1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 #include <net/tcp.h>
23 #include <net/xfrm.h>
24 #include <net/busy_poll.h>
25
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)26 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27 {
28 if (seq == s_win)
29 return true;
30 if (after(end_seq, s_win) && before(seq, e_win))
31 return true;
32 return seq == e_win && seq == end_seq;
33 }
34
35 static enum tcp_tw_status
tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock * tw,const struct sk_buff * skb,int mib_idx)36 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 const struct sk_buff *skb, int mib_idx)
38 {
39 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40
41 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 &tcptw->tw_last_oow_ack_time)) {
43 /* Send ACK. Note, we do not put the bucket,
44 * it will be released by caller.
45 */
46 return TCP_TW_ACK;
47 }
48
49 /* We are rate-limiting, so just release the tw sock and drop skb. */
50 inet_twsk_put(tw);
51 return TCP_TW_SUCCESS;
52 }
53
54 /*
55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
56 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
57 * (and, probably, tail of data) and one or more our ACKs are lost.
58 * * What is TIME-WAIT timeout? It is associated with maximal packet
59 * lifetime in the internet, which results in wrong conclusion, that
60 * it is set to catch "old duplicate segments" wandering out of their path.
61 * It is not quite correct. This timeout is calculated so that it exceeds
62 * maximal retransmission timeout enough to allow to lose one (or more)
63 * segments sent by peer and our ACKs. This time may be calculated from RTO.
64 * * When TIME-WAIT socket receives RST, it means that another end
65 * finally closed and we are allowed to kill TIME-WAIT too.
66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
67 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
68 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
69 * * If we invented some more clever way to catch duplicates
70 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
71 *
72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
74 * from the very beginning.
75 *
76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
77 * is _not_ stateless. It means, that strictly speaking we must
78 * spinlock it. I do not want! Well, probability of misbehaviour
79 * is ridiculously low and, seems, we could use some mb() tricks
80 * to avoid misread sequence numbers, states etc. --ANK
81 *
82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
83 */
84 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th)85 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
86 const struct tcphdr *th)
87 {
88 struct tcp_options_received tmp_opt;
89 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
90 bool paws_reject = false;
91
92 tmp_opt.saw_tstamp = 0;
93 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
94 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
95
96 if (tmp_opt.saw_tstamp) {
97 if (tmp_opt.rcv_tsecr)
98 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
99 tmp_opt.ts_recent = tcptw->tw_ts_recent;
100 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
101 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102 }
103 }
104
105 if (tw->tw_substate == TCP_FIN_WAIT2) {
106 /* Just repeat all the checks of tcp_rcv_state_process() */
107
108 /* Out of window, send ACK */
109 if (paws_reject ||
110 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111 tcptw->tw_rcv_nxt,
112 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113 return tcp_timewait_check_oow_rate_limit(
114 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116 if (th->rst)
117 goto kill;
118
119 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120 return TCP_TW_RST;
121
122 /* Dup ACK? */
123 if (!th->ack ||
124 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126 inet_twsk_put(tw);
127 return TCP_TW_SUCCESS;
128 }
129
130 /* New data or FIN. If new data arrive after half-duplex close,
131 * reset.
132 */
133 if (!th->fin ||
134 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135 return TCP_TW_RST;
136
137 /* FIN arrived, enter true time-wait state. */
138 tw->tw_substate = TCP_TIME_WAIT;
139 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140 if (tmp_opt.saw_tstamp) {
141 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
143 }
144
145 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146 return TCP_TW_ACK;
147 }
148
149 /*
150 * Now real TIME-WAIT state.
151 *
152 * RFC 1122:
153 * "When a connection is [...] on TIME-WAIT state [...]
154 * [a TCP] MAY accept a new SYN from the remote TCP to
155 * reopen the connection directly, if it:
156 *
157 * (1) assigns its initial sequence number for the new
158 * connection to be larger than the largest sequence
159 * number it used on the previous connection incarnation,
160 * and
161 *
162 * (2) returns to TIME-WAIT state if the SYN turns out
163 * to be an old duplicate".
164 */
165
166 if (!paws_reject &&
167 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169 /* In window segment, it may be only reset or bare ack. */
170
171 if (th->rst) {
172 /* This is TIME_WAIT assassination, in two flavors.
173 * Oh well... nobody has a sufficient solution to this
174 * protocol bug yet.
175 */
176 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177 kill:
178 inet_twsk_deschedule_put(tw);
179 return TCP_TW_SUCCESS;
180 }
181 } else {
182 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 }
184
185 if (tmp_opt.saw_tstamp) {
186 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
187 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188 }
189
190 inet_twsk_put(tw);
191 return TCP_TW_SUCCESS;
192 }
193
194 /* Out of window segment.
195
196 All the segments are ACKed immediately.
197
198 The only exception is new SYN. We accept it, if it is
199 not old duplicate and we are not in danger to be killed
200 by delayed old duplicates. RFC check is that it has
201 newer sequence number works at rates <40Mbit/sec.
202 However, if paws works, it is reliable AND even more,
203 we even may relax silly seq space cutoff.
204
205 RED-PEN: we violate main RFC requirement, if this SYN will appear
206 old duplicate (i.e. we receive RST in reply to SYN-ACK),
207 we must return socket to time-wait state. It is not good,
208 but not fatal yet.
209 */
210
211 if (th->syn && !th->rst && !th->ack && !paws_reject &&
212 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213 (tmp_opt.saw_tstamp &&
214 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216 if (isn == 0)
217 isn++;
218 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219 return TCP_TW_SYN;
220 }
221
222 if (paws_reject)
223 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225 if (!th->rst) {
226 /* In this case we must reset the TIMEWAIT timer.
227 *
228 * If it is ACKless SYN it may be both old duplicate
229 * and new good SYN with random sequence number <rcv_nxt.
230 * Do not reschedule in the last case.
231 */
232 if (paws_reject || th->ack)
233 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234
235 return tcp_timewait_check_oow_rate_limit(
236 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237 }
238 inet_twsk_put(tw);
239 return TCP_TW_SUCCESS;
240 }
241 EXPORT_SYMBOL(tcp_timewait_state_process);
242
tcp_time_wait_init(struct sock * sk,struct tcp_timewait_sock * tcptw)243 static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244 {
245 #ifdef CONFIG_TCP_MD5SIG
246 const struct tcp_sock *tp = tcp_sk(sk);
247 struct tcp_md5sig_key *key;
248
249 /*
250 * The timewait bucket does not have the key DB from the
251 * sock structure. We just make a quick copy of the
252 * md5 key being used (if indeed we are using one)
253 * so the timewait ack generating code has the key.
254 */
255 tcptw->tw_md5_key = NULL;
256 if (!static_branch_unlikely(&tcp_md5_needed.key))
257 return;
258
259 key = tp->af_specific->md5_lookup(sk, sk);
260 if (key) {
261 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262 if (!tcptw->tw_md5_key)
263 return;
264 if (!tcp_alloc_md5sig_pool())
265 goto out_free;
266 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267 goto out_free;
268 }
269 return;
270 out_free:
271 WARN_ON_ONCE(1);
272 kfree(tcptw->tw_md5_key);
273 tcptw->tw_md5_key = NULL;
274 #endif
275 }
276
277 /*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
tcp_time_wait(struct sock * sk,int state,int timeo)280 void tcp_time_wait(struct sock *sk, int state, int timeo)
281 {
282 const struct inet_connection_sock *icsk = inet_csk(sk);
283 const struct tcp_sock *tp = tcp_sk(sk);
284 struct net *net = sock_net(sk);
285 struct inet_timewait_sock *tw;
286
287 tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
288
289 if (tw) {
290 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292
293 tw->tw_transparent = inet_test_bit(TRANSPARENT, sk);
294 tw->tw_mark = sk->sk_mark;
295 tw->tw_priority = sk->sk_priority;
296 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
297 tcptw->tw_rcv_nxt = tp->rcv_nxt;
298 tcptw->tw_snd_nxt = tp->snd_nxt;
299 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
300 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
301 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
302 tcptw->tw_ts_offset = tp->tsoffset;
303 tcptw->tw_last_oow_ack_time = 0;
304 tcptw->tw_tx_delay = tp->tcp_tx_delay;
305 tw->tw_txhash = sk->sk_txhash;
306 #if IS_ENABLED(CONFIG_IPV6)
307 if (tw->tw_family == PF_INET6) {
308 struct ipv6_pinfo *np = inet6_sk(sk);
309
310 tw->tw_v6_daddr = sk->sk_v6_daddr;
311 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312 tw->tw_tclass = np->tclass;
313 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314 tw->tw_ipv6only = sk->sk_ipv6only;
315 }
316 #endif
317
318 tcp_time_wait_init(sk, tcptw);
319
320 /* Get the TIME_WAIT timeout firing. */
321 if (timeo < rto)
322 timeo = rto;
323
324 if (state == TCP_TIME_WAIT)
325 timeo = TCP_TIMEWAIT_LEN;
326
327 /* tw_timer is pinned, so we need to make sure BH are disabled
328 * in following section, otherwise timer handler could run before
329 * we complete the initialization.
330 */
331 local_bh_disable();
332 inet_twsk_schedule(tw, timeo);
333 /* Linkage updates.
334 * Note that access to tw after this point is illegal.
335 */
336 inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
337 local_bh_enable();
338 } else {
339 /* Sorry, if we're out of memory, just CLOSE this
340 * socket up. We've got bigger problems than
341 * non-graceful socket closings.
342 */
343 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
344 }
345
346 tcp_update_metrics(sk);
347 tcp_done(sk);
348 }
349 EXPORT_SYMBOL(tcp_time_wait);
350
tcp_twsk_destructor(struct sock * sk)351 void tcp_twsk_destructor(struct sock *sk)
352 {
353 #ifdef CONFIG_TCP_MD5SIG
354 if (static_branch_unlikely(&tcp_md5_needed.key)) {
355 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
356
357 if (twsk->tw_md5_key) {
358 kfree_rcu(twsk->tw_md5_key, rcu);
359 static_branch_slow_dec_deferred(&tcp_md5_needed);
360 }
361 }
362 #endif
363 }
364 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365
tcp_twsk_purge(struct list_head * net_exit_list)366 void tcp_twsk_purge(struct list_head *net_exit_list)
367 {
368 bool purged_once = false;
369 struct net *net;
370
371 list_for_each_entry(net, net_exit_list, exit_list) {
372 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
373 /* Even if tw_refcount == 1, we must clean up kernel reqsk */
374 inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
375 } else if (!purged_once) {
376 inet_twsk_purge(&tcp_hashinfo);
377 purged_once = true;
378 }
379 }
380 }
381
382 /* Warning : This function is called without sk_listener being locked.
383 * Be sure to read socket fields once, as their value could change under us.
384 */
tcp_openreq_init_rwin(struct request_sock * req,const struct sock * sk_listener,const struct dst_entry * dst)385 void tcp_openreq_init_rwin(struct request_sock *req,
386 const struct sock *sk_listener,
387 const struct dst_entry *dst)
388 {
389 struct inet_request_sock *ireq = inet_rsk(req);
390 const struct tcp_sock *tp = tcp_sk(sk_listener);
391 int full_space = tcp_full_space(sk_listener);
392 u32 window_clamp;
393 __u8 rcv_wscale;
394 u32 rcv_wnd;
395 int mss;
396
397 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
398 window_clamp = READ_ONCE(tp->window_clamp);
399 /* Set this up on the first call only */
400 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
401
402 /* limit the window selection if the user enforce a smaller rx buffer */
403 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
404 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
405 req->rsk_window_clamp = full_space;
406
407 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
408 if (rcv_wnd == 0)
409 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
410 else if (full_space < rcv_wnd * mss)
411 full_space = rcv_wnd * mss;
412
413 /* tcp_full_space because it is guaranteed to be the first packet */
414 tcp_select_initial_window(sk_listener, full_space,
415 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
416 &req->rsk_rcv_wnd,
417 &req->rsk_window_clamp,
418 ireq->wscale_ok,
419 &rcv_wscale,
420 rcv_wnd);
421 ireq->rcv_wscale = rcv_wscale;
422 }
423 EXPORT_SYMBOL(tcp_openreq_init_rwin);
424
tcp_ecn_openreq_child(struct tcp_sock * tp,const struct request_sock * req)425 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
426 const struct request_sock *req)
427 {
428 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
429 }
430
tcp_ca_openreq_child(struct sock * sk,const struct dst_entry * dst)431 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
432 {
433 struct inet_connection_sock *icsk = inet_csk(sk);
434 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
435 bool ca_got_dst = false;
436
437 if (ca_key != TCP_CA_UNSPEC) {
438 const struct tcp_congestion_ops *ca;
439
440 rcu_read_lock();
441 ca = tcp_ca_find_key(ca_key);
442 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
443 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
444 icsk->icsk_ca_ops = ca;
445 ca_got_dst = true;
446 }
447 rcu_read_unlock();
448 }
449
450 /* If no valid choice made yet, assign current system default ca. */
451 if (!ca_got_dst &&
452 (!icsk->icsk_ca_setsockopt ||
453 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
454 tcp_assign_congestion_control(sk);
455
456 tcp_set_ca_state(sk, TCP_CA_Open);
457 }
458 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
459
smc_check_reset_syn_req(const struct tcp_sock * oldtp,struct request_sock * req,struct tcp_sock * newtp)460 static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
461 struct request_sock *req,
462 struct tcp_sock *newtp)
463 {
464 #if IS_ENABLED(CONFIG_SMC)
465 struct inet_request_sock *ireq;
466
467 if (static_branch_unlikely(&tcp_have_smc)) {
468 ireq = inet_rsk(req);
469 if (oldtp->syn_smc && !ireq->smc_ok)
470 newtp->syn_smc = 0;
471 }
472 #endif
473 }
474
475 /* This is not only more efficient than what we used to do, it eliminates
476 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
477 *
478 * Actually, we could lots of memory writes here. tp of listening
479 * socket contains all necessary default parameters.
480 */
tcp_create_openreq_child(const struct sock * sk,struct request_sock * req,struct sk_buff * skb)481 struct sock *tcp_create_openreq_child(const struct sock *sk,
482 struct request_sock *req,
483 struct sk_buff *skb)
484 {
485 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
486 const struct inet_request_sock *ireq = inet_rsk(req);
487 struct tcp_request_sock *treq = tcp_rsk(req);
488 struct inet_connection_sock *newicsk;
489 const struct tcp_sock *oldtp;
490 struct tcp_sock *newtp;
491 u32 seq;
492
493 if (!newsk)
494 return NULL;
495
496 newicsk = inet_csk(newsk);
497 newtp = tcp_sk(newsk);
498 oldtp = tcp_sk(sk);
499
500 smc_check_reset_syn_req(oldtp, req, newtp);
501
502 /* Now setup tcp_sock */
503 newtp->pred_flags = 0;
504
505 seq = treq->rcv_isn + 1;
506 newtp->rcv_wup = seq;
507 WRITE_ONCE(newtp->copied_seq, seq);
508 WRITE_ONCE(newtp->rcv_nxt, seq);
509 newtp->segs_in = 1;
510
511 seq = treq->snt_isn + 1;
512 newtp->snd_sml = newtp->snd_una = seq;
513 WRITE_ONCE(newtp->snd_nxt, seq);
514 newtp->snd_up = seq;
515
516 INIT_LIST_HEAD(&newtp->tsq_node);
517 INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
518
519 tcp_init_wl(newtp, treq->rcv_isn);
520
521 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
522 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
523
524 newtp->lsndtime = tcp_jiffies32;
525 newsk->sk_txhash = READ_ONCE(treq->txhash);
526 newtp->total_retrans = req->num_retrans;
527
528 tcp_init_xmit_timers(newsk);
529 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
530
531 if (sock_flag(newsk, SOCK_KEEPOPEN))
532 inet_csk_reset_keepalive_timer(newsk,
533 keepalive_time_when(newtp));
534
535 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
536 newtp->rx_opt.sack_ok = ireq->sack_ok;
537 newtp->window_clamp = req->rsk_window_clamp;
538 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
539 newtp->rcv_wnd = req->rsk_rcv_wnd;
540 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
541 if (newtp->rx_opt.wscale_ok) {
542 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
543 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
544 } else {
545 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
546 newtp->window_clamp = min(newtp->window_clamp, 65535U);
547 }
548 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
549 newtp->max_window = newtp->snd_wnd;
550
551 if (newtp->rx_opt.tstamp_ok) {
552 newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
553 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
554 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
555 } else {
556 newtp->rx_opt.ts_recent_stamp = 0;
557 newtp->tcp_header_len = sizeof(struct tcphdr);
558 }
559 if (req->num_timeout) {
560 newtp->undo_marker = treq->snt_isn;
561 newtp->retrans_stamp = div_u64(treq->snt_synack,
562 USEC_PER_SEC / TCP_TS_HZ);
563 newtp->total_rto = req->num_timeout;
564 newtp->total_rto_recoveries = 1;
565 newtp->total_rto_time = tcp_time_stamp_raw() -
566 newtp->retrans_stamp;
567 }
568 newtp->tsoffset = treq->ts_off;
569 #ifdef CONFIG_TCP_MD5SIG
570 newtp->md5sig_info = NULL; /*XXX*/
571 #endif
572 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
573 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
574 newtp->rx_opt.mss_clamp = req->mss;
575 tcp_ecn_openreq_child(newtp, req);
576 newtp->fastopen_req = NULL;
577 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
578
579 newtp->bpf_chg_cc_inprogress = 0;
580 tcp_bpf_clone(sk, newsk);
581
582 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
583
584 return newsk;
585 }
586 EXPORT_SYMBOL(tcp_create_openreq_child);
587
588 /*
589 * Process an incoming packet for SYN_RECV sockets represented as a
590 * request_sock. Normally sk is the listener socket but for TFO it
591 * points to the child socket.
592 *
593 * XXX (TFO) - The current impl contains a special check for ack
594 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
595 *
596 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
597 *
598 * Note: If @fastopen is true, this can be called from process context.
599 * Otherwise, this is from BH context.
600 */
601
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,bool fastopen,bool * req_stolen)602 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603 struct request_sock *req,
604 bool fastopen, bool *req_stolen)
605 {
606 struct tcp_options_received tmp_opt;
607 struct sock *child;
608 const struct tcphdr *th = tcp_hdr(skb);
609 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610 bool paws_reject = false;
611 bool own_req;
612
613 tmp_opt.saw_tstamp = 0;
614 if (th->doff > (sizeof(struct tcphdr)>>2)) {
615 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617 if (tmp_opt.saw_tstamp) {
618 tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
619 if (tmp_opt.rcv_tsecr)
620 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621 /* We do not store true stamp, but it is not required,
622 * it can be estimated (approximately)
623 * from another data.
624 */
625 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627 }
628 }
629
630 /* Check for pure retransmitted SYN. */
631 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632 flg == TCP_FLAG_SYN &&
633 !paws_reject) {
634 /*
635 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636 * this case on figure 6 and figure 8, but formal
637 * protocol description says NOTHING.
638 * To be more exact, it says that we should send ACK,
639 * because this segment (at least, if it has no data)
640 * is out of window.
641 *
642 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643 * describe SYN-RECV state. All the description
644 * is wrong, we cannot believe to it and should
645 * rely only on common sense and implementation
646 * experience.
647 *
648 * Enforce "SYN-ACK" according to figure 8, figure 6
649 * of RFC793, fixed by RFC1122.
650 *
651 * Note that even if there is new data in the SYN packet
652 * they will be thrown away too.
653 *
654 * Reset timer after retransmitting SYNACK, similar to
655 * the idea of fast retransmit in recovery.
656 */
657 if (!tcp_oow_rate_limited(sock_net(sk), skb,
658 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659 &tcp_rsk(req)->last_oow_ack_time) &&
660
661 !inet_rtx_syn_ack(sk, req)) {
662 unsigned long expires = jiffies;
663
664 expires += reqsk_timeout(req, TCP_RTO_MAX);
665 if (!fastopen)
666 mod_timer_pending(&req->rsk_timer, expires);
667 else
668 req->rsk_timer.expires = expires;
669 }
670 return NULL;
671 }
672
673 /* Further reproduces section "SEGMENT ARRIVES"
674 for state SYN-RECEIVED of RFC793.
675 It is broken, however, it does not work only
676 when SYNs are crossed.
677
678 You would think that SYN crossing is impossible here, since
679 we should have a SYN_SENT socket (from connect()) on our end,
680 but this is not true if the crossed SYNs were sent to both
681 ends by a malicious third party. We must defend against this,
682 and to do that we first verify the ACK (as per RFC793, page
683 36) and reset if it is invalid. Is this a true full defense?
684 To convince ourselves, let us consider a way in which the ACK
685 test can still pass in this 'malicious crossed SYNs' case.
686 Malicious sender sends identical SYNs (and thus identical sequence
687 numbers) to both A and B:
688
689 A: gets SYN, seq=7
690 B: gets SYN, seq=7
691
692 By our good fortune, both A and B select the same initial
693 send sequence number of seven :-)
694
695 A: sends SYN|ACK, seq=7, ack_seq=8
696 B: sends SYN|ACK, seq=7, ack_seq=8
697
698 So we are now A eating this SYN|ACK, ACK test passes. So
699 does sequence test, SYN is truncated, and thus we consider
700 it a bare ACK.
701
702 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703 bare ACK. Otherwise, we create an established connection. Both
704 ends (listening sockets) accept the new incoming connection and try
705 to talk to each other. 8-)
706
707 Note: This case is both harmless, and rare. Possibility is about the
708 same as us discovering intelligent life on another plant tomorrow.
709
710 But generally, we should (RFC lies!) to accept ACK
711 from SYNACK both here and in tcp_rcv_state_process().
712 tcp_rcv_state_process() does not, hence, we do not too.
713
714 Note that the case is absolutely generic:
715 we cannot optimize anything here without
716 violating protocol. All the checks must be made
717 before attempt to create socket.
718 */
719
720 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
721 * and the incoming segment acknowledges something not yet
722 * sent (the segment carries an unacceptable ACK) ...
723 * a reset is sent."
724 *
725 * Invalid ACK: reset will be sent by listening socket.
726 * Note that the ACK validity check for a Fast Open socket is done
727 * elsewhere and is checked directly against the child socket rather
728 * than req because user data may have been sent out.
729 */
730 if ((flg & TCP_FLAG_ACK) && !fastopen &&
731 (TCP_SKB_CB(skb)->ack_seq !=
732 tcp_rsk(req)->snt_isn + 1))
733 return sk;
734
735 /* Also, it would be not so bad idea to check rcv_tsecr, which
736 * is essentially ACK extension and too early or too late values
737 * should cause reset in unsynchronized states.
738 */
739
740 /* RFC793: "first check sequence number". */
741
742 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744 /* Out of window: send ACK and drop. */
745 if (!(flg & TCP_FLAG_RST) &&
746 !tcp_oow_rate_limited(sock_net(sk), skb,
747 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748 &tcp_rsk(req)->last_oow_ack_time))
749 req->rsk_ops->send_ack(sk, skb, req);
750 if (paws_reject)
751 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752 return NULL;
753 }
754
755 /* In sequence, PAWS is OK. */
756
757 /* TODO: We probably should defer ts_recent change once
758 * we take ownership of @req.
759 */
760 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
761 WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
762
763 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
764 /* Truncate SYN, it is out of window starting
765 at tcp_rsk(req)->rcv_isn + 1. */
766 flg &= ~TCP_FLAG_SYN;
767 }
768
769 /* RFC793: "second check the RST bit" and
770 * "fourth, check the SYN bit"
771 */
772 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
773 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
774 goto embryonic_reset;
775 }
776
777 /* ACK sequence verified above, just make sure ACK is
778 * set. If ACK not set, just silently drop the packet.
779 *
780 * XXX (TFO) - if we ever allow "data after SYN", the
781 * following check needs to be removed.
782 */
783 if (!(flg & TCP_FLAG_ACK))
784 return NULL;
785
786 /* For Fast Open no more processing is needed (sk is the
787 * child socket).
788 */
789 if (fastopen)
790 return sk;
791
792 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
793 if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
794 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
795 inet_rsk(req)->acked = 1;
796 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
797 return NULL;
798 }
799
800 /* OK, ACK is valid, create big socket and
801 * feed this segment to it. It will repeat all
802 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
803 * ESTABLISHED STATE. If it will be dropped after
804 * socket is created, wait for troubles.
805 */
806 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
807 req, &own_req);
808 if (!child)
809 goto listen_overflow;
810
811 if (own_req && rsk_drop_req(req)) {
812 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
813 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
814 return child;
815 }
816
817 sock_rps_save_rxhash(child, skb);
818 tcp_synack_rtt_meas(child, req);
819 *req_stolen = !own_req;
820 return inet_csk_complete_hashdance(sk, child, req, own_req);
821
822 listen_overflow:
823 if (sk != req->rsk_listener)
824 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
825
826 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
827 inet_rsk(req)->acked = 1;
828 return NULL;
829 }
830
831 embryonic_reset:
832 if (!(flg & TCP_FLAG_RST)) {
833 /* Received a bad SYN pkt - for TFO We try not to reset
834 * the local connection unless it's really necessary to
835 * avoid becoming vulnerable to outside attack aiming at
836 * resetting legit local connections.
837 */
838 req->rsk_ops->send_reset(sk, skb);
839 } else if (fastopen) { /* received a valid RST pkt */
840 reqsk_fastopen_remove(sk, req, true);
841 tcp_reset(sk, skb);
842 }
843 if (!fastopen) {
844 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
845
846 if (unlinked)
847 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
848 *req_stolen = !unlinked;
849 }
850 return NULL;
851 }
852 EXPORT_SYMBOL(tcp_check_req);
853
854 /*
855 * Queue segment on the new socket if the new socket is active,
856 * otherwise we just shortcircuit this and continue with
857 * the new socket.
858 *
859 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
860 * when entering. But other states are possible due to a race condition
861 * where after __inet_lookup_established() fails but before the listener
862 * locked is obtained, other packets cause the same connection to
863 * be created.
864 */
865
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)866 int tcp_child_process(struct sock *parent, struct sock *child,
867 struct sk_buff *skb)
868 __releases(&((child)->sk_lock.slock))
869 {
870 int ret = 0;
871 int state = child->sk_state;
872
873 /* record sk_napi_id and sk_rx_queue_mapping of child. */
874 sk_mark_napi_id_set(child, skb);
875
876 tcp_segs_in(tcp_sk(child), skb);
877 if (!sock_owned_by_user(child)) {
878 ret = tcp_rcv_state_process(child, skb);
879 /* Wakeup parent, send SIGIO */
880 if (state == TCP_SYN_RECV && child->sk_state != state)
881 parent->sk_data_ready(parent);
882 } else {
883 /* Alas, it is possible again, because we do lookup
884 * in main socket hash table and lock on listening
885 * socket does not protect us more.
886 */
887 __sk_add_backlog(child, skb);
888 }
889
890 bh_unlock_sock(child);
891 sock_put(child);
892 return ret;
893 }
894 EXPORT_SYMBOL(tcp_child_process);
895