1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 tcp_scaling_ratio_init(sk);
461
462 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466
tcp_tx_timestamp(struct sock * sk,u16 tsflags)467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 struct sk_buff *skb = tcp_write_queue_tail(sk);
470
471 if (tsflags && skb) {
472 struct skb_shared_info *shinfo = skb_shinfo(skb);
473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474
475 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 tcb->txstamp_ack = 1;
478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 }
481 }
482
tcp_stream_is_readable(struct sock * sk,int target)483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 if (tcp_epollin_ready(sk, target))
486 return true;
487 return sk_is_readable(sk);
488 }
489
490 /*
491 * Wait for a TCP event.
492 *
493 * Note that we don't need to lock the socket, as the upper poll layers
494 * take care of normal races (between the test and the event) and we don't
495 * go look at any of the socket buffers directly.
496 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 __poll_t mask;
500 struct sock *sk = sock->sk;
501 const struct tcp_sock *tp = tcp_sk(sk);
502 u8 shutdown;
503 int state;
504
505 sock_poll_wait(file, sock, wait);
506
507 state = inet_sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * EPOLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that EPOLLHUP is incompatible
524 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 shutdown = READ_ONCE(sk->sk_shutdown);
546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555 u16 urg_data = READ_ONCE(tp->urg_data);
556
557 if (unlikely(urg_data) &&
558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 !sock_flag(sk, SOCK_URGINLINE))
560 target++;
561
562 if (tcp_stream_is_readable(sk, target))
563 mask |= EPOLLIN | EPOLLRDNORM;
564
565 if (!(shutdown & SEND_SHUTDOWN)) {
566 if (__sk_stream_is_writeable(sk, 1)) {
567 mask |= EPOLLOUT | EPOLLWRNORM;
568 } else { /* send SIGIO later */
569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571
572 /* Race breaker. If space is freed after
573 * wspace test but before the flags are set,
574 * IO signal will be lost. Memory barrier
575 * pairs with the input side.
576 */
577 smp_mb__after_atomic();
578 if (__sk_stream_is_writeable(sk, 1))
579 mask |= EPOLLOUT | EPOLLWRNORM;
580 }
581 } else
582 mask |= EPOLLOUT | EPOLLWRNORM;
583
584 if (urg_data & TCP_URG_VALID)
585 mask |= EPOLLPRI;
586 } else if (state == TCP_SYN_SENT &&
587 inet_test_bit(DEFER_CONNECT, sk)) {
588 /* Active TCP fastopen socket with defer_connect
589 * Return EPOLLOUT so application can call write()
590 * in order for kernel to generate SYN+data
591 */
592 mask |= EPOLLOUT | EPOLLWRNORM;
593 }
594 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
595 smp_rmb();
596 if (READ_ONCE(sk->sk_err) ||
597 !skb_queue_empty_lockless(&sk->sk_error_queue))
598 mask |= EPOLLERR;
599
600 return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603
tcp_ioctl(struct sock * sk,int cmd,int * karg)604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 struct tcp_sock *tp = tcp_sk(sk);
607 int answ;
608 bool slow;
609
610 switch (cmd) {
611 case SIOCINQ:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 slow = lock_sock_fast(sk);
616 answ = tcp_inq(sk);
617 unlock_sock_fast(sk, slow);
618 break;
619 case SIOCATMARK:
620 answ = READ_ONCE(tp->urg_data) &&
621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = READ_ONCE(tp->write_seq) -
640 READ_ONCE(tp->snd_nxt);
641 break;
642 default:
643 return -ENOIOCTLCMD;
644 }
645
646 *karg = answ;
647 return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 tcb->seq = tcb->end_seq = tp->write_seq;
668 tcb->tcp_flags = TCPHDR_ACK;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk_wmem_queued_add(sk, skb->truesize);
672 sk_mem_charge(sk, skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677 }
678
tcp_mark_urg(struct tcp_sock * tp,int flags)679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683 }
684
685 /* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697 {
698 return skb->len < size_goal &&
699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 tcp_skb_can_collapse_to(skb);
703 }
704
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 int nonagle, int size_goal)
707 {
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct sk_buff *skb;
710
711 skb = tcp_write_queue_tail(sk);
712 if (!skb)
713 return;
714 if (!(flags & MSG_MORE) || forced_push(tp))
715 tcp_mark_push(tp, skb);
716
717 tcp_mark_urg(tp, flags);
718
719 if (tcp_should_autocork(sk, skb, size_goal)) {
720
721 /* avoid atomic op if TSQ_THROTTLED bit is already set */
722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 smp_mb__after_atomic();
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 ret = sk_wait_data(sk, &timeo, NULL);
836 if (ret < 0)
837 break;
838 if (signal_pending(current)) {
839 ret = sock_intr_errno(timeo);
840 break;
841 }
842 continue;
843 }
844 tss.len -= ret;
845 spliced += ret;
846
847 if (!tss.len || !timeo)
848 break;
849 release_sock(sk);
850 lock_sock(sk);
851
852 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853 (sk->sk_shutdown & RCV_SHUTDOWN) ||
854 signal_pending(current))
855 break;
856 }
857
858 release_sock(sk);
859
860 if (spliced)
861 return spliced;
862
863 return ret;
864 }
865 EXPORT_SYMBOL(tcp_splice_read);
866
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)867 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
868 bool force_schedule)
869 {
870 struct sk_buff *skb;
871
872 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
873 if (likely(skb)) {
874 bool mem_scheduled;
875
876 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877 if (force_schedule) {
878 mem_scheduled = true;
879 sk_forced_mem_schedule(sk, skb->truesize);
880 } else {
881 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
882 }
883 if (likely(mem_scheduled)) {
884 skb_reserve(skb, MAX_TCP_HEADER);
885 skb->ip_summed = CHECKSUM_PARTIAL;
886 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
887 return skb;
888 }
889 __kfree_skb(skb);
890 } else {
891 sk->sk_prot->enter_memory_pressure(sk);
892 sk_stream_moderate_sndbuf(sk);
893 }
894 return NULL;
895 }
896
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)897 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898 int large_allowed)
899 {
900 struct tcp_sock *tp = tcp_sk(sk);
901 u32 new_size_goal, size_goal;
902
903 if (!large_allowed)
904 return mss_now;
905
906 /* Note : tcp_tso_autosize() will eventually split this later */
907 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
908
909 /* We try hard to avoid divides here */
910 size_goal = tp->gso_segs * mss_now;
911 if (unlikely(new_size_goal < size_goal ||
912 new_size_goal >= size_goal + mss_now)) {
913 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914 sk->sk_gso_max_segs);
915 size_goal = tp->gso_segs * mss_now;
916 }
917
918 return max(size_goal, mss_now);
919 }
920
tcp_send_mss(struct sock * sk,int * size_goal,int flags)921 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922 {
923 int mss_now;
924
925 mss_now = tcp_current_mss(sk);
926 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927
928 return mss_now;
929 }
930
931 /* In some cases, sendmsg() could have added an skb to the write queue,
932 * but failed adding payload on it. We need to remove it to consume less
933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
934 * epoll() users. Another reason is that tcp_write_xmit() does not like
935 * finding an empty skb in the write queue.
936 */
tcp_remove_empty_skb(struct sock * sk)937 void tcp_remove_empty_skb(struct sock *sk)
938 {
939 struct sk_buff *skb = tcp_write_queue_tail(sk);
940
941 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
942 tcp_unlink_write_queue(skb, sk);
943 if (tcp_write_queue_empty(sk))
944 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945 tcp_wmem_free_skb(sk, skb);
946 }
947 }
948
949 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)950 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
951 {
952 if (unlikely(skb_zcopy_pure(skb))) {
953 u32 extra = skb->truesize -
954 SKB_TRUESIZE(skb_end_offset(skb));
955
956 if (!sk_wmem_schedule(sk, extra))
957 return -ENOMEM;
958
959 sk_mem_charge(sk, extra);
960 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
961 }
962 return 0;
963 }
964
965
tcp_wmem_schedule(struct sock * sk,int copy)966 int tcp_wmem_schedule(struct sock *sk, int copy)
967 {
968 int left;
969
970 if (likely(sk_wmem_schedule(sk, copy)))
971 return copy;
972
973 /* We could be in trouble if we have nothing queued.
974 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
975 * to guarantee some progress.
976 */
977 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
978 if (left > 0)
979 sk_forced_mem_schedule(sk, min(left, copy));
980 return min(copy, sk->sk_forward_alloc);
981 }
982
tcp_free_fastopen_req(struct tcp_sock * tp)983 void tcp_free_fastopen_req(struct tcp_sock *tp)
984 {
985 if (tp->fastopen_req) {
986 kfree(tp->fastopen_req);
987 tp->fastopen_req = NULL;
988 }
989 }
990
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)991 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
992 size_t size, struct ubuf_info *uarg)
993 {
994 struct tcp_sock *tp = tcp_sk(sk);
995 struct inet_sock *inet = inet_sk(sk);
996 struct sockaddr *uaddr = msg->msg_name;
997 int err, flags;
998
999 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000 TFO_CLIENT_ENABLE) ||
1001 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002 uaddr->sa_family == AF_UNSPEC))
1003 return -EOPNOTSUPP;
1004 if (tp->fastopen_req)
1005 return -EALREADY; /* Another Fast Open is in progress */
1006
1007 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008 sk->sk_allocation);
1009 if (unlikely(!tp->fastopen_req))
1010 return -ENOBUFS;
1011 tp->fastopen_req->data = msg;
1012 tp->fastopen_req->size = size;
1013 tp->fastopen_req->uarg = uarg;
1014
1015 if (inet_test_bit(DEFER_CONNECT, sk)) {
1016 err = tcp_connect(sk);
1017 /* Same failure procedure as in tcp_v4/6_connect */
1018 if (err) {
1019 tcp_set_state(sk, TCP_CLOSE);
1020 inet->inet_dport = 0;
1021 sk->sk_route_caps = 0;
1022 }
1023 }
1024 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025 err = __inet_stream_connect(sk->sk_socket, uaddr,
1026 msg->msg_namelen, flags, 1);
1027 /* fastopen_req could already be freed in __inet_stream_connect
1028 * if the connection times out or gets rst
1029 */
1030 if (tp->fastopen_req) {
1031 *copied = tp->fastopen_req->copied;
1032 tcp_free_fastopen_req(tp);
1033 inet_clear_bit(DEFER_CONNECT, sk);
1034 }
1035 return err;
1036 }
1037
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1038 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039 {
1040 struct tcp_sock *tp = tcp_sk(sk);
1041 struct ubuf_info *uarg = NULL;
1042 struct sk_buff *skb;
1043 struct sockcm_cookie sockc;
1044 int flags, err, copied = 0;
1045 int mss_now = 0, size_goal, copied_syn = 0;
1046 int process_backlog = 0;
1047 int zc = 0;
1048 long timeo;
1049
1050 flags = msg->msg_flags;
1051
1052 if ((flags & MSG_ZEROCOPY) && size) {
1053 if (msg->msg_ubuf) {
1054 uarg = msg->msg_ubuf;
1055 if (sk->sk_route_caps & NETIF_F_SG)
1056 zc = MSG_ZEROCOPY;
1057 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058 skb = tcp_write_queue_tail(sk);
1059 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060 if (!uarg) {
1061 err = -ENOBUFS;
1062 goto out_err;
1063 }
1064 if (sk->sk_route_caps & NETIF_F_SG)
1065 zc = MSG_ZEROCOPY;
1066 else
1067 uarg_to_msgzc(uarg)->zerocopy = 0;
1068 }
1069 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070 if (sk->sk_route_caps & NETIF_F_SG)
1071 zc = MSG_SPLICE_PAGES;
1072 }
1073
1074 if (unlikely(flags & MSG_FASTOPEN ||
1075 inet_test_bit(DEFER_CONNECT, sk)) &&
1076 !tp->repair) {
1077 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078 if (err == -EINPROGRESS && copied_syn > 0)
1079 goto out;
1080 else if (err)
1081 goto out_err;
1082 }
1083
1084 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085
1086 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1087
1088 /* Wait for a connection to finish. One exception is TCP Fast Open
1089 * (passive side) where data is allowed to be sent before a connection
1090 * is fully established.
1091 */
1092 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093 !tcp_passive_fastopen(sk)) {
1094 err = sk_stream_wait_connect(sk, &timeo);
1095 if (err != 0)
1096 goto do_error;
1097 }
1098
1099 if (unlikely(tp->repair)) {
1100 if (tp->repair_queue == TCP_RECV_QUEUE) {
1101 copied = tcp_send_rcvq(sk, msg, size);
1102 goto out_nopush;
1103 }
1104
1105 err = -EINVAL;
1106 if (tp->repair_queue == TCP_NO_QUEUE)
1107 goto out_err;
1108
1109 /* 'common' sending to sendq */
1110 }
1111
1112 sockcm_init(&sockc, sk);
1113 if (msg->msg_controllen) {
1114 err = sock_cmsg_send(sk, msg, &sockc);
1115 if (unlikely(err)) {
1116 err = -EINVAL;
1117 goto out_err;
1118 }
1119 }
1120
1121 /* This should be in poll */
1122 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123
1124 /* Ok commence sending. */
1125 copied = 0;
1126
1127 restart:
1128 mss_now = tcp_send_mss(sk, &size_goal, flags);
1129
1130 err = -EPIPE;
1131 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132 goto do_error;
1133
1134 while (msg_data_left(msg)) {
1135 ssize_t copy = 0;
1136
1137 skb = tcp_write_queue_tail(sk);
1138 if (skb)
1139 copy = size_goal - skb->len;
1140
1141 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142 bool first_skb;
1143
1144 new_segment:
1145 if (!sk_stream_memory_free(sk))
1146 goto wait_for_space;
1147
1148 if (unlikely(process_backlog >= 16)) {
1149 process_backlog = 0;
1150 if (sk_flush_backlog(sk))
1151 goto restart;
1152 }
1153 first_skb = tcp_rtx_and_write_queues_empty(sk);
1154 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155 first_skb);
1156 if (!skb)
1157 goto wait_for_space;
1158
1159 process_backlog++;
1160
1161 #ifdef CONFIG_SKB_DECRYPTED
1162 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1163 #endif
1164 tcp_skb_entail(sk, skb);
1165 copy = size_goal;
1166
1167 /* All packets are restored as if they have
1168 * already been sent. skb_mstamp_ns isn't set to
1169 * avoid wrong rtt estimation.
1170 */
1171 if (tp->repair)
1172 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1173 }
1174
1175 /* Try to append data to the end of skb. */
1176 if (copy > msg_data_left(msg))
1177 copy = msg_data_left(msg);
1178
1179 if (zc == 0) {
1180 bool merge = true;
1181 int i = skb_shinfo(skb)->nr_frags;
1182 struct page_frag *pfrag = sk_page_frag(sk);
1183
1184 if (!sk_page_frag_refill(sk, pfrag))
1185 goto wait_for_space;
1186
1187 if (!skb_can_coalesce(skb, i, pfrag->page,
1188 pfrag->offset)) {
1189 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1190 tcp_mark_push(tp, skb);
1191 goto new_segment;
1192 }
1193 merge = false;
1194 }
1195
1196 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1197
1198 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1199 if (tcp_downgrade_zcopy_pure(sk, skb))
1200 goto wait_for_space;
1201 skb_zcopy_downgrade_managed(skb);
1202 }
1203
1204 copy = tcp_wmem_schedule(sk, copy);
1205 if (!copy)
1206 goto wait_for_space;
1207
1208 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1209 pfrag->page,
1210 pfrag->offset,
1211 copy);
1212 if (err)
1213 goto do_error;
1214
1215 /* Update the skb. */
1216 if (merge) {
1217 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1218 } else {
1219 skb_fill_page_desc(skb, i, pfrag->page,
1220 pfrag->offset, copy);
1221 page_ref_inc(pfrag->page);
1222 }
1223 pfrag->offset += copy;
1224 } else if (zc == MSG_ZEROCOPY) {
1225 /* First append to a fragless skb builds initial
1226 * pure zerocopy skb
1227 */
1228 if (!skb->len)
1229 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1230
1231 if (!skb_zcopy_pure(skb)) {
1232 copy = tcp_wmem_schedule(sk, copy);
1233 if (!copy)
1234 goto wait_for_space;
1235 }
1236
1237 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1238 if (err == -EMSGSIZE || err == -EEXIST) {
1239 tcp_mark_push(tp, skb);
1240 goto new_segment;
1241 }
1242 if (err < 0)
1243 goto do_error;
1244 copy = err;
1245 } else if (zc == MSG_SPLICE_PAGES) {
1246 /* Splice in data if we can; copy if we can't. */
1247 if (tcp_downgrade_zcopy_pure(sk, skb))
1248 goto wait_for_space;
1249 copy = tcp_wmem_schedule(sk, copy);
1250 if (!copy)
1251 goto wait_for_space;
1252
1253 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1254 sk->sk_allocation);
1255 if (err < 0) {
1256 if (err == -EMSGSIZE) {
1257 tcp_mark_push(tp, skb);
1258 goto new_segment;
1259 }
1260 goto do_error;
1261 }
1262 copy = err;
1263
1264 if (!(flags & MSG_NO_SHARED_FRAGS))
1265 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1266
1267 sk_wmem_queued_add(sk, copy);
1268 sk_mem_charge(sk, copy);
1269 }
1270
1271 if (!copied)
1272 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1273
1274 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1275 TCP_SKB_CB(skb)->end_seq += copy;
1276 tcp_skb_pcount_set(skb, 0);
1277
1278 copied += copy;
1279 if (!msg_data_left(msg)) {
1280 if (unlikely(flags & MSG_EOR))
1281 TCP_SKB_CB(skb)->eor = 1;
1282 goto out;
1283 }
1284
1285 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1286 continue;
1287
1288 if (forced_push(tp)) {
1289 tcp_mark_push(tp, skb);
1290 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1291 } else if (skb == tcp_send_head(sk))
1292 tcp_push_one(sk, mss_now);
1293 continue;
1294
1295 wait_for_space:
1296 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1297 tcp_remove_empty_skb(sk);
1298 if (copied)
1299 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1300 TCP_NAGLE_PUSH, size_goal);
1301
1302 err = sk_stream_wait_memory(sk, &timeo);
1303 if (err != 0)
1304 goto do_error;
1305
1306 mss_now = tcp_send_mss(sk, &size_goal, flags);
1307 }
1308
1309 out:
1310 if (copied) {
1311 tcp_tx_timestamp(sk, sockc.tsflags);
1312 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1313 }
1314 out_nopush:
1315 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1316 if (uarg && !msg->msg_ubuf)
1317 net_zcopy_put(uarg);
1318 return copied + copied_syn;
1319
1320 do_error:
1321 tcp_remove_empty_skb(sk);
1322
1323 if (copied + copied_syn)
1324 goto out;
1325 out_err:
1326 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1327 if (uarg && !msg->msg_ubuf)
1328 net_zcopy_put_abort(uarg, true);
1329 err = sk_stream_error(sk, flags, err);
1330 /* make sure we wake any epoll edge trigger waiter */
1331 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1332 sk->sk_write_space(sk);
1333 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1334 }
1335 return err;
1336 }
1337 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1338
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1339 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1340 {
1341 int ret;
1342
1343 lock_sock(sk);
1344 ret = tcp_sendmsg_locked(sk, msg, size);
1345 release_sock(sk);
1346
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(tcp_sendmsg);
1350
tcp_splice_eof(struct socket * sock)1351 void tcp_splice_eof(struct socket *sock)
1352 {
1353 struct sock *sk = sock->sk;
1354 struct tcp_sock *tp = tcp_sk(sk);
1355 int mss_now, size_goal;
1356
1357 if (!tcp_write_queue_tail(sk))
1358 return;
1359
1360 lock_sock(sk);
1361 mss_now = tcp_send_mss(sk, &size_goal, 0);
1362 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1363 release_sock(sk);
1364 }
1365 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1366
1367 /*
1368 * Handle reading urgent data. BSD has very simple semantics for
1369 * this, no blocking and very strange errors 8)
1370 */
1371
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1372 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1373 {
1374 struct tcp_sock *tp = tcp_sk(sk);
1375
1376 /* No URG data to read. */
1377 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1378 tp->urg_data == TCP_URG_READ)
1379 return -EINVAL; /* Yes this is right ! */
1380
1381 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1382 return -ENOTCONN;
1383
1384 if (tp->urg_data & TCP_URG_VALID) {
1385 int err = 0;
1386 char c = tp->urg_data;
1387
1388 if (!(flags & MSG_PEEK))
1389 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1390
1391 /* Read urgent data. */
1392 msg->msg_flags |= MSG_OOB;
1393
1394 if (len > 0) {
1395 if (!(flags & MSG_TRUNC))
1396 err = memcpy_to_msg(msg, &c, 1);
1397 len = 1;
1398 } else
1399 msg->msg_flags |= MSG_TRUNC;
1400
1401 return err ? -EFAULT : len;
1402 }
1403
1404 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1405 return 0;
1406
1407 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1408 * the available implementations agree in this case:
1409 * this call should never block, independent of the
1410 * blocking state of the socket.
1411 * Mike <pall@rz.uni-karlsruhe.de>
1412 */
1413 return -EAGAIN;
1414 }
1415
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1416 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1417 {
1418 struct sk_buff *skb;
1419 int copied = 0, err = 0;
1420
1421 /* XXX -- need to support SO_PEEK_OFF */
1422
1423 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1424 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1425 if (err)
1426 return err;
1427 copied += skb->len;
1428 }
1429
1430 skb_queue_walk(&sk->sk_write_queue, skb) {
1431 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1432 if (err)
1433 break;
1434
1435 copied += skb->len;
1436 }
1437
1438 return err ?: copied;
1439 }
1440
1441 /* Clean up the receive buffer for full frames taken by the user,
1442 * then send an ACK if necessary. COPIED is the number of bytes
1443 * tcp_recvmsg has given to the user so far, it speeds up the
1444 * calculation of whether or not we must ACK for the sake of
1445 * a window update.
1446 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1447 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1448 {
1449 struct tcp_sock *tp = tcp_sk(sk);
1450 bool time_to_ack = false;
1451
1452 if (inet_csk_ack_scheduled(sk)) {
1453 const struct inet_connection_sock *icsk = inet_csk(sk);
1454
1455 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1456 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1457 /*
1458 * If this read emptied read buffer, we send ACK, if
1459 * connection is not bidirectional, user drained
1460 * receive buffer and there was a small segment
1461 * in queue.
1462 */
1463 (copied > 0 &&
1464 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1465 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1466 !inet_csk_in_pingpong_mode(sk))) &&
1467 !atomic_read(&sk->sk_rmem_alloc)))
1468 time_to_ack = true;
1469 }
1470
1471 /* We send an ACK if we can now advertise a non-zero window
1472 * which has been raised "significantly".
1473 *
1474 * Even if window raised up to infinity, do not send window open ACK
1475 * in states, where we will not receive more. It is useless.
1476 */
1477 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1478 __u32 rcv_window_now = tcp_receive_window(tp);
1479
1480 /* Optimize, __tcp_select_window() is not cheap. */
1481 if (2*rcv_window_now <= tp->window_clamp) {
1482 __u32 new_window = __tcp_select_window(sk);
1483
1484 /* Send ACK now, if this read freed lots of space
1485 * in our buffer. Certainly, new_window is new window.
1486 * We can advertise it now, if it is not less than current one.
1487 * "Lots" means "at least twice" here.
1488 */
1489 if (new_window && new_window >= 2 * rcv_window_now)
1490 time_to_ack = true;
1491 }
1492 }
1493 if (time_to_ack)
1494 tcp_send_ack(sk);
1495 }
1496
tcp_cleanup_rbuf(struct sock * sk,int copied)1497 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1498 {
1499 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1500 struct tcp_sock *tp = tcp_sk(sk);
1501
1502 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1503 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1504 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1505 __tcp_cleanup_rbuf(sk, copied);
1506 }
1507
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1508 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1509 {
1510 __skb_unlink(skb, &sk->sk_receive_queue);
1511 if (likely(skb->destructor == sock_rfree)) {
1512 sock_rfree(skb);
1513 skb->destructor = NULL;
1514 skb->sk = NULL;
1515 return skb_attempt_defer_free(skb);
1516 }
1517 __kfree_skb(skb);
1518 }
1519
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1520 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1521 {
1522 struct sk_buff *skb;
1523 u32 offset;
1524
1525 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1526 offset = seq - TCP_SKB_CB(skb)->seq;
1527 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1528 pr_err_once("%s: found a SYN, please report !\n", __func__);
1529 offset--;
1530 }
1531 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1532 *off = offset;
1533 return skb;
1534 }
1535 /* This looks weird, but this can happen if TCP collapsing
1536 * splitted a fat GRO packet, while we released socket lock
1537 * in skb_splice_bits()
1538 */
1539 tcp_eat_recv_skb(sk, skb);
1540 }
1541 return NULL;
1542 }
1543 EXPORT_SYMBOL(tcp_recv_skb);
1544
1545 /*
1546 * This routine provides an alternative to tcp_recvmsg() for routines
1547 * that would like to handle copying from skbuffs directly in 'sendfile'
1548 * fashion.
1549 * Note:
1550 * - It is assumed that the socket was locked by the caller.
1551 * - The routine does not block.
1552 * - At present, there is no support for reading OOB data
1553 * or for 'peeking' the socket using this routine
1554 * (although both would be easy to implement).
1555 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1556 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 sk_read_actor_t recv_actor)
1558 {
1559 struct sk_buff *skb;
1560 struct tcp_sock *tp = tcp_sk(sk);
1561 u32 seq = tp->copied_seq;
1562 u32 offset;
1563 int copied = 0;
1564
1565 if (sk->sk_state == TCP_LISTEN)
1566 return -ENOTCONN;
1567 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1568 if (offset < skb->len) {
1569 int used;
1570 size_t len;
1571
1572 len = skb->len - offset;
1573 /* Stop reading if we hit a patch of urgent data */
1574 if (unlikely(tp->urg_data)) {
1575 u32 urg_offset = tp->urg_seq - seq;
1576 if (urg_offset < len)
1577 len = urg_offset;
1578 if (!len)
1579 break;
1580 }
1581 used = recv_actor(desc, skb, offset, len);
1582 if (used <= 0) {
1583 if (!copied)
1584 copied = used;
1585 break;
1586 }
1587 if (WARN_ON_ONCE(used > len))
1588 used = len;
1589 seq += used;
1590 copied += used;
1591 offset += used;
1592
1593 /* If recv_actor drops the lock (e.g. TCP splice
1594 * receive) the skb pointer might be invalid when
1595 * getting here: tcp_collapse might have deleted it
1596 * while aggregating skbs from the socket queue.
1597 */
1598 skb = tcp_recv_skb(sk, seq - 1, &offset);
1599 if (!skb)
1600 break;
1601 /* TCP coalescing might have appended data to the skb.
1602 * Try to splice more frags
1603 */
1604 if (offset + 1 != skb->len)
1605 continue;
1606 }
1607 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1608 tcp_eat_recv_skb(sk, skb);
1609 ++seq;
1610 break;
1611 }
1612 tcp_eat_recv_skb(sk, skb);
1613 if (!desc->count)
1614 break;
1615 WRITE_ONCE(tp->copied_seq, seq);
1616 }
1617 WRITE_ONCE(tp->copied_seq, seq);
1618
1619 tcp_rcv_space_adjust(sk);
1620
1621 /* Clean up data we have read: This will do ACK frames. */
1622 if (copied > 0) {
1623 tcp_recv_skb(sk, seq, &offset);
1624 tcp_cleanup_rbuf(sk, copied);
1625 }
1626 return copied;
1627 }
1628 EXPORT_SYMBOL(tcp_read_sock);
1629
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1630 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1631 {
1632 struct sk_buff *skb;
1633 int copied = 0;
1634
1635 if (sk->sk_state == TCP_LISTEN)
1636 return -ENOTCONN;
1637
1638 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1639 u8 tcp_flags;
1640 int used;
1641
1642 __skb_unlink(skb, &sk->sk_receive_queue);
1643 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1644 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1645 used = recv_actor(sk, skb);
1646 if (used < 0) {
1647 if (!copied)
1648 copied = used;
1649 break;
1650 }
1651 copied += used;
1652
1653 if (tcp_flags & TCPHDR_FIN)
1654 break;
1655 }
1656 return copied;
1657 }
1658 EXPORT_SYMBOL(tcp_read_skb);
1659
tcp_read_done(struct sock * sk,size_t len)1660 void tcp_read_done(struct sock *sk, size_t len)
1661 {
1662 struct tcp_sock *tp = tcp_sk(sk);
1663 u32 seq = tp->copied_seq;
1664 struct sk_buff *skb;
1665 size_t left;
1666 u32 offset;
1667
1668 if (sk->sk_state == TCP_LISTEN)
1669 return;
1670
1671 left = len;
1672 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1673 int used;
1674
1675 used = min_t(size_t, skb->len - offset, left);
1676 seq += used;
1677 left -= used;
1678
1679 if (skb->len > offset + used)
1680 break;
1681
1682 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1683 tcp_eat_recv_skb(sk, skb);
1684 ++seq;
1685 break;
1686 }
1687 tcp_eat_recv_skb(sk, skb);
1688 }
1689 WRITE_ONCE(tp->copied_seq, seq);
1690
1691 tcp_rcv_space_adjust(sk);
1692
1693 /* Clean up data we have read: This will do ACK frames. */
1694 if (left != len)
1695 tcp_cleanup_rbuf(sk, len - left);
1696 }
1697 EXPORT_SYMBOL(tcp_read_done);
1698
tcp_peek_len(struct socket * sock)1699 int tcp_peek_len(struct socket *sock)
1700 {
1701 return tcp_inq(sock->sk);
1702 }
1703 EXPORT_SYMBOL(tcp_peek_len);
1704
1705 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1706 int tcp_set_rcvlowat(struct sock *sk, int val)
1707 {
1708 int space, cap;
1709
1710 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1711 cap = sk->sk_rcvbuf >> 1;
1712 else
1713 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1714 val = min(val, cap);
1715 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1716
1717 /* Check if we need to signal EPOLLIN right now */
1718 tcp_data_ready(sk);
1719
1720 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1721 return 0;
1722
1723 space = tcp_space_from_win(sk, val);
1724 if (space > sk->sk_rcvbuf) {
1725 WRITE_ONCE(sk->sk_rcvbuf, space);
1726 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1727 }
1728 return 0;
1729 }
1730 EXPORT_SYMBOL(tcp_set_rcvlowat);
1731
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1732 void tcp_update_recv_tstamps(struct sk_buff *skb,
1733 struct scm_timestamping_internal *tss)
1734 {
1735 if (skb->tstamp)
1736 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1737 else
1738 tss->ts[0] = (struct timespec64) {0};
1739
1740 if (skb_hwtstamps(skb)->hwtstamp)
1741 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1742 else
1743 tss->ts[2] = (struct timespec64) {0};
1744 }
1745
1746 #ifdef CONFIG_MMU
1747 static const struct vm_operations_struct tcp_vm_ops = {
1748 };
1749
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1750 int tcp_mmap(struct file *file, struct socket *sock,
1751 struct vm_area_struct *vma)
1752 {
1753 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1754 return -EPERM;
1755 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1756
1757 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1758 vm_flags_set(vma, VM_MIXEDMAP);
1759
1760 vma->vm_ops = &tcp_vm_ops;
1761 return 0;
1762 }
1763 EXPORT_SYMBOL(tcp_mmap);
1764
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1765 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1766 u32 *offset_frag)
1767 {
1768 skb_frag_t *frag;
1769
1770 if (unlikely(offset_skb >= skb->len))
1771 return NULL;
1772
1773 offset_skb -= skb_headlen(skb);
1774 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1775 return NULL;
1776
1777 frag = skb_shinfo(skb)->frags;
1778 while (offset_skb) {
1779 if (skb_frag_size(frag) > offset_skb) {
1780 *offset_frag = offset_skb;
1781 return frag;
1782 }
1783 offset_skb -= skb_frag_size(frag);
1784 ++frag;
1785 }
1786 *offset_frag = 0;
1787 return frag;
1788 }
1789
can_map_frag(const skb_frag_t * frag)1790 static bool can_map_frag(const skb_frag_t *frag)
1791 {
1792 struct page *page;
1793
1794 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1795 return false;
1796
1797 page = skb_frag_page(frag);
1798
1799 if (PageCompound(page) || page->mapping)
1800 return false;
1801
1802 return true;
1803 }
1804
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1805 static int find_next_mappable_frag(const skb_frag_t *frag,
1806 int remaining_in_skb)
1807 {
1808 int offset = 0;
1809
1810 if (likely(can_map_frag(frag)))
1811 return 0;
1812
1813 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1814 offset += skb_frag_size(frag);
1815 ++frag;
1816 }
1817 return offset;
1818 }
1819
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1820 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1821 struct tcp_zerocopy_receive *zc,
1822 struct sk_buff *skb, u32 offset)
1823 {
1824 u32 frag_offset, partial_frag_remainder = 0;
1825 int mappable_offset;
1826 skb_frag_t *frag;
1827
1828 /* worst case: skip to next skb. try to improve on this case below */
1829 zc->recv_skip_hint = skb->len - offset;
1830
1831 /* Find the frag containing this offset (and how far into that frag) */
1832 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1833 if (!frag)
1834 return;
1835
1836 if (frag_offset) {
1837 struct skb_shared_info *info = skb_shinfo(skb);
1838
1839 /* We read part of the last frag, must recvmsg() rest of skb. */
1840 if (frag == &info->frags[info->nr_frags - 1])
1841 return;
1842
1843 /* Else, we must at least read the remainder in this frag. */
1844 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1845 zc->recv_skip_hint -= partial_frag_remainder;
1846 ++frag;
1847 }
1848
1849 /* partial_frag_remainder: If part way through a frag, must read rest.
1850 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1851 * in partial_frag_remainder.
1852 */
1853 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1854 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1855 }
1856
1857 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1858 int flags, struct scm_timestamping_internal *tss,
1859 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1860 static int receive_fallback_to_copy(struct sock *sk,
1861 struct tcp_zerocopy_receive *zc, int inq,
1862 struct scm_timestamping_internal *tss)
1863 {
1864 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1865 struct msghdr msg = {};
1866 struct iovec iov;
1867 int err;
1868
1869 zc->length = 0;
1870 zc->recv_skip_hint = 0;
1871
1872 if (copy_address != zc->copybuf_address)
1873 return -EINVAL;
1874
1875 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1876 inq, &iov, &msg.msg_iter);
1877 if (err)
1878 return err;
1879
1880 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1881 tss, &zc->msg_flags);
1882 if (err < 0)
1883 return err;
1884
1885 zc->copybuf_len = err;
1886 if (likely(zc->copybuf_len)) {
1887 struct sk_buff *skb;
1888 u32 offset;
1889
1890 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1891 if (skb)
1892 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1893 }
1894 return 0;
1895 }
1896
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1897 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1898 struct sk_buff *skb, u32 copylen,
1899 u32 *offset, u32 *seq)
1900 {
1901 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1902 struct msghdr msg = {};
1903 struct iovec iov;
1904 int err;
1905
1906 if (copy_address != zc->copybuf_address)
1907 return -EINVAL;
1908
1909 err = import_single_range(ITER_DEST, (void __user *)copy_address,
1910 copylen, &iov, &msg.msg_iter);
1911 if (err)
1912 return err;
1913 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1914 if (err)
1915 return err;
1916 zc->recv_skip_hint -= copylen;
1917 *offset += copylen;
1918 *seq += copylen;
1919 return (__s32)copylen;
1920 }
1921
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1922 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1923 struct sock *sk,
1924 struct sk_buff *skb,
1925 u32 *seq,
1926 s32 copybuf_len,
1927 struct scm_timestamping_internal *tss)
1928 {
1929 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1930
1931 if (!copylen)
1932 return 0;
1933 /* skb is null if inq < PAGE_SIZE. */
1934 if (skb) {
1935 offset = *seq - TCP_SKB_CB(skb)->seq;
1936 } else {
1937 skb = tcp_recv_skb(sk, *seq, &offset);
1938 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1939 tcp_update_recv_tstamps(skb, tss);
1940 zc->msg_flags |= TCP_CMSG_TS;
1941 }
1942 }
1943
1944 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1945 seq);
1946 return zc->copybuf_len < 0 ? 0 : copylen;
1947 }
1948
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1949 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1950 struct page **pending_pages,
1951 unsigned long pages_remaining,
1952 unsigned long *address,
1953 u32 *length,
1954 u32 *seq,
1955 struct tcp_zerocopy_receive *zc,
1956 u32 total_bytes_to_map,
1957 int err)
1958 {
1959 /* At least one page did not map. Try zapping if we skipped earlier. */
1960 if (err == -EBUSY &&
1961 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1962 u32 maybe_zap_len;
1963
1964 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1965 *length + /* Mapped or pending */
1966 (pages_remaining * PAGE_SIZE); /* Failed map. */
1967 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1968 err = 0;
1969 }
1970
1971 if (!err) {
1972 unsigned long leftover_pages = pages_remaining;
1973 int bytes_mapped;
1974
1975 /* We called zap_page_range_single, try to reinsert. */
1976 err = vm_insert_pages(vma, *address,
1977 pending_pages,
1978 &pages_remaining);
1979 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1980 *seq += bytes_mapped;
1981 *address += bytes_mapped;
1982 }
1983 if (err) {
1984 /* Either we were unable to zap, OR we zapped, retried an
1985 * insert, and still had an issue. Either ways, pages_remaining
1986 * is the number of pages we were unable to map, and we unroll
1987 * some state we speculatively touched before.
1988 */
1989 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1990
1991 *length -= bytes_not_mapped;
1992 zc->recv_skip_hint += bytes_not_mapped;
1993 }
1994 return err;
1995 }
1996
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)1997 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1998 struct page **pages,
1999 unsigned int pages_to_map,
2000 unsigned long *address,
2001 u32 *length,
2002 u32 *seq,
2003 struct tcp_zerocopy_receive *zc,
2004 u32 total_bytes_to_map)
2005 {
2006 unsigned long pages_remaining = pages_to_map;
2007 unsigned int pages_mapped;
2008 unsigned int bytes_mapped;
2009 int err;
2010
2011 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2012 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2013 bytes_mapped = PAGE_SIZE * pages_mapped;
2014 /* Even if vm_insert_pages fails, it may have partially succeeded in
2015 * mapping (some but not all of the pages).
2016 */
2017 *seq += bytes_mapped;
2018 *address += bytes_mapped;
2019
2020 if (likely(!err))
2021 return 0;
2022
2023 /* Error: maybe zap and retry + rollback state for failed inserts. */
2024 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2025 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2026 err);
2027 }
2028
2029 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2030 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2031 struct tcp_zerocopy_receive *zc,
2032 struct scm_timestamping_internal *tss)
2033 {
2034 unsigned long msg_control_addr;
2035 struct msghdr cmsg_dummy;
2036
2037 msg_control_addr = (unsigned long)zc->msg_control;
2038 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2039 cmsg_dummy.msg_controllen =
2040 (__kernel_size_t)zc->msg_controllen;
2041 cmsg_dummy.msg_flags = in_compat_syscall()
2042 ? MSG_CMSG_COMPAT : 0;
2043 cmsg_dummy.msg_control_is_user = true;
2044 zc->msg_flags = 0;
2045 if (zc->msg_control == msg_control_addr &&
2046 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2047 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2048 zc->msg_control = (__u64)
2049 ((uintptr_t)cmsg_dummy.msg_control_user);
2050 zc->msg_controllen =
2051 (__u64)cmsg_dummy.msg_controllen;
2052 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2053 }
2054 }
2055
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2056 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2057 unsigned long address,
2058 bool *mmap_locked)
2059 {
2060 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2061
2062 if (vma) {
2063 if (vma->vm_ops != &tcp_vm_ops) {
2064 vma_end_read(vma);
2065 return NULL;
2066 }
2067 *mmap_locked = false;
2068 return vma;
2069 }
2070
2071 mmap_read_lock(mm);
2072 vma = vma_lookup(mm, address);
2073 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2074 mmap_read_unlock(mm);
2075 return NULL;
2076 }
2077 *mmap_locked = true;
2078 return vma;
2079 }
2080
2081 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2082 static int tcp_zerocopy_receive(struct sock *sk,
2083 struct tcp_zerocopy_receive *zc,
2084 struct scm_timestamping_internal *tss)
2085 {
2086 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2087 unsigned long address = (unsigned long)zc->address;
2088 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2089 s32 copybuf_len = zc->copybuf_len;
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 const skb_frag_t *frags = NULL;
2092 unsigned int pages_to_map = 0;
2093 struct vm_area_struct *vma;
2094 struct sk_buff *skb = NULL;
2095 u32 seq = tp->copied_seq;
2096 u32 total_bytes_to_map;
2097 int inq = tcp_inq(sk);
2098 bool mmap_locked;
2099 int ret;
2100
2101 zc->copybuf_len = 0;
2102 zc->msg_flags = 0;
2103
2104 if (address & (PAGE_SIZE - 1) || address != zc->address)
2105 return -EINVAL;
2106
2107 if (sk->sk_state == TCP_LISTEN)
2108 return -ENOTCONN;
2109
2110 sock_rps_record_flow(sk);
2111
2112 if (inq && inq <= copybuf_len)
2113 return receive_fallback_to_copy(sk, zc, inq, tss);
2114
2115 if (inq < PAGE_SIZE) {
2116 zc->length = 0;
2117 zc->recv_skip_hint = inq;
2118 if (!inq && sock_flag(sk, SOCK_DONE))
2119 return -EIO;
2120 return 0;
2121 }
2122
2123 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2124 if (!vma)
2125 return -EINVAL;
2126
2127 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2128 avail_len = min_t(u32, vma_len, inq);
2129 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2130 if (total_bytes_to_map) {
2131 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2132 zap_page_range_single(vma, address, total_bytes_to_map,
2133 NULL);
2134 zc->length = total_bytes_to_map;
2135 zc->recv_skip_hint = 0;
2136 } else {
2137 zc->length = avail_len;
2138 zc->recv_skip_hint = avail_len;
2139 }
2140 ret = 0;
2141 while (length + PAGE_SIZE <= zc->length) {
2142 int mappable_offset;
2143 struct page *page;
2144
2145 if (zc->recv_skip_hint < PAGE_SIZE) {
2146 u32 offset_frag;
2147
2148 if (skb) {
2149 if (zc->recv_skip_hint > 0)
2150 break;
2151 skb = skb->next;
2152 offset = seq - TCP_SKB_CB(skb)->seq;
2153 } else {
2154 skb = tcp_recv_skb(sk, seq, &offset);
2155 }
2156
2157 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2158 tcp_update_recv_tstamps(skb, tss);
2159 zc->msg_flags |= TCP_CMSG_TS;
2160 }
2161 zc->recv_skip_hint = skb->len - offset;
2162 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2163 if (!frags || offset_frag)
2164 break;
2165 }
2166
2167 mappable_offset = find_next_mappable_frag(frags,
2168 zc->recv_skip_hint);
2169 if (mappable_offset) {
2170 zc->recv_skip_hint = mappable_offset;
2171 break;
2172 }
2173 page = skb_frag_page(frags);
2174 prefetchw(page);
2175 pages[pages_to_map++] = page;
2176 length += PAGE_SIZE;
2177 zc->recv_skip_hint -= PAGE_SIZE;
2178 frags++;
2179 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2180 zc->recv_skip_hint < PAGE_SIZE) {
2181 /* Either full batch, or we're about to go to next skb
2182 * (and we cannot unroll failed ops across skbs).
2183 */
2184 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2185 pages_to_map,
2186 &address, &length,
2187 &seq, zc,
2188 total_bytes_to_map);
2189 if (ret)
2190 goto out;
2191 pages_to_map = 0;
2192 }
2193 }
2194 if (pages_to_map) {
2195 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2196 &address, &length, &seq,
2197 zc, total_bytes_to_map);
2198 }
2199 out:
2200 if (mmap_locked)
2201 mmap_read_unlock(current->mm);
2202 else
2203 vma_end_read(vma);
2204 /* Try to copy straggler data. */
2205 if (!ret)
2206 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2207
2208 if (length + copylen) {
2209 WRITE_ONCE(tp->copied_seq, seq);
2210 tcp_rcv_space_adjust(sk);
2211
2212 /* Clean up data we have read: This will do ACK frames. */
2213 tcp_recv_skb(sk, seq, &offset);
2214 tcp_cleanup_rbuf(sk, length + copylen);
2215 ret = 0;
2216 if (length == zc->length)
2217 zc->recv_skip_hint = 0;
2218 } else {
2219 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2220 ret = -EIO;
2221 }
2222 zc->length = length;
2223 return ret;
2224 }
2225 #endif
2226
2227 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2228 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2229 struct scm_timestamping_internal *tss)
2230 {
2231 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2232 bool has_timestamping = false;
2233
2234 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2235 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2236 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2237 if (new_tstamp) {
2238 struct __kernel_timespec kts = {
2239 .tv_sec = tss->ts[0].tv_sec,
2240 .tv_nsec = tss->ts[0].tv_nsec,
2241 };
2242 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2243 sizeof(kts), &kts);
2244 } else {
2245 struct __kernel_old_timespec ts_old = {
2246 .tv_sec = tss->ts[0].tv_sec,
2247 .tv_nsec = tss->ts[0].tv_nsec,
2248 };
2249 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2250 sizeof(ts_old), &ts_old);
2251 }
2252 } else {
2253 if (new_tstamp) {
2254 struct __kernel_sock_timeval stv = {
2255 .tv_sec = tss->ts[0].tv_sec,
2256 .tv_usec = tss->ts[0].tv_nsec / 1000,
2257 };
2258 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2259 sizeof(stv), &stv);
2260 } else {
2261 struct __kernel_old_timeval tv = {
2262 .tv_sec = tss->ts[0].tv_sec,
2263 .tv_usec = tss->ts[0].tv_nsec / 1000,
2264 };
2265 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2266 sizeof(tv), &tv);
2267 }
2268 }
2269 }
2270
2271 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2272 has_timestamping = true;
2273 else
2274 tss->ts[0] = (struct timespec64) {0};
2275 }
2276
2277 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2278 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2279 has_timestamping = true;
2280 else
2281 tss->ts[2] = (struct timespec64) {0};
2282 }
2283
2284 if (has_timestamping) {
2285 tss->ts[1] = (struct timespec64) {0};
2286 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2287 put_cmsg_scm_timestamping64(msg, tss);
2288 else
2289 put_cmsg_scm_timestamping(msg, tss);
2290 }
2291 }
2292
tcp_inq_hint(struct sock * sk)2293 static int tcp_inq_hint(struct sock *sk)
2294 {
2295 const struct tcp_sock *tp = tcp_sk(sk);
2296 u32 copied_seq = READ_ONCE(tp->copied_seq);
2297 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2298 int inq;
2299
2300 inq = rcv_nxt - copied_seq;
2301 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2302 lock_sock(sk);
2303 inq = tp->rcv_nxt - tp->copied_seq;
2304 release_sock(sk);
2305 }
2306 /* After receiving a FIN, tell the user-space to continue reading
2307 * by returning a non-zero inq.
2308 */
2309 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2310 inq = 1;
2311 return inq;
2312 }
2313
2314 /*
2315 * This routine copies from a sock struct into the user buffer.
2316 *
2317 * Technical note: in 2.3 we work on _locked_ socket, so that
2318 * tricks with *seq access order and skb->users are not required.
2319 * Probably, code can be easily improved even more.
2320 */
2321
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2322 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2323 int flags, struct scm_timestamping_internal *tss,
2324 int *cmsg_flags)
2325 {
2326 struct tcp_sock *tp = tcp_sk(sk);
2327 int copied = 0;
2328 u32 peek_seq;
2329 u32 *seq;
2330 unsigned long used;
2331 int err;
2332 int target; /* Read at least this many bytes */
2333 long timeo;
2334 struct sk_buff *skb, *last;
2335 u32 urg_hole = 0;
2336
2337 err = -ENOTCONN;
2338 if (sk->sk_state == TCP_LISTEN)
2339 goto out;
2340
2341 if (tp->recvmsg_inq) {
2342 *cmsg_flags = TCP_CMSG_INQ;
2343 msg->msg_get_inq = 1;
2344 }
2345 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2346
2347 /* Urgent data needs to be handled specially. */
2348 if (flags & MSG_OOB)
2349 goto recv_urg;
2350
2351 if (unlikely(tp->repair)) {
2352 err = -EPERM;
2353 if (!(flags & MSG_PEEK))
2354 goto out;
2355
2356 if (tp->repair_queue == TCP_SEND_QUEUE)
2357 goto recv_sndq;
2358
2359 err = -EINVAL;
2360 if (tp->repair_queue == TCP_NO_QUEUE)
2361 goto out;
2362
2363 /* 'common' recv queue MSG_PEEK-ing */
2364 }
2365
2366 seq = &tp->copied_seq;
2367 if (flags & MSG_PEEK) {
2368 peek_seq = tp->copied_seq;
2369 seq = &peek_seq;
2370 }
2371
2372 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2373
2374 do {
2375 u32 offset;
2376
2377 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2378 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2379 if (copied)
2380 break;
2381 if (signal_pending(current)) {
2382 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2383 break;
2384 }
2385 }
2386
2387 /* Next get a buffer. */
2388
2389 last = skb_peek_tail(&sk->sk_receive_queue);
2390 skb_queue_walk(&sk->sk_receive_queue, skb) {
2391 last = skb;
2392 /* Now that we have two receive queues this
2393 * shouldn't happen.
2394 */
2395 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2396 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2397 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2398 flags))
2399 break;
2400
2401 offset = *seq - TCP_SKB_CB(skb)->seq;
2402 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2403 pr_err_once("%s: found a SYN, please report !\n", __func__);
2404 offset--;
2405 }
2406 if (offset < skb->len)
2407 goto found_ok_skb;
2408 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2409 goto found_fin_ok;
2410 WARN(!(flags & MSG_PEEK),
2411 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2412 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2413 }
2414
2415 /* Well, if we have backlog, try to process it now yet. */
2416
2417 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2418 break;
2419
2420 if (copied) {
2421 if (!timeo ||
2422 sk->sk_err ||
2423 sk->sk_state == TCP_CLOSE ||
2424 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2425 signal_pending(current))
2426 break;
2427 } else {
2428 if (sock_flag(sk, SOCK_DONE))
2429 break;
2430
2431 if (sk->sk_err) {
2432 copied = sock_error(sk);
2433 break;
2434 }
2435
2436 if (sk->sk_shutdown & RCV_SHUTDOWN)
2437 break;
2438
2439 if (sk->sk_state == TCP_CLOSE) {
2440 /* This occurs when user tries to read
2441 * from never connected socket.
2442 */
2443 copied = -ENOTCONN;
2444 break;
2445 }
2446
2447 if (!timeo) {
2448 copied = -EAGAIN;
2449 break;
2450 }
2451
2452 if (signal_pending(current)) {
2453 copied = sock_intr_errno(timeo);
2454 break;
2455 }
2456 }
2457
2458 if (copied >= target) {
2459 /* Do not sleep, just process backlog. */
2460 __sk_flush_backlog(sk);
2461 } else {
2462 tcp_cleanup_rbuf(sk, copied);
2463 err = sk_wait_data(sk, &timeo, last);
2464 if (err < 0) {
2465 err = copied ? : err;
2466 goto out;
2467 }
2468 }
2469
2470 if ((flags & MSG_PEEK) &&
2471 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2472 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2473 current->comm,
2474 task_pid_nr(current));
2475 peek_seq = tp->copied_seq;
2476 }
2477 continue;
2478
2479 found_ok_skb:
2480 /* Ok so how much can we use? */
2481 used = skb->len - offset;
2482 if (len < used)
2483 used = len;
2484
2485 /* Do we have urgent data here? */
2486 if (unlikely(tp->urg_data)) {
2487 u32 urg_offset = tp->urg_seq - *seq;
2488 if (urg_offset < used) {
2489 if (!urg_offset) {
2490 if (!sock_flag(sk, SOCK_URGINLINE)) {
2491 WRITE_ONCE(*seq, *seq + 1);
2492 urg_hole++;
2493 offset++;
2494 used--;
2495 if (!used)
2496 goto skip_copy;
2497 }
2498 } else
2499 used = urg_offset;
2500 }
2501 }
2502
2503 if (!(flags & MSG_TRUNC)) {
2504 err = skb_copy_datagram_msg(skb, offset, msg, used);
2505 if (err) {
2506 /* Exception. Bailout! */
2507 if (!copied)
2508 copied = -EFAULT;
2509 break;
2510 }
2511 }
2512
2513 WRITE_ONCE(*seq, *seq + used);
2514 copied += used;
2515 len -= used;
2516
2517 tcp_rcv_space_adjust(sk);
2518
2519 skip_copy:
2520 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2521 WRITE_ONCE(tp->urg_data, 0);
2522 tcp_fast_path_check(sk);
2523 }
2524
2525 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2526 tcp_update_recv_tstamps(skb, tss);
2527 *cmsg_flags |= TCP_CMSG_TS;
2528 }
2529
2530 if (used + offset < skb->len)
2531 continue;
2532
2533 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2534 goto found_fin_ok;
2535 if (!(flags & MSG_PEEK))
2536 tcp_eat_recv_skb(sk, skb);
2537 continue;
2538
2539 found_fin_ok:
2540 /* Process the FIN. */
2541 WRITE_ONCE(*seq, *seq + 1);
2542 if (!(flags & MSG_PEEK))
2543 tcp_eat_recv_skb(sk, skb);
2544 break;
2545 } while (len > 0);
2546
2547 /* According to UNIX98, msg_name/msg_namelen are ignored
2548 * on connected socket. I was just happy when found this 8) --ANK
2549 */
2550
2551 /* Clean up data we have read: This will do ACK frames. */
2552 tcp_cleanup_rbuf(sk, copied);
2553 return copied;
2554
2555 out:
2556 return err;
2557
2558 recv_urg:
2559 err = tcp_recv_urg(sk, msg, len, flags);
2560 goto out;
2561
2562 recv_sndq:
2563 err = tcp_peek_sndq(sk, msg, len);
2564 goto out;
2565 }
2566
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2567 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2568 int *addr_len)
2569 {
2570 int cmsg_flags = 0, ret;
2571 struct scm_timestamping_internal tss;
2572
2573 if (unlikely(flags & MSG_ERRQUEUE))
2574 return inet_recv_error(sk, msg, len, addr_len);
2575
2576 if (sk_can_busy_loop(sk) &&
2577 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2578 sk->sk_state == TCP_ESTABLISHED)
2579 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2580
2581 lock_sock(sk);
2582 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2583 release_sock(sk);
2584
2585 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2586 if (cmsg_flags & TCP_CMSG_TS)
2587 tcp_recv_timestamp(msg, sk, &tss);
2588 if (msg->msg_get_inq) {
2589 msg->msg_inq = tcp_inq_hint(sk);
2590 if (cmsg_flags & TCP_CMSG_INQ)
2591 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2592 sizeof(msg->msg_inq), &msg->msg_inq);
2593 }
2594 }
2595 return ret;
2596 }
2597 EXPORT_SYMBOL(tcp_recvmsg);
2598
tcp_set_state(struct sock * sk,int state)2599 void tcp_set_state(struct sock *sk, int state)
2600 {
2601 int oldstate = sk->sk_state;
2602
2603 /* We defined a new enum for TCP states that are exported in BPF
2604 * so as not force the internal TCP states to be frozen. The
2605 * following checks will detect if an internal state value ever
2606 * differs from the BPF value. If this ever happens, then we will
2607 * need to remap the internal value to the BPF value before calling
2608 * tcp_call_bpf_2arg.
2609 */
2610 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2611 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2612 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2613 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2614 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2615 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2616 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2617 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2618 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2619 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2620 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2621 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2622 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2623
2624 /* bpf uapi header bpf.h defines an anonymous enum with values
2625 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2626 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2627 * But clang built vmlinux does not have this enum in DWARF
2628 * since clang removes the above code before generating IR/debuginfo.
2629 * Let us explicitly emit the type debuginfo to ensure the
2630 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2631 * regardless of which compiler is used.
2632 */
2633 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2634
2635 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2636 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2637
2638 switch (state) {
2639 case TCP_ESTABLISHED:
2640 if (oldstate != TCP_ESTABLISHED)
2641 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2642 break;
2643 case TCP_CLOSE_WAIT:
2644 if (oldstate == TCP_SYN_RECV)
2645 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2646 break;
2647
2648 case TCP_CLOSE:
2649 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2650 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2651
2652 sk->sk_prot->unhash(sk);
2653 if (inet_csk(sk)->icsk_bind_hash &&
2654 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2655 inet_put_port(sk);
2656 fallthrough;
2657 default:
2658 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2659 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2660 }
2661
2662 /* Change state AFTER socket is unhashed to avoid closed
2663 * socket sitting in hash tables.
2664 */
2665 inet_sk_state_store(sk, state);
2666 }
2667 EXPORT_SYMBOL_GPL(tcp_set_state);
2668
2669 /*
2670 * State processing on a close. This implements the state shift for
2671 * sending our FIN frame. Note that we only send a FIN for some
2672 * states. A shutdown() may have already sent the FIN, or we may be
2673 * closed.
2674 */
2675
2676 static const unsigned char new_state[16] = {
2677 /* current state: new state: action: */
2678 [0 /* (Invalid) */] = TCP_CLOSE,
2679 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2680 [TCP_SYN_SENT] = TCP_CLOSE,
2681 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2682 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2683 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2684 [TCP_TIME_WAIT] = TCP_CLOSE,
2685 [TCP_CLOSE] = TCP_CLOSE,
2686 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2687 [TCP_LAST_ACK] = TCP_LAST_ACK,
2688 [TCP_LISTEN] = TCP_CLOSE,
2689 [TCP_CLOSING] = TCP_CLOSING,
2690 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2691 };
2692
tcp_close_state(struct sock * sk)2693 static int tcp_close_state(struct sock *sk)
2694 {
2695 int next = (int)new_state[sk->sk_state];
2696 int ns = next & TCP_STATE_MASK;
2697
2698 tcp_set_state(sk, ns);
2699
2700 return next & TCP_ACTION_FIN;
2701 }
2702
2703 /*
2704 * Shutdown the sending side of a connection. Much like close except
2705 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2706 */
2707
tcp_shutdown(struct sock * sk,int how)2708 void tcp_shutdown(struct sock *sk, int how)
2709 {
2710 /* We need to grab some memory, and put together a FIN,
2711 * and then put it into the queue to be sent.
2712 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2713 */
2714 if (!(how & SEND_SHUTDOWN))
2715 return;
2716
2717 /* If we've already sent a FIN, or it's a closed state, skip this. */
2718 if ((1 << sk->sk_state) &
2719 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2720 TCPF_CLOSE_WAIT)) {
2721 /* Clear out any half completed packets. FIN if needed. */
2722 if (tcp_close_state(sk))
2723 tcp_send_fin(sk);
2724 }
2725 }
2726 EXPORT_SYMBOL(tcp_shutdown);
2727
tcp_orphan_count_sum(void)2728 int tcp_orphan_count_sum(void)
2729 {
2730 int i, total = 0;
2731
2732 for_each_possible_cpu(i)
2733 total += per_cpu(tcp_orphan_count, i);
2734
2735 return max(total, 0);
2736 }
2737
2738 static int tcp_orphan_cache;
2739 static struct timer_list tcp_orphan_timer;
2740 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2741
tcp_orphan_update(struct timer_list * unused)2742 static void tcp_orphan_update(struct timer_list *unused)
2743 {
2744 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2745 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2746 }
2747
tcp_too_many_orphans(int shift)2748 static bool tcp_too_many_orphans(int shift)
2749 {
2750 return READ_ONCE(tcp_orphan_cache) << shift >
2751 READ_ONCE(sysctl_tcp_max_orphans);
2752 }
2753
tcp_check_oom(struct sock * sk,int shift)2754 bool tcp_check_oom(struct sock *sk, int shift)
2755 {
2756 bool too_many_orphans, out_of_socket_memory;
2757
2758 too_many_orphans = tcp_too_many_orphans(shift);
2759 out_of_socket_memory = tcp_out_of_memory(sk);
2760
2761 if (too_many_orphans)
2762 net_info_ratelimited("too many orphaned sockets\n");
2763 if (out_of_socket_memory)
2764 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2765 return too_many_orphans || out_of_socket_memory;
2766 }
2767
__tcp_close(struct sock * sk,long timeout)2768 void __tcp_close(struct sock *sk, long timeout)
2769 {
2770 struct sk_buff *skb;
2771 int data_was_unread = 0;
2772 int state;
2773
2774 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2775
2776 if (sk->sk_state == TCP_LISTEN) {
2777 tcp_set_state(sk, TCP_CLOSE);
2778
2779 /* Special case. */
2780 inet_csk_listen_stop(sk);
2781
2782 goto adjudge_to_death;
2783 }
2784
2785 /* We need to flush the recv. buffs. We do this only on the
2786 * descriptor close, not protocol-sourced closes, because the
2787 * reader process may not have drained the data yet!
2788 */
2789 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2790 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2791
2792 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2793 len--;
2794 data_was_unread += len;
2795 __kfree_skb(skb);
2796 }
2797
2798 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2799 if (sk->sk_state == TCP_CLOSE)
2800 goto adjudge_to_death;
2801
2802 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2803 * data was lost. To witness the awful effects of the old behavior of
2804 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2805 * GET in an FTP client, suspend the process, wait for the client to
2806 * advertise a zero window, then kill -9 the FTP client, wheee...
2807 * Note: timeout is always zero in such a case.
2808 */
2809 if (unlikely(tcp_sk(sk)->repair)) {
2810 sk->sk_prot->disconnect(sk, 0);
2811 } else if (data_was_unread) {
2812 /* Unread data was tossed, zap the connection. */
2813 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2814 tcp_set_state(sk, TCP_CLOSE);
2815 tcp_send_active_reset(sk, sk->sk_allocation);
2816 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2817 /* Check zero linger _after_ checking for unread data. */
2818 sk->sk_prot->disconnect(sk, 0);
2819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2820 } else if (tcp_close_state(sk)) {
2821 /* We FIN if the application ate all the data before
2822 * zapping the connection.
2823 */
2824
2825 /* RED-PEN. Formally speaking, we have broken TCP state
2826 * machine. State transitions:
2827 *
2828 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2829 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
2830 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2831 *
2832 * are legal only when FIN has been sent (i.e. in window),
2833 * rather than queued out of window. Purists blame.
2834 *
2835 * F.e. "RFC state" is ESTABLISHED,
2836 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2837 *
2838 * The visible declinations are that sometimes
2839 * we enter time-wait state, when it is not required really
2840 * (harmless), do not send active resets, when they are
2841 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2842 * they look as CLOSING or LAST_ACK for Linux)
2843 * Probably, I missed some more holelets.
2844 * --ANK
2845 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2846 * in a single packet! (May consider it later but will
2847 * probably need API support or TCP_CORK SYN-ACK until
2848 * data is written and socket is closed.)
2849 */
2850 tcp_send_fin(sk);
2851 }
2852
2853 sk_stream_wait_close(sk, timeout);
2854
2855 adjudge_to_death:
2856 state = sk->sk_state;
2857 sock_hold(sk);
2858 sock_orphan(sk);
2859
2860 local_bh_disable();
2861 bh_lock_sock(sk);
2862 /* remove backlog if any, without releasing ownership. */
2863 __release_sock(sk);
2864
2865 this_cpu_inc(tcp_orphan_count);
2866
2867 /* Have we already been destroyed by a softirq or backlog? */
2868 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2869 goto out;
2870
2871 /* This is a (useful) BSD violating of the RFC. There is a
2872 * problem with TCP as specified in that the other end could
2873 * keep a socket open forever with no application left this end.
2874 * We use a 1 minute timeout (about the same as BSD) then kill
2875 * our end. If they send after that then tough - BUT: long enough
2876 * that we won't make the old 4*rto = almost no time - whoops
2877 * reset mistake.
2878 *
2879 * Nope, it was not mistake. It is really desired behaviour
2880 * f.e. on http servers, when such sockets are useless, but
2881 * consume significant resources. Let's do it with special
2882 * linger2 option. --ANK
2883 */
2884
2885 if (sk->sk_state == TCP_FIN_WAIT2) {
2886 struct tcp_sock *tp = tcp_sk(sk);
2887 if (READ_ONCE(tp->linger2) < 0) {
2888 tcp_set_state(sk, TCP_CLOSE);
2889 tcp_send_active_reset(sk, GFP_ATOMIC);
2890 __NET_INC_STATS(sock_net(sk),
2891 LINUX_MIB_TCPABORTONLINGER);
2892 } else {
2893 const int tmo = tcp_fin_time(sk);
2894
2895 if (tmo > TCP_TIMEWAIT_LEN) {
2896 inet_csk_reset_keepalive_timer(sk,
2897 tmo - TCP_TIMEWAIT_LEN);
2898 } else {
2899 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2900 goto out;
2901 }
2902 }
2903 }
2904 if (sk->sk_state != TCP_CLOSE) {
2905 if (tcp_check_oom(sk, 0)) {
2906 tcp_set_state(sk, TCP_CLOSE);
2907 tcp_send_active_reset(sk, GFP_ATOMIC);
2908 __NET_INC_STATS(sock_net(sk),
2909 LINUX_MIB_TCPABORTONMEMORY);
2910 } else if (!check_net(sock_net(sk))) {
2911 /* Not possible to send reset; just close */
2912 tcp_set_state(sk, TCP_CLOSE);
2913 }
2914 }
2915
2916 if (sk->sk_state == TCP_CLOSE) {
2917 struct request_sock *req;
2918
2919 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2920 lockdep_sock_is_held(sk));
2921 /* We could get here with a non-NULL req if the socket is
2922 * aborted (e.g., closed with unread data) before 3WHS
2923 * finishes.
2924 */
2925 if (req)
2926 reqsk_fastopen_remove(sk, req, false);
2927 inet_csk_destroy_sock(sk);
2928 }
2929 /* Otherwise, socket is reprieved until protocol close. */
2930
2931 out:
2932 bh_unlock_sock(sk);
2933 local_bh_enable();
2934 }
2935
tcp_close(struct sock * sk,long timeout)2936 void tcp_close(struct sock *sk, long timeout)
2937 {
2938 lock_sock(sk);
2939 __tcp_close(sk, timeout);
2940 release_sock(sk);
2941 if (!sk->sk_net_refcnt)
2942 inet_csk_clear_xmit_timers_sync(sk);
2943 sock_put(sk);
2944 }
2945 EXPORT_SYMBOL(tcp_close);
2946
2947 /* These states need RST on ABORT according to RFC793 */
2948
tcp_need_reset(int state)2949 static inline bool tcp_need_reset(int state)
2950 {
2951 return (1 << state) &
2952 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2953 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2954 }
2955
tcp_rtx_queue_purge(struct sock * sk)2956 static void tcp_rtx_queue_purge(struct sock *sk)
2957 {
2958 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2959
2960 tcp_sk(sk)->highest_sack = NULL;
2961 while (p) {
2962 struct sk_buff *skb = rb_to_skb(p);
2963
2964 p = rb_next(p);
2965 /* Since we are deleting whole queue, no need to
2966 * list_del(&skb->tcp_tsorted_anchor)
2967 */
2968 tcp_rtx_queue_unlink(skb, sk);
2969 tcp_wmem_free_skb(sk, skb);
2970 }
2971 }
2972
tcp_write_queue_purge(struct sock * sk)2973 void tcp_write_queue_purge(struct sock *sk)
2974 {
2975 struct sk_buff *skb;
2976
2977 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2978 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2979 tcp_skb_tsorted_anchor_cleanup(skb);
2980 tcp_wmem_free_skb(sk, skb);
2981 }
2982 tcp_rtx_queue_purge(sk);
2983 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2984 tcp_clear_all_retrans_hints(tcp_sk(sk));
2985 tcp_sk(sk)->packets_out = 0;
2986 inet_csk(sk)->icsk_backoff = 0;
2987 }
2988
tcp_disconnect(struct sock * sk,int flags)2989 int tcp_disconnect(struct sock *sk, int flags)
2990 {
2991 struct inet_sock *inet = inet_sk(sk);
2992 struct inet_connection_sock *icsk = inet_csk(sk);
2993 struct tcp_sock *tp = tcp_sk(sk);
2994 int old_state = sk->sk_state;
2995 u32 seq;
2996
2997 if (old_state != TCP_CLOSE)
2998 tcp_set_state(sk, TCP_CLOSE);
2999
3000 /* ABORT function of RFC793 */
3001 if (old_state == TCP_LISTEN) {
3002 inet_csk_listen_stop(sk);
3003 } else if (unlikely(tp->repair)) {
3004 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3005 } else if (tcp_need_reset(old_state) ||
3006 (tp->snd_nxt != tp->write_seq &&
3007 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3008 /* The last check adjusts for discrepancy of Linux wrt. RFC
3009 * states
3010 */
3011 tcp_send_active_reset(sk, gfp_any());
3012 WRITE_ONCE(sk->sk_err, ECONNRESET);
3013 } else if (old_state == TCP_SYN_SENT)
3014 WRITE_ONCE(sk->sk_err, ECONNRESET);
3015
3016 tcp_clear_xmit_timers(sk);
3017 __skb_queue_purge(&sk->sk_receive_queue);
3018 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3019 WRITE_ONCE(tp->urg_data, 0);
3020 tcp_write_queue_purge(sk);
3021 tcp_fastopen_active_disable_ofo_check(sk);
3022 skb_rbtree_purge(&tp->out_of_order_queue);
3023
3024 inet->inet_dport = 0;
3025
3026 inet_bhash2_reset_saddr(sk);
3027
3028 WRITE_ONCE(sk->sk_shutdown, 0);
3029 sock_reset_flag(sk, SOCK_DONE);
3030 tp->srtt_us = 0;
3031 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3032 tp->rcv_rtt_last_tsecr = 0;
3033
3034 seq = tp->write_seq + tp->max_window + 2;
3035 if (!seq)
3036 seq = 1;
3037 WRITE_ONCE(tp->write_seq, seq);
3038
3039 icsk->icsk_backoff = 0;
3040 icsk->icsk_probes_out = 0;
3041 icsk->icsk_probes_tstamp = 0;
3042 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3043 icsk->icsk_rto_min = TCP_RTO_MIN;
3044 icsk->icsk_delack_max = TCP_DELACK_MAX;
3045 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3046 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3047 tp->snd_cwnd_cnt = 0;
3048 tp->is_cwnd_limited = 0;
3049 tp->max_packets_out = 0;
3050 tp->window_clamp = 0;
3051 tp->delivered = 0;
3052 tp->delivered_ce = 0;
3053 if (icsk->icsk_ca_ops->release)
3054 icsk->icsk_ca_ops->release(sk);
3055 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3056 icsk->icsk_ca_initialized = 0;
3057 tcp_set_ca_state(sk, TCP_CA_Open);
3058 tp->is_sack_reneg = 0;
3059 tcp_clear_retrans(tp);
3060 tp->total_retrans = 0;
3061 inet_csk_delack_init(sk);
3062 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3063 * issue in __tcp_select_window()
3064 */
3065 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3066 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3067 __sk_dst_reset(sk);
3068 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3069 tcp_saved_syn_free(tp);
3070 tp->compressed_ack = 0;
3071 tp->segs_in = 0;
3072 tp->segs_out = 0;
3073 tp->bytes_sent = 0;
3074 tp->bytes_acked = 0;
3075 tp->bytes_received = 0;
3076 tp->bytes_retrans = 0;
3077 tp->data_segs_in = 0;
3078 tp->data_segs_out = 0;
3079 tp->duplicate_sack[0].start_seq = 0;
3080 tp->duplicate_sack[0].end_seq = 0;
3081 tp->dsack_dups = 0;
3082 tp->reord_seen = 0;
3083 tp->retrans_out = 0;
3084 tp->sacked_out = 0;
3085 tp->tlp_high_seq = 0;
3086 tp->last_oow_ack_time = 0;
3087 tp->plb_rehash = 0;
3088 /* There's a bubble in the pipe until at least the first ACK. */
3089 tp->app_limited = ~0U;
3090 tp->rate_app_limited = 1;
3091 tp->rack.mstamp = 0;
3092 tp->rack.advanced = 0;
3093 tp->rack.reo_wnd_steps = 1;
3094 tp->rack.last_delivered = 0;
3095 tp->rack.reo_wnd_persist = 0;
3096 tp->rack.dsack_seen = 0;
3097 tp->syn_data_acked = 0;
3098 tp->rx_opt.saw_tstamp = 0;
3099 tp->rx_opt.dsack = 0;
3100 tp->rx_opt.num_sacks = 0;
3101 tp->rcv_ooopack = 0;
3102
3103
3104 /* Clean up fastopen related fields */
3105 tcp_free_fastopen_req(tp);
3106 inet_clear_bit(DEFER_CONNECT, sk);
3107 tp->fastopen_client_fail = 0;
3108
3109 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3110
3111 if (sk->sk_frag.page) {
3112 put_page(sk->sk_frag.page);
3113 sk->sk_frag.page = NULL;
3114 sk->sk_frag.offset = 0;
3115 }
3116 sk_error_report(sk);
3117 return 0;
3118 }
3119 EXPORT_SYMBOL(tcp_disconnect);
3120
tcp_can_repair_sock(const struct sock * sk)3121 static inline bool tcp_can_repair_sock(const struct sock *sk)
3122 {
3123 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3124 (sk->sk_state != TCP_LISTEN);
3125 }
3126
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3127 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3128 {
3129 struct tcp_repair_window opt;
3130
3131 if (!tp->repair)
3132 return -EPERM;
3133
3134 if (len != sizeof(opt))
3135 return -EINVAL;
3136
3137 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3138 return -EFAULT;
3139
3140 if (opt.max_window < opt.snd_wnd)
3141 return -EINVAL;
3142
3143 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3144 return -EINVAL;
3145
3146 if (after(opt.rcv_wup, tp->rcv_nxt))
3147 return -EINVAL;
3148
3149 tp->snd_wl1 = opt.snd_wl1;
3150 tp->snd_wnd = opt.snd_wnd;
3151 tp->max_window = opt.max_window;
3152
3153 tp->rcv_wnd = opt.rcv_wnd;
3154 tp->rcv_wup = opt.rcv_wup;
3155
3156 return 0;
3157 }
3158
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3159 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3160 unsigned int len)
3161 {
3162 struct tcp_sock *tp = tcp_sk(sk);
3163 struct tcp_repair_opt opt;
3164 size_t offset = 0;
3165
3166 while (len >= sizeof(opt)) {
3167 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3168 return -EFAULT;
3169
3170 offset += sizeof(opt);
3171 len -= sizeof(opt);
3172
3173 switch (opt.opt_code) {
3174 case TCPOPT_MSS:
3175 tp->rx_opt.mss_clamp = opt.opt_val;
3176 tcp_mtup_init(sk);
3177 break;
3178 case TCPOPT_WINDOW:
3179 {
3180 u16 snd_wscale = opt.opt_val & 0xFFFF;
3181 u16 rcv_wscale = opt.opt_val >> 16;
3182
3183 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3184 return -EFBIG;
3185
3186 tp->rx_opt.snd_wscale = snd_wscale;
3187 tp->rx_opt.rcv_wscale = rcv_wscale;
3188 tp->rx_opt.wscale_ok = 1;
3189 }
3190 break;
3191 case TCPOPT_SACK_PERM:
3192 if (opt.opt_val != 0)
3193 return -EINVAL;
3194
3195 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3196 break;
3197 case TCPOPT_TIMESTAMP:
3198 if (opt.opt_val != 0)
3199 return -EINVAL;
3200
3201 tp->rx_opt.tstamp_ok = 1;
3202 break;
3203 }
3204 }
3205
3206 return 0;
3207 }
3208
3209 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3210 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3211
tcp_enable_tx_delay(void)3212 static void tcp_enable_tx_delay(void)
3213 {
3214 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3215 static int __tcp_tx_delay_enabled = 0;
3216
3217 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3218 static_branch_enable(&tcp_tx_delay_enabled);
3219 pr_info("TCP_TX_DELAY enabled\n");
3220 }
3221 }
3222 }
3223
3224 /* When set indicates to always queue non-full frames. Later the user clears
3225 * this option and we transmit any pending partial frames in the queue. This is
3226 * meant to be used alongside sendfile() to get properly filled frames when the
3227 * user (for example) must write out headers with a write() call first and then
3228 * use sendfile to send out the data parts.
3229 *
3230 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3231 * TCP_NODELAY.
3232 */
__tcp_sock_set_cork(struct sock * sk,bool on)3233 void __tcp_sock_set_cork(struct sock *sk, bool on)
3234 {
3235 struct tcp_sock *tp = tcp_sk(sk);
3236
3237 if (on) {
3238 tp->nonagle |= TCP_NAGLE_CORK;
3239 } else {
3240 tp->nonagle &= ~TCP_NAGLE_CORK;
3241 if (tp->nonagle & TCP_NAGLE_OFF)
3242 tp->nonagle |= TCP_NAGLE_PUSH;
3243 tcp_push_pending_frames(sk);
3244 }
3245 }
3246
tcp_sock_set_cork(struct sock * sk,bool on)3247 void tcp_sock_set_cork(struct sock *sk, bool on)
3248 {
3249 lock_sock(sk);
3250 __tcp_sock_set_cork(sk, on);
3251 release_sock(sk);
3252 }
3253 EXPORT_SYMBOL(tcp_sock_set_cork);
3254
3255 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3256 * remembered, but it is not activated until cork is cleared.
3257 *
3258 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3259 * even TCP_CORK for currently queued segments.
3260 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3261 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3262 {
3263 if (on) {
3264 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3265 tcp_push_pending_frames(sk);
3266 } else {
3267 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3268 }
3269 }
3270
tcp_sock_set_nodelay(struct sock * sk)3271 void tcp_sock_set_nodelay(struct sock *sk)
3272 {
3273 lock_sock(sk);
3274 __tcp_sock_set_nodelay(sk, true);
3275 release_sock(sk);
3276 }
3277 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3278
__tcp_sock_set_quickack(struct sock * sk,int val)3279 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3280 {
3281 if (!val) {
3282 inet_csk_enter_pingpong_mode(sk);
3283 return;
3284 }
3285
3286 inet_csk_exit_pingpong_mode(sk);
3287 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3288 inet_csk_ack_scheduled(sk)) {
3289 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3290 tcp_cleanup_rbuf(sk, 1);
3291 if (!(val & 1))
3292 inet_csk_enter_pingpong_mode(sk);
3293 }
3294 }
3295
tcp_sock_set_quickack(struct sock * sk,int val)3296 void tcp_sock_set_quickack(struct sock *sk, int val)
3297 {
3298 lock_sock(sk);
3299 __tcp_sock_set_quickack(sk, val);
3300 release_sock(sk);
3301 }
3302 EXPORT_SYMBOL(tcp_sock_set_quickack);
3303
tcp_sock_set_syncnt(struct sock * sk,int val)3304 int tcp_sock_set_syncnt(struct sock *sk, int val)
3305 {
3306 if (val < 1 || val > MAX_TCP_SYNCNT)
3307 return -EINVAL;
3308
3309 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3310 return 0;
3311 }
3312 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3313
tcp_sock_set_user_timeout(struct sock * sk,int val)3314 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3315 {
3316 /* Cap the max time in ms TCP will retry or probe the window
3317 * before giving up and aborting (ETIMEDOUT) a connection.
3318 */
3319 if (val < 0)
3320 return -EINVAL;
3321
3322 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3323 return 0;
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3326
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3327 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3328 {
3329 struct tcp_sock *tp = tcp_sk(sk);
3330
3331 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3332 return -EINVAL;
3333
3334 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3335 WRITE_ONCE(tp->keepalive_time, val * HZ);
3336 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3337 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3338 u32 elapsed = keepalive_time_elapsed(tp);
3339
3340 if (tp->keepalive_time > elapsed)
3341 elapsed = tp->keepalive_time - elapsed;
3342 else
3343 elapsed = 0;
3344 inet_csk_reset_keepalive_timer(sk, elapsed);
3345 }
3346
3347 return 0;
3348 }
3349
tcp_sock_set_keepidle(struct sock * sk,int val)3350 int tcp_sock_set_keepidle(struct sock *sk, int val)
3351 {
3352 int err;
3353
3354 lock_sock(sk);
3355 err = tcp_sock_set_keepidle_locked(sk, val);
3356 release_sock(sk);
3357 return err;
3358 }
3359 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3360
tcp_sock_set_keepintvl(struct sock * sk,int val)3361 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3362 {
3363 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3364 return -EINVAL;
3365
3366 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3367 return 0;
3368 }
3369 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3370
tcp_sock_set_keepcnt(struct sock * sk,int val)3371 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3372 {
3373 if (val < 1 || val > MAX_TCP_KEEPCNT)
3374 return -EINVAL;
3375
3376 /* Paired with READ_ONCE() in keepalive_probes() */
3377 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3378 return 0;
3379 }
3380 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3381
tcp_set_window_clamp(struct sock * sk,int val)3382 int tcp_set_window_clamp(struct sock *sk, int val)
3383 {
3384 struct tcp_sock *tp = tcp_sk(sk);
3385
3386 if (!val) {
3387 if (sk->sk_state != TCP_CLOSE)
3388 return -EINVAL;
3389 WRITE_ONCE(tp->window_clamp, 0);
3390 } else {
3391 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3392 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3393 SOCK_MIN_RCVBUF / 2 : val;
3394
3395 if (new_window_clamp == old_window_clamp)
3396 return 0;
3397
3398 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3399 if (new_window_clamp < old_window_clamp) {
3400 /* need to apply the reserved mem provisioning only
3401 * when shrinking the window clamp
3402 */
3403 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3404
3405 } else {
3406 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3407 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3408 tp->rcv_ssthresh);
3409 }
3410 }
3411 return 0;
3412 }
3413
3414 /*
3415 * Socket option code for TCP.
3416 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3417 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3418 sockptr_t optval, unsigned int optlen)
3419 {
3420 struct tcp_sock *tp = tcp_sk(sk);
3421 struct inet_connection_sock *icsk = inet_csk(sk);
3422 struct net *net = sock_net(sk);
3423 int val;
3424 int err = 0;
3425
3426 /* These are data/string values, all the others are ints */
3427 switch (optname) {
3428 case TCP_CONGESTION: {
3429 char name[TCP_CA_NAME_MAX];
3430
3431 if (optlen < 1)
3432 return -EINVAL;
3433
3434 val = strncpy_from_sockptr(name, optval,
3435 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3436 if (val < 0)
3437 return -EFAULT;
3438 name[val] = 0;
3439
3440 sockopt_lock_sock(sk);
3441 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3442 sockopt_ns_capable(sock_net(sk)->user_ns,
3443 CAP_NET_ADMIN));
3444 sockopt_release_sock(sk);
3445 return err;
3446 }
3447 case TCP_ULP: {
3448 char name[TCP_ULP_NAME_MAX];
3449
3450 if (optlen < 1)
3451 return -EINVAL;
3452
3453 val = strncpy_from_sockptr(name, optval,
3454 min_t(long, TCP_ULP_NAME_MAX - 1,
3455 optlen));
3456 if (val < 0)
3457 return -EFAULT;
3458 name[val] = 0;
3459
3460 sockopt_lock_sock(sk);
3461 err = tcp_set_ulp(sk, name);
3462 sockopt_release_sock(sk);
3463 return err;
3464 }
3465 case TCP_FASTOPEN_KEY: {
3466 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3467 __u8 *backup_key = NULL;
3468
3469 /* Allow a backup key as well to facilitate key rotation
3470 * First key is the active one.
3471 */
3472 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3473 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3474 return -EINVAL;
3475
3476 if (copy_from_sockptr(key, optval, optlen))
3477 return -EFAULT;
3478
3479 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3480 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3481
3482 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3483 }
3484 default:
3485 /* fallthru */
3486 break;
3487 }
3488
3489 if (optlen < sizeof(int))
3490 return -EINVAL;
3491
3492 if (copy_from_sockptr(&val, optval, sizeof(val)))
3493 return -EFAULT;
3494
3495 /* Handle options that can be set without locking the socket. */
3496 switch (optname) {
3497 case TCP_SYNCNT:
3498 return tcp_sock_set_syncnt(sk, val);
3499 case TCP_USER_TIMEOUT:
3500 return tcp_sock_set_user_timeout(sk, val);
3501 case TCP_KEEPINTVL:
3502 return tcp_sock_set_keepintvl(sk, val);
3503 case TCP_KEEPCNT:
3504 return tcp_sock_set_keepcnt(sk, val);
3505 case TCP_LINGER2:
3506 if (val < 0)
3507 WRITE_ONCE(tp->linger2, -1);
3508 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3509 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3510 else
3511 WRITE_ONCE(tp->linger2, val * HZ);
3512 return 0;
3513 case TCP_DEFER_ACCEPT:
3514 /* Translate value in seconds to number of retransmits */
3515 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3516 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3517 TCP_RTO_MAX / HZ));
3518 return 0;
3519 }
3520
3521 sockopt_lock_sock(sk);
3522
3523 switch (optname) {
3524 case TCP_MAXSEG:
3525 /* Values greater than interface MTU won't take effect. However
3526 * at the point when this call is done we typically don't yet
3527 * know which interface is going to be used
3528 */
3529 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3530 err = -EINVAL;
3531 break;
3532 }
3533 tp->rx_opt.user_mss = val;
3534 break;
3535
3536 case TCP_NODELAY:
3537 __tcp_sock_set_nodelay(sk, val);
3538 break;
3539
3540 case TCP_THIN_LINEAR_TIMEOUTS:
3541 if (val < 0 || val > 1)
3542 err = -EINVAL;
3543 else
3544 tp->thin_lto = val;
3545 break;
3546
3547 case TCP_THIN_DUPACK:
3548 if (val < 0 || val > 1)
3549 err = -EINVAL;
3550 break;
3551
3552 case TCP_REPAIR:
3553 if (!tcp_can_repair_sock(sk))
3554 err = -EPERM;
3555 else if (val == TCP_REPAIR_ON) {
3556 tp->repair = 1;
3557 sk->sk_reuse = SK_FORCE_REUSE;
3558 tp->repair_queue = TCP_NO_QUEUE;
3559 } else if (val == TCP_REPAIR_OFF) {
3560 tp->repair = 0;
3561 sk->sk_reuse = SK_NO_REUSE;
3562 tcp_send_window_probe(sk);
3563 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3564 tp->repair = 0;
3565 sk->sk_reuse = SK_NO_REUSE;
3566 } else
3567 err = -EINVAL;
3568
3569 break;
3570
3571 case TCP_REPAIR_QUEUE:
3572 if (!tp->repair)
3573 err = -EPERM;
3574 else if ((unsigned int)val < TCP_QUEUES_NR)
3575 tp->repair_queue = val;
3576 else
3577 err = -EINVAL;
3578 break;
3579
3580 case TCP_QUEUE_SEQ:
3581 if (sk->sk_state != TCP_CLOSE) {
3582 err = -EPERM;
3583 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3584 if (!tcp_rtx_queue_empty(sk))
3585 err = -EPERM;
3586 else
3587 WRITE_ONCE(tp->write_seq, val);
3588 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3589 if (tp->rcv_nxt != tp->copied_seq) {
3590 err = -EPERM;
3591 } else {
3592 WRITE_ONCE(tp->rcv_nxt, val);
3593 WRITE_ONCE(tp->copied_seq, val);
3594 }
3595 } else {
3596 err = -EINVAL;
3597 }
3598 break;
3599
3600 case TCP_REPAIR_OPTIONS:
3601 if (!tp->repair)
3602 err = -EINVAL;
3603 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3604 err = tcp_repair_options_est(sk, optval, optlen);
3605 else
3606 err = -EPERM;
3607 break;
3608
3609 case TCP_CORK:
3610 __tcp_sock_set_cork(sk, val);
3611 break;
3612
3613 case TCP_KEEPIDLE:
3614 err = tcp_sock_set_keepidle_locked(sk, val);
3615 break;
3616 case TCP_SAVE_SYN:
3617 /* 0: disable, 1: enable, 2: start from ether_header */
3618 if (val < 0 || val > 2)
3619 err = -EINVAL;
3620 else
3621 tp->save_syn = val;
3622 break;
3623
3624 case TCP_WINDOW_CLAMP:
3625 err = tcp_set_window_clamp(sk, val);
3626 break;
3627
3628 case TCP_QUICKACK:
3629 __tcp_sock_set_quickack(sk, val);
3630 break;
3631
3632 #ifdef CONFIG_TCP_MD5SIG
3633 case TCP_MD5SIG:
3634 case TCP_MD5SIG_EXT:
3635 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3636 break;
3637 #endif
3638 case TCP_FASTOPEN:
3639 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3640 TCPF_LISTEN))) {
3641 tcp_fastopen_init_key_once(net);
3642
3643 fastopen_queue_tune(sk, val);
3644 } else {
3645 err = -EINVAL;
3646 }
3647 break;
3648 case TCP_FASTOPEN_CONNECT:
3649 if (val > 1 || val < 0) {
3650 err = -EINVAL;
3651 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3652 TFO_CLIENT_ENABLE) {
3653 if (sk->sk_state == TCP_CLOSE)
3654 tp->fastopen_connect = val;
3655 else
3656 err = -EINVAL;
3657 } else {
3658 err = -EOPNOTSUPP;
3659 }
3660 break;
3661 case TCP_FASTOPEN_NO_COOKIE:
3662 if (val > 1 || val < 0)
3663 err = -EINVAL;
3664 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3665 err = -EINVAL;
3666 else
3667 tp->fastopen_no_cookie = val;
3668 break;
3669 case TCP_TIMESTAMP:
3670 if (!tp->repair)
3671 err = -EPERM;
3672 else
3673 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3674 break;
3675 case TCP_REPAIR_WINDOW:
3676 err = tcp_repair_set_window(tp, optval, optlen);
3677 break;
3678 case TCP_NOTSENT_LOWAT:
3679 WRITE_ONCE(tp->notsent_lowat, val);
3680 sk->sk_write_space(sk);
3681 break;
3682 case TCP_INQ:
3683 if (val > 1 || val < 0)
3684 err = -EINVAL;
3685 else
3686 tp->recvmsg_inq = val;
3687 break;
3688 case TCP_TX_DELAY:
3689 if (val)
3690 tcp_enable_tx_delay();
3691 WRITE_ONCE(tp->tcp_tx_delay, val);
3692 break;
3693 default:
3694 err = -ENOPROTOOPT;
3695 break;
3696 }
3697
3698 sockopt_release_sock(sk);
3699 return err;
3700 }
3701
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3702 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3703 unsigned int optlen)
3704 {
3705 const struct inet_connection_sock *icsk = inet_csk(sk);
3706
3707 if (level != SOL_TCP)
3708 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3709 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3710 optval, optlen);
3711 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3712 }
3713 EXPORT_SYMBOL(tcp_setsockopt);
3714
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3715 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3716 struct tcp_info *info)
3717 {
3718 u64 stats[__TCP_CHRONO_MAX], total = 0;
3719 enum tcp_chrono i;
3720
3721 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3722 stats[i] = tp->chrono_stat[i - 1];
3723 if (i == tp->chrono_type)
3724 stats[i] += tcp_jiffies32 - tp->chrono_start;
3725 stats[i] *= USEC_PER_SEC / HZ;
3726 total += stats[i];
3727 }
3728
3729 info->tcpi_busy_time = total;
3730 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3731 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3732 }
3733
3734 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3735 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3736 {
3737 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3738 const struct inet_connection_sock *icsk = inet_csk(sk);
3739 unsigned long rate;
3740 u32 now;
3741 u64 rate64;
3742 bool slow;
3743
3744 memset(info, 0, sizeof(*info));
3745 if (sk->sk_type != SOCK_STREAM)
3746 return;
3747
3748 info->tcpi_state = inet_sk_state_load(sk);
3749
3750 /* Report meaningful fields for all TCP states, including listeners */
3751 rate = READ_ONCE(sk->sk_pacing_rate);
3752 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3753 info->tcpi_pacing_rate = rate64;
3754
3755 rate = READ_ONCE(sk->sk_max_pacing_rate);
3756 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3757 info->tcpi_max_pacing_rate = rate64;
3758
3759 info->tcpi_reordering = tp->reordering;
3760 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3761
3762 if (info->tcpi_state == TCP_LISTEN) {
3763 /* listeners aliased fields :
3764 * tcpi_unacked -> Number of children ready for accept()
3765 * tcpi_sacked -> max backlog
3766 */
3767 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3768 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3769 return;
3770 }
3771
3772 slow = lock_sock_fast(sk);
3773
3774 info->tcpi_ca_state = icsk->icsk_ca_state;
3775 info->tcpi_retransmits = icsk->icsk_retransmits;
3776 info->tcpi_probes = icsk->icsk_probes_out;
3777 info->tcpi_backoff = icsk->icsk_backoff;
3778
3779 if (tp->rx_opt.tstamp_ok)
3780 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3781 if (tcp_is_sack(tp))
3782 info->tcpi_options |= TCPI_OPT_SACK;
3783 if (tp->rx_opt.wscale_ok) {
3784 info->tcpi_options |= TCPI_OPT_WSCALE;
3785 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3786 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3787 }
3788
3789 if (tp->ecn_flags & TCP_ECN_OK)
3790 info->tcpi_options |= TCPI_OPT_ECN;
3791 if (tp->ecn_flags & TCP_ECN_SEEN)
3792 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3793 if (tp->syn_data_acked)
3794 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3795
3796 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3797 info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3798 tcp_delack_max(sk)));
3799 info->tcpi_snd_mss = tp->mss_cache;
3800 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3801
3802 info->tcpi_unacked = tp->packets_out;
3803 info->tcpi_sacked = tp->sacked_out;
3804
3805 info->tcpi_lost = tp->lost_out;
3806 info->tcpi_retrans = tp->retrans_out;
3807
3808 now = tcp_jiffies32;
3809 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3810 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3811 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3812
3813 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3814 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3815 info->tcpi_rtt = tp->srtt_us >> 3;
3816 info->tcpi_rttvar = tp->mdev_us >> 2;
3817 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3818 info->tcpi_advmss = tp->advmss;
3819
3820 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3821 info->tcpi_rcv_space = tp->rcvq_space.space;
3822
3823 info->tcpi_total_retrans = tp->total_retrans;
3824
3825 info->tcpi_bytes_acked = tp->bytes_acked;
3826 info->tcpi_bytes_received = tp->bytes_received;
3827 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3828 tcp_get_info_chrono_stats(tp, info);
3829
3830 info->tcpi_segs_out = tp->segs_out;
3831
3832 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3833 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3834 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3835
3836 info->tcpi_min_rtt = tcp_min_rtt(tp);
3837 info->tcpi_data_segs_out = tp->data_segs_out;
3838
3839 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3840 rate64 = tcp_compute_delivery_rate(tp);
3841 if (rate64)
3842 info->tcpi_delivery_rate = rate64;
3843 info->tcpi_delivered = tp->delivered;
3844 info->tcpi_delivered_ce = tp->delivered_ce;
3845 info->tcpi_bytes_sent = tp->bytes_sent;
3846 info->tcpi_bytes_retrans = tp->bytes_retrans;
3847 info->tcpi_dsack_dups = tp->dsack_dups;
3848 info->tcpi_reord_seen = tp->reord_seen;
3849 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3850 info->tcpi_snd_wnd = tp->snd_wnd;
3851 info->tcpi_rcv_wnd = tp->rcv_wnd;
3852 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3853 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3854
3855 info->tcpi_total_rto = tp->total_rto;
3856 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3857 info->tcpi_total_rto_time = tp->total_rto_time;
3858 if (tp->rto_stamp) {
3859 info->tcpi_total_rto_time += tcp_time_stamp_raw() -
3860 tp->rto_stamp;
3861 }
3862
3863 unlock_sock_fast(sk, slow);
3864 }
3865 EXPORT_SYMBOL_GPL(tcp_get_info);
3866
tcp_opt_stats_get_size(void)3867 static size_t tcp_opt_stats_get_size(void)
3868 {
3869 return
3870 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3871 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3872 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3873 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3874 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3875 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3876 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3877 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3878 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3879 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3880 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3881 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3882 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3883 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3884 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3885 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3886 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3887 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3888 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3889 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3890 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3891 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3892 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3893 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3894 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3895 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3896 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3897 0;
3898 }
3899
3900 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3901 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3902 {
3903 if (skb->protocol == htons(ETH_P_IP))
3904 return ip_hdr(skb)->ttl;
3905 else if (skb->protocol == htons(ETH_P_IPV6))
3906 return ipv6_hdr(skb)->hop_limit;
3907 else
3908 return 0;
3909 }
3910
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3911 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3912 const struct sk_buff *orig_skb,
3913 const struct sk_buff *ack_skb)
3914 {
3915 const struct tcp_sock *tp = tcp_sk(sk);
3916 struct sk_buff *stats;
3917 struct tcp_info info;
3918 unsigned long rate;
3919 u64 rate64;
3920
3921 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3922 if (!stats)
3923 return NULL;
3924
3925 tcp_get_info_chrono_stats(tp, &info);
3926 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3927 info.tcpi_busy_time, TCP_NLA_PAD);
3928 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3929 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3930 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3931 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3932 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3933 tp->data_segs_out, TCP_NLA_PAD);
3934 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3935 tp->total_retrans, TCP_NLA_PAD);
3936
3937 rate = READ_ONCE(sk->sk_pacing_rate);
3938 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3939 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3940
3941 rate64 = tcp_compute_delivery_rate(tp);
3942 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3943
3944 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3945 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3946 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3947
3948 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3949 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3950 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3951 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3952 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3953
3954 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3955 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3956
3957 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3958 TCP_NLA_PAD);
3959 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3960 TCP_NLA_PAD);
3961 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3962 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3963 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3964 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3965 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3966 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3967 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3968 TCP_NLA_PAD);
3969 if (ack_skb)
3970 nla_put_u8(stats, TCP_NLA_TTL,
3971 tcp_skb_ttl_or_hop_limit(ack_skb));
3972
3973 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3974 return stats;
3975 }
3976
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)3977 int do_tcp_getsockopt(struct sock *sk, int level,
3978 int optname, sockptr_t optval, sockptr_t optlen)
3979 {
3980 struct inet_connection_sock *icsk = inet_csk(sk);
3981 struct tcp_sock *tp = tcp_sk(sk);
3982 struct net *net = sock_net(sk);
3983 int val, len;
3984
3985 if (copy_from_sockptr(&len, optlen, sizeof(int)))
3986 return -EFAULT;
3987
3988 if (len < 0)
3989 return -EINVAL;
3990
3991 len = min_t(unsigned int, len, sizeof(int));
3992
3993 switch (optname) {
3994 case TCP_MAXSEG:
3995 val = tp->mss_cache;
3996 if (tp->rx_opt.user_mss &&
3997 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3998 val = tp->rx_opt.user_mss;
3999 if (tp->repair)
4000 val = tp->rx_opt.mss_clamp;
4001 break;
4002 case TCP_NODELAY:
4003 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4004 break;
4005 case TCP_CORK:
4006 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4007 break;
4008 case TCP_KEEPIDLE:
4009 val = keepalive_time_when(tp) / HZ;
4010 break;
4011 case TCP_KEEPINTVL:
4012 val = keepalive_intvl_when(tp) / HZ;
4013 break;
4014 case TCP_KEEPCNT:
4015 val = keepalive_probes(tp);
4016 break;
4017 case TCP_SYNCNT:
4018 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4019 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4020 break;
4021 case TCP_LINGER2:
4022 val = READ_ONCE(tp->linger2);
4023 if (val >= 0)
4024 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4025 break;
4026 case TCP_DEFER_ACCEPT:
4027 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4028 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4029 TCP_RTO_MAX / HZ);
4030 break;
4031 case TCP_WINDOW_CLAMP:
4032 val = READ_ONCE(tp->window_clamp);
4033 break;
4034 case TCP_INFO: {
4035 struct tcp_info info;
4036
4037 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4038 return -EFAULT;
4039
4040 tcp_get_info(sk, &info);
4041
4042 len = min_t(unsigned int, len, sizeof(info));
4043 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4044 return -EFAULT;
4045 if (copy_to_sockptr(optval, &info, len))
4046 return -EFAULT;
4047 return 0;
4048 }
4049 case TCP_CC_INFO: {
4050 const struct tcp_congestion_ops *ca_ops;
4051 union tcp_cc_info info;
4052 size_t sz = 0;
4053 int attr;
4054
4055 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4056 return -EFAULT;
4057
4058 ca_ops = icsk->icsk_ca_ops;
4059 if (ca_ops && ca_ops->get_info)
4060 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4061
4062 len = min_t(unsigned int, len, sz);
4063 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4064 return -EFAULT;
4065 if (copy_to_sockptr(optval, &info, len))
4066 return -EFAULT;
4067 return 0;
4068 }
4069 case TCP_QUICKACK:
4070 val = !inet_csk_in_pingpong_mode(sk);
4071 break;
4072
4073 case TCP_CONGESTION:
4074 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4075 return -EFAULT;
4076 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4077 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4078 return -EFAULT;
4079 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4080 return -EFAULT;
4081 return 0;
4082
4083 case TCP_ULP:
4084 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4085 return -EFAULT;
4086 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4087 if (!icsk->icsk_ulp_ops) {
4088 len = 0;
4089 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4090 return -EFAULT;
4091 return 0;
4092 }
4093 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4094 return -EFAULT;
4095 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4096 return -EFAULT;
4097 return 0;
4098
4099 case TCP_FASTOPEN_KEY: {
4100 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4101 unsigned int key_len;
4102
4103 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4104 return -EFAULT;
4105
4106 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4107 TCP_FASTOPEN_KEY_LENGTH;
4108 len = min_t(unsigned int, len, key_len);
4109 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4110 return -EFAULT;
4111 if (copy_to_sockptr(optval, key, len))
4112 return -EFAULT;
4113 return 0;
4114 }
4115 case TCP_THIN_LINEAR_TIMEOUTS:
4116 val = tp->thin_lto;
4117 break;
4118
4119 case TCP_THIN_DUPACK:
4120 val = 0;
4121 break;
4122
4123 case TCP_REPAIR:
4124 val = tp->repair;
4125 break;
4126
4127 case TCP_REPAIR_QUEUE:
4128 if (tp->repair)
4129 val = tp->repair_queue;
4130 else
4131 return -EINVAL;
4132 break;
4133
4134 case TCP_REPAIR_WINDOW: {
4135 struct tcp_repair_window opt;
4136
4137 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4138 return -EFAULT;
4139
4140 if (len != sizeof(opt))
4141 return -EINVAL;
4142
4143 if (!tp->repair)
4144 return -EPERM;
4145
4146 opt.snd_wl1 = tp->snd_wl1;
4147 opt.snd_wnd = tp->snd_wnd;
4148 opt.max_window = tp->max_window;
4149 opt.rcv_wnd = tp->rcv_wnd;
4150 opt.rcv_wup = tp->rcv_wup;
4151
4152 if (copy_to_sockptr(optval, &opt, len))
4153 return -EFAULT;
4154 return 0;
4155 }
4156 case TCP_QUEUE_SEQ:
4157 if (tp->repair_queue == TCP_SEND_QUEUE)
4158 val = tp->write_seq;
4159 else if (tp->repair_queue == TCP_RECV_QUEUE)
4160 val = tp->rcv_nxt;
4161 else
4162 return -EINVAL;
4163 break;
4164
4165 case TCP_USER_TIMEOUT:
4166 val = READ_ONCE(icsk->icsk_user_timeout);
4167 break;
4168
4169 case TCP_FASTOPEN:
4170 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4171 break;
4172
4173 case TCP_FASTOPEN_CONNECT:
4174 val = tp->fastopen_connect;
4175 break;
4176
4177 case TCP_FASTOPEN_NO_COOKIE:
4178 val = tp->fastopen_no_cookie;
4179 break;
4180
4181 case TCP_TX_DELAY:
4182 val = READ_ONCE(tp->tcp_tx_delay);
4183 break;
4184
4185 case TCP_TIMESTAMP:
4186 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4187 break;
4188 case TCP_NOTSENT_LOWAT:
4189 val = READ_ONCE(tp->notsent_lowat);
4190 break;
4191 case TCP_INQ:
4192 val = tp->recvmsg_inq;
4193 break;
4194 case TCP_SAVE_SYN:
4195 val = tp->save_syn;
4196 break;
4197 case TCP_SAVED_SYN: {
4198 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4199 return -EFAULT;
4200
4201 sockopt_lock_sock(sk);
4202 if (tp->saved_syn) {
4203 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4204 len = tcp_saved_syn_len(tp->saved_syn);
4205 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4206 sockopt_release_sock(sk);
4207 return -EFAULT;
4208 }
4209 sockopt_release_sock(sk);
4210 return -EINVAL;
4211 }
4212 len = tcp_saved_syn_len(tp->saved_syn);
4213 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4214 sockopt_release_sock(sk);
4215 return -EFAULT;
4216 }
4217 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4218 sockopt_release_sock(sk);
4219 return -EFAULT;
4220 }
4221 tcp_saved_syn_free(tp);
4222 sockopt_release_sock(sk);
4223 } else {
4224 sockopt_release_sock(sk);
4225 len = 0;
4226 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4227 return -EFAULT;
4228 }
4229 return 0;
4230 }
4231 #ifdef CONFIG_MMU
4232 case TCP_ZEROCOPY_RECEIVE: {
4233 struct scm_timestamping_internal tss;
4234 struct tcp_zerocopy_receive zc = {};
4235 int err;
4236
4237 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4238 return -EFAULT;
4239 if (len < 0 ||
4240 len < offsetofend(struct tcp_zerocopy_receive, length))
4241 return -EINVAL;
4242 if (unlikely(len > sizeof(zc))) {
4243 err = check_zeroed_sockptr(optval, sizeof(zc),
4244 len - sizeof(zc));
4245 if (err < 1)
4246 return err == 0 ? -EINVAL : err;
4247 len = sizeof(zc);
4248 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4249 return -EFAULT;
4250 }
4251 if (copy_from_sockptr(&zc, optval, len))
4252 return -EFAULT;
4253 if (zc.reserved)
4254 return -EINVAL;
4255 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4256 return -EINVAL;
4257 sockopt_lock_sock(sk);
4258 err = tcp_zerocopy_receive(sk, &zc, &tss);
4259 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4260 &zc, &len, err);
4261 sockopt_release_sock(sk);
4262 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4263 goto zerocopy_rcv_cmsg;
4264 switch (len) {
4265 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4266 goto zerocopy_rcv_cmsg;
4267 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4268 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4269 case offsetofend(struct tcp_zerocopy_receive, flags):
4270 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4271 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4272 case offsetofend(struct tcp_zerocopy_receive, err):
4273 goto zerocopy_rcv_sk_err;
4274 case offsetofend(struct tcp_zerocopy_receive, inq):
4275 goto zerocopy_rcv_inq;
4276 case offsetofend(struct tcp_zerocopy_receive, length):
4277 default:
4278 goto zerocopy_rcv_out;
4279 }
4280 zerocopy_rcv_cmsg:
4281 if (zc.msg_flags & TCP_CMSG_TS)
4282 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4283 else
4284 zc.msg_flags = 0;
4285 zerocopy_rcv_sk_err:
4286 if (!err)
4287 zc.err = sock_error(sk);
4288 zerocopy_rcv_inq:
4289 zc.inq = tcp_inq_hint(sk);
4290 zerocopy_rcv_out:
4291 if (!err && copy_to_sockptr(optval, &zc, len))
4292 err = -EFAULT;
4293 return err;
4294 }
4295 #endif
4296 default:
4297 return -ENOPROTOOPT;
4298 }
4299
4300 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4301 return -EFAULT;
4302 if (copy_to_sockptr(optval, &val, len))
4303 return -EFAULT;
4304 return 0;
4305 }
4306
tcp_bpf_bypass_getsockopt(int level,int optname)4307 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4308 {
4309 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4310 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4311 */
4312 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4313 return true;
4314
4315 return false;
4316 }
4317 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4318
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4319 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4320 int __user *optlen)
4321 {
4322 struct inet_connection_sock *icsk = inet_csk(sk);
4323
4324 if (level != SOL_TCP)
4325 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4326 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4327 optval, optlen);
4328 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4329 USER_SOCKPTR(optlen));
4330 }
4331 EXPORT_SYMBOL(tcp_getsockopt);
4332
4333 #ifdef CONFIG_TCP_MD5SIG
4334 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4335 static DEFINE_MUTEX(tcp_md5sig_mutex);
4336 static bool tcp_md5sig_pool_populated = false;
4337
__tcp_alloc_md5sig_pool(void)4338 static void __tcp_alloc_md5sig_pool(void)
4339 {
4340 struct crypto_ahash *hash;
4341 int cpu;
4342
4343 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4344 if (IS_ERR(hash))
4345 return;
4346
4347 for_each_possible_cpu(cpu) {
4348 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4349 struct ahash_request *req;
4350
4351 if (!scratch) {
4352 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4353 sizeof(struct tcphdr),
4354 GFP_KERNEL,
4355 cpu_to_node(cpu));
4356 if (!scratch)
4357 return;
4358 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4359 }
4360 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4361 continue;
4362
4363 req = ahash_request_alloc(hash, GFP_KERNEL);
4364 if (!req)
4365 return;
4366
4367 ahash_request_set_callback(req, 0, NULL, NULL);
4368
4369 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4370 }
4371 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4372 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4373 */
4374 smp_wmb();
4375 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4376 * and tcp_get_md5sig_pool().
4377 */
4378 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4379 }
4380
tcp_alloc_md5sig_pool(void)4381 bool tcp_alloc_md5sig_pool(void)
4382 {
4383 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4384 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4385 mutex_lock(&tcp_md5sig_mutex);
4386
4387 if (!tcp_md5sig_pool_populated)
4388 __tcp_alloc_md5sig_pool();
4389
4390 mutex_unlock(&tcp_md5sig_mutex);
4391 }
4392 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4393 return READ_ONCE(tcp_md5sig_pool_populated);
4394 }
4395 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4396
4397
4398 /**
4399 * tcp_get_md5sig_pool - get md5sig_pool for this user
4400 *
4401 * We use percpu structure, so if we succeed, we exit with preemption
4402 * and BH disabled, to make sure another thread or softirq handling
4403 * wont try to get same context.
4404 */
tcp_get_md5sig_pool(void)4405 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4406 {
4407 local_bh_disable();
4408
4409 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4410 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4411 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4412 smp_rmb();
4413 return this_cpu_ptr(&tcp_md5sig_pool);
4414 }
4415 local_bh_enable();
4416 return NULL;
4417 }
4418 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4419
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4420 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4421 const struct sk_buff *skb, unsigned int header_len)
4422 {
4423 struct scatterlist sg;
4424 const struct tcphdr *tp = tcp_hdr(skb);
4425 struct ahash_request *req = hp->md5_req;
4426 unsigned int i;
4427 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4428 skb_headlen(skb) - header_len : 0;
4429 const struct skb_shared_info *shi = skb_shinfo(skb);
4430 struct sk_buff *frag_iter;
4431
4432 sg_init_table(&sg, 1);
4433
4434 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4435 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4436 if (crypto_ahash_update(req))
4437 return 1;
4438
4439 for (i = 0; i < shi->nr_frags; ++i) {
4440 const skb_frag_t *f = &shi->frags[i];
4441 unsigned int offset = skb_frag_off(f);
4442 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4443
4444 sg_set_page(&sg, page, skb_frag_size(f),
4445 offset_in_page(offset));
4446 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4447 if (crypto_ahash_update(req))
4448 return 1;
4449 }
4450
4451 skb_walk_frags(skb, frag_iter)
4452 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4453 return 1;
4454
4455 return 0;
4456 }
4457 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4458
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4459 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4460 {
4461 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4462 struct scatterlist sg;
4463
4464 sg_init_one(&sg, key->key, keylen);
4465 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4466
4467 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4468 return data_race(crypto_ahash_update(hp->md5_req));
4469 }
4470 EXPORT_SYMBOL(tcp_md5_hash_key);
4471
4472 /* Called with rcu_read_lock() */
4473 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4474 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4475 const void *saddr, const void *daddr,
4476 int family, int dif, int sdif)
4477 {
4478 /*
4479 * This gets called for each TCP segment that arrives
4480 * so we want to be efficient.
4481 * We have 3 drop cases:
4482 * o No MD5 hash and one expected.
4483 * o MD5 hash and we're not expecting one.
4484 * o MD5 hash and its wrong.
4485 */
4486 const __u8 *hash_location = NULL;
4487 struct tcp_md5sig_key *hash_expected;
4488 const struct tcphdr *th = tcp_hdr(skb);
4489 const struct tcp_sock *tp = tcp_sk(sk);
4490 int genhash, l3index;
4491 u8 newhash[16];
4492
4493 /* sdif set, means packet ingressed via a device
4494 * in an L3 domain and dif is set to the l3mdev
4495 */
4496 l3index = sdif ? dif : 0;
4497
4498 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4499 hash_location = tcp_parse_md5sig_option(th);
4500
4501 /* We've parsed the options - do we have a hash? */
4502 if (!hash_expected && !hash_location)
4503 return SKB_NOT_DROPPED_YET;
4504
4505 if (hash_expected && !hash_location) {
4506 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4507 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4508 }
4509
4510 if (!hash_expected && hash_location) {
4511 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4512 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4513 }
4514
4515 /* Check the signature.
4516 * To support dual stack listeners, we need to handle
4517 * IPv4-mapped case.
4518 */
4519 if (family == AF_INET)
4520 genhash = tcp_v4_md5_hash_skb(newhash,
4521 hash_expected,
4522 NULL, skb);
4523 else
4524 genhash = tp->af_specific->calc_md5_hash(newhash,
4525 hash_expected,
4526 NULL, skb);
4527
4528 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4530 if (family == AF_INET) {
4531 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4532 saddr, ntohs(th->source),
4533 daddr, ntohs(th->dest),
4534 genhash ? " tcp_v4_calc_md5_hash failed"
4535 : "", l3index);
4536 } else {
4537 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4538 genhash ? "failed" : "mismatch",
4539 saddr, ntohs(th->source),
4540 daddr, ntohs(th->dest), l3index);
4541 }
4542 return SKB_DROP_REASON_TCP_MD5FAILURE;
4543 }
4544 return SKB_NOT_DROPPED_YET;
4545 }
4546 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4547
4548 #endif
4549
tcp_done(struct sock * sk)4550 void tcp_done(struct sock *sk)
4551 {
4552 struct request_sock *req;
4553
4554 /* We might be called with a new socket, after
4555 * inet_csk_prepare_forced_close() has been called
4556 * so we can not use lockdep_sock_is_held(sk)
4557 */
4558 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4559
4560 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4561 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4562
4563 tcp_set_state(sk, TCP_CLOSE);
4564 tcp_clear_xmit_timers(sk);
4565 if (req)
4566 reqsk_fastopen_remove(sk, req, false);
4567
4568 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4569
4570 if (!sock_flag(sk, SOCK_DEAD))
4571 sk->sk_state_change(sk);
4572 else
4573 inet_csk_destroy_sock(sk);
4574 }
4575 EXPORT_SYMBOL_GPL(tcp_done);
4576
tcp_abort(struct sock * sk,int err)4577 int tcp_abort(struct sock *sk, int err)
4578 {
4579 int state = inet_sk_state_load(sk);
4580
4581 if (state == TCP_NEW_SYN_RECV) {
4582 struct request_sock *req = inet_reqsk(sk);
4583
4584 local_bh_disable();
4585 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4586 local_bh_enable();
4587 return 0;
4588 }
4589 if (state == TCP_TIME_WAIT) {
4590 struct inet_timewait_sock *tw = inet_twsk(sk);
4591
4592 refcount_inc(&tw->tw_refcnt);
4593 local_bh_disable();
4594 inet_twsk_deschedule_put(tw);
4595 local_bh_enable();
4596 return 0;
4597 }
4598
4599 /* BPF context ensures sock locking. */
4600 if (!has_current_bpf_ctx())
4601 /* Don't race with userspace socket closes such as tcp_close. */
4602 lock_sock(sk);
4603
4604 if (sk->sk_state == TCP_LISTEN) {
4605 tcp_set_state(sk, TCP_CLOSE);
4606 inet_csk_listen_stop(sk);
4607 }
4608
4609 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4610 local_bh_disable();
4611 bh_lock_sock(sk);
4612
4613 if (!sock_flag(sk, SOCK_DEAD)) {
4614 WRITE_ONCE(sk->sk_err, err);
4615 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4616 smp_wmb();
4617 sk_error_report(sk);
4618 if (tcp_need_reset(sk->sk_state))
4619 tcp_send_active_reset(sk, GFP_ATOMIC);
4620 tcp_done(sk);
4621 }
4622
4623 bh_unlock_sock(sk);
4624 local_bh_enable();
4625 tcp_write_queue_purge(sk);
4626 if (!has_current_bpf_ctx())
4627 release_sock(sk);
4628 return 0;
4629 }
4630 EXPORT_SYMBOL_GPL(tcp_abort);
4631
4632 extern struct tcp_congestion_ops tcp_reno;
4633
4634 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4635 static int __init set_thash_entries(char *str)
4636 {
4637 ssize_t ret;
4638
4639 if (!str)
4640 return 0;
4641
4642 ret = kstrtoul(str, 0, &thash_entries);
4643 if (ret)
4644 return 0;
4645
4646 return 1;
4647 }
4648 __setup("thash_entries=", set_thash_entries);
4649
tcp_init_mem(void)4650 static void __init tcp_init_mem(void)
4651 {
4652 unsigned long limit = nr_free_buffer_pages() / 16;
4653
4654 limit = max(limit, 128UL);
4655 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4656 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4657 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4658 }
4659
tcp_init(void)4660 void __init tcp_init(void)
4661 {
4662 int max_rshare, max_wshare, cnt;
4663 unsigned long limit;
4664 unsigned int i;
4665
4666 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4667 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4668 sizeof_field(struct sk_buff, cb));
4669
4670 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4671
4672 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4673 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4674
4675 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4676 thash_entries, 21, /* one slot per 2 MB*/
4677 0, 64 * 1024);
4678 tcp_hashinfo.bind_bucket_cachep =
4679 kmem_cache_create("tcp_bind_bucket",
4680 sizeof(struct inet_bind_bucket), 0,
4681 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4682 SLAB_ACCOUNT,
4683 NULL);
4684 tcp_hashinfo.bind2_bucket_cachep =
4685 kmem_cache_create("tcp_bind2_bucket",
4686 sizeof(struct inet_bind2_bucket), 0,
4687 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4688 SLAB_ACCOUNT,
4689 NULL);
4690
4691 /* Size and allocate the main established and bind bucket
4692 * hash tables.
4693 *
4694 * The methodology is similar to that of the buffer cache.
4695 */
4696 tcp_hashinfo.ehash =
4697 alloc_large_system_hash("TCP established",
4698 sizeof(struct inet_ehash_bucket),
4699 thash_entries,
4700 17, /* one slot per 128 KB of memory */
4701 0,
4702 NULL,
4703 &tcp_hashinfo.ehash_mask,
4704 0,
4705 thash_entries ? 0 : 512 * 1024);
4706 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4707 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4708
4709 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4710 panic("TCP: failed to alloc ehash_locks");
4711 tcp_hashinfo.bhash =
4712 alloc_large_system_hash("TCP bind",
4713 2 * sizeof(struct inet_bind_hashbucket),
4714 tcp_hashinfo.ehash_mask + 1,
4715 17, /* one slot per 128 KB of memory */
4716 0,
4717 &tcp_hashinfo.bhash_size,
4718 NULL,
4719 0,
4720 64 * 1024);
4721 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4722 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4723 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4724 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4725 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4726 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4727 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4728 }
4729
4730 tcp_hashinfo.pernet = false;
4731
4732 cnt = tcp_hashinfo.ehash_mask + 1;
4733 sysctl_tcp_max_orphans = cnt / 2;
4734
4735 tcp_init_mem();
4736 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4737 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4738 max_wshare = min(4UL*1024*1024, limit);
4739 max_rshare = min(6UL*1024*1024, limit);
4740
4741 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4742 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4743 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4744
4745 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4746 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4747 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4748
4749 pr_info("Hash tables configured (established %u bind %u)\n",
4750 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4751
4752 tcp_v4_init();
4753 tcp_metrics_init();
4754 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4755 tcp_tasklet_init();
4756 mptcp_init();
4757 }
4758