xref: /openbmc/linux/include/linux/blk-mq.h (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 
12 struct blk_mq_tags;
13 struct blk_flush_queue;
14 
15 #define BLKDEV_MIN_RQ	4
16 #define BLKDEV_DEFAULT_RQ	128
17 
18 enum rq_end_io_ret {
19 	RQ_END_IO_NONE,
20 	RQ_END_IO_FREE,
21 };
22 
23 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
24 
25 /*
26  * request flags */
27 typedef __u32 __bitwise req_flags_t;
28 
29 /* drive already may have started this one */
30 #define RQF_STARTED		((__force req_flags_t)(1 << 1))
31 /* request for flush sequence */
32 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
33 /* merge of different types, fail separately */
34 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
35 /* track inflight for MQ */
36 #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
37 /* don't call prep for this one */
38 #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
39 /* use hctx->sched_tags */
40 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << 8))
41 /* use an I/O scheduler for this request */
42 #define RQF_USE_SCHED		((__force req_flags_t)(1 << 9))
43 /* vaguely specified driver internal error.  Ignored by the block layer */
44 #define RQF_FAILED		((__force req_flags_t)(1 << 10))
45 /* don't warn about errors */
46 #define RQF_QUIET		((__force req_flags_t)(1 << 11))
47 /* account into disk and partition IO statistics */
48 #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
49 /* runtime pm request */
50 #define RQF_PM			((__force req_flags_t)(1 << 15))
51 /* on IO scheduler merge hash */
52 #define RQF_HASHED		((__force req_flags_t)(1 << 16))
53 /* track IO completion time */
54 #define RQF_STATS		((__force req_flags_t)(1 << 17))
55 /* Look at ->special_vec for the actual data payload instead of the
56    bio chain. */
57 #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
58 /* The per-zone write lock is held for this request */
59 #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
60 /* ->timeout has been called, don't expire again */
61 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
62 #define RQF_RESV		((__force req_flags_t)(1 << 23))
63 
64 /* flags that prevent us from merging requests: */
65 #define RQF_NOMERGE_FLAGS \
66 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
67 
68 enum mq_rq_state {
69 	MQ_RQ_IDLE		= 0,
70 	MQ_RQ_IN_FLIGHT		= 1,
71 	MQ_RQ_COMPLETE		= 2,
72 };
73 
74 /*
75  * Try to put the fields that are referenced together in the same cacheline.
76  *
77  * If you modify this structure, make sure to update blk_rq_init() and
78  * especially blk_mq_rq_ctx_init() to take care of the added fields.
79  */
80 struct request {
81 	struct request_queue *q;
82 	struct blk_mq_ctx *mq_ctx;
83 	struct blk_mq_hw_ctx *mq_hctx;
84 
85 	blk_opf_t cmd_flags;		/* op and common flags */
86 	req_flags_t rq_flags;
87 
88 	int tag;
89 	int internal_tag;
90 
91 	unsigned int timeout;
92 
93 	/* the following two fields are internal, NEVER access directly */
94 	unsigned int __data_len;	/* total data len */
95 	sector_t __sector;		/* sector cursor */
96 
97 	struct bio *bio;
98 	struct bio *biotail;
99 
100 	union {
101 		struct list_head queuelist;
102 		struct request *rq_next;
103 	};
104 
105 	struct block_device *part;
106 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
107 	/* Time that the first bio started allocating this request. */
108 	u64 alloc_time_ns;
109 #endif
110 	/* Time that this request was allocated for this IO. */
111 	u64 start_time_ns;
112 	/* Time that I/O was submitted to the device. */
113 	u64 io_start_time_ns;
114 
115 #ifdef CONFIG_BLK_WBT
116 	unsigned short wbt_flags;
117 #endif
118 	/*
119 	 * rq sectors used for blk stats. It has the same value
120 	 * with blk_rq_sectors(rq), except that it never be zeroed
121 	 * by completion.
122 	 */
123 	unsigned short stats_sectors;
124 
125 	/*
126 	 * Number of scatter-gather DMA addr+len pairs after
127 	 * physical address coalescing is performed.
128 	 */
129 	unsigned short nr_phys_segments;
130 
131 #ifdef CONFIG_BLK_DEV_INTEGRITY
132 	unsigned short nr_integrity_segments;
133 #endif
134 
135 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
136 	struct bio_crypt_ctx *crypt_ctx;
137 	struct blk_crypto_keyslot *crypt_keyslot;
138 #endif
139 
140 	unsigned short ioprio;
141 
142 	enum mq_rq_state state;
143 	atomic_t ref;
144 
145 	unsigned long deadline;
146 
147 	/*
148 	 * The hash is used inside the scheduler, and killed once the
149 	 * request reaches the dispatch list. The ipi_list is only used
150 	 * to queue the request for softirq completion, which is long
151 	 * after the request has been unhashed (and even removed from
152 	 * the dispatch list).
153 	 */
154 	union {
155 		struct hlist_node hash;	/* merge hash */
156 		struct llist_node ipi_list;
157 	};
158 
159 	/*
160 	 * The rb_node is only used inside the io scheduler, requests
161 	 * are pruned when moved to the dispatch queue. special_vec must
162 	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
163 	 * insert into an IO scheduler.
164 	 */
165 	union {
166 		struct rb_node rb_node;	/* sort/lookup */
167 		struct bio_vec special_vec;
168 	};
169 
170 	/*
171 	 * Three pointers are available for the IO schedulers, if they need
172 	 * more they have to dynamically allocate it.
173 	 */
174 	struct {
175 		struct io_cq		*icq;
176 		void			*priv[2];
177 	} elv;
178 
179 	struct {
180 		unsigned int		seq;
181 		rq_end_io_fn		*saved_end_io;
182 	} flush;
183 
184 	u64 fifo_time;
185 
186 	/*
187 	 * completion callback.
188 	 */
189 	rq_end_io_fn *end_io;
190 	void *end_io_data;
191 };
192 
req_op(const struct request * req)193 static inline enum req_op req_op(const struct request *req)
194 {
195 	return req->cmd_flags & REQ_OP_MASK;
196 }
197 
blk_rq_is_passthrough(struct request * rq)198 static inline bool blk_rq_is_passthrough(struct request *rq)
199 {
200 	return blk_op_is_passthrough(rq->cmd_flags);
201 }
202 
req_get_ioprio(struct request * req)203 static inline unsigned short req_get_ioprio(struct request *req)
204 {
205 	return req->ioprio;
206 }
207 
208 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
209 
210 #define rq_dma_dir(rq) \
211 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
212 
213 #define rq_list_add(listptr, rq)	do {		\
214 	(rq)->rq_next = *(listptr);			\
215 	*(listptr) = rq;				\
216 } while (0)
217 
218 #define rq_list_add_tail(lastpptr, rq)	do {		\
219 	(rq)->rq_next = NULL;				\
220 	**(lastpptr) = rq;				\
221 	*(lastpptr) = &rq->rq_next;			\
222 } while (0)
223 
224 #define rq_list_pop(listptr)				\
225 ({							\
226 	struct request *__req = NULL;			\
227 	if ((listptr) && *(listptr))	{		\
228 		__req = *(listptr);			\
229 		*(listptr) = __req->rq_next;		\
230 	}						\
231 	__req;						\
232 })
233 
234 #define rq_list_peek(listptr)				\
235 ({							\
236 	struct request *__req = NULL;			\
237 	if ((listptr) && *(listptr))			\
238 		__req = *(listptr);			\
239 	__req;						\
240 })
241 
242 #define rq_list_for_each(listptr, pos)			\
243 	for (pos = rq_list_peek((listptr)); pos; pos = rq_list_next(pos))
244 
245 #define rq_list_for_each_safe(listptr, pos, nxt)			\
246 	for (pos = rq_list_peek((listptr)), nxt = rq_list_next(pos);	\
247 		pos; pos = nxt, nxt = pos ? rq_list_next(pos) : NULL)
248 
249 #define rq_list_next(rq)	(rq)->rq_next
250 #define rq_list_empty(list)	((list) == (struct request *) NULL)
251 
252 /**
253  * rq_list_move() - move a struct request from one list to another
254  * @src: The source list @rq is currently in
255  * @dst: The destination list that @rq will be appended to
256  * @rq: The request to move
257  * @prev: The request preceding @rq in @src (NULL if @rq is the head)
258  */
rq_list_move(struct request ** src,struct request ** dst,struct request * rq,struct request * prev)259 static inline void rq_list_move(struct request **src, struct request **dst,
260 				struct request *rq, struct request *prev)
261 {
262 	if (prev)
263 		prev->rq_next = rq->rq_next;
264 	else
265 		*src = rq->rq_next;
266 	rq_list_add(dst, rq);
267 }
268 
269 /**
270  * enum blk_eh_timer_return - How the timeout handler should proceed
271  * @BLK_EH_DONE: The block driver completed the command or will complete it at
272  *	a later time.
273  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
274  *	request to complete.
275  */
276 enum blk_eh_timer_return {
277 	BLK_EH_DONE,
278 	BLK_EH_RESET_TIMER,
279 };
280 
281 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
282 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
283 
284 /**
285  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
286  * block device
287  */
288 struct blk_mq_hw_ctx {
289 	struct {
290 		/** @lock: Protects the dispatch list. */
291 		spinlock_t		lock;
292 		/**
293 		 * @dispatch: Used for requests that are ready to be
294 		 * dispatched to the hardware but for some reason (e.g. lack of
295 		 * resources) could not be sent to the hardware. As soon as the
296 		 * driver can send new requests, requests at this list will
297 		 * be sent first for a fairer dispatch.
298 		 */
299 		struct list_head	dispatch;
300 		 /**
301 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
302 		  * queue (active, scheduled to restart, stopped).
303 		  */
304 		unsigned long		state;
305 	} ____cacheline_aligned_in_smp;
306 
307 	/**
308 	 * @run_work: Used for scheduling a hardware queue run at a later time.
309 	 */
310 	struct delayed_work	run_work;
311 	/** @cpumask: Map of available CPUs where this hctx can run. */
312 	cpumask_var_t		cpumask;
313 	/**
314 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
315 	 * selection from @cpumask.
316 	 */
317 	int			next_cpu;
318 	/**
319 	 * @next_cpu_batch: Counter of how many works left in the batch before
320 	 * changing to the next CPU.
321 	 */
322 	int			next_cpu_batch;
323 
324 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
325 	unsigned long		flags;
326 
327 	/**
328 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
329 	 * queue. It's up to the IO scheduler how to use this pointer.
330 	 */
331 	void			*sched_data;
332 	/**
333 	 * @queue: Pointer to the request queue that owns this hardware context.
334 	 */
335 	struct request_queue	*queue;
336 	/** @fq: Queue of requests that need to perform a flush operation. */
337 	struct blk_flush_queue	*fq;
338 
339 	/**
340 	 * @driver_data: Pointer to data owned by the block driver that created
341 	 * this hctx
342 	 */
343 	void			*driver_data;
344 
345 	/**
346 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
347 	 * pending request in that software queue.
348 	 */
349 	struct sbitmap		ctx_map;
350 
351 	/**
352 	 * @dispatch_from: Software queue to be used when no scheduler was
353 	 * selected.
354 	 */
355 	struct blk_mq_ctx	*dispatch_from;
356 	/**
357 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
358 	 * decide if the hw_queue is busy using Exponential Weighted Moving
359 	 * Average algorithm.
360 	 */
361 	unsigned int		dispatch_busy;
362 
363 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
364 	unsigned short		type;
365 	/** @nr_ctx: Number of software queues. */
366 	unsigned short		nr_ctx;
367 	/** @ctxs: Array of software queues. */
368 	struct blk_mq_ctx	**ctxs;
369 
370 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
371 	spinlock_t		dispatch_wait_lock;
372 	/**
373 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
374 	 * available at the moment, to wait for another try in the future.
375 	 */
376 	wait_queue_entry_t	dispatch_wait;
377 
378 	/**
379 	 * @wait_index: Index of next available dispatch_wait queue to insert
380 	 * requests.
381 	 */
382 	atomic_t		wait_index;
383 
384 	/**
385 	 * @tags: Tags owned by the block driver. A tag at this set is only
386 	 * assigned when a request is dispatched from a hardware queue.
387 	 */
388 	struct blk_mq_tags	*tags;
389 	/**
390 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
391 	 * scheduler associated with a request queue, a tag is assigned when
392 	 * that request is allocated. Else, this member is not used.
393 	 */
394 	struct blk_mq_tags	*sched_tags;
395 
396 	/** @run: Number of dispatched requests. */
397 	unsigned long		run;
398 
399 	/** @numa_node: NUMA node the storage adapter has been connected to. */
400 	unsigned int		numa_node;
401 	/** @queue_num: Index of this hardware queue. */
402 	unsigned int		queue_num;
403 
404 	/**
405 	 * @nr_active: Number of active requests. Only used when a tag set is
406 	 * shared across request queues.
407 	 */
408 	atomic_t		nr_active;
409 
410 	/** @cpuhp_online: List to store request if CPU is going to die */
411 	struct hlist_node	cpuhp_online;
412 	/** @cpuhp_dead: List to store request if some CPU die. */
413 	struct hlist_node	cpuhp_dead;
414 	/** @kobj: Kernel object for sysfs. */
415 	struct kobject		kobj;
416 
417 #ifdef CONFIG_BLK_DEBUG_FS
418 	/**
419 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
420 	 * as cpu<cpu_number>.
421 	 */
422 	struct dentry		*debugfs_dir;
423 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
424 	struct dentry		*sched_debugfs_dir;
425 #endif
426 
427 	/**
428 	 * @hctx_list: if this hctx is not in use, this is an entry in
429 	 * q->unused_hctx_list.
430 	 */
431 	struct list_head	hctx_list;
432 };
433 
434 /**
435  * struct blk_mq_queue_map - Map software queues to hardware queues
436  * @mq_map:       CPU ID to hardware queue index map. This is an array
437  *	with nr_cpu_ids elements. Each element has a value in the range
438  *	[@queue_offset, @queue_offset + @nr_queues).
439  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
440  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
441  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
442  *	set of hardware queues.
443  */
444 struct blk_mq_queue_map {
445 	unsigned int *mq_map;
446 	unsigned int nr_queues;
447 	unsigned int queue_offset;
448 };
449 
450 /**
451  * enum hctx_type - Type of hardware queue
452  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
453  * @HCTX_TYPE_READ:	Just for READ I/O.
454  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
455  * @HCTX_MAX_TYPES:	Number of types of hctx.
456  */
457 enum hctx_type {
458 	HCTX_TYPE_DEFAULT,
459 	HCTX_TYPE_READ,
460 	HCTX_TYPE_POLL,
461 
462 	HCTX_MAX_TYPES,
463 };
464 
465 /**
466  * struct blk_mq_tag_set - tag set that can be shared between request queues
467  * @ops:	   Pointers to functions that implement block driver behavior.
468  * @map:	   One or more ctx -> hctx mappings. One map exists for each
469  *		   hardware queue type (enum hctx_type) that the driver wishes
470  *		   to support. There are no restrictions on maps being of the
471  *		   same size, and it's perfectly legal to share maps between
472  *		   types.
473  * @nr_maps:	   Number of elements in the @map array. A number in the range
474  *		   [1, HCTX_MAX_TYPES].
475  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
476  *		   owns this data structure.
477  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
478  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
479  *		   allocations.
480  * @cmd_size:	   Number of additional bytes to allocate per request. The block
481  *		   driver owns these additional bytes.
482  * @numa_node:	   NUMA node the storage adapter has been connected to.
483  * @timeout:	   Request processing timeout in jiffies.
484  * @flags:	   Zero or more BLK_MQ_F_* flags.
485  * @driver_data:   Pointer to data owned by the block driver that created this
486  *		   tag set.
487  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
488  *		   elements.
489  * @shared_tags:
490  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
491  *		   shared by all @tags.
492  * @tag_list_lock: Serializes tag_list accesses.
493  * @tag_list:	   List of the request queues that use this tag set. See also
494  *		   request_queue.tag_set_list.
495  * @srcu:	   Use as lock when type of the request queue is blocking
496  *		   (BLK_MQ_F_BLOCKING).
497  */
498 struct blk_mq_tag_set {
499 	const struct blk_mq_ops	*ops;
500 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
501 	unsigned int		nr_maps;
502 	unsigned int		nr_hw_queues;
503 	unsigned int		queue_depth;
504 	unsigned int		reserved_tags;
505 	unsigned int		cmd_size;
506 	int			numa_node;
507 	unsigned int		timeout;
508 	unsigned int		flags;
509 	void			*driver_data;
510 
511 	struct blk_mq_tags	**tags;
512 
513 	struct blk_mq_tags	*shared_tags;
514 
515 	struct mutex		tag_list_lock;
516 	struct list_head	tag_list;
517 	struct srcu_struct	*srcu;
518 };
519 
520 /**
521  * struct blk_mq_queue_data - Data about a request inserted in a queue
522  *
523  * @rq:   Request pointer.
524  * @last: If it is the last request in the queue.
525  */
526 struct blk_mq_queue_data {
527 	struct request *rq;
528 	bool last;
529 };
530 
531 typedef bool (busy_tag_iter_fn)(struct request *, void *);
532 
533 /**
534  * struct blk_mq_ops - Callback functions that implements block driver
535  * behaviour.
536  */
537 struct blk_mq_ops {
538 	/**
539 	 * @queue_rq: Queue a new request from block IO.
540 	 */
541 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
542 				 const struct blk_mq_queue_data *);
543 
544 	/**
545 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
546 	 * requests to hardware, it must define this function. In case of errors
547 	 * that make us stop issuing further requests, this hook serves the
548 	 * purpose of kicking the hardware (which the last request otherwise
549 	 * would have done).
550 	 */
551 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
552 
553 	/**
554 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
555 	 * that each request belongs to the same queue. If the driver doesn't
556 	 * empty the @rqlist completely, then the rest will be queued
557 	 * individually by the block layer upon return.
558 	 */
559 	void (*queue_rqs)(struct request **rqlist);
560 
561 	/**
562 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
563 	 * run, it is driver's responsibility to release the
564 	 * reserved budget. Also we have to handle failure case
565 	 * of .get_budget for avoiding I/O deadlock.
566 	 */
567 	int (*get_budget)(struct request_queue *);
568 
569 	/**
570 	 * @put_budget: Release the reserved budget.
571 	 */
572 	void (*put_budget)(struct request_queue *, int);
573 
574 	/**
575 	 * @set_rq_budget_token: store rq's budget token
576 	 */
577 	void (*set_rq_budget_token)(struct request *, int);
578 	/**
579 	 * @get_rq_budget_token: retrieve rq's budget token
580 	 */
581 	int (*get_rq_budget_token)(struct request *);
582 
583 	/**
584 	 * @timeout: Called on request timeout.
585 	 */
586 	enum blk_eh_timer_return (*timeout)(struct request *);
587 
588 	/**
589 	 * @poll: Called to poll for completion of a specific tag.
590 	 */
591 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
592 
593 	/**
594 	 * @complete: Mark the request as complete.
595 	 */
596 	void (*complete)(struct request *);
597 
598 	/**
599 	 * @init_hctx: Called when the block layer side of a hardware queue has
600 	 * been set up, allowing the driver to allocate/init matching
601 	 * structures.
602 	 */
603 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
604 	/**
605 	 * @exit_hctx: Ditto for exit/teardown.
606 	 */
607 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
608 
609 	/**
610 	 * @init_request: Called for every command allocated by the block layer
611 	 * to allow the driver to set up driver specific data.
612 	 *
613 	 * Tag greater than or equal to queue_depth is for setting up
614 	 * flush request.
615 	 */
616 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
617 			    unsigned int, unsigned int);
618 	/**
619 	 * @exit_request: Ditto for exit/teardown.
620 	 */
621 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
622 			     unsigned int);
623 
624 	/**
625 	 * @cleanup_rq: Called before freeing one request which isn't completed
626 	 * yet, and usually for freeing the driver private data.
627 	 */
628 	void (*cleanup_rq)(struct request *);
629 
630 	/**
631 	 * @busy: If set, returns whether or not this queue currently is busy.
632 	 */
633 	bool (*busy)(struct request_queue *);
634 
635 	/**
636 	 * @map_queues: This allows drivers specify their own queue mapping by
637 	 * overriding the setup-time function that builds the mq_map.
638 	 */
639 	void (*map_queues)(struct blk_mq_tag_set *set);
640 
641 #ifdef CONFIG_BLK_DEBUG_FS
642 	/**
643 	 * @show_rq: Used by the debugfs implementation to show driver-specific
644 	 * information about a request.
645 	 */
646 	void (*show_rq)(struct seq_file *m, struct request *rq);
647 #endif
648 };
649 
650 enum {
651 	BLK_MQ_F_SHOULD_MERGE	= 1 << 0,
652 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
653 	/*
654 	 * Set when this device requires underlying blk-mq device for
655 	 * completing IO:
656 	 */
657 	BLK_MQ_F_STACKING	= 1 << 2,
658 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
659 	BLK_MQ_F_BLOCKING	= 1 << 5,
660 	/* Do not allow an I/O scheduler to be configured. */
661 	BLK_MQ_F_NO_SCHED	= 1 << 6,
662 	/*
663 	 * Select 'none' during queue registration in case of a single hwq
664 	 * or shared hwqs instead of 'mq-deadline'.
665 	 */
666 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 7,
667 	BLK_MQ_F_ALLOC_POLICY_START_BIT = 8,
668 	BLK_MQ_F_ALLOC_POLICY_BITS = 1,
669 
670 	BLK_MQ_S_STOPPED	= 0,
671 	BLK_MQ_S_TAG_ACTIVE	= 1,
672 	BLK_MQ_S_SCHED_RESTART	= 2,
673 
674 	/* hw queue is inactive after all its CPUs become offline */
675 	BLK_MQ_S_INACTIVE	= 3,
676 
677 	BLK_MQ_MAX_DEPTH	= 10240,
678 
679 	BLK_MQ_CPU_WORK_BATCH	= 8,
680 };
681 #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \
682 	((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \
683 		((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1))
684 #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \
685 	((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \
686 		<< BLK_MQ_F_ALLOC_POLICY_START_BIT)
687 
688 #define BLK_MQ_NO_HCTX_IDX	(-1U)
689 
690 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
691 		struct lock_class_key *lkclass);
692 #define blk_mq_alloc_disk(set, queuedata)				\
693 ({									\
694 	static struct lock_class_key __key;				\
695 									\
696 	__blk_mq_alloc_disk(set, queuedata, &__key);			\
697 })
698 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
699 		struct lock_class_key *lkclass);
700 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *);
701 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
702 		struct request_queue *q);
703 void blk_mq_destroy_queue(struct request_queue *);
704 
705 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
706 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
707 		const struct blk_mq_ops *ops, unsigned int queue_depth,
708 		unsigned int set_flags);
709 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
710 
711 void blk_mq_free_request(struct request *rq);
712 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
713 		unsigned int poll_flags);
714 
715 bool blk_mq_queue_inflight(struct request_queue *q);
716 
717 enum {
718 	/* return when out of requests */
719 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
720 	/* allocate from reserved pool */
721 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
722 	/* set RQF_PM */
723 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
724 };
725 
726 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
727 		blk_mq_req_flags_t flags);
728 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
729 		blk_opf_t opf, blk_mq_req_flags_t flags,
730 		unsigned int hctx_idx);
731 
732 /*
733  * Tag address space map.
734  */
735 struct blk_mq_tags {
736 	unsigned int nr_tags;
737 	unsigned int nr_reserved_tags;
738 	unsigned int active_queues;
739 
740 	struct sbitmap_queue bitmap_tags;
741 	struct sbitmap_queue breserved_tags;
742 
743 	struct request **rqs;
744 	struct request **static_rqs;
745 	struct list_head page_list;
746 
747 	/*
748 	 * used to clear request reference in rqs[] before freeing one
749 	 * request pool
750 	 */
751 	spinlock_t lock;
752 };
753 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)754 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
755 					       unsigned int tag)
756 {
757 	if (tag < tags->nr_tags) {
758 		prefetch(tags->rqs[tag]);
759 		return tags->rqs[tag];
760 	}
761 
762 	return NULL;
763 }
764 
765 enum {
766 	BLK_MQ_UNIQUE_TAG_BITS = 16,
767 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
768 };
769 
770 u32 blk_mq_unique_tag(struct request *rq);
771 
blk_mq_unique_tag_to_hwq(u32 unique_tag)772 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
773 {
774 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
775 }
776 
blk_mq_unique_tag_to_tag(u32 unique_tag)777 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
778 {
779 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
780 }
781 
782 /**
783  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
784  * @rq: target request.
785  */
blk_mq_rq_state(struct request * rq)786 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
787 {
788 	return READ_ONCE(rq->state);
789 }
790 
blk_mq_request_started(struct request * rq)791 static inline int blk_mq_request_started(struct request *rq)
792 {
793 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
794 }
795 
blk_mq_request_completed(struct request * rq)796 static inline int blk_mq_request_completed(struct request *rq)
797 {
798 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
799 }
800 
801 /*
802  *
803  * Set the state to complete when completing a request from inside ->queue_rq.
804  * This is used by drivers that want to ensure special complete actions that
805  * need access to the request are called on failure, e.g. by nvme for
806  * multipathing.
807  */
blk_mq_set_request_complete(struct request * rq)808 static inline void blk_mq_set_request_complete(struct request *rq)
809 {
810 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
811 }
812 
813 /*
814  * Complete the request directly instead of deferring it to softirq or
815  * completing it another CPU. Useful in preemptible instead of an interrupt.
816  */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))817 static inline void blk_mq_complete_request_direct(struct request *rq,
818 		   void (*complete)(struct request *rq))
819 {
820 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
821 	complete(rq);
822 }
823 
824 void blk_mq_start_request(struct request *rq);
825 void blk_mq_end_request(struct request *rq, blk_status_t error);
826 void __blk_mq_end_request(struct request *rq, blk_status_t error);
827 void blk_mq_end_request_batch(struct io_comp_batch *ib);
828 
829 /*
830  * Only need start/end time stamping if we have iostat or
831  * blk stats enabled, or using an IO scheduler.
832  */
blk_mq_need_time_stamp(struct request * rq)833 static inline bool blk_mq_need_time_stamp(struct request *rq)
834 {
835 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
836 }
837 
blk_mq_is_reserved_rq(struct request * rq)838 static inline bool blk_mq_is_reserved_rq(struct request *rq)
839 {
840 	return rq->rq_flags & RQF_RESV;
841 }
842 
843 /*
844  * Batched completions only work when there is no I/O error and no special
845  * ->end_io handler.
846  */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,int ioerror,void (* complete)(struct io_comp_batch *))847 static inline bool blk_mq_add_to_batch(struct request *req,
848 				       struct io_comp_batch *iob, int ioerror,
849 				       void (*complete)(struct io_comp_batch *))
850 {
851 	/*
852 	 * blk_mq_end_request_batch() can't end request allocated from
853 	 * sched tags
854 	 */
855 	if (!iob || (req->rq_flags & RQF_SCHED_TAGS) || ioerror ||
856 			(req->end_io && !blk_rq_is_passthrough(req)))
857 		return false;
858 
859 	if (!iob->complete)
860 		iob->complete = complete;
861 	else if (iob->complete != complete)
862 		return false;
863 	iob->need_ts |= blk_mq_need_time_stamp(req);
864 	rq_list_add(&iob->req_list, req);
865 	return true;
866 }
867 
868 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
869 void blk_mq_kick_requeue_list(struct request_queue *q);
870 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
871 void blk_mq_complete_request(struct request *rq);
872 bool blk_mq_complete_request_remote(struct request *rq);
873 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
874 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
875 void blk_mq_stop_hw_queues(struct request_queue *q);
876 void blk_mq_start_hw_queues(struct request_queue *q);
877 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
878 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
879 void blk_mq_quiesce_queue(struct request_queue *q);
880 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
881 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
882 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
883 void blk_mq_unquiesce_queue(struct request_queue *q);
884 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
885 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
886 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
887 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
888 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
889 		busy_tag_iter_fn *fn, void *priv);
890 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
891 void blk_mq_freeze_queue(struct request_queue *q);
892 void blk_mq_unfreeze_queue(struct request_queue *q);
893 void blk_freeze_queue_start(struct request_queue *q);
894 void blk_mq_freeze_queue_wait(struct request_queue *q);
895 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
896 				     unsigned long timeout);
897 
898 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
899 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
900 
901 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
902 
903 unsigned int blk_mq_rq_cpu(struct request *rq);
904 
905 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)906 static inline bool blk_should_fake_timeout(struct request_queue *q)
907 {
908 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
909 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
910 		return __blk_should_fake_timeout(q);
911 	return false;
912 }
913 
914 /**
915  * blk_mq_rq_from_pdu - cast a PDU to a request
916  * @pdu: the PDU (Protocol Data Unit) to be casted
917  *
918  * Return: request
919  *
920  * Driver command data is immediately after the request. So subtract request
921  * size to get back to the original request.
922  */
blk_mq_rq_from_pdu(void * pdu)923 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
924 {
925 	return pdu - sizeof(struct request);
926 }
927 
928 /**
929  * blk_mq_rq_to_pdu - cast a request to a PDU
930  * @rq: the request to be casted
931  *
932  * Return: pointer to the PDU
933  *
934  * Driver command data is immediately after the request. So add request to get
935  * the PDU.
936  */
blk_mq_rq_to_pdu(struct request * rq)937 static inline void *blk_mq_rq_to_pdu(struct request *rq)
938 {
939 	return rq + 1;
940 }
941 
942 #define queue_for_each_hw_ctx(q, hctx, i)				\
943 	xa_for_each(&(q)->hctx_table, (i), (hctx))
944 
945 #define hctx_for_each_ctx(hctx, ctx, i)					\
946 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
947 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
948 
blk_mq_cleanup_rq(struct request * rq)949 static inline void blk_mq_cleanup_rq(struct request *rq)
950 {
951 	if (rq->q->mq_ops->cleanup_rq)
952 		rq->q->mq_ops->cleanup_rq(rq);
953 }
954 
blk_rq_bio_prep(struct request * rq,struct bio * bio,unsigned int nr_segs)955 static inline void blk_rq_bio_prep(struct request *rq, struct bio *bio,
956 		unsigned int nr_segs)
957 {
958 	rq->nr_phys_segments = nr_segs;
959 	rq->__data_len = bio->bi_iter.bi_size;
960 	rq->bio = rq->biotail = bio;
961 	rq->ioprio = bio_prio(bio);
962 }
963 
964 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
965 		struct lock_class_key *key);
966 
rq_is_sync(struct request * rq)967 static inline bool rq_is_sync(struct request *rq)
968 {
969 	return op_is_sync(rq->cmd_flags);
970 }
971 
972 void blk_rq_init(struct request_queue *q, struct request *rq);
973 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
974 		struct bio_set *bs, gfp_t gfp_mask,
975 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
976 void blk_rq_unprep_clone(struct request *rq);
977 blk_status_t blk_insert_cloned_request(struct request *rq);
978 
979 struct rq_map_data {
980 	struct page **pages;
981 	unsigned long offset;
982 	unsigned short page_order;
983 	unsigned short nr_entries;
984 	bool null_mapped;
985 	bool from_user;
986 };
987 
988 int blk_rq_map_user(struct request_queue *, struct request *,
989 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
990 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
991 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
992 int blk_rq_map_user_iov(struct request_queue *, struct request *,
993 		struct rq_map_data *, const struct iov_iter *, gfp_t);
994 int blk_rq_unmap_user(struct bio *);
995 int blk_rq_map_kern(struct request_queue *, struct request *, void *,
996 		unsigned int, gfp_t);
997 int blk_rq_append_bio(struct request *rq, struct bio *bio);
998 void blk_execute_rq_nowait(struct request *rq, bool at_head);
999 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1000 bool blk_rq_is_poll(struct request *rq);
1001 
1002 struct req_iterator {
1003 	struct bvec_iter iter;
1004 	struct bio *bio;
1005 };
1006 
1007 #define __rq_for_each_bio(_bio, rq)	\
1008 	if ((rq->bio))			\
1009 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1010 
1011 #define rq_for_each_segment(bvl, _rq, _iter)			\
1012 	__rq_for_each_bio(_iter.bio, _rq)			\
1013 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1014 
1015 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1016 	__rq_for_each_bio(_iter.bio, _rq)			\
1017 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1018 
1019 #define rq_iter_last(bvec, _iter)				\
1020 		(_iter.bio->bi_next == NULL &&			\
1021 		 bio_iter_last(bvec, _iter.iter))
1022 
1023 /*
1024  * blk_rq_pos()			: the current sector
1025  * blk_rq_bytes()		: bytes left in the entire request
1026  * blk_rq_cur_bytes()		: bytes left in the current segment
1027  * blk_rq_sectors()		: sectors left in the entire request
1028  * blk_rq_cur_sectors()		: sectors left in the current segment
1029  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1030  */
blk_rq_pos(const struct request * rq)1031 static inline sector_t blk_rq_pos(const struct request *rq)
1032 {
1033 	return rq->__sector;
1034 }
1035 
blk_rq_bytes(const struct request * rq)1036 static inline unsigned int blk_rq_bytes(const struct request *rq)
1037 {
1038 	return rq->__data_len;
1039 }
1040 
blk_rq_cur_bytes(const struct request * rq)1041 static inline int blk_rq_cur_bytes(const struct request *rq)
1042 {
1043 	if (!rq->bio)
1044 		return 0;
1045 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1046 		return rq->bio->bi_iter.bi_size;
1047 	return bio_iovec(rq->bio).bv_len;
1048 }
1049 
blk_rq_sectors(const struct request * rq)1050 static inline unsigned int blk_rq_sectors(const struct request *rq)
1051 {
1052 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1053 }
1054 
blk_rq_cur_sectors(const struct request * rq)1055 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1056 {
1057 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1058 }
1059 
blk_rq_stats_sectors(const struct request * rq)1060 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1061 {
1062 	return rq->stats_sectors;
1063 }
1064 
1065 /*
1066  * Some commands like WRITE SAME have a payload or data transfer size which
1067  * is different from the size of the request.  Any driver that supports such
1068  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1069  * calculate the data transfer size.
1070  */
blk_rq_payload_bytes(struct request * rq)1071 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1072 {
1073 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1074 		return rq->special_vec.bv_len;
1075 	return blk_rq_bytes(rq);
1076 }
1077 
1078 /*
1079  * Return the first full biovec in the request.  The caller needs to check that
1080  * there are any bvecs before calling this helper.
1081  */
req_bvec(struct request * rq)1082 static inline struct bio_vec req_bvec(struct request *rq)
1083 {
1084 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1085 		return rq->special_vec;
1086 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1087 }
1088 
blk_rq_count_bios(struct request * rq)1089 static inline unsigned int blk_rq_count_bios(struct request *rq)
1090 {
1091 	unsigned int nr_bios = 0;
1092 	struct bio *bio;
1093 
1094 	__rq_for_each_bio(bio, rq)
1095 		nr_bios++;
1096 
1097 	return nr_bios;
1098 }
1099 
1100 void blk_steal_bios(struct bio_list *list, struct request *rq);
1101 
1102 /*
1103  * Request completion related functions.
1104  *
1105  * blk_update_request() completes given number of bytes and updates
1106  * the request without completing it.
1107  */
1108 bool blk_update_request(struct request *rq, blk_status_t error,
1109 			       unsigned int nr_bytes);
1110 void blk_abort_request(struct request *);
1111 
1112 /*
1113  * Number of physical segments as sent to the device.
1114  *
1115  * Normally this is the number of discontiguous data segments sent by the
1116  * submitter.  But for data-less command like discard we might have no
1117  * actual data segments submitted, but the driver might have to add it's
1118  * own special payload.  In that case we still return 1 here so that this
1119  * special payload will be mapped.
1120  */
blk_rq_nr_phys_segments(struct request * rq)1121 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1122 {
1123 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1124 		return 1;
1125 	return rq->nr_phys_segments;
1126 }
1127 
1128 /*
1129  * Number of discard segments (or ranges) the driver needs to fill in.
1130  * Each discard bio merged into a request is counted as one segment.
1131  */
blk_rq_nr_discard_segments(struct request * rq)1132 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1133 {
1134 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1135 }
1136 
1137 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
1138 		struct scatterlist *sglist, struct scatterlist **last_sg);
blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist)1139 static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq,
1140 		struct scatterlist *sglist)
1141 {
1142 	struct scatterlist *last_sg = NULL;
1143 
1144 	return __blk_rq_map_sg(q, rq, sglist, &last_sg);
1145 }
1146 void blk_dump_rq_flags(struct request *, char *);
1147 
1148 #ifdef CONFIG_BLK_DEV_ZONED
blk_rq_zone_no(struct request * rq)1149 static inline unsigned int blk_rq_zone_no(struct request *rq)
1150 {
1151 	return disk_zone_no(rq->q->disk, blk_rq_pos(rq));
1152 }
1153 
blk_rq_zone_is_seq(struct request * rq)1154 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
1155 {
1156 	return disk_zone_is_seq(rq->q->disk, blk_rq_pos(rq));
1157 }
1158 
1159 /**
1160  * blk_rq_is_seq_zoned_write() - Check if @rq requires write serialization.
1161  * @rq: Request to examine.
1162  *
1163  * Note: REQ_OP_ZONE_APPEND requests do not require serialization.
1164  */
blk_rq_is_seq_zoned_write(struct request * rq)1165 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1166 {
1167 	return op_needs_zoned_write_locking(req_op(rq)) &&
1168 		blk_rq_zone_is_seq(rq);
1169 }
1170 
1171 bool blk_req_needs_zone_write_lock(struct request *rq);
1172 bool blk_req_zone_write_trylock(struct request *rq);
1173 void __blk_req_zone_write_lock(struct request *rq);
1174 void __blk_req_zone_write_unlock(struct request *rq);
1175 
blk_req_zone_write_lock(struct request * rq)1176 static inline void blk_req_zone_write_lock(struct request *rq)
1177 {
1178 	if (blk_req_needs_zone_write_lock(rq))
1179 		__blk_req_zone_write_lock(rq);
1180 }
1181 
blk_req_zone_write_unlock(struct request * rq)1182 static inline void blk_req_zone_write_unlock(struct request *rq)
1183 {
1184 	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1185 		__blk_req_zone_write_unlock(rq);
1186 }
1187 
blk_req_zone_is_write_locked(struct request * rq)1188 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1189 {
1190 	return rq->q->disk->seq_zones_wlock &&
1191 		test_bit(blk_rq_zone_no(rq), rq->q->disk->seq_zones_wlock);
1192 }
1193 
blk_req_can_dispatch_to_zone(struct request * rq)1194 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1195 {
1196 	if (!blk_req_needs_zone_write_lock(rq))
1197 		return true;
1198 	return !blk_req_zone_is_write_locked(rq);
1199 }
1200 #else /* CONFIG_BLK_DEV_ZONED */
blk_rq_is_seq_zoned_write(struct request * rq)1201 static inline bool blk_rq_is_seq_zoned_write(struct request *rq)
1202 {
1203 	return false;
1204 }
1205 
blk_req_needs_zone_write_lock(struct request * rq)1206 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1207 {
1208 	return false;
1209 }
1210 
blk_req_zone_write_lock(struct request * rq)1211 static inline void blk_req_zone_write_lock(struct request *rq)
1212 {
1213 }
1214 
blk_req_zone_write_unlock(struct request * rq)1215 static inline void blk_req_zone_write_unlock(struct request *rq)
1216 {
1217 }
blk_req_zone_is_write_locked(struct request * rq)1218 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1219 {
1220 	return false;
1221 }
1222 
blk_req_can_dispatch_to_zone(struct request * rq)1223 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1224 {
1225 	return true;
1226 }
1227 #endif /* CONFIG_BLK_DEV_ZONED */
1228 
1229 #endif /* BLK_MQ_H */
1230