1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3
4 #include <linux/bpf_trace.h>
5 #include <net/xdp_sock_drv.h>
6 #include <net/xdp.h>
7 #include "ice.h"
8 #include "ice_base.h"
9 #include "ice_type.h"
10 #include "ice_xsk.h"
11 #include "ice_txrx.h"
12 #include "ice_txrx_lib.h"
13 #include "ice_lib.h"
14
ice_xdp_buf(struct ice_rx_ring * rx_ring,u32 idx)15 static struct xdp_buff **ice_xdp_buf(struct ice_rx_ring *rx_ring, u32 idx)
16 {
17 return &rx_ring->xdp_buf[idx];
18 }
19
20 /**
21 * ice_qp_reset_stats - Resets all stats for rings of given index
22 * @vsi: VSI that contains rings of interest
23 * @q_idx: ring index in array
24 */
ice_qp_reset_stats(struct ice_vsi * vsi,u16 q_idx)25 static void ice_qp_reset_stats(struct ice_vsi *vsi, u16 q_idx)
26 {
27 struct ice_vsi_stats *vsi_stat;
28 struct ice_pf *pf;
29
30 pf = vsi->back;
31 if (!pf->vsi_stats)
32 return;
33
34 vsi_stat = pf->vsi_stats[vsi->idx];
35 if (!vsi_stat)
36 return;
37
38 memset(&vsi_stat->rx_ring_stats[q_idx]->rx_stats, 0,
39 sizeof(vsi_stat->rx_ring_stats[q_idx]->rx_stats));
40 memset(&vsi_stat->tx_ring_stats[q_idx]->stats, 0,
41 sizeof(vsi_stat->tx_ring_stats[q_idx]->stats));
42 if (ice_is_xdp_ena_vsi(vsi))
43 memset(&vsi->xdp_rings[q_idx]->ring_stats->stats, 0,
44 sizeof(vsi->xdp_rings[q_idx]->ring_stats->stats));
45 }
46
47 /**
48 * ice_qp_clean_rings - Cleans all the rings of a given index
49 * @vsi: VSI that contains rings of interest
50 * @q_idx: ring index in array
51 */
ice_qp_clean_rings(struct ice_vsi * vsi,u16 q_idx)52 static void ice_qp_clean_rings(struct ice_vsi *vsi, u16 q_idx)
53 {
54 ice_clean_tx_ring(vsi->tx_rings[q_idx]);
55 if (ice_is_xdp_ena_vsi(vsi))
56 ice_clean_tx_ring(vsi->xdp_rings[q_idx]);
57 ice_clean_rx_ring(vsi->rx_rings[q_idx]);
58 }
59
60 /**
61 * ice_qvec_toggle_napi - Enables/disables NAPI for a given q_vector
62 * @vsi: VSI that has netdev
63 * @q_vector: q_vector that has NAPI context
64 * @enable: true for enable, false for disable
65 */
66 static void
ice_qvec_toggle_napi(struct ice_vsi * vsi,struct ice_q_vector * q_vector,bool enable)67 ice_qvec_toggle_napi(struct ice_vsi *vsi, struct ice_q_vector *q_vector,
68 bool enable)
69 {
70 if (!vsi->netdev || !q_vector)
71 return;
72
73 if (enable)
74 napi_enable(&q_vector->napi);
75 else
76 napi_disable(&q_vector->napi);
77 }
78
79 /**
80 * ice_qvec_dis_irq - Mask off queue interrupt generation on given ring
81 * @vsi: the VSI that contains queue vector being un-configured
82 * @rx_ring: Rx ring that will have its IRQ disabled
83 * @q_vector: queue vector
84 */
85 static void
ice_qvec_dis_irq(struct ice_vsi * vsi,struct ice_rx_ring * rx_ring,struct ice_q_vector * q_vector)86 ice_qvec_dis_irq(struct ice_vsi *vsi, struct ice_rx_ring *rx_ring,
87 struct ice_q_vector *q_vector)
88 {
89 struct ice_pf *pf = vsi->back;
90 struct ice_hw *hw = &pf->hw;
91 u16 reg;
92 u32 val;
93
94 /* QINT_TQCTL is being cleared in ice_vsi_stop_tx_ring, so handle
95 * here only QINT_RQCTL
96 */
97 reg = rx_ring->reg_idx;
98 val = rd32(hw, QINT_RQCTL(reg));
99 val &= ~QINT_RQCTL_CAUSE_ENA_M;
100 wr32(hw, QINT_RQCTL(reg), val);
101
102 if (q_vector) {
103 wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx), 0);
104 ice_flush(hw);
105 synchronize_irq(q_vector->irq.virq);
106 }
107 }
108
109 /**
110 * ice_qvec_cfg_msix - Enable IRQ for given queue vector
111 * @vsi: the VSI that contains queue vector
112 * @q_vector: queue vector
113 */
114 static void
ice_qvec_cfg_msix(struct ice_vsi * vsi,struct ice_q_vector * q_vector)115 ice_qvec_cfg_msix(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
116 {
117 u16 reg_idx = q_vector->reg_idx;
118 struct ice_pf *pf = vsi->back;
119 struct ice_hw *hw = &pf->hw;
120 struct ice_tx_ring *tx_ring;
121 struct ice_rx_ring *rx_ring;
122
123 ice_cfg_itr(hw, q_vector);
124
125 ice_for_each_tx_ring(tx_ring, q_vector->tx)
126 ice_cfg_txq_interrupt(vsi, tx_ring->reg_idx, reg_idx,
127 q_vector->tx.itr_idx);
128
129 ice_for_each_rx_ring(rx_ring, q_vector->rx)
130 ice_cfg_rxq_interrupt(vsi, rx_ring->reg_idx, reg_idx,
131 q_vector->rx.itr_idx);
132
133 ice_flush(hw);
134 }
135
136 /**
137 * ice_qvec_ena_irq - Enable IRQ for given queue vector
138 * @vsi: the VSI that contains queue vector
139 * @q_vector: queue vector
140 */
ice_qvec_ena_irq(struct ice_vsi * vsi,struct ice_q_vector * q_vector)141 static void ice_qvec_ena_irq(struct ice_vsi *vsi, struct ice_q_vector *q_vector)
142 {
143 struct ice_pf *pf = vsi->back;
144 struct ice_hw *hw = &pf->hw;
145
146 ice_irq_dynamic_ena(hw, vsi, q_vector);
147
148 ice_flush(hw);
149 }
150
151 /**
152 * ice_qp_dis - Disables a queue pair
153 * @vsi: VSI of interest
154 * @q_idx: ring index in array
155 *
156 * Returns 0 on success, negative on failure.
157 */
ice_qp_dis(struct ice_vsi * vsi,u16 q_idx)158 static int ice_qp_dis(struct ice_vsi *vsi, u16 q_idx)
159 {
160 struct ice_txq_meta txq_meta = { };
161 struct ice_q_vector *q_vector;
162 struct ice_tx_ring *tx_ring;
163 struct ice_rx_ring *rx_ring;
164 int timeout = 50;
165 int err;
166
167 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
168 return -EINVAL;
169
170 tx_ring = vsi->tx_rings[q_idx];
171 rx_ring = vsi->rx_rings[q_idx];
172 q_vector = rx_ring->q_vector;
173
174 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) {
175 timeout--;
176 if (!timeout)
177 return -EBUSY;
178 usleep_range(1000, 2000);
179 }
180
181 synchronize_net();
182 netif_tx_stop_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
183
184 ice_qvec_dis_irq(vsi, rx_ring, q_vector);
185 ice_qvec_toggle_napi(vsi, q_vector, false);
186
187 ice_fill_txq_meta(vsi, tx_ring, &txq_meta);
188 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, tx_ring, &txq_meta);
189 if (err)
190 return err;
191 if (ice_is_xdp_ena_vsi(vsi)) {
192 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
193
194 memset(&txq_meta, 0, sizeof(txq_meta));
195 ice_fill_txq_meta(vsi, xdp_ring, &txq_meta);
196 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, 0, xdp_ring,
197 &txq_meta);
198 if (err)
199 return err;
200 }
201
202 ice_vsi_ctrl_one_rx_ring(vsi, false, q_idx, false);
203 ice_qp_clean_rings(vsi, q_idx);
204 ice_qp_reset_stats(vsi, q_idx);
205
206 return 0;
207 }
208
209 /**
210 * ice_qp_ena - Enables a queue pair
211 * @vsi: VSI of interest
212 * @q_idx: ring index in array
213 *
214 * Returns 0 on success, negative on failure.
215 */
ice_qp_ena(struct ice_vsi * vsi,u16 q_idx)216 static int ice_qp_ena(struct ice_vsi *vsi, u16 q_idx)
217 {
218 struct ice_aqc_add_tx_qgrp *qg_buf;
219 struct ice_q_vector *q_vector;
220 struct ice_tx_ring *tx_ring;
221 struct ice_rx_ring *rx_ring;
222 u16 size;
223 int err;
224
225 if (q_idx >= vsi->num_rxq || q_idx >= vsi->num_txq)
226 return -EINVAL;
227
228 size = struct_size(qg_buf, txqs, 1);
229 qg_buf = kzalloc(size, GFP_KERNEL);
230 if (!qg_buf)
231 return -ENOMEM;
232
233 qg_buf->num_txqs = 1;
234
235 tx_ring = vsi->tx_rings[q_idx];
236 rx_ring = vsi->rx_rings[q_idx];
237 q_vector = rx_ring->q_vector;
238
239 err = ice_vsi_cfg_txq(vsi, tx_ring, qg_buf);
240 if (err)
241 goto free_buf;
242
243 if (ice_is_xdp_ena_vsi(vsi)) {
244 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_idx];
245
246 memset(qg_buf, 0, size);
247 qg_buf->num_txqs = 1;
248 err = ice_vsi_cfg_txq(vsi, xdp_ring, qg_buf);
249 if (err)
250 goto free_buf;
251 ice_set_ring_xdp(xdp_ring);
252 ice_tx_xsk_pool(vsi, q_idx);
253 }
254
255 err = ice_vsi_cfg_rxq(rx_ring);
256 if (err)
257 goto free_buf;
258
259 ice_qvec_cfg_msix(vsi, q_vector);
260
261 err = ice_vsi_ctrl_one_rx_ring(vsi, true, q_idx, true);
262 if (err)
263 goto free_buf;
264
265 ice_qvec_toggle_napi(vsi, q_vector, true);
266 ice_qvec_ena_irq(vsi, q_vector);
267
268 netif_tx_start_queue(netdev_get_tx_queue(vsi->netdev, q_idx));
269 clear_bit(ICE_CFG_BUSY, vsi->state);
270 free_buf:
271 kfree(qg_buf);
272 return err;
273 }
274
275 /**
276 * ice_xsk_pool_disable - disable a buffer pool region
277 * @vsi: Current VSI
278 * @qid: queue ID
279 *
280 * Returns 0 on success, negative on failure
281 */
ice_xsk_pool_disable(struct ice_vsi * vsi,u16 qid)282 static int ice_xsk_pool_disable(struct ice_vsi *vsi, u16 qid)
283 {
284 struct xsk_buff_pool *pool = xsk_get_pool_from_qid(vsi->netdev, qid);
285
286 if (!pool)
287 return -EINVAL;
288
289 xsk_pool_dma_unmap(pool, ICE_RX_DMA_ATTR);
290
291 return 0;
292 }
293
294 /**
295 * ice_xsk_pool_enable - enable a buffer pool region
296 * @vsi: Current VSI
297 * @pool: pointer to a requested buffer pool region
298 * @qid: queue ID
299 *
300 * Returns 0 on success, negative on failure
301 */
302 static int
ice_xsk_pool_enable(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)303 ice_xsk_pool_enable(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
304 {
305 int err;
306
307 if (vsi->type != ICE_VSI_PF)
308 return -EINVAL;
309
310 if (qid >= vsi->netdev->real_num_rx_queues ||
311 qid >= vsi->netdev->real_num_tx_queues)
312 return -EINVAL;
313
314 err = xsk_pool_dma_map(pool, ice_pf_to_dev(vsi->back),
315 ICE_RX_DMA_ATTR);
316 if (err)
317 return err;
318
319 return 0;
320 }
321
322 /**
323 * ice_realloc_rx_xdp_bufs - reallocate for either XSK or normal buffer
324 * @rx_ring: Rx ring
325 * @pool_present: is pool for XSK present
326 *
327 * Try allocating memory and return ENOMEM, if failed to allocate.
328 * If allocation was successful, substitute buffer with allocated one.
329 * Returns 0 on success, negative on failure
330 */
331 static int
ice_realloc_rx_xdp_bufs(struct ice_rx_ring * rx_ring,bool pool_present)332 ice_realloc_rx_xdp_bufs(struct ice_rx_ring *rx_ring, bool pool_present)
333 {
334 size_t elem_size = pool_present ? sizeof(*rx_ring->xdp_buf) :
335 sizeof(*rx_ring->rx_buf);
336 void *sw_ring = kcalloc(rx_ring->count, elem_size, GFP_KERNEL);
337
338 if (!sw_ring)
339 return -ENOMEM;
340
341 if (pool_present) {
342 kfree(rx_ring->rx_buf);
343 rx_ring->rx_buf = NULL;
344 rx_ring->xdp_buf = sw_ring;
345 } else {
346 kfree(rx_ring->xdp_buf);
347 rx_ring->xdp_buf = NULL;
348 rx_ring->rx_buf = sw_ring;
349 }
350
351 return 0;
352 }
353
354 /**
355 * ice_realloc_zc_buf - reallocate XDP ZC queue pairs
356 * @vsi: Current VSI
357 * @zc: is zero copy set
358 *
359 * Reallocate buffer for rx_rings that might be used by XSK.
360 * XDP requires more memory, than rx_buf provides.
361 * Returns 0 on success, negative on failure
362 */
ice_realloc_zc_buf(struct ice_vsi * vsi,bool zc)363 int ice_realloc_zc_buf(struct ice_vsi *vsi, bool zc)
364 {
365 struct ice_rx_ring *rx_ring;
366 uint i;
367
368 ice_for_each_rxq(vsi, i) {
369 rx_ring = vsi->rx_rings[i];
370 if (!rx_ring->xsk_pool)
371 continue;
372
373 if (ice_realloc_rx_xdp_bufs(rx_ring, zc))
374 return -ENOMEM;
375 }
376
377 return 0;
378 }
379
380 /**
381 * ice_xsk_pool_setup - enable/disable a buffer pool region depending on its state
382 * @vsi: Current VSI
383 * @pool: buffer pool to enable/associate to a ring, NULL to disable
384 * @qid: queue ID
385 *
386 * Returns 0 on success, negative on failure
387 */
ice_xsk_pool_setup(struct ice_vsi * vsi,struct xsk_buff_pool * pool,u16 qid)388 int ice_xsk_pool_setup(struct ice_vsi *vsi, struct xsk_buff_pool *pool, u16 qid)
389 {
390 bool if_running, pool_present = !!pool;
391 int ret = 0, pool_failure = 0;
392
393 if (qid >= vsi->num_rxq || qid >= vsi->num_txq) {
394 netdev_err(vsi->netdev, "Please use queue id in scope of combined queues count\n");
395 pool_failure = -EINVAL;
396 goto failure;
397 }
398
399 if_running = !test_bit(ICE_VSI_DOWN, vsi->state) &&
400 ice_is_xdp_ena_vsi(vsi);
401
402 if (if_running) {
403 struct ice_rx_ring *rx_ring = vsi->rx_rings[qid];
404
405 ret = ice_qp_dis(vsi, qid);
406 if (ret) {
407 netdev_err(vsi->netdev, "ice_qp_dis error = %d\n", ret);
408 goto xsk_pool_if_up;
409 }
410
411 ret = ice_realloc_rx_xdp_bufs(rx_ring, pool_present);
412 if (ret)
413 goto xsk_pool_if_up;
414 }
415
416 pool_failure = pool_present ? ice_xsk_pool_enable(vsi, pool, qid) :
417 ice_xsk_pool_disable(vsi, qid);
418
419 xsk_pool_if_up:
420 if (if_running) {
421 ret = ice_qp_ena(vsi, qid);
422 if (!ret && pool_present)
423 napi_schedule(&vsi->rx_rings[qid]->xdp_ring->q_vector->napi);
424 else if (ret)
425 netdev_err(vsi->netdev, "ice_qp_ena error = %d\n", ret);
426 }
427
428 failure:
429 if (pool_failure) {
430 netdev_err(vsi->netdev, "Could not %sable buffer pool, error = %d\n",
431 pool_present ? "en" : "dis", pool_failure);
432 return pool_failure;
433 }
434
435 return ret;
436 }
437
438 /**
439 * ice_fill_rx_descs - pick buffers from XSK buffer pool and use it
440 * @pool: XSK Buffer pool to pull the buffers from
441 * @xdp: SW ring of xdp_buff that will hold the buffers
442 * @rx_desc: Pointer to Rx descriptors that will be filled
443 * @count: The number of buffers to allocate
444 *
445 * This function allocates a number of Rx buffers from the fill ring
446 * or the internal recycle mechanism and places them on the Rx ring.
447 *
448 * Note that ring wrap should be handled by caller of this function.
449 *
450 * Returns the amount of allocated Rx descriptors
451 */
ice_fill_rx_descs(struct xsk_buff_pool * pool,struct xdp_buff ** xdp,union ice_32b_rx_flex_desc * rx_desc,u16 count)452 static u16 ice_fill_rx_descs(struct xsk_buff_pool *pool, struct xdp_buff **xdp,
453 union ice_32b_rx_flex_desc *rx_desc, u16 count)
454 {
455 dma_addr_t dma;
456 u16 buffs;
457 int i;
458
459 buffs = xsk_buff_alloc_batch(pool, xdp, count);
460 for (i = 0; i < buffs; i++) {
461 dma = xsk_buff_xdp_get_dma(*xdp);
462 rx_desc->read.pkt_addr = cpu_to_le64(dma);
463 rx_desc->wb.status_error0 = 0;
464
465 rx_desc++;
466 xdp++;
467 }
468
469 return buffs;
470 }
471
472 /**
473 * __ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
474 * @rx_ring: Rx ring
475 * @count: The number of buffers to allocate
476 *
477 * Place the @count of descriptors onto Rx ring. Handle the ring wrap
478 * for case where space from next_to_use up to the end of ring is less
479 * than @count. Finally do a tail bump.
480 *
481 * Returns true if all allocations were successful, false if any fail.
482 */
__ice_alloc_rx_bufs_zc(struct ice_rx_ring * rx_ring,u16 count)483 static bool __ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
484 {
485 u32 nb_buffs_extra = 0, nb_buffs = 0;
486 union ice_32b_rx_flex_desc *rx_desc;
487 u16 ntu = rx_ring->next_to_use;
488 u16 total_count = count;
489 struct xdp_buff **xdp;
490
491 rx_desc = ICE_RX_DESC(rx_ring, ntu);
492 xdp = ice_xdp_buf(rx_ring, ntu);
493
494 if (ntu + count >= rx_ring->count) {
495 nb_buffs_extra = ice_fill_rx_descs(rx_ring->xsk_pool, xdp,
496 rx_desc,
497 rx_ring->count - ntu);
498 if (nb_buffs_extra != rx_ring->count - ntu) {
499 ntu += nb_buffs_extra;
500 goto exit;
501 }
502 rx_desc = ICE_RX_DESC(rx_ring, 0);
503 xdp = ice_xdp_buf(rx_ring, 0);
504 ntu = 0;
505 count -= nb_buffs_extra;
506 ice_release_rx_desc(rx_ring, 0);
507 }
508
509 nb_buffs = ice_fill_rx_descs(rx_ring->xsk_pool, xdp, rx_desc, count);
510
511 ntu += nb_buffs;
512 if (ntu == rx_ring->count)
513 ntu = 0;
514
515 exit:
516 if (rx_ring->next_to_use != ntu)
517 ice_release_rx_desc(rx_ring, ntu);
518
519 return total_count == (nb_buffs_extra + nb_buffs);
520 }
521
522 /**
523 * ice_alloc_rx_bufs_zc - allocate a number of Rx buffers
524 * @rx_ring: Rx ring
525 * @count: The number of buffers to allocate
526 *
527 * Wrapper for internal allocation routine; figure out how many tail
528 * bumps should take place based on the given threshold
529 *
530 * Returns true if all calls to internal alloc routine succeeded
531 */
ice_alloc_rx_bufs_zc(struct ice_rx_ring * rx_ring,u16 count)532 bool ice_alloc_rx_bufs_zc(struct ice_rx_ring *rx_ring, u16 count)
533 {
534 u16 rx_thresh = ICE_RING_QUARTER(rx_ring);
535 u16 leftover, i, tail_bumps;
536
537 tail_bumps = count / rx_thresh;
538 leftover = count - (tail_bumps * rx_thresh);
539
540 for (i = 0; i < tail_bumps; i++)
541 if (!__ice_alloc_rx_bufs_zc(rx_ring, rx_thresh))
542 return false;
543 return __ice_alloc_rx_bufs_zc(rx_ring, leftover);
544 }
545
546 /**
547 * ice_construct_skb_zc - Create an sk_buff from zero-copy buffer
548 * @rx_ring: Rx ring
549 * @xdp: Pointer to XDP buffer
550 *
551 * This function allocates a new skb from a zero-copy Rx buffer.
552 *
553 * Returns the skb on success, NULL on failure.
554 */
555 static struct sk_buff *
ice_construct_skb_zc(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp)556 ice_construct_skb_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp)
557 {
558 unsigned int totalsize = xdp->data_end - xdp->data_meta;
559 unsigned int metasize = xdp->data - xdp->data_meta;
560 struct skb_shared_info *sinfo = NULL;
561 struct sk_buff *skb;
562 u32 nr_frags = 0;
563
564 if (unlikely(xdp_buff_has_frags(xdp))) {
565 sinfo = xdp_get_shared_info_from_buff(xdp);
566 nr_frags = sinfo->nr_frags;
567 }
568 net_prefetch(xdp->data_meta);
569
570 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, totalsize,
571 GFP_ATOMIC | __GFP_NOWARN);
572 if (unlikely(!skb))
573 return NULL;
574
575 memcpy(__skb_put(skb, totalsize), xdp->data_meta,
576 ALIGN(totalsize, sizeof(long)));
577
578 if (metasize) {
579 skb_metadata_set(skb, metasize);
580 __skb_pull(skb, metasize);
581 }
582
583 if (likely(!xdp_buff_has_frags(xdp)))
584 goto out;
585
586 for (int i = 0; i < nr_frags; i++) {
587 struct skb_shared_info *skinfo = skb_shinfo(skb);
588 skb_frag_t *frag = &sinfo->frags[i];
589 struct page *page;
590 void *addr;
591
592 page = dev_alloc_page();
593 if (!page) {
594 dev_kfree_skb(skb);
595 return NULL;
596 }
597 addr = page_to_virt(page);
598
599 memcpy(addr, skb_frag_page(frag), skb_frag_size(frag));
600
601 __skb_fill_page_desc_noacc(skinfo, skinfo->nr_frags++,
602 addr, 0, skb_frag_size(frag));
603 }
604
605 out:
606 xsk_buff_free(xdp);
607 return skb;
608 }
609
610 /**
611 * ice_clean_xdp_irq_zc - produce AF_XDP descriptors to CQ
612 * @xdp_ring: XDP Tx ring
613 */
ice_clean_xdp_irq_zc(struct ice_tx_ring * xdp_ring)614 static u32 ice_clean_xdp_irq_zc(struct ice_tx_ring *xdp_ring)
615 {
616 u16 ntc = xdp_ring->next_to_clean;
617 struct ice_tx_desc *tx_desc;
618 u16 cnt = xdp_ring->count;
619 struct ice_tx_buf *tx_buf;
620 u16 completed_frames = 0;
621 u16 xsk_frames = 0;
622 u16 last_rs;
623 int i;
624
625 last_rs = xdp_ring->next_to_use ? xdp_ring->next_to_use - 1 : cnt - 1;
626 tx_desc = ICE_TX_DESC(xdp_ring, last_rs);
627 if (tx_desc->cmd_type_offset_bsz &
628 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
629 if (last_rs >= ntc)
630 completed_frames = last_rs - ntc + 1;
631 else
632 completed_frames = last_rs + cnt - ntc + 1;
633 }
634
635 if (!completed_frames)
636 return 0;
637
638 if (likely(!xdp_ring->xdp_tx_active)) {
639 xsk_frames = completed_frames;
640 goto skip;
641 }
642
643 ntc = xdp_ring->next_to_clean;
644 for (i = 0; i < completed_frames; i++) {
645 tx_buf = &xdp_ring->tx_buf[ntc];
646
647 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
648 tx_buf->type = ICE_TX_BUF_EMPTY;
649 xsk_buff_free(tx_buf->xdp);
650 xdp_ring->xdp_tx_active--;
651 } else {
652 xsk_frames++;
653 }
654
655 ntc++;
656 if (ntc >= xdp_ring->count)
657 ntc = 0;
658 }
659 skip:
660 tx_desc->cmd_type_offset_bsz = 0;
661 xdp_ring->next_to_clean += completed_frames;
662 if (xdp_ring->next_to_clean >= cnt)
663 xdp_ring->next_to_clean -= cnt;
664 if (xsk_frames)
665 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
666
667 return completed_frames;
668 }
669
670 /**
671 * ice_xmit_xdp_tx_zc - AF_XDP ZC handler for XDP_TX
672 * @xdp: XDP buffer to xmit
673 * @xdp_ring: XDP ring to produce descriptor onto
674 *
675 * note that this function works directly on xdp_buff, no need to convert
676 * it to xdp_frame. xdp_buff pointer is stored to ice_tx_buf so that cleaning
677 * side will be able to xsk_buff_free() it.
678 *
679 * Returns ICE_XDP_TX for successfully produced desc, ICE_XDP_CONSUMED if there
680 * was not enough space on XDP ring
681 */
ice_xmit_xdp_tx_zc(struct xdp_buff * xdp,struct ice_tx_ring * xdp_ring)682 static int ice_xmit_xdp_tx_zc(struct xdp_buff *xdp,
683 struct ice_tx_ring *xdp_ring)
684 {
685 struct skb_shared_info *sinfo = NULL;
686 u32 size = xdp->data_end - xdp->data;
687 u32 ntu = xdp_ring->next_to_use;
688 struct ice_tx_desc *tx_desc;
689 struct ice_tx_buf *tx_buf;
690 struct xdp_buff *head;
691 u32 nr_frags = 0;
692 u32 free_space;
693 u32 frag = 0;
694
695 free_space = ICE_DESC_UNUSED(xdp_ring);
696 if (free_space < ICE_RING_QUARTER(xdp_ring))
697 free_space += ice_clean_xdp_irq_zc(xdp_ring);
698
699 if (unlikely(!free_space))
700 goto busy;
701
702 if (unlikely(xdp_buff_has_frags(xdp))) {
703 sinfo = xdp_get_shared_info_from_buff(xdp);
704 nr_frags = sinfo->nr_frags;
705 if (free_space < nr_frags + 1)
706 goto busy;
707 }
708
709 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
710 tx_buf = &xdp_ring->tx_buf[ntu];
711 head = xdp;
712
713 for (;;) {
714 dma_addr_t dma;
715
716 dma = xsk_buff_xdp_get_dma(xdp);
717 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, size);
718
719 tx_buf->xdp = xdp;
720 tx_buf->type = ICE_TX_BUF_XSK_TX;
721 tx_desc->buf_addr = cpu_to_le64(dma);
722 tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
723 /* account for each xdp_buff from xsk_buff_pool */
724 xdp_ring->xdp_tx_active++;
725
726 if (++ntu == xdp_ring->count)
727 ntu = 0;
728
729 if (frag == nr_frags)
730 break;
731
732 tx_desc = ICE_TX_DESC(xdp_ring, ntu);
733 tx_buf = &xdp_ring->tx_buf[ntu];
734
735 xdp = xsk_buff_get_frag(head);
736 size = skb_frag_size(&sinfo->frags[frag]);
737 frag++;
738 }
739
740 xdp_ring->next_to_use = ntu;
741 /* update last descriptor from a frame with EOP */
742 tx_desc->cmd_type_offset_bsz |=
743 cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
744
745 return ICE_XDP_TX;
746
747 busy:
748 xdp_ring->ring_stats->tx_stats.tx_busy++;
749
750 return ICE_XDP_CONSUMED;
751 }
752
753 /**
754 * ice_run_xdp_zc - Executes an XDP program in zero-copy path
755 * @rx_ring: Rx ring
756 * @xdp: xdp_buff used as input to the XDP program
757 * @xdp_prog: XDP program to run
758 * @xdp_ring: ring to be used for XDP_TX action
759 *
760 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
761 */
762 static int
ice_run_xdp_zc(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring)763 ice_run_xdp_zc(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
764 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
765 {
766 int err, result = ICE_XDP_PASS;
767 u32 act;
768
769 act = bpf_prog_run_xdp(xdp_prog, xdp);
770
771 if (likely(act == XDP_REDIRECT)) {
772 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
773 if (!err)
774 return ICE_XDP_REDIR;
775 if (xsk_uses_need_wakeup(rx_ring->xsk_pool) && err == -ENOBUFS)
776 result = ICE_XDP_EXIT;
777 else
778 result = ICE_XDP_CONSUMED;
779 goto out_failure;
780 }
781
782 switch (act) {
783 case XDP_PASS:
784 break;
785 case XDP_TX:
786 result = ice_xmit_xdp_tx_zc(xdp, xdp_ring);
787 if (result == ICE_XDP_CONSUMED)
788 goto out_failure;
789 break;
790 case XDP_DROP:
791 result = ICE_XDP_CONSUMED;
792 break;
793 default:
794 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
795 fallthrough;
796 case XDP_ABORTED:
797 result = ICE_XDP_CONSUMED;
798 out_failure:
799 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
800 break;
801 }
802
803 return result;
804 }
805
806 static int
ice_add_xsk_frag(struct ice_rx_ring * rx_ring,struct xdp_buff * first,struct xdp_buff * xdp,const unsigned int size)807 ice_add_xsk_frag(struct ice_rx_ring *rx_ring, struct xdp_buff *first,
808 struct xdp_buff *xdp, const unsigned int size)
809 {
810 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(first);
811
812 if (!size)
813 return 0;
814
815 if (!xdp_buff_has_frags(first)) {
816 sinfo->nr_frags = 0;
817 sinfo->xdp_frags_size = 0;
818 xdp_buff_set_frags_flag(first);
819 }
820
821 if (unlikely(sinfo->nr_frags == MAX_SKB_FRAGS)) {
822 xsk_buff_free(first);
823 return -ENOMEM;
824 }
825
826 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++,
827 virt_to_page(xdp->data_hard_start),
828 XDP_PACKET_HEADROOM, size);
829 sinfo->xdp_frags_size += size;
830 xsk_buff_add_frag(xdp);
831
832 return 0;
833 }
834
835 /**
836 * ice_clean_rx_irq_zc - consumes packets from the hardware ring
837 * @rx_ring: AF_XDP Rx ring
838 * @budget: NAPI budget
839 *
840 * Returns number of processed packets on success, remaining budget on failure.
841 */
ice_clean_rx_irq_zc(struct ice_rx_ring * rx_ring,int budget)842 int ice_clean_rx_irq_zc(struct ice_rx_ring *rx_ring, int budget)
843 {
844 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
845 struct xsk_buff_pool *xsk_pool = rx_ring->xsk_pool;
846 u32 ntc = rx_ring->next_to_clean;
847 u32 ntu = rx_ring->next_to_use;
848 struct xdp_buff *first = NULL;
849 struct ice_tx_ring *xdp_ring;
850 unsigned int xdp_xmit = 0;
851 struct bpf_prog *xdp_prog;
852 u32 cnt = rx_ring->count;
853 bool failure = false;
854 int entries_to_alloc;
855
856 /* ZC patch is enabled only when XDP program is set,
857 * so here it can not be NULL
858 */
859 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
860 xdp_ring = rx_ring->xdp_ring;
861
862 if (ntc != rx_ring->first_desc)
863 first = *ice_xdp_buf(rx_ring, rx_ring->first_desc);
864
865 while (likely(total_rx_packets < (unsigned int)budget)) {
866 union ice_32b_rx_flex_desc *rx_desc;
867 unsigned int size, xdp_res = 0;
868 struct xdp_buff *xdp;
869 struct sk_buff *skb;
870 u16 stat_err_bits;
871 u16 vlan_tag = 0;
872 u16 rx_ptype;
873
874 rx_desc = ICE_RX_DESC(rx_ring, ntc);
875
876 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
877 if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
878 break;
879
880 /* This memory barrier is needed to keep us from reading
881 * any other fields out of the rx_desc until we have
882 * verified the descriptor has been written back.
883 */
884 dma_rmb();
885
886 if (unlikely(ntc == ntu))
887 break;
888
889 xdp = *ice_xdp_buf(rx_ring, ntc);
890
891 size = le16_to_cpu(rx_desc->wb.pkt_len) &
892 ICE_RX_FLX_DESC_PKT_LEN_M;
893
894 xsk_buff_set_size(xdp, size);
895 xsk_buff_dma_sync_for_cpu(xdp, xsk_pool);
896
897 if (!first) {
898 first = xdp;
899 } else if (ice_add_xsk_frag(rx_ring, first, xdp, size)) {
900 break;
901 }
902
903 if (++ntc == cnt)
904 ntc = 0;
905
906 if (ice_is_non_eop(rx_ring, rx_desc))
907 continue;
908
909 xdp_res = ice_run_xdp_zc(rx_ring, first, xdp_prog, xdp_ring);
910 if (likely(xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR))) {
911 xdp_xmit |= xdp_res;
912 } else if (xdp_res == ICE_XDP_EXIT) {
913 failure = true;
914 first = NULL;
915 rx_ring->first_desc = ntc;
916 break;
917 } else if (xdp_res == ICE_XDP_CONSUMED) {
918 xsk_buff_free(first);
919 } else if (xdp_res == ICE_XDP_PASS) {
920 goto construct_skb;
921 }
922
923 total_rx_bytes += xdp_get_buff_len(first);
924 total_rx_packets++;
925
926 first = NULL;
927 rx_ring->first_desc = ntc;
928 continue;
929
930 construct_skb:
931 /* XDP_PASS path */
932 skb = ice_construct_skb_zc(rx_ring, first);
933 if (!skb) {
934 rx_ring->ring_stats->rx_stats.alloc_buf_failed++;
935 break;
936 }
937
938 first = NULL;
939 rx_ring->first_desc = ntc;
940
941 if (eth_skb_pad(skb)) {
942 skb = NULL;
943 continue;
944 }
945
946 total_rx_bytes += skb->len;
947 total_rx_packets++;
948
949 vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
950
951 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
952 ICE_RX_FLEX_DESC_PTYPE_M;
953
954 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
955 ice_receive_skb(rx_ring, skb, vlan_tag);
956 }
957
958 rx_ring->next_to_clean = ntc;
959 entries_to_alloc = ICE_RX_DESC_UNUSED(rx_ring);
960 if (entries_to_alloc > ICE_RING_QUARTER(rx_ring))
961 failure |= !ice_alloc_rx_bufs_zc(rx_ring, entries_to_alloc);
962
963 ice_finalize_xdp_rx(xdp_ring, xdp_xmit, 0);
964 ice_update_rx_ring_stats(rx_ring, total_rx_packets, total_rx_bytes);
965
966 if (xsk_uses_need_wakeup(xsk_pool)) {
967 /* ntu could have changed when allocating entries above, so
968 * use rx_ring value instead of stack based one
969 */
970 if (failure || ntc == rx_ring->next_to_use)
971 xsk_set_rx_need_wakeup(xsk_pool);
972 else
973 xsk_clear_rx_need_wakeup(xsk_pool);
974
975 return (int)total_rx_packets;
976 }
977
978 return failure ? budget : (int)total_rx_packets;
979 }
980
981 /**
982 * ice_xmit_pkt - produce a single HW Tx descriptor out of AF_XDP descriptor
983 * @xdp_ring: XDP ring to produce the HW Tx descriptor on
984 * @desc: AF_XDP descriptor to pull the DMA address and length from
985 * @total_bytes: bytes accumulator that will be used for stats update
986 */
ice_xmit_pkt(struct ice_tx_ring * xdp_ring,struct xdp_desc * desc,unsigned int * total_bytes)987 static void ice_xmit_pkt(struct ice_tx_ring *xdp_ring, struct xdp_desc *desc,
988 unsigned int *total_bytes)
989 {
990 struct ice_tx_desc *tx_desc;
991 dma_addr_t dma;
992
993 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, desc->addr);
994 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, desc->len);
995
996 tx_desc = ICE_TX_DESC(xdp_ring, xdp_ring->next_to_use++);
997 tx_desc->buf_addr = cpu_to_le64(dma);
998 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(desc),
999 0, desc->len, 0);
1000
1001 *total_bytes += desc->len;
1002 }
1003
1004 /**
1005 * ice_xmit_pkt_batch - produce a batch of HW Tx descriptors out of AF_XDP descriptors
1006 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1007 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1008 * @total_bytes: bytes accumulator that will be used for stats update
1009 */
ice_xmit_pkt_batch(struct ice_tx_ring * xdp_ring,struct xdp_desc * descs,unsigned int * total_bytes)1010 static void ice_xmit_pkt_batch(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1011 unsigned int *total_bytes)
1012 {
1013 u16 ntu = xdp_ring->next_to_use;
1014 struct ice_tx_desc *tx_desc;
1015 u32 i;
1016
1017 loop_unrolled_for(i = 0; i < PKTS_PER_BATCH; i++) {
1018 dma_addr_t dma;
1019
1020 dma = xsk_buff_raw_get_dma(xdp_ring->xsk_pool, descs[i].addr);
1021 xsk_buff_raw_dma_sync_for_device(xdp_ring->xsk_pool, dma, descs[i].len);
1022
1023 tx_desc = ICE_TX_DESC(xdp_ring, ntu++);
1024 tx_desc->buf_addr = cpu_to_le64(dma);
1025 tx_desc->cmd_type_offset_bsz = ice_build_ctob(xsk_is_eop_desc(&descs[i]),
1026 0, descs[i].len, 0);
1027
1028 *total_bytes += descs[i].len;
1029 }
1030
1031 xdp_ring->next_to_use = ntu;
1032 }
1033
1034 /**
1035 * ice_fill_tx_hw_ring - produce the number of Tx descriptors onto ring
1036 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1037 * @descs: AF_XDP descriptors to pull the DMA addresses and lengths from
1038 * @nb_pkts: count of packets to be send
1039 * @total_bytes: bytes accumulator that will be used for stats update
1040 */
ice_fill_tx_hw_ring(struct ice_tx_ring * xdp_ring,struct xdp_desc * descs,u32 nb_pkts,unsigned int * total_bytes)1041 static void ice_fill_tx_hw_ring(struct ice_tx_ring *xdp_ring, struct xdp_desc *descs,
1042 u32 nb_pkts, unsigned int *total_bytes)
1043 {
1044 u32 batched, leftover, i;
1045
1046 batched = ALIGN_DOWN(nb_pkts, PKTS_PER_BATCH);
1047 leftover = nb_pkts & (PKTS_PER_BATCH - 1);
1048 for (i = 0; i < batched; i += PKTS_PER_BATCH)
1049 ice_xmit_pkt_batch(xdp_ring, &descs[i], total_bytes);
1050 for (; i < batched + leftover; i++)
1051 ice_xmit_pkt(xdp_ring, &descs[i], total_bytes);
1052 }
1053
1054 /**
1055 * ice_xmit_zc - take entries from XSK Tx ring and place them onto HW Tx ring
1056 * @xdp_ring: XDP ring to produce the HW Tx descriptors on
1057 *
1058 * Returns true if there is no more work that needs to be done, false otherwise
1059 */
ice_xmit_zc(struct ice_tx_ring * xdp_ring)1060 bool ice_xmit_zc(struct ice_tx_ring *xdp_ring)
1061 {
1062 struct xdp_desc *descs = xdp_ring->xsk_pool->tx_descs;
1063 u32 nb_pkts, nb_processed = 0;
1064 unsigned int total_bytes = 0;
1065 int budget;
1066
1067 ice_clean_xdp_irq_zc(xdp_ring);
1068
1069 if (!netif_carrier_ok(xdp_ring->vsi->netdev) ||
1070 !netif_running(xdp_ring->vsi->netdev))
1071 return true;
1072
1073 budget = ICE_DESC_UNUSED(xdp_ring);
1074 budget = min_t(u16, budget, ICE_RING_QUARTER(xdp_ring));
1075
1076 nb_pkts = xsk_tx_peek_release_desc_batch(xdp_ring->xsk_pool, budget);
1077 if (!nb_pkts)
1078 return true;
1079
1080 if (xdp_ring->next_to_use + nb_pkts >= xdp_ring->count) {
1081 nb_processed = xdp_ring->count - xdp_ring->next_to_use;
1082 ice_fill_tx_hw_ring(xdp_ring, descs, nb_processed, &total_bytes);
1083 xdp_ring->next_to_use = 0;
1084 }
1085
1086 ice_fill_tx_hw_ring(xdp_ring, &descs[nb_processed], nb_pkts - nb_processed,
1087 &total_bytes);
1088
1089 ice_set_rs_bit(xdp_ring);
1090 ice_xdp_ring_update_tail(xdp_ring);
1091 ice_update_tx_ring_stats(xdp_ring, nb_pkts, total_bytes);
1092
1093 if (xsk_uses_need_wakeup(xdp_ring->xsk_pool))
1094 xsk_set_tx_need_wakeup(xdp_ring->xsk_pool);
1095
1096 return nb_pkts < budget;
1097 }
1098
1099 /**
1100 * ice_xsk_wakeup - Implements ndo_xsk_wakeup
1101 * @netdev: net_device
1102 * @queue_id: queue to wake up
1103 * @flags: ignored in our case, since we have Rx and Tx in the same NAPI
1104 *
1105 * Returns negative on error, zero otherwise.
1106 */
1107 int
ice_xsk_wakeup(struct net_device * netdev,u32 queue_id,u32 __always_unused flags)1108 ice_xsk_wakeup(struct net_device *netdev, u32 queue_id,
1109 u32 __always_unused flags)
1110 {
1111 struct ice_netdev_priv *np = netdev_priv(netdev);
1112 struct ice_q_vector *q_vector;
1113 struct ice_vsi *vsi = np->vsi;
1114 struct ice_tx_ring *ring;
1115
1116 if (test_bit(ICE_VSI_DOWN, vsi->state) || !netif_carrier_ok(netdev))
1117 return -ENETDOWN;
1118
1119 if (!ice_is_xdp_ena_vsi(vsi))
1120 return -EINVAL;
1121
1122 if (queue_id >= vsi->num_txq || queue_id >= vsi->num_rxq)
1123 return -EINVAL;
1124
1125 ring = vsi->rx_rings[queue_id]->xdp_ring;
1126
1127 if (!ring->xsk_pool)
1128 return -EINVAL;
1129
1130 /* The idea here is that if NAPI is running, mark a miss, so
1131 * it will run again. If not, trigger an interrupt and
1132 * schedule the NAPI from interrupt context. If NAPI would be
1133 * scheduled here, the interrupt affinity would not be
1134 * honored.
1135 */
1136 q_vector = ring->q_vector;
1137 if (!napi_if_scheduled_mark_missed(&q_vector->napi))
1138 ice_trigger_sw_intr(&vsi->back->hw, q_vector);
1139
1140 return 0;
1141 }
1142
1143 /**
1144 * ice_xsk_any_rx_ring_ena - Checks if Rx rings have AF_XDP buff pool attached
1145 * @vsi: VSI to be checked
1146 *
1147 * Returns true if any of the Rx rings has an AF_XDP buff pool attached
1148 */
ice_xsk_any_rx_ring_ena(struct ice_vsi * vsi)1149 bool ice_xsk_any_rx_ring_ena(struct ice_vsi *vsi)
1150 {
1151 int i;
1152
1153 ice_for_each_rxq(vsi, i) {
1154 if (xsk_get_pool_from_qid(vsi->netdev, i))
1155 return true;
1156 }
1157
1158 return false;
1159 }
1160
1161 /**
1162 * ice_xsk_clean_rx_ring - clean buffer pool queues connected to a given Rx ring
1163 * @rx_ring: ring to be cleaned
1164 */
ice_xsk_clean_rx_ring(struct ice_rx_ring * rx_ring)1165 void ice_xsk_clean_rx_ring(struct ice_rx_ring *rx_ring)
1166 {
1167 u16 ntc = rx_ring->next_to_clean;
1168 u16 ntu = rx_ring->next_to_use;
1169
1170 while (ntc != ntu) {
1171 struct xdp_buff *xdp = *ice_xdp_buf(rx_ring, ntc);
1172
1173 xsk_buff_free(xdp);
1174 ntc++;
1175 if (ntc >= rx_ring->count)
1176 ntc = 0;
1177 }
1178 }
1179
1180 /**
1181 * ice_xsk_clean_xdp_ring - Clean the XDP Tx ring and its buffer pool queues
1182 * @xdp_ring: XDP_Tx ring
1183 */
ice_xsk_clean_xdp_ring(struct ice_tx_ring * xdp_ring)1184 void ice_xsk_clean_xdp_ring(struct ice_tx_ring *xdp_ring)
1185 {
1186 u16 ntc = xdp_ring->next_to_clean, ntu = xdp_ring->next_to_use;
1187 u32 xsk_frames = 0;
1188
1189 while (ntc != ntu) {
1190 struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
1191
1192 if (tx_buf->type == ICE_TX_BUF_XSK_TX) {
1193 tx_buf->type = ICE_TX_BUF_EMPTY;
1194 xsk_buff_free(tx_buf->xdp);
1195 } else {
1196 xsk_frames++;
1197 }
1198
1199 ntc++;
1200 if (ntc >= xdp_ring->count)
1201 ntc = 0;
1202 }
1203
1204 if (xsk_frames)
1205 xsk_tx_completed(xdp_ring->xsk_pool, xsk_frames);
1206 }
1207