1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8 #define pr_fmt(fmt) "damon: " fmt
9
10 #include <linux/damon.h>
11 #include <linux/delay.h>
12 #include <linux/kthread.h>
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/damon.h>
19
20 #ifdef CONFIG_DAMON_KUNIT_TEST
21 #undef DAMON_MIN_REGION
22 #define DAMON_MIN_REGION 1
23 #endif
24
25 static DEFINE_MUTEX(damon_lock);
26 static int nr_running_ctxs;
27 static bool running_exclusive_ctxs;
28
29 static DEFINE_MUTEX(damon_ops_lock);
30 static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31
32 static struct kmem_cache *damon_region_cache __ro_after_init;
33
34 /* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
__damon_is_registered_ops(enum damon_ops_id id)35 static bool __damon_is_registered_ops(enum damon_ops_id id)
36 {
37 struct damon_operations empty_ops = {};
38
39 if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40 return false;
41 return true;
42 }
43
44 /**
45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
46 * @id: Id of the damon_operations to check if registered.
47 *
48 * Return: true if the ops is set, false otherwise.
49 */
damon_is_registered_ops(enum damon_ops_id id)50 bool damon_is_registered_ops(enum damon_ops_id id)
51 {
52 bool registered;
53
54 if (id >= NR_DAMON_OPS)
55 return false;
56 mutex_lock(&damon_ops_lock);
57 registered = __damon_is_registered_ops(id);
58 mutex_unlock(&damon_ops_lock);
59 return registered;
60 }
61
62 /**
63 * damon_register_ops() - Register a monitoring operations set to DAMON.
64 * @ops: monitoring operations set to register.
65 *
66 * This function registers a monitoring operations set of valid &struct
67 * damon_operations->id so that others can find and use them later.
68 *
69 * Return: 0 on success, negative error code otherwise.
70 */
damon_register_ops(struct damon_operations * ops)71 int damon_register_ops(struct damon_operations *ops)
72 {
73 int err = 0;
74
75 if (ops->id >= NR_DAMON_OPS)
76 return -EINVAL;
77 mutex_lock(&damon_ops_lock);
78 /* Fail for already registered ops */
79 if (__damon_is_registered_ops(ops->id)) {
80 err = -EINVAL;
81 goto out;
82 }
83 damon_registered_ops[ops->id] = *ops;
84 out:
85 mutex_unlock(&damon_ops_lock);
86 return err;
87 }
88
89 /**
90 * damon_select_ops() - Select a monitoring operations to use with the context.
91 * @ctx: monitoring context to use the operations.
92 * @id: id of the registered monitoring operations to select.
93 *
94 * This function finds registered monitoring operations set of @id and make
95 * @ctx to use it.
96 *
97 * Return: 0 on success, negative error code otherwise.
98 */
damon_select_ops(struct damon_ctx * ctx,enum damon_ops_id id)99 int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100 {
101 int err = 0;
102
103 if (id >= NR_DAMON_OPS)
104 return -EINVAL;
105
106 mutex_lock(&damon_ops_lock);
107 if (!__damon_is_registered_ops(id))
108 err = -EINVAL;
109 else
110 ctx->ops = damon_registered_ops[id];
111 mutex_unlock(&damon_ops_lock);
112 return err;
113 }
114
115 /*
116 * Construct a damon_region struct
117 *
118 * Returns the pointer to the new struct if success, or NULL otherwise
119 */
damon_new_region(unsigned long start,unsigned long end)120 struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121 {
122 struct damon_region *region;
123
124 region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125 if (!region)
126 return NULL;
127
128 region->ar.start = start;
129 region->ar.end = end;
130 region->nr_accesses = 0;
131 INIT_LIST_HEAD(®ion->list);
132
133 region->age = 0;
134 region->last_nr_accesses = 0;
135
136 return region;
137 }
138
damon_add_region(struct damon_region * r,struct damon_target * t)139 void damon_add_region(struct damon_region *r, struct damon_target *t)
140 {
141 list_add_tail(&r->list, &t->regions_list);
142 t->nr_regions++;
143 }
144
damon_del_region(struct damon_region * r,struct damon_target * t)145 static void damon_del_region(struct damon_region *r, struct damon_target *t)
146 {
147 list_del(&r->list);
148 t->nr_regions--;
149 }
150
damon_free_region(struct damon_region * r)151 static void damon_free_region(struct damon_region *r)
152 {
153 kmem_cache_free(damon_region_cache, r);
154 }
155
damon_destroy_region(struct damon_region * r,struct damon_target * t)156 void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157 {
158 damon_del_region(r, t);
159 damon_free_region(r);
160 }
161
162 /*
163 * Check whether a region is intersecting an address range
164 *
165 * Returns true if it is.
166 */
damon_intersect(struct damon_region * r,struct damon_addr_range * re)167 static bool damon_intersect(struct damon_region *r,
168 struct damon_addr_range *re)
169 {
170 return !(r->ar.end <= re->start || re->end <= r->ar.start);
171 }
172
173 /*
174 * Fill holes in regions with new regions.
175 */
damon_fill_regions_holes(struct damon_region * first,struct damon_region * last,struct damon_target * t)176 static int damon_fill_regions_holes(struct damon_region *first,
177 struct damon_region *last, struct damon_target *t)
178 {
179 struct damon_region *r = first;
180
181 damon_for_each_region_from(r, t) {
182 struct damon_region *next, *newr;
183
184 if (r == last)
185 break;
186 next = damon_next_region(r);
187 if (r->ar.end != next->ar.start) {
188 newr = damon_new_region(r->ar.end, next->ar.start);
189 if (!newr)
190 return -ENOMEM;
191 damon_insert_region(newr, r, next, t);
192 }
193 }
194 return 0;
195 }
196
197 /*
198 * damon_set_regions() - Set regions of a target for given address ranges.
199 * @t: the given target.
200 * @ranges: array of new monitoring target ranges.
201 * @nr_ranges: length of @ranges.
202 *
203 * This function adds new regions to, or modify existing regions of a
204 * monitoring target to fit in specific ranges.
205 *
206 * Return: 0 if success, or negative error code otherwise.
207 */
damon_set_regions(struct damon_target * t,struct damon_addr_range * ranges,unsigned int nr_ranges)208 int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209 unsigned int nr_ranges)
210 {
211 struct damon_region *r, *next;
212 unsigned int i;
213 int err;
214
215 /* Remove regions which are not in the new ranges */
216 damon_for_each_region_safe(r, next, t) {
217 for (i = 0; i < nr_ranges; i++) {
218 if (damon_intersect(r, &ranges[i]))
219 break;
220 }
221 if (i == nr_ranges)
222 damon_destroy_region(r, t);
223 }
224
225 r = damon_first_region(t);
226 /* Add new regions or resize existing regions to fit in the ranges */
227 for (i = 0; i < nr_ranges; i++) {
228 struct damon_region *first = NULL, *last, *newr;
229 struct damon_addr_range *range;
230
231 range = &ranges[i];
232 /* Get the first/last regions intersecting with the range */
233 damon_for_each_region_from(r, t) {
234 if (damon_intersect(r, range)) {
235 if (!first)
236 first = r;
237 last = r;
238 }
239 if (r->ar.start >= range->end)
240 break;
241 }
242 if (!first) {
243 /* no region intersects with this range */
244 newr = damon_new_region(
245 ALIGN_DOWN(range->start,
246 DAMON_MIN_REGION),
247 ALIGN(range->end, DAMON_MIN_REGION));
248 if (!newr)
249 return -ENOMEM;
250 damon_insert_region(newr, damon_prev_region(r), r, t);
251 } else {
252 /* resize intersecting regions to fit in this range */
253 first->ar.start = ALIGN_DOWN(range->start,
254 DAMON_MIN_REGION);
255 last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256
257 /* fill possible holes in the range */
258 err = damon_fill_regions_holes(first, last, t);
259 if (err)
260 return err;
261 }
262 }
263 return 0;
264 }
265
damos_new_filter(enum damos_filter_type type,bool matching)266 struct damos_filter *damos_new_filter(enum damos_filter_type type,
267 bool matching)
268 {
269 struct damos_filter *filter;
270
271 filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272 if (!filter)
273 return NULL;
274 filter->type = type;
275 filter->matching = matching;
276 INIT_LIST_HEAD(&filter->list);
277 return filter;
278 }
279
damos_add_filter(struct damos * s,struct damos_filter * f)280 void damos_add_filter(struct damos *s, struct damos_filter *f)
281 {
282 list_add_tail(&f->list, &s->filters);
283 }
284
damos_del_filter(struct damos_filter * f)285 static void damos_del_filter(struct damos_filter *f)
286 {
287 list_del(&f->list);
288 }
289
damos_free_filter(struct damos_filter * f)290 static void damos_free_filter(struct damos_filter *f)
291 {
292 kfree(f);
293 }
294
damos_destroy_filter(struct damos_filter * f)295 void damos_destroy_filter(struct damos_filter *f)
296 {
297 damos_del_filter(f);
298 damos_free_filter(f);
299 }
300
301 /* initialize private fields of damos_quota and return the pointer */
damos_quota_init_priv(struct damos_quota * quota)302 static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303 {
304 quota->total_charged_sz = 0;
305 quota->total_charged_ns = 0;
306 quota->esz = 0;
307 quota->charged_sz = 0;
308 quota->charged_from = 0;
309 quota->charge_target_from = NULL;
310 quota->charge_addr_from = 0;
311 return quota;
312 }
313
damon_new_scheme(struct damos_access_pattern * pattern,enum damos_action action,unsigned long apply_interval_us,struct damos_quota * quota,struct damos_watermarks * wmarks)314 struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315 enum damos_action action,
316 unsigned long apply_interval_us,
317 struct damos_quota *quota,
318 struct damos_watermarks *wmarks)
319 {
320 struct damos *scheme;
321
322 scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
323 if (!scheme)
324 return NULL;
325 scheme->pattern = *pattern;
326 scheme->action = action;
327 scheme->apply_interval_us = apply_interval_us;
328 /*
329 * next_apply_sis will be set when kdamond starts. While kdamond is
330 * running, it will also updated when it is added to the DAMON context,
331 * or damon_attrs are updated.
332 */
333 scheme->next_apply_sis = 0;
334 INIT_LIST_HEAD(&scheme->filters);
335 scheme->stat = (struct damos_stat){};
336 INIT_LIST_HEAD(&scheme->list);
337
338 scheme->quota = *(damos_quota_init_priv(quota));
339
340 scheme->wmarks = *wmarks;
341 scheme->wmarks.activated = true;
342
343 return scheme;
344 }
345
damos_set_next_apply_sis(struct damos * s,struct damon_ctx * ctx)346 static void damos_set_next_apply_sis(struct damos *s, struct damon_ctx *ctx)
347 {
348 unsigned long sample_interval = ctx->attrs.sample_interval ?
349 ctx->attrs.sample_interval : 1;
350 unsigned long apply_interval = s->apply_interval_us ?
351 s->apply_interval_us : ctx->attrs.aggr_interval;
352
353 s->next_apply_sis = ctx->passed_sample_intervals +
354 apply_interval / sample_interval;
355 }
356
damon_add_scheme(struct damon_ctx * ctx,struct damos * s)357 void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
358 {
359 list_add_tail(&s->list, &ctx->schemes);
360 damos_set_next_apply_sis(s, ctx);
361 }
362
damon_del_scheme(struct damos * s)363 static void damon_del_scheme(struct damos *s)
364 {
365 list_del(&s->list);
366 }
367
damon_free_scheme(struct damos * s)368 static void damon_free_scheme(struct damos *s)
369 {
370 kfree(s);
371 }
372
damon_destroy_scheme(struct damos * s)373 void damon_destroy_scheme(struct damos *s)
374 {
375 struct damos_filter *f, *next;
376
377 damos_for_each_filter_safe(f, next, s)
378 damos_destroy_filter(f);
379 damon_del_scheme(s);
380 damon_free_scheme(s);
381 }
382
383 /*
384 * Construct a damon_target struct
385 *
386 * Returns the pointer to the new struct if success, or NULL otherwise
387 */
damon_new_target(void)388 struct damon_target *damon_new_target(void)
389 {
390 struct damon_target *t;
391
392 t = kmalloc(sizeof(*t), GFP_KERNEL);
393 if (!t)
394 return NULL;
395
396 t->pid = NULL;
397 t->nr_regions = 0;
398 INIT_LIST_HEAD(&t->regions_list);
399 INIT_LIST_HEAD(&t->list);
400
401 return t;
402 }
403
damon_add_target(struct damon_ctx * ctx,struct damon_target * t)404 void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
405 {
406 list_add_tail(&t->list, &ctx->adaptive_targets);
407 }
408
damon_targets_empty(struct damon_ctx * ctx)409 bool damon_targets_empty(struct damon_ctx *ctx)
410 {
411 return list_empty(&ctx->adaptive_targets);
412 }
413
damon_del_target(struct damon_target * t)414 static void damon_del_target(struct damon_target *t)
415 {
416 list_del(&t->list);
417 }
418
damon_free_target(struct damon_target * t)419 void damon_free_target(struct damon_target *t)
420 {
421 struct damon_region *r, *next;
422
423 damon_for_each_region_safe(r, next, t)
424 damon_free_region(r);
425 kfree(t);
426 }
427
damon_destroy_target(struct damon_target * t)428 void damon_destroy_target(struct damon_target *t)
429 {
430 damon_del_target(t);
431 damon_free_target(t);
432 }
433
damon_nr_regions(struct damon_target * t)434 unsigned int damon_nr_regions(struct damon_target *t)
435 {
436 return t->nr_regions;
437 }
438
damon_new_ctx(void)439 struct damon_ctx *damon_new_ctx(void)
440 {
441 struct damon_ctx *ctx;
442
443 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
444 if (!ctx)
445 return NULL;
446
447 init_completion(&ctx->kdamond_started);
448
449 ctx->attrs.sample_interval = 5 * 1000;
450 ctx->attrs.aggr_interval = 100 * 1000;
451 ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
452
453 ctx->passed_sample_intervals = 0;
454 /* These will be set from kdamond_init_intervals_sis() */
455 ctx->next_aggregation_sis = 0;
456 ctx->next_ops_update_sis = 0;
457
458 mutex_init(&ctx->kdamond_lock);
459
460 ctx->attrs.min_nr_regions = 10;
461 ctx->attrs.max_nr_regions = 1000;
462
463 INIT_LIST_HEAD(&ctx->adaptive_targets);
464 INIT_LIST_HEAD(&ctx->schemes);
465
466 return ctx;
467 }
468
damon_destroy_targets(struct damon_ctx * ctx)469 static void damon_destroy_targets(struct damon_ctx *ctx)
470 {
471 struct damon_target *t, *next_t;
472
473 if (ctx->ops.cleanup) {
474 ctx->ops.cleanup(ctx);
475 return;
476 }
477
478 damon_for_each_target_safe(t, next_t, ctx)
479 damon_destroy_target(t);
480 }
481
damon_destroy_ctx(struct damon_ctx * ctx)482 void damon_destroy_ctx(struct damon_ctx *ctx)
483 {
484 struct damos *s, *next_s;
485
486 damon_destroy_targets(ctx);
487
488 damon_for_each_scheme_safe(s, next_s, ctx)
489 damon_destroy_scheme(s);
490
491 kfree(ctx);
492 }
493
damon_age_for_new_attrs(unsigned int age,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)494 static unsigned int damon_age_for_new_attrs(unsigned int age,
495 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
496 {
497 return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
498 }
499
500 /* convert access ratio in bp (per 10,000) to nr_accesses */
damon_accesses_bp_to_nr_accesses(unsigned int accesses_bp,struct damon_attrs * attrs)501 static unsigned int damon_accesses_bp_to_nr_accesses(
502 unsigned int accesses_bp, struct damon_attrs *attrs)
503 {
504 return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
505 }
506
507 /* convert nr_accesses to access ratio in bp (per 10,000) */
damon_nr_accesses_to_accesses_bp(unsigned int nr_accesses,struct damon_attrs * attrs)508 static unsigned int damon_nr_accesses_to_accesses_bp(
509 unsigned int nr_accesses, struct damon_attrs *attrs)
510 {
511 return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
512 }
513
damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)514 static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
515 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
516 {
517 return damon_accesses_bp_to_nr_accesses(
518 damon_nr_accesses_to_accesses_bp(
519 nr_accesses, old_attrs),
520 new_attrs);
521 }
522
damon_update_monitoring_result(struct damon_region * r,struct damon_attrs * old_attrs,struct damon_attrs * new_attrs)523 static void damon_update_monitoring_result(struct damon_region *r,
524 struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
525 {
526 r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
527 old_attrs, new_attrs);
528 r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
529 }
530
531 /*
532 * region->nr_accesses is the number of sampling intervals in the last
533 * aggregation interval that access to the region has found, and region->age is
534 * the number of aggregation intervals that its access pattern has maintained.
535 * For the reason, the real meaning of the two fields depend on current
536 * sampling interval and aggregation interval. This function updates
537 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
538 */
damon_update_monitoring_results(struct damon_ctx * ctx,struct damon_attrs * new_attrs)539 static void damon_update_monitoring_results(struct damon_ctx *ctx,
540 struct damon_attrs *new_attrs)
541 {
542 struct damon_attrs *old_attrs = &ctx->attrs;
543 struct damon_target *t;
544 struct damon_region *r;
545
546 /* if any interval is zero, simply forgive conversion */
547 if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
548 !new_attrs->sample_interval ||
549 !new_attrs->aggr_interval)
550 return;
551
552 damon_for_each_target(t, ctx)
553 damon_for_each_region(r, t)
554 damon_update_monitoring_result(
555 r, old_attrs, new_attrs);
556 }
557
558 /**
559 * damon_set_attrs() - Set attributes for the monitoring.
560 * @ctx: monitoring context
561 * @attrs: monitoring attributes
562 *
563 * This function should not be called while the kdamond is running.
564 * Every time interval is in micro-seconds.
565 *
566 * Return: 0 on success, negative error code otherwise.
567 */
damon_set_attrs(struct damon_ctx * ctx,struct damon_attrs * attrs)568 int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
569 {
570 unsigned long sample_interval = attrs->sample_interval ?
571 attrs->sample_interval : 1;
572 struct damos *s;
573
574 if (attrs->min_nr_regions < 3)
575 return -EINVAL;
576 if (attrs->min_nr_regions > attrs->max_nr_regions)
577 return -EINVAL;
578 if (attrs->sample_interval > attrs->aggr_interval)
579 return -EINVAL;
580
581 ctx->next_aggregation_sis = ctx->passed_sample_intervals +
582 attrs->aggr_interval / sample_interval;
583 ctx->next_ops_update_sis = ctx->passed_sample_intervals +
584 attrs->ops_update_interval / sample_interval;
585
586 damon_update_monitoring_results(ctx, attrs);
587 ctx->attrs = *attrs;
588
589 damon_for_each_scheme(s, ctx)
590 damos_set_next_apply_sis(s, ctx);
591
592 return 0;
593 }
594
595 /**
596 * damon_set_schemes() - Set data access monitoring based operation schemes.
597 * @ctx: monitoring context
598 * @schemes: array of the schemes
599 * @nr_schemes: number of entries in @schemes
600 *
601 * This function should not be called while the kdamond of the context is
602 * running.
603 */
damon_set_schemes(struct damon_ctx * ctx,struct damos ** schemes,ssize_t nr_schemes)604 void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
605 ssize_t nr_schemes)
606 {
607 struct damos *s, *next;
608 ssize_t i;
609
610 damon_for_each_scheme_safe(s, next, ctx)
611 damon_destroy_scheme(s);
612 for (i = 0; i < nr_schemes; i++)
613 damon_add_scheme(ctx, schemes[i]);
614 }
615
616 /**
617 * damon_nr_running_ctxs() - Return number of currently running contexts.
618 */
damon_nr_running_ctxs(void)619 int damon_nr_running_ctxs(void)
620 {
621 int nr_ctxs;
622
623 mutex_lock(&damon_lock);
624 nr_ctxs = nr_running_ctxs;
625 mutex_unlock(&damon_lock);
626
627 return nr_ctxs;
628 }
629
630 /* Returns the size upper limit for each monitoring region */
damon_region_sz_limit(struct damon_ctx * ctx)631 static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
632 {
633 struct damon_target *t;
634 struct damon_region *r;
635 unsigned long sz = 0;
636
637 damon_for_each_target(t, ctx) {
638 damon_for_each_region(r, t)
639 sz += damon_sz_region(r);
640 }
641
642 if (ctx->attrs.min_nr_regions)
643 sz /= ctx->attrs.min_nr_regions;
644 if (sz < DAMON_MIN_REGION)
645 sz = DAMON_MIN_REGION;
646
647 return sz;
648 }
649
650 static int kdamond_fn(void *data);
651
652 /*
653 * __damon_start() - Starts monitoring with given context.
654 * @ctx: monitoring context
655 *
656 * This function should be called while damon_lock is hold.
657 *
658 * Return: 0 on success, negative error code otherwise.
659 */
__damon_start(struct damon_ctx * ctx)660 static int __damon_start(struct damon_ctx *ctx)
661 {
662 int err = -EBUSY;
663
664 mutex_lock(&ctx->kdamond_lock);
665 if (!ctx->kdamond) {
666 err = 0;
667 reinit_completion(&ctx->kdamond_started);
668 ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
669 nr_running_ctxs);
670 if (IS_ERR(ctx->kdamond)) {
671 err = PTR_ERR(ctx->kdamond);
672 ctx->kdamond = NULL;
673 } else {
674 wait_for_completion(&ctx->kdamond_started);
675 }
676 }
677 mutex_unlock(&ctx->kdamond_lock);
678
679 return err;
680 }
681
682 /**
683 * damon_start() - Starts the monitorings for a given group of contexts.
684 * @ctxs: an array of the pointers for contexts to start monitoring
685 * @nr_ctxs: size of @ctxs
686 * @exclusive: exclusiveness of this contexts group
687 *
688 * This function starts a group of monitoring threads for a group of monitoring
689 * contexts. One thread per each context is created and run in parallel. The
690 * caller should handle synchronization between the threads by itself. If
691 * @exclusive is true and a group of threads that created by other
692 * 'damon_start()' call is currently running, this function does nothing but
693 * returns -EBUSY.
694 *
695 * Return: 0 on success, negative error code otherwise.
696 */
damon_start(struct damon_ctx ** ctxs,int nr_ctxs,bool exclusive)697 int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
698 {
699 int i;
700 int err = 0;
701
702 mutex_lock(&damon_lock);
703 if ((exclusive && nr_running_ctxs) ||
704 (!exclusive && running_exclusive_ctxs)) {
705 mutex_unlock(&damon_lock);
706 return -EBUSY;
707 }
708
709 for (i = 0; i < nr_ctxs; i++) {
710 err = __damon_start(ctxs[i]);
711 if (err)
712 break;
713 nr_running_ctxs++;
714 }
715 if (exclusive && nr_running_ctxs)
716 running_exclusive_ctxs = true;
717 mutex_unlock(&damon_lock);
718
719 return err;
720 }
721
722 /*
723 * __damon_stop() - Stops monitoring of a given context.
724 * @ctx: monitoring context
725 *
726 * Return: 0 on success, negative error code otherwise.
727 */
__damon_stop(struct damon_ctx * ctx)728 static int __damon_stop(struct damon_ctx *ctx)
729 {
730 struct task_struct *tsk;
731
732 mutex_lock(&ctx->kdamond_lock);
733 tsk = ctx->kdamond;
734 if (tsk) {
735 get_task_struct(tsk);
736 mutex_unlock(&ctx->kdamond_lock);
737 kthread_stop_put(tsk);
738 return 0;
739 }
740 mutex_unlock(&ctx->kdamond_lock);
741
742 return -EPERM;
743 }
744
745 /**
746 * damon_stop() - Stops the monitorings for a given group of contexts.
747 * @ctxs: an array of the pointers for contexts to stop monitoring
748 * @nr_ctxs: size of @ctxs
749 *
750 * Return: 0 on success, negative error code otherwise.
751 */
damon_stop(struct damon_ctx ** ctxs,int nr_ctxs)752 int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
753 {
754 int i, err = 0;
755
756 for (i = 0; i < nr_ctxs; i++) {
757 /* nr_running_ctxs is decremented in kdamond_fn */
758 err = __damon_stop(ctxs[i]);
759 if (err)
760 break;
761 }
762 return err;
763 }
764
765 /*
766 * Reset the aggregated monitoring results ('nr_accesses' of each region).
767 */
kdamond_reset_aggregated(struct damon_ctx * c)768 static void kdamond_reset_aggregated(struct damon_ctx *c)
769 {
770 struct damon_target *t;
771 unsigned int ti = 0; /* target's index */
772
773 damon_for_each_target(t, c) {
774 struct damon_region *r;
775
776 damon_for_each_region(r, t) {
777 trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
778 r->last_nr_accesses = r->nr_accesses;
779 r->nr_accesses = 0;
780 }
781 ti++;
782 }
783 }
784
785 static void damon_split_region_at(struct damon_target *t,
786 struct damon_region *r, unsigned long sz_r);
787
__damos_valid_target(struct damon_region * r,struct damos * s)788 static bool __damos_valid_target(struct damon_region *r, struct damos *s)
789 {
790 unsigned long sz;
791
792 sz = damon_sz_region(r);
793 return s->pattern.min_sz_region <= sz &&
794 sz <= s->pattern.max_sz_region &&
795 s->pattern.min_nr_accesses <= r->nr_accesses &&
796 r->nr_accesses <= s->pattern.max_nr_accesses &&
797 s->pattern.min_age_region <= r->age &&
798 r->age <= s->pattern.max_age_region;
799 }
800
damos_valid_target(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)801 static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
802 struct damon_region *r, struct damos *s)
803 {
804 bool ret = __damos_valid_target(r, s);
805
806 if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
807 return ret;
808
809 return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
810 }
811
812 /*
813 * damos_skip_charged_region() - Check if the given region or starting part of
814 * it is already charged for the DAMOS quota.
815 * @t: The target of the region.
816 * @rp: The pointer to the region.
817 * @s: The scheme to be applied.
818 *
819 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
820 * action would applied to only a part of the target access pattern fulfilling
821 * regions. To avoid applying the scheme action to only already applied
822 * regions, DAMON skips applying the scheme action to the regions that charged
823 * in the previous charge window.
824 *
825 * This function checks if a given region should be skipped or not for the
826 * reason. If only the starting part of the region has previously charged,
827 * this function splits the region into two so that the second one covers the
828 * area that not charged in the previous charge widnow and saves the second
829 * region in *rp and returns false, so that the caller can apply DAMON action
830 * to the second one.
831 *
832 * Return: true if the region should be entirely skipped, false otherwise.
833 */
damos_skip_charged_region(struct damon_target * t,struct damon_region ** rp,struct damos * s)834 static bool damos_skip_charged_region(struct damon_target *t,
835 struct damon_region **rp, struct damos *s)
836 {
837 struct damon_region *r = *rp;
838 struct damos_quota *quota = &s->quota;
839 unsigned long sz_to_skip;
840
841 /* Skip previously charged regions */
842 if (quota->charge_target_from) {
843 if (t != quota->charge_target_from)
844 return true;
845 if (r == damon_last_region(t)) {
846 quota->charge_target_from = NULL;
847 quota->charge_addr_from = 0;
848 return true;
849 }
850 if (quota->charge_addr_from &&
851 r->ar.end <= quota->charge_addr_from)
852 return true;
853
854 if (quota->charge_addr_from && r->ar.start <
855 quota->charge_addr_from) {
856 sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
857 r->ar.start, DAMON_MIN_REGION);
858 if (!sz_to_skip) {
859 if (damon_sz_region(r) <= DAMON_MIN_REGION)
860 return true;
861 sz_to_skip = DAMON_MIN_REGION;
862 }
863 damon_split_region_at(t, r, sz_to_skip);
864 r = damon_next_region(r);
865 *rp = r;
866 }
867 quota->charge_target_from = NULL;
868 quota->charge_addr_from = 0;
869 }
870 return false;
871 }
872
damos_update_stat(struct damos * s,unsigned long sz_tried,unsigned long sz_applied)873 static void damos_update_stat(struct damos *s,
874 unsigned long sz_tried, unsigned long sz_applied)
875 {
876 s->stat.nr_tried++;
877 s->stat.sz_tried += sz_tried;
878 if (sz_applied)
879 s->stat.nr_applied++;
880 s->stat.sz_applied += sz_applied;
881 }
882
__damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos_filter * filter)883 static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
884 struct damon_region *r, struct damos_filter *filter)
885 {
886 bool matched = false;
887 struct damon_target *ti;
888 int target_idx = 0;
889 unsigned long start, end;
890
891 switch (filter->type) {
892 case DAMOS_FILTER_TYPE_TARGET:
893 damon_for_each_target(ti, ctx) {
894 if (ti == t)
895 break;
896 target_idx++;
897 }
898 matched = target_idx == filter->target_idx;
899 break;
900 case DAMOS_FILTER_TYPE_ADDR:
901 start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
902 end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
903
904 /* inside the range */
905 if (start <= r->ar.start && r->ar.end <= end) {
906 matched = true;
907 break;
908 }
909 /* outside of the range */
910 if (r->ar.end <= start || end <= r->ar.start) {
911 matched = false;
912 break;
913 }
914 /* start before the range and overlap */
915 if (r->ar.start < start) {
916 damon_split_region_at(t, r, start - r->ar.start);
917 matched = false;
918 break;
919 }
920 /* start inside the range */
921 damon_split_region_at(t, r, end - r->ar.start);
922 matched = true;
923 break;
924 default:
925 return false;
926 }
927
928 return matched == filter->matching;
929 }
930
damos_filter_out(struct damon_ctx * ctx,struct damon_target * t,struct damon_region * r,struct damos * s)931 static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
932 struct damon_region *r, struct damos *s)
933 {
934 struct damos_filter *filter;
935
936 damos_for_each_filter(filter, s) {
937 if (__damos_filter_out(ctx, t, r, filter))
938 return true;
939 }
940 return false;
941 }
942
damos_apply_scheme(struct damon_ctx * c,struct damon_target * t,struct damon_region * r,struct damos * s)943 static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
944 struct damon_region *r, struct damos *s)
945 {
946 struct damos_quota *quota = &s->quota;
947 unsigned long sz = damon_sz_region(r);
948 struct timespec64 begin, end;
949 unsigned long sz_applied = 0;
950 int err = 0;
951
952 if (c->ops.apply_scheme) {
953 if (quota->esz && quota->charged_sz + sz > quota->esz) {
954 sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
955 DAMON_MIN_REGION);
956 if (!sz)
957 goto update_stat;
958 damon_split_region_at(t, r, sz);
959 }
960 if (damos_filter_out(c, t, r, s))
961 return;
962 ktime_get_coarse_ts64(&begin);
963 if (c->callback.before_damos_apply)
964 err = c->callback.before_damos_apply(c, t, r, s);
965 if (!err)
966 sz_applied = c->ops.apply_scheme(c, t, r, s);
967 ktime_get_coarse_ts64(&end);
968 quota->total_charged_ns += timespec64_to_ns(&end) -
969 timespec64_to_ns(&begin);
970 quota->charged_sz += sz;
971 if (quota->esz && quota->charged_sz >= quota->esz) {
972 quota->charge_target_from = t;
973 quota->charge_addr_from = r->ar.end + 1;
974 }
975 }
976 if (s->action != DAMOS_STAT)
977 r->age = 0;
978
979 update_stat:
980 damos_update_stat(s, sz, sz_applied);
981 }
982
damon_do_apply_schemes(struct damon_ctx * c,struct damon_target * t,struct damon_region * r)983 static void damon_do_apply_schemes(struct damon_ctx *c,
984 struct damon_target *t,
985 struct damon_region *r)
986 {
987 struct damos *s;
988
989 damon_for_each_scheme(s, c) {
990 struct damos_quota *quota = &s->quota;
991
992 if (c->passed_sample_intervals < s->next_apply_sis)
993 continue;
994
995 if (!s->wmarks.activated)
996 continue;
997
998 /* Check the quota */
999 if (quota->esz && quota->charged_sz >= quota->esz)
1000 continue;
1001
1002 if (damos_skip_charged_region(t, &r, s))
1003 continue;
1004
1005 if (!damos_valid_target(c, t, r, s))
1006 continue;
1007
1008 damos_apply_scheme(c, t, r, s);
1009 }
1010 }
1011
1012 /* Shouldn't be called if quota->ms and quota->sz are zero */
damos_set_effective_quota(struct damos_quota * quota)1013 static void damos_set_effective_quota(struct damos_quota *quota)
1014 {
1015 unsigned long throughput;
1016 unsigned long esz;
1017
1018 if (!quota->ms) {
1019 quota->esz = quota->sz;
1020 return;
1021 }
1022
1023 if (quota->total_charged_ns)
1024 throughput = quota->total_charged_sz * 1000000 /
1025 quota->total_charged_ns;
1026 else
1027 throughput = PAGE_SIZE * 1024;
1028 esz = throughput * quota->ms;
1029
1030 if (quota->sz && quota->sz < esz)
1031 esz = quota->sz;
1032 quota->esz = esz;
1033 }
1034
damos_adjust_quota(struct damon_ctx * c,struct damos * s)1035 static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1036 {
1037 struct damos_quota *quota = &s->quota;
1038 struct damon_target *t;
1039 struct damon_region *r;
1040 unsigned long cumulated_sz;
1041 unsigned int score, max_score = 0;
1042
1043 if (!quota->ms && !quota->sz)
1044 return;
1045
1046 /* New charge window starts */
1047 if (time_after_eq(jiffies, quota->charged_from +
1048 msecs_to_jiffies(quota->reset_interval))) {
1049 if (quota->esz && quota->charged_sz >= quota->esz)
1050 s->stat.qt_exceeds++;
1051 quota->total_charged_sz += quota->charged_sz;
1052 quota->charged_from = jiffies;
1053 quota->charged_sz = 0;
1054 damos_set_effective_quota(quota);
1055 }
1056
1057 if (!c->ops.get_scheme_score)
1058 return;
1059
1060 /* Fill up the score histogram */
1061 memset(quota->histogram, 0, sizeof(quota->histogram));
1062 damon_for_each_target(t, c) {
1063 damon_for_each_region(r, t) {
1064 if (!__damos_valid_target(r, s))
1065 continue;
1066 score = c->ops.get_scheme_score(c, t, r, s);
1067 quota->histogram[score] += damon_sz_region(r);
1068 if (score > max_score)
1069 max_score = score;
1070 }
1071 }
1072
1073 /* Set the min score limit */
1074 for (cumulated_sz = 0, score = max_score; ; score--) {
1075 cumulated_sz += quota->histogram[score];
1076 if (cumulated_sz >= quota->esz || !score)
1077 break;
1078 }
1079 quota->min_score = score;
1080 }
1081
kdamond_apply_schemes(struct damon_ctx * c)1082 static void kdamond_apply_schemes(struct damon_ctx *c)
1083 {
1084 struct damon_target *t;
1085 struct damon_region *r, *next_r;
1086 struct damos *s;
1087 unsigned long sample_interval = c->attrs.sample_interval ?
1088 c->attrs.sample_interval : 1;
1089 bool has_schemes_to_apply = false;
1090
1091 damon_for_each_scheme(s, c) {
1092 if (c->passed_sample_intervals < s->next_apply_sis)
1093 continue;
1094
1095 if (!s->wmarks.activated)
1096 continue;
1097
1098 has_schemes_to_apply = true;
1099
1100 damos_adjust_quota(c, s);
1101 }
1102
1103 if (!has_schemes_to_apply)
1104 return;
1105
1106 damon_for_each_target(t, c) {
1107 damon_for_each_region_safe(r, next_r, t)
1108 damon_do_apply_schemes(c, t, r);
1109 }
1110
1111 damon_for_each_scheme(s, c) {
1112 if (c->passed_sample_intervals < s->next_apply_sis)
1113 continue;
1114 s->next_apply_sis = c->passed_sample_intervals +
1115 (s->apply_interval_us ? s->apply_interval_us :
1116 c->attrs.aggr_interval) / sample_interval;
1117 }
1118 }
1119
1120 /*
1121 * Merge two adjacent regions into one region
1122 */
damon_merge_two_regions(struct damon_target * t,struct damon_region * l,struct damon_region * r)1123 static void damon_merge_two_regions(struct damon_target *t,
1124 struct damon_region *l, struct damon_region *r)
1125 {
1126 unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1127
1128 l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1129 (sz_l + sz_r);
1130 l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1131 l->ar.end = r->ar.end;
1132 damon_destroy_region(r, t);
1133 }
1134
1135 /*
1136 * Merge adjacent regions having similar access frequencies
1137 *
1138 * t target affected by this merge operation
1139 * thres '->nr_accesses' diff threshold for the merge
1140 * sz_limit size upper limit of each region
1141 */
damon_merge_regions_of(struct damon_target * t,unsigned int thres,unsigned long sz_limit)1142 static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1143 unsigned long sz_limit)
1144 {
1145 struct damon_region *r, *prev = NULL, *next;
1146
1147 damon_for_each_region_safe(r, next, t) {
1148 if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1149 r->age = 0;
1150 else
1151 r->age++;
1152
1153 if (prev && prev->ar.end == r->ar.start &&
1154 abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1155 damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1156 damon_merge_two_regions(t, prev, r);
1157 else
1158 prev = r;
1159 }
1160 }
1161
1162 /*
1163 * Merge adjacent regions having similar access frequencies
1164 *
1165 * threshold '->nr_accesses' diff threshold for the merge
1166 * sz_limit size upper limit of each region
1167 *
1168 * This function merges monitoring target regions which are adjacent and their
1169 * access frequencies are similar. This is for minimizing the monitoring
1170 * overhead under the dynamically changeable access pattern. If a merge was
1171 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1172 *
1173 * The total number of regions could be higher than the user-defined limit,
1174 * max_nr_regions for some cases. For example, the user can update
1175 * max_nr_regions to a number that lower than the current number of regions
1176 * while DAMON is running. For such a case, repeat merging until the limit is
1177 * met while increasing @threshold up to possible maximum level.
1178 */
kdamond_merge_regions(struct damon_ctx * c,unsigned int threshold,unsigned long sz_limit)1179 static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1180 unsigned long sz_limit)
1181 {
1182 struct damon_target *t;
1183 unsigned int nr_regions;
1184 unsigned int max_thres;
1185
1186 max_thres = c->attrs.aggr_interval /
1187 (c->attrs.sample_interval ? c->attrs.sample_interval : 1);
1188 do {
1189 nr_regions = 0;
1190 damon_for_each_target(t, c) {
1191 damon_merge_regions_of(t, threshold, sz_limit);
1192 nr_regions += damon_nr_regions(t);
1193 }
1194 threshold = max(1, threshold * 2);
1195 } while (nr_regions > c->attrs.max_nr_regions &&
1196 threshold / 2 < max_thres);
1197 }
1198
1199 /*
1200 * Split a region in two
1201 *
1202 * r the region to be split
1203 * sz_r size of the first sub-region that will be made
1204 */
damon_split_region_at(struct damon_target * t,struct damon_region * r,unsigned long sz_r)1205 static void damon_split_region_at(struct damon_target *t,
1206 struct damon_region *r, unsigned long sz_r)
1207 {
1208 struct damon_region *new;
1209
1210 new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1211 if (!new)
1212 return;
1213
1214 r->ar.end = new->ar.start;
1215
1216 new->age = r->age;
1217 new->last_nr_accesses = r->last_nr_accesses;
1218 new->nr_accesses = r->nr_accesses;
1219
1220 damon_insert_region(new, r, damon_next_region(r), t);
1221 }
1222
1223 /* Split every region in the given target into 'nr_subs' regions */
damon_split_regions_of(struct damon_target * t,int nr_subs)1224 static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1225 {
1226 struct damon_region *r, *next;
1227 unsigned long sz_region, sz_sub = 0;
1228 int i;
1229
1230 damon_for_each_region_safe(r, next, t) {
1231 sz_region = damon_sz_region(r);
1232
1233 for (i = 0; i < nr_subs - 1 &&
1234 sz_region > 2 * DAMON_MIN_REGION; i++) {
1235 /*
1236 * Randomly select size of left sub-region to be at
1237 * least 10 percent and at most 90% of original region
1238 */
1239 sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1240 sz_region / 10, DAMON_MIN_REGION);
1241 /* Do not allow blank region */
1242 if (sz_sub == 0 || sz_sub >= sz_region)
1243 continue;
1244
1245 damon_split_region_at(t, r, sz_sub);
1246 sz_region = sz_sub;
1247 }
1248 }
1249 }
1250
1251 /*
1252 * Split every target region into randomly-sized small regions
1253 *
1254 * This function splits every target region into random-sized small regions if
1255 * current total number of the regions is equal or smaller than half of the
1256 * user-specified maximum number of regions. This is for maximizing the
1257 * monitoring accuracy under the dynamically changeable access patterns. If a
1258 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1259 * it.
1260 */
kdamond_split_regions(struct damon_ctx * ctx)1261 static void kdamond_split_regions(struct damon_ctx *ctx)
1262 {
1263 struct damon_target *t;
1264 unsigned int nr_regions = 0;
1265 static unsigned int last_nr_regions;
1266 int nr_subregions = 2;
1267
1268 damon_for_each_target(t, ctx)
1269 nr_regions += damon_nr_regions(t);
1270
1271 if (nr_regions > ctx->attrs.max_nr_regions / 2)
1272 return;
1273
1274 /* Maybe the middle of the region has different access frequency */
1275 if (last_nr_regions == nr_regions &&
1276 nr_regions < ctx->attrs.max_nr_regions / 3)
1277 nr_subregions = 3;
1278
1279 damon_for_each_target(t, ctx)
1280 damon_split_regions_of(t, nr_subregions);
1281
1282 last_nr_regions = nr_regions;
1283 }
1284
1285 /*
1286 * Check whether current monitoring should be stopped
1287 *
1288 * The monitoring is stopped when either the user requested to stop, or all
1289 * monitoring targets are invalid.
1290 *
1291 * Returns true if need to stop current monitoring.
1292 */
kdamond_need_stop(struct damon_ctx * ctx)1293 static bool kdamond_need_stop(struct damon_ctx *ctx)
1294 {
1295 struct damon_target *t;
1296
1297 if (kthread_should_stop())
1298 return true;
1299
1300 if (!ctx->ops.target_valid)
1301 return false;
1302
1303 damon_for_each_target(t, ctx) {
1304 if (ctx->ops.target_valid(t))
1305 return false;
1306 }
1307
1308 return true;
1309 }
1310
damos_wmark_metric_value(enum damos_wmark_metric metric)1311 static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1312 {
1313 struct sysinfo i;
1314
1315 switch (metric) {
1316 case DAMOS_WMARK_FREE_MEM_RATE:
1317 si_meminfo(&i);
1318 return i.freeram * 1000 / i.totalram;
1319 default:
1320 break;
1321 }
1322 return -EINVAL;
1323 }
1324
1325 /*
1326 * Returns zero if the scheme is active. Else, returns time to wait for next
1327 * watermark check in micro-seconds.
1328 */
damos_wmark_wait_us(struct damos * scheme)1329 static unsigned long damos_wmark_wait_us(struct damos *scheme)
1330 {
1331 unsigned long metric;
1332
1333 if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1334 return 0;
1335
1336 metric = damos_wmark_metric_value(scheme->wmarks.metric);
1337 /* higher than high watermark or lower than low watermark */
1338 if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1339 if (scheme->wmarks.activated)
1340 pr_debug("deactivate a scheme (%d) for %s wmark\n",
1341 scheme->action,
1342 metric > scheme->wmarks.high ?
1343 "high" : "low");
1344 scheme->wmarks.activated = false;
1345 return scheme->wmarks.interval;
1346 }
1347
1348 /* inactive and higher than middle watermark */
1349 if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1350 !scheme->wmarks.activated)
1351 return scheme->wmarks.interval;
1352
1353 if (!scheme->wmarks.activated)
1354 pr_debug("activate a scheme (%d)\n", scheme->action);
1355 scheme->wmarks.activated = true;
1356 return 0;
1357 }
1358
kdamond_usleep(unsigned long usecs)1359 static void kdamond_usleep(unsigned long usecs)
1360 {
1361 /* See Documentation/timers/timers-howto.rst for the thresholds */
1362 if (usecs > 20 * USEC_PER_MSEC)
1363 schedule_timeout_idle(usecs_to_jiffies(usecs));
1364 else
1365 usleep_idle_range(usecs, usecs + 1);
1366 }
1367
1368 /* Returns negative error code if it's not activated but should return */
kdamond_wait_activation(struct damon_ctx * ctx)1369 static int kdamond_wait_activation(struct damon_ctx *ctx)
1370 {
1371 struct damos *s;
1372 unsigned long wait_time;
1373 unsigned long min_wait_time = 0;
1374 bool init_wait_time = false;
1375
1376 while (!kdamond_need_stop(ctx)) {
1377 damon_for_each_scheme(s, ctx) {
1378 wait_time = damos_wmark_wait_us(s);
1379 if (!init_wait_time || wait_time < min_wait_time) {
1380 init_wait_time = true;
1381 min_wait_time = wait_time;
1382 }
1383 }
1384 if (!min_wait_time)
1385 return 0;
1386
1387 kdamond_usleep(min_wait_time);
1388
1389 if (ctx->callback.after_wmarks_check &&
1390 ctx->callback.after_wmarks_check(ctx))
1391 break;
1392 }
1393 return -EBUSY;
1394 }
1395
kdamond_init_intervals_sis(struct damon_ctx * ctx)1396 static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1397 {
1398 unsigned long sample_interval = ctx->attrs.sample_interval ?
1399 ctx->attrs.sample_interval : 1;
1400 unsigned long apply_interval;
1401 struct damos *scheme;
1402
1403 ctx->passed_sample_intervals = 0;
1404 ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1405 ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1406 sample_interval;
1407
1408 damon_for_each_scheme(scheme, ctx) {
1409 apply_interval = scheme->apply_interval_us ?
1410 scheme->apply_interval_us : ctx->attrs.aggr_interval;
1411 scheme->next_apply_sis = apply_interval / sample_interval;
1412 }
1413 }
1414
1415 /*
1416 * The monitoring daemon that runs as a kernel thread
1417 */
kdamond_fn(void * data)1418 static int kdamond_fn(void *data)
1419 {
1420 struct damon_ctx *ctx = data;
1421 struct damon_target *t;
1422 struct damon_region *r, *next;
1423 unsigned int max_nr_accesses = 0;
1424 unsigned long sz_limit = 0;
1425
1426 pr_debug("kdamond (%d) starts\n", current->pid);
1427
1428 complete(&ctx->kdamond_started);
1429 kdamond_init_intervals_sis(ctx);
1430
1431 if (ctx->ops.init)
1432 ctx->ops.init(ctx);
1433 if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1434 goto done;
1435
1436 sz_limit = damon_region_sz_limit(ctx);
1437
1438 while (!kdamond_need_stop(ctx)) {
1439 /*
1440 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1441 * be changed from after_wmarks_check() or after_aggregation()
1442 * callbacks. Read the values here, and use those for this
1443 * iteration. That is, damon_set_attrs() updated new values
1444 * are respected from next iteration.
1445 */
1446 unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1447 unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1448 unsigned long sample_interval = ctx->attrs.sample_interval;
1449
1450 if (kdamond_wait_activation(ctx))
1451 break;
1452
1453 if (ctx->ops.prepare_access_checks)
1454 ctx->ops.prepare_access_checks(ctx);
1455 if (ctx->callback.after_sampling &&
1456 ctx->callback.after_sampling(ctx))
1457 break;
1458
1459 kdamond_usleep(sample_interval);
1460 ctx->passed_sample_intervals++;
1461
1462 if (ctx->ops.check_accesses)
1463 max_nr_accesses = ctx->ops.check_accesses(ctx);
1464
1465 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
1466 kdamond_merge_regions(ctx,
1467 max_nr_accesses / 10,
1468 sz_limit);
1469 if (ctx->callback.after_aggregation &&
1470 ctx->callback.after_aggregation(ctx))
1471 break;
1472 }
1473
1474 /*
1475 * do kdamond_apply_schemes() after kdamond_merge_regions() if
1476 * possible, to reduce overhead
1477 */
1478 if (!list_empty(&ctx->schemes))
1479 kdamond_apply_schemes(ctx);
1480
1481 sample_interval = ctx->attrs.sample_interval ?
1482 ctx->attrs.sample_interval : 1;
1483 if (ctx->passed_sample_intervals >= next_aggregation_sis) {
1484 ctx->next_aggregation_sis = next_aggregation_sis +
1485 ctx->attrs.aggr_interval / sample_interval;
1486
1487 kdamond_reset_aggregated(ctx);
1488 kdamond_split_regions(ctx);
1489 if (ctx->ops.reset_aggregated)
1490 ctx->ops.reset_aggregated(ctx);
1491 }
1492
1493 if (ctx->passed_sample_intervals >= next_ops_update_sis) {
1494 ctx->next_ops_update_sis = next_ops_update_sis +
1495 ctx->attrs.ops_update_interval /
1496 sample_interval;
1497 if (ctx->ops.update)
1498 ctx->ops.update(ctx);
1499 sz_limit = damon_region_sz_limit(ctx);
1500 }
1501 }
1502 done:
1503 damon_for_each_target(t, ctx) {
1504 damon_for_each_region_safe(r, next, t)
1505 damon_destroy_region(r, t);
1506 }
1507
1508 if (ctx->callback.before_terminate)
1509 ctx->callback.before_terminate(ctx);
1510 if (ctx->ops.cleanup)
1511 ctx->ops.cleanup(ctx);
1512
1513 pr_debug("kdamond (%d) finishes\n", current->pid);
1514 mutex_lock(&ctx->kdamond_lock);
1515 ctx->kdamond = NULL;
1516 mutex_unlock(&ctx->kdamond_lock);
1517
1518 mutex_lock(&damon_lock);
1519 nr_running_ctxs--;
1520 if (!nr_running_ctxs && running_exclusive_ctxs)
1521 running_exclusive_ctxs = false;
1522 mutex_unlock(&damon_lock);
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * struct damon_system_ram_region - System RAM resource address region of
1529 * [@start, @end).
1530 * @start: Start address of the region (inclusive).
1531 * @end: End address of the region (exclusive).
1532 */
1533 struct damon_system_ram_region {
1534 unsigned long start;
1535 unsigned long end;
1536 };
1537
walk_system_ram(struct resource * res,void * arg)1538 static int walk_system_ram(struct resource *res, void *arg)
1539 {
1540 struct damon_system_ram_region *a = arg;
1541
1542 if (a->end - a->start < resource_size(res)) {
1543 a->start = res->start;
1544 a->end = res->end;
1545 }
1546 return 0;
1547 }
1548
1549 /*
1550 * Find biggest 'System RAM' resource and store its start and end address in
1551 * @start and @end, respectively. If no System RAM is found, returns false.
1552 */
damon_find_biggest_system_ram(unsigned long * start,unsigned long * end)1553 static bool damon_find_biggest_system_ram(unsigned long *start,
1554 unsigned long *end)
1555
1556 {
1557 struct damon_system_ram_region arg = {};
1558
1559 walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1560 if (arg.end <= arg.start)
1561 return false;
1562
1563 *start = arg.start;
1564 *end = arg.end;
1565 return true;
1566 }
1567
1568 /**
1569 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1570 * monitoring target as requested, or biggest 'System RAM'.
1571 * @t: The monitoring target to set the region.
1572 * @start: The pointer to the start address of the region.
1573 * @end: The pointer to the end address of the region.
1574 *
1575 * This function sets the region of @t as requested by @start and @end. If the
1576 * values of @start and @end are zero, however, this function finds the biggest
1577 * 'System RAM' resource and sets the region to cover the resource. In the
1578 * latter case, this function saves the start and end addresses of the resource
1579 * in @start and @end, respectively.
1580 *
1581 * Return: 0 on success, negative error code otherwise.
1582 */
damon_set_region_biggest_system_ram_default(struct damon_target * t,unsigned long * start,unsigned long * end)1583 int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1584 unsigned long *start, unsigned long *end)
1585 {
1586 struct damon_addr_range addr_range;
1587
1588 if (*start > *end)
1589 return -EINVAL;
1590
1591 if (!*start && !*end &&
1592 !damon_find_biggest_system_ram(start, end))
1593 return -EINVAL;
1594
1595 addr_range.start = *start;
1596 addr_range.end = *end;
1597 return damon_set_regions(t, &addr_range, 1);
1598 }
1599
damon_init(void)1600 static int __init damon_init(void)
1601 {
1602 damon_region_cache = KMEM_CACHE(damon_region, 0);
1603 if (unlikely(!damon_region_cache)) {
1604 pr_err("creating damon_region_cache fails\n");
1605 return -ENOMEM;
1606 }
1607
1608 return 0;
1609 }
1610
1611 subsys_initcall(damon_init);
1612
1613 #include "core-test.h"
1614