xref: /openbmc/linux/drivers/net/ethernet/toshiba/tc35815.c (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 /*
2  * tc35815.c: A TOSHIBA TC35815CF PCI 10/100Mbps ethernet driver for linux.
3  *
4  * Based on skelton.c by Donald Becker.
5  *
6  * This driver is a replacement of older and less maintained version.
7  * This is a header of the older version:
8  *	-----<snip>-----
9  *	Copyright 2001 MontaVista Software Inc.
10  *	Author: MontaVista Software, Inc.
11  *		ahennessy@mvista.com
12  *	Copyright (C) 2000-2001 Toshiba Corporation
13  *	static const char *version =
14  *		"tc35815.c:v0.00 26/07/2000 by Toshiba Corporation\n";
15  *	-----<snip>-----
16  *
17  * This file is subject to the terms and conditions of the GNU General Public
18  * License.  See the file "COPYING" in the main directory of this archive
19  * for more details.
20  *
21  * (C) Copyright TOSHIBA CORPORATION 2004-2005
22  * All Rights Reserved.
23  */
24 
25 #define DRV_VERSION	"1.39"
26 static const char version[] = "tc35815.c:v" DRV_VERSION "\n";
27 #define MODNAME			"tc35815"
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/interrupt.h>
34 #include <linux/ioport.h>
35 #include <linux/in.h>
36 #include <linux/if_vlan.h>
37 #include <linux/slab.h>
38 #include <linux/string.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/skbuff.h>
44 #include <linux/delay.h>
45 #include <linux/pci.h>
46 #include <linux/phy.h>
47 #include <linux/workqueue.h>
48 #include <linux/platform_device.h>
49 #include <linux/prefetch.h>
50 #include <asm/io.h>
51 #include <asm/byteorder.h>
52 
53 enum tc35815_chiptype {
54 	TC35815CF = 0,
55 	TC35815_NWU,
56 	TC35815_TX4939,
57 };
58 
59 /* indexed by tc35815_chiptype, above */
60 static const struct {
61 	const char *name;
62 } chip_info[] = {
63 	{ "TOSHIBA TC35815CF 10/100BaseTX" },
64 	{ "TOSHIBA TC35815 with Wake on LAN" },
65 	{ "TOSHIBA TC35815/TX4939" },
66 };
67 
68 static const struct pci_device_id tc35815_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815CF), .driver_data = TC35815CF },
70 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_NWU), .driver_data = TC35815_NWU },
71 	{PCI_DEVICE(PCI_VENDOR_ID_TOSHIBA_2, PCI_DEVICE_ID_TOSHIBA_TC35815_TX4939), .driver_data = TC35815_TX4939 },
72 	{0,}
73 };
74 MODULE_DEVICE_TABLE(pci, tc35815_pci_tbl);
75 
76 /* see MODULE_PARM_DESC */
77 static struct tc35815_options {
78 	int speed;
79 	int duplex;
80 } options;
81 
82 /*
83  * Registers
84  */
85 struct tc35815_regs {
86 	__u32 DMA_Ctl;		/* 0x00 */
87 	__u32 TxFrmPtr;
88 	__u32 TxThrsh;
89 	__u32 TxPollCtr;
90 	__u32 BLFrmPtr;
91 	__u32 RxFragSize;
92 	__u32 Int_En;
93 	__u32 FDA_Bas;
94 	__u32 FDA_Lim;		/* 0x20 */
95 	__u32 Int_Src;
96 	__u32 unused0[2];
97 	__u32 PauseCnt;
98 	__u32 RemPauCnt;
99 	__u32 TxCtlFrmStat;
100 	__u32 unused1;
101 	__u32 MAC_Ctl;		/* 0x40 */
102 	__u32 CAM_Ctl;
103 	__u32 Tx_Ctl;
104 	__u32 Tx_Stat;
105 	__u32 Rx_Ctl;
106 	__u32 Rx_Stat;
107 	__u32 MD_Data;
108 	__u32 MD_CA;
109 	__u32 CAM_Adr;		/* 0x60 */
110 	__u32 CAM_Data;
111 	__u32 CAM_Ena;
112 	__u32 PROM_Ctl;
113 	__u32 PROM_Data;
114 	__u32 Algn_Cnt;
115 	__u32 CRC_Cnt;
116 	__u32 Miss_Cnt;
117 };
118 
119 /*
120  * Bit assignments
121  */
122 /* DMA_Ctl bit assign ------------------------------------------------------- */
123 #define DMA_RxAlign	       0x00c00000 /* 1:Reception Alignment	     */
124 #define DMA_RxAlign_1	       0x00400000
125 #define DMA_RxAlign_2	       0x00800000
126 #define DMA_RxAlign_3	       0x00c00000
127 #define DMA_M66EnStat	       0x00080000 /* 1:66MHz Enable State	     */
128 #define DMA_IntMask	       0x00040000 /* 1:Interrupt mask		     */
129 #define DMA_SWIntReq	       0x00020000 /* 1:Software Interrupt request    */
130 #define DMA_TxWakeUp	       0x00010000 /* 1:Transmit Wake Up		     */
131 #define DMA_RxBigE	       0x00008000 /* 1:Receive Big Endian	     */
132 #define DMA_TxBigE	       0x00004000 /* 1:Transmit Big Endian	     */
133 #define DMA_TestMode	       0x00002000 /* 1:Test Mode		     */
134 #define DMA_PowrMgmnt	       0x00001000 /* 1:Power Management		     */
135 #define DMA_DmBurst_Mask       0x000001fc /* DMA Burst size		     */
136 
137 /* RxFragSize bit assign ---------------------------------------------------- */
138 #define RxFrag_EnPack	       0x00008000 /* 1:Enable Packing		     */
139 #define RxFrag_MinFragMask     0x00000ffc /* Minimum Fragment		     */
140 
141 /* MAC_Ctl bit assign ------------------------------------------------------- */
142 #define MAC_Link10	       0x00008000 /* 1:Link Status 10Mbits	     */
143 #define MAC_EnMissRoll	       0x00002000 /* 1:Enable Missed Roll	     */
144 #define MAC_MissRoll	       0x00000400 /* 1:Missed Roll		     */
145 #define MAC_Loop10	       0x00000080 /* 1:Loop 10 Mbps		     */
146 #define MAC_Conn_Auto	       0x00000000 /*00:Connection mode (Automatic)   */
147 #define MAC_Conn_10M	       0x00000020 /*01:		       (10Mbps endec)*/
148 #define MAC_Conn_Mll	       0x00000040 /*10:		       (Mll clock)   */
149 #define MAC_MacLoop	       0x00000010 /* 1:MAC Loopback		     */
150 #define MAC_FullDup	       0x00000008 /* 1:Full Duplex 0:Half Duplex     */
151 #define MAC_Reset	       0x00000004 /* 1:Software Reset		     */
152 #define MAC_HaltImm	       0x00000002 /* 1:Halt Immediate		     */
153 #define MAC_HaltReq	       0x00000001 /* 1:Halt request		     */
154 
155 /* PROM_Ctl bit assign ------------------------------------------------------ */
156 #define PROM_Busy	       0x00008000 /* 1:Busy (Start Operation)	     */
157 #define PROM_Read	       0x00004000 /*10:Read operation		     */
158 #define PROM_Write	       0x00002000 /*01:Write operation		     */
159 #define PROM_Erase	       0x00006000 /*11:Erase operation		     */
160 					  /*00:Enable or Disable Writting,   */
161 					  /*	  as specified in PROM_Addr. */
162 #define PROM_Addr_Ena	       0x00000030 /*11xxxx:PROM Write enable	     */
163 					  /*00xxxx:	      disable	     */
164 
165 /* CAM_Ctl bit assign ------------------------------------------------------- */
166 #define CAM_CompEn	       0x00000010 /* 1:CAM Compare Enable	     */
167 #define CAM_NegCAM	       0x00000008 /* 1:Reject packets CAM recognizes,*/
168 					  /*			accept other */
169 #define CAM_BroadAcc	       0x00000004 /* 1:Broadcast assept		     */
170 #define CAM_GroupAcc	       0x00000002 /* 1:Multicast assept		     */
171 #define CAM_StationAcc	       0x00000001 /* 1:unicast accept		     */
172 
173 /* CAM_Ena bit assign ------------------------------------------------------- */
174 #define CAM_ENTRY_MAX		       21   /* CAM Data entry max count	     */
175 #define CAM_Ena_Mask ((1<<CAM_ENTRY_MAX)-1) /* CAM Enable bits (Max 21bits)  */
176 #define CAM_Ena_Bit(index)	(1 << (index))
177 #define CAM_ENTRY_DESTINATION	0
178 #define CAM_ENTRY_SOURCE	1
179 #define CAM_ENTRY_MACCTL	20
180 
181 /* Tx_Ctl bit assign -------------------------------------------------------- */
182 #define Tx_En		       0x00000001 /* 1:Transmit enable		     */
183 #define Tx_TxHalt	       0x00000002 /* 1:Transmit Halt Request	     */
184 #define Tx_NoPad	       0x00000004 /* 1:Suppress Padding		     */
185 #define Tx_NoCRC	       0x00000008 /* 1:Suppress Padding		     */
186 #define Tx_FBack	       0x00000010 /* 1:Fast Back-off		     */
187 #define Tx_EnUnder	       0x00000100 /* 1:Enable Underrun		     */
188 #define Tx_EnExDefer	       0x00000200 /* 1:Enable Excessive Deferral     */
189 #define Tx_EnLCarr	       0x00000400 /* 1:Enable Lost Carrier	     */
190 #define Tx_EnExColl	       0x00000800 /* 1:Enable Excessive Collision    */
191 #define Tx_EnLateColl	       0x00001000 /* 1:Enable Late Collision	     */
192 #define Tx_EnTxPar	       0x00002000 /* 1:Enable Transmit Parity	     */
193 #define Tx_EnComp	       0x00004000 /* 1:Enable Completion	     */
194 
195 /* Tx_Stat bit assign ------------------------------------------------------- */
196 #define Tx_TxColl_MASK	       0x0000000F /* Tx Collision Count		     */
197 #define Tx_ExColl	       0x00000010 /* Excessive Collision	     */
198 #define Tx_TXDefer	       0x00000020 /* Transmit Defered		     */
199 #define Tx_Paused	       0x00000040 /* Transmit Paused		     */
200 #define Tx_IntTx	       0x00000080 /* Interrupt on Tx		     */
201 #define Tx_Under	       0x00000100 /* Underrun			     */
202 #define Tx_Defer	       0x00000200 /* Deferral			     */
203 #define Tx_NCarr	       0x00000400 /* No Carrier			     */
204 #define Tx_10Stat	       0x00000800 /* 10Mbps Status		     */
205 #define Tx_LateColl	       0x00001000 /* Late Collision		     */
206 #define Tx_TxPar	       0x00002000 /* Tx Parity Error		     */
207 #define Tx_Comp		       0x00004000 /* Completion			     */
208 #define Tx_Halted	       0x00008000 /* Tx Halted			     */
209 #define Tx_SQErr	       0x00010000 /* Signal Quality Error(SQE)	     */
210 
211 /* Rx_Ctl bit assign -------------------------------------------------------- */
212 #define Rx_EnGood	       0x00004000 /* 1:Enable Good		     */
213 #define Rx_EnRxPar	       0x00002000 /* 1:Enable Receive Parity	     */
214 #define Rx_EnLongErr	       0x00000800 /* 1:Enable Long Error	     */
215 #define Rx_EnOver	       0x00000400 /* 1:Enable OverFlow		     */
216 #define Rx_EnCRCErr	       0x00000200 /* 1:Enable CRC Error		     */
217 #define Rx_EnAlign	       0x00000100 /* 1:Enable Alignment		     */
218 #define Rx_IgnoreCRC	       0x00000040 /* 1:Ignore CRC Value		     */
219 #define Rx_StripCRC	       0x00000010 /* 1:Strip CRC Value		     */
220 #define Rx_ShortEn	       0x00000008 /* 1:Short Enable		     */
221 #define Rx_LongEn	       0x00000004 /* 1:Long Enable		     */
222 #define Rx_RxHalt	       0x00000002 /* 1:Receive Halt Request	     */
223 #define Rx_RxEn		       0x00000001 /* 1:Receive Intrrupt Enable	     */
224 
225 /* Rx_Stat bit assign ------------------------------------------------------- */
226 #define Rx_Halted	       0x00008000 /* Rx Halted			     */
227 #define Rx_Good		       0x00004000 /* Rx Good			     */
228 #define Rx_RxPar	       0x00002000 /* Rx Parity Error		     */
229 #define Rx_TypePkt	       0x00001000 /* Rx Type Packet		     */
230 #define Rx_LongErr	       0x00000800 /* Rx Long Error		     */
231 #define Rx_Over		       0x00000400 /* Rx Overflow		     */
232 #define Rx_CRCErr	       0x00000200 /* Rx CRC Error		     */
233 #define Rx_Align	       0x00000100 /* Rx Alignment Error		     */
234 #define Rx_10Stat	       0x00000080 /* Rx 10Mbps Status		     */
235 #define Rx_IntRx	       0x00000040 /* Rx Interrupt		     */
236 #define Rx_CtlRecd	       0x00000020 /* Rx Control Receive		     */
237 #define Rx_InLenErr	       0x00000010 /* Rx In Range Frame Length Error  */
238 
239 #define Rx_Stat_Mask	       0x0000FFF0 /* Rx All Status Mask		     */
240 
241 /* Int_En bit assign -------------------------------------------------------- */
242 #define Int_NRAbtEn	       0x00000800 /* 1:Non-recoverable Abort Enable  */
243 #define Int_TxCtlCmpEn	       0x00000400 /* 1:Transmit Ctl Complete Enable  */
244 #define Int_DmParErrEn	       0x00000200 /* 1:DMA Parity Error Enable	     */
245 #define Int_DParDEn	       0x00000100 /* 1:Data Parity Error Enable	     */
246 #define Int_EarNotEn	       0x00000080 /* 1:Early Notify Enable	     */
247 #define Int_DParErrEn	       0x00000040 /* 1:Detected Parity Error Enable  */
248 #define Int_SSysErrEn	       0x00000020 /* 1:Signalled System Error Enable */
249 #define Int_RMasAbtEn	       0x00000010 /* 1:Received Master Abort Enable  */
250 #define Int_RTargAbtEn	       0x00000008 /* 1:Received Target Abort Enable  */
251 #define Int_STargAbtEn	       0x00000004 /* 1:Signalled Target Abort Enable */
252 #define Int_BLExEn	       0x00000002 /* 1:Buffer List Exhausted Enable  */
253 #define Int_FDAExEn	       0x00000001 /* 1:Free Descriptor Area	     */
254 					  /*		   Exhausted Enable  */
255 
256 /* Int_Src bit assign ------------------------------------------------------- */
257 #define Int_NRabt	       0x00004000 /* 1:Non Recoverable error	     */
258 #define Int_DmParErrStat       0x00002000 /* 1:DMA Parity Error & Clear	     */
259 #define Int_BLEx	       0x00001000 /* 1:Buffer List Empty & Clear     */
260 #define Int_FDAEx	       0x00000800 /* 1:FDA Empty & Clear	     */
261 #define Int_IntNRAbt	       0x00000400 /* 1:Non Recoverable Abort	     */
262 #define Int_IntCmp	       0x00000200 /* 1:MAC control packet complete   */
263 #define Int_IntExBD	       0x00000100 /* 1:Interrupt Extra BD & Clear    */
264 #define Int_DmParErr	       0x00000080 /* 1:DMA Parity Error & Clear	     */
265 #define Int_IntEarNot	       0x00000040 /* 1:Receive Data write & Clear    */
266 #define Int_SWInt	       0x00000020 /* 1:Software request & Clear	     */
267 #define Int_IntBLEx	       0x00000010 /* 1:Buffer List Empty & Clear     */
268 #define Int_IntFDAEx	       0x00000008 /* 1:FDA Empty & Clear	     */
269 #define Int_IntPCI	       0x00000004 /* 1:PCI controller & Clear	     */
270 #define Int_IntMacRx	       0x00000002 /* 1:Rx controller & Clear	     */
271 #define Int_IntMacTx	       0x00000001 /* 1:Tx controller & Clear	     */
272 
273 /* MD_CA bit assign --------------------------------------------------------- */
274 #define MD_CA_PreSup	       0x00001000 /* 1:Preamble Suppress		     */
275 #define MD_CA_Busy	       0x00000800 /* 1:Busy (Start Operation)	     */
276 #define MD_CA_Wr	       0x00000400 /* 1:Write 0:Read		     */
277 
278 
279 /*
280  * Descriptors
281  */
282 
283 /* Frame descriptor */
284 struct FDesc {
285 	volatile __u32 FDNext;
286 	volatile __u32 FDSystem;
287 	volatile __u32 FDStat;
288 	volatile __u32 FDCtl;
289 };
290 
291 /* Buffer descriptor */
292 struct BDesc {
293 	volatile __u32 BuffData;
294 	volatile __u32 BDCtl;
295 };
296 
297 #define FD_ALIGN	16
298 
299 /* Frame Descriptor bit assign ---------------------------------------------- */
300 #define FD_FDLength_MASK       0x0000FFFF /* Length MASK		     */
301 #define FD_BDCnt_MASK	       0x001F0000 /* BD count MASK in FD	     */
302 #define FD_FrmOpt_MASK	       0x7C000000 /* Frame option MASK		     */
303 #define FD_FrmOpt_BigEndian    0x40000000 /* Tx/Rx */
304 #define FD_FrmOpt_IntTx	       0x20000000 /* Tx only */
305 #define FD_FrmOpt_NoCRC	       0x10000000 /* Tx only */
306 #define FD_FrmOpt_NoPadding    0x08000000 /* Tx only */
307 #define FD_FrmOpt_Packing      0x04000000 /* Rx only */
308 #define FD_CownsFD	       0x80000000 /* FD Controller owner bit	     */
309 #define FD_Next_EOL	       0x00000001 /* FD EOL indicator		     */
310 #define FD_BDCnt_SHIFT	       16
311 
312 /* Buffer Descriptor bit assign --------------------------------------------- */
313 #define BD_BuffLength_MASK     0x0000FFFF /* Receive Data Size		     */
314 #define BD_RxBDID_MASK	       0x00FF0000 /* BD ID Number MASK		     */
315 #define BD_RxBDSeqN_MASK       0x7F000000 /* Rx BD Sequence Number	     */
316 #define BD_CownsBD	       0x80000000 /* BD Controller owner bit	     */
317 #define BD_RxBDID_SHIFT	       16
318 #define BD_RxBDSeqN_SHIFT      24
319 
320 
321 /* Some useful constants. */
322 
323 #define TX_CTL_CMD	(Tx_EnTxPar | Tx_EnLateColl | \
324 	Tx_EnExColl | Tx_EnLCarr | Tx_EnExDefer | Tx_EnUnder | \
325 	Tx_En)	/* maybe  0x7b01 */
326 /* Do not use Rx_StripCRC -- it causes trouble on BLEx/FDAEx condition */
327 #define RX_CTL_CMD	(Rx_EnGood | Rx_EnRxPar | Rx_EnLongErr | Rx_EnOver \
328 	| Rx_EnCRCErr | Rx_EnAlign | Rx_RxEn) /* maybe 0x6f01 */
329 #define INT_EN_CMD  (Int_NRAbtEn | \
330 	Int_DmParErrEn | Int_DParDEn | Int_DParErrEn | \
331 	Int_SSysErrEn  | Int_RMasAbtEn | Int_RTargAbtEn | \
332 	Int_STargAbtEn | \
333 	Int_BLExEn  | Int_FDAExEn) /* maybe 0xb7f*/
334 #define DMA_CTL_CMD	DMA_BURST_SIZE
335 #define HAVE_DMA_RXALIGN(lp)	likely((lp)->chiptype != TC35815CF)
336 
337 /* Tuning parameters */
338 #define DMA_BURST_SIZE	32
339 #define TX_THRESHOLD	1024
340 /* used threshold with packet max byte for low pci transfer ability.*/
341 #define TX_THRESHOLD_MAX 1536
342 /* setting threshold max value when overrun error occurred this count. */
343 #define TX_THRESHOLD_KEEP_LIMIT 10
344 
345 /* 16 + RX_BUF_NUM * 8 + RX_FD_NUM * 16 + TX_FD_NUM * 32 <= PAGE_SIZE*FD_PAGE_NUM */
346 #define FD_PAGE_NUM 4
347 #define RX_BUF_NUM	128	/* < 256 */
348 #define RX_FD_NUM	256	/* >= 32 */
349 #define TX_FD_NUM	128
350 #if RX_CTL_CMD & Rx_LongEn
351 #define RX_BUF_SIZE	PAGE_SIZE
352 #elif RX_CTL_CMD & Rx_StripCRC
353 #define RX_BUF_SIZE	\
354 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + NET_IP_ALIGN)
355 #else
356 #define RX_BUF_SIZE	\
357 	L1_CACHE_ALIGN(ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN + NET_IP_ALIGN)
358 #endif
359 #define RX_FD_RESERVE	(2 / 2)	/* max 2 BD per RxFD */
360 #define NAPI_WEIGHT	16
361 
362 struct TxFD {
363 	struct FDesc fd;
364 	struct BDesc bd;
365 	struct BDesc unused;
366 };
367 
368 struct RxFD {
369 	struct FDesc fd;
370 	struct BDesc bd[];	/* variable length */
371 };
372 
373 struct FrFD {
374 	struct FDesc fd;
375 	struct BDesc bd[RX_BUF_NUM];
376 };
377 
378 
379 #define tc_readl(addr)	ioread32(addr)
380 #define tc_writel(d, addr)	iowrite32(d, addr)
381 
382 #define TC35815_TX_TIMEOUT  msecs_to_jiffies(400)
383 
384 /* Information that need to be kept for each controller. */
385 struct tc35815_local {
386 	struct pci_dev *pci_dev;
387 
388 	struct net_device *dev;
389 	struct napi_struct napi;
390 
391 	/* statistics */
392 	struct {
393 		int max_tx_qlen;
394 		int tx_ints;
395 		int rx_ints;
396 		int tx_underrun;
397 	} lstats;
398 
399 	/* Tx control lock.  This protects the transmit buffer ring
400 	 * state along with the "tx full" state of the driver.  This
401 	 * means all netif_queue flow control actions are protected
402 	 * by this lock as well.
403 	 */
404 	spinlock_t lock;
405 	spinlock_t rx_lock;
406 
407 	struct mii_bus *mii_bus;
408 	int duplex;
409 	int speed;
410 	int link;
411 	struct work_struct restart_work;
412 
413 	/*
414 	 * Transmitting: Batch Mode.
415 	 *	1 BD in 1 TxFD.
416 	 * Receiving: Non-Packing Mode.
417 	 *	1 circular FD for Free Buffer List.
418 	 *	RX_BUF_NUM BD in Free Buffer FD.
419 	 *	One Free Buffer BD has ETH_FRAME_LEN data buffer.
420 	 */
421 	void *fd_buf;	/* for TxFD, RxFD, FrFD */
422 	dma_addr_t fd_buf_dma;
423 	struct TxFD *tfd_base;
424 	unsigned int tfd_start;
425 	unsigned int tfd_end;
426 	struct RxFD *rfd_base;
427 	struct RxFD *rfd_limit;
428 	struct RxFD *rfd_cur;
429 	struct FrFD *fbl_ptr;
430 	unsigned int fbl_count;
431 	struct {
432 		struct sk_buff *skb;
433 		dma_addr_t skb_dma;
434 	} tx_skbs[TX_FD_NUM], rx_skbs[RX_BUF_NUM];
435 	u32 msg_enable;
436 	enum tc35815_chiptype chiptype;
437 };
438 
fd_virt_to_bus(struct tc35815_local * lp,void * virt)439 static inline dma_addr_t fd_virt_to_bus(struct tc35815_local *lp, void *virt)
440 {
441 	return lp->fd_buf_dma + ((u8 *)virt - (u8 *)lp->fd_buf);
442 }
443 #ifdef DEBUG
fd_bus_to_virt(struct tc35815_local * lp,dma_addr_t bus)444 static inline void *fd_bus_to_virt(struct tc35815_local *lp, dma_addr_t bus)
445 {
446 	return (void *)((u8 *)lp->fd_buf + (bus - lp->fd_buf_dma));
447 }
448 #endif
alloc_rxbuf_skb(struct net_device * dev,struct pci_dev * hwdev,dma_addr_t * dma_handle)449 static struct sk_buff *alloc_rxbuf_skb(struct net_device *dev,
450 				       struct pci_dev *hwdev,
451 				       dma_addr_t *dma_handle)
452 {
453 	struct sk_buff *skb;
454 	skb = netdev_alloc_skb(dev, RX_BUF_SIZE);
455 	if (!skb)
456 		return NULL;
457 	*dma_handle = dma_map_single(&hwdev->dev, skb->data, RX_BUF_SIZE,
458 				     DMA_FROM_DEVICE);
459 	if (dma_mapping_error(&hwdev->dev, *dma_handle)) {
460 		dev_kfree_skb_any(skb);
461 		return NULL;
462 	}
463 	skb_reserve(skb, 2);	/* make IP header 4byte aligned */
464 	return skb;
465 }
466 
free_rxbuf_skb(struct pci_dev * hwdev,struct sk_buff * skb,dma_addr_t dma_handle)467 static void free_rxbuf_skb(struct pci_dev *hwdev, struct sk_buff *skb, dma_addr_t dma_handle)
468 {
469 	dma_unmap_single(&hwdev->dev, dma_handle, RX_BUF_SIZE,
470 			 DMA_FROM_DEVICE);
471 	dev_kfree_skb_any(skb);
472 }
473 
474 /* Index to functions, as function prototypes. */
475 
476 static int	tc35815_open(struct net_device *dev);
477 static netdev_tx_t	tc35815_send_packet(struct sk_buff *skb,
478 					    struct net_device *dev);
479 static irqreturn_t	tc35815_interrupt(int irq, void *dev_id);
480 static int	tc35815_rx(struct net_device *dev, int limit);
481 static int	tc35815_poll(struct napi_struct *napi, int budget);
482 static void	tc35815_txdone(struct net_device *dev);
483 static int	tc35815_close(struct net_device *dev);
484 static struct	net_device_stats *tc35815_get_stats(struct net_device *dev);
485 static void	tc35815_set_multicast_list(struct net_device *dev);
486 static void	tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue);
487 #ifdef CONFIG_NET_POLL_CONTROLLER
488 static void	tc35815_poll_controller(struct net_device *dev);
489 #endif
490 static const struct ethtool_ops tc35815_ethtool_ops;
491 
492 /* Example routines you must write ;->. */
493 static void	tc35815_chip_reset(struct net_device *dev);
494 static void	tc35815_chip_init(struct net_device *dev);
495 
496 #ifdef DEBUG
497 static void	panic_queues(struct net_device *dev);
498 #endif
499 
500 static void tc35815_restart_work(struct work_struct *work);
501 
tc_mdio_read(struct mii_bus * bus,int mii_id,int regnum)502 static int tc_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
503 {
504 	struct net_device *dev = bus->priv;
505 	struct tc35815_regs __iomem *tr =
506 		(struct tc35815_regs __iomem *)dev->base_addr;
507 	unsigned long timeout = jiffies + HZ;
508 
509 	tc_writel(MD_CA_Busy | (mii_id << 5) | (regnum & 0x1f), &tr->MD_CA);
510 	udelay(12); /* it takes 32 x 400ns at least */
511 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
512 		if (time_after(jiffies, timeout))
513 			return -EIO;
514 		cpu_relax();
515 	}
516 	return tc_readl(&tr->MD_Data) & 0xffff;
517 }
518 
tc_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 val)519 static int tc_mdio_write(struct mii_bus *bus, int mii_id, int regnum, u16 val)
520 {
521 	struct net_device *dev = bus->priv;
522 	struct tc35815_regs __iomem *tr =
523 		(struct tc35815_regs __iomem *)dev->base_addr;
524 	unsigned long timeout = jiffies + HZ;
525 
526 	tc_writel(val, &tr->MD_Data);
527 	tc_writel(MD_CA_Busy | MD_CA_Wr | (mii_id << 5) | (regnum & 0x1f),
528 		  &tr->MD_CA);
529 	udelay(12); /* it takes 32 x 400ns at least */
530 	while (tc_readl(&tr->MD_CA) & MD_CA_Busy) {
531 		if (time_after(jiffies, timeout))
532 			return -EIO;
533 		cpu_relax();
534 	}
535 	return 0;
536 }
537 
tc_handle_link_change(struct net_device * dev)538 static void tc_handle_link_change(struct net_device *dev)
539 {
540 	struct tc35815_local *lp = netdev_priv(dev);
541 	struct phy_device *phydev = dev->phydev;
542 	unsigned long flags;
543 	int status_change = 0;
544 
545 	spin_lock_irqsave(&lp->lock, flags);
546 	if (phydev->link &&
547 	    (lp->speed != phydev->speed || lp->duplex != phydev->duplex)) {
548 		struct tc35815_regs __iomem *tr =
549 			(struct tc35815_regs __iomem *)dev->base_addr;
550 		u32 reg;
551 
552 		reg = tc_readl(&tr->MAC_Ctl);
553 		reg |= MAC_HaltReq;
554 		tc_writel(reg, &tr->MAC_Ctl);
555 		if (phydev->duplex == DUPLEX_FULL)
556 			reg |= MAC_FullDup;
557 		else
558 			reg &= ~MAC_FullDup;
559 		tc_writel(reg, &tr->MAC_Ctl);
560 		reg &= ~MAC_HaltReq;
561 		tc_writel(reg, &tr->MAC_Ctl);
562 
563 		/*
564 		 * TX4939 PCFG.SPEEDn bit will be changed on
565 		 * NETDEV_CHANGE event.
566 		 */
567 		/*
568 		 * WORKAROUND: enable LostCrS only if half duplex
569 		 * operation.
570 		 * (TX4939 does not have EnLCarr)
571 		 */
572 		if (phydev->duplex == DUPLEX_HALF &&
573 		    lp->chiptype != TC35815_TX4939)
574 			tc_writel(tc_readl(&tr->Tx_Ctl) | Tx_EnLCarr,
575 				  &tr->Tx_Ctl);
576 
577 		lp->speed = phydev->speed;
578 		lp->duplex = phydev->duplex;
579 		status_change = 1;
580 	}
581 
582 	if (phydev->link != lp->link) {
583 		if (phydev->link) {
584 			/* delayed promiscuous enabling */
585 			if (dev->flags & IFF_PROMISC)
586 				tc35815_set_multicast_list(dev);
587 		} else {
588 			lp->speed = 0;
589 			lp->duplex = -1;
590 		}
591 		lp->link = phydev->link;
592 
593 		status_change = 1;
594 	}
595 	spin_unlock_irqrestore(&lp->lock, flags);
596 
597 	if (status_change && netif_msg_link(lp)) {
598 		phy_print_status(phydev);
599 		pr_debug("%s: MII BMCR %04x BMSR %04x LPA %04x\n",
600 			 dev->name,
601 			 phy_read(phydev, MII_BMCR),
602 			 phy_read(phydev, MII_BMSR),
603 			 phy_read(phydev, MII_LPA));
604 	}
605 }
606 
tc_mii_probe(struct net_device * dev)607 static int tc_mii_probe(struct net_device *dev)
608 {
609 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
610 	struct tc35815_local *lp = netdev_priv(dev);
611 	struct phy_device *phydev;
612 
613 	phydev = phy_find_first(lp->mii_bus);
614 	if (!phydev) {
615 		printk(KERN_ERR "%s: no PHY found\n", dev->name);
616 		return -ENODEV;
617 	}
618 
619 	/* attach the mac to the phy */
620 	phydev = phy_connect(dev, phydev_name(phydev),
621 			     &tc_handle_link_change,
622 			     lp->chiptype == TC35815_TX4939 ? PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII);
623 	if (IS_ERR(phydev)) {
624 		printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
625 		return PTR_ERR(phydev);
626 	}
627 
628 	phy_attached_info(phydev);
629 
630 	/* mask with MAC supported features */
631 	phy_set_max_speed(phydev, SPEED_100);
632 	if (options.speed == 10) {
633 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
634 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
635 	} else if (options.speed == 100) {
636 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
637 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
638 	}
639 	if (options.duplex == 1) {
640 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Full_BIT, mask);
641 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask);
642 	} else if (options.duplex == 2) {
643 		linkmode_set_bit(ETHTOOL_LINK_MODE_10baseT_Half_BIT, mask);
644 		linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask);
645 	}
646 	linkmode_andnot(phydev->supported, phydev->supported, mask);
647 	linkmode_copy(phydev->advertising, phydev->supported);
648 
649 	lp->link = 0;
650 	lp->speed = 0;
651 	lp->duplex = -1;
652 
653 	return 0;
654 }
655 
tc_mii_init(struct net_device * dev)656 static int tc_mii_init(struct net_device *dev)
657 {
658 	struct tc35815_local *lp = netdev_priv(dev);
659 	int err;
660 
661 	lp->mii_bus = mdiobus_alloc();
662 	if (lp->mii_bus == NULL) {
663 		err = -ENOMEM;
664 		goto err_out;
665 	}
666 
667 	lp->mii_bus->name = "tc35815_mii_bus";
668 	lp->mii_bus->read = tc_mdio_read;
669 	lp->mii_bus->write = tc_mdio_write;
670 	snprintf(lp->mii_bus->id, MII_BUS_ID_SIZE, "%x", pci_dev_id(lp->pci_dev));
671 	lp->mii_bus->priv = dev;
672 	lp->mii_bus->parent = &lp->pci_dev->dev;
673 	err = mdiobus_register(lp->mii_bus);
674 	if (err)
675 		goto err_out_free_mii_bus;
676 	err = tc_mii_probe(dev);
677 	if (err)
678 		goto err_out_unregister_bus;
679 	return 0;
680 
681 err_out_unregister_bus:
682 	mdiobus_unregister(lp->mii_bus);
683 err_out_free_mii_bus:
684 	mdiobus_free(lp->mii_bus);
685 err_out:
686 	return err;
687 }
688 
689 #ifdef CONFIG_CPU_TX49XX
690 /*
691  * Find a platform_device providing a MAC address.  The platform code
692  * should provide a "tc35815-mac" device with a MAC address in its
693  * platform_data.
694  */
tc35815_mac_match(struct device * dev,const void * data)695 static int tc35815_mac_match(struct device *dev, const void *data)
696 {
697 	struct platform_device *plat_dev = to_platform_device(dev);
698 	const struct pci_dev *pci_dev = data;
699 	unsigned int id = pci_dev->irq;
700 	return !strcmp(plat_dev->name, "tc35815-mac") && plat_dev->id == id;
701 }
702 
tc35815_read_plat_dev_addr(struct net_device * dev)703 static int tc35815_read_plat_dev_addr(struct net_device *dev)
704 {
705 	struct tc35815_local *lp = netdev_priv(dev);
706 	struct device *pd = bus_find_device(&platform_bus_type, NULL,
707 					    lp->pci_dev, tc35815_mac_match);
708 	if (pd) {
709 		if (pd->platform_data)
710 			eth_hw_addr_set(dev, pd->platform_data);
711 		put_device(pd);
712 		return is_valid_ether_addr(dev->dev_addr) ? 0 : -ENODEV;
713 	}
714 	return -ENODEV;
715 }
716 #else
tc35815_read_plat_dev_addr(struct net_device * dev)717 static int tc35815_read_plat_dev_addr(struct net_device *dev)
718 {
719 	return -ENODEV;
720 }
721 #endif
722 
tc35815_init_dev_addr(struct net_device * dev)723 static int tc35815_init_dev_addr(struct net_device *dev)
724 {
725 	struct tc35815_regs __iomem *tr =
726 		(struct tc35815_regs __iomem *)dev->base_addr;
727 	u8 addr[ETH_ALEN];
728 	int i;
729 
730 	while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
731 		;
732 	for (i = 0; i < 6; i += 2) {
733 		unsigned short data;
734 		tc_writel(PROM_Busy | PROM_Read | (i / 2 + 2), &tr->PROM_Ctl);
735 		while (tc_readl(&tr->PROM_Ctl) & PROM_Busy)
736 			;
737 		data = tc_readl(&tr->PROM_Data);
738 		addr[i] = data & 0xff;
739 		addr[i+1] = data >> 8;
740 	}
741 	eth_hw_addr_set(dev, addr);
742 	if (!is_valid_ether_addr(dev->dev_addr))
743 		return tc35815_read_plat_dev_addr(dev);
744 	return 0;
745 }
746 
747 static const struct net_device_ops tc35815_netdev_ops = {
748 	.ndo_open		= tc35815_open,
749 	.ndo_stop		= tc35815_close,
750 	.ndo_start_xmit		= tc35815_send_packet,
751 	.ndo_get_stats		= tc35815_get_stats,
752 	.ndo_set_rx_mode	= tc35815_set_multicast_list,
753 	.ndo_tx_timeout		= tc35815_tx_timeout,
754 	.ndo_eth_ioctl		= phy_do_ioctl_running,
755 	.ndo_validate_addr	= eth_validate_addr,
756 	.ndo_set_mac_address	= eth_mac_addr,
757 #ifdef CONFIG_NET_POLL_CONTROLLER
758 	.ndo_poll_controller	= tc35815_poll_controller,
759 #endif
760 };
761 
tc35815_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)762 static int tc35815_init_one(struct pci_dev *pdev,
763 			    const struct pci_device_id *ent)
764 {
765 	void __iomem *ioaddr = NULL;
766 	struct net_device *dev;
767 	struct tc35815_local *lp;
768 	int rc;
769 
770 	static int printed_version;
771 	if (!printed_version++) {
772 		printk(version);
773 		dev_printk(KERN_DEBUG, &pdev->dev,
774 			   "speed:%d duplex:%d\n",
775 			   options.speed, options.duplex);
776 	}
777 
778 	if (!pdev->irq) {
779 		dev_warn(&pdev->dev, "no IRQ assigned.\n");
780 		return -ENODEV;
781 	}
782 
783 	/* dev zeroed in alloc_etherdev */
784 	dev = alloc_etherdev(sizeof(*lp));
785 	if (dev == NULL)
786 		return -ENOMEM;
787 
788 	SET_NETDEV_DEV(dev, &pdev->dev);
789 	lp = netdev_priv(dev);
790 	lp->dev = dev;
791 
792 	/* enable device (incl. PCI PM wakeup), and bus-mastering */
793 	rc = pcim_enable_device(pdev);
794 	if (rc)
795 		goto err_out;
796 	rc = pcim_iomap_regions(pdev, 1 << 1, MODNAME);
797 	if (rc)
798 		goto err_out;
799 	pci_set_master(pdev);
800 	ioaddr = pcim_iomap_table(pdev)[1];
801 
802 	/* Initialize the device structure. */
803 	dev->netdev_ops = &tc35815_netdev_ops;
804 	dev->ethtool_ops = &tc35815_ethtool_ops;
805 	dev->watchdog_timeo = TC35815_TX_TIMEOUT;
806 	netif_napi_add_weight(dev, &lp->napi, tc35815_poll, NAPI_WEIGHT);
807 
808 	dev->irq = pdev->irq;
809 	dev->base_addr = (unsigned long)ioaddr;
810 
811 	INIT_WORK(&lp->restart_work, tc35815_restart_work);
812 	spin_lock_init(&lp->lock);
813 	spin_lock_init(&lp->rx_lock);
814 	lp->pci_dev = pdev;
815 	lp->chiptype = ent->driver_data;
816 
817 	lp->msg_enable = NETIF_MSG_TX_ERR | NETIF_MSG_HW | NETIF_MSG_DRV | NETIF_MSG_LINK;
818 	pci_set_drvdata(pdev, dev);
819 
820 	/* Soft reset the chip. */
821 	tc35815_chip_reset(dev);
822 
823 	/* Retrieve the ethernet address. */
824 	if (tc35815_init_dev_addr(dev)) {
825 		dev_warn(&pdev->dev, "not valid ether addr\n");
826 		eth_hw_addr_random(dev);
827 	}
828 
829 	rc = register_netdev(dev);
830 	if (rc)
831 		goto err_out;
832 
833 	printk(KERN_INFO "%s: %s at 0x%lx, %pM, IRQ %d\n",
834 		dev->name,
835 		chip_info[ent->driver_data].name,
836 		dev->base_addr,
837 		dev->dev_addr,
838 		dev->irq);
839 
840 	rc = tc_mii_init(dev);
841 	if (rc)
842 		goto err_out_unregister;
843 
844 	return 0;
845 
846 err_out_unregister:
847 	unregister_netdev(dev);
848 err_out:
849 	free_netdev(dev);
850 	return rc;
851 }
852 
853 
tc35815_remove_one(struct pci_dev * pdev)854 static void tc35815_remove_one(struct pci_dev *pdev)
855 {
856 	struct net_device *dev = pci_get_drvdata(pdev);
857 	struct tc35815_local *lp = netdev_priv(dev);
858 
859 	phy_disconnect(dev->phydev);
860 	mdiobus_unregister(lp->mii_bus);
861 	mdiobus_free(lp->mii_bus);
862 	unregister_netdev(dev);
863 	free_netdev(dev);
864 }
865 
866 static int
tc35815_init_queues(struct net_device * dev)867 tc35815_init_queues(struct net_device *dev)
868 {
869 	struct tc35815_local *lp = netdev_priv(dev);
870 	int i;
871 	unsigned long fd_addr;
872 
873 	if (!lp->fd_buf) {
874 		BUG_ON(sizeof(struct FDesc) +
875 		       sizeof(struct BDesc) * RX_BUF_NUM +
876 		       sizeof(struct FDesc) * RX_FD_NUM +
877 		       sizeof(struct TxFD) * TX_FD_NUM >
878 		       PAGE_SIZE * FD_PAGE_NUM);
879 
880 		lp->fd_buf = dma_alloc_coherent(&lp->pci_dev->dev,
881 						PAGE_SIZE * FD_PAGE_NUM,
882 						&lp->fd_buf_dma, GFP_ATOMIC);
883 		if (!lp->fd_buf)
884 			return -ENOMEM;
885 		for (i = 0; i < RX_BUF_NUM; i++) {
886 			lp->rx_skbs[i].skb =
887 				alloc_rxbuf_skb(dev, lp->pci_dev,
888 						&lp->rx_skbs[i].skb_dma);
889 			if (!lp->rx_skbs[i].skb) {
890 				while (--i >= 0) {
891 					free_rxbuf_skb(lp->pci_dev,
892 						       lp->rx_skbs[i].skb,
893 						       lp->rx_skbs[i].skb_dma);
894 					lp->rx_skbs[i].skb = NULL;
895 				}
896 				dma_free_coherent(&lp->pci_dev->dev,
897 						  PAGE_SIZE * FD_PAGE_NUM,
898 						  lp->fd_buf, lp->fd_buf_dma);
899 				lp->fd_buf = NULL;
900 				return -ENOMEM;
901 			}
902 		}
903 		printk(KERN_DEBUG "%s: FD buf %p DataBuf",
904 		       dev->name, lp->fd_buf);
905 		printk("\n");
906 	} else {
907 		for (i = 0; i < FD_PAGE_NUM; i++)
908 			clear_page((void *)((unsigned long)lp->fd_buf +
909 					    i * PAGE_SIZE));
910 	}
911 	fd_addr = (unsigned long)lp->fd_buf;
912 
913 	/* Free Descriptors (for Receive) */
914 	lp->rfd_base = (struct RxFD *)fd_addr;
915 	fd_addr += sizeof(struct RxFD) * RX_FD_NUM;
916 	for (i = 0; i < RX_FD_NUM; i++)
917 		lp->rfd_base[i].fd.FDCtl = cpu_to_le32(FD_CownsFD);
918 	lp->rfd_cur = lp->rfd_base;
919 	lp->rfd_limit = (struct RxFD *)fd_addr - (RX_FD_RESERVE + 1);
920 
921 	/* Transmit Descriptors */
922 	lp->tfd_base = (struct TxFD *)fd_addr;
923 	fd_addr += sizeof(struct TxFD) * TX_FD_NUM;
924 	for (i = 0; i < TX_FD_NUM; i++) {
925 		lp->tfd_base[i].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[i+1]));
926 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
927 		lp->tfd_base[i].fd.FDCtl = cpu_to_le32(0);
928 	}
929 	lp->tfd_base[TX_FD_NUM-1].fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, &lp->tfd_base[0]));
930 	lp->tfd_start = 0;
931 	lp->tfd_end = 0;
932 
933 	/* Buffer List (for Receive) */
934 	lp->fbl_ptr = (struct FrFD *)fd_addr;
935 	lp->fbl_ptr->fd.FDNext = cpu_to_le32(fd_virt_to_bus(lp, lp->fbl_ptr));
936 	lp->fbl_ptr->fd.FDCtl = cpu_to_le32(RX_BUF_NUM | FD_CownsFD);
937 	/*
938 	 * move all allocated skbs to head of rx_skbs[] array.
939 	 * fbl_count mighe not be RX_BUF_NUM if alloc_rxbuf_skb() in
940 	 * tc35815_rx() had failed.
941 	 */
942 	lp->fbl_count = 0;
943 	for (i = 0; i < RX_BUF_NUM; i++) {
944 		if (lp->rx_skbs[i].skb) {
945 			if (i != lp->fbl_count) {
946 				lp->rx_skbs[lp->fbl_count].skb =
947 					lp->rx_skbs[i].skb;
948 				lp->rx_skbs[lp->fbl_count].skb_dma =
949 					lp->rx_skbs[i].skb_dma;
950 			}
951 			lp->fbl_count++;
952 		}
953 	}
954 	for (i = 0; i < RX_BUF_NUM; i++) {
955 		if (i >= lp->fbl_count) {
956 			lp->fbl_ptr->bd[i].BuffData = 0;
957 			lp->fbl_ptr->bd[i].BDCtl = 0;
958 			continue;
959 		}
960 		lp->fbl_ptr->bd[i].BuffData =
961 			cpu_to_le32(lp->rx_skbs[i].skb_dma);
962 		/* BDID is index of FrFD.bd[] */
963 		lp->fbl_ptr->bd[i].BDCtl =
964 			cpu_to_le32(BD_CownsBD | (i << BD_RxBDID_SHIFT) |
965 				    RX_BUF_SIZE);
966 	}
967 
968 	printk(KERN_DEBUG "%s: TxFD %p RxFD %p FrFD %p\n",
969 	       dev->name, lp->tfd_base, lp->rfd_base, lp->fbl_ptr);
970 	return 0;
971 }
972 
973 static void
tc35815_clear_queues(struct net_device * dev)974 tc35815_clear_queues(struct net_device *dev)
975 {
976 	struct tc35815_local *lp = netdev_priv(dev);
977 	int i;
978 
979 	for (i = 0; i < TX_FD_NUM; i++) {
980 		u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
981 		struct sk_buff *skb =
982 			fdsystem != 0xffffffff ?
983 			lp->tx_skbs[fdsystem].skb : NULL;
984 #ifdef DEBUG
985 		if (lp->tx_skbs[i].skb != skb) {
986 			printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
987 			panic_queues(dev);
988 		}
989 #else
990 		BUG_ON(lp->tx_skbs[i].skb != skb);
991 #endif
992 		if (skb) {
993 			dma_unmap_single(&lp->pci_dev->dev,
994 					 lp->tx_skbs[i].skb_dma, skb->len,
995 					 DMA_TO_DEVICE);
996 			lp->tx_skbs[i].skb = NULL;
997 			lp->tx_skbs[i].skb_dma = 0;
998 			dev_kfree_skb_any(skb);
999 		}
1000 		lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1001 	}
1002 
1003 	tc35815_init_queues(dev);
1004 }
1005 
1006 static void
tc35815_free_queues(struct net_device * dev)1007 tc35815_free_queues(struct net_device *dev)
1008 {
1009 	struct tc35815_local *lp = netdev_priv(dev);
1010 	int i;
1011 
1012 	if (lp->tfd_base) {
1013 		for (i = 0; i < TX_FD_NUM; i++) {
1014 			u32 fdsystem = le32_to_cpu(lp->tfd_base[i].fd.FDSystem);
1015 			struct sk_buff *skb =
1016 				fdsystem != 0xffffffff ?
1017 				lp->tx_skbs[fdsystem].skb : NULL;
1018 #ifdef DEBUG
1019 			if (lp->tx_skbs[i].skb != skb) {
1020 				printk("%s: tx_skbs mismatch(%d).\n", dev->name, i);
1021 				panic_queues(dev);
1022 			}
1023 #else
1024 			BUG_ON(lp->tx_skbs[i].skb != skb);
1025 #endif
1026 			if (skb) {
1027 				dma_unmap_single(&lp->pci_dev->dev,
1028 						 lp->tx_skbs[i].skb_dma,
1029 						 skb->len, DMA_TO_DEVICE);
1030 				dev_kfree_skb(skb);
1031 				lp->tx_skbs[i].skb = NULL;
1032 				lp->tx_skbs[i].skb_dma = 0;
1033 			}
1034 			lp->tfd_base[i].fd.FDSystem = cpu_to_le32(0xffffffff);
1035 		}
1036 	}
1037 
1038 	lp->rfd_base = NULL;
1039 	lp->rfd_limit = NULL;
1040 	lp->rfd_cur = NULL;
1041 	lp->fbl_ptr = NULL;
1042 
1043 	for (i = 0; i < RX_BUF_NUM; i++) {
1044 		if (lp->rx_skbs[i].skb) {
1045 			free_rxbuf_skb(lp->pci_dev, lp->rx_skbs[i].skb,
1046 				       lp->rx_skbs[i].skb_dma);
1047 			lp->rx_skbs[i].skb = NULL;
1048 		}
1049 	}
1050 	if (lp->fd_buf) {
1051 		dma_free_coherent(&lp->pci_dev->dev, PAGE_SIZE * FD_PAGE_NUM,
1052 				  lp->fd_buf, lp->fd_buf_dma);
1053 		lp->fd_buf = NULL;
1054 	}
1055 }
1056 
1057 static void
dump_txfd(struct TxFD * fd)1058 dump_txfd(struct TxFD *fd)
1059 {
1060 	printk("TxFD(%p): %08x %08x %08x %08x\n", fd,
1061 	       le32_to_cpu(fd->fd.FDNext),
1062 	       le32_to_cpu(fd->fd.FDSystem),
1063 	       le32_to_cpu(fd->fd.FDStat),
1064 	       le32_to_cpu(fd->fd.FDCtl));
1065 	printk("BD: ");
1066 	printk(" %08x %08x",
1067 	       le32_to_cpu(fd->bd.BuffData),
1068 	       le32_to_cpu(fd->bd.BDCtl));
1069 	printk("\n");
1070 }
1071 
1072 static int
dump_rxfd(struct RxFD * fd)1073 dump_rxfd(struct RxFD *fd)
1074 {
1075 	int i, bd_count = (le32_to_cpu(fd->fd.FDCtl) & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1076 	if (bd_count > 8)
1077 		bd_count = 8;
1078 	printk("RxFD(%p): %08x %08x %08x %08x\n", fd,
1079 	       le32_to_cpu(fd->fd.FDNext),
1080 	       le32_to_cpu(fd->fd.FDSystem),
1081 	       le32_to_cpu(fd->fd.FDStat),
1082 	       le32_to_cpu(fd->fd.FDCtl));
1083 	if (le32_to_cpu(fd->fd.FDCtl) & FD_CownsFD)
1084 		return 0;
1085 	printk("BD: ");
1086 	for (i = 0; i < bd_count; i++)
1087 		printk(" %08x %08x",
1088 		       le32_to_cpu(fd->bd[i].BuffData),
1089 		       le32_to_cpu(fd->bd[i].BDCtl));
1090 	printk("\n");
1091 	return bd_count;
1092 }
1093 
1094 #ifdef DEBUG
1095 static void
dump_frfd(struct FrFD * fd)1096 dump_frfd(struct FrFD *fd)
1097 {
1098 	int i;
1099 	printk("FrFD(%p): %08x %08x %08x %08x\n", fd,
1100 	       le32_to_cpu(fd->fd.FDNext),
1101 	       le32_to_cpu(fd->fd.FDSystem),
1102 	       le32_to_cpu(fd->fd.FDStat),
1103 	       le32_to_cpu(fd->fd.FDCtl));
1104 	printk("BD: ");
1105 	for (i = 0; i < RX_BUF_NUM; i++)
1106 		printk(" %08x %08x",
1107 		       le32_to_cpu(fd->bd[i].BuffData),
1108 		       le32_to_cpu(fd->bd[i].BDCtl));
1109 	printk("\n");
1110 }
1111 
1112 static void
panic_queues(struct net_device * dev)1113 panic_queues(struct net_device *dev)
1114 {
1115 	struct tc35815_local *lp = netdev_priv(dev);
1116 	int i;
1117 
1118 	printk("TxFD base %p, start %u, end %u\n",
1119 	       lp->tfd_base, lp->tfd_start, lp->tfd_end);
1120 	printk("RxFD base %p limit %p cur %p\n",
1121 	       lp->rfd_base, lp->rfd_limit, lp->rfd_cur);
1122 	printk("FrFD %p\n", lp->fbl_ptr);
1123 	for (i = 0; i < TX_FD_NUM; i++)
1124 		dump_txfd(&lp->tfd_base[i]);
1125 	for (i = 0; i < RX_FD_NUM; i++) {
1126 		int bd_count = dump_rxfd(&lp->rfd_base[i]);
1127 		i += (bd_count + 1) / 2;	/* skip BDs */
1128 	}
1129 	dump_frfd(lp->fbl_ptr);
1130 	panic("%s: Illegal queue state.", dev->name);
1131 }
1132 #endif
1133 
print_eth(const u8 * add)1134 static void print_eth(const u8 *add)
1135 {
1136 	printk(KERN_DEBUG "print_eth(%p)\n", add);
1137 	printk(KERN_DEBUG " %pM => %pM : %02x%02x\n",
1138 		add + 6, add, add[12], add[13]);
1139 }
1140 
tc35815_tx_full(struct net_device * dev)1141 static int tc35815_tx_full(struct net_device *dev)
1142 {
1143 	struct tc35815_local *lp = netdev_priv(dev);
1144 	return (lp->tfd_start + 1) % TX_FD_NUM == lp->tfd_end;
1145 }
1146 
tc35815_restart(struct net_device * dev)1147 static void tc35815_restart(struct net_device *dev)
1148 {
1149 	struct tc35815_local *lp = netdev_priv(dev);
1150 	int ret;
1151 
1152 	if (dev->phydev) {
1153 		ret = phy_init_hw(dev->phydev);
1154 		if (ret)
1155 			printk(KERN_ERR "%s: PHY init failed.\n", dev->name);
1156 	}
1157 
1158 	spin_lock_bh(&lp->rx_lock);
1159 	spin_lock_irq(&lp->lock);
1160 	tc35815_chip_reset(dev);
1161 	tc35815_clear_queues(dev);
1162 	tc35815_chip_init(dev);
1163 	/* Reconfigure CAM again since tc35815_chip_init() initialize it. */
1164 	tc35815_set_multicast_list(dev);
1165 	spin_unlock_irq(&lp->lock);
1166 	spin_unlock_bh(&lp->rx_lock);
1167 
1168 	netif_wake_queue(dev);
1169 }
1170 
tc35815_restart_work(struct work_struct * work)1171 static void tc35815_restart_work(struct work_struct *work)
1172 {
1173 	struct tc35815_local *lp =
1174 		container_of(work, struct tc35815_local, restart_work);
1175 	struct net_device *dev = lp->dev;
1176 
1177 	tc35815_restart(dev);
1178 }
1179 
tc35815_schedule_restart(struct net_device * dev)1180 static void tc35815_schedule_restart(struct net_device *dev)
1181 {
1182 	struct tc35815_local *lp = netdev_priv(dev);
1183 	struct tc35815_regs __iomem *tr =
1184 		(struct tc35815_regs __iomem *)dev->base_addr;
1185 	unsigned long flags;
1186 
1187 	/* disable interrupts */
1188 	spin_lock_irqsave(&lp->lock, flags);
1189 	tc_writel(0, &tr->Int_En);
1190 	tc_writel(tc_readl(&tr->DMA_Ctl) | DMA_IntMask, &tr->DMA_Ctl);
1191 	schedule_work(&lp->restart_work);
1192 	spin_unlock_irqrestore(&lp->lock, flags);
1193 }
1194 
tc35815_tx_timeout(struct net_device * dev,unsigned int txqueue)1195 static void tc35815_tx_timeout(struct net_device *dev, unsigned int txqueue)
1196 {
1197 	struct tc35815_regs __iomem *tr =
1198 		(struct tc35815_regs __iomem *)dev->base_addr;
1199 
1200 	printk(KERN_WARNING "%s: transmit timed out, status %#x\n",
1201 	       dev->name, tc_readl(&tr->Tx_Stat));
1202 
1203 	/* Try to restart the adaptor. */
1204 	tc35815_schedule_restart(dev);
1205 	dev->stats.tx_errors++;
1206 }
1207 
1208 /*
1209  * Open/initialize the controller. This is called (in the current kernel)
1210  * sometime after booting when the 'ifconfig' program is run.
1211  *
1212  * This routine should set everything up anew at each open, even
1213  * registers that "should" only need to be set once at boot, so that
1214  * there is non-reboot way to recover if something goes wrong.
1215  */
1216 static int
tc35815_open(struct net_device * dev)1217 tc35815_open(struct net_device *dev)
1218 {
1219 	struct tc35815_local *lp = netdev_priv(dev);
1220 
1221 	/*
1222 	 * This is used if the interrupt line can turned off (shared).
1223 	 * See 3c503.c for an example of selecting the IRQ at config-time.
1224 	 */
1225 	if (request_irq(dev->irq, tc35815_interrupt, IRQF_SHARED,
1226 			dev->name, dev))
1227 		return -EAGAIN;
1228 
1229 	tc35815_chip_reset(dev);
1230 
1231 	if (tc35815_init_queues(dev) != 0) {
1232 		free_irq(dev->irq, dev);
1233 		return -EAGAIN;
1234 	}
1235 
1236 	napi_enable(&lp->napi);
1237 
1238 	/* Reset the hardware here. Don't forget to set the station address. */
1239 	spin_lock_irq(&lp->lock);
1240 	tc35815_chip_init(dev);
1241 	spin_unlock_irq(&lp->lock);
1242 
1243 	netif_carrier_off(dev);
1244 	/* schedule a link state check */
1245 	phy_start(dev->phydev);
1246 
1247 	/* We are now ready to accept transmit requeusts from
1248 	 * the queueing layer of the networking.
1249 	 */
1250 	netif_start_queue(dev);
1251 
1252 	return 0;
1253 }
1254 
1255 /* This will only be invoked if your driver is _not_ in XOFF state.
1256  * What this means is that you need not check it, and that this
1257  * invariant will hold if you make sure that the netif_*_queue()
1258  * calls are done at the proper times.
1259  */
1260 static netdev_tx_t
tc35815_send_packet(struct sk_buff * skb,struct net_device * dev)1261 tc35815_send_packet(struct sk_buff *skb, struct net_device *dev)
1262 {
1263 	struct tc35815_local *lp = netdev_priv(dev);
1264 	struct TxFD *txfd;
1265 	unsigned long flags;
1266 
1267 	/* If some error occurs while trying to transmit this
1268 	 * packet, you should return '1' from this function.
1269 	 * In such a case you _may not_ do anything to the
1270 	 * SKB, it is still owned by the network queueing
1271 	 * layer when an error is returned.  This means you
1272 	 * may not modify any SKB fields, you may not free
1273 	 * the SKB, etc.
1274 	 */
1275 
1276 	/* This is the most common case for modern hardware.
1277 	 * The spinlock protects this code from the TX complete
1278 	 * hardware interrupt handler.  Queue flow control is
1279 	 * thus managed under this lock as well.
1280 	 */
1281 	spin_lock_irqsave(&lp->lock, flags);
1282 
1283 	/* failsafe... (handle txdone now if half of FDs are used) */
1284 	if ((lp->tfd_start + TX_FD_NUM - lp->tfd_end) % TX_FD_NUM >
1285 	    TX_FD_NUM / 2)
1286 		tc35815_txdone(dev);
1287 
1288 	if (netif_msg_pktdata(lp))
1289 		print_eth(skb->data);
1290 #ifdef DEBUG
1291 	if (lp->tx_skbs[lp->tfd_start].skb) {
1292 		printk("%s: tx_skbs conflict.\n", dev->name);
1293 		panic_queues(dev);
1294 	}
1295 #else
1296 	BUG_ON(lp->tx_skbs[lp->tfd_start].skb);
1297 #endif
1298 	lp->tx_skbs[lp->tfd_start].skb = skb;
1299 	lp->tx_skbs[lp->tfd_start].skb_dma = dma_map_single(&lp->pci_dev->dev,
1300 							    skb->data,
1301 							    skb->len,
1302 							    DMA_TO_DEVICE);
1303 
1304 	/*add to ring */
1305 	txfd = &lp->tfd_base[lp->tfd_start];
1306 	txfd->bd.BuffData = cpu_to_le32(lp->tx_skbs[lp->tfd_start].skb_dma);
1307 	txfd->bd.BDCtl = cpu_to_le32(skb->len);
1308 	txfd->fd.FDSystem = cpu_to_le32(lp->tfd_start);
1309 	txfd->fd.FDCtl = cpu_to_le32(FD_CownsFD | (1 << FD_BDCnt_SHIFT));
1310 
1311 	if (lp->tfd_start == lp->tfd_end) {
1312 		struct tc35815_regs __iomem *tr =
1313 			(struct tc35815_regs __iomem *)dev->base_addr;
1314 		/* Start DMA Transmitter. */
1315 		txfd->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1316 		txfd->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1317 		if (netif_msg_tx_queued(lp)) {
1318 			printk("%s: starting TxFD.\n", dev->name);
1319 			dump_txfd(txfd);
1320 		}
1321 		tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1322 	} else {
1323 		txfd->fd.FDNext &= cpu_to_le32(~FD_Next_EOL);
1324 		if (netif_msg_tx_queued(lp)) {
1325 			printk("%s: queueing TxFD.\n", dev->name);
1326 			dump_txfd(txfd);
1327 		}
1328 	}
1329 	lp->tfd_start = (lp->tfd_start + 1) % TX_FD_NUM;
1330 
1331 	/* If we just used up the very last entry in the
1332 	 * TX ring on this device, tell the queueing
1333 	 * layer to send no more.
1334 	 */
1335 	if (tc35815_tx_full(dev)) {
1336 		if (netif_msg_tx_queued(lp))
1337 			printk(KERN_WARNING "%s: TxFD Exhausted.\n", dev->name);
1338 		netif_stop_queue(dev);
1339 	}
1340 
1341 	/* When the TX completion hw interrupt arrives, this
1342 	 * is when the transmit statistics are updated.
1343 	 */
1344 
1345 	spin_unlock_irqrestore(&lp->lock, flags);
1346 	return NETDEV_TX_OK;
1347 }
1348 
1349 #define FATAL_ERROR_INT \
1350 	(Int_IntPCI | Int_DmParErr | Int_IntNRAbt)
tc35815_fatal_error_interrupt(struct net_device * dev,u32 status)1351 static void tc35815_fatal_error_interrupt(struct net_device *dev, u32 status)
1352 {
1353 	static int count;
1354 	printk(KERN_WARNING "%s: Fatal Error Interrupt (%#x):",
1355 	       dev->name, status);
1356 	if (status & Int_IntPCI)
1357 		printk(" IntPCI");
1358 	if (status & Int_DmParErr)
1359 		printk(" DmParErr");
1360 	if (status & Int_IntNRAbt)
1361 		printk(" IntNRAbt");
1362 	printk("\n");
1363 	if (count++ > 100)
1364 		panic("%s: Too many fatal errors.", dev->name);
1365 	printk(KERN_WARNING "%s: Resetting ...\n", dev->name);
1366 	/* Try to restart the adaptor. */
1367 	tc35815_schedule_restart(dev);
1368 }
1369 
tc35815_do_interrupt(struct net_device * dev,u32 status,int limit)1370 static int tc35815_do_interrupt(struct net_device *dev, u32 status, int limit)
1371 {
1372 	struct tc35815_local *lp = netdev_priv(dev);
1373 	int ret = -1;
1374 
1375 	/* Fatal errors... */
1376 	if (status & FATAL_ERROR_INT) {
1377 		tc35815_fatal_error_interrupt(dev, status);
1378 		return 0;
1379 	}
1380 	/* recoverable errors */
1381 	if (status & Int_IntFDAEx) {
1382 		if (netif_msg_rx_err(lp))
1383 			dev_warn(&dev->dev,
1384 				 "Free Descriptor Area Exhausted (%#x).\n",
1385 				 status);
1386 		dev->stats.rx_dropped++;
1387 		ret = 0;
1388 	}
1389 	if (status & Int_IntBLEx) {
1390 		if (netif_msg_rx_err(lp))
1391 			dev_warn(&dev->dev,
1392 				 "Buffer List Exhausted (%#x).\n",
1393 				 status);
1394 		dev->stats.rx_dropped++;
1395 		ret = 0;
1396 	}
1397 	if (status & Int_IntExBD) {
1398 		if (netif_msg_rx_err(lp))
1399 			dev_warn(&dev->dev,
1400 				 "Excessive Buffer Descriptors (%#x).\n",
1401 				 status);
1402 		dev->stats.rx_length_errors++;
1403 		ret = 0;
1404 	}
1405 
1406 	/* normal notification */
1407 	if (status & Int_IntMacRx) {
1408 		/* Got a packet(s). */
1409 		ret = tc35815_rx(dev, limit);
1410 		lp->lstats.rx_ints++;
1411 	}
1412 	if (status & Int_IntMacTx) {
1413 		/* Transmit complete. */
1414 		lp->lstats.tx_ints++;
1415 		spin_lock_irq(&lp->lock);
1416 		tc35815_txdone(dev);
1417 		spin_unlock_irq(&lp->lock);
1418 		if (ret < 0)
1419 			ret = 0;
1420 	}
1421 	return ret;
1422 }
1423 
1424 /*
1425  * The typical workload of the driver:
1426  * Handle the network interface interrupts.
1427  */
tc35815_interrupt(int irq,void * dev_id)1428 static irqreturn_t tc35815_interrupt(int irq, void *dev_id)
1429 {
1430 	struct net_device *dev = dev_id;
1431 	struct tc35815_local *lp = netdev_priv(dev);
1432 	struct tc35815_regs __iomem *tr =
1433 		(struct tc35815_regs __iomem *)dev->base_addr;
1434 	u32 dmactl = tc_readl(&tr->DMA_Ctl);
1435 
1436 	if (!(dmactl & DMA_IntMask)) {
1437 		/* disable interrupts */
1438 		tc_writel(dmactl | DMA_IntMask, &tr->DMA_Ctl);
1439 		if (napi_schedule_prep(&lp->napi))
1440 			__napi_schedule(&lp->napi);
1441 		else {
1442 			printk(KERN_ERR "%s: interrupt taken in poll\n",
1443 			       dev->name);
1444 			BUG();
1445 		}
1446 		(void)tc_readl(&tr->Int_Src);	/* flush */
1447 		return IRQ_HANDLED;
1448 	}
1449 	return IRQ_NONE;
1450 }
1451 
1452 #ifdef CONFIG_NET_POLL_CONTROLLER
tc35815_poll_controller(struct net_device * dev)1453 static void tc35815_poll_controller(struct net_device *dev)
1454 {
1455 	disable_irq(dev->irq);
1456 	tc35815_interrupt(dev->irq, dev);
1457 	enable_irq(dev->irq);
1458 }
1459 #endif
1460 
1461 /* We have a good packet(s), get it/them out of the buffers. */
1462 static int
tc35815_rx(struct net_device * dev,int limit)1463 tc35815_rx(struct net_device *dev, int limit)
1464 {
1465 	struct tc35815_local *lp = netdev_priv(dev);
1466 	unsigned int fdctl;
1467 	int i;
1468 	int received = 0;
1469 
1470 	while (!((fdctl = le32_to_cpu(lp->rfd_cur->fd.FDCtl)) & FD_CownsFD)) {
1471 		int status = le32_to_cpu(lp->rfd_cur->fd.FDStat);
1472 		int pkt_len = fdctl & FD_FDLength_MASK;
1473 		int bd_count = (fdctl & FD_BDCnt_MASK) >> FD_BDCnt_SHIFT;
1474 #ifdef DEBUG
1475 		struct RxFD *next_rfd;
1476 #endif
1477 #if (RX_CTL_CMD & Rx_StripCRC) == 0
1478 		pkt_len -= ETH_FCS_LEN;
1479 #endif
1480 
1481 		if (netif_msg_rx_status(lp))
1482 			dump_rxfd(lp->rfd_cur);
1483 		if (status & Rx_Good) {
1484 			struct sk_buff *skb;
1485 			unsigned char *data;
1486 			int cur_bd;
1487 
1488 			if (--limit < 0)
1489 				break;
1490 			BUG_ON(bd_count > 1);
1491 			cur_bd = (le32_to_cpu(lp->rfd_cur->bd[0].BDCtl)
1492 				  & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1493 #ifdef DEBUG
1494 			if (cur_bd >= RX_BUF_NUM) {
1495 				printk("%s: invalid BDID.\n", dev->name);
1496 				panic_queues(dev);
1497 			}
1498 			BUG_ON(lp->rx_skbs[cur_bd].skb_dma !=
1499 			       (le32_to_cpu(lp->rfd_cur->bd[0].BuffData) & ~3));
1500 			if (!lp->rx_skbs[cur_bd].skb) {
1501 				printk("%s: NULL skb.\n", dev->name);
1502 				panic_queues(dev);
1503 			}
1504 #else
1505 			BUG_ON(cur_bd >= RX_BUF_NUM);
1506 #endif
1507 			skb = lp->rx_skbs[cur_bd].skb;
1508 			prefetch(skb->data);
1509 			lp->rx_skbs[cur_bd].skb = NULL;
1510 			dma_unmap_single(&lp->pci_dev->dev,
1511 					 lp->rx_skbs[cur_bd].skb_dma,
1512 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
1513 			if (!HAVE_DMA_RXALIGN(lp) && NET_IP_ALIGN != 0)
1514 				memmove(skb->data, skb->data - NET_IP_ALIGN,
1515 					pkt_len);
1516 			data = skb_put(skb, pkt_len);
1517 			if (netif_msg_pktdata(lp))
1518 				print_eth(data);
1519 			skb->protocol = eth_type_trans(skb, dev);
1520 			netif_receive_skb(skb);
1521 			received++;
1522 			dev->stats.rx_packets++;
1523 			dev->stats.rx_bytes += pkt_len;
1524 		} else {
1525 			dev->stats.rx_errors++;
1526 			if (netif_msg_rx_err(lp))
1527 				dev_info(&dev->dev, "Rx error (status %x)\n",
1528 					 status & Rx_Stat_Mask);
1529 			/* WORKAROUND: LongErr and CRCErr means Overflow. */
1530 			if ((status & Rx_LongErr) && (status & Rx_CRCErr)) {
1531 				status &= ~(Rx_LongErr|Rx_CRCErr);
1532 				status |= Rx_Over;
1533 			}
1534 			if (status & Rx_LongErr)
1535 				dev->stats.rx_length_errors++;
1536 			if (status & Rx_Over)
1537 				dev->stats.rx_fifo_errors++;
1538 			if (status & Rx_CRCErr)
1539 				dev->stats.rx_crc_errors++;
1540 			if (status & Rx_Align)
1541 				dev->stats.rx_frame_errors++;
1542 		}
1543 
1544 		if (bd_count > 0) {
1545 			/* put Free Buffer back to controller */
1546 			int bdctl = le32_to_cpu(lp->rfd_cur->bd[bd_count - 1].BDCtl);
1547 			unsigned char id =
1548 				(bdctl & BD_RxBDID_MASK) >> BD_RxBDID_SHIFT;
1549 #ifdef DEBUG
1550 			if (id >= RX_BUF_NUM) {
1551 				printk("%s: invalid BDID.\n", dev->name);
1552 				panic_queues(dev);
1553 			}
1554 #else
1555 			BUG_ON(id >= RX_BUF_NUM);
1556 #endif
1557 			/* free old buffers */
1558 			lp->fbl_count--;
1559 			while (lp->fbl_count < RX_BUF_NUM)
1560 			{
1561 				unsigned char curid =
1562 					(id + 1 + lp->fbl_count) % RX_BUF_NUM;
1563 				struct BDesc *bd = &lp->fbl_ptr->bd[curid];
1564 #ifdef DEBUG
1565 				bdctl = le32_to_cpu(bd->BDCtl);
1566 				if (bdctl & BD_CownsBD) {
1567 					printk("%s: Freeing invalid BD.\n",
1568 					       dev->name);
1569 					panic_queues(dev);
1570 				}
1571 #endif
1572 				/* pass BD to controller */
1573 				if (!lp->rx_skbs[curid].skb) {
1574 					lp->rx_skbs[curid].skb =
1575 						alloc_rxbuf_skb(dev,
1576 								lp->pci_dev,
1577 								&lp->rx_skbs[curid].skb_dma);
1578 					if (!lp->rx_skbs[curid].skb)
1579 						break; /* try on next reception */
1580 					bd->BuffData = cpu_to_le32(lp->rx_skbs[curid].skb_dma);
1581 				}
1582 				/* Note: BDLength was modified by chip. */
1583 				bd->BDCtl = cpu_to_le32(BD_CownsBD |
1584 							(curid << BD_RxBDID_SHIFT) |
1585 							RX_BUF_SIZE);
1586 				lp->fbl_count++;
1587 			}
1588 		}
1589 
1590 		/* put RxFD back to controller */
1591 #ifdef DEBUG
1592 		next_rfd = fd_bus_to_virt(lp,
1593 					  le32_to_cpu(lp->rfd_cur->fd.FDNext));
1594 		if (next_rfd < lp->rfd_base || next_rfd > lp->rfd_limit) {
1595 			printk("%s: RxFD FDNext invalid.\n", dev->name);
1596 			panic_queues(dev);
1597 		}
1598 #endif
1599 		for (i = 0; i < (bd_count + 1) / 2 + 1; i++) {
1600 			/* pass FD to controller */
1601 #ifdef DEBUG
1602 			lp->rfd_cur->fd.FDNext = cpu_to_le32(0xdeaddead);
1603 #else
1604 			lp->rfd_cur->fd.FDNext = cpu_to_le32(FD_Next_EOL);
1605 #endif
1606 			lp->rfd_cur->fd.FDCtl = cpu_to_le32(FD_CownsFD);
1607 			lp->rfd_cur++;
1608 		}
1609 		if (lp->rfd_cur > lp->rfd_limit)
1610 			lp->rfd_cur = lp->rfd_base;
1611 #ifdef DEBUG
1612 		if (lp->rfd_cur != next_rfd)
1613 			printk("rfd_cur = %p, next_rfd %p\n",
1614 			       lp->rfd_cur, next_rfd);
1615 #endif
1616 	}
1617 
1618 	return received;
1619 }
1620 
tc35815_poll(struct napi_struct * napi,int budget)1621 static int tc35815_poll(struct napi_struct *napi, int budget)
1622 {
1623 	struct tc35815_local *lp = container_of(napi, struct tc35815_local, napi);
1624 	struct net_device *dev = lp->dev;
1625 	struct tc35815_regs __iomem *tr =
1626 		(struct tc35815_regs __iomem *)dev->base_addr;
1627 	int received = 0, handled;
1628 	u32 status;
1629 
1630 	if (budget <= 0)
1631 		return received;
1632 
1633 	spin_lock(&lp->rx_lock);
1634 	status = tc_readl(&tr->Int_Src);
1635 	do {
1636 		/* BLEx, FDAEx will be cleared later */
1637 		tc_writel(status & ~(Int_BLEx | Int_FDAEx),
1638 			  &tr->Int_Src);	/* write to clear */
1639 
1640 		handled = tc35815_do_interrupt(dev, status, budget - received);
1641 		if (status & (Int_BLEx | Int_FDAEx))
1642 			tc_writel(status & (Int_BLEx | Int_FDAEx),
1643 				  &tr->Int_Src);
1644 		if (handled >= 0) {
1645 			received += handled;
1646 			if (received >= budget)
1647 				break;
1648 		}
1649 		status = tc_readl(&tr->Int_Src);
1650 	} while (status);
1651 	spin_unlock(&lp->rx_lock);
1652 
1653 	if (received < budget) {
1654 		napi_complete_done(napi, received);
1655 		/* enable interrupts */
1656 		tc_writel(tc_readl(&tr->DMA_Ctl) & ~DMA_IntMask, &tr->DMA_Ctl);
1657 	}
1658 	return received;
1659 }
1660 
1661 #define TX_STA_ERR	(Tx_ExColl|Tx_Under|Tx_Defer|Tx_NCarr|Tx_LateColl|Tx_TxPar|Tx_SQErr)
1662 
1663 static void
tc35815_check_tx_stat(struct net_device * dev,int status)1664 tc35815_check_tx_stat(struct net_device *dev, int status)
1665 {
1666 	struct tc35815_local *lp = netdev_priv(dev);
1667 	const char *msg = NULL;
1668 
1669 	/* count collisions */
1670 	if (status & Tx_ExColl)
1671 		dev->stats.collisions += 16;
1672 	if (status & Tx_TxColl_MASK)
1673 		dev->stats.collisions += status & Tx_TxColl_MASK;
1674 
1675 	/* TX4939 does not have NCarr */
1676 	if (lp->chiptype == TC35815_TX4939)
1677 		status &= ~Tx_NCarr;
1678 	/* WORKAROUND: ignore LostCrS in full duplex operation */
1679 	if (!lp->link || lp->duplex == DUPLEX_FULL)
1680 		status &= ~Tx_NCarr;
1681 
1682 	if (!(status & TX_STA_ERR)) {
1683 		/* no error. */
1684 		dev->stats.tx_packets++;
1685 		return;
1686 	}
1687 
1688 	dev->stats.tx_errors++;
1689 	if (status & Tx_ExColl) {
1690 		dev->stats.tx_aborted_errors++;
1691 		msg = "Excessive Collision.";
1692 	}
1693 	if (status & Tx_Under) {
1694 		dev->stats.tx_fifo_errors++;
1695 		msg = "Tx FIFO Underrun.";
1696 		if (lp->lstats.tx_underrun < TX_THRESHOLD_KEEP_LIMIT) {
1697 			lp->lstats.tx_underrun++;
1698 			if (lp->lstats.tx_underrun >= TX_THRESHOLD_KEEP_LIMIT) {
1699 				struct tc35815_regs __iomem *tr =
1700 					(struct tc35815_regs __iomem *)dev->base_addr;
1701 				tc_writel(TX_THRESHOLD_MAX, &tr->TxThrsh);
1702 				msg = "Tx FIFO Underrun.Change Tx threshold to max.";
1703 			}
1704 		}
1705 	}
1706 	if (status & Tx_Defer) {
1707 		dev->stats.tx_fifo_errors++;
1708 		msg = "Excessive Deferral.";
1709 	}
1710 	if (status & Tx_NCarr) {
1711 		dev->stats.tx_carrier_errors++;
1712 		msg = "Lost Carrier Sense.";
1713 	}
1714 	if (status & Tx_LateColl) {
1715 		dev->stats.tx_aborted_errors++;
1716 		msg = "Late Collision.";
1717 	}
1718 	if (status & Tx_TxPar) {
1719 		dev->stats.tx_fifo_errors++;
1720 		msg = "Transmit Parity Error.";
1721 	}
1722 	if (status & Tx_SQErr) {
1723 		dev->stats.tx_heartbeat_errors++;
1724 		msg = "Signal Quality Error.";
1725 	}
1726 	if (msg && netif_msg_tx_err(lp))
1727 		printk(KERN_WARNING "%s: %s (%#x)\n", dev->name, msg, status);
1728 }
1729 
1730 /* This handles TX complete events posted by the device
1731  * via interrupts.
1732  */
1733 static void
tc35815_txdone(struct net_device * dev)1734 tc35815_txdone(struct net_device *dev)
1735 {
1736 	struct tc35815_local *lp = netdev_priv(dev);
1737 	struct TxFD *txfd;
1738 	unsigned int fdctl;
1739 
1740 	txfd = &lp->tfd_base[lp->tfd_end];
1741 	while (lp->tfd_start != lp->tfd_end &&
1742 	       !((fdctl = le32_to_cpu(txfd->fd.FDCtl)) & FD_CownsFD)) {
1743 		int status = le32_to_cpu(txfd->fd.FDStat);
1744 		struct sk_buff *skb;
1745 		unsigned long fdnext = le32_to_cpu(txfd->fd.FDNext);
1746 		u32 fdsystem = le32_to_cpu(txfd->fd.FDSystem);
1747 
1748 		if (netif_msg_tx_done(lp)) {
1749 			printk("%s: complete TxFD.\n", dev->name);
1750 			dump_txfd(txfd);
1751 		}
1752 		tc35815_check_tx_stat(dev, status);
1753 
1754 		skb = fdsystem != 0xffffffff ?
1755 			lp->tx_skbs[fdsystem].skb : NULL;
1756 #ifdef DEBUG
1757 		if (lp->tx_skbs[lp->tfd_end].skb != skb) {
1758 			printk("%s: tx_skbs mismatch.\n", dev->name);
1759 			panic_queues(dev);
1760 		}
1761 #else
1762 		BUG_ON(lp->tx_skbs[lp->tfd_end].skb != skb);
1763 #endif
1764 		if (skb) {
1765 			dev->stats.tx_bytes += skb->len;
1766 			dma_unmap_single(&lp->pci_dev->dev,
1767 					 lp->tx_skbs[lp->tfd_end].skb_dma,
1768 					 skb->len, DMA_TO_DEVICE);
1769 			lp->tx_skbs[lp->tfd_end].skb = NULL;
1770 			lp->tx_skbs[lp->tfd_end].skb_dma = 0;
1771 			dev_kfree_skb_any(skb);
1772 		}
1773 		txfd->fd.FDSystem = cpu_to_le32(0xffffffff);
1774 
1775 		lp->tfd_end = (lp->tfd_end + 1) % TX_FD_NUM;
1776 		txfd = &lp->tfd_base[lp->tfd_end];
1777 #ifdef DEBUG
1778 		if ((fdnext & ~FD_Next_EOL) != fd_virt_to_bus(lp, txfd)) {
1779 			printk("%s: TxFD FDNext invalid.\n", dev->name);
1780 			panic_queues(dev);
1781 		}
1782 #endif
1783 		if (fdnext & FD_Next_EOL) {
1784 			/* DMA Transmitter has been stopping... */
1785 			if (lp->tfd_end != lp->tfd_start) {
1786 				struct tc35815_regs __iomem *tr =
1787 					(struct tc35815_regs __iomem *)dev->base_addr;
1788 				int head = (lp->tfd_start + TX_FD_NUM - 1) % TX_FD_NUM;
1789 				struct TxFD *txhead = &lp->tfd_base[head];
1790 				int qlen = (lp->tfd_start + TX_FD_NUM
1791 					    - lp->tfd_end) % TX_FD_NUM;
1792 
1793 #ifdef DEBUG
1794 				if (!(le32_to_cpu(txfd->fd.FDCtl) & FD_CownsFD)) {
1795 					printk("%s: TxFD FDCtl invalid.\n", dev->name);
1796 					panic_queues(dev);
1797 				}
1798 #endif
1799 				/* log max queue length */
1800 				if (lp->lstats.max_tx_qlen < qlen)
1801 					lp->lstats.max_tx_qlen = qlen;
1802 
1803 
1804 				/* start DMA Transmitter again */
1805 				txhead->fd.FDNext |= cpu_to_le32(FD_Next_EOL);
1806 				txhead->fd.FDCtl |= cpu_to_le32(FD_FrmOpt_IntTx);
1807 				if (netif_msg_tx_queued(lp)) {
1808 					printk("%s: start TxFD on queue.\n",
1809 					       dev->name);
1810 					dump_txfd(txfd);
1811 				}
1812 				tc_writel(fd_virt_to_bus(lp, txfd), &tr->TxFrmPtr);
1813 			}
1814 			break;
1815 		}
1816 	}
1817 
1818 	/* If we had stopped the queue due to a "tx full"
1819 	 * condition, and space has now been made available,
1820 	 * wake up the queue.
1821 	 */
1822 	if (netif_queue_stopped(dev) && !tc35815_tx_full(dev))
1823 		netif_wake_queue(dev);
1824 }
1825 
1826 /* The inverse routine to tc35815_open(). */
1827 static int
tc35815_close(struct net_device * dev)1828 tc35815_close(struct net_device *dev)
1829 {
1830 	struct tc35815_local *lp = netdev_priv(dev);
1831 
1832 	netif_stop_queue(dev);
1833 	napi_disable(&lp->napi);
1834 	if (dev->phydev)
1835 		phy_stop(dev->phydev);
1836 	cancel_work_sync(&lp->restart_work);
1837 
1838 	/* Flush the Tx and disable Rx here. */
1839 	tc35815_chip_reset(dev);
1840 	free_irq(dev->irq, dev);
1841 
1842 	tc35815_free_queues(dev);
1843 
1844 	return 0;
1845 
1846 }
1847 
1848 /*
1849  * Get the current statistics.
1850  * This may be called with the card open or closed.
1851  */
tc35815_get_stats(struct net_device * dev)1852 static struct net_device_stats *tc35815_get_stats(struct net_device *dev)
1853 {
1854 	struct tc35815_regs __iomem *tr =
1855 		(struct tc35815_regs __iomem *)dev->base_addr;
1856 	if (netif_running(dev))
1857 		/* Update the statistics from the device registers. */
1858 		dev->stats.rx_missed_errors += tc_readl(&tr->Miss_Cnt);
1859 
1860 	return &dev->stats;
1861 }
1862 
tc35815_set_cam_entry(struct net_device * dev,int index,const unsigned char * addr)1863 static void tc35815_set_cam_entry(struct net_device *dev, int index,
1864 				  const unsigned char *addr)
1865 {
1866 	struct tc35815_local *lp = netdev_priv(dev);
1867 	struct tc35815_regs __iomem *tr =
1868 		(struct tc35815_regs __iomem *)dev->base_addr;
1869 	int cam_index = index * 6;
1870 	u32 cam_data;
1871 	u32 saved_addr;
1872 
1873 	saved_addr = tc_readl(&tr->CAM_Adr);
1874 
1875 	if (netif_msg_hw(lp))
1876 		printk(KERN_DEBUG "%s: CAM %d: %pM\n",
1877 			dev->name, index, addr);
1878 	if (index & 1) {
1879 		/* read modify write */
1880 		tc_writel(cam_index - 2, &tr->CAM_Adr);
1881 		cam_data = tc_readl(&tr->CAM_Data) & 0xffff0000;
1882 		cam_data |= addr[0] << 8 | addr[1];
1883 		tc_writel(cam_data, &tr->CAM_Data);
1884 		/* write whole word */
1885 		tc_writel(cam_index + 2, &tr->CAM_Adr);
1886 		cam_data = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
1887 		tc_writel(cam_data, &tr->CAM_Data);
1888 	} else {
1889 		/* write whole word */
1890 		tc_writel(cam_index, &tr->CAM_Adr);
1891 		cam_data = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3];
1892 		tc_writel(cam_data, &tr->CAM_Data);
1893 		/* read modify write */
1894 		tc_writel(cam_index + 4, &tr->CAM_Adr);
1895 		cam_data = tc_readl(&tr->CAM_Data) & 0x0000ffff;
1896 		cam_data |= addr[4] << 24 | (addr[5] << 16);
1897 		tc_writel(cam_data, &tr->CAM_Data);
1898 	}
1899 
1900 	tc_writel(saved_addr, &tr->CAM_Adr);
1901 }
1902 
1903 
1904 /*
1905  * Set or clear the multicast filter for this adaptor.
1906  * num_addrs == -1	Promiscuous mode, receive all packets
1907  * num_addrs == 0	Normal mode, clear multicast list
1908  * num_addrs > 0	Multicast mode, receive normal and MC packets,
1909  *			and do best-effort filtering.
1910  */
1911 static void
tc35815_set_multicast_list(struct net_device * dev)1912 tc35815_set_multicast_list(struct net_device *dev)
1913 {
1914 	struct tc35815_regs __iomem *tr =
1915 		(struct tc35815_regs __iomem *)dev->base_addr;
1916 
1917 	if (dev->flags & IFF_PROMISC) {
1918 		/* With some (all?) 100MHalf HUB, controller will hang
1919 		 * if we enabled promiscuous mode before linkup...
1920 		 */
1921 		struct tc35815_local *lp = netdev_priv(dev);
1922 
1923 		if (!lp->link)
1924 			return;
1925 		/* Enable promiscuous mode */
1926 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc | CAM_StationAcc, &tr->CAM_Ctl);
1927 	} else if ((dev->flags & IFF_ALLMULTI) ||
1928 		  netdev_mc_count(dev) > CAM_ENTRY_MAX - 3) {
1929 		/* CAM 0, 1, 20 are reserved. */
1930 		/* Disable promiscuous mode, use normal mode. */
1931 		tc_writel(CAM_CompEn | CAM_BroadAcc | CAM_GroupAcc, &tr->CAM_Ctl);
1932 	} else if (!netdev_mc_empty(dev)) {
1933 		struct netdev_hw_addr *ha;
1934 		int i;
1935 		int ena_bits = CAM_Ena_Bit(CAM_ENTRY_SOURCE);
1936 
1937 		tc_writel(0, &tr->CAM_Ctl);
1938 		/* Walk the address list, and load the filter */
1939 		i = 0;
1940 		netdev_for_each_mc_addr(ha, dev) {
1941 			/* entry 0,1 is reserved. */
1942 			tc35815_set_cam_entry(dev, i + 2, ha->addr);
1943 			ena_bits |= CAM_Ena_Bit(i + 2);
1944 			i++;
1945 		}
1946 		tc_writel(ena_bits, &tr->CAM_Ena);
1947 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1948 	} else {
1949 		tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
1950 		tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
1951 	}
1952 }
1953 
tc35815_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1954 static void tc35815_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1955 {
1956 	struct tc35815_local *lp = netdev_priv(dev);
1957 
1958 	strscpy(info->driver, MODNAME, sizeof(info->driver));
1959 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1960 	strscpy(info->bus_info, pci_name(lp->pci_dev), sizeof(info->bus_info));
1961 }
1962 
tc35815_get_msglevel(struct net_device * dev)1963 static u32 tc35815_get_msglevel(struct net_device *dev)
1964 {
1965 	struct tc35815_local *lp = netdev_priv(dev);
1966 	return lp->msg_enable;
1967 }
1968 
tc35815_set_msglevel(struct net_device * dev,u32 datum)1969 static void tc35815_set_msglevel(struct net_device *dev, u32 datum)
1970 {
1971 	struct tc35815_local *lp = netdev_priv(dev);
1972 	lp->msg_enable = datum;
1973 }
1974 
tc35815_get_sset_count(struct net_device * dev,int sset)1975 static int tc35815_get_sset_count(struct net_device *dev, int sset)
1976 {
1977 	struct tc35815_local *lp = netdev_priv(dev);
1978 
1979 	switch (sset) {
1980 	case ETH_SS_STATS:
1981 		return sizeof(lp->lstats) / sizeof(int);
1982 	default:
1983 		return -EOPNOTSUPP;
1984 	}
1985 }
1986 
tc35815_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1987 static void tc35815_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data)
1988 {
1989 	struct tc35815_local *lp = netdev_priv(dev);
1990 	data[0] = lp->lstats.max_tx_qlen;
1991 	data[1] = lp->lstats.tx_ints;
1992 	data[2] = lp->lstats.rx_ints;
1993 	data[3] = lp->lstats.tx_underrun;
1994 }
1995 
1996 static struct {
1997 	const char str[ETH_GSTRING_LEN];
1998 } ethtool_stats_keys[] = {
1999 	{ "max_tx_qlen" },
2000 	{ "tx_ints" },
2001 	{ "rx_ints" },
2002 	{ "tx_underrun" },
2003 };
2004 
tc35815_get_strings(struct net_device * dev,u32 stringset,u8 * data)2005 static void tc35815_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2006 {
2007 	memcpy(data, ethtool_stats_keys, sizeof(ethtool_stats_keys));
2008 }
2009 
2010 static const struct ethtool_ops tc35815_ethtool_ops = {
2011 	.get_drvinfo		= tc35815_get_drvinfo,
2012 	.get_link		= ethtool_op_get_link,
2013 	.get_msglevel		= tc35815_get_msglevel,
2014 	.set_msglevel		= tc35815_set_msglevel,
2015 	.get_strings		= tc35815_get_strings,
2016 	.get_sset_count		= tc35815_get_sset_count,
2017 	.get_ethtool_stats	= tc35815_get_ethtool_stats,
2018 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2019 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2020 };
2021 
tc35815_chip_reset(struct net_device * dev)2022 static void tc35815_chip_reset(struct net_device *dev)
2023 {
2024 	struct tc35815_regs __iomem *tr =
2025 		(struct tc35815_regs __iomem *)dev->base_addr;
2026 	int i;
2027 	/* reset the controller */
2028 	tc_writel(MAC_Reset, &tr->MAC_Ctl);
2029 	udelay(4); /* 3200ns */
2030 	i = 0;
2031 	while (tc_readl(&tr->MAC_Ctl) & MAC_Reset) {
2032 		if (i++ > 100) {
2033 			printk(KERN_ERR "%s: MAC reset failed.\n", dev->name);
2034 			break;
2035 		}
2036 		mdelay(1);
2037 	}
2038 	tc_writel(0, &tr->MAC_Ctl);
2039 
2040 	/* initialize registers to default value */
2041 	tc_writel(0, &tr->DMA_Ctl);
2042 	tc_writel(0, &tr->TxThrsh);
2043 	tc_writel(0, &tr->TxPollCtr);
2044 	tc_writel(0, &tr->RxFragSize);
2045 	tc_writel(0, &tr->Int_En);
2046 	tc_writel(0, &tr->FDA_Bas);
2047 	tc_writel(0, &tr->FDA_Lim);
2048 	tc_writel(0xffffffff, &tr->Int_Src);	/* Write 1 to clear */
2049 	tc_writel(0, &tr->CAM_Ctl);
2050 	tc_writel(0, &tr->Tx_Ctl);
2051 	tc_writel(0, &tr->Rx_Ctl);
2052 	tc_writel(0, &tr->CAM_Ena);
2053 	(void)tc_readl(&tr->Miss_Cnt);	/* Read to clear */
2054 
2055 	/* initialize internal SRAM */
2056 	tc_writel(DMA_TestMode, &tr->DMA_Ctl);
2057 	for (i = 0; i < 0x1000; i += 4) {
2058 		tc_writel(i, &tr->CAM_Adr);
2059 		tc_writel(0, &tr->CAM_Data);
2060 	}
2061 	tc_writel(0, &tr->DMA_Ctl);
2062 }
2063 
tc35815_chip_init(struct net_device * dev)2064 static void tc35815_chip_init(struct net_device *dev)
2065 {
2066 	struct tc35815_local *lp = netdev_priv(dev);
2067 	struct tc35815_regs __iomem *tr =
2068 		(struct tc35815_regs __iomem *)dev->base_addr;
2069 	unsigned long txctl = TX_CTL_CMD;
2070 
2071 	/* load station address to CAM */
2072 	tc35815_set_cam_entry(dev, CAM_ENTRY_SOURCE, dev->dev_addr);
2073 
2074 	/* Enable CAM (broadcast and unicast) */
2075 	tc_writel(CAM_Ena_Bit(CAM_ENTRY_SOURCE), &tr->CAM_Ena);
2076 	tc_writel(CAM_CompEn | CAM_BroadAcc, &tr->CAM_Ctl);
2077 
2078 	/* Use DMA_RxAlign_2 to make IP header 4-byte aligned. */
2079 	if (HAVE_DMA_RXALIGN(lp))
2080 		tc_writel(DMA_BURST_SIZE | DMA_RxAlign_2, &tr->DMA_Ctl);
2081 	else
2082 		tc_writel(DMA_BURST_SIZE, &tr->DMA_Ctl);
2083 	tc_writel(0, &tr->TxPollCtr);	/* Batch mode */
2084 	tc_writel(TX_THRESHOLD, &tr->TxThrsh);
2085 	tc_writel(INT_EN_CMD, &tr->Int_En);
2086 
2087 	/* set queues */
2088 	tc_writel(fd_virt_to_bus(lp, lp->rfd_base), &tr->FDA_Bas);
2089 	tc_writel((unsigned long)lp->rfd_limit - (unsigned long)lp->rfd_base,
2090 		  &tr->FDA_Lim);
2091 	/*
2092 	 * Activation method:
2093 	 * First, enable the MAC Transmitter and the DMA Receive circuits.
2094 	 * Then enable the DMA Transmitter and the MAC Receive circuits.
2095 	 */
2096 	tc_writel(fd_virt_to_bus(lp, lp->fbl_ptr), &tr->BLFrmPtr);	/* start DMA receiver */
2097 	tc_writel(RX_CTL_CMD, &tr->Rx_Ctl);	/* start MAC receiver */
2098 
2099 	/* start MAC transmitter */
2100 	/* TX4939 does not have EnLCarr */
2101 	if (lp->chiptype == TC35815_TX4939)
2102 		txctl &= ~Tx_EnLCarr;
2103 	/* WORKAROUND: ignore LostCrS in full duplex operation */
2104 	if (!dev->phydev || !lp->link || lp->duplex == DUPLEX_FULL)
2105 		txctl &= ~Tx_EnLCarr;
2106 	tc_writel(txctl, &tr->Tx_Ctl);
2107 }
2108 
2109 #ifdef CONFIG_PM
tc35815_suspend(struct pci_dev * pdev,pm_message_t state)2110 static int tc35815_suspend(struct pci_dev *pdev, pm_message_t state)
2111 {
2112 	struct net_device *dev = pci_get_drvdata(pdev);
2113 	struct tc35815_local *lp = netdev_priv(dev);
2114 	unsigned long flags;
2115 
2116 	pci_save_state(pdev);
2117 	if (!netif_running(dev))
2118 		return 0;
2119 	netif_device_detach(dev);
2120 	if (dev->phydev)
2121 		phy_stop(dev->phydev);
2122 	spin_lock_irqsave(&lp->lock, flags);
2123 	tc35815_chip_reset(dev);
2124 	spin_unlock_irqrestore(&lp->lock, flags);
2125 	pci_set_power_state(pdev, PCI_D3hot);
2126 	return 0;
2127 }
2128 
tc35815_resume(struct pci_dev * pdev)2129 static int tc35815_resume(struct pci_dev *pdev)
2130 {
2131 	struct net_device *dev = pci_get_drvdata(pdev);
2132 
2133 	pci_restore_state(pdev);
2134 	if (!netif_running(dev))
2135 		return 0;
2136 	pci_set_power_state(pdev, PCI_D0);
2137 	tc35815_restart(dev);
2138 	netif_carrier_off(dev);
2139 	if (dev->phydev)
2140 		phy_start(dev->phydev);
2141 	netif_device_attach(dev);
2142 	return 0;
2143 }
2144 #endif /* CONFIG_PM */
2145 
2146 static struct pci_driver tc35815_pci_driver = {
2147 	.name		= MODNAME,
2148 	.id_table	= tc35815_pci_tbl,
2149 	.probe		= tc35815_init_one,
2150 	.remove		= tc35815_remove_one,
2151 #ifdef CONFIG_PM
2152 	.suspend	= tc35815_suspend,
2153 	.resume		= tc35815_resume,
2154 #endif
2155 };
2156 
2157 module_param_named(speed, options.speed, int, 0);
2158 MODULE_PARM_DESC(speed, "0:auto, 10:10Mbps, 100:100Mbps");
2159 module_param_named(duplex, options.duplex, int, 0);
2160 MODULE_PARM_DESC(duplex, "0:auto, 1:half, 2:full");
2161 
2162 module_pci_driver(tc35815_pci_driver);
2163 MODULE_DESCRIPTION("TOSHIBA TC35815 PCI 10M/100M Ethernet driver");
2164 MODULE_LICENSE("GPL");
2165