 1112 typedef struct ARMCPUInfo { 1113 const char *name; 1114 void (*initfn)(Object *obj); 1115 void (*class_init)(ObjectClass *oc, void *data); 1116 } ARMCPUInfo; 1117 1118 /** 1119 * ARMCPUClass: 1120 * @parent_realize: The parent class' realize handler. 1121 * @parent_phases: The parent class' reset phase handlers. 1122 * 1123 * An ARM CPU model. 1124 */ 1125 struct ARMCPUClass { 1126 CPUClass parent_class; 1127 1128 const ARMCPUInfo *info; 1129 DeviceRealize parent_realize; 1130 ResettablePhases parent_phases; 1131 }; 1132 1133 struct AArch64CPUClass { 1134 ARMCPUClass parent_class; 1135 }; 1136 1137 /* Callback functions for the generic timer's timers. */ 1138 void arm_gt_ptimer_cb(void *opaque); 1139 void arm_gt_vtimer_cb(void *opaque); 1140 void arm_gt_htimer_cb(void *opaque); 1141 void arm_gt_stimer_cb(void *opaque); 1142 void arm_gt_hvtimer_cb(void *opaque); 1143 void arm_gt_sel2timer_cb(void *opaque); 1144 void arm_gt_sel2vtimer_cb(void *opaque); 1145 1146 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu); 1147 void gt_rme_post_el_change(ARMCPU *cpu, void *opaque); 1148 1149 void arm_cpu_post_init(Object *obj); 1150 1151 #define ARM_AFF0_SHIFT 0 1152 #define ARM_AFF0_MASK (0xFFULL << ARM_AFF0_SHIFT) 1153 #define ARM_AFF1_SHIFT 8 1154 #define ARM_AFF1_MASK (0xFFULL << ARM_AFF1_SHIFT) 1155 #define ARM_AFF2_SHIFT 16 1156 #define ARM_AFF2_MASK (0xFFULL << ARM_AFF2_SHIFT) 1157 #define ARM_AFF3_SHIFT 32 1158 #define ARM_AFF3_MASK (0xFFULL << ARM_AFF3_SHIFT) 1159 #define ARM_DEFAULT_CPUS_PER_CLUSTER 8 1160 1161 #define ARM32_AFFINITY_MASK (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK) 1162 #define ARM64_AFFINITY_MASK \ 1163 (ARM_AFF0_MASK | ARM_AFF1_MASK | ARM_AFF2_MASK | ARM_AFF3_MASK) 1164 #define ARM64_AFFINITY_INVALID (~ARM64_AFFINITY_MASK) 1165 1166 uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz); 1167 1168 #ifndef CONFIG_USER_ONLY 1169 extern const VMStateDescription vmstate_arm_cpu; 1170 1171 void arm_cpu_do_interrupt(CPUState *cpu); 1172 void arm_v7m_cpu_do_interrupt(CPUState *cpu); 1173 1174 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 1175 MemTxAttrs *attrs); 1176 #endif /* !CONFIG_USER_ONLY */ 1177 1178 int arm_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1179 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1180 1181 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, 1182 int cpuid, DumpState *s); 1183 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, 1184 int cpuid, DumpState *s); 1185 1186 /** 1187 * arm_emulate_firmware_reset: Emulate firmware CPU reset handling 1188 * @cpu: CPU (which must have been freshly reset) 1189 * @target_el: exception level to put the CPU into 1190 * @secure: whether to put the CPU in secure state 1191 * 1192 * When QEMU is directly running a guest kernel at a lower level than 1193 * EL3 it implicitly emulates some aspects of the guest firmware. 1194 * This includes that on reset we need to configure the parts of the 1195 * CPU corresponding to EL3 so that the real guest code can run at its 1196 * lower exception level. This function does that post-reset CPU setup, 1197 * for when we do direct boot of a guest kernel, and for when we 1198 * emulate PSCI and similar firmware interfaces starting a CPU at a 1199 * lower exception level. 1200 * 1201 * @target_el must be an EL implemented by the CPU between 1 and 3. 1202 * We do not support dropping into a Secure EL other than 3. 1203 * 1204 * It is the responsibility of the caller to call arm_rebuild_hflags(). 1205 */ 1206 void arm_emulate_firmware_reset(CPUState *cpustate, int target_el); 1207 1208 #ifdef TARGET_AARCH64 1209 int aarch64_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg); 1210 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); 1211 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq); 1212 void aarch64_sve_change_el(CPUARMState *env, int old_el, 1213 int new_el, bool el0_a64); 1214 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask); 1215 1216 /* 1217 * SVE registers are encoded in KVM's memory in an endianness-invariant format. 1218 * The byte at offset i from the start of the in-memory representation contains 1219 * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the 1220 * lowest offsets are stored in the lowest memory addresses, then that nearly 1221 * matches QEMU's representation, which is to use an array of host-endian 1222 * uint64_t's, where the lower offsets are at the lower indices. To complete 1223 * the translation we just need to byte swap the uint64_t's on big-endian hosts. 1224 */ sve_bswap64(uint64_t * dst,uint64_t * src,int nr)1225 static inline uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr) 1226 { 1227 #if HOST_BIG_ENDIAN 1228 int i; 1229 1230 for (i = 0; i < nr; ++i) { 1231 dst[i] = bswap64(src[i]); 1232 } 1233 1234 return dst; 1235 #else 1236 return src; 1237 #endif 1238 } 1239 1240 #else aarch64_sve_narrow_vq(CPUARMState * env,unsigned vq)1241 static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { } aarch64_sve_change_el(CPUARMState * env,int o,int n,bool a)1242 static inline void aarch64_sve_change_el(CPUARMState *env, int o, 1243 int n, bool a) 1244 { } 1245 #endif 1246 1247 void aarch64_sync_32_to_64(CPUARMState *env); 1248 void aarch64_sync_64_to_32(CPUARMState *env); 1249 1250 int fp_exception_el(CPUARMState *env, int cur_el); 1251 int sve_exception_el(CPUARMState *env, int cur_el); 1252 int sme_exception_el(CPUARMState *env, int cur_el); 1253 1254 /** 1255 * sve_vqm1_for_el_sm: 1256 * @env: CPUARMState 1257 * @el: exception level 1258 * @sm: streaming mode 1259 * 1260 * Compute the current vector length for @el & @sm, in units of 1261 * Quadwords Minus 1 -- the same scale used for ZCR_ELx.LEN. 1262 * If @sm, compute for SVL, otherwise NVL. 1263 */ 1264 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm); 1265 1266 /* Likewise, but using @sm = PSTATE.SM. */ 1267 uint32_t sve_vqm1_for_el(CPUARMState *env, int el); 1268 is_a64(CPUARMState * env)1269 static inline bool is_a64(CPUARMState *env) 1270 { 1271 return env->aarch64; 1272 } 1273 1274 /** 1275 * pmu_op_start/finish 1276 * @env: CPUARMState 1277 * 1278 * Convert all PMU counters between their delta form (the typical mode when 1279 * they are enabled) and the guest-visible values. These two calls must 1280 * surround any action which might affect the counters. 1281 */ 1282 void pmu_op_start(CPUARMState *env); 1283 void pmu_op_finish(CPUARMState *env); 1284 1285 /* 1286 * Called when a PMU counter is due to overflow 1287 */ 1288 void arm_pmu_timer_cb(void *opaque); 1289 1290 /** 1291 * Functions to register as EL change hooks for PMU mode filtering 1292 */ 1293 void pmu_pre_el_change(ARMCPU *cpu, void *ignored); 1294 void pmu_post_el_change(ARMCPU *cpu, void *ignored); 1295 1296 /* 1297 * pmu_init 1298 * @cpu: ARMCPU 1299 * 1300 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state 1301 * for the current configuration 1302 */ 1303 void pmu_init(ARMCPU *cpu); 1304 1305 /* SCTLR bit meanings. Several bits have been reused in newer 1306 * versions of the architecture; in that case we define constants 1307 * for both old and new bit meanings. Code which tests against those 1308 * bits should probably check or otherwise arrange that the CPU 1309 * is the architectural version it expects. 1310 */ 1311 #define SCTLR_M (1U << 0) 1312 #define SCTLR_A (1U << 1) 1313 #define SCTLR_C (1U << 2) 1314 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */ 1315 #define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */ 1316 #define SCTLR_SA (1U << 3) /* AArch64 only */ 1317 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */ 1318 #define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */ 1319 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */ 1320 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */ 1321 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */ 1322 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */ 1323 #define SCTLR_nAA (1U << 6) /* when FEAT_LSE2 is implemented */ 1324 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */ 1325 #define SCTLR_ITD (1U << 7) /* v8 onward */ 1326 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */ 1327 #define SCTLR_SED (1U << 8) /* v8 onward */ 1328 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */ 1329 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */ 1330 #define SCTLR_F (1U << 10) /* up to v6 */ 1331 #define SCTLR_SW (1U << 10) /* v7 */ 1332 #define SCTLR_EnRCTX (1U << 10) /* in v8.0-PredInv */ 1333 #define SCTLR_Z (1U << 11) /* in v7, RES1 in v8 */ 1334 #define SCTLR_EOS (1U << 11) /* v8.5-ExS */ 1335 #define SCTLR_I (1U << 12) 1336 #define SCTLR_V (1U << 13) /* AArch32 only */ 1337 #define SCTLR_EnDB (1U << 13) /* v8.3, AArch64 only */ 1338 #define SCTLR_RR (1U << 14) /* up to v7 */ 1339 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */ 1340 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */ 1341 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */ 1342 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */ 1343 #define SCTLR_nTWI (1U << 16) /* v8 onward */ 1344 #define SCTLR_HA (1U << 17) /* up to v7, RES0 in v8 */ 1345 #define SCTLR_BR (1U << 17) /* PMSA only */ 1346 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */ 1347 #define SCTLR_nTWE (1U << 18) /* v8 onward */ 1348 #define SCTLR_WXN (1U << 19) 1349 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */ 1350 #define SCTLR_UWXN (1U << 20) /* v7 onward, AArch32 only */ 1351 #define SCTLR_TSCXT (1U << 20) /* FEAT_CSV2_1p2, AArch64 only */ 1352 #define SCTLR_FI (1U << 21) /* up to v7, v8 RES0 */ 1353 #define SCTLR_IESB (1U << 21) /* v8.2-IESB, AArch64 only */ 1354 #define SCTLR_U (1U << 22) /* up to v6, RAO in v7 */ 1355 #define SCTLR_EIS (1U << 22) /* v8.5-ExS */ 1356 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */ 1357 #define SCTLR_SPAN (1U << 23) /* v8.1-PAN */ 1358 #define SCTLR_VE (1U << 24) /* up to v7 */ 1359 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */ 1360 #define SCTLR_EE (1U << 25) 1361 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */ 1362 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */ 1363 #define SCTLR_NMFI (1U << 27) /* up to v7, RAZ in v7VE and v8 */ 1364 #define SCTLR_EnDA (1U << 27) /* v8.3, AArch64 only */ 1365 #define SCTLR_TRE (1U << 28) /* AArch32 only */ 1366 #define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */ 1367 #define SCTLR_AFE (1U << 29) /* AArch32 only */ 1368 #define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */ 1369 #define SCTLR_TE (1U << 30) /* AArch32 only */ 1370 #define SCTLR_EnIB (1U << 30) /* v8.3, AArch64 only */ 1371 #define SCTLR_EnIA (1U << 31) /* v8.3, AArch64 only */ 1372 #define SCTLR_DSSBS_32 (1U << 31) /* v8.5, AArch32 only */ 1373 #define SCTLR_CMOW (1ULL << 32) /* FEAT_CMOW */ 1374 #define SCTLR_MSCEN (1ULL << 33) /* FEAT_MOPS */ 1375 #define SCTLR_BT0 (1ULL << 35) /* v8.5-BTI */ 1376 #define SCTLR_BT1 (1ULL << 36) /* v8.5-BTI */ 1377 #define SCTLR_ITFSB (1ULL << 37) /* v8.5-MemTag */ 1378 #define SCTLR_TCF0 (3ULL << 38) /* v8.5-MemTag */ 1379 #define SCTLR_TCF (3ULL << 40) /* v8.5-MemTag */ 1380 #define SCTLR_ATA0 (1ULL << 42) /* v8.5-MemTag */ 1381 #define SCTLR_ATA (1ULL << 43) /* v8.5-MemTag */ 1382 #define SCTLR_DSSBS_64 (1ULL << 44) /* v8.5, AArch64 only */ 1383 #define SCTLR_TWEDEn (1ULL << 45) /* FEAT_TWED */ 1384 #define SCTLR_TWEDEL MAKE_64_MASK(46, 4) /* FEAT_TWED */ 1385 #define SCTLR_TMT0 (1ULL << 50) /* FEAT_TME */ 1386 #define SCTLR_TMT (1ULL << 51) /* FEAT_TME */ 1387 #define SCTLR_TME0 (1ULL << 52) /* FEAT_TME */ 1388 #define SCTLR_TME (1ULL << 53) /* FEAT_TME */ 1389 #define SCTLR_EnASR (1ULL << 54) /* FEAT_LS64_V */ 1390 #define SCTLR_EnAS0 (1ULL << 55) /* FEAT_LS64_ACCDATA */ 1391 #define SCTLR_EnALS (1ULL << 56) /* FEAT_LS64 */ 1392 #define SCTLR_EPAN (1ULL << 57) /* FEAT_PAN3 */ 1393 #define SCTLR_EnTP2 (1ULL << 60) /* FEAT_SME */ 1394 #define SCTLR_NMI (1ULL << 61) /* FEAT_NMI */ 1395 #define SCTLR_SPINTMASK (1ULL << 62) /* FEAT_NMI */ 1396 #define SCTLR_TIDCP (1ULL << 63) /* FEAT_TIDCP1 */ 1397 1398 #define CPSR_M (0x1fU) 1399 #define CPSR_T (1U << 5) 1400 #define CPSR_F (1U << 6) 1401 #define CPSR_I (1U << 7) 1402 #define CPSR_A (1U << 8) 1403 #define CPSR_E (1U << 9) 1404 #define CPSR_IT_2_7 (0xfc00U) 1405 #define CPSR_GE (0xfU << 16) 1406 #define CPSR_IL (1U << 20) 1407 #define CPSR_DIT (1U << 21) 1408 #define CPSR_PAN (1U << 22) 1409 #define CPSR_SSBS (1U << 23) 1410 #define CPSR_J (1U << 24) 1411 #define CPSR_IT_0_1 (3U << 25) 1412 #define CPSR_Q (1U << 27) 1413 #define CPSR_V (1U << 28) 1414 #define CPSR_C (1U << 29) 1415 #define CPSR_Z (1U << 30) 1416 #define CPSR_N (1U << 31) 1417 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V) 1418 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F) 1419 #define ISR_FS (1U << 9) 1420 #define ISR_IS (1U << 10) 1421 1422 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7) 1423 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \ 1424 | CPSR_NZCV) 1425 /* Bits writable in user mode. */ 1426 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE | CPSR_E) 1427 /* Execution state bits. MRS read as zero, MSR writes ignored. */ 1428 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL) 1429 1430 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */ 1431 #define XPSR_EXCP 0x1ffU 1432 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */ 1433 #define XPSR_IT_2_7 CPSR_IT_2_7 1434 #define XPSR_GE CPSR_GE 1435 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */ 1436 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */ 1437 #define XPSR_IT_0_1 CPSR_IT_0_1 1438 #define XPSR_Q CPSR_Q 1439 #define XPSR_V CPSR_V 1440 #define XPSR_C CPSR_C 1441 #define XPSR_Z CPSR_Z 1442 #define XPSR_N CPSR_N 1443 #define XPSR_NZCV CPSR_NZCV 1444 #define XPSR_IT CPSR_IT 1445 1446 /* Bit definitions for ARMv8 SPSR (PSTATE) format. 1447 * Only these are valid when in AArch64 mode; in 1448 * AArch32 mode SPSRs are basically CPSR-format. 1449 */ 1450 #define PSTATE_SP (1U) 1451 #define PSTATE_M (0xFU) 1452 #define PSTATE_nRW (1U << 4) 1453 #define PSTATE_F (1U << 6) 1454 #define PSTATE_I (1U << 7) 1455 #define PSTATE_A (1U << 8) 1456 #define PSTATE_D (1U << 9) 1457 #define PSTATE_BTYPE (3U << 10) 1458 #define PSTATE_SSBS (1U << 12) 1459 #define PSTATE_ALLINT (1U << 13) 1460 #define PSTATE_IL (1U << 20) 1461 #define PSTATE_SS (1U << 21) 1462 #define PSTATE_PAN (1U << 22) 1463 #define PSTATE_UAO (1U << 23) 1464 #define PSTATE_DIT (1U << 24) 1465 #define PSTATE_TCO (1U << 25) 1466 #define PSTATE_V (1U << 28) 1467 #define PSTATE_C (1U << 29) 1468 #define PSTATE_Z (1U << 30) 1469 #define PSTATE_N (1U << 31) 1470 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V) 1471 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F) 1472 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE) 1473 /* Mode values for AArch64 */ 1474 #define PSTATE_MODE_EL3h 13 1475 #define PSTATE_MODE_EL3t 12 1476 #define PSTATE_MODE_EL2h 9 1477 #define PSTATE_MODE_EL2t 8 1478 #define PSTATE_MODE_EL1h 5 1479 #define PSTATE_MODE_EL1t 4 1480 #define PSTATE_MODE_EL0t 0 1481 1482 /* PSTATE bits that are accessed via SVCR and not stored in SPSR_ELx. */ 1483 FIELD(SVCR, SM, 0, 1) 1484 FIELD(SVCR, ZA, 1, 1) 1485 1486 /* Fields for SMCR_ELx. */ 1487 FIELD(SMCR, LEN, 0, 4) 1488 FIELD(SMCR, FA64, 31, 1) 1489 1490 /* Write a new value to v7m.exception, thus transitioning into or out 1491 * of Handler mode; this may result in a change of active stack pointer. 1492 */ 1493 void write_v7m_exception(CPUARMState *env, uint32_t new_exc); 1494 1495 /* Map EL and handler into a PSTATE_MODE. */ aarch64_pstate_mode(unsigned int el,bool handler)1496 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler) 1497 { 1498 return (el << 2) | handler; 1499 } 1500 1501 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit 1502 * interprocessing, so we don't attempt to sync with the cpsr state used by 1503 * the 32 bit decoder. 1504 */ pstate_read(CPUARMState * env)1505 static inline uint32_t pstate_read(CPUARMState *env) 1506 { 1507 int ZF; 1508 1509 ZF = (env->ZF == 0); 1510 return (env->NF & 0x80000000) | (ZF << 30) 1511 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) 1512 | env->pstate | env->daif | (env->btype << 10); 1513 } 1514 pstate_write(CPUARMState * env,uint32_t val)1515 static inline void pstate_write(CPUARMState *env, uint32_t val) 1516 { 1517 env->ZF = (~val) & PSTATE_Z; 1518 env->NF = val; 1519 env->CF = (val >> 29) & 1; 1520 env->VF = (val << 3) & 0x80000000; 1521 env->daif = val & PSTATE_DAIF; 1522 env->btype = (val >> 10) & 3; 1523 env->pstate = val & ~CACHED_PSTATE_BITS; 1524 } 1525 1526 /* Return the current CPSR value. */ 1527 uint32_t cpsr_read(CPUARMState *env); 1528 1529 typedef enum CPSRWriteType { 1530 CPSRWriteByInstr = 0, /* from guest MSR or CPS */ 1531 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */ 1532 CPSRWriteRaw = 2, 1533 /* trust values, no reg bank switch, no hflags rebuild */ 1534 CPSRWriteByGDBStub = 3, /* from the GDB stub */ 1535 } CPSRWriteType; 1536 1537 /* 1538 * Set the CPSR. Note that some bits of mask must be all-set or all-clear. 1539 * This will do an arm_rebuild_hflags() if any of the bits in @mask 1540 * correspond to TB flags bits cached in the hflags, unless @write_type 1541 * is CPSRWriteRaw. 1542 */ 1543 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 1544 CPSRWriteType write_type); 1545 1546 /* Return the current xPSR value. */ xpsr_read(CPUARMState * env)1547 static inline uint32_t xpsr_read(CPUARMState *env) 1548 { 1549 int ZF; 1550 ZF = (env->ZF == 0); 1551 return (env->NF & 0x80000000) | (ZF << 30) 1552 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 1553 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25) 1554 | ((env->condexec_bits & 0xfc) << 8) 1555 | (env->GE << 16) 1556 | env->v7m.exception; 1557 } 1558 1559 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */ xpsr_write(CPUARMState * env,uint32_t val,uint32_t mask)1560 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask) 1561 { 1562 if (mask & XPSR_NZCV) { 1563 env->ZF = (~val) & XPSR_Z; 1564 env->NF = val; 1565 env->CF = (val >> 29) & 1; 1566 env->VF = (val << 3) & 0x80000000; 1567 } 1568 if (mask & XPSR_Q) { 1569 env->QF = ((val & XPSR_Q) != 0); 1570 } 1571 if (mask & XPSR_GE) { 1572 env->GE = (val & XPSR_GE) >> 16; 1573 } 1574 #ifndef CONFIG_USER_ONLY 1575 if (mask & XPSR_T) { 1576 env->thumb = ((val & XPSR_T) != 0); 1577 } 1578 if (mask & XPSR_IT_0_1) { 1579 env->condexec_bits &= ~3; 1580 env->condexec_bits |= (val >> 25) & 3; 1581 } 1582 if (mask & XPSR_IT_2_7) { 1583 env->condexec_bits &= 3; 1584 env->condexec_bits |= (val >> 8) & 0xfc; 1585 } 1586 if (mask & XPSR_EXCP) { 1587 /* Note that this only happens on exception exit */ 1588 write_v7m_exception(env, val & XPSR_EXCP); 1589 } 1590 #endif 1591 } 1592 1593 #define HCR_VM (1ULL << 0) 1594 #define HCR_SWIO (1ULL << 1) 1595 #define HCR_PTW (1ULL << 2) 1596 #define HCR_FMO (1ULL << 3) 1597 #define HCR_IMO (1ULL << 4) 1598 #define HCR_AMO (1ULL << 5) 1599 #define HCR_VF (1ULL << 6) 1600 #define HCR_VI (1ULL << 7) 1601 #define HCR_VSE (1ULL << 8) 1602 #define HCR_FB (1ULL << 9) 1603 #define HCR_BSU_MASK (3ULL << 10) 1604 #define HCR_DC (1ULL << 12) 1605 #define HCR_TWI (1ULL << 13) 1606 #define HCR_TWE (1ULL << 14) 1607 #define HCR_TID0 (1ULL << 15) 1608 #define HCR_TID1 (1ULL << 16) 1609 #define HCR_TID2 (1ULL << 17) 1610 #define HCR_TID3 (1ULL << 18) 1611 #define HCR_TSC (1ULL << 19) 1612 #define HCR_TIDCP (1ULL << 20) 1613 #define HCR_TACR (1ULL << 21) 1614 #define HCR_TSW (1ULL << 22) 1615 #define HCR_TPCP (1ULL << 23) 1616 #define HCR_TPU (1ULL << 24) 1617 #define HCR_TTLB (1ULL << 25) 1618 #define HCR_TVM (1ULL << 26) 1619 #define HCR_TGE (1ULL << 27) 1620 #define HCR_TDZ (1ULL << 28) 1621 #define HCR_HCD (1ULL << 29) 1622 #define HCR_TRVM (1ULL << 30) 1623 #define HCR_RW (1ULL << 31) 1624 #define HCR_CD (1ULL << 32) 1625 #define HCR_ID (1ULL << 33) 1626 #define HCR_E2H (1ULL << 34) 1627 #define HCR_TLOR (1ULL << 35) 1628 #define HCR_TERR (1ULL << 36) 1629 #define HCR_TEA (1ULL << 37) 1630 #define HCR_MIOCNCE (1ULL << 38) 1631 #define HCR_TME (1ULL << 39) 1632 #define HCR_APK (1ULL << 40) 1633 #define HCR_API (1ULL << 41) 1634 #define HCR_NV (1ULL << 42) 1635 #define HCR_NV1 (1ULL << 43) 1636 #define HCR_AT (1ULL << 44) 1637 #define HCR_NV2 (1ULL << 45) 1638 #define HCR_FWB (1ULL << 46) 1639 #define HCR_FIEN (1ULL << 47) 1640 #define HCR_GPF (1ULL << 48) 1641 #define HCR_TID4 (1ULL << 49) 1642 #define HCR_TICAB (1ULL << 50) 1643 #define HCR_AMVOFFEN (1ULL << 51) 1644 #define HCR_TOCU (1ULL << 52) 1645 #define HCR_ENSCXT (1ULL << 53) 1646 #define HCR_TTLBIS (1ULL << 54) 1647 #define HCR_TTLBOS (1ULL << 55) 1648 #define HCR_ATA (1ULL << 56) 1649 #define HCR_DCT (1ULL << 57) 1650 #define HCR_TID5 (1ULL << 58) 1651 #define HCR_TWEDEN (1ULL << 59) 1652 #define HCR_TWEDEL MAKE_64BIT_MASK(60, 4) 1653 1654 #define SCR_NS (1ULL << 0) 1655 #define SCR_IRQ (1ULL << 1) 1656 #define SCR_FIQ (1ULL << 2) 1657 #define SCR_EA (1ULL << 3) 1658 #define SCR_FW (1ULL << 4) 1659 #define SCR_AW (1ULL << 5) 1660 #define SCR_NET (1ULL << 6) 1661 #define SCR_SMD (1ULL << 7) 1662 #define SCR_HCE (1ULL << 8) 1663 #define SCR_SIF (1ULL << 9) 1664 #define SCR_RW (1ULL << 10) 1665 #define SCR_ST (1ULL << 11) 1666 #define SCR_TWI (1ULL << 12) 1667 #define SCR_TWE (1ULL << 13) 1668 #define SCR_TLOR (1ULL << 14) 1669 #define SCR_TERR (1ULL << 15) 1670 #define SCR_APK (1ULL << 16) 1671 #define SCR_API (1ULL << 17) 1672 #define SCR_EEL2 (1ULL << 18) 1673 #define SCR_EASE (1ULL << 19) 1674 #define SCR_NMEA (1ULL << 20) 1675 #define SCR_FIEN (1ULL << 21) 1676 #define SCR_ENSCXT (1ULL << 25) 1677 #define SCR_ATA (1ULL << 26) 1678 #define SCR_FGTEN (1ULL << 27) 1679 #define SCR_ECVEN (1ULL << 28) 1680 #define SCR_TWEDEN (1ULL << 29) 1681 #define SCR_TWEDEL MAKE_64BIT_MASK(30, 4) 1682 #define SCR_TME (1ULL << 34) 1683 #define SCR_AMVOFFEN (1ULL << 35) 1684 #define SCR_ENAS0 (1ULL << 36) 1685 #define SCR_ADEN (1ULL << 37) 1686 #define SCR_HXEN (1ULL << 38) 1687 #define SCR_TRNDR (1ULL << 40) 1688 #define SCR_ENTP2 (1ULL << 41) 1689 #define SCR_GPF (1ULL << 48) 1690 #define SCR_NSE (1ULL << 62) 1691 1692 /* Return the current FPSCR value. */ 1693 uint32_t vfp_get_fpscr(CPUARMState *env); 1694 void vfp_set_fpscr(CPUARMState *env, uint32_t val); 1695 1696 /* 1697 * FPCR, Floating Point Control Register 1698 * FPSR, Floating Point Status Register 1699 * 1700 * For A64 floating point control and status bits are stored in 1701 * two logically distinct registers, FPCR and FPSR. We store these 1702 * in QEMU in vfp.fpcr and vfp.fpsr. 1703 * For A32 there was only one register, FPSCR. The bits are arranged 1704 * such that FPSCR bits map to FPCR or FPSR bits in the same bit positions, 1705 * so we can use appropriate masking to handle FPSCR reads and writes. 1706 * Note that the FPCR has some bits which are not visible in the 1707 * AArch32 view (for FEAT_AFP). Writing the FPSCR leaves these unchanged. 1708 */ 1709 1710 /* FPCR bits */ 1711 #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ 1712 #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ 1713 #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ 1714 #define FPCR_UFE (1 << 11) /* Underflow exception trap enable */ 1715 #define FPCR_IXE (1 << 12) /* Inexact exception trap enable */ 1716 #define FPCR_EBF (1 << 13) /* Extended BFloat16 behaviors */ 1717 #define FPCR_IDE (1 << 15) /* Input Denormal exception trap enable */ 1718 #define FPCR_LEN_MASK (7 << 16) /* LEN, A-profile only */ 1719 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */ 1720 #define FPCR_STRIDE_MASK (3 << 20) /* Stride */ 1721 #define FPCR_RMODE_MASK (3 << 22) /* Rounding mode */ 1722 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */ 1723 #define FPCR_DN (1 << 25) /* Default NaN enable bit */ 1724 #define FPCR_AHP (1 << 26) /* Alternative half-precision */ 1725 1726 #define FPCR_LTPSIZE_SHIFT 16 /* LTPSIZE, M-profile only */ 1727 #define FPCR_LTPSIZE_MASK (7 << FPCR_LTPSIZE_SHIFT) 1728 #define FPCR_LTPSIZE_LENGTH 3 1729 1730 /* Cumulative exception trap enable bits */ 1731 #define FPCR_EEXC_MASK (FPCR_IOE | FPCR_DZE | FPCR_OFE | FPCR_UFE | FPCR_IXE | FPCR_IDE) 1732 1733 /* FPSR bits */ 1734 #define FPSR_IOC (1 << 0) /* Invalid Operation cumulative exception */ 1735 #define FPSR_DZC (1 << 1) /* Divide by Zero cumulative exception */ 1736 #define FPSR_OFC (1 << 2) /* Overflow cumulative exception */ 1737 #define FPSR_UFC (1 << 3) /* Underflow cumulative exception */ 1738 #define FPSR_IXC (1 << 4) /* Inexact cumulative exception */ 1739 #define FPSR_IDC (1 << 7) /* Input Denormal cumulative exception */ 1740 #define FPSR_QC (1 << 27) /* Cumulative saturation bit */ 1741 #define FPSR_V (1 << 28) /* FP overflow flag */ 1742 #define FPSR_C (1 << 29) /* FP carry flag */ 1743 #define FPSR_Z (1 << 30) /* FP zero flag */ 1744 #define FPSR_N (1 << 31) /* FP negative flag */ 1745 1746 /* Cumulative exception status bits */ 1747 #define FPSR_CEXC_MASK (FPSR_IOC | FPSR_DZC | FPSR_OFC | FPSR_UFC | FPSR_IXC | FPSR_IDC) 1748 1749 #define FPSR_NZCV_MASK (FPSR_N | FPSR_Z | FPSR_C | FPSR_V) 1750 #define FPSR_NZCVQC_MASK (FPSR_NZCV_MASK | FPSR_QC) 1751 1752 /* A32 FPSCR bits which architecturally map to FPSR bits */ 1753 #define FPSCR_FPSR_MASK (FPSR_NZCVQC_MASK | FPSR_CEXC_MASK) 1754 /* A32 FPSCR bits which architecturally map to FPCR bits */ 1755 #define FPSCR_FPCR_MASK (FPCR_EEXC_MASK | FPCR_LEN_MASK | FPCR_FZ16 | \ 1756 FPCR_STRIDE_MASK | FPCR_RMODE_MASK | \ 1757 FPCR_FZ | FPCR_DN | FPCR_AHP) 1758 /* These masks don't overlap: each bit lives in only one place */ 1759 QEMU_BUILD_BUG_ON(FPSCR_FPSR_MASK & FPSCR_FPCR_MASK); 1760 1761 /** 1762 * vfp_get_fpsr: read the AArch64 FPSR 1763 * @env: CPU context 1764 * 1765 * Return the current AArch64 FPSR value 1766 */ 1767 uint32_t vfp_get_fpsr(CPUARMState *env); 1768 1769 /** 1770 * vfp_get_fpcr: read the AArch64 FPCR 1771 * @env: CPU context 1772 * 1773 * Return the current AArch64 FPCR value 1774 */ 1775 uint32_t vfp_get_fpcr(CPUARMState *env); 1776 1777 /** 1778 * vfp_set_fpsr: write the AArch64 FPSR 1779 * @env: CPU context 1780 * @value: new value 1781 */ 1782 void vfp_set_fpsr(CPUARMState *env, uint32_t value); 1783 1784 /** 1785 * vfp_set_fpcr: write the AArch64 FPCR 1786 * @env: CPU context 1787 * @value: new value 1788 */ 1789 void vfp_set_fpcr(CPUARMState *env, uint32_t value); 1790 1791 enum arm_cpu_mode { 1792 ARM_CPU_MODE_USR = 0x10, 1793 ARM_CPU_MODE_FIQ = 0x11, 1794 ARM_CPU_MODE_IRQ = 0x12, 1795 ARM_CPU_MODE_SVC = 0x13, 1796 ARM_CPU_MODE_MON = 0x16, 1797 ARM_CPU_MODE_ABT = 0x17, 1798 ARM_CPU_MODE_HYP = 0x1a, 1799 ARM_CPU_MODE_UND = 0x1b, 1800 ARM_CPU_MODE_SYS = 0x1f 1801 }; 1802 1803 /* VFP system registers. */ 1804 #define ARM_VFP_FPSID 0 1805 #define ARM_VFP_FPSCR 1 1806 #define ARM_VFP_MVFR2 5 1807 #define ARM_VFP_MVFR1 6 1808 #define ARM_VFP_MVFR0 7 1809 #define ARM_VFP_FPEXC 8 1810 #define ARM_VFP_FPINST 9 1811 #define ARM_VFP_FPINST2 10 1812 /* These ones are M-profile only */ 1813 #define ARM_VFP_FPSCR_NZCVQC 2 1814 #define ARM_VFP_VPR 12 1815 #define ARM_VFP_P0 13 1816 #define ARM_VFP_FPCXT_NS 14 1817 #define ARM_VFP_FPCXT_S 15 1818 1819 /* QEMU-internal value meaning "FPSCR, but we care only about NZCV" */ 1820 #define QEMU_VFP_FPSCR_NZCV 0xffff 1821 1822 /* iwMMXt coprocessor control registers. */ 1823 #define ARM_IWMMXT_wCID 0 1824 #define ARM_IWMMXT_wCon 1 1825 #define ARM_IWMMXT_wCSSF 2 1826 #define ARM_IWMMXT_wCASF 3 1827 #define ARM_IWMMXT_wCGR0 8 1828 #define ARM_IWMMXT_wCGR1 9 1829 #define ARM_IWMMXT_wCGR2 10 1830 #define ARM_IWMMXT_wCGR3 11 1831 1832 /* V7M CCR bits */ 1833 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1) 1834 FIELD(V7M_CCR, USERSETMPEND, 1, 1) 1835 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1) 1836 FIELD(V7M_CCR, DIV_0_TRP, 4, 1) 1837 FIELD(V7M_CCR, BFHFNMIGN, 8, 1) 1838 FIELD(V7M_CCR, STKALIGN, 9, 1) 1839 FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1) 1840 FIELD(V7M_CCR, DC, 16, 1) 1841 FIELD(V7M_CCR, IC, 17, 1) 1842 FIELD(V7M_CCR, BP, 18, 1) 1843 FIELD(V7M_CCR, LOB, 19, 1) 1844 FIELD(V7M_CCR, TRD, 20, 1) 1845 1846 /* V7M SCR bits */ 1847 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1) 1848 FIELD(V7M_SCR, SLEEPDEEP, 2, 1) 1849 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1) 1850 FIELD(V7M_SCR, SEVONPEND, 4, 1) 1851 1852 /* V7M AIRCR bits */ 1853 FIELD(V7M_AIRCR, VECTRESET, 0, 1) 1854 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1) 1855 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1) 1856 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1) 1857 FIELD(V7M_AIRCR, PRIGROUP, 8, 3) 1858 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1) 1859 FIELD(V7M_AIRCR, PRIS, 14, 1) 1860 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1) 1861 FIELD(V7M_AIRCR, VECTKEY, 16, 16) 1862 1863 /* V7M CFSR bits for MMFSR */ 1864 FIELD(V7M_CFSR, IACCVIOL, 0, 1) 1865 FIELD(V7M_CFSR, DACCVIOL, 1, 1) 1866 FIELD(V7M_CFSR, MUNSTKERR, 3, 1) 1867 FIELD(V7M_CFSR, MSTKERR, 4, 1) 1868 FIELD(V7M_CFSR, MLSPERR, 5, 1) 1869 FIELD(V7M_CFSR, MMARVALID, 7, 1) 1870 1871 /* V7M CFSR bits for BFSR */ 1872 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1) 1873 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1) 1874 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1) 1875 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1) 1876 FIELD(V7M_CFSR, STKERR, 8 + 4, 1) 1877 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1) 1878 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1) 1879 1880 /* V7M CFSR bits for UFSR */ 1881 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1) 1882 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1) 1883 FIELD(V7M_CFSR, INVPC, 16 + 2, 1) 1884 FIELD(V7M_CFSR, NOCP, 16 + 3, 1) 1885 FIELD(V7M_CFSR, STKOF, 16 + 4, 1) 1886 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1) 1887 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1) 1888 1889 /* V7M CFSR bit masks covering all of the subregister bits */ 1890 FIELD(V7M_CFSR, MMFSR, 0, 8) 1891 FIELD(V7M_CFSR, BFSR, 8, 8) 1892 FIELD(V7M_CFSR, UFSR, 16, 16) 1893 1894 /* V7M HFSR bits */ 1895 FIELD(V7M_HFSR, VECTTBL, 1, 1) 1896 FIELD(V7M_HFSR, FORCED, 30, 1) 1897 FIELD(V7M_HFSR, DEBUGEVT, 31, 1) 1898 1899 /* V7M DFSR bits */ 1900 FIELD(V7M_DFSR, HALTED, 0, 1) 1901 FIELD(V7M_DFSR, BKPT, 1, 1) 1902 FIELD(V7M_DFSR, DWTTRAP, 2, 1) 1903 FIELD(V7M_DFSR, VCATCH, 3, 1) 1904 FIELD(V7M_DFSR, EXTERNAL, 4, 1) 1905 1906 /* V7M SFSR bits */ 1907 FIELD(V7M_SFSR, INVEP, 0, 1) 1908 FIELD(V7M_SFSR, INVIS, 1, 1) 1909 FIELD(V7M_SFSR, INVER, 2, 1) 1910 FIELD(V7M_SFSR, AUVIOL, 3, 1) 1911 FIELD(V7M_SFSR, INVTRAN, 4, 1) 1912 FIELD(V7M_SFSR, LSPERR, 5, 1) 1913 FIELD(V7M_SFSR, SFARVALID, 6, 1) 1914 FIELD(V7M_SFSR, LSERR, 7, 1) 1915 1916 /* v7M MPU_CTRL bits */ 1917 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1) 1918 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1) 1919 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1) 1920 1921 /* v7M CLIDR bits */ 1922 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21) 1923 FIELD(V7M_CLIDR, LOUIS, 21, 3) 1924 FIELD(V7M_CLIDR, LOC, 24, 3) 1925 FIELD(V7M_CLIDR, LOUU, 27, 3) 1926 FIELD(V7M_CLIDR, ICB, 30, 2) 1927 1928 FIELD(V7M_CSSELR, IND, 0, 1) 1929 FIELD(V7M_CSSELR, LEVEL, 1, 3) 1930 /* We use the combination of InD and Level to index into cpu->ccsidr[]; 1931 * define a mask for this and check that it doesn't permit running off 1932 * the end of the array. 1933 */ 1934 FIELD(V7M_CSSELR, INDEX, 0, 4) 1935 1936 /* v7M FPCCR bits */ 1937 FIELD(V7M_FPCCR, LSPACT, 0, 1) 1938 FIELD(V7M_FPCCR, USER, 1, 1) 1939 FIELD(V7M_FPCCR, S, 2, 1) 1940 FIELD(V7M_FPCCR, THREAD, 3, 1) 1941 FIELD(V7M_FPCCR, HFRDY, 4, 1) 1942 FIELD(V7M_FPCCR, MMRDY, 5, 1) 1943 FIELD(V7M_FPCCR, BFRDY, 6, 1) 1944 FIELD(V7M_FPCCR, SFRDY, 7, 1) 1945 FIELD(V7M_FPCCR, MONRDY, 8, 1) 1946 FIELD(V7M_FPCCR, SPLIMVIOL, 9, 1) 1947 FIELD(V7M_FPCCR, UFRDY, 10, 1) 1948 FIELD(V7M_FPCCR, RES0, 11, 15) 1949 FIELD(V7M_FPCCR, TS, 26, 1) 1950 FIELD(V7M_FPCCR, CLRONRETS, 27, 1) 1951 FIELD(V7M_FPCCR, CLRONRET, 28, 1) 1952 FIELD(V7M_FPCCR, LSPENS, 29, 1) 1953 FIELD(V7M_FPCCR, LSPEN, 30, 1) 1954 FIELD(V7M_FPCCR, ASPEN, 31, 1) 1955 /* These bits are banked. Others are non-banked and live in the M_REG_S bank */ 1956 #define R_V7M_FPCCR_BANKED_MASK \ 1957 (R_V7M_FPCCR_LSPACT_MASK | \ 1958 R_V7M_FPCCR_USER_MASK | \ 1959 R_V7M_FPCCR_THREAD_MASK | \ 1960 R_V7M_FPCCR_MMRDY_MASK | \ 1961 R_V7M_FPCCR_SPLIMVIOL_MASK | \ 1962 R_V7M_FPCCR_UFRDY_MASK | \ 1963 R_V7M_FPCCR_ASPEN_MASK) 1964 1965 /* v7M VPR bits */ 1966 FIELD(V7M_VPR, P0, 0, 16) 1967 FIELD(V7M_VPR, MASK01, 16, 4) 1968 FIELD(V7M_VPR, MASK23, 20, 4) 1969 1970 /* 1971 * System register ID fields. 1972 */ 1973 FIELD(CLIDR_EL1, CTYPE1, 0, 3) 1974 FIELD(CLIDR_EL1, CTYPE2, 3, 3) 1975 FIELD(CLIDR_EL1, CTYPE3, 6, 3) 1976 FIELD(CLIDR_EL1, CTYPE4, 9, 3) 1977 FIELD(CLIDR_EL1, CTYPE5, 12, 3) 1978 FIELD(CLIDR_EL1, CTYPE6, 15, 3) 1979 FIELD(CLIDR_EL1, CTYPE7, 18, 3) 1980 FIELD(CLIDR_EL1, LOUIS, 21, 3) 1981 FIELD(CLIDR_EL1, LOC, 24, 3) 1982 FIELD(CLIDR_EL1, LOUU, 27, 3) 1983 FIELD(CLIDR_EL1, ICB, 30, 3) 1984 1985 /* When FEAT_CCIDX is implemented */ 1986 FIELD(CCSIDR_EL1, CCIDX_LINESIZE, 0, 3) 1987 FIELD(CCSIDR_EL1, CCIDX_ASSOCIATIVITY, 3, 21) 1988 FIELD(CCSIDR_EL1, CCIDX_NUMSETS, 32, 24) 1989 1990 /* When FEAT_CCIDX is not implemented */ 1991 FIELD(CCSIDR_EL1, LINESIZE, 0, 3) 1992 FIELD(CCSIDR_EL1, ASSOCIATIVITY, 3, 10) 1993 FIELD(CCSIDR_EL1, NUMSETS, 13, 15) 1994 1995 FIELD(CTR_EL0, IMINLINE, 0, 4) 1996 FIELD(CTR_EL0, L1IP, 14, 2) 1997 FIELD(CTR_EL0, DMINLINE, 16, 4) 1998 FIELD(CTR_EL0, ERG, 20, 4) 1999 FIELD(CTR_EL0, CWG, 24, 4) 2000 FIELD(CTR_EL0, IDC, 28, 1) 2001 FIELD(CTR_EL0, DIC, 29, 1) 2002 FIELD(CTR_EL0, TMINLINE, 32, 6) 2003 2004 FIELD(MIDR_EL1, REVISION, 0, 4) 2005 FIELD(MIDR_EL1, PARTNUM, 4, 12) 2006 FIELD(MIDR_EL1, ARCHITECTURE, 16, 4) 2007 FIELD(MIDR_EL1, VARIANT, 20, 4) 2008 FIELD(MIDR_EL1, IMPLEMENTER, 24, 8) 2009 2010 FIELD(ID_ISAR0, SWAP, 0, 4) 2011 FIELD(ID_ISAR0, BITCOUNT, 4, 4) 2012 FIELD(ID_ISAR0, BITFIELD, 8, 4) 2013 FIELD(ID_ISAR0, CMPBRANCH, 12, 4) 2014 FIELD(ID_ISAR0, COPROC, 16, 4) 2015 FIELD(ID_ISAR0, DEBUG, 20, 4) 2016 FIELD(ID_ISAR0, DIVIDE, 24, 4) 2017 2018 FIELD(ID_ISAR1, ENDIAN, 0, 4) 2019 FIELD(ID_ISAR1, EXCEPT, 4, 4) 2020 FIELD(ID_ISAR1, EXCEPT_AR, 8, 4) 2021 FIELD(ID_ISAR1, EXTEND, 12, 4) 2022 FIELD(ID_ISAR1, IFTHEN, 16, 4) 2023 FIELD(ID_ISAR1, IMMEDIATE, 20, 4) 2024 FIELD(ID_ISAR1, INTERWORK, 24, 4) 2025 FIELD(ID_ISAR1, JAZELLE, 28, 4) 2026 2027 FIELD(ID_ISAR2, LOADSTORE, 0, 4) 2028 FIELD(ID_ISAR2, MEMHINT, 4, 4) 2029 FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4) 2030 FIELD(ID_ISAR2, MULT, 12, 4) 2031 FIELD(ID_ISAR2, MULTS, 16, 4) 2032 FIELD(ID_ISAR2, MULTU, 20, 4) 2033 FIELD(ID_ISAR2, PSR_AR, 24, 4) 2034 FIELD(ID_ISAR2, REVERSAL, 28, 4) 2035 2036 FIELD(ID_ISAR3, SATURATE, 0, 4) 2037 FIELD(ID_ISAR3, SIMD, 4, 4) 2038 FIELD(ID_ISAR3, SVC, 8, 4) 2039 FIELD(ID_ISAR3, SYNCHPRIM, 12, 4) 2040 FIELD(ID_ISAR3, TABBRANCH, 16, 4) 2041 FIELD(ID_ISAR3, T32COPY, 20, 4) 2042 FIELD(ID_ISAR3, TRUENOP, 24, 4) 2043 FIELD(ID_ISAR3, T32EE, 28, 4) 2044 2045 FIELD(ID_ISAR4, UNPRIV, 0, 4) 2046 FIELD(ID_ISAR4, WITHSHIFTS, 4, 4) 2047 FIELD(ID_ISAR4, WRITEBACK, 8, 4) 2048 FIELD(ID_ISAR4, SMC, 12, 4) 2049 FIELD(ID_ISAR4, BARRIER, 16, 4) 2050 FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4) 2051 FIELD(ID_ISAR4, PSR_M, 24, 4) 2052 FIELD(ID_ISAR4, SWP_FRAC, 28, 4) 2053 2054 FIELD(ID_ISAR5, SEVL, 0, 4) 2055 FIELD(ID_ISAR5, AES, 4, 4) 2056 FIELD(ID_ISAR5, SHA1, 8, 4) 2057 FIELD(ID_ISAR5, SHA2, 12, 4) 2058 FIELD(ID_ISAR5, CRC32, 16, 4) 2059 FIELD(ID_ISAR5, RDM, 24, 4) 2060 FIELD(ID_ISAR5, VCMA, 28, 4) 2061 2062 FIELD(ID_ISAR6, JSCVT, 0, 4) 2063 FIELD(ID_ISAR6, DP, 4, 4) 2064 FIELD(ID_ISAR6, FHM, 8, 4) 2065 FIELD(ID_ISAR6, SB, 12, 4) 2066 FIELD(ID_ISAR6, SPECRES, 16, 4) 2067 FIELD(ID_ISAR6, BF16, 20, 4) 2068 FIELD(ID_ISAR6, I8MM, 24, 4) 2069 2070 FIELD(ID_MMFR0, VMSA, 0, 4) 2071 FIELD(ID_MMFR0, PMSA, 4, 4) 2072 FIELD(ID_MMFR0, OUTERSHR, 8, 4) 2073 FIELD(ID_MMFR0, SHARELVL, 12, 4) 2074 FIELD(ID_MMFR0, TCM, 16, 4) 2075 FIELD(ID_MMFR0, AUXREG, 20, 4) 2076 FIELD(ID_MMFR0, FCSE, 24, 4) 2077 FIELD(ID_MMFR0, INNERSHR, 28, 4) 2078 2079 FIELD(ID_MMFR1, L1HVDVA, 0, 4) 2080 FIELD(ID_MMFR1, L1UNIVA, 4, 4) 2081 FIELD(ID_MMFR1, L1HVDSW, 8, 4) 2082 FIELD(ID_MMFR1, L1UNISW, 12, 4) 2083 FIELD(ID_MMFR1, L1HVD, 16, 4) 2084 FIELD(ID_MMFR1, L1UNI, 20, 4) 2085 FIELD(ID_MMFR1, L1TSTCLN, 24, 4) 2086 FIELD(ID_MMFR1, BPRED, 28, 4) 2087 2088 FIELD(ID_MMFR2, L1HVDFG, 0, 4) 2089 FIELD(ID_MMFR2, L1HVDBG, 4, 4) 2090 FIELD(ID_MMFR2, L1HVDRNG, 8, 4) 2091 FIELD(ID_MMFR2, HVDTLB, 12, 4) 2092 FIELD(ID_MMFR2, UNITLB, 16, 4) 2093 FIELD(ID_MMFR2, MEMBARR, 20, 4) 2094 FIELD(ID_MMFR2, WFISTALL, 24, 4) 2095 FIELD(ID_MMFR2, HWACCFLG, 28, 4) 2096 2097 FIELD(ID_MMFR3, CMAINTVA, 0, 4) 2098 FIELD(ID_MMFR3, CMAINTSW, 4, 4) 2099 FIELD(ID_MMFR3, BPMAINT, 8, 4) 2100 FIELD(ID_MMFR3, MAINTBCST, 12, 4) 2101 FIELD(ID_MMFR3, PAN, 16, 4) 2102 FIELD(ID_MMFR3, COHWALK, 20, 4) 2103 FIELD(ID_MMFR3, CMEMSZ, 24, 4) 2104 FIELD(ID_MMFR3, SUPERSEC, 28, 4) 2105 2106 FIELD(ID_MMFR4, SPECSEI, 0, 4) 2107 FIELD(ID_MMFR4, AC2, 4, 4) 2108 FIELD(ID_MMFR4, XNX, 8, 4) 2109 FIELD(ID_MMFR4, CNP, 12, 4) 2110 FIELD(ID_MMFR4, HPDS, 16, 4) 2111 FIELD(ID_MMFR4, LSM, 20, 4) 2112 FIELD(ID_MMFR4, CCIDX, 24, 4) 2113 FIELD(ID_MMFR4, EVT, 28, 4) 2114 2115 FIELD(ID_MMFR5, ETS, 0, 4) 2116 FIELD(ID_MMFR5, NTLBPA, 4, 4) 2117 2118 FIELD(ID_PFR0, STATE0, 0, 4) 2119 FIELD(ID_PFR0, STATE1, 4, 4) 2120 FIELD(ID_PFR0, STATE2, 8, 4) 2121 FIELD(ID_PFR0, STATE3, 12, 4) 2122 FIELD(ID_PFR0, CSV2, 16, 4) 2123 FIELD(ID_PFR0, AMU, 20, 4) 2124 FIELD(ID_PFR0, DIT, 24, 4) 2125 FIELD(ID_PFR0, RAS, 28, 4) 2126 2127 FIELD(ID_PFR1, PROGMOD, 0, 4) 2128 FIELD(ID_PFR1, SECURITY, 4, 4) 2129 FIELD(ID_PFR1, MPROGMOD, 8, 4) 2130 FIELD(ID_PFR1, VIRTUALIZATION, 12, 4) 2131 FIELD(ID_PFR1, GENTIMER, 16, 4) 2132 FIELD(ID_PFR1, SEC_FRAC, 20, 4) 2133 FIELD(ID_PFR1, VIRT_FRAC, 24, 4) 2134 FIELD(ID_PFR1, GIC, 28, 4) 2135 2136 FIELD(ID_PFR2, CSV3, 0, 4) 2137 FIELD(ID_PFR2, SSBS, 4, 4) 2138 FIELD(ID_PFR2, RAS_FRAC, 8, 4) 2139 2140 FIELD(ID_AA64ISAR0, AES, 4, 4) 2141 FIELD(ID_AA64ISAR0, SHA1, 8, 4) 2142 FIELD(ID_AA64ISAR0, SHA2, 12, 4) 2143 FIELD(ID_AA64ISAR0, CRC32, 16, 4) 2144 FIELD(ID_AA64ISAR0, ATOMIC, 20, 4) 2145 FIELD(ID_AA64ISAR0, TME, 24, 4) 2146 FIELD(ID_AA64ISAR0, RDM, 28, 4) 2147 FIELD(ID_AA64ISAR0, SHA3, 32, 4) 2148 FIELD(ID_AA64ISAR0, SM3, 36, 4) 2149 FIELD(ID_AA64ISAR0, SM4, 40, 4) 2150 FIELD(ID_AA64ISAR0, DP, 44, 4) 2151 FIELD(ID_AA64ISAR0, FHM, 48, 4) 2152 FIELD(ID_AA64ISAR0, TS, 52, 4) 2153 FIELD(ID_AA64ISAR0, TLB, 56, 4) 2154 FIELD(ID_AA64ISAR0, RNDR, 60, 4) 2155 2156 FIELD(ID_AA64ISAR1, DPB, 0, 4) 2157 FIELD(ID_AA64ISAR1, APA, 4, 4) 2158 FIELD(ID_AA64ISAR1, API, 8, 4) 2159 FIELD(ID_AA64ISAR1, JSCVT, 12, 4) 2160 FIELD(ID_AA64ISAR1, FCMA, 16, 4) 2161 FIELD(ID_AA64ISAR1, LRCPC, 20, 4) 2162 FIELD(ID_AA64ISAR1, GPA, 24, 4) 2163 FIELD(ID_AA64ISAR1, GPI, 28, 4) 2164 FIELD(ID_AA64ISAR1, FRINTTS, 32, 4) 2165 FIELD(ID_AA64ISAR1, SB, 36, 4) 2166 FIELD(ID_AA64ISAR1, SPECRES, 40, 4) 2167 FIELD(ID_AA64ISAR1, BF16, 44, 4) 2168 FIELD(ID_AA64ISAR1, DGH, 48, 4) 2169 FIELD(ID_AA64ISAR1, I8MM, 52, 4) 2170 FIELD(ID_AA64ISAR1, XS, 56, 4) 2171 FIELD(ID_AA64ISAR1, LS64, 60, 4) 2172 2173 FIELD(ID_AA64ISAR2, WFXT, 0, 4) 2174 FIELD(ID_AA64ISAR2, RPRES, 4, 4) 2175 FIELD(ID_AA64ISAR2, GPA3, 8, 4) 2176 FIELD(ID_AA64ISAR2, APA3, 12, 4) 2177 FIELD(ID_AA64ISAR2, MOPS, 16, 4) 2178 FIELD(ID_AA64ISAR2, BC, 20, 4) 2179 FIELD(ID_AA64ISAR2, PAC_FRAC, 24, 4) 2180 FIELD(ID_AA64ISAR2, CLRBHB, 28, 4) 2181 FIELD(ID_AA64ISAR2, SYSREG_128, 32, 4) 2182 FIELD(ID_AA64ISAR2, SYSINSTR_128, 36, 4) 2183 FIELD(ID_AA64ISAR2, PRFMSLC, 40, 4) 2184 FIELD(ID_AA64ISAR2, RPRFM, 48, 4) 2185 FIELD(ID_AA64ISAR2, CSSC, 52, 4) 2186 FIELD(ID_AA64ISAR2, ATS1A, 60, 4) 2187 2188 FIELD(ID_AA64PFR0, EL0, 0, 4) 2189 FIELD(ID_AA64PFR0, EL1, 4, 4) 2190 FIELD(ID_AA64PFR0, EL2, 8, 4) 2191 FIELD(ID_AA64PFR0, EL3, 12, 4) 2192 FIELD(ID_AA64PFR0, FP, 16, 4) 2193 FIELD(ID_AA64PFR0, ADVSIMD, 20, 4) 2194 FIELD(ID_AA64PFR0, GIC, 24, 4) 2195 FIELD(ID_AA64PFR0, RAS, 28, 4) 2196 FIELD(ID_AA64PFR0, SVE, 32, 4) 2197 FIELD(ID_AA64PFR0, SEL2, 36, 4) 2198 FIELD(ID_AA64PFR0, MPAM, 40, 4) 2199 FIELD(ID_AA64PFR0, AMU, 44, 4) 2200 FIELD(ID_AA64PFR0, DIT, 48, 4) 2201 FIELD(ID_AA64PFR0, RME, 52, 4) 2202 FIELD(ID_AA64PFR0, CSV2, 56, 4) 2203 FIELD(ID_AA64PFR0, CSV3, 60, 4) 2204 2205 FIELD(ID_AA64PFR1, BT, 0, 4) 2206 FIELD(ID_AA64PFR1, SSBS, 4, 4) 2207 FIELD(ID_AA64PFR1, MTE, 8, 4) 2208 FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4) 2209 FIELD(ID_AA64PFR1, MPAM_FRAC, 16, 4) 2210 FIELD(ID_AA64PFR1, SME, 24, 4) 2211 FIELD(ID_AA64PFR1, RNDR_TRAP, 28, 4) 2212 FIELD(ID_AA64PFR1, CSV2_FRAC, 32, 4) 2213 FIELD(ID_AA64PFR1, NMI, 36, 4) 2214 FIELD(ID_AA64PFR1, MTE_FRAC, 40, 4) 2215 FIELD(ID_AA64PFR1, GCS, 44, 4) 2216 FIELD(ID_AA64PFR1, THE, 48, 4) 2217 FIELD(ID_AA64PFR1, MTEX, 52, 4) 2218 FIELD(ID_AA64PFR1, DF2, 56, 4) 2219 FIELD(ID_AA64PFR1, PFAR, 60, 4) 2220 2221 FIELD(ID_AA64MMFR0, PARANGE, 0, 4) 2222 FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4) 2223 FIELD(ID_AA64MMFR0, BIGEND, 8, 4) 2224 FIELD(ID_AA64MMFR0, SNSMEM, 12, 4) 2225 FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4) 2226 FIELD(ID_AA64MMFR0, TGRAN16, 20, 4) 2227 FIELD(ID_AA64MMFR0, TGRAN64, 24, 4) 2228 FIELD(ID_AA64MMFR0, TGRAN4, 28, 4) 2229 FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4) 2230 FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4) 2231 FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4) 2232 FIELD(ID_AA64MMFR0, EXS, 44, 4) 2233 FIELD(ID_AA64MMFR0, FGT, 56, 4) 2234 FIELD(ID_AA64MMFR0, ECV, 60, 4) 2235 2236 FIELD(ID_AA64MMFR1, HAFDBS, 0, 4) 2237 FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4) 2238 FIELD(ID_AA64MMFR1, VH, 8, 4) 2239 FIELD(ID_AA64MMFR1, HPDS, 12, 4) 2240 FIELD(ID_AA64MMFR1, LO, 16, 4) 2241 FIELD(ID_AA64MMFR1, PAN, 20, 4) 2242 FIELD(ID_AA64MMFR1, SPECSEI, 24, 4) 2243 FIELD(ID_AA64MMFR1, XNX, 28, 4) 2244 FIELD(ID_AA64MMFR1, TWED, 32, 4) 2245 FIELD(ID_AA64MMFR1, ETS, 36, 4) 2246 FIELD(ID_AA64MMFR1, HCX, 40, 4) 2247 FIELD(ID_AA64MMFR1, AFP, 44, 4) 2248 FIELD(ID_AA64MMFR1, NTLBPA, 48, 4) 2249 FIELD(ID_AA64MMFR1, TIDCP1, 52, 4) 2250 FIELD(ID_AA64MMFR1, CMOW, 56, 4) 2251 FIELD(ID_AA64MMFR1, ECBHB, 60, 4) 2252 2253 FIELD(ID_AA64MMFR2, CNP, 0, 4) 2254 FIELD(ID_AA64MMFR2, UAO, 4, 4) 2255 FIELD(ID_AA64MMFR2, LSM, 8, 4) 2256 FIELD(ID_AA64MMFR2, IESB, 12, 4) 2257 FIELD(ID_AA64MMFR2, VARANGE, 16, 4) 2258 FIELD(ID_AA64MMFR2, CCIDX, 20, 4) 2259 FIELD(ID_AA64MMFR2, NV, 24, 4) 2260 FIELD(ID_AA64MMFR2, ST, 28, 4) 2261 FIELD(ID_AA64MMFR2, AT, 32, 4) 2262 FIELD(ID_AA64MMFR2, IDS, 36, 4) 2263 FIELD(ID_AA64MMFR2, FWB, 40, 4) 2264 FIELD(ID_AA64MMFR2, TTL, 48, 4) 2265 FIELD(ID_AA64MMFR2, BBM, 52, 4) 2266 FIELD(ID_AA64MMFR2, EVT, 56, 4) 2267 FIELD(ID_AA64MMFR2, E0PD, 60, 4) 2268 2269 FIELD(ID_AA64MMFR3, TCRX, 0, 4) 2270 FIELD(ID_AA64MMFR3, SCTLRX, 4, 4) 2271 FIELD(ID_AA64MMFR3, S1PIE, 8, 4) 2272 FIELD(ID_AA64MMFR3, S2PIE, 12, 4) 2273 FIELD(ID_AA64MMFR3, S1POE, 16, 4) 2274 FIELD(ID_AA64MMFR3, S2POE, 20, 4) 2275 FIELD(ID_AA64MMFR3, AIE, 24, 4) 2276 FIELD(ID_AA64MMFR3, MEC, 28, 4) 2277 FIELD(ID_AA64MMFR3, D128, 32, 4) 2278 FIELD(ID_AA64MMFR3, D128_2, 36, 4) 2279 FIELD(ID_AA64MMFR3, SNERR, 40, 4) 2280 FIELD(ID_AA64MMFR3, ANERR, 44, 4) 2281 FIELD(ID_AA64MMFR3, SDERR, 52, 4) 2282 FIELD(ID_AA64MMFR3, ADERR, 56, 4) 2283 FIELD(ID_AA64MMFR3, SPEC_FPACC, 60, 4) 2284 2285 FIELD(ID_AA64DFR0, DEBUGVER, 0, 4) 2286 FIELD(ID_AA64DFR0, TRACEVER, 4, 4) 2287 FIELD(ID_AA64DFR0, PMUVER, 8, 4) 2288 FIELD(ID_AA64DFR0, BRPS, 12, 4) 2289 FIELD(ID_AA64DFR0, PMSS, 16, 4) 2290 FIELD(ID_AA64DFR0, WRPS, 20, 4) 2291 FIELD(ID_AA64DFR0, SEBEP, 24, 4) 2292 FIELD(ID_AA64DFR0, CTX_CMPS, 28, 4) 2293 FIELD(ID_AA64DFR0, PMSVER, 32, 4) 2294 FIELD(ID_AA64DFR0, DOUBLELOCK, 36, 4) 2295 FIELD(ID_AA64DFR0, TRACEFILT, 40, 4) 2296 FIELD(ID_AA64DFR0, TRACEBUFFER, 44, 4) 2297 FIELD(ID_AA64DFR0, MTPMU, 48, 4) 2298 FIELD(ID_AA64DFR0, BRBE, 52, 4) 2299 FIELD(ID_AA64DFR0, EXTTRCBUFF, 56, 4) 2300 FIELD(ID_AA64DFR0, HPMN0, 60, 4) 2301 2302 FIELD(ID_AA64ZFR0, SVEVER, 0, 4) 2303 FIELD(ID_AA64ZFR0, AES, 4, 4) 2304 FIELD(ID_AA64ZFR0, BITPERM, 16, 4) 2305 FIELD(ID_AA64ZFR0, BFLOAT16, 20, 4) 2306 FIELD(ID_AA64ZFR0, B16B16, 24, 4) 2307 FIELD(ID_AA64ZFR0, SHA3, 32, 4) 2308 FIELD(ID_AA64ZFR0, SM4, 40, 4) 2309 FIELD(ID_AA64ZFR0, I8MM, 44, 4) 2310 FIELD(ID_AA64ZFR0, F32MM, 52, 4) 2311 FIELD(ID_AA64ZFR0, F64MM, 56, 4) 2312 2313 FIELD(ID_AA64SMFR0, F32F32, 32, 1) 2314 FIELD(ID_AA64SMFR0, BI32I32, 33, 1) 2315 FIELD(ID_AA64SMFR0, B16F32, 34, 1) 2316 FIELD(ID_AA64SMFR0, F16F32, 35, 1) 2317 FIELD(ID_AA64SMFR0, I8I32, 36, 4) 2318 FIELD(ID_AA64SMFR0, F16F16, 42, 1) 2319 FIELD(ID_AA64SMFR0, B16B16, 43, 1) 2320 FIELD(ID_AA64SMFR0, I16I32, 44, 4) 2321 FIELD(ID_AA64SMFR0, F64F64, 48, 1) 2322 FIELD(ID_AA64SMFR0, I16I64, 52, 4) 2323 FIELD(ID_AA64SMFR0, SMEVER, 56, 4) 2324 FIELD(ID_AA64SMFR0, FA64, 63, 1) 2325 2326 FIELD(ID_DFR0, COPDBG, 0, 4) 2327 FIELD(ID_DFR0, COPSDBG, 4, 4) 2328 FIELD(ID_DFR0, MMAPDBG, 8, 4) 2329 FIELD(ID_DFR0, COPTRC, 12, 4) 2330 FIELD(ID_DFR0, MMAPTRC, 16, 4) 2331 FIELD(ID_DFR0, MPROFDBG, 20, 4) 2332 FIELD(ID_DFR0, PERFMON, 24, 4) 2333 FIELD(ID_DFR0, TRACEFILT, 28, 4) 2334 2335 FIELD(ID_DFR1, MTPMU, 0, 4) 2336 FIELD(ID_DFR1, HPMN0, 4, 4) 2337 2338 FIELD(DBGDIDR, SE_IMP, 12, 1) 2339 FIELD(DBGDIDR, NSUHD_IMP, 14, 1) 2340 FIELD(DBGDIDR, VERSION, 16, 4) 2341 FIELD(DBGDIDR, CTX_CMPS, 20, 4) 2342 FIELD(DBGDIDR, BRPS, 24, 4) 2343 FIELD(DBGDIDR, WRPS, 28, 4) 2344 2345 FIELD(DBGDEVID, PCSAMPLE, 0, 4) 2346 FIELD(DBGDEVID, WPADDRMASK, 4, 4) 2347 FIELD(DBGDEVID, BPADDRMASK, 8, 4) 2348 FIELD(DBGDEVID, VECTORCATCH, 12, 4) 2349 FIELD(DBGDEVID, VIRTEXTNS, 16, 4) 2350 FIELD(DBGDEVID, DOUBLELOCK, 20, 4) 2351 FIELD(DBGDEVID, AUXREGS, 24, 4) 2352 FIELD(DBGDEVID, CIDMASK, 28, 4) 2353 2354 FIELD(DBGDEVID1, PCSROFFSET, 0, 4) 2355 2356 FIELD(MVFR0, SIMDREG, 0, 4) 2357 FIELD(MVFR0, FPSP, 4, 4) 2358 FIELD(MVFR0, FPDP, 8, 4) 2359 FIELD(MVFR0, FPTRAP, 12, 4) 2360 FIELD(MVFR0, FPDIVIDE, 16, 4) 2361 FIELD(MVFR0, FPSQRT, 20, 4) 2362 FIELD(MVFR0, FPSHVEC, 24, 4) 2363 FIELD(MVFR0, FPROUND, 28, 4) 2364 2365 FIELD(MVFR1, FPFTZ, 0, 4) 2366 FIELD(MVFR1, FPDNAN, 4, 4) 2367 FIELD(MVFR1, SIMDLS, 8, 4) /* A-profile only */ 2368 FIELD(MVFR1, SIMDINT, 12, 4) /* A-profile only */ 2369 FIELD(MVFR1, SIMDSP, 16, 4) /* A-profile only */ 2370 FIELD(MVFR1, SIMDHP, 20, 4) /* A-profile only */ 2371 FIELD(MVFR1, MVE, 8, 4) /* M-profile only */ 2372 FIELD(MVFR1, FP16, 20, 4) /* M-profile only */ 2373 FIELD(MVFR1, FPHP, 24, 4) 2374 FIELD(MVFR1, SIMDFMAC, 28, 4) 2375 2376 FIELD(MVFR2, SIMDMISC, 0, 4) 2377 FIELD(MVFR2, FPMISC, 4, 4) 2378 2379 FIELD(GPCCR, PPS, 0, 3) 2380 FIELD(GPCCR, IRGN, 8, 2) 2381 FIELD(GPCCR, ORGN, 10, 2) 2382 FIELD(GPCCR, SH, 12, 2) 2383 FIELD(GPCCR, PGS, 14, 2) 2384 FIELD(GPCCR, GPC, 16, 1) 2385 FIELD(GPCCR, GPCP, 17, 1) 2386 FIELD(GPCCR, L0GPTSZ, 20, 4) 2387 2388 FIELD(MFAR, FPA, 12, 40) 2389 FIELD(MFAR, NSE, 62, 1) 2390 FIELD(MFAR, NS, 63, 1) 2391 2392 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK); 2393 2394 /* If adding a feature bit which corresponds to a Linux ELF 2395 * HWCAP bit, remember to update the feature-bit-to-hwcap 2396 * mapping in linux-user/elfload.c:get_elf_hwcap(). 2397 */ 2398 enum arm_features { 2399 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */ 2400 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */ 2401 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */ 2402 ARM_FEATURE_V6, 2403 ARM_FEATURE_V6K, 2404 ARM_FEATURE_V7, 2405 ARM_FEATURE_THUMB2, 2406 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */ 2407 ARM_FEATURE_NEON, 2408 ARM_FEATURE_M, /* Microcontroller profile. */ 2409 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */ 2410 ARM_FEATURE_THUMB2EE, 2411 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */ 2412 ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */ 2413 ARM_FEATURE_V4T, 2414 ARM_FEATURE_V5, 2415 ARM_FEATURE_STRONGARM, 2416 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */ 2417 ARM_FEATURE_GENERIC_TIMER, 2418 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */ 2419 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */ 2420 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */ 2421 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */ 2422 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */ 2423 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */ 2424 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */ 2425 ARM_FEATURE_V8, 2426 ARM_FEATURE_AARCH64, /* supports 64 bit mode */ 2427 ARM_FEATURE_CBAR, /* has cp15 CBAR */ 2428 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */ 2429 ARM_FEATURE_EL2, /* has EL2 Virtualization support */ 2430 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */ 2431 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */ 2432 ARM_FEATURE_PMU, /* has PMU support */ 2433 ARM_FEATURE_VBAR, /* has cp15 VBAR */ 2434 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */ 2435 ARM_FEATURE_M_MAIN, /* M profile Main Extension */ 2436 ARM_FEATURE_V8_1M, /* M profile extras only in v8.1M and later */ 2437 /* 2438 * ARM_FEATURE_BACKCOMPAT_CNTFRQ makes the CPU default cntfrq be 62.5MHz 2439 * if the board doesn't set a value, instead of 1GHz. It is for backwards 2440 * compatibility and used only with CPU definitions that were already 2441 * in QEMU before we changed the default. It should not be set on any 2442 * CPU types added in future. 2443 */ 2444 ARM_FEATURE_BACKCOMPAT_CNTFRQ, /* 62.5MHz timer default */ 2445 }; 2446 arm_feature(CPUARMState * env,int feature)2447 static inline int arm_feature(CPUARMState *env, int feature) 2448 { 2449 return (env->features & (1ULL << feature)) != 0; 2450 } 2451 2452 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp); 2453 2454 /* 2455 * ARM v9 security states. 2456 * The ordering of the enumeration corresponds to the low 2 bits 2457 * of the GPI value, and (except for Root) the concat of NSE:NS. 2458 */ 2459 2460 typedef enum ARMSecuritySpace { 2461 ARMSS_Secure = 0, 2462 ARMSS_NonSecure = 1, 2463 ARMSS_Root = 2, 2464 ARMSS_Realm = 3, 2465 } ARMSecuritySpace; 2466 2467 /* Return true if @space is secure, in the pre-v9 sense. */ arm_space_is_secure(ARMSecuritySpace space)2468 static inline bool arm_space_is_secure(ARMSecuritySpace space) 2469 { 2470 return space == ARMSS_Secure || space == ARMSS_Root; 2471 } 2472 2473 /* Return the ARMSecuritySpace for @secure, assuming !RME or EL[0-2]. */ arm_secure_to_space(bool secure)2474 static inline ARMSecuritySpace arm_secure_to_space(bool secure) 2475 { 2476 return secure ? ARMSS_Secure : ARMSS_NonSecure; 2477 } 2478 2479 #if !defined(CONFIG_USER_ONLY) 2480 /** 2481 * arm_security_space_below_el3: 2482 * @env: cpu context 2483 * 2484 * Return the security space of exception levels below EL3, following 2485 * an exception return to those levels. Unlike arm_security_space, 2486 * this doesn't care about the current EL. 2487 */ 2488 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env); 2489 2490 /** 2491 * arm_is_secure_below_el3: 2492 * @env: cpu context 2493 * 2494 * Return true if exception levels below EL3 are in secure state, 2495 * or would be following an exception return to those levels. 2496 */ arm_is_secure_below_el3(CPUARMState * env)2497 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2498 { 2499 ARMSecuritySpace ss = arm_security_space_below_el3(env); 2500 return ss == ARMSS_Secure; 2501 } 2502 2503 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */ arm_is_el3_or_mon(CPUARMState * env)2504 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2505 { 2506 assert(!arm_feature(env, ARM_FEATURE_M)); 2507 if (arm_feature(env, ARM_FEATURE_EL3)) { 2508 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) { 2509 /* CPU currently in AArch64 state and EL3 */ 2510 return true; 2511 } else if (!is_a64(env) && 2512 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 2513 /* CPU currently in AArch32 state and monitor mode */ 2514 return true; 2515 } 2516 } 2517 return false; 2518 } 2519 2520 /** 2521 * arm_security_space: 2522 * @env: cpu context 2523 * 2524 * Return the current security space of the cpu. 2525 */ 2526 ARMSecuritySpace arm_security_space(CPUARMState *env); 2527 2528 /** 2529 * arm_is_secure: 2530 * @env: cpu context 2531 * 2532 * Return true if the processor is in secure state. 2533 */ arm_is_secure(CPUARMState * env)2534 static inline bool arm_is_secure(CPUARMState *env) 2535 { 2536 return arm_space_is_secure(arm_security_space(env)); 2537 } 2538 2539 /* 2540 * Return true if the current security state has AArch64 EL2 or AArch32 Hyp. 2541 * This corresponds to the pseudocode EL2Enabled(). 2542 */ arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2543 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, 2544 ARMSecuritySpace space) 2545 { 2546 assert(space != ARMSS_Root); 2547 return arm_feature(env, ARM_FEATURE_EL2) 2548 && (space != ARMSS_Secure || (env->cp15.scr_el3 & SCR_EEL2)); 2549 } 2550 arm_is_el2_enabled(CPUARMState * env)2551 static inline bool arm_is_el2_enabled(CPUARMState *env) 2552 { 2553 return arm_is_el2_enabled_secstate(env, arm_security_space_below_el3(env)); 2554 } 2555 2556 #else arm_security_space_below_el3(CPUARMState * env)2557 static inline ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 2558 { 2559 return ARMSS_NonSecure; 2560 } 2561 arm_is_secure_below_el3(CPUARMState * env)2562 static inline bool arm_is_secure_below_el3(CPUARMState *env) 2563 { 2564 return false; 2565 } 2566 arm_is_el3_or_mon(CPUARMState * env)2567 static inline bool arm_is_el3_or_mon(CPUARMState *env) 2568 { 2569 return false; 2570 } 2571 arm_security_space(CPUARMState * env)2572 static inline ARMSecuritySpace arm_security_space(CPUARMState *env) 2573 { 2574 return ARMSS_NonSecure; 2575 } 2576 arm_is_secure(CPUARMState * env)2577 static inline bool arm_is_secure(CPUARMState *env) 2578 { 2579 return false; 2580 } 2581 arm_is_el2_enabled_secstate(CPUARMState * env,ARMSecuritySpace space)2582 static inline bool arm_is_el2_enabled_secstate(CPUARMState *env, 2583 ARMSecuritySpace space) 2584 { 2585 return false; 2586 } 2587 arm_is_el2_enabled(CPUARMState * env)2588 static inline bool arm_is_el2_enabled(CPUARMState *env) 2589 { 2590 return false; 2591 } 2592 #endif 2593 2594 /** 2595 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2. 2596 * E.g. when in secure state, fields in HCR_EL2 are suppressed, 2597 * "for all purposes other than a direct read or write access of HCR_EL2." 2598 * Not included here is HCR_RW. 2599 */ 2600 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space); 2601 uint64_t arm_hcr_el2_eff(CPUARMState *env); 2602 uint64_t arm_hcrx_el2_eff(CPUARMState *env); 2603 2604 /* Return true if the specified exception level is running in AArch64 state. */ arm_el_is_aa64(CPUARMState * env,int el)2605 static inline bool arm_el_is_aa64(CPUARMState *env, int el) 2606 { 2607 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want, 2608 * and if we're not in EL0 then the state of EL0 isn't well defined.) 2609 */ 2610 assert(el >= 1 && el <= 3); 2611 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64); 2612 2613 /* The highest exception level is always at the maximum supported 2614 * register width, and then lower levels have a register width controlled 2615 * by bits in the SCR or HCR registers. 2616 */ 2617 if (el == 3) { 2618 return aa64; 2619 } 2620 2621 if (arm_feature(env, ARM_FEATURE_EL3) && 2622 ((env->cp15.scr_el3 & SCR_NS) || !(env->cp15.scr_el3 & SCR_EEL2))) { 2623 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW); 2624 } 2625 2626 if (el == 2) { 2627 return aa64; 2628 } 2629 2630 if (arm_is_el2_enabled(env)) { 2631 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW); 2632 } 2633 2634 return aa64; 2635 } 2636 2637 /* Function for determining whether guest cp register reads and writes should 2638 * access the secure or non-secure bank of a cp register. When EL3 is 2639 * operating in AArch32 state, the NS-bit determines whether the secure 2640 * instance of a cp register should be used. When EL3 is AArch64 (or if 2641 * it doesn't exist at all) then there is no register banking, and all 2642 * accesses are to the non-secure version. 2643 */ access_secure_reg(CPUARMState * env)2644 static inline bool access_secure_reg(CPUARMState *env) 2645 { 2646 bool ret = (arm_feature(env, ARM_FEATURE_EL3) && 2647 !arm_el_is_aa64(env, 3) && 2648 !(env->cp15.scr_el3 & SCR_NS)); 2649 2650 return ret; 2651 } 2652 2653 /* Macros for accessing a specified CP register bank */ 2654 #define A32_BANKED_REG_GET(_env, _regname, _secure) \ 2655 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns) 2656 2657 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \ 2658 do { \ 2659 if (_secure) { \ 2660 (_env)->cp15._regname##_s = (_val); \ 2661 } else { \ 2662 (_env)->cp15._regname##_ns = (_val); \ 2663 } \ 2664 } while (0) 2665 2666 /* Macros for automatically accessing a specific CP register bank depending on 2667 * the current secure state of the system. These macros are not intended for 2668 * supporting instruction translation reads/writes as these are dependent 2669 * solely on the SCR.NS bit and not the mode. 2670 */ 2671 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \ 2672 A32_BANKED_REG_GET((_env), _regname, \ 2673 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3))) 2674 2675 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \ 2676 A32_BANKED_REG_SET((_env), _regname, \ 2677 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \ 2678 (_val)) 2679 2680 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 2681 uint32_t cur_el, bool secure); 2682 2683 /* Return the highest implemented Exception Level */ arm_highest_el(CPUARMState * env)2684 static inline int arm_highest_el(CPUARMState *env) 2685 { 2686 if (arm_feature(env, ARM_FEATURE_EL3)) { 2687 return 3; 2688 } 2689 if (arm_feature(env, ARM_FEATURE_EL2)) { 2690 return 2; 2691 } 2692 return 1; 2693 } 2694 2695 /* Return true if a v7M CPU is in Handler mode */ arm_v7m_is_handler_mode(CPUARMState * env)2696 static inline bool arm_v7m_is_handler_mode(CPUARMState *env) 2697 { 2698 return env->v7m.exception != 0; 2699 } 2700 2701 /* Return the current Exception Level (as per ARMv8; note that this differs 2702 * from the ARMv7 Privilege Level). 2703 */ arm_current_el(CPUARMState * env)2704 static inline int arm_current_el(CPUARMState *env) 2705 { 2706 if (arm_feature(env, ARM_FEATURE_M)) { 2707 return arm_v7m_is_handler_mode(env) || 2708 !(env->v7m.control[env->v7m.secure] & 1); 2709 } 2710 2711 if (is_a64(env)) { 2712 return extract32(env->pstate, 2, 2); 2713 } 2714 2715 switch (env->uncached_cpsr & 0x1f) { 2716 case ARM_CPU_MODE_USR: 2717 return 0; 2718 case ARM_CPU_MODE_HYP: 2719 return 2; 2720 case ARM_CPU_MODE_MON: 2721 return 3; 2722 default: 2723 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 2724 /* If EL3 is 32-bit then all secure privileged modes run in 2725 * EL3 2726 */ 2727 return 3; 2728 } 2729 2730 return 1; 2731 } 2732 } 2733 2734 /** 2735 * write_list_to_cpustate 2736 * @cpu: ARMCPU 2737 * 2738 * For each register listed in the ARMCPU cpreg_indexes list, write 2739 * its value from the cpreg_values list into the ARMCPUState structure. 2740 * This updates TCG's working data structures from KVM data or 2741 * from incoming migration state. 2742 * 2743 * Returns: true if all register values were updated correctly, 2744 * false if some register was unknown or could not be written. 2745 * Note that we do not stop early on failure -- we will attempt 2746 * writing all registers in the list. 2747 */ 2748 bool write_list_to_cpustate(ARMCPU *cpu); 2749 2750 /** 2751 * write_cpustate_to_list: 2752 * @cpu: ARMCPU 2753 * @kvm_sync: true if this is for syncing back to KVM 2754 * 2755 * For each register listed in the ARMCPU cpreg_indexes list, write 2756 * its value from the ARMCPUState structure into the cpreg_values list. 2757 * This is used to copy info from TCG's working data structures into 2758 * KVM or for outbound migration. 2759 * 2760 * @kvm_sync is true if we are doing this in order to sync the 2761 * register state back to KVM. In this case we will only update 2762 * values in the list if the previous list->cpustate sync actually 2763 * successfully wrote the CPU state. Otherwise we will keep the value 2764 * that is in the list. 2765 * 2766 * Returns: true if all register values were read correctly, 2767 * false if some register was unknown or could not be read. 2768 * Note that we do not stop early on failure -- we will attempt 2769 * reading all registers in the list. 2770 */ 2771 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync); 2772 2773 #define ARM_CPUID_TI915T 0x54029152 2774 #define ARM_CPUID_TI925T 0x54029252 2775 2776 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU 2777 2778 #define TYPE_ARM_HOST_CPU "host-" TYPE_ARM_CPU 2779 2780 /* ARM has the following "translation regimes" (as the ARM ARM calls them): 2781 * 2782 * If EL3 is 64-bit: 2783 * + NonSecure EL1 & 0 stage 1 2784 * + NonSecure EL1 & 0 stage 2 2785 * + NonSecure EL2 2786 * + NonSecure EL2 & 0 (ARMv8.1-VHE) 2787 * + Secure EL1 & 0 stage 1 2788 * + Secure EL1 & 0 stage 2 (FEAT_SEL2) 2789 * + Secure EL2 (FEAT_SEL2) 2790 * + Secure EL2 & 0 (FEAT_SEL2) 2791 * + Realm EL1 & 0 stage 1 (FEAT_RME) 2792 * + Realm EL1 & 0 stage 2 (FEAT_RME) 2793 * + Realm EL2 (FEAT_RME) 2794 * + EL3 2795 * If EL3 is 32-bit: 2796 * + NonSecure PL1 & 0 stage 1 2797 * + NonSecure PL1 & 0 stage 2 2798 * + NonSecure PL2 2799 * + Secure PL1 & 0 2800 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.) 2801 * 2802 * For QEMU, an mmu_idx is not quite the same as a translation regime because: 2803 * 1. we need to split the "EL1 & 0" and "EL2 & 0" regimes into two mmu_idxes, 2804 * because they may differ in access permissions even if the VA->PA map is 2805 * the same 2806 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2 2807 * translation, which means that we have one mmu_idx that deals with two 2808 * concatenated translation regimes [this sort of combined s1+2 TLB is 2809 * architecturally permitted] 2810 * 3. we don't need to allocate an mmu_idx to translations that we won't be 2811 * handling via the TLB. The only way to do a stage 1 translation without 2812 * the immediate stage 2 translation is via the ATS or AT system insns, 2813 * which can be slow-pathed and always do a page table walk. 2814 * The only use of stage 2 translations is either as part of an s1+2 2815 * lookup or when loading the descriptors during a stage 1 page table walk, 2816 * and in both those cases we don't use the TLB. 2817 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3" 2818 * translation regimes, because they map reasonably well to each other 2819 * and they can't both be active at the same time. 2820 * 5. we want to be able to use the TLB for accesses done as part of a 2821 * stage1 page table walk, rather than having to walk the stage2 page 2822 * table over and over. 2823 * 6. we need separate EL1/EL2 mmu_idx for handling the Privileged Access 2824 * Never (PAN) bit within PSTATE. 2825 * 7. we fold together most secure and non-secure regimes for A-profile, 2826 * because there are no banked system registers for aarch64, so the 2827 * process of switching between secure and non-secure is 2828 * already heavyweight. 2829 * 8. we cannot fold together Stage 2 Secure and Stage 2 NonSecure, 2830 * because both are in use simultaneously for Secure EL2. 2831 * 2832 * This gives us the following list of cases: 2833 * 2834 * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2) 2835 * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2) 2836 * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN) 2837 * EL0 EL2&0 2838 * EL2 EL2&0 2839 * EL2 EL2&0 +PAN 2840 * EL2 (aka NS PL2) 2841 * EL3 (aka AArch32 S PL1 PL1&0) 2842 * AArch32 S PL0 PL1&0 (we call this EL30_0) 2843 * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN) 2844 * Stage2 Secure 2845 * Stage2 NonSecure 2846 * plus one TLB per Physical address space: S, NS, Realm, Root 2847 * 2848 * for a total of 16 different mmu_idx. 2849 * 2850 * R profile CPUs have an MPU, but can use the same set of MMU indexes 2851 * as A profile. They only need to distinguish EL0 and EL1 (and 2852 * EL2 for cores like the Cortex-R52). 2853 * 2854 * M profile CPUs are rather different as they do not have a true MMU. 2855 * They have the following different MMU indexes: 2856 * User 2857 * Privileged 2858 * User, execution priority negative (ie the MPU HFNMIENA bit may apply) 2859 * Privileged, execution priority negative (ditto) 2860 * If the CPU supports the v8M Security Extension then there are also: 2861 * Secure User 2862 * Secure Privileged 2863 * Secure User, execution priority negative 2864 * Secure Privileged, execution priority negative 2865 * 2866 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code 2867 * are not quite the same -- different CPU types (most notably M profile 2868 * vs A/R profile) would like to use MMU indexes with different semantics, 2869 * but since we don't ever need to use all of those in a single CPU we 2870 * can avoid having to set NB_MMU_MODES to "total number of A profile MMU 2871 * modes + total number of M profile MMU modes". The lower bits of 2872 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always 2873 * the same for any particular CPU. 2874 * Variables of type ARMMUIdx are always full values, and the core 2875 * index values are in variables of type 'int'. 2876 * 2877 * Our enumeration includes at the end some entries which are not "true" 2878 * mmu_idx values in that they don't have corresponding TLBs and are only 2879 * valid for doing slow path page table walks. 2880 * 2881 * The constant names here are patterned after the general style of the names 2882 * of the AT/ATS operations. 2883 * The values used are carefully arranged to make mmu_idx => EL lookup easy. 2884 * For M profile we arrange them to have a bit for priv, a bit for negpri 2885 * and a bit for secure. 2886 */ 2887 #define ARM_MMU_IDX_A 0x10 /* A profile */ 2888 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */ 2889 #define ARM_MMU_IDX_M 0x40 /* M profile */ 2890 2891 /* Meanings of the bits for M profile mmu idx values */ 2892 #define ARM_MMU_IDX_M_PRIV 0x1 2893 #define ARM_MMU_IDX_M_NEGPRI 0x2 2894 #define ARM_MMU_IDX_M_S 0x4 /* Secure */ 2895 2896 #define ARM_MMU_IDX_TYPE_MASK \ 2897 (ARM_MMU_IDX_A | ARM_MMU_IDX_M | ARM_MMU_IDX_NOTLB) 2898 #define ARM_MMU_IDX_COREIDX_MASK 0xf 2899 2900 typedef enum ARMMMUIdx { 2901 /* 2902 * A-profile. 2903 */ 2904 ARMMMUIdx_E10_0 = 0 | ARM_MMU_IDX_A, 2905 ARMMMUIdx_E20_0 = 1 | ARM_MMU_IDX_A, 2906 ARMMMUIdx_E10_1 = 2 | ARM_MMU_IDX_A, 2907 ARMMMUIdx_E20_2 = 3 | ARM_MMU_IDX_A, 2908 ARMMMUIdx_E10_1_PAN = 4 | ARM_MMU_IDX_A, 2909 ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A, 2910 ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A, 2911 ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A, 2912 ARMMMUIdx_E30_0 = 8 | ARM_MMU_IDX_A, 2913 ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A, 2914 2915 /* 2916 * Used for second stage of an S12 page table walk, or for descriptor 2917 * loads during first stage of an S1 page table walk. Note that both 2918 * are in use simultaneously for SecureEL2: the security state for 2919 * the S2 ptw is selected by the NS bit from the S1 ptw. 2920 */ 2921 ARMMMUIdx_Stage2_S = 10 | ARM_MMU_IDX_A, 2922 ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A, 2923 2924 /* TLBs with 1-1 mapping to the physical address spaces. */ 2925 ARMMMUIdx_Phys_S = 12 | ARM_MMU_IDX_A, 2926 ARMMMUIdx_Phys_NS = 13 | ARM_MMU_IDX_A, 2927 ARMMMUIdx_Phys_Root = 14 | ARM_MMU_IDX_A, 2928 ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A, 2929 2930 /* 2931 * These are not allocated TLBs and are used only for AT system 2932 * instructions or for the first stage of an S12 page table walk. 2933 */ 2934 ARMMMUIdx_Stage1_E0 = 0 | ARM_MMU_IDX_NOTLB, 2935 ARMMMUIdx_Stage1_E1 = 1 | ARM_MMU_IDX_NOTLB, 2936 ARMMMUIdx_Stage1_E1_PAN = 2 | ARM_MMU_IDX_NOTLB, 2937 2938 /* 2939 * M-profile. 2940 */ 2941 ARMMMUIdx_MUser = ARM_MMU_IDX_M, 2942 ARMMMUIdx_MPriv = ARM_MMU_IDX_M | ARM_MMU_IDX_M_PRIV, 2943 ARMMMUIdx_MUserNegPri = ARMMMUIdx_MUser | ARM_MMU_IDX_M_NEGPRI, 2944 ARMMMUIdx_MPrivNegPri = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_NEGPRI, 2945 ARMMMUIdx_MSUser = ARMMMUIdx_MUser | ARM_MMU_IDX_M_S, 2946 ARMMMUIdx_MSPriv = ARMMMUIdx_MPriv | ARM_MMU_IDX_M_S, 2947 ARMMMUIdx_MSUserNegPri = ARMMMUIdx_MUserNegPri | ARM_MMU_IDX_M_S, 2948 ARMMMUIdx_MSPrivNegPri = ARMMMUIdx_MPrivNegPri | ARM_MMU_IDX_M_S, 2949 } ARMMMUIdx; 2950 2951 /* 2952 * Bit macros for the core-mmu-index values for each index, 2953 * for use when calling tlb_flush_by_mmuidx() and friends. 2954 */ 2955 #define TO_CORE_BIT(NAME) \ 2956 ARMMMUIdxBit_##NAME = 1 << (ARMMMUIdx_##NAME & ARM_MMU_IDX_COREIDX_MASK) 2957 2958 typedef enum ARMMMUIdxBit { 2959 TO_CORE_BIT(E10_0), 2960 TO_CORE_BIT(E20_0), 2961 TO_CORE_BIT(E10_1), 2962 TO_CORE_BIT(E10_1_PAN), 2963 TO_CORE_BIT(E2), 2964 TO_CORE_BIT(E20_2), 2965 TO_CORE_BIT(E20_2_PAN), 2966 TO_CORE_BIT(E3), 2967 TO_CORE_BIT(E30_0), 2968 TO_CORE_BIT(E30_3_PAN), 2969 TO_CORE_BIT(Stage2), 2970 TO_CORE_BIT(Stage2_S), 2971 2972 TO_CORE_BIT(MUser), 2973 TO_CORE_BIT(MPriv), 2974 TO_CORE_BIT(MUserNegPri), 2975 TO_CORE_BIT(MPrivNegPri), 2976 TO_CORE_BIT(MSUser), 2977 TO_CORE_BIT(MSPriv), 2978 TO_CORE_BIT(MSUserNegPri), 2979 TO_CORE_BIT(MSPrivNegPri), 2980 } ARMMMUIdxBit; 2981 2982 #undef TO_CORE_BIT 2983 2984 #define MMU_USER_IDX 0 2985 2986 /* Indexes used when registering address spaces with cpu_address_space_init */ 2987 typedef enum ARMASIdx { 2988 ARMASIdx_NS = 0, 2989 ARMASIdx_S = 1, 2990 ARMASIdx_TagNS = 2, 2991 ARMASIdx_TagS = 3, 2992 } ARMASIdx; 2993 arm_space_to_phys(ARMSecuritySpace space)2994 static inline ARMMMUIdx arm_space_to_phys(ARMSecuritySpace space) 2995 { 2996 /* Assert the relative order of the physical mmu indexes. */ 2997 QEMU_BUILD_BUG_ON(ARMSS_Secure != 0); 2998 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_NS != ARMMMUIdx_Phys_S + ARMSS_NonSecure); 2999 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Root != ARMMMUIdx_Phys_S + ARMSS_Root); 3000 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_Realm != ARMMMUIdx_Phys_S + ARMSS_Realm); 3001 3002 return ARMMMUIdx_Phys_S + space; 3003 } 3004 arm_phys_to_space(ARMMMUIdx idx)3005 static inline ARMSecuritySpace arm_phys_to_space(ARMMMUIdx idx) 3006 { 3007 assert(idx >= ARMMMUIdx_Phys_S && idx <= ARMMMUIdx_Phys_Realm); 3008 return idx - ARMMMUIdx_Phys_S; 3009 } 3010 arm_v7m_csselr_razwi(ARMCPU * cpu)3011 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu) 3012 { 3013 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and 3014 * CSSELR is RAZ/WI. 3015 */ 3016 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0; 3017 } 3018 arm_sctlr_b(CPUARMState * env)3019 static inline bool arm_sctlr_b(CPUARMState *env) 3020 { 3021 return 3022 /* We need not implement SCTLR.ITD in user-mode emulation, so 3023 * let linux-user ignore the fact that it conflicts with SCTLR_B. 3024 * This lets people run BE32 binaries with "-cpu any". 3025 */ 3026 #ifndef CONFIG_USER_ONLY 3027 !arm_feature(env, ARM_FEATURE_V7) && 3028 #endif 3029 (env->cp15.sctlr_el[1] & SCTLR_B) != 0; 3030 } 3031 3032 uint64_t arm_sctlr(CPUARMState *env, int el); 3033 arm_cpu_data_is_big_endian_a32(CPUARMState * env,bool sctlr_b)3034 static inline bool arm_cpu_data_is_big_endian_a32(CPUARMState *env, 3035 bool sctlr_b) 3036 { 3037 #ifdef CONFIG_USER_ONLY 3038 /* 3039 * In system mode, BE32 is modelled in line with the 3040 * architecture (as word-invariant big-endianness), where loads 3041 * and stores are done little endian but from addresses which 3042 * are adjusted by XORing with the appropriate constant. So the 3043 * endianness to use for the raw data access is not affected by 3044 * SCTLR.B. 3045 * In user mode, however, we model BE32 as byte-invariant 3046 * big-endianness (because user-only code cannot tell the 3047 * difference), and so we need to use a data access endianness 3048 * that depends on SCTLR.B. 3049 */ 3050 if (sctlr_b) { 3051 return true; 3052 } 3053 #endif 3054 /* In 32bit endianness is determined by looking at CPSR's E bit */ 3055 return env->uncached_cpsr & CPSR_E; 3056 } 3057 arm_cpu_data_is_big_endian_a64(int el,uint64_t sctlr)3058 static inline bool arm_cpu_data_is_big_endian_a64(int el, uint64_t sctlr) 3059 { 3060 return sctlr & (el ? SCTLR_EE : SCTLR_E0E); 3061 } 3062 3063 /* Return true if the processor is in big-endian mode. */ arm_cpu_data_is_big_endian(CPUARMState * env)3064 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env) 3065 { 3066 if (!is_a64(env)) { 3067 return arm_cpu_data_is_big_endian_a32(env, arm_sctlr_b(env)); 3068 } else { 3069 int cur_el = arm_current_el(env); 3070 uint64_t sctlr = arm_sctlr(env, cur_el); 3071 return arm_cpu_data_is_big_endian_a64(cur_el, sctlr); 3072 } 3073 } 3074 3075 #include "exec/cpu-all.h" 3076 3077 /* 3078 * We have more than 32-bits worth of state per TB, so we split the data 3079 * between tb->flags and tb->cs_base, which is otherwise unused for ARM. 3080 * We collect these two parts in CPUARMTBFlags where they are named 3081 * flags and flags2 respectively. 3082 * 3083 * The flags that are shared between all execution modes, TBFLAG_ANY, 3084 * are stored in flags. The flags that are specific to a given mode 3085 * are stores in flags2. Since cs_base is sized on the configured 3086 * address size, flags2 always has 64-bits for A64, and a minimum of 3087 * 32-bits for A32 and M32. 3088 * 3089 * The bits for 32-bit A-profile and M-profile partially overlap: 3090 * 3091 * 31 23 11 10 0 3092 * +-------------+----------+----------------+ 3093 * | | | TBFLAG_A32 | 3094 * | TBFLAG_AM32 | +-----+----------+ 3095 * | | |TBFLAG_M32| 3096 * +-------------+----------------+----------+ 3097 * 31 23 6 5 0 3098 * 3099 * Unless otherwise noted, these bits are cached in env->hflags. 3100 */ 3101 FIELD(TBFLAG_ANY, AARCH64_STATE, 0, 1) 3102 FIELD(TBFLAG_ANY, SS_ACTIVE, 1, 1) 3103 FIELD(TBFLAG_ANY, PSTATE__SS, 2, 1) /* Not cached. */ 3104 FIELD(TBFLAG_ANY, BE_DATA, 3, 1) 3105 FIELD(TBFLAG_ANY, MMUIDX, 4, 4) 3106 /* Target EL if we take a floating-point-disabled exception */ 3107 FIELD(TBFLAG_ANY, FPEXC_EL, 8, 2) 3108 /* Memory operations require alignment: SCTLR_ELx.A or CCR.UNALIGN_TRP */ 3109 FIELD(TBFLAG_ANY, ALIGN_MEM, 10, 1) 3110 FIELD(TBFLAG_ANY, PSTATE__IL, 11, 1) 3111 FIELD(TBFLAG_ANY, FGT_ACTIVE, 12, 1) 3112 FIELD(TBFLAG_ANY, FGT_SVC, 13, 1) 3113 3114 /* 3115 * Bit usage when in AArch32 state, both A- and M-profile. 3116 */ 3117 FIELD(TBFLAG_AM32, CONDEXEC, 24, 8) /* Not cached. */ 3118 FIELD(TBFLAG_AM32, THUMB, 23, 1) /* Not cached. */ 3119 3120 /* 3121 * Bit usage when in AArch32 state, for A-profile only. 3122 */ 3123 FIELD(TBFLAG_A32, VECLEN, 0, 3) /* Not cached. */ 3124 FIELD(TBFLAG_A32, VECSTRIDE, 3, 2) /* Not cached. */ 3125 /* 3126 * We store the bottom two bits of the CPAR as TB flags and handle 3127 * checks on the other bits at runtime. This shares the same bits as 3128 * VECSTRIDE, which is OK as no XScale CPU has VFP. 3129 * Not cached, because VECLEN+VECSTRIDE are not cached. 3130 */ 3131 FIELD(TBFLAG_A32, XSCALE_CPAR, 5, 2) 3132 FIELD(TBFLAG_A32, VFPEN, 7, 1) /* Partially cached, minus FPEXC. */ 3133 FIELD(TBFLAG_A32, SCTLR__B, 8, 1) /* Cannot overlap with SCTLR_B */ 3134 FIELD(TBFLAG_A32, HSTR_ACTIVE, 9, 1) 3135 /* 3136 * Indicates whether cp register reads and writes by guest code should access 3137 * the secure or nonsecure bank of banked registers; note that this is not 3138 * the same thing as the current security state of the processor! 3139 */ 3140 FIELD(TBFLAG_A32, NS, 10, 1) 3141 /* 3142 * Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. 3143 * This requires an SME trap from AArch32 mode when using NEON. 3144 */ 3145 FIELD(TBFLAG_A32, SME_TRAP_NONSTREAMING, 11, 1) 3146 3147 /* 3148 * Bit usage when in AArch32 state, for M-profile only. 3149 */ 3150 /* Handler (ie not Thread) mode */ 3151 FIELD(TBFLAG_M32, HANDLER, 0, 1) 3152 /* Whether we should generate stack-limit checks */ 3153 FIELD(TBFLAG_M32, STACKCHECK, 1, 1) 3154 /* Set if FPCCR.LSPACT is set */ 3155 FIELD(TBFLAG_M32, LSPACT, 2, 1) /* Not cached. */ 3156 /* Set if we must create a new FP context */ 3157 FIELD(TBFLAG_M32, NEW_FP_CTXT_NEEDED, 3, 1) /* Not cached. */ 3158 /* Set if FPCCR.S does not match current security state */ 3159 FIELD(TBFLAG_M32, FPCCR_S_WRONG, 4, 1) /* Not cached. */ 3160 /* Set if MVE insns are definitely not predicated by VPR or LTPSIZE */ 3161 FIELD(TBFLAG_M32, MVE_NO_PRED, 5, 1) /* Not cached. */ 3162 /* Set if in secure mode */ 3163 FIELD(TBFLAG_M32, SECURE, 6, 1) 3164 3165 /* 3166 * Bit usage when in AArch64 state 3167 */ 3168 FIELD(TBFLAG_A64, TBII, 0, 2) 3169 FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2) 3170 /* The current vector length, either NVL or SVL. */ 3171 FIELD(TBFLAG_A64, VL, 4, 4) 3172 FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1) 3173 FIELD(TBFLAG_A64, BT, 9, 1) 3174 FIELD(TBFLAG_A64, BTYPE, 10, 2) /* Not cached. */ 3175 FIELD(TBFLAG_A64, TBID, 12, 2) 3176 FIELD(TBFLAG_A64, UNPRIV, 14, 1) 3177 FIELD(TBFLAG_A64, ATA, 15, 1) 3178 FIELD(TBFLAG_A64, TCMA, 16, 2) 3179 FIELD(TBFLAG_A64, MTE_ACTIVE, 18, 1) 3180 FIELD(TBFLAG_A64, MTE0_ACTIVE, 19, 1) 3181 FIELD(TBFLAG_A64, SMEEXC_EL, 20, 2) 3182 FIELD(TBFLAG_A64, PSTATE_SM, 22, 1) 3183 FIELD(TBFLAG_A64, PSTATE_ZA, 23, 1) 3184 FIELD(TBFLAG_A64, SVL, 24, 4) 3185 /* Indicates that SME Streaming mode is active, and SMCR_ELx.FA64 is not. */ 3186 FIELD(TBFLAG_A64, SME_TRAP_NONSTREAMING, 28, 1) 3187 FIELD(TBFLAG_A64, TRAP_ERET, 29, 1) 3188 FIELD(TBFLAG_A64, NAA, 30, 1) 3189 FIELD(TBFLAG_A64, ATA0, 31, 1) 3190 FIELD(TBFLAG_A64, NV, 32, 1) 3191 FIELD(TBFLAG_A64, NV1, 33, 1) 3192 FIELD(TBFLAG_A64, NV2, 34, 1) 3193 /* Set if FEAT_NV2 RAM accesses use the EL2&0 translation regime */ 3194 FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1) 3195 /* Set if FEAT_NV2 RAM accesses are big-endian */ 3196 FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1) 3197 3198 /* 3199 * Helpers for using the above. Note that only the A64 accessors use 3200 * FIELD_DP64() and FIELD_EX64(), because in the other cases the flags 3201 * word either is or might be 32 bits only. 3202 */ 3203 #define DP_TBFLAG_ANY(DST, WHICH, VAL) \ 3204 (DST.flags = FIELD_DP32(DST.flags, TBFLAG_ANY, WHICH, VAL)) 3205 #define DP_TBFLAG_A64(DST, WHICH, VAL) \ 3206 (DST.flags2 = FIELD_DP64(DST.flags2, TBFLAG_A64, WHICH, VAL)) 3207 #define DP_TBFLAG_A32(DST, WHICH, VAL) \ 3208 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_A32, WHICH, VAL)) 3209 #define DP_TBFLAG_M32(DST, WHICH, VAL) \ 3210 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_M32, WHICH, VAL)) 3211 #define DP_TBFLAG_AM32(DST, WHICH, VAL) \ 3212 (DST.flags2 = FIELD_DP32(DST.flags2, TBFLAG_AM32, WHICH, VAL)) 3213 3214 #define EX_TBFLAG_ANY(IN, WHICH) FIELD_EX32(IN.flags, TBFLAG_ANY, WHICH) 3215 #define EX_TBFLAG_A64(IN, WHICH) FIELD_EX64(IN.flags2, TBFLAG_A64, WHICH) 3216 #define EX_TBFLAG_A32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_A32, WHICH) 3217 #define EX_TBFLAG_M32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_M32, WHICH) 3218 #define EX_TBFLAG_AM32(IN, WHICH) FIELD_EX32(IN.flags2, TBFLAG_AM32, WHICH) 3219 3220 /** 3221 * sve_vq 3222 * @env: the cpu context 3223 * 3224 * Return the VL cached within env->hflags, in units of quadwords. 3225 */ sve_vq(CPUARMState * env)3226 static inline int sve_vq(CPUARMState *env) 3227 { 3228 return EX_TBFLAG_A64(env->hflags, VL) + 1; 3229 } 3230 3231 /** 3232 * sme_vq 3233 * @env: the cpu context 3234 * 3235 * Return the SVL cached within env->hflags, in units of quadwords. 3236 */ sme_vq(CPUARMState * env)3237 static inline int sme_vq(CPUARMState *env) 3238 { 3239 return EX_TBFLAG_A64(env->hflags, SVL) + 1; 3240 } 3241 bswap_code(bool sctlr_b)3242 static inline bool bswap_code(bool sctlr_b) 3243 { 3244 #ifdef CONFIG_USER_ONLY 3245 /* BE8 (SCTLR.B = 0, TARGET_BIG_ENDIAN = 1) is mixed endian. 3246 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_BIG_ENDIAN=0 3247 * would also end up as a mixed-endian mode with BE code, LE data. 3248 */ 3249 return TARGET_BIG_ENDIAN ^ sctlr_b; 3250 #else 3251 /* All code access in ARM is little endian, and there are no loaders 3252 * doing swaps that need to be reversed 3253 */ 3254 return 0; 3255 #endif 3256 } 3257 3258 #ifdef CONFIG_USER_ONLY arm_cpu_bswap_data(CPUARMState * env)3259 static inline bool arm_cpu_bswap_data(CPUARMState *env) 3260 { 3261 return TARGET_BIG_ENDIAN ^ arm_cpu_data_is_big_endian(env); 3262 } 3263 #endif 3264 3265 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 3266 uint64_t *cs_base, uint32_t *flags); 3267 3268 enum { 3269 QEMU_PSCI_CONDUIT_DISABLED = 0, 3270 QEMU_PSCI_CONDUIT_SMC = 1, 3271 QEMU_PSCI_CONDUIT_HVC = 2, 3272 }; 3273 3274 #ifndef CONFIG_USER_ONLY 3275 /* Return the address space index to use for a memory access */ arm_asidx_from_attrs(CPUState * cs,MemTxAttrs attrs)3276 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs) 3277 { 3278 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS; 3279 } 3280 3281 /* Return the AddressSpace to use for a memory access 3282 * (which depends on whether the access is S or NS, and whether 3283 * the board gave us a separate AddressSpace for S accesses). 3284 */ arm_addressspace(CPUState * cs,MemTxAttrs attrs)3285 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs) 3286 { 3287 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs)); 3288 } 3289 #endif 3290 3291 /** 3292 * arm_register_pre_el_change_hook: 3293 * Register a hook function which will be called immediately before this 3294 * CPU changes exception level or mode. The hook function will be 3295 * passed a pointer to the ARMCPU and the opaque data pointer passed 3296 * to this function when the hook was registered. 3297 * 3298 * Note that if a pre-change hook is called, any registered post-change hooks 3299 * are guaranteed to subsequently be called. 3300 */ 3301 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, 3302 void *opaque); 3303 /** 3304 * arm_register_el_change_hook: 3305 * Register a hook function which will be called immediately after this 3306 * CPU changes exception level or mode. The hook function will be 3307 * passed a pointer to the ARMCPU and the opaque data pointer passed 3308 * to this function when the hook was registered. 3309 * 3310 * Note that any registered hooks registered here are guaranteed to be called 3311 * if pre-change hooks have been. 3312 */ 3313 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void 3314 *opaque); 3315 3316 /** 3317 * arm_rebuild_hflags: 3318 * Rebuild the cached TBFLAGS for arbitrary changed processor state. 3319 */ 3320 void arm_rebuild_hflags(CPUARMState *env); 3321 3322 /** 3323 * aa32_vfp_dreg: 3324 * Return a pointer to the Dn register within env in 32-bit mode. 3325 */ aa32_vfp_dreg(CPUARMState * env,unsigned regno)3326 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno) 3327 { 3328 return &env->vfp.zregs[regno >> 1].d[regno & 1]; 3329 } 3330 3331 /** 3332 * aa32_vfp_qreg: 3333 * Return a pointer to the Qn register within env in 32-bit mode. 3334 */ aa32_vfp_qreg(CPUARMState * env,unsigned regno)3335 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno) 3336 { 3337 return &env->vfp.zregs[regno].d[0]; 3338 } 3339 3340 /** 3341 * aa64_vfp_qreg: 3342 * Return a pointer to the Qn register within env in 64-bit mode. 3343 */ aa64_vfp_qreg(CPUARMState * env,unsigned regno)3344 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) 3345 { 3346 return &env->vfp.zregs[regno].d[0]; 3347 } 3348 3349 /* Shared between translate-sve.c and sve_helper.c. */ 3350 extern const uint64_t pred_esz_masks[5]; 3351 3352 /* 3353 * AArch64 usage of the PAGE_TARGET_* bits for linux-user. 3354 * Note that with the Linux kernel, PROT_MTE may not be cleared by mprotect 3355 * mprotect but PROT_BTI may be cleared. C.f. the kernel's VM_ARCH_CLEAR. 3356 */ 3357 #define PAGE_BTI PAGE_TARGET_1 3358 #define PAGE_MTE PAGE_TARGET_2 3359 #define PAGE_TARGET_STICKY PAGE_MTE 3360 3361 /* We associate one allocation tag per 16 bytes, the minimum. */ 3362 #define LOG2_TAG_GRANULE 4 3363 #define TAG_GRANULE (1 << LOG2_TAG_GRANULE) 3364 3365 #ifdef CONFIG_USER_ONLY 3366 #define TARGET_PAGE_DATA_SIZE (TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1)) 3367 #endif 3368 3369 #ifdef TARGET_TAGGED_ADDRESSES 3370 /** 3371 * cpu_untagged_addr: 3372 * @cs: CPU context 3373 * @x: tagged address 3374 * 3375 * Remove any address tag from @x. This is explicitly related to the 3376 * linux syscall TIF_TAGGED_ADDR setting, not TBI in general. 3377 * 3378 * There should be a better place to put this, but we need this in 3379 * include/exec/cpu_ldst.h, and not some place linux-user specific. 3380 */ cpu_untagged_addr(CPUState * cs,target_ulong x)3381 static inline target_ulong cpu_untagged_addr(CPUState *cs, target_ulong x) 3382 { 3383 CPUARMState *env = cpu_env(cs); 3384 if (env->tagged_addr_enable) { 3385 /* 3386 * TBI is enabled for userspace but not kernelspace addresses. 3387 * Only clear the tag if bit 55 is clear. 3388 */ 3389 x &= sextract64(x, 0, 56); 3390 } 3391 return x; 3392 } 3393 #endif 3394 3395 #endif 3396