xref: /openbmc/linux/include/linux/sched.h (revision 8ebc80a25f9d9bf7a8e368b266d5b740c485c362)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_SCHED_H
3  #define _LINUX_SCHED_H
4  
5  /*
6   * Define 'struct task_struct' and provide the main scheduler
7   * APIs (schedule(), wakeup variants, etc.)
8   */
9  
10  #include <uapi/linux/sched.h>
11  
12  #include <asm/current.h>
13  
14  #include <linux/pid.h>
15  #include <linux/sem.h>
16  #include <linux/shm.h>
17  #include <linux/kmsan_types.h>
18  #include <linux/mutex.h>
19  #include <linux/plist.h>
20  #include <linux/hrtimer.h>
21  #include <linux/irqflags.h>
22  #include <linux/seccomp.h>
23  #include <linux/nodemask.h>
24  #include <linux/rcupdate.h>
25  #include <linux/refcount.h>
26  #include <linux/resource.h>
27  #include <linux/latencytop.h>
28  #include <linux/sched/prio.h>
29  #include <linux/sched/types.h>
30  #include <linux/signal_types.h>
31  #include <linux/syscall_user_dispatch.h>
32  #include <linux/mm_types_task.h>
33  #include <linux/task_io_accounting.h>
34  #include <linux/posix-timers.h>
35  #include <linux/rseq.h>
36  #include <linux/seqlock.h>
37  #include <linux/kcsan.h>
38  #include <linux/rv.h>
39  #include <linux/livepatch_sched.h>
40  #include <asm/kmap_size.h>
41  
42  /* task_struct member predeclarations (sorted alphabetically): */
43  struct audit_context;
44  struct bio_list;
45  struct blk_plug;
46  struct bpf_local_storage;
47  struct bpf_run_ctx;
48  struct capture_control;
49  struct cfs_rq;
50  struct fs_struct;
51  struct futex_pi_state;
52  struct io_context;
53  struct io_uring_task;
54  struct mempolicy;
55  struct nameidata;
56  struct nsproxy;
57  struct perf_event_context;
58  struct pid_namespace;
59  struct pipe_inode_info;
60  struct rcu_node;
61  struct reclaim_state;
62  struct robust_list_head;
63  struct root_domain;
64  struct rq;
65  struct sched_attr;
66  struct seq_file;
67  struct sighand_struct;
68  struct signal_struct;
69  struct task_delay_info;
70  struct task_group;
71  struct user_event_mm;
72  
73  /*
74   * Task state bitmask. NOTE! These bits are also
75   * encoded in fs/proc/array.c: get_task_state().
76   *
77   * We have two separate sets of flags: task->__state
78   * is about runnability, while task->exit_state are
79   * about the task exiting. Confusing, but this way
80   * modifying one set can't modify the other one by
81   * mistake.
82   */
83  
84  /* Used in tsk->__state: */
85  #define TASK_RUNNING			0x00000000
86  #define TASK_INTERRUPTIBLE		0x00000001
87  #define TASK_UNINTERRUPTIBLE		0x00000002
88  #define __TASK_STOPPED			0x00000004
89  #define __TASK_TRACED			0x00000008
90  /* Used in tsk->exit_state: */
91  #define EXIT_DEAD			0x00000010
92  #define EXIT_ZOMBIE			0x00000020
93  #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
94  /* Used in tsk->__state again: */
95  #define TASK_PARKED			0x00000040
96  #define TASK_DEAD			0x00000080
97  #define TASK_WAKEKILL			0x00000100
98  #define TASK_WAKING			0x00000200
99  #define TASK_NOLOAD			0x00000400
100  #define TASK_NEW			0x00000800
101  #define TASK_RTLOCK_WAIT		0x00001000
102  #define TASK_FREEZABLE			0x00002000
103  #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104  #define TASK_FROZEN			0x00008000
105  #define TASK_STATE_MAX			0x00010000
106  
107  #define TASK_ANY			(TASK_STATE_MAX-1)
108  
109  /*
110   * DO NOT ADD ANY NEW USERS !
111   */
112  #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
113  
114  /* Convenience macros for the sake of set_current_state: */
115  #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116  #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
117  #define TASK_TRACED			__TASK_TRACED
118  
119  #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
120  
121  /* Convenience macros for the sake of wake_up(): */
122  #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
123  
124  /* get_task_state(): */
125  #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
126  					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127  					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
128  					 TASK_PARKED)
129  
130  #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
131  
132  #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133  #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134  #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
135  
136  /*
137   * Special states are those that do not use the normal wait-loop pattern. See
138   * the comment with set_special_state().
139   */
140  #define is_special_task_state(state)				\
141  	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
142  
143  #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144  # define debug_normal_state_change(state_value)				\
145  	do {								\
146  		WARN_ON_ONCE(is_special_task_state(state_value));	\
147  		current->task_state_change = _THIS_IP_;			\
148  	} while (0)
149  
150  # define debug_special_state_change(state_value)			\
151  	do {								\
152  		WARN_ON_ONCE(!is_special_task_state(state_value));	\
153  		current->task_state_change = _THIS_IP_;			\
154  	} while (0)
155  
156  # define debug_rtlock_wait_set_state()					\
157  	do {								 \
158  		current->saved_state_change = current->task_state_change;\
159  		current->task_state_change = _THIS_IP_;			 \
160  	} while (0)
161  
162  # define debug_rtlock_wait_restore_state()				\
163  	do {								 \
164  		current->task_state_change = current->saved_state_change;\
165  	} while (0)
166  
167  #else
168  # define debug_normal_state_change(cond)	do { } while (0)
169  # define debug_special_state_change(cond)	do { } while (0)
170  # define debug_rtlock_wait_set_state()		do { } while (0)
171  # define debug_rtlock_wait_restore_state()	do { } while (0)
172  #endif
173  
174  /*
175   * set_current_state() includes a barrier so that the write of current->__state
176   * is correctly serialised wrt the caller's subsequent test of whether to
177   * actually sleep:
178   *
179   *   for (;;) {
180   *	set_current_state(TASK_UNINTERRUPTIBLE);
181   *	if (CONDITION)
182   *	   break;
183   *
184   *	schedule();
185   *   }
186   *   __set_current_state(TASK_RUNNING);
187   *
188   * If the caller does not need such serialisation (because, for instance, the
189   * CONDITION test and condition change and wakeup are under the same lock) then
190   * use __set_current_state().
191   *
192   * The above is typically ordered against the wakeup, which does:
193   *
194   *   CONDITION = 1;
195   *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
196   *
197   * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198   * accessing p->__state.
199   *
200   * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
201   * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202   * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
203   *
204   * However, with slightly different timing the wakeup TASK_RUNNING store can
205   * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206   * a problem either because that will result in one extra go around the loop
207   * and our @cond test will save the day.
208   *
209   * Also see the comments of try_to_wake_up().
210   */
211  #define __set_current_state(state_value)				\
212  	do {								\
213  		debug_normal_state_change((state_value));		\
214  		WRITE_ONCE(current->__state, (state_value));		\
215  	} while (0)
216  
217  #define set_current_state(state_value)					\
218  	do {								\
219  		debug_normal_state_change((state_value));		\
220  		smp_store_mb(current->__state, (state_value));		\
221  	} while (0)
222  
223  /*
224   * set_special_state() should be used for those states when the blocking task
225   * can not use the regular condition based wait-loop. In that case we must
226   * serialize against wakeups such that any possible in-flight TASK_RUNNING
227   * stores will not collide with our state change.
228   */
229  #define set_special_state(state_value)					\
230  	do {								\
231  		unsigned long flags; /* may shadow */			\
232  									\
233  		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
234  		debug_special_state_change((state_value));		\
235  		WRITE_ONCE(current->__state, (state_value));		\
236  		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
237  	} while (0)
238  
239  /*
240   * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
241   *
242   * RT's spin/rwlock substitutions are state preserving. The state of the
243   * task when blocking on the lock is saved in task_struct::saved_state and
244   * restored after the lock has been acquired.  These operations are
245   * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246   * lock related wakeups while the task is blocked on the lock are
247   * redirected to operate on task_struct::saved_state to ensure that these
248   * are not dropped. On restore task_struct::saved_state is set to
249   * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
250   *
251   * The lock operation looks like this:
252   *
253   *	current_save_and_set_rtlock_wait_state();
254   *	for (;;) {
255   *		if (try_lock())
256   *			break;
257   *		raw_spin_unlock_irq(&lock->wait_lock);
258   *		schedule_rtlock();
259   *		raw_spin_lock_irq(&lock->wait_lock);
260   *		set_current_state(TASK_RTLOCK_WAIT);
261   *	}
262   *	current_restore_rtlock_saved_state();
263   */
264  #define current_save_and_set_rtlock_wait_state()			\
265  	do {								\
266  		lockdep_assert_irqs_disabled();				\
267  		raw_spin_lock(&current->pi_lock);			\
268  		current->saved_state = current->__state;		\
269  		debug_rtlock_wait_set_state();				\
270  		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
271  		raw_spin_unlock(&current->pi_lock);			\
272  	} while (0);
273  
274  #define current_restore_rtlock_saved_state()				\
275  	do {								\
276  		lockdep_assert_irqs_disabled();				\
277  		raw_spin_lock(&current->pi_lock);			\
278  		debug_rtlock_wait_restore_state();			\
279  		WRITE_ONCE(current->__state, current->saved_state);	\
280  		current->saved_state = TASK_RUNNING;			\
281  		raw_spin_unlock(&current->pi_lock);			\
282  	} while (0);
283  
284  #define get_current_state()	READ_ONCE(current->__state)
285  
286  /*
287   * Define the task command name length as enum, then it can be visible to
288   * BPF programs.
289   */
290  enum {
291  	TASK_COMM_LEN = 16,
292  };
293  
294  extern void scheduler_tick(void);
295  
296  #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
297  
298  extern long schedule_timeout(long timeout);
299  extern long schedule_timeout_interruptible(long timeout);
300  extern long schedule_timeout_killable(long timeout);
301  extern long schedule_timeout_uninterruptible(long timeout);
302  extern long schedule_timeout_idle(long timeout);
303  asmlinkage void schedule(void);
304  extern void schedule_preempt_disabled(void);
305  asmlinkage void preempt_schedule_irq(void);
306  #ifdef CONFIG_PREEMPT_RT
307   extern void schedule_rtlock(void);
308  #endif
309  
310  extern int __must_check io_schedule_prepare(void);
311  extern void io_schedule_finish(int token);
312  extern long io_schedule_timeout(long timeout);
313  extern void io_schedule(void);
314  
315  /**
316   * struct prev_cputime - snapshot of system and user cputime
317   * @utime: time spent in user mode
318   * @stime: time spent in system mode
319   * @lock: protects the above two fields
320   *
321   * Stores previous user/system time values such that we can guarantee
322   * monotonicity.
323   */
324  struct prev_cputime {
325  #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
326  	u64				utime;
327  	u64				stime;
328  	raw_spinlock_t			lock;
329  #endif
330  };
331  
332  enum vtime_state {
333  	/* Task is sleeping or running in a CPU with VTIME inactive: */
334  	VTIME_INACTIVE = 0,
335  	/* Task is idle */
336  	VTIME_IDLE,
337  	/* Task runs in kernelspace in a CPU with VTIME active: */
338  	VTIME_SYS,
339  	/* Task runs in userspace in a CPU with VTIME active: */
340  	VTIME_USER,
341  	/* Task runs as guests in a CPU with VTIME active: */
342  	VTIME_GUEST,
343  };
344  
345  struct vtime {
346  	seqcount_t		seqcount;
347  	unsigned long long	starttime;
348  	enum vtime_state	state;
349  	unsigned int		cpu;
350  	u64			utime;
351  	u64			stime;
352  	u64			gtime;
353  };
354  
355  /*
356   * Utilization clamp constraints.
357   * @UCLAMP_MIN:	Minimum utilization
358   * @UCLAMP_MAX:	Maximum utilization
359   * @UCLAMP_CNT:	Utilization clamp constraints count
360   */
361  enum uclamp_id {
362  	UCLAMP_MIN = 0,
363  	UCLAMP_MAX,
364  	UCLAMP_CNT
365  };
366  
367  #ifdef CONFIG_SMP
368  extern struct root_domain def_root_domain;
369  extern struct mutex sched_domains_mutex;
370  #endif
371  
372  struct sched_param {
373  	int sched_priority;
374  };
375  
376  struct sched_info {
377  #ifdef CONFIG_SCHED_INFO
378  	/* Cumulative counters: */
379  
380  	/* # of times we have run on this CPU: */
381  	unsigned long			pcount;
382  
383  	/* Time spent waiting on a runqueue: */
384  	unsigned long long		run_delay;
385  
386  	/* Timestamps: */
387  
388  	/* When did we last run on a CPU? */
389  	unsigned long long		last_arrival;
390  
391  	/* When were we last queued to run? */
392  	unsigned long long		last_queued;
393  
394  #endif /* CONFIG_SCHED_INFO */
395  };
396  
397  /*
398   * Integer metrics need fixed point arithmetic, e.g., sched/fair
399   * has a few: load, load_avg, util_avg, freq, and capacity.
400   *
401   * We define a basic fixed point arithmetic range, and then formalize
402   * all these metrics based on that basic range.
403   */
404  # define SCHED_FIXEDPOINT_SHIFT		10
405  # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
406  
407  /* Increase resolution of cpu_capacity calculations */
408  # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
409  # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
410  
411  struct load_weight {
412  	unsigned long			weight;
413  	u32				inv_weight;
414  };
415  
416  /**
417   * struct util_est - Estimation utilization of FAIR tasks
418   * @enqueued: instantaneous estimated utilization of a task/cpu
419   * @ewma:     the Exponential Weighted Moving Average (EWMA)
420   *            utilization of a task
421   *
422   * Support data structure to track an Exponential Weighted Moving Average
423   * (EWMA) of a FAIR task's utilization. New samples are added to the moving
424   * average each time a task completes an activation. Sample's weight is chosen
425   * so that the EWMA will be relatively insensitive to transient changes to the
426   * task's workload.
427   *
428   * The enqueued attribute has a slightly different meaning for tasks and cpus:
429   * - task:   the task's util_avg at last task dequeue time
430   * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
431   * Thus, the util_est.enqueued of a task represents the contribution on the
432   * estimated utilization of the CPU where that task is currently enqueued.
433   *
434   * Only for tasks we track a moving average of the past instantaneous
435   * estimated utilization. This allows to absorb sporadic drops in utilization
436   * of an otherwise almost periodic task.
437   *
438   * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
439   * updates. When a task is dequeued, its util_est should not be updated if its
440   * util_avg has not been updated in the meantime.
441   * This information is mapped into the MSB bit of util_est.enqueued at dequeue
442   * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
443   * for a task) it is safe to use MSB.
444   */
445  struct util_est {
446  	unsigned int			enqueued;
447  	unsigned int			ewma;
448  #define UTIL_EST_WEIGHT_SHIFT		2
449  #define UTIL_AVG_UNCHANGED		0x80000000
450  } __attribute__((__aligned__(sizeof(u64))));
451  
452  /*
453   * The load/runnable/util_avg accumulates an infinite geometric series
454   * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
455   *
456   * [load_avg definition]
457   *
458   *   load_avg = runnable% * scale_load_down(load)
459   *
460   * [runnable_avg definition]
461   *
462   *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
463   *
464   * [util_avg definition]
465   *
466   *   util_avg = running% * SCHED_CAPACITY_SCALE
467   *
468   * where runnable% is the time ratio that a sched_entity is runnable and
469   * running% the time ratio that a sched_entity is running.
470   *
471   * For cfs_rq, they are the aggregated values of all runnable and blocked
472   * sched_entities.
473   *
474   * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
475   * capacity scaling. The scaling is done through the rq_clock_pelt that is used
476   * for computing those signals (see update_rq_clock_pelt())
477   *
478   * N.B., the above ratios (runnable% and running%) themselves are in the
479   * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
480   * to as large a range as necessary. This is for example reflected by
481   * util_avg's SCHED_CAPACITY_SCALE.
482   *
483   * [Overflow issue]
484   *
485   * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
486   * with the highest load (=88761), always runnable on a single cfs_rq,
487   * and should not overflow as the number already hits PID_MAX_LIMIT.
488   *
489   * For all other cases (including 32-bit kernels), struct load_weight's
490   * weight will overflow first before we do, because:
491   *
492   *    Max(load_avg) <= Max(load.weight)
493   *
494   * Then it is the load_weight's responsibility to consider overflow
495   * issues.
496   */
497  struct sched_avg {
498  	u64				last_update_time;
499  	u64				load_sum;
500  	u64				runnable_sum;
501  	u32				util_sum;
502  	u32				period_contrib;
503  	unsigned long			load_avg;
504  	unsigned long			runnable_avg;
505  	unsigned long			util_avg;
506  	struct util_est			util_est;
507  } ____cacheline_aligned;
508  
509  struct sched_statistics {
510  #ifdef CONFIG_SCHEDSTATS
511  	u64				wait_start;
512  	u64				wait_max;
513  	u64				wait_count;
514  	u64				wait_sum;
515  	u64				iowait_count;
516  	u64				iowait_sum;
517  
518  	u64				sleep_start;
519  	u64				sleep_max;
520  	s64				sum_sleep_runtime;
521  
522  	u64				block_start;
523  	u64				block_max;
524  	s64				sum_block_runtime;
525  
526  	s64				exec_max;
527  	u64				slice_max;
528  
529  	u64				nr_migrations_cold;
530  	u64				nr_failed_migrations_affine;
531  	u64				nr_failed_migrations_running;
532  	u64				nr_failed_migrations_hot;
533  	u64				nr_forced_migrations;
534  
535  	u64				nr_wakeups;
536  	u64				nr_wakeups_sync;
537  	u64				nr_wakeups_migrate;
538  	u64				nr_wakeups_local;
539  	u64				nr_wakeups_remote;
540  	u64				nr_wakeups_affine;
541  	u64				nr_wakeups_affine_attempts;
542  	u64				nr_wakeups_passive;
543  	u64				nr_wakeups_idle;
544  
545  #ifdef CONFIG_SCHED_CORE
546  	u64				core_forceidle_sum;
547  #endif
548  #endif /* CONFIG_SCHEDSTATS */
549  } ____cacheline_aligned;
550  
551  struct sched_entity {
552  	/* For load-balancing: */
553  	struct load_weight		load;
554  	struct rb_node			run_node;
555  	u64				deadline;
556  	u64				min_deadline;
557  
558  	struct list_head		group_node;
559  	unsigned int			on_rq;
560  
561  	u64				exec_start;
562  	u64				sum_exec_runtime;
563  	u64				prev_sum_exec_runtime;
564  	u64				vruntime;
565  	s64				vlag;
566  	u64				slice;
567  
568  	u64				nr_migrations;
569  
570  #ifdef CONFIG_FAIR_GROUP_SCHED
571  	int				depth;
572  	struct sched_entity		*parent;
573  	/* rq on which this entity is (to be) queued: */
574  	struct cfs_rq			*cfs_rq;
575  	/* rq "owned" by this entity/group: */
576  	struct cfs_rq			*my_q;
577  	/* cached value of my_q->h_nr_running */
578  	unsigned long			runnable_weight;
579  #endif
580  
581  #ifdef CONFIG_SMP
582  	/*
583  	 * Per entity load average tracking.
584  	 *
585  	 * Put into separate cache line so it does not
586  	 * collide with read-mostly values above.
587  	 */
588  	struct sched_avg		avg;
589  #endif
590  };
591  
592  struct sched_rt_entity {
593  	struct list_head		run_list;
594  	unsigned long			timeout;
595  	unsigned long			watchdog_stamp;
596  	unsigned int			time_slice;
597  	unsigned short			on_rq;
598  	unsigned short			on_list;
599  
600  	struct sched_rt_entity		*back;
601  #ifdef CONFIG_RT_GROUP_SCHED
602  	struct sched_rt_entity		*parent;
603  	/* rq on which this entity is (to be) queued: */
604  	struct rt_rq			*rt_rq;
605  	/* rq "owned" by this entity/group: */
606  	struct rt_rq			*my_q;
607  #endif
608  } __randomize_layout;
609  
610  struct sched_dl_entity {
611  	struct rb_node			rb_node;
612  
613  	/*
614  	 * Original scheduling parameters. Copied here from sched_attr
615  	 * during sched_setattr(), they will remain the same until
616  	 * the next sched_setattr().
617  	 */
618  	u64				dl_runtime;	/* Maximum runtime for each instance	*/
619  	u64				dl_deadline;	/* Relative deadline of each instance	*/
620  	u64				dl_period;	/* Separation of two instances (period) */
621  	u64				dl_bw;		/* dl_runtime / dl_period		*/
622  	u64				dl_density;	/* dl_runtime / dl_deadline		*/
623  
624  	/*
625  	 * Actual scheduling parameters. Initialized with the values above,
626  	 * they are continuously updated during task execution. Note that
627  	 * the remaining runtime could be < 0 in case we are in overrun.
628  	 */
629  	s64				runtime;	/* Remaining runtime for this instance	*/
630  	u64				deadline;	/* Absolute deadline for this instance	*/
631  	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
632  
633  	/*
634  	 * Some bool flags:
635  	 *
636  	 * @dl_throttled tells if we exhausted the runtime. If so, the
637  	 * task has to wait for a replenishment to be performed at the
638  	 * next firing of dl_timer.
639  	 *
640  	 * @dl_yielded tells if task gave up the CPU before consuming
641  	 * all its available runtime during the last job.
642  	 *
643  	 * @dl_non_contending tells if the task is inactive while still
644  	 * contributing to the active utilization. In other words, it
645  	 * indicates if the inactive timer has been armed and its handler
646  	 * has not been executed yet. This flag is useful to avoid race
647  	 * conditions between the inactive timer handler and the wakeup
648  	 * code.
649  	 *
650  	 * @dl_overrun tells if the task asked to be informed about runtime
651  	 * overruns.
652  	 */
653  	unsigned int			dl_throttled      : 1;
654  	unsigned int			dl_yielded        : 1;
655  	unsigned int			dl_non_contending : 1;
656  	unsigned int			dl_overrun	  : 1;
657  
658  	/*
659  	 * Bandwidth enforcement timer. Each -deadline task has its
660  	 * own bandwidth to be enforced, thus we need one timer per task.
661  	 */
662  	struct hrtimer			dl_timer;
663  
664  	/*
665  	 * Inactive timer, responsible for decreasing the active utilization
666  	 * at the "0-lag time". When a -deadline task blocks, it contributes
667  	 * to GRUB's active utilization until the "0-lag time", hence a
668  	 * timer is needed to decrease the active utilization at the correct
669  	 * time.
670  	 */
671  	struct hrtimer inactive_timer;
672  
673  #ifdef CONFIG_RT_MUTEXES
674  	/*
675  	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
676  	 * pi_se points to the donor, otherwise points to the dl_se it belongs
677  	 * to (the original one/itself).
678  	 */
679  	struct sched_dl_entity *pi_se;
680  #endif
681  };
682  
683  #ifdef CONFIG_UCLAMP_TASK
684  /* Number of utilization clamp buckets (shorter alias) */
685  #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
686  
687  /*
688   * Utilization clamp for a scheduling entity
689   * @value:		clamp value "assigned" to a se
690   * @bucket_id:		bucket index corresponding to the "assigned" value
691   * @active:		the se is currently refcounted in a rq's bucket
692   * @user_defined:	the requested clamp value comes from user-space
693   *
694   * The bucket_id is the index of the clamp bucket matching the clamp value
695   * which is pre-computed and stored to avoid expensive integer divisions from
696   * the fast path.
697   *
698   * The active bit is set whenever a task has got an "effective" value assigned,
699   * which can be different from the clamp value "requested" from user-space.
700   * This allows to know a task is refcounted in the rq's bucket corresponding
701   * to the "effective" bucket_id.
702   *
703   * The user_defined bit is set whenever a task has got a task-specific clamp
704   * value requested from userspace, i.e. the system defaults apply to this task
705   * just as a restriction. This allows to relax default clamps when a less
706   * restrictive task-specific value has been requested, thus allowing to
707   * implement a "nice" semantic. For example, a task running with a 20%
708   * default boost can still drop its own boosting to 0%.
709   */
710  struct uclamp_se {
711  	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
712  	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
713  	unsigned int active		: 1;
714  	unsigned int user_defined	: 1;
715  };
716  #endif /* CONFIG_UCLAMP_TASK */
717  
718  union rcu_special {
719  	struct {
720  		u8			blocked;
721  		u8			need_qs;
722  		u8			exp_hint; /* Hint for performance. */
723  		u8			need_mb; /* Readers need smp_mb(). */
724  	} b; /* Bits. */
725  	u32 s; /* Set of bits. */
726  };
727  
728  enum perf_event_task_context {
729  	perf_invalid_context = -1,
730  	perf_hw_context = 0,
731  	perf_sw_context,
732  	perf_nr_task_contexts,
733  };
734  
735  struct wake_q_node {
736  	struct wake_q_node *next;
737  };
738  
739  struct kmap_ctrl {
740  #ifdef CONFIG_KMAP_LOCAL
741  	int				idx;
742  	pte_t				pteval[KM_MAX_IDX];
743  #endif
744  };
745  
746  struct task_struct {
747  #ifdef CONFIG_THREAD_INFO_IN_TASK
748  	/*
749  	 * For reasons of header soup (see current_thread_info()), this
750  	 * must be the first element of task_struct.
751  	 */
752  	struct thread_info		thread_info;
753  #endif
754  	unsigned int			__state;
755  
756  #ifdef CONFIG_PREEMPT_RT
757  	/* saved state for "spinlock sleepers" */
758  	unsigned int			saved_state;
759  #endif
760  
761  	/*
762  	 * This begins the randomizable portion of task_struct. Only
763  	 * scheduling-critical items should be added above here.
764  	 */
765  	randomized_struct_fields_start
766  
767  	void				*stack;
768  	refcount_t			usage;
769  	/* Per task flags (PF_*), defined further below: */
770  	unsigned int			flags;
771  	unsigned int			ptrace;
772  
773  #ifdef CONFIG_SMP
774  	int				on_cpu;
775  	struct __call_single_node	wake_entry;
776  	unsigned int			wakee_flips;
777  	unsigned long			wakee_flip_decay_ts;
778  	struct task_struct		*last_wakee;
779  
780  	/*
781  	 * recent_used_cpu is initially set as the last CPU used by a task
782  	 * that wakes affine another task. Waker/wakee relationships can
783  	 * push tasks around a CPU where each wakeup moves to the next one.
784  	 * Tracking a recently used CPU allows a quick search for a recently
785  	 * used CPU that may be idle.
786  	 */
787  	int				recent_used_cpu;
788  	int				wake_cpu;
789  #endif
790  	int				on_rq;
791  
792  	int				prio;
793  	int				static_prio;
794  	int				normal_prio;
795  	unsigned int			rt_priority;
796  
797  	struct sched_entity		se;
798  	struct sched_rt_entity		rt;
799  	struct sched_dl_entity		dl;
800  	const struct sched_class	*sched_class;
801  
802  #ifdef CONFIG_SCHED_CORE
803  	struct rb_node			core_node;
804  	unsigned long			core_cookie;
805  	unsigned int			core_occupation;
806  #endif
807  
808  #ifdef CONFIG_CGROUP_SCHED
809  	struct task_group		*sched_task_group;
810  #endif
811  
812  #ifdef CONFIG_UCLAMP_TASK
813  	/*
814  	 * Clamp values requested for a scheduling entity.
815  	 * Must be updated with task_rq_lock() held.
816  	 */
817  	struct uclamp_se		uclamp_req[UCLAMP_CNT];
818  	/*
819  	 * Effective clamp values used for a scheduling entity.
820  	 * Must be updated with task_rq_lock() held.
821  	 */
822  	struct uclamp_se		uclamp[UCLAMP_CNT];
823  #endif
824  
825  	struct sched_statistics         stats;
826  
827  #ifdef CONFIG_PREEMPT_NOTIFIERS
828  	/* List of struct preempt_notifier: */
829  	struct hlist_head		preempt_notifiers;
830  #endif
831  
832  #ifdef CONFIG_BLK_DEV_IO_TRACE
833  	unsigned int			btrace_seq;
834  #endif
835  
836  	unsigned int			policy;
837  	int				nr_cpus_allowed;
838  	const cpumask_t			*cpus_ptr;
839  	cpumask_t			*user_cpus_ptr;
840  	cpumask_t			cpus_mask;
841  	void				*migration_pending;
842  #ifdef CONFIG_SMP
843  	unsigned short			migration_disabled;
844  #endif
845  	unsigned short			migration_flags;
846  
847  #ifdef CONFIG_PREEMPT_RCU
848  	int				rcu_read_lock_nesting;
849  	union rcu_special		rcu_read_unlock_special;
850  	struct list_head		rcu_node_entry;
851  	struct rcu_node			*rcu_blocked_node;
852  #endif /* #ifdef CONFIG_PREEMPT_RCU */
853  
854  #ifdef CONFIG_TASKS_RCU
855  	unsigned long			rcu_tasks_nvcsw;
856  	u8				rcu_tasks_holdout;
857  	u8				rcu_tasks_idx;
858  	int				rcu_tasks_idle_cpu;
859  	struct list_head		rcu_tasks_holdout_list;
860  	int				rcu_tasks_exit_cpu;
861  	struct list_head		rcu_tasks_exit_list;
862  #endif /* #ifdef CONFIG_TASKS_RCU */
863  
864  #ifdef CONFIG_TASKS_TRACE_RCU
865  	int				trc_reader_nesting;
866  	int				trc_ipi_to_cpu;
867  	union rcu_special		trc_reader_special;
868  	struct list_head		trc_holdout_list;
869  	struct list_head		trc_blkd_node;
870  	int				trc_blkd_cpu;
871  #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
872  
873  	struct sched_info		sched_info;
874  
875  	struct list_head		tasks;
876  #ifdef CONFIG_SMP
877  	struct plist_node		pushable_tasks;
878  	struct rb_node			pushable_dl_tasks;
879  #endif
880  
881  	struct mm_struct		*mm;
882  	struct mm_struct		*active_mm;
883  
884  	int				exit_state;
885  	int				exit_code;
886  	int				exit_signal;
887  	/* The signal sent when the parent dies: */
888  	int				pdeath_signal;
889  	/* JOBCTL_*, siglock protected: */
890  	unsigned long			jobctl;
891  
892  	/* Used for emulating ABI behavior of previous Linux versions: */
893  	unsigned int			personality;
894  
895  	/* Scheduler bits, serialized by scheduler locks: */
896  	unsigned			sched_reset_on_fork:1;
897  	unsigned			sched_contributes_to_load:1;
898  	unsigned			sched_migrated:1;
899  	unsigned			sched_task_hot:1;
900  
901  	/* Force alignment to the next boundary: */
902  	unsigned			:0;
903  
904  	/* Unserialized, strictly 'current' */
905  
906  	/*
907  	 * This field must not be in the scheduler word above due to wakelist
908  	 * queueing no longer being serialized by p->on_cpu. However:
909  	 *
910  	 * p->XXX = X;			ttwu()
911  	 * schedule()			  if (p->on_rq && ..) // false
912  	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
913  	 *   deactivate_task()		      ttwu_queue_wakelist())
914  	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
915  	 *
916  	 * guarantees all stores of 'current' are visible before
917  	 * ->sched_remote_wakeup gets used, so it can be in this word.
918  	 */
919  	unsigned			sched_remote_wakeup:1;
920  
921  	/* Bit to tell LSMs we're in execve(): */
922  	unsigned			in_execve:1;
923  	unsigned			in_iowait:1;
924  #ifndef TIF_RESTORE_SIGMASK
925  	unsigned			restore_sigmask:1;
926  #endif
927  #ifdef CONFIG_MEMCG
928  	unsigned			in_user_fault:1;
929  #endif
930  #ifdef CONFIG_LRU_GEN
931  	/* whether the LRU algorithm may apply to this access */
932  	unsigned			in_lru_fault:1;
933  #endif
934  #ifdef CONFIG_COMPAT_BRK
935  	unsigned			brk_randomized:1;
936  #endif
937  #ifdef CONFIG_CGROUPS
938  	/* disallow userland-initiated cgroup migration */
939  	unsigned			no_cgroup_migration:1;
940  	/* task is frozen/stopped (used by the cgroup freezer) */
941  	unsigned			frozen:1;
942  #endif
943  #ifdef CONFIG_BLK_CGROUP
944  	unsigned			use_memdelay:1;
945  #endif
946  #ifdef CONFIG_PSI
947  	/* Stalled due to lack of memory */
948  	unsigned			in_memstall:1;
949  #endif
950  #ifdef CONFIG_PAGE_OWNER
951  	/* Used by page_owner=on to detect recursion in page tracking. */
952  	unsigned			in_page_owner:1;
953  #endif
954  #ifdef CONFIG_EVENTFD
955  	/* Recursion prevention for eventfd_signal() */
956  	unsigned			in_eventfd:1;
957  #endif
958  #ifdef CONFIG_IOMMU_SVA
959  	unsigned			pasid_activated:1;
960  #endif
961  #ifdef	CONFIG_CPU_SUP_INTEL
962  	unsigned			reported_split_lock:1;
963  #endif
964  #ifdef CONFIG_TASK_DELAY_ACCT
965  	/* delay due to memory thrashing */
966  	unsigned                        in_thrashing:1;
967  #endif
968  
969  	unsigned long			atomic_flags; /* Flags requiring atomic access. */
970  
971  	struct restart_block		restart_block;
972  
973  	pid_t				pid;
974  	pid_t				tgid;
975  
976  #ifdef CONFIG_STACKPROTECTOR
977  	/* Canary value for the -fstack-protector GCC feature: */
978  	unsigned long			stack_canary;
979  #endif
980  	/*
981  	 * Pointers to the (original) parent process, youngest child, younger sibling,
982  	 * older sibling, respectively.  (p->father can be replaced with
983  	 * p->real_parent->pid)
984  	 */
985  
986  	/* Real parent process: */
987  	struct task_struct __rcu	*real_parent;
988  
989  	/* Recipient of SIGCHLD, wait4() reports: */
990  	struct task_struct __rcu	*parent;
991  
992  	/*
993  	 * Children/sibling form the list of natural children:
994  	 */
995  	struct list_head		children;
996  	struct list_head		sibling;
997  	struct task_struct		*group_leader;
998  
999  	/*
1000  	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1001  	 *
1002  	 * This includes both natural children and PTRACE_ATTACH targets.
1003  	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1004  	 */
1005  	struct list_head		ptraced;
1006  	struct list_head		ptrace_entry;
1007  
1008  	/* PID/PID hash table linkage. */
1009  	struct pid			*thread_pid;
1010  	struct hlist_node		pid_links[PIDTYPE_MAX];
1011  	struct list_head		thread_group;
1012  	struct list_head		thread_node;
1013  
1014  	struct completion		*vfork_done;
1015  
1016  	/* CLONE_CHILD_SETTID: */
1017  	int __user			*set_child_tid;
1018  
1019  	/* CLONE_CHILD_CLEARTID: */
1020  	int __user			*clear_child_tid;
1021  
1022  	/* PF_KTHREAD | PF_IO_WORKER */
1023  	void				*worker_private;
1024  
1025  	u64				utime;
1026  	u64				stime;
1027  #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1028  	u64				utimescaled;
1029  	u64				stimescaled;
1030  #endif
1031  	u64				gtime;
1032  	struct prev_cputime		prev_cputime;
1033  #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1034  	struct vtime			vtime;
1035  #endif
1036  
1037  #ifdef CONFIG_NO_HZ_FULL
1038  	atomic_t			tick_dep_mask;
1039  #endif
1040  	/* Context switch counts: */
1041  	unsigned long			nvcsw;
1042  	unsigned long			nivcsw;
1043  
1044  	/* Monotonic time in nsecs: */
1045  	u64				start_time;
1046  
1047  	/* Boot based time in nsecs: */
1048  	u64				start_boottime;
1049  
1050  	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1051  	unsigned long			min_flt;
1052  	unsigned long			maj_flt;
1053  
1054  	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1055  	struct posix_cputimers		posix_cputimers;
1056  
1057  #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1058  	struct posix_cputimers_work	posix_cputimers_work;
1059  #endif
1060  
1061  	/* Process credentials: */
1062  
1063  	/* Tracer's credentials at attach: */
1064  	const struct cred __rcu		*ptracer_cred;
1065  
1066  	/* Objective and real subjective task credentials (COW): */
1067  	const struct cred __rcu		*real_cred;
1068  
1069  	/* Effective (overridable) subjective task credentials (COW): */
1070  	const struct cred __rcu		*cred;
1071  
1072  #ifdef CONFIG_KEYS
1073  	/* Cached requested key. */
1074  	struct key			*cached_requested_key;
1075  #endif
1076  
1077  	/*
1078  	 * executable name, excluding path.
1079  	 *
1080  	 * - normally initialized setup_new_exec()
1081  	 * - access it with [gs]et_task_comm()
1082  	 * - lock it with task_lock()
1083  	 */
1084  	char				comm[TASK_COMM_LEN];
1085  
1086  	struct nameidata		*nameidata;
1087  
1088  #ifdef CONFIG_SYSVIPC
1089  	struct sysv_sem			sysvsem;
1090  	struct sysv_shm			sysvshm;
1091  #endif
1092  #ifdef CONFIG_DETECT_HUNG_TASK
1093  	unsigned long			last_switch_count;
1094  	unsigned long			last_switch_time;
1095  #endif
1096  	/* Filesystem information: */
1097  	struct fs_struct		*fs;
1098  
1099  	/* Open file information: */
1100  	struct files_struct		*files;
1101  
1102  #ifdef CONFIG_IO_URING
1103  	struct io_uring_task		*io_uring;
1104  #endif
1105  
1106  	/* Namespaces: */
1107  	struct nsproxy			*nsproxy;
1108  
1109  	/* Signal handlers: */
1110  	struct signal_struct		*signal;
1111  	struct sighand_struct __rcu		*sighand;
1112  	sigset_t			blocked;
1113  	sigset_t			real_blocked;
1114  	/* Restored if set_restore_sigmask() was used: */
1115  	sigset_t			saved_sigmask;
1116  	struct sigpending		pending;
1117  	unsigned long			sas_ss_sp;
1118  	size_t				sas_ss_size;
1119  	unsigned int			sas_ss_flags;
1120  
1121  	struct callback_head		*task_works;
1122  
1123  #ifdef CONFIG_AUDIT
1124  #ifdef CONFIG_AUDITSYSCALL
1125  	struct audit_context		*audit_context;
1126  #endif
1127  	kuid_t				loginuid;
1128  	unsigned int			sessionid;
1129  #endif
1130  	struct seccomp			seccomp;
1131  	struct syscall_user_dispatch	syscall_dispatch;
1132  
1133  	/* Thread group tracking: */
1134  	u64				parent_exec_id;
1135  	u64				self_exec_id;
1136  
1137  	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1138  	spinlock_t			alloc_lock;
1139  
1140  	/* Protection of the PI data structures: */
1141  	raw_spinlock_t			pi_lock;
1142  
1143  	struct wake_q_node		wake_q;
1144  
1145  #ifdef CONFIG_RT_MUTEXES
1146  	/* PI waiters blocked on a rt_mutex held by this task: */
1147  	struct rb_root_cached		pi_waiters;
1148  	/* Updated under owner's pi_lock and rq lock */
1149  	struct task_struct		*pi_top_task;
1150  	/* Deadlock detection and priority inheritance handling: */
1151  	struct rt_mutex_waiter		*pi_blocked_on;
1152  #endif
1153  
1154  #ifdef CONFIG_DEBUG_MUTEXES
1155  	/* Mutex deadlock detection: */
1156  	struct mutex_waiter		*blocked_on;
1157  #endif
1158  
1159  #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1160  	int				non_block_count;
1161  #endif
1162  
1163  #ifdef CONFIG_TRACE_IRQFLAGS
1164  	struct irqtrace_events		irqtrace;
1165  	unsigned int			hardirq_threaded;
1166  	u64				hardirq_chain_key;
1167  	int				softirqs_enabled;
1168  	int				softirq_context;
1169  	int				irq_config;
1170  #endif
1171  #ifdef CONFIG_PREEMPT_RT
1172  	int				softirq_disable_cnt;
1173  #endif
1174  
1175  #ifdef CONFIG_LOCKDEP
1176  # define MAX_LOCK_DEPTH			48UL
1177  	u64				curr_chain_key;
1178  	int				lockdep_depth;
1179  	unsigned int			lockdep_recursion;
1180  	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1181  #endif
1182  
1183  #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1184  	unsigned int			in_ubsan;
1185  #endif
1186  
1187  	/* Journalling filesystem info: */
1188  	void				*journal_info;
1189  
1190  	/* Stacked block device info: */
1191  	struct bio_list			*bio_list;
1192  
1193  	/* Stack plugging: */
1194  	struct blk_plug			*plug;
1195  
1196  	/* VM state: */
1197  	struct reclaim_state		*reclaim_state;
1198  
1199  	struct io_context		*io_context;
1200  
1201  #ifdef CONFIG_COMPACTION
1202  	struct capture_control		*capture_control;
1203  #endif
1204  	/* Ptrace state: */
1205  	unsigned long			ptrace_message;
1206  	kernel_siginfo_t		*last_siginfo;
1207  
1208  	struct task_io_accounting	ioac;
1209  #ifdef CONFIG_PSI
1210  	/* Pressure stall state */
1211  	unsigned int			psi_flags;
1212  #endif
1213  #ifdef CONFIG_TASK_XACCT
1214  	/* Accumulated RSS usage: */
1215  	u64				acct_rss_mem1;
1216  	/* Accumulated virtual memory usage: */
1217  	u64				acct_vm_mem1;
1218  	/* stime + utime since last update: */
1219  	u64				acct_timexpd;
1220  #endif
1221  #ifdef CONFIG_CPUSETS
1222  	/* Protected by ->alloc_lock: */
1223  	nodemask_t			mems_allowed;
1224  	/* Sequence number to catch updates: */
1225  	seqcount_spinlock_t		mems_allowed_seq;
1226  	int				cpuset_mem_spread_rotor;
1227  	int				cpuset_slab_spread_rotor;
1228  #endif
1229  #ifdef CONFIG_CGROUPS
1230  	/* Control Group info protected by css_set_lock: */
1231  	struct css_set __rcu		*cgroups;
1232  	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1233  	struct list_head		cg_list;
1234  #endif
1235  #ifdef CONFIG_X86_CPU_RESCTRL
1236  	u32				closid;
1237  	u32				rmid;
1238  #endif
1239  #ifdef CONFIG_FUTEX
1240  	struct robust_list_head __user	*robust_list;
1241  #ifdef CONFIG_COMPAT
1242  	struct compat_robust_list_head __user *compat_robust_list;
1243  #endif
1244  	struct list_head		pi_state_list;
1245  	struct futex_pi_state		*pi_state_cache;
1246  	struct mutex			futex_exit_mutex;
1247  	unsigned int			futex_state;
1248  #endif
1249  #ifdef CONFIG_PERF_EVENTS
1250  	struct perf_event_context	*perf_event_ctxp;
1251  	struct mutex			perf_event_mutex;
1252  	struct list_head		perf_event_list;
1253  #endif
1254  #ifdef CONFIG_DEBUG_PREEMPT
1255  	unsigned long			preempt_disable_ip;
1256  #endif
1257  #ifdef CONFIG_NUMA
1258  	/* Protected by alloc_lock: */
1259  	struct mempolicy		*mempolicy;
1260  	short				il_prev;
1261  	short				pref_node_fork;
1262  #endif
1263  #ifdef CONFIG_NUMA_BALANCING
1264  	int				numa_scan_seq;
1265  	unsigned int			numa_scan_period;
1266  	unsigned int			numa_scan_period_max;
1267  	int				numa_preferred_nid;
1268  	unsigned long			numa_migrate_retry;
1269  	/* Migration stamp: */
1270  	u64				node_stamp;
1271  	u64				last_task_numa_placement;
1272  	u64				last_sum_exec_runtime;
1273  	struct callback_head		numa_work;
1274  
1275  	/*
1276  	 * This pointer is only modified for current in syscall and
1277  	 * pagefault context (and for tasks being destroyed), so it can be read
1278  	 * from any of the following contexts:
1279  	 *  - RCU read-side critical section
1280  	 *  - current->numa_group from everywhere
1281  	 *  - task's runqueue locked, task not running
1282  	 */
1283  	struct numa_group __rcu		*numa_group;
1284  
1285  	/*
1286  	 * numa_faults is an array split into four regions:
1287  	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1288  	 * in this precise order.
1289  	 *
1290  	 * faults_memory: Exponential decaying average of faults on a per-node
1291  	 * basis. Scheduling placement decisions are made based on these
1292  	 * counts. The values remain static for the duration of a PTE scan.
1293  	 * faults_cpu: Track the nodes the process was running on when a NUMA
1294  	 * hinting fault was incurred.
1295  	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1296  	 * during the current scan window. When the scan completes, the counts
1297  	 * in faults_memory and faults_cpu decay and these values are copied.
1298  	 */
1299  	unsigned long			*numa_faults;
1300  	unsigned long			total_numa_faults;
1301  
1302  	/*
1303  	 * numa_faults_locality tracks if faults recorded during the last
1304  	 * scan window were remote/local or failed to migrate. The task scan
1305  	 * period is adapted based on the locality of the faults with different
1306  	 * weights depending on whether they were shared or private faults
1307  	 */
1308  	unsigned long			numa_faults_locality[3];
1309  
1310  	unsigned long			numa_pages_migrated;
1311  #endif /* CONFIG_NUMA_BALANCING */
1312  
1313  #ifdef CONFIG_RSEQ
1314  	struct rseq __user *rseq;
1315  	u32 rseq_len;
1316  	u32 rseq_sig;
1317  	/*
1318  	 * RmW on rseq_event_mask must be performed atomically
1319  	 * with respect to preemption.
1320  	 */
1321  	unsigned long rseq_event_mask;
1322  #endif
1323  
1324  #ifdef CONFIG_SCHED_MM_CID
1325  	int				mm_cid;		/* Current cid in mm */
1326  	int				last_mm_cid;	/* Most recent cid in mm */
1327  	int				migrate_from_cpu;
1328  	int				mm_cid_active;	/* Whether cid bitmap is active */
1329  	struct callback_head		cid_work;
1330  #endif
1331  
1332  	struct tlbflush_unmap_batch	tlb_ubc;
1333  
1334  	/* Cache last used pipe for splice(): */
1335  	struct pipe_inode_info		*splice_pipe;
1336  
1337  	struct page_frag		task_frag;
1338  
1339  #ifdef CONFIG_TASK_DELAY_ACCT
1340  	struct task_delay_info		*delays;
1341  #endif
1342  
1343  #ifdef CONFIG_FAULT_INJECTION
1344  	int				make_it_fail;
1345  	unsigned int			fail_nth;
1346  #endif
1347  	/*
1348  	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1349  	 * balance_dirty_pages() for a dirty throttling pause:
1350  	 */
1351  	int				nr_dirtied;
1352  	int				nr_dirtied_pause;
1353  	/* Start of a write-and-pause period: */
1354  	unsigned long			dirty_paused_when;
1355  
1356  #ifdef CONFIG_LATENCYTOP
1357  	int				latency_record_count;
1358  	struct latency_record		latency_record[LT_SAVECOUNT];
1359  #endif
1360  	/*
1361  	 * Time slack values; these are used to round up poll() and
1362  	 * select() etc timeout values. These are in nanoseconds.
1363  	 */
1364  	u64				timer_slack_ns;
1365  	u64				default_timer_slack_ns;
1366  
1367  #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1368  	unsigned int			kasan_depth;
1369  #endif
1370  
1371  #ifdef CONFIG_KCSAN
1372  	struct kcsan_ctx		kcsan_ctx;
1373  #ifdef CONFIG_TRACE_IRQFLAGS
1374  	struct irqtrace_events		kcsan_save_irqtrace;
1375  #endif
1376  #ifdef CONFIG_KCSAN_WEAK_MEMORY
1377  	int				kcsan_stack_depth;
1378  #endif
1379  #endif
1380  
1381  #ifdef CONFIG_KMSAN
1382  	struct kmsan_ctx		kmsan_ctx;
1383  #endif
1384  
1385  #if IS_ENABLED(CONFIG_KUNIT)
1386  	struct kunit			*kunit_test;
1387  #endif
1388  
1389  #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1390  	/* Index of current stored address in ret_stack: */
1391  	int				curr_ret_stack;
1392  	int				curr_ret_depth;
1393  
1394  	/* Stack of return addresses for return function tracing: */
1395  	struct ftrace_ret_stack		*ret_stack;
1396  
1397  	/* Timestamp for last schedule: */
1398  	unsigned long long		ftrace_timestamp;
1399  
1400  	/*
1401  	 * Number of functions that haven't been traced
1402  	 * because of depth overrun:
1403  	 */
1404  	atomic_t			trace_overrun;
1405  
1406  	/* Pause tracing: */
1407  	atomic_t			tracing_graph_pause;
1408  #endif
1409  
1410  #ifdef CONFIG_TRACING
1411  	/* Bitmask and counter of trace recursion: */
1412  	unsigned long			trace_recursion;
1413  #endif /* CONFIG_TRACING */
1414  
1415  #ifdef CONFIG_KCOV
1416  	/* See kernel/kcov.c for more details. */
1417  
1418  	/* Coverage collection mode enabled for this task (0 if disabled): */
1419  	unsigned int			kcov_mode;
1420  
1421  	/* Size of the kcov_area: */
1422  	unsigned int			kcov_size;
1423  
1424  	/* Buffer for coverage collection: */
1425  	void				*kcov_area;
1426  
1427  	/* KCOV descriptor wired with this task or NULL: */
1428  	struct kcov			*kcov;
1429  
1430  	/* KCOV common handle for remote coverage collection: */
1431  	u64				kcov_handle;
1432  
1433  	/* KCOV sequence number: */
1434  	int				kcov_sequence;
1435  
1436  	/* Collect coverage from softirq context: */
1437  	unsigned int			kcov_softirq;
1438  #endif
1439  
1440  #ifdef CONFIG_MEMCG
1441  	struct mem_cgroup		*memcg_in_oom;
1442  	gfp_t				memcg_oom_gfp_mask;
1443  	int				memcg_oom_order;
1444  
1445  	/* Number of pages to reclaim on returning to userland: */
1446  	unsigned int			memcg_nr_pages_over_high;
1447  
1448  	/* Used by memcontrol for targeted memcg charge: */
1449  	struct mem_cgroup		*active_memcg;
1450  #endif
1451  
1452  #ifdef CONFIG_BLK_CGROUP
1453  	struct gendisk			*throttle_disk;
1454  #endif
1455  
1456  #ifdef CONFIG_UPROBES
1457  	struct uprobe_task		*utask;
1458  #endif
1459  #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1460  	unsigned int			sequential_io;
1461  	unsigned int			sequential_io_avg;
1462  #endif
1463  	struct kmap_ctrl		kmap_ctrl;
1464  #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1465  	unsigned long			task_state_change;
1466  # ifdef CONFIG_PREEMPT_RT
1467  	unsigned long			saved_state_change;
1468  # endif
1469  #endif
1470  	struct rcu_head			rcu;
1471  	refcount_t			rcu_users;
1472  	int				pagefault_disabled;
1473  #ifdef CONFIG_MMU
1474  	struct task_struct		*oom_reaper_list;
1475  	struct timer_list		oom_reaper_timer;
1476  #endif
1477  #ifdef CONFIG_VMAP_STACK
1478  	struct vm_struct		*stack_vm_area;
1479  #endif
1480  #ifdef CONFIG_THREAD_INFO_IN_TASK
1481  	/* A live task holds one reference: */
1482  	refcount_t			stack_refcount;
1483  #endif
1484  #ifdef CONFIG_LIVEPATCH
1485  	int patch_state;
1486  #endif
1487  #ifdef CONFIG_SECURITY
1488  	/* Used by LSM modules for access restriction: */
1489  	void				*security;
1490  #endif
1491  #ifdef CONFIG_BPF_SYSCALL
1492  	/* Used by BPF task local storage */
1493  	struct bpf_local_storage __rcu	*bpf_storage;
1494  	/* Used for BPF run context */
1495  	struct bpf_run_ctx		*bpf_ctx;
1496  #endif
1497  
1498  #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1499  	unsigned long			lowest_stack;
1500  	unsigned long			prev_lowest_stack;
1501  #endif
1502  
1503  #ifdef CONFIG_X86_MCE
1504  	void __user			*mce_vaddr;
1505  	__u64				mce_kflags;
1506  	u64				mce_addr;
1507  	__u64				mce_ripv : 1,
1508  					mce_whole_page : 1,
1509  					__mce_reserved : 62;
1510  	struct callback_head		mce_kill_me;
1511  	int				mce_count;
1512  #endif
1513  
1514  #ifdef CONFIG_KRETPROBES
1515  	struct llist_head               kretprobe_instances;
1516  #endif
1517  #ifdef CONFIG_RETHOOK
1518  	struct llist_head               rethooks;
1519  #endif
1520  
1521  #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1522  	/*
1523  	 * If L1D flush is supported on mm context switch
1524  	 * then we use this callback head to queue kill work
1525  	 * to kill tasks that are not running on SMT disabled
1526  	 * cores
1527  	 */
1528  	struct callback_head		l1d_flush_kill;
1529  #endif
1530  
1531  #ifdef CONFIG_RV
1532  	/*
1533  	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1534  	 * If we find justification for more monitors, we can think
1535  	 * about adding more or developing a dynamic method. So far,
1536  	 * none of these are justified.
1537  	 */
1538  	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1539  #endif
1540  
1541  #ifdef CONFIG_USER_EVENTS
1542  	struct user_event_mm		*user_event_mm;
1543  #endif
1544  
1545  	/*
1546  	 * New fields for task_struct should be added above here, so that
1547  	 * they are included in the randomized portion of task_struct.
1548  	 */
1549  	randomized_struct_fields_end
1550  
1551  	/* CPU-specific state of this task: */
1552  	struct thread_struct		thread;
1553  
1554  	/*
1555  	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1556  	 * structure.  It *MUST* be at the end of 'task_struct'.
1557  	 *
1558  	 * Do not put anything below here!
1559  	 */
1560  };
1561  
task_pid(struct task_struct * task)1562  static inline struct pid *task_pid(struct task_struct *task)
1563  {
1564  	return task->thread_pid;
1565  }
1566  
1567  /*
1568   * the helpers to get the task's different pids as they are seen
1569   * from various namespaces
1570   *
1571   * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1572   * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1573   *                     current.
1574   * task_xid_nr_ns()  : id seen from the ns specified;
1575   *
1576   * see also pid_nr() etc in include/linux/pid.h
1577   */
1578  pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1579  
task_pid_nr(struct task_struct * tsk)1580  static inline pid_t task_pid_nr(struct task_struct *tsk)
1581  {
1582  	return tsk->pid;
1583  }
1584  
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1585  static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1586  {
1587  	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1588  }
1589  
task_pid_vnr(struct task_struct * tsk)1590  static inline pid_t task_pid_vnr(struct task_struct *tsk)
1591  {
1592  	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1593  }
1594  
1595  
task_tgid_nr(struct task_struct * tsk)1596  static inline pid_t task_tgid_nr(struct task_struct *tsk)
1597  {
1598  	return tsk->tgid;
1599  }
1600  
1601  /**
1602   * pid_alive - check that a task structure is not stale
1603   * @p: Task structure to be checked.
1604   *
1605   * Test if a process is not yet dead (at most zombie state)
1606   * If pid_alive fails, then pointers within the task structure
1607   * can be stale and must not be dereferenced.
1608   *
1609   * Return: 1 if the process is alive. 0 otherwise.
1610   */
pid_alive(const struct task_struct * p)1611  static inline int pid_alive(const struct task_struct *p)
1612  {
1613  	return p->thread_pid != NULL;
1614  }
1615  
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1616  static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1617  {
1618  	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1619  }
1620  
task_pgrp_vnr(struct task_struct * tsk)1621  static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1622  {
1623  	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1624  }
1625  
1626  
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1627  static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1628  {
1629  	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1630  }
1631  
task_session_vnr(struct task_struct * tsk)1632  static inline pid_t task_session_vnr(struct task_struct *tsk)
1633  {
1634  	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1635  }
1636  
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1637  static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1638  {
1639  	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1640  }
1641  
task_tgid_vnr(struct task_struct * tsk)1642  static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1643  {
1644  	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1645  }
1646  
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1647  static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1648  {
1649  	pid_t pid = 0;
1650  
1651  	rcu_read_lock();
1652  	if (pid_alive(tsk))
1653  		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1654  	rcu_read_unlock();
1655  
1656  	return pid;
1657  }
1658  
task_ppid_nr(const struct task_struct * tsk)1659  static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1660  {
1661  	return task_ppid_nr_ns(tsk, &init_pid_ns);
1662  }
1663  
1664  /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1665  static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1666  {
1667  	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1668  }
1669  
1670  #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1671  #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1672  
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1673  static inline unsigned int __task_state_index(unsigned int tsk_state,
1674  					      unsigned int tsk_exit_state)
1675  {
1676  	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1677  
1678  	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1679  
1680  	if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1681  		state = TASK_REPORT_IDLE;
1682  
1683  	/*
1684  	 * We're lying here, but rather than expose a completely new task state
1685  	 * to userspace, we can make this appear as if the task has gone through
1686  	 * a regular rt_mutex_lock() call.
1687  	 * Report frozen tasks as uninterruptible.
1688  	 */
1689  	if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1690  		state = TASK_UNINTERRUPTIBLE;
1691  
1692  	return fls(state);
1693  }
1694  
task_state_index(struct task_struct * tsk)1695  static inline unsigned int task_state_index(struct task_struct *tsk)
1696  {
1697  	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1698  }
1699  
task_index_to_char(unsigned int state)1700  static inline char task_index_to_char(unsigned int state)
1701  {
1702  	static const char state_char[] = "RSDTtXZPI";
1703  
1704  	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1705  
1706  	return state_char[state];
1707  }
1708  
task_state_to_char(struct task_struct * tsk)1709  static inline char task_state_to_char(struct task_struct *tsk)
1710  {
1711  	return task_index_to_char(task_state_index(tsk));
1712  }
1713  
1714  /**
1715   * is_global_init - check if a task structure is init. Since init
1716   * is free to have sub-threads we need to check tgid.
1717   * @tsk: Task structure to be checked.
1718   *
1719   * Check if a task structure is the first user space task the kernel created.
1720   *
1721   * Return: 1 if the task structure is init. 0 otherwise.
1722   */
is_global_init(struct task_struct * tsk)1723  static inline int is_global_init(struct task_struct *tsk)
1724  {
1725  	return task_tgid_nr(tsk) == 1;
1726  }
1727  
1728  extern struct pid *cad_pid;
1729  
1730  /*
1731   * Per process flags
1732   */
1733  #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1734  #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1735  #define PF_EXITING		0x00000004	/* Getting shut down */
1736  #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1737  #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1738  #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1739  #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1740  #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1741  #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1742  #define PF_DUMPCORE		0x00000200	/* Dumped core */
1743  #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1744  #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1745  #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1746  #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1747  #define PF_USER_WORKER		0x00004000	/* Kernel thread cloned from userspace thread */
1748  #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1749  #define PF_KCOMPACTD		0x00010000	/* I am kcompactd */
1750  #define PF_KSWAPD		0x00020000	/* I am kswapd */
1751  #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1752  #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1753  #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1754  						 * I am cleaning dirty pages from some other bdi. */
1755  #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1756  #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1757  #define PF__HOLE__00800000	0x00800000
1758  #define PF__HOLE__01000000	0x01000000
1759  #define PF__HOLE__02000000	0x02000000
1760  #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1761  #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1762  #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1763  #define PF__HOLE__20000000	0x20000000
1764  #define PF__HOLE__40000000	0x40000000
1765  #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1766  
1767  /*
1768   * Only the _current_ task can read/write to tsk->flags, but other
1769   * tasks can access tsk->flags in readonly mode for example
1770   * with tsk_used_math (like during threaded core dumping).
1771   * There is however an exception to this rule during ptrace
1772   * or during fork: the ptracer task is allowed to write to the
1773   * child->flags of its traced child (same goes for fork, the parent
1774   * can write to the child->flags), because we're guaranteed the
1775   * child is not running and in turn not changing child->flags
1776   * at the same time the parent does it.
1777   */
1778  #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1779  #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1780  #define clear_used_math()			clear_stopped_child_used_math(current)
1781  #define set_used_math()				set_stopped_child_used_math(current)
1782  
1783  #define conditional_stopped_child_used_math(condition, child) \
1784  	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1785  
1786  #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1787  
1788  #define copy_to_stopped_child_used_math(child) \
1789  	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1790  
1791  /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1792  #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1793  #define used_math()				tsk_used_math(current)
1794  
is_percpu_thread(void)1795  static __always_inline bool is_percpu_thread(void)
1796  {
1797  #ifdef CONFIG_SMP
1798  	return (current->flags & PF_NO_SETAFFINITY) &&
1799  		(current->nr_cpus_allowed  == 1);
1800  #else
1801  	return true;
1802  #endif
1803  }
1804  
1805  /* Per-process atomic flags. */
1806  #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1807  #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1808  #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1809  #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1810  #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1811  #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1812  #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1813  #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1814  
1815  #define TASK_PFA_TEST(name, func)					\
1816  	static inline bool task_##func(struct task_struct *p)		\
1817  	{ return test_bit(PFA_##name, &p->atomic_flags); }
1818  
1819  #define TASK_PFA_SET(name, func)					\
1820  	static inline void task_set_##func(struct task_struct *p)	\
1821  	{ set_bit(PFA_##name, &p->atomic_flags); }
1822  
1823  #define TASK_PFA_CLEAR(name, func)					\
1824  	static inline void task_clear_##func(struct task_struct *p)	\
1825  	{ clear_bit(PFA_##name, &p->atomic_flags); }
1826  
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1827  TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1828  TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1829  
1830  TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1831  TASK_PFA_SET(SPREAD_PAGE, spread_page)
1832  TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1833  
1834  TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1835  TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1836  TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1837  
1838  TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1839  TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1840  TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1841  
1842  TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1843  TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1844  TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1845  
1846  TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1847  TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1848  
1849  TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1850  TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1851  TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1852  
1853  TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1854  TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1855  
1856  static inline void
1857  current_restore_flags(unsigned long orig_flags, unsigned long flags)
1858  {
1859  	current->flags &= ~flags;
1860  	current->flags |= orig_flags & flags;
1861  }
1862  
1863  extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1864  extern int task_can_attach(struct task_struct *p);
1865  extern int dl_bw_alloc(int cpu, u64 dl_bw);
1866  extern void dl_bw_free(int cpu, u64 dl_bw);
1867  #ifdef CONFIG_SMP
1868  
1869  /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1870  extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1871  
1872  /**
1873   * set_cpus_allowed_ptr - set CPU affinity mask of a task
1874   * @p: the task
1875   * @new_mask: CPU affinity mask
1876   *
1877   * Return: zero if successful, or a negative error code
1878   */
1879  extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1880  extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1881  extern void release_user_cpus_ptr(struct task_struct *p);
1882  extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1883  extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1884  extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1885  #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1886  static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1887  {
1888  }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1889  static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1890  {
1891  	if (!cpumask_test_cpu(0, new_mask))
1892  		return -EINVAL;
1893  	return 0;
1894  }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1895  static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1896  {
1897  	if (src->user_cpus_ptr)
1898  		return -EINVAL;
1899  	return 0;
1900  }
release_user_cpus_ptr(struct task_struct * p)1901  static inline void release_user_cpus_ptr(struct task_struct *p)
1902  {
1903  	WARN_ON(p->user_cpus_ptr);
1904  }
1905  
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1906  static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1907  {
1908  	return 0;
1909  }
1910  #endif
1911  
1912  extern int yield_to(struct task_struct *p, bool preempt);
1913  extern void set_user_nice(struct task_struct *p, long nice);
1914  extern int task_prio(const struct task_struct *p);
1915  
1916  /**
1917   * task_nice - return the nice value of a given task.
1918   * @p: the task in question.
1919   *
1920   * Return: The nice value [ -20 ... 0 ... 19 ].
1921   */
task_nice(const struct task_struct * p)1922  static inline int task_nice(const struct task_struct *p)
1923  {
1924  	return PRIO_TO_NICE((p)->static_prio);
1925  }
1926  
1927  extern int can_nice(const struct task_struct *p, const int nice);
1928  extern int task_curr(const struct task_struct *p);
1929  extern int idle_cpu(int cpu);
1930  extern int available_idle_cpu(int cpu);
1931  extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1932  extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1933  extern void sched_set_fifo(struct task_struct *p);
1934  extern void sched_set_fifo_low(struct task_struct *p);
1935  extern void sched_set_normal(struct task_struct *p, int nice);
1936  extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1937  extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1938  extern struct task_struct *idle_task(int cpu);
1939  
1940  /**
1941   * is_idle_task - is the specified task an idle task?
1942   * @p: the task in question.
1943   *
1944   * Return: 1 if @p is an idle task. 0 otherwise.
1945   */
is_idle_task(const struct task_struct * p)1946  static __always_inline bool is_idle_task(const struct task_struct *p)
1947  {
1948  	return !!(p->flags & PF_IDLE);
1949  }
1950  
1951  extern struct task_struct *curr_task(int cpu);
1952  extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1953  
1954  void yield(void);
1955  
1956  union thread_union {
1957  #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1958  	struct task_struct task;
1959  #endif
1960  #ifndef CONFIG_THREAD_INFO_IN_TASK
1961  	struct thread_info thread_info;
1962  #endif
1963  	unsigned long stack[THREAD_SIZE/sizeof(long)];
1964  };
1965  
1966  #ifndef CONFIG_THREAD_INFO_IN_TASK
1967  extern struct thread_info init_thread_info;
1968  #endif
1969  
1970  extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1971  
1972  #ifdef CONFIG_THREAD_INFO_IN_TASK
1973  # define task_thread_info(task)	(&(task)->thread_info)
1974  #elif !defined(__HAVE_THREAD_FUNCTIONS)
1975  # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1976  #endif
1977  
1978  /*
1979   * find a task by one of its numerical ids
1980   *
1981   * find_task_by_pid_ns():
1982   *      finds a task by its pid in the specified namespace
1983   * find_task_by_vpid():
1984   *      finds a task by its virtual pid
1985   *
1986   * see also find_vpid() etc in include/linux/pid.h
1987   */
1988  
1989  extern struct task_struct *find_task_by_vpid(pid_t nr);
1990  extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1991  
1992  /*
1993   * find a task by its virtual pid and get the task struct
1994   */
1995  extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1996  
1997  extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1998  extern int wake_up_process(struct task_struct *tsk);
1999  extern void wake_up_new_task(struct task_struct *tsk);
2000  
2001  #ifdef CONFIG_SMP
2002  extern void kick_process(struct task_struct *tsk);
2003  #else
kick_process(struct task_struct * tsk)2004  static inline void kick_process(struct task_struct *tsk) { }
2005  #endif
2006  
2007  extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2008  
set_task_comm(struct task_struct * tsk,const char * from)2009  static inline void set_task_comm(struct task_struct *tsk, const char *from)
2010  {
2011  	__set_task_comm(tsk, from, false);
2012  }
2013  
2014  extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2015  #define get_task_comm(buf, tsk) ({			\
2016  	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2017  	__get_task_comm(buf, sizeof(buf), tsk);		\
2018  })
2019  
2020  #ifdef CONFIG_SMP
scheduler_ipi(void)2021  static __always_inline void scheduler_ipi(void)
2022  {
2023  	/*
2024  	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2025  	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2026  	 * this IPI.
2027  	 */
2028  	preempt_fold_need_resched();
2029  }
2030  #else
scheduler_ipi(void)2031  static inline void scheduler_ipi(void) { }
2032  #endif
2033  
2034  extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2035  
2036  /*
2037   * Set thread flags in other task's structures.
2038   * See asm/thread_info.h for TIF_xxxx flags available:
2039   */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2040  static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2041  {
2042  	set_ti_thread_flag(task_thread_info(tsk), flag);
2043  }
2044  
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2045  static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2046  {
2047  	clear_ti_thread_flag(task_thread_info(tsk), flag);
2048  }
2049  
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2050  static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2051  					  bool value)
2052  {
2053  	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2054  }
2055  
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2056  static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2057  {
2058  	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2059  }
2060  
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2061  static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2062  {
2063  	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2064  }
2065  
test_tsk_thread_flag(struct task_struct * tsk,int flag)2066  static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2067  {
2068  	return test_ti_thread_flag(task_thread_info(tsk), flag);
2069  }
2070  
set_tsk_need_resched(struct task_struct * tsk)2071  static inline void set_tsk_need_resched(struct task_struct *tsk)
2072  {
2073  	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2074  }
2075  
clear_tsk_need_resched(struct task_struct * tsk)2076  static inline void clear_tsk_need_resched(struct task_struct *tsk)
2077  {
2078  	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2079  }
2080  
test_tsk_need_resched(struct task_struct * tsk)2081  static inline int test_tsk_need_resched(struct task_struct *tsk)
2082  {
2083  	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2084  }
2085  
2086  /*
2087   * cond_resched() and cond_resched_lock(): latency reduction via
2088   * explicit rescheduling in places that are safe. The return
2089   * value indicates whether a reschedule was done in fact.
2090   * cond_resched_lock() will drop the spinlock before scheduling,
2091   */
2092  #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2093  extern int __cond_resched(void);
2094  
2095  #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2096  
2097  void sched_dynamic_klp_enable(void);
2098  void sched_dynamic_klp_disable(void);
2099  
2100  DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2101  
_cond_resched(void)2102  static __always_inline int _cond_resched(void)
2103  {
2104  	return static_call_mod(cond_resched)();
2105  }
2106  
2107  #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2108  
2109  extern int dynamic_cond_resched(void);
2110  
_cond_resched(void)2111  static __always_inline int _cond_resched(void)
2112  {
2113  	return dynamic_cond_resched();
2114  }
2115  
2116  #else /* !CONFIG_PREEMPTION */
2117  
_cond_resched(void)2118  static inline int _cond_resched(void)
2119  {
2120  	klp_sched_try_switch();
2121  	return __cond_resched();
2122  }
2123  
2124  #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2125  
2126  #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2127  
_cond_resched(void)2128  static inline int _cond_resched(void)
2129  {
2130  	klp_sched_try_switch();
2131  	return 0;
2132  }
2133  
2134  #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2135  
2136  #define cond_resched() ({			\
2137  	__might_resched(__FILE__, __LINE__, 0);	\
2138  	_cond_resched();			\
2139  })
2140  
2141  extern int __cond_resched_lock(spinlock_t *lock);
2142  extern int __cond_resched_rwlock_read(rwlock_t *lock);
2143  extern int __cond_resched_rwlock_write(rwlock_t *lock);
2144  
2145  #define MIGHT_RESCHED_RCU_SHIFT		8
2146  #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2147  
2148  #ifndef CONFIG_PREEMPT_RT
2149  /*
2150   * Non RT kernels have an elevated preempt count due to the held lock,
2151   * but are not allowed to be inside a RCU read side critical section
2152   */
2153  # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2154  #else
2155  /*
2156   * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2157   * cond_resched*lock() has to take that into account because it checks for
2158   * preempt_count() and rcu_preempt_depth().
2159   */
2160  # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2161  	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2162  #endif
2163  
2164  #define cond_resched_lock(lock) ({						\
2165  	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2166  	__cond_resched_lock(lock);						\
2167  })
2168  
2169  #define cond_resched_rwlock_read(lock) ({					\
2170  	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2171  	__cond_resched_rwlock_read(lock);					\
2172  })
2173  
2174  #define cond_resched_rwlock_write(lock) ({					\
2175  	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2176  	__cond_resched_rwlock_write(lock);					\
2177  })
2178  
cond_resched_rcu(void)2179  static inline void cond_resched_rcu(void)
2180  {
2181  #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2182  	rcu_read_unlock();
2183  	cond_resched();
2184  	rcu_read_lock();
2185  #endif
2186  }
2187  
2188  #ifdef CONFIG_PREEMPT_DYNAMIC
2189  
2190  extern bool preempt_model_none(void);
2191  extern bool preempt_model_voluntary(void);
2192  extern bool preempt_model_full(void);
2193  
2194  #else
2195  
preempt_model_none(void)2196  static inline bool preempt_model_none(void)
2197  {
2198  	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2199  }
preempt_model_voluntary(void)2200  static inline bool preempt_model_voluntary(void)
2201  {
2202  	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2203  }
preempt_model_full(void)2204  static inline bool preempt_model_full(void)
2205  {
2206  	return IS_ENABLED(CONFIG_PREEMPT);
2207  }
2208  
2209  #endif
2210  
preempt_model_rt(void)2211  static inline bool preempt_model_rt(void)
2212  {
2213  	return IS_ENABLED(CONFIG_PREEMPT_RT);
2214  }
2215  
2216  /*
2217   * Does the preemption model allow non-cooperative preemption?
2218   *
2219   * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2220   * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2221   * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2222   * PREEMPT_NONE model.
2223   */
preempt_model_preemptible(void)2224  static inline bool preempt_model_preemptible(void)
2225  {
2226  	return preempt_model_full() || preempt_model_rt();
2227  }
2228  
2229  /*
2230   * Does a critical section need to be broken due to another
2231   * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2232   * but a general need for low latency)
2233   */
spin_needbreak(spinlock_t * lock)2234  static inline int spin_needbreak(spinlock_t *lock)
2235  {
2236  #ifdef CONFIG_PREEMPTION
2237  	return spin_is_contended(lock);
2238  #else
2239  	return 0;
2240  #endif
2241  }
2242  
2243  /*
2244   * Check if a rwlock is contended.
2245   * Returns non-zero if there is another task waiting on the rwlock.
2246   * Returns zero if the lock is not contended or the system / underlying
2247   * rwlock implementation does not support contention detection.
2248   * Technically does not depend on CONFIG_PREEMPTION, but a general need
2249   * for low latency.
2250   */
rwlock_needbreak(rwlock_t * lock)2251  static inline int rwlock_needbreak(rwlock_t *lock)
2252  {
2253  #ifdef CONFIG_PREEMPTION
2254  	return rwlock_is_contended(lock);
2255  #else
2256  	return 0;
2257  #endif
2258  }
2259  
need_resched(void)2260  static __always_inline bool need_resched(void)
2261  {
2262  	return unlikely(tif_need_resched());
2263  }
2264  
2265  /*
2266   * Wrappers for p->thread_info->cpu access. No-op on UP.
2267   */
2268  #ifdef CONFIG_SMP
2269  
task_cpu(const struct task_struct * p)2270  static inline unsigned int task_cpu(const struct task_struct *p)
2271  {
2272  	return READ_ONCE(task_thread_info(p)->cpu);
2273  }
2274  
2275  extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2276  
2277  #else
2278  
task_cpu(const struct task_struct * p)2279  static inline unsigned int task_cpu(const struct task_struct *p)
2280  {
2281  	return 0;
2282  }
2283  
set_task_cpu(struct task_struct * p,unsigned int cpu)2284  static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2285  {
2286  }
2287  
2288  #endif /* CONFIG_SMP */
2289  
2290  extern bool sched_task_on_rq(struct task_struct *p);
2291  extern unsigned long get_wchan(struct task_struct *p);
2292  extern struct task_struct *cpu_curr_snapshot(int cpu);
2293  
2294  /*
2295   * In order to reduce various lock holder preemption latencies provide an
2296   * interface to see if a vCPU is currently running or not.
2297   *
2298   * This allows us to terminate optimistic spin loops and block, analogous to
2299   * the native optimistic spin heuristic of testing if the lock owner task is
2300   * running or not.
2301   */
2302  #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2303  static inline bool vcpu_is_preempted(int cpu)
2304  {
2305  	return false;
2306  }
2307  #endif
2308  
2309  extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2310  extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2311  
2312  #ifndef TASK_SIZE_OF
2313  #define TASK_SIZE_OF(tsk)	TASK_SIZE
2314  #endif
2315  
2316  #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2317  static inline bool owner_on_cpu(struct task_struct *owner)
2318  {
2319  	/*
2320  	 * As lock holder preemption issue, we both skip spinning if
2321  	 * task is not on cpu or its cpu is preempted
2322  	 */
2323  	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2324  }
2325  
2326  /* Returns effective CPU energy utilization, as seen by the scheduler */
2327  unsigned long sched_cpu_util(int cpu);
2328  #endif /* CONFIG_SMP */
2329  
2330  #ifdef CONFIG_RSEQ
2331  
2332  /*
2333   * Map the event mask on the user-space ABI enum rseq_cs_flags
2334   * for direct mask checks.
2335   */
2336  enum rseq_event_mask_bits {
2337  	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2338  	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2339  	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2340  };
2341  
2342  enum rseq_event_mask {
2343  	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2344  	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2345  	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2346  };
2347  
rseq_set_notify_resume(struct task_struct * t)2348  static inline void rseq_set_notify_resume(struct task_struct *t)
2349  {
2350  	if (t->rseq)
2351  		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2352  }
2353  
2354  void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2355  
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2356  static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2357  					     struct pt_regs *regs)
2358  {
2359  	if (current->rseq)
2360  		__rseq_handle_notify_resume(ksig, regs);
2361  }
2362  
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2363  static inline void rseq_signal_deliver(struct ksignal *ksig,
2364  				       struct pt_regs *regs)
2365  {
2366  	preempt_disable();
2367  	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2368  	preempt_enable();
2369  	rseq_handle_notify_resume(ksig, regs);
2370  }
2371  
2372  /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2373  static inline void rseq_preempt(struct task_struct *t)
2374  {
2375  	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2376  	rseq_set_notify_resume(t);
2377  }
2378  
2379  /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2380  static inline void rseq_migrate(struct task_struct *t)
2381  {
2382  	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2383  	rseq_set_notify_resume(t);
2384  }
2385  
2386  /*
2387   * If parent process has a registered restartable sequences area, the
2388   * child inherits. Unregister rseq for a clone with CLONE_VM set.
2389   */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2390  static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2391  {
2392  	if (clone_flags & CLONE_VM) {
2393  		t->rseq = NULL;
2394  		t->rseq_len = 0;
2395  		t->rseq_sig = 0;
2396  		t->rseq_event_mask = 0;
2397  	} else {
2398  		t->rseq = current->rseq;
2399  		t->rseq_len = current->rseq_len;
2400  		t->rseq_sig = current->rseq_sig;
2401  		t->rseq_event_mask = current->rseq_event_mask;
2402  	}
2403  }
2404  
rseq_execve(struct task_struct * t)2405  static inline void rseq_execve(struct task_struct *t)
2406  {
2407  	t->rseq = NULL;
2408  	t->rseq_len = 0;
2409  	t->rseq_sig = 0;
2410  	t->rseq_event_mask = 0;
2411  }
2412  
2413  #else
2414  
rseq_set_notify_resume(struct task_struct * t)2415  static inline void rseq_set_notify_resume(struct task_struct *t)
2416  {
2417  }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2418  static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2419  					     struct pt_regs *regs)
2420  {
2421  }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2422  static inline void rseq_signal_deliver(struct ksignal *ksig,
2423  				       struct pt_regs *regs)
2424  {
2425  }
rseq_preempt(struct task_struct * t)2426  static inline void rseq_preempt(struct task_struct *t)
2427  {
2428  }
rseq_migrate(struct task_struct * t)2429  static inline void rseq_migrate(struct task_struct *t)
2430  {
2431  }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2432  static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2433  {
2434  }
rseq_execve(struct task_struct * t)2435  static inline void rseq_execve(struct task_struct *t)
2436  {
2437  }
2438  
2439  #endif
2440  
2441  #ifdef CONFIG_DEBUG_RSEQ
2442  
2443  void rseq_syscall(struct pt_regs *regs);
2444  
2445  #else
2446  
rseq_syscall(struct pt_regs * regs)2447  static inline void rseq_syscall(struct pt_regs *regs)
2448  {
2449  }
2450  
2451  #endif
2452  
2453  #ifdef CONFIG_SCHED_CORE
2454  extern void sched_core_free(struct task_struct *tsk);
2455  extern void sched_core_fork(struct task_struct *p);
2456  extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2457  				unsigned long uaddr);
2458  extern int sched_core_idle_cpu(int cpu);
2459  #else
sched_core_free(struct task_struct * tsk)2460  static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2461  static inline void sched_core_fork(struct task_struct *p) { }
sched_core_idle_cpu(int cpu)2462  static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2463  #endif
2464  
2465  extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2466  
2467  #endif
2468