1 /*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <linux/inet.h>
45 #include <rdma/ib_cache.h>
46 #include <scsi/scsi_proto.h>
47 #include <scsi/scsi_tcq.h>
48 #include <target/target_core_base.h>
49 #include <target/target_core_fabric.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME "ib_srpt"
54
55 #define SRPT_ID_STRING "Linux SRP target"
56
57 #undef pr_fmt
58 #define pr_fmt(fmt) DRV_NAME " " fmt
59
60 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
61 MODULE_DESCRIPTION("SCSI RDMA Protocol target driver");
62 MODULE_LICENSE("Dual BSD/GPL");
63
64 /*
65 * Global Variables
66 */
67
68 static u64 srpt_service_guid;
69 static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */
70 static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */
71 static DEFINE_MUTEX(srpt_mc_mutex); /* Protects srpt_memory_caches. */
72 static DEFINE_XARRAY(srpt_memory_caches); /* See also srpt_memory_cache_entry */
73
74 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
75 module_param(srp_max_req_size, int, 0444);
76 MODULE_PARM_DESC(srp_max_req_size,
77 "Maximum size of SRP request messages in bytes.");
78
79 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
80 module_param(srpt_srq_size, int, 0444);
81 MODULE_PARM_DESC(srpt_srq_size,
82 "Shared receive queue (SRQ) size.");
83
srpt_set_u64_x(const char * buffer,const struct kernel_param * kp)84 static int srpt_set_u64_x(const char *buffer, const struct kernel_param *kp)
85 {
86 return kstrtou64(buffer, 16, (u64 *)kp->arg);
87 }
srpt_get_u64_x(char * buffer,const struct kernel_param * kp)88 static int srpt_get_u64_x(char *buffer, const struct kernel_param *kp)
89 {
90 return sprintf(buffer, "0x%016llx\n", *(u64 *)kp->arg);
91 }
92 module_param_call(srpt_service_guid, srpt_set_u64_x, srpt_get_u64_x,
93 &srpt_service_guid, 0444);
94 MODULE_PARM_DESC(srpt_service_guid,
95 "Using this value for ioc_guid, id_ext, and cm_listen_id instead of using the node_guid of the first HCA.");
96
97 static struct ib_client srpt_client;
98 /* Protects both rdma_cm_port and rdma_cm_id. */
99 static DEFINE_MUTEX(rdma_cm_mutex);
100 /* Port number RDMA/CM will bind to. */
101 static u16 rdma_cm_port;
102 static struct rdma_cm_id *rdma_cm_id;
103 static void srpt_release_cmd(struct se_cmd *se_cmd);
104 static void srpt_free_ch(struct kref *kref);
105 static int srpt_queue_status(struct se_cmd *cmd);
106 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc);
107 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc);
108 static void srpt_process_wait_list(struct srpt_rdma_ch *ch);
109
110 /* Type of the entries in srpt_memory_caches. */
111 struct srpt_memory_cache_entry {
112 refcount_t ref;
113 struct kmem_cache *c;
114 };
115
srpt_cache_get(unsigned int object_size)116 static struct kmem_cache *srpt_cache_get(unsigned int object_size)
117 {
118 struct srpt_memory_cache_entry *e;
119 char name[32];
120 void *res;
121
122 guard(mutex)(&srpt_mc_mutex);
123 e = xa_load(&srpt_memory_caches, object_size);
124 if (e) {
125 refcount_inc(&e->ref);
126 return e->c;
127 }
128 snprintf(name, sizeof(name), "srpt-%u", object_size);
129 e = kmalloc(sizeof(*e), GFP_KERNEL);
130 if (!e)
131 return NULL;
132 refcount_set(&e->ref, 1);
133 e->c = kmem_cache_create(name, object_size, /*align=*/512, 0, NULL);
134 if (!e->c)
135 goto free_entry;
136 res = xa_store(&srpt_memory_caches, object_size, e, GFP_KERNEL);
137 if (xa_is_err(res))
138 goto destroy_cache;
139 return e->c;
140
141 destroy_cache:
142 kmem_cache_destroy(e->c);
143
144 free_entry:
145 kfree(e);
146 return NULL;
147 }
148
srpt_cache_put(struct kmem_cache * c)149 static void srpt_cache_put(struct kmem_cache *c)
150 {
151 struct srpt_memory_cache_entry *e = NULL;
152 unsigned long object_size;
153
154 guard(mutex)(&srpt_mc_mutex);
155 xa_for_each(&srpt_memory_caches, object_size, e)
156 if (e->c == c)
157 break;
158 if (WARN_ON_ONCE(!e))
159 return;
160 if (!refcount_dec_and_test(&e->ref))
161 return;
162 WARN_ON_ONCE(xa_erase(&srpt_memory_caches, object_size) != e);
163 kmem_cache_destroy(e->c);
164 kfree(e);
165 }
166
167 /*
168 * The only allowed channel state changes are those that change the channel
169 * state into a state with a higher numerical value. Hence the new > prev test.
170 */
srpt_set_ch_state(struct srpt_rdma_ch * ch,enum rdma_ch_state new)171 static bool srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new)
172 {
173 unsigned long flags;
174 enum rdma_ch_state prev;
175 bool changed = false;
176
177 spin_lock_irqsave(&ch->spinlock, flags);
178 prev = ch->state;
179 if (new > prev) {
180 ch->state = new;
181 changed = true;
182 }
183 spin_unlock_irqrestore(&ch->spinlock, flags);
184
185 return changed;
186 }
187
188 /**
189 * srpt_event_handler - asynchronous IB event callback function
190 * @handler: IB event handler registered by ib_register_event_handler().
191 * @event: Description of the event that occurred.
192 *
193 * Callback function called by the InfiniBand core when an asynchronous IB
194 * event occurs. This callback may occur in interrupt context. See also
195 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
196 * Architecture Specification.
197 */
srpt_event_handler(struct ib_event_handler * handler,struct ib_event * event)198 static void srpt_event_handler(struct ib_event_handler *handler,
199 struct ib_event *event)
200 {
201 struct srpt_device *sdev =
202 container_of(handler, struct srpt_device, event_handler);
203 struct srpt_port *sport;
204 u8 port_num;
205
206 pr_debug("ASYNC event= %d on device= %s\n", event->event,
207 dev_name(&sdev->device->dev));
208
209 switch (event->event) {
210 case IB_EVENT_PORT_ERR:
211 port_num = event->element.port_num - 1;
212 if (port_num < sdev->device->phys_port_cnt) {
213 sport = &sdev->port[port_num];
214 sport->lid = 0;
215 sport->sm_lid = 0;
216 } else {
217 WARN(true, "event %d: port_num %d out of range 1..%d\n",
218 event->event, port_num + 1,
219 sdev->device->phys_port_cnt);
220 }
221 break;
222 case IB_EVENT_PORT_ACTIVE:
223 case IB_EVENT_LID_CHANGE:
224 case IB_EVENT_PKEY_CHANGE:
225 case IB_EVENT_SM_CHANGE:
226 case IB_EVENT_CLIENT_REREGISTER:
227 case IB_EVENT_GID_CHANGE:
228 /* Refresh port data asynchronously. */
229 port_num = event->element.port_num - 1;
230 if (port_num < sdev->device->phys_port_cnt) {
231 sport = &sdev->port[port_num];
232 if (!sport->lid && !sport->sm_lid)
233 schedule_work(&sport->work);
234 } else {
235 WARN(true, "event %d: port_num %d out of range 1..%d\n",
236 event->event, port_num + 1,
237 sdev->device->phys_port_cnt);
238 }
239 break;
240 default:
241 pr_err("received unrecognized IB event %d\n", event->event);
242 break;
243 }
244 }
245
246 /**
247 * srpt_srq_event - SRQ event callback function
248 * @event: Description of the event that occurred.
249 * @ctx: Context pointer specified at SRQ creation time.
250 */
srpt_srq_event(struct ib_event * event,void * ctx)251 static void srpt_srq_event(struct ib_event *event, void *ctx)
252 {
253 pr_debug("SRQ event %d\n", event->event);
254 }
255
get_ch_state_name(enum rdma_ch_state s)256 static const char *get_ch_state_name(enum rdma_ch_state s)
257 {
258 switch (s) {
259 case CH_CONNECTING:
260 return "connecting";
261 case CH_LIVE:
262 return "live";
263 case CH_DISCONNECTING:
264 return "disconnecting";
265 case CH_DRAINING:
266 return "draining";
267 case CH_DISCONNECTED:
268 return "disconnected";
269 }
270 return "???";
271 }
272
273 /**
274 * srpt_qp_event - QP event callback function
275 * @event: Description of the event that occurred.
276 * @ptr: SRPT RDMA channel.
277 */
srpt_qp_event(struct ib_event * event,void * ptr)278 static void srpt_qp_event(struct ib_event *event, void *ptr)
279 {
280 struct srpt_rdma_ch *ch = ptr;
281
282 pr_debug("QP event %d on ch=%p sess_name=%s-%d state=%s\n",
283 event->event, ch, ch->sess_name, ch->qp->qp_num,
284 get_ch_state_name(ch->state));
285
286 switch (event->event) {
287 case IB_EVENT_COMM_EST:
288 if (ch->using_rdma_cm)
289 rdma_notify(ch->rdma_cm.cm_id, event->event);
290 else
291 ib_cm_notify(ch->ib_cm.cm_id, event->event);
292 break;
293 case IB_EVENT_QP_LAST_WQE_REACHED:
294 pr_debug("%s-%d, state %s: received Last WQE event.\n",
295 ch->sess_name, ch->qp->qp_num,
296 get_ch_state_name(ch->state));
297 break;
298 default:
299 pr_err("received unrecognized IB QP event %d\n", event->event);
300 break;
301 }
302 }
303
304 /**
305 * srpt_set_ioc - initialize a IOUnitInfo structure
306 * @c_list: controller list.
307 * @slot: one-based slot number.
308 * @value: four-bit value.
309 *
310 * Copies the lowest four bits of value in element slot of the array of four
311 * bit elements called c_list (controller list). The index slot is one-based.
312 */
srpt_set_ioc(u8 * c_list,u32 slot,u8 value)313 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
314 {
315 u16 id;
316 u8 tmp;
317
318 id = (slot - 1) / 2;
319 if (slot & 0x1) {
320 tmp = c_list[id] & 0xf;
321 c_list[id] = (value << 4) | tmp;
322 } else {
323 tmp = c_list[id] & 0xf0;
324 c_list[id] = (value & 0xf) | tmp;
325 }
326 }
327
328 /**
329 * srpt_get_class_port_info - copy ClassPortInfo to a management datagram
330 * @mad: Datagram that will be sent as response to DM_ATTR_CLASS_PORT_INFO.
331 *
332 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
333 * Specification.
334 */
srpt_get_class_port_info(struct ib_dm_mad * mad)335 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
336 {
337 struct ib_class_port_info *cif;
338
339 cif = (struct ib_class_port_info *)mad->data;
340 memset(cif, 0, sizeof(*cif));
341 cif->base_version = 1;
342 cif->class_version = 1;
343
344 ib_set_cpi_resp_time(cif, 20);
345 mad->mad_hdr.status = 0;
346 }
347
348 /**
349 * srpt_get_iou - write IOUnitInfo to a management datagram
350 * @mad: Datagram that will be sent as response to DM_ATTR_IOU_INFO.
351 *
352 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
353 * Specification. See also section B.7, table B.6 in the SRP r16a document.
354 */
srpt_get_iou(struct ib_dm_mad * mad)355 static void srpt_get_iou(struct ib_dm_mad *mad)
356 {
357 struct ib_dm_iou_info *ioui;
358 u8 slot;
359 int i;
360
361 ioui = (struct ib_dm_iou_info *)mad->data;
362 ioui->change_id = cpu_to_be16(1);
363 ioui->max_controllers = 16;
364
365 /* set present for slot 1 and empty for the rest */
366 srpt_set_ioc(ioui->controller_list, 1, 1);
367 for (i = 1, slot = 2; i < 16; i++, slot++)
368 srpt_set_ioc(ioui->controller_list, slot, 0);
369
370 mad->mad_hdr.status = 0;
371 }
372
373 /**
374 * srpt_get_ioc - write IOControllerprofile to a management datagram
375 * @sport: HCA port through which the MAD has been received.
376 * @slot: Slot number specified in DM_ATTR_IOC_PROFILE query.
377 * @mad: Datagram that will be sent as response to DM_ATTR_IOC_PROFILE.
378 *
379 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
380 * Architecture Specification. See also section B.7, table B.7 in the SRP
381 * r16a document.
382 */
srpt_get_ioc(struct srpt_port * sport,u32 slot,struct ib_dm_mad * mad)383 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
384 struct ib_dm_mad *mad)
385 {
386 struct srpt_device *sdev = sport->sdev;
387 struct ib_dm_ioc_profile *iocp;
388 int send_queue_depth;
389
390 iocp = (struct ib_dm_ioc_profile *)mad->data;
391
392 if (!slot || slot > 16) {
393 mad->mad_hdr.status
394 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
395 return;
396 }
397
398 if (slot > 2) {
399 mad->mad_hdr.status
400 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
401 return;
402 }
403
404 if (sdev->use_srq)
405 send_queue_depth = sdev->srq_size;
406 else
407 send_queue_depth = min(MAX_SRPT_RQ_SIZE,
408 sdev->device->attrs.max_qp_wr);
409
410 memset(iocp, 0, sizeof(*iocp));
411 strcpy(iocp->id_string, SRPT_ID_STRING);
412 iocp->guid = cpu_to_be64(srpt_service_guid);
413 iocp->vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
414 iocp->device_id = cpu_to_be32(sdev->device->attrs.vendor_part_id);
415 iocp->device_version = cpu_to_be16(sdev->device->attrs.hw_ver);
416 iocp->subsys_vendor_id = cpu_to_be32(sdev->device->attrs.vendor_id);
417 iocp->subsys_device_id = 0x0;
418 iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
419 iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
420 iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
421 iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
422 iocp->send_queue_depth = cpu_to_be16(send_queue_depth);
423 iocp->rdma_read_depth = 4;
424 iocp->send_size = cpu_to_be32(srp_max_req_size);
425 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
426 1U << 24));
427 iocp->num_svc_entries = 1;
428 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
429 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
430
431 mad->mad_hdr.status = 0;
432 }
433
434 /**
435 * srpt_get_svc_entries - write ServiceEntries to a management datagram
436 * @ioc_guid: I/O controller GUID to use in reply.
437 * @slot: I/O controller number.
438 * @hi: End of the range of service entries to be specified in the reply.
439 * @lo: Start of the range of service entries to be specified in the reply..
440 * @mad: Datagram that will be sent as response to DM_ATTR_SVC_ENTRIES.
441 *
442 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
443 * Specification. See also section B.7, table B.8 in the SRP r16a document.
444 */
srpt_get_svc_entries(u64 ioc_guid,u16 slot,u8 hi,u8 lo,struct ib_dm_mad * mad)445 static void srpt_get_svc_entries(u64 ioc_guid,
446 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
447 {
448 struct ib_dm_svc_entries *svc_entries;
449
450 WARN_ON(!ioc_guid);
451
452 if (!slot || slot > 16) {
453 mad->mad_hdr.status
454 = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
455 return;
456 }
457
458 if (slot > 2 || lo > hi || hi > 1) {
459 mad->mad_hdr.status
460 = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
461 return;
462 }
463
464 svc_entries = (struct ib_dm_svc_entries *)mad->data;
465 memset(svc_entries, 0, sizeof(*svc_entries));
466 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
467 snprintf(svc_entries->service_entries[0].name,
468 sizeof(svc_entries->service_entries[0].name),
469 "%s%016llx",
470 SRP_SERVICE_NAME_PREFIX,
471 ioc_guid);
472
473 mad->mad_hdr.status = 0;
474 }
475
476 /**
477 * srpt_mgmt_method_get - process a received management datagram
478 * @sp: HCA port through which the MAD has been received.
479 * @rq_mad: received MAD.
480 * @rsp_mad: response MAD.
481 */
srpt_mgmt_method_get(struct srpt_port * sp,struct ib_mad * rq_mad,struct ib_dm_mad * rsp_mad)482 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
483 struct ib_dm_mad *rsp_mad)
484 {
485 u16 attr_id;
486 u32 slot;
487 u8 hi, lo;
488
489 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
490 switch (attr_id) {
491 case DM_ATTR_CLASS_PORT_INFO:
492 srpt_get_class_port_info(rsp_mad);
493 break;
494 case DM_ATTR_IOU_INFO:
495 srpt_get_iou(rsp_mad);
496 break;
497 case DM_ATTR_IOC_PROFILE:
498 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
499 srpt_get_ioc(sp, slot, rsp_mad);
500 break;
501 case DM_ATTR_SVC_ENTRIES:
502 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
503 hi = (u8) ((slot >> 8) & 0xff);
504 lo = (u8) (slot & 0xff);
505 slot = (u16) ((slot >> 16) & 0xffff);
506 srpt_get_svc_entries(srpt_service_guid,
507 slot, hi, lo, rsp_mad);
508 break;
509 default:
510 rsp_mad->mad_hdr.status =
511 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
512 break;
513 }
514 }
515
516 /**
517 * srpt_mad_send_handler - MAD send completion callback
518 * @mad_agent: Return value of ib_register_mad_agent().
519 * @mad_wc: Work completion reporting that the MAD has been sent.
520 */
srpt_mad_send_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_wc * mad_wc)521 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
522 struct ib_mad_send_wc *mad_wc)
523 {
524 rdma_destroy_ah(mad_wc->send_buf->ah, RDMA_DESTROY_AH_SLEEPABLE);
525 ib_free_send_mad(mad_wc->send_buf);
526 }
527
528 /**
529 * srpt_mad_recv_handler - MAD reception callback function
530 * @mad_agent: Return value of ib_register_mad_agent().
531 * @send_buf: Not used.
532 * @mad_wc: Work completion reporting that a MAD has been received.
533 */
srpt_mad_recv_handler(struct ib_mad_agent * mad_agent,struct ib_mad_send_buf * send_buf,struct ib_mad_recv_wc * mad_wc)534 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
535 struct ib_mad_send_buf *send_buf,
536 struct ib_mad_recv_wc *mad_wc)
537 {
538 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
539 struct ib_ah *ah;
540 struct ib_mad_send_buf *rsp;
541 struct ib_dm_mad *dm_mad;
542
543 if (!mad_wc || !mad_wc->recv_buf.mad)
544 return;
545
546 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
547 mad_wc->recv_buf.grh, mad_agent->port_num);
548 if (IS_ERR(ah))
549 goto err;
550
551 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
552
553 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
554 mad_wc->wc->pkey_index, 0,
555 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
556 GFP_KERNEL,
557 IB_MGMT_BASE_VERSION);
558 if (IS_ERR(rsp))
559 goto err_rsp;
560
561 rsp->ah = ah;
562
563 dm_mad = rsp->mad;
564 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof(*dm_mad));
565 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
566 dm_mad->mad_hdr.status = 0;
567
568 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
569 case IB_MGMT_METHOD_GET:
570 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
571 break;
572 case IB_MGMT_METHOD_SET:
573 dm_mad->mad_hdr.status =
574 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
575 break;
576 default:
577 dm_mad->mad_hdr.status =
578 cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
579 break;
580 }
581
582 if (!ib_post_send_mad(rsp, NULL)) {
583 ib_free_recv_mad(mad_wc);
584 /* will destroy_ah & free_send_mad in send completion */
585 return;
586 }
587
588 ib_free_send_mad(rsp);
589
590 err_rsp:
591 rdma_destroy_ah(ah, RDMA_DESTROY_AH_SLEEPABLE);
592 err:
593 ib_free_recv_mad(mad_wc);
594 }
595
srpt_format_guid(char * buf,unsigned int size,const __be64 * guid)596 static int srpt_format_guid(char *buf, unsigned int size, const __be64 *guid)
597 {
598 const __be16 *g = (const __be16 *)guid;
599
600 return snprintf(buf, size, "%04x:%04x:%04x:%04x",
601 be16_to_cpu(g[0]), be16_to_cpu(g[1]),
602 be16_to_cpu(g[2]), be16_to_cpu(g[3]));
603 }
604
605 /**
606 * srpt_refresh_port - configure a HCA port
607 * @sport: SRPT HCA port.
608 *
609 * Enable InfiniBand management datagram processing, update the cached sm_lid,
610 * lid and gid values, and register a callback function for processing MADs
611 * on the specified port.
612 *
613 * Note: It is safe to call this function more than once for the same port.
614 */
srpt_refresh_port(struct srpt_port * sport)615 static int srpt_refresh_port(struct srpt_port *sport)
616 {
617 struct ib_mad_agent *mad_agent;
618 struct ib_mad_reg_req reg_req;
619 struct ib_port_modify port_modify;
620 struct ib_port_attr port_attr;
621 int ret;
622
623 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
624 if (ret)
625 return ret;
626
627 sport->sm_lid = port_attr.sm_lid;
628 sport->lid = port_attr.lid;
629
630 ret = rdma_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
631 if (ret)
632 return ret;
633
634 srpt_format_guid(sport->guid_name, ARRAY_SIZE(sport->guid_name),
635 &sport->gid.global.interface_id);
636 snprintf(sport->gid_name, ARRAY_SIZE(sport->gid_name),
637 "0x%016llx%016llx",
638 be64_to_cpu(sport->gid.global.subnet_prefix),
639 be64_to_cpu(sport->gid.global.interface_id));
640
641 if (rdma_protocol_iwarp(sport->sdev->device, sport->port))
642 return 0;
643
644 memset(&port_modify, 0, sizeof(port_modify));
645 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
646 port_modify.clr_port_cap_mask = 0;
647
648 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
649 if (ret) {
650 pr_warn("%s-%d: enabling device management failed (%d). Note: this is expected if SR-IOV is enabled.\n",
651 dev_name(&sport->sdev->device->dev), sport->port, ret);
652 return 0;
653 }
654
655 if (!sport->mad_agent) {
656 memset(®_req, 0, sizeof(reg_req));
657 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
658 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
659 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
660 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
661
662 mad_agent = ib_register_mad_agent(sport->sdev->device,
663 sport->port,
664 IB_QPT_GSI,
665 ®_req, 0,
666 srpt_mad_send_handler,
667 srpt_mad_recv_handler,
668 sport, 0);
669 if (IS_ERR(mad_agent)) {
670 pr_err("%s-%d: MAD agent registration failed (%ld). Note: this is expected if SR-IOV is enabled.\n",
671 dev_name(&sport->sdev->device->dev), sport->port,
672 PTR_ERR(mad_agent));
673 sport->mad_agent = NULL;
674 memset(&port_modify, 0, sizeof(port_modify));
675 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
676 ib_modify_port(sport->sdev->device, sport->port, 0,
677 &port_modify);
678 return 0;
679 }
680
681 sport->mad_agent = mad_agent;
682 }
683
684 return 0;
685 }
686
687 /**
688 * srpt_unregister_mad_agent - unregister MAD callback functions
689 * @sdev: SRPT HCA pointer.
690 * @port_cnt: number of ports with registered MAD
691 *
692 * Note: It is safe to call this function more than once for the same device.
693 */
srpt_unregister_mad_agent(struct srpt_device * sdev,int port_cnt)694 static void srpt_unregister_mad_agent(struct srpt_device *sdev, int port_cnt)
695 {
696 struct ib_port_modify port_modify = {
697 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
698 };
699 struct srpt_port *sport;
700 int i;
701
702 for (i = 1; i <= port_cnt; i++) {
703 sport = &sdev->port[i - 1];
704 WARN_ON(sport->port != i);
705 if (sport->mad_agent) {
706 ib_modify_port(sdev->device, i, 0, &port_modify);
707 ib_unregister_mad_agent(sport->mad_agent);
708 sport->mad_agent = NULL;
709 }
710 }
711 }
712
713 /**
714 * srpt_alloc_ioctx - allocate a SRPT I/O context structure
715 * @sdev: SRPT HCA pointer.
716 * @ioctx_size: I/O context size.
717 * @buf_cache: I/O buffer cache.
718 * @dir: DMA data direction.
719 */
srpt_alloc_ioctx(struct srpt_device * sdev,int ioctx_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)720 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
721 int ioctx_size,
722 struct kmem_cache *buf_cache,
723 enum dma_data_direction dir)
724 {
725 struct srpt_ioctx *ioctx;
726
727 ioctx = kzalloc(ioctx_size, GFP_KERNEL);
728 if (!ioctx)
729 goto err;
730
731 ioctx->buf = kmem_cache_alloc(buf_cache, GFP_KERNEL);
732 if (!ioctx->buf)
733 goto err_free_ioctx;
734
735 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf,
736 kmem_cache_size(buf_cache), dir);
737 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
738 goto err_free_buf;
739
740 return ioctx;
741
742 err_free_buf:
743 kmem_cache_free(buf_cache, ioctx->buf);
744 err_free_ioctx:
745 kfree(ioctx);
746 err:
747 return NULL;
748 }
749
750 /**
751 * srpt_free_ioctx - free a SRPT I/O context structure
752 * @sdev: SRPT HCA pointer.
753 * @ioctx: I/O context pointer.
754 * @buf_cache: I/O buffer cache.
755 * @dir: DMA data direction.
756 */
srpt_free_ioctx(struct srpt_device * sdev,struct srpt_ioctx * ioctx,struct kmem_cache * buf_cache,enum dma_data_direction dir)757 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
758 struct kmem_cache *buf_cache,
759 enum dma_data_direction dir)
760 {
761 if (!ioctx)
762 return;
763
764 ib_dma_unmap_single(sdev->device, ioctx->dma,
765 kmem_cache_size(buf_cache), dir);
766 kmem_cache_free(buf_cache, ioctx->buf);
767 kfree(ioctx);
768 }
769
770 /**
771 * srpt_alloc_ioctx_ring - allocate a ring of SRPT I/O context structures
772 * @sdev: Device to allocate the I/O context ring for.
773 * @ring_size: Number of elements in the I/O context ring.
774 * @ioctx_size: I/O context size.
775 * @buf_cache: I/O buffer cache.
776 * @alignment_offset: Offset in each ring buffer at which the SRP information
777 * unit starts.
778 * @dir: DMA data direction.
779 */
srpt_alloc_ioctx_ring(struct srpt_device * sdev,int ring_size,int ioctx_size,struct kmem_cache * buf_cache,int alignment_offset,enum dma_data_direction dir)780 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
781 int ring_size, int ioctx_size,
782 struct kmem_cache *buf_cache,
783 int alignment_offset,
784 enum dma_data_direction dir)
785 {
786 struct srpt_ioctx **ring;
787 int i;
788
789 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) &&
790 ioctx_size != sizeof(struct srpt_send_ioctx));
791
792 ring = kvmalloc_array(ring_size, sizeof(ring[0]), GFP_KERNEL);
793 if (!ring)
794 goto out;
795 for (i = 0; i < ring_size; ++i) {
796 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, buf_cache, dir);
797 if (!ring[i])
798 goto err;
799 ring[i]->index = i;
800 ring[i]->offset = alignment_offset;
801 }
802 goto out;
803
804 err:
805 while (--i >= 0)
806 srpt_free_ioctx(sdev, ring[i], buf_cache, dir);
807 kvfree(ring);
808 ring = NULL;
809 out:
810 return ring;
811 }
812
813 /**
814 * srpt_free_ioctx_ring - free the ring of SRPT I/O context structures
815 * @ioctx_ring: I/O context ring to be freed.
816 * @sdev: SRPT HCA pointer.
817 * @ring_size: Number of ring elements.
818 * @buf_cache: I/O buffer cache.
819 * @dir: DMA data direction.
820 */
srpt_free_ioctx_ring(struct srpt_ioctx ** ioctx_ring,struct srpt_device * sdev,int ring_size,struct kmem_cache * buf_cache,enum dma_data_direction dir)821 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
822 struct srpt_device *sdev, int ring_size,
823 struct kmem_cache *buf_cache,
824 enum dma_data_direction dir)
825 {
826 int i;
827
828 if (!ioctx_ring)
829 return;
830
831 for (i = 0; i < ring_size; ++i)
832 srpt_free_ioctx(sdev, ioctx_ring[i], buf_cache, dir);
833 kvfree(ioctx_ring);
834 }
835
836 /**
837 * srpt_set_cmd_state - set the state of a SCSI command
838 * @ioctx: Send I/O context.
839 * @new: New I/O context state.
840 *
841 * Does not modify the state of aborted commands. Returns the previous command
842 * state.
843 */
srpt_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state new)844 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
845 enum srpt_command_state new)
846 {
847 enum srpt_command_state previous;
848
849 previous = ioctx->state;
850 if (previous != SRPT_STATE_DONE)
851 ioctx->state = new;
852
853 return previous;
854 }
855
856 /**
857 * srpt_test_and_set_cmd_state - test and set the state of a command
858 * @ioctx: Send I/O context.
859 * @old: Current I/O context state.
860 * @new: New I/O context state.
861 *
862 * Returns true if and only if the previous command state was equal to 'old'.
863 */
srpt_test_and_set_cmd_state(struct srpt_send_ioctx * ioctx,enum srpt_command_state old,enum srpt_command_state new)864 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
865 enum srpt_command_state old,
866 enum srpt_command_state new)
867 {
868 enum srpt_command_state previous;
869
870 WARN_ON(!ioctx);
871 WARN_ON(old == SRPT_STATE_DONE);
872 WARN_ON(new == SRPT_STATE_NEW);
873
874 previous = ioctx->state;
875 if (previous == old)
876 ioctx->state = new;
877
878 return previous == old;
879 }
880
881 /**
882 * srpt_post_recv - post an IB receive request
883 * @sdev: SRPT HCA pointer.
884 * @ch: SRPT RDMA channel.
885 * @ioctx: Receive I/O context pointer.
886 */
srpt_post_recv(struct srpt_device * sdev,struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * ioctx)887 static int srpt_post_recv(struct srpt_device *sdev, struct srpt_rdma_ch *ch,
888 struct srpt_recv_ioctx *ioctx)
889 {
890 struct ib_sge list;
891 struct ib_recv_wr wr;
892
893 BUG_ON(!sdev);
894 list.addr = ioctx->ioctx.dma + ioctx->ioctx.offset;
895 list.length = srp_max_req_size;
896 list.lkey = sdev->lkey;
897
898 ioctx->ioctx.cqe.done = srpt_recv_done;
899 wr.wr_cqe = &ioctx->ioctx.cqe;
900 wr.next = NULL;
901 wr.sg_list = &list;
902 wr.num_sge = 1;
903
904 if (sdev->use_srq)
905 return ib_post_srq_recv(sdev->srq, &wr, NULL);
906 else
907 return ib_post_recv(ch->qp, &wr, NULL);
908 }
909
910 /**
911 * srpt_zerolength_write - perform a zero-length RDMA write
912 * @ch: SRPT RDMA channel.
913 *
914 * A quote from the InfiniBand specification: C9-88: For an HCA responder
915 * using Reliable Connection service, for each zero-length RDMA READ or WRITE
916 * request, the R_Key shall not be validated, even if the request includes
917 * Immediate data.
918 */
srpt_zerolength_write(struct srpt_rdma_ch * ch)919 static int srpt_zerolength_write(struct srpt_rdma_ch *ch)
920 {
921 struct ib_rdma_wr wr = {
922 .wr = {
923 .next = NULL,
924 { .wr_cqe = &ch->zw_cqe, },
925 .opcode = IB_WR_RDMA_WRITE,
926 .send_flags = IB_SEND_SIGNALED,
927 }
928 };
929
930 pr_debug("%s-%d: queued zerolength write\n", ch->sess_name,
931 ch->qp->qp_num);
932
933 return ib_post_send(ch->qp, &wr.wr, NULL);
934 }
935
srpt_zerolength_write_done(struct ib_cq * cq,struct ib_wc * wc)936 static void srpt_zerolength_write_done(struct ib_cq *cq, struct ib_wc *wc)
937 {
938 struct srpt_rdma_ch *ch = wc->qp->qp_context;
939
940 pr_debug("%s-%d wc->status %d\n", ch->sess_name, ch->qp->qp_num,
941 wc->status);
942
943 if (wc->status == IB_WC_SUCCESS) {
944 srpt_process_wait_list(ch);
945 } else {
946 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
947 schedule_work(&ch->release_work);
948 else
949 pr_debug("%s-%d: already disconnected.\n",
950 ch->sess_name, ch->qp->qp_num);
951 }
952 }
953
srpt_alloc_rw_ctxs(struct srpt_send_ioctx * ioctx,struct srp_direct_buf * db,int nbufs,struct scatterlist ** sg,unsigned * sg_cnt)954 static int srpt_alloc_rw_ctxs(struct srpt_send_ioctx *ioctx,
955 struct srp_direct_buf *db, int nbufs, struct scatterlist **sg,
956 unsigned *sg_cnt)
957 {
958 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
959 struct srpt_rdma_ch *ch = ioctx->ch;
960 struct scatterlist *prev = NULL;
961 unsigned prev_nents;
962 int ret, i;
963
964 if (nbufs == 1) {
965 ioctx->rw_ctxs = &ioctx->s_rw_ctx;
966 } else {
967 ioctx->rw_ctxs = kmalloc_array(nbufs, sizeof(*ioctx->rw_ctxs),
968 GFP_KERNEL);
969 if (!ioctx->rw_ctxs)
970 return -ENOMEM;
971 }
972
973 for (i = ioctx->n_rw_ctx; i < nbufs; i++, db++) {
974 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
975 u64 remote_addr = be64_to_cpu(db->va);
976 u32 size = be32_to_cpu(db->len);
977 u32 rkey = be32_to_cpu(db->key);
978
979 ret = target_alloc_sgl(&ctx->sg, &ctx->nents, size, false,
980 i < nbufs - 1);
981 if (ret)
982 goto unwind;
983
984 ret = rdma_rw_ctx_init(&ctx->rw, ch->qp, ch->sport->port,
985 ctx->sg, ctx->nents, 0, remote_addr, rkey, dir);
986 if (ret < 0) {
987 target_free_sgl(ctx->sg, ctx->nents);
988 goto unwind;
989 }
990
991 ioctx->n_rdma += ret;
992 ioctx->n_rw_ctx++;
993
994 if (prev) {
995 sg_unmark_end(&prev[prev_nents - 1]);
996 sg_chain(prev, prev_nents + 1, ctx->sg);
997 } else {
998 *sg = ctx->sg;
999 }
1000
1001 prev = ctx->sg;
1002 prev_nents = ctx->nents;
1003
1004 *sg_cnt += ctx->nents;
1005 }
1006
1007 return 0;
1008
1009 unwind:
1010 while (--i >= 0) {
1011 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
1012
1013 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
1014 ctx->sg, ctx->nents, dir);
1015 target_free_sgl(ctx->sg, ctx->nents);
1016 }
1017 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
1018 kfree(ioctx->rw_ctxs);
1019 return ret;
1020 }
1021
srpt_free_rw_ctxs(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx)1022 static void srpt_free_rw_ctxs(struct srpt_rdma_ch *ch,
1023 struct srpt_send_ioctx *ioctx)
1024 {
1025 enum dma_data_direction dir = target_reverse_dma_direction(&ioctx->cmd);
1026 int i;
1027
1028 for (i = 0; i < ioctx->n_rw_ctx; i++) {
1029 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
1030
1031 rdma_rw_ctx_destroy(&ctx->rw, ch->qp, ch->sport->port,
1032 ctx->sg, ctx->nents, dir);
1033 target_free_sgl(ctx->sg, ctx->nents);
1034 }
1035
1036 if (ioctx->rw_ctxs != &ioctx->s_rw_ctx)
1037 kfree(ioctx->rw_ctxs);
1038 }
1039
srpt_get_desc_buf(struct srp_cmd * srp_cmd)1040 static inline void *srpt_get_desc_buf(struct srp_cmd *srp_cmd)
1041 {
1042 /*
1043 * The pointer computations below will only be compiled correctly
1044 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
1045 * whether srp_cmd::add_data has been declared as a byte pointer.
1046 */
1047 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) &&
1048 !__same_type(srp_cmd->add_data[0], (u8)0));
1049
1050 /*
1051 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
1052 * CDB LENGTH' field are reserved and the size in bytes of this field
1053 * is four times the value specified in bits 3..7. Hence the "& ~3".
1054 */
1055 return srp_cmd->add_data + (srp_cmd->add_cdb_len & ~3);
1056 }
1057
1058 /**
1059 * srpt_get_desc_tbl - parse the data descriptors of a SRP_CMD request
1060 * @recv_ioctx: I/O context associated with the received command @srp_cmd.
1061 * @ioctx: I/O context that will be used for responding to the initiator.
1062 * @srp_cmd: Pointer to the SRP_CMD request data.
1063 * @dir: Pointer to the variable to which the transfer direction will be
1064 * written.
1065 * @sg: [out] scatterlist for the parsed SRP_CMD.
1066 * @sg_cnt: [out] length of @sg.
1067 * @data_len: Pointer to the variable to which the total data length of all
1068 * descriptors in the SRP_CMD request will be written.
1069 * @imm_data_offset: [in] Offset in SRP_CMD requests at which immediate data
1070 * starts.
1071 *
1072 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
1073 *
1074 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
1075 * -ENOMEM when memory allocation fails and zero upon success.
1076 */
srpt_get_desc_tbl(struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * ioctx,struct srp_cmd * srp_cmd,enum dma_data_direction * dir,struct scatterlist ** sg,unsigned int * sg_cnt,u64 * data_len,u16 imm_data_offset)1077 static int srpt_get_desc_tbl(struct srpt_recv_ioctx *recv_ioctx,
1078 struct srpt_send_ioctx *ioctx,
1079 struct srp_cmd *srp_cmd, enum dma_data_direction *dir,
1080 struct scatterlist **sg, unsigned int *sg_cnt, u64 *data_len,
1081 u16 imm_data_offset)
1082 {
1083 BUG_ON(!dir);
1084 BUG_ON(!data_len);
1085
1086 /*
1087 * The lower four bits of the buffer format field contain the DATA-IN
1088 * buffer descriptor format, and the highest four bits contain the
1089 * DATA-OUT buffer descriptor format.
1090 */
1091 if (srp_cmd->buf_fmt & 0xf)
1092 /* DATA-IN: transfer data from target to initiator (read). */
1093 *dir = DMA_FROM_DEVICE;
1094 else if (srp_cmd->buf_fmt >> 4)
1095 /* DATA-OUT: transfer data from initiator to target (write). */
1096 *dir = DMA_TO_DEVICE;
1097 else
1098 *dir = DMA_NONE;
1099
1100 /* initialize data_direction early as srpt_alloc_rw_ctxs needs it */
1101 ioctx->cmd.data_direction = *dir;
1102
1103 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
1104 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
1105 struct srp_direct_buf *db = srpt_get_desc_buf(srp_cmd);
1106
1107 *data_len = be32_to_cpu(db->len);
1108 return srpt_alloc_rw_ctxs(ioctx, db, 1, sg, sg_cnt);
1109 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
1110 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
1111 struct srp_indirect_buf *idb = srpt_get_desc_buf(srp_cmd);
1112 int nbufs = be32_to_cpu(idb->table_desc.len) /
1113 sizeof(struct srp_direct_buf);
1114
1115 if (nbufs >
1116 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
1117 pr_err("received unsupported SRP_CMD request type (%u out + %u in != %u / %zu)\n",
1118 srp_cmd->data_out_desc_cnt,
1119 srp_cmd->data_in_desc_cnt,
1120 be32_to_cpu(idb->table_desc.len),
1121 sizeof(struct srp_direct_buf));
1122 return -EINVAL;
1123 }
1124
1125 *data_len = be32_to_cpu(idb->len);
1126 return srpt_alloc_rw_ctxs(ioctx, idb->desc_list, nbufs,
1127 sg, sg_cnt);
1128 } else if ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_IMM) {
1129 struct srp_imm_buf *imm_buf = srpt_get_desc_buf(srp_cmd);
1130 void *data = (void *)srp_cmd + imm_data_offset;
1131 uint32_t len = be32_to_cpu(imm_buf->len);
1132 uint32_t req_size = imm_data_offset + len;
1133
1134 if (req_size > srp_max_req_size) {
1135 pr_err("Immediate data (length %d + %d) exceeds request size %d\n",
1136 imm_data_offset, len, srp_max_req_size);
1137 return -EINVAL;
1138 }
1139 if (recv_ioctx->byte_len < req_size) {
1140 pr_err("Received too few data - %d < %d\n",
1141 recv_ioctx->byte_len, req_size);
1142 return -EIO;
1143 }
1144 /*
1145 * The immediate data buffer descriptor must occur before the
1146 * immediate data itself.
1147 */
1148 if ((void *)(imm_buf + 1) > (void *)data) {
1149 pr_err("Received invalid write request\n");
1150 return -EINVAL;
1151 }
1152 *data_len = len;
1153 ioctx->recv_ioctx = recv_ioctx;
1154 if ((uintptr_t)data & 511) {
1155 pr_warn_once("Internal error - the receive buffers are not aligned properly.\n");
1156 return -EINVAL;
1157 }
1158 sg_init_one(&ioctx->imm_sg, data, len);
1159 *sg = &ioctx->imm_sg;
1160 *sg_cnt = 1;
1161 return 0;
1162 } else {
1163 *data_len = 0;
1164 return 0;
1165 }
1166 }
1167
1168 /**
1169 * srpt_init_ch_qp - initialize queue pair attributes
1170 * @ch: SRPT RDMA channel.
1171 * @qp: Queue pair pointer.
1172 *
1173 * Initialized the attributes of queue pair 'qp' by allowing local write,
1174 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
1175 */
srpt_init_ch_qp(struct srpt_rdma_ch * ch,struct ib_qp * qp)1176 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1177 {
1178 struct ib_qp_attr *attr;
1179 int ret;
1180
1181 WARN_ON_ONCE(ch->using_rdma_cm);
1182
1183 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1184 if (!attr)
1185 return -ENOMEM;
1186
1187 attr->qp_state = IB_QPS_INIT;
1188 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE;
1189 attr->port_num = ch->sport->port;
1190
1191 ret = ib_find_cached_pkey(ch->sport->sdev->device, ch->sport->port,
1192 ch->pkey, &attr->pkey_index);
1193 if (ret < 0)
1194 pr_err("Translating pkey %#x failed (%d) - using index 0\n",
1195 ch->pkey, ret);
1196
1197 ret = ib_modify_qp(qp, attr,
1198 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
1199 IB_QP_PKEY_INDEX);
1200
1201 kfree(attr);
1202 return ret;
1203 }
1204
1205 /**
1206 * srpt_ch_qp_rtr - change the state of a channel to 'ready to receive' (RTR)
1207 * @ch: channel of the queue pair.
1208 * @qp: queue pair to change the state of.
1209 *
1210 * Returns zero upon success and a negative value upon failure.
1211 *
1212 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1213 * If this structure ever becomes larger, it might be necessary to allocate
1214 * it dynamically instead of on the stack.
1215 */
srpt_ch_qp_rtr(struct srpt_rdma_ch * ch,struct ib_qp * qp)1216 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1217 {
1218 struct ib_qp_attr qp_attr;
1219 int attr_mask;
1220 int ret;
1221
1222 WARN_ON_ONCE(ch->using_rdma_cm);
1223
1224 qp_attr.qp_state = IB_QPS_RTR;
1225 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1226 if (ret)
1227 goto out;
1228
1229 qp_attr.max_dest_rd_atomic = 4;
1230
1231 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1232
1233 out:
1234 return ret;
1235 }
1236
1237 /**
1238 * srpt_ch_qp_rts - change the state of a channel to 'ready to send' (RTS)
1239 * @ch: channel of the queue pair.
1240 * @qp: queue pair to change the state of.
1241 *
1242 * Returns zero upon success and a negative value upon failure.
1243 *
1244 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1245 * If this structure ever becomes larger, it might be necessary to allocate
1246 * it dynamically instead of on the stack.
1247 */
srpt_ch_qp_rts(struct srpt_rdma_ch * ch,struct ib_qp * qp)1248 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1249 {
1250 struct ib_qp_attr qp_attr;
1251 int attr_mask;
1252 int ret;
1253
1254 qp_attr.qp_state = IB_QPS_RTS;
1255 ret = ib_cm_init_qp_attr(ch->ib_cm.cm_id, &qp_attr, &attr_mask);
1256 if (ret)
1257 goto out;
1258
1259 qp_attr.max_rd_atomic = 4;
1260
1261 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1262
1263 out:
1264 return ret;
1265 }
1266
1267 /**
1268 * srpt_ch_qp_err - set the channel queue pair state to 'error'
1269 * @ch: SRPT RDMA channel.
1270 */
srpt_ch_qp_err(struct srpt_rdma_ch * ch)1271 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1272 {
1273 struct ib_qp_attr qp_attr;
1274
1275 qp_attr.qp_state = IB_QPS_ERR;
1276 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1277 }
1278
1279 /**
1280 * srpt_get_send_ioctx - obtain an I/O context for sending to the initiator
1281 * @ch: SRPT RDMA channel.
1282 */
srpt_get_send_ioctx(struct srpt_rdma_ch * ch)1283 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1284 {
1285 struct srpt_send_ioctx *ioctx;
1286 int tag, cpu;
1287
1288 BUG_ON(!ch);
1289
1290 tag = sbitmap_queue_get(&ch->sess->sess_tag_pool, &cpu);
1291 if (tag < 0)
1292 return NULL;
1293
1294 ioctx = ch->ioctx_ring[tag];
1295 BUG_ON(ioctx->ch != ch);
1296 ioctx->state = SRPT_STATE_NEW;
1297 WARN_ON_ONCE(ioctx->recv_ioctx);
1298 ioctx->n_rdma = 0;
1299 ioctx->n_rw_ctx = 0;
1300 ioctx->queue_status_only = false;
1301 /*
1302 * transport_init_se_cmd() does not initialize all fields, so do it
1303 * here.
1304 */
1305 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1306 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1307 ioctx->cmd.map_tag = tag;
1308 ioctx->cmd.map_cpu = cpu;
1309
1310 return ioctx;
1311 }
1312
1313 /**
1314 * srpt_abort_cmd - abort a SCSI command
1315 * @ioctx: I/O context associated with the SCSI command.
1316 */
srpt_abort_cmd(struct srpt_send_ioctx * ioctx)1317 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1318 {
1319 enum srpt_command_state state;
1320
1321 BUG_ON(!ioctx);
1322
1323 /*
1324 * If the command is in a state where the target core is waiting for
1325 * the ib_srpt driver, change the state to the next state.
1326 */
1327
1328 state = ioctx->state;
1329 switch (state) {
1330 case SRPT_STATE_NEED_DATA:
1331 ioctx->state = SRPT_STATE_DATA_IN;
1332 break;
1333 case SRPT_STATE_CMD_RSP_SENT:
1334 case SRPT_STATE_MGMT_RSP_SENT:
1335 ioctx->state = SRPT_STATE_DONE;
1336 break;
1337 default:
1338 WARN_ONCE(true, "%s: unexpected I/O context state %d\n",
1339 __func__, state);
1340 break;
1341 }
1342
1343 pr_debug("Aborting cmd with state %d -> %d and tag %lld\n", state,
1344 ioctx->state, ioctx->cmd.tag);
1345
1346 switch (state) {
1347 case SRPT_STATE_NEW:
1348 case SRPT_STATE_DATA_IN:
1349 case SRPT_STATE_MGMT:
1350 case SRPT_STATE_DONE:
1351 /*
1352 * Do nothing - defer abort processing until
1353 * srpt_queue_response() is invoked.
1354 */
1355 break;
1356 case SRPT_STATE_NEED_DATA:
1357 pr_debug("tag %#llx: RDMA read error\n", ioctx->cmd.tag);
1358 transport_generic_request_failure(&ioctx->cmd,
1359 TCM_CHECK_CONDITION_ABORT_CMD);
1360 break;
1361 case SRPT_STATE_CMD_RSP_SENT:
1362 /*
1363 * SRP_RSP sending failed or the SRP_RSP send completion has
1364 * not been received in time.
1365 */
1366 transport_generic_free_cmd(&ioctx->cmd, 0);
1367 break;
1368 case SRPT_STATE_MGMT_RSP_SENT:
1369 transport_generic_free_cmd(&ioctx->cmd, 0);
1370 break;
1371 default:
1372 WARN(1, "Unexpected command state (%d)", state);
1373 break;
1374 }
1375
1376 return state;
1377 }
1378
1379 /**
1380 * srpt_rdma_read_done - RDMA read completion callback
1381 * @cq: Completion queue.
1382 * @wc: Work completion.
1383 *
1384 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1385 * the data that has been transferred via IB RDMA had to be postponed until the
1386 * check_stop_free() callback. None of this is necessary anymore and needs to
1387 * be cleaned up.
1388 */
srpt_rdma_read_done(struct ib_cq * cq,struct ib_wc * wc)1389 static void srpt_rdma_read_done(struct ib_cq *cq, struct ib_wc *wc)
1390 {
1391 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1392 struct srpt_send_ioctx *ioctx =
1393 container_of(wc->wr_cqe, struct srpt_send_ioctx, rdma_cqe);
1394
1395 WARN_ON(ioctx->n_rdma <= 0);
1396 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1397 ioctx->n_rdma = 0;
1398
1399 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1400 pr_info("RDMA_READ for ioctx 0x%p failed with status %d\n",
1401 ioctx, wc->status);
1402 srpt_abort_cmd(ioctx);
1403 return;
1404 }
1405
1406 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1407 SRPT_STATE_DATA_IN))
1408 target_execute_cmd(&ioctx->cmd);
1409 else
1410 pr_err("%s[%d]: wrong state = %d\n", __func__,
1411 __LINE__, ioctx->state);
1412 }
1413
1414 /**
1415 * srpt_build_cmd_rsp - build a SRP_RSP response
1416 * @ch: RDMA channel through which the request has been received.
1417 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1418 * be built in the buffer ioctx->buf points at and hence this function will
1419 * overwrite the request data.
1420 * @tag: tag of the request for which this response is being generated.
1421 * @status: value for the STATUS field of the SRP_RSP information unit.
1422 *
1423 * Returns the size in bytes of the SRP_RSP response.
1424 *
1425 * An SRP_RSP response contains a SCSI status or service response. See also
1426 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1427 * response. See also SPC-2 for more information about sense data.
1428 */
srpt_build_cmd_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u64 tag,int status)1429 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1430 struct srpt_send_ioctx *ioctx, u64 tag,
1431 int status)
1432 {
1433 struct se_cmd *cmd = &ioctx->cmd;
1434 struct srp_rsp *srp_rsp;
1435 const u8 *sense_data;
1436 int sense_data_len, max_sense_len;
1437 u32 resid = cmd->residual_count;
1438
1439 /*
1440 * The lowest bit of all SAM-3 status codes is zero (see also
1441 * paragraph 5.3 in SAM-3).
1442 */
1443 WARN_ON(status & 1);
1444
1445 srp_rsp = ioctx->ioctx.buf;
1446 BUG_ON(!srp_rsp);
1447
1448 sense_data = ioctx->sense_data;
1449 sense_data_len = ioctx->cmd.scsi_sense_length;
1450 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1451
1452 memset(srp_rsp, 0, sizeof(*srp_rsp));
1453 srp_rsp->opcode = SRP_RSP;
1454 srp_rsp->req_lim_delta =
1455 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1456 srp_rsp->tag = tag;
1457 srp_rsp->status = status;
1458
1459 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1460 if (cmd->data_direction == DMA_TO_DEVICE) {
1461 /* residual data from an underflow write */
1462 srp_rsp->flags = SRP_RSP_FLAG_DOUNDER;
1463 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1464 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1465 /* residual data from an underflow read */
1466 srp_rsp->flags = SRP_RSP_FLAG_DIUNDER;
1467 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1468 }
1469 } else if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1470 if (cmd->data_direction == DMA_TO_DEVICE) {
1471 /* residual data from an overflow write */
1472 srp_rsp->flags = SRP_RSP_FLAG_DOOVER;
1473 srp_rsp->data_out_res_cnt = cpu_to_be32(resid);
1474 } else if (cmd->data_direction == DMA_FROM_DEVICE) {
1475 /* residual data from an overflow read */
1476 srp_rsp->flags = SRP_RSP_FLAG_DIOVER;
1477 srp_rsp->data_in_res_cnt = cpu_to_be32(resid);
1478 }
1479 }
1480
1481 if (sense_data_len) {
1482 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1483 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1484 if (sense_data_len > max_sense_len) {
1485 pr_warn("truncated sense data from %d to %d bytes\n",
1486 sense_data_len, max_sense_len);
1487 sense_data_len = max_sense_len;
1488 }
1489
1490 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1491 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1492 memcpy(srp_rsp->data, sense_data, sense_data_len);
1493 }
1494
1495 return sizeof(*srp_rsp) + sense_data_len;
1496 }
1497
1498 /**
1499 * srpt_build_tskmgmt_rsp - build a task management response
1500 * @ch: RDMA channel through which the request has been received.
1501 * @ioctx: I/O context in which the SRP_RSP response will be built.
1502 * @rsp_code: RSP_CODE that will be stored in the response.
1503 * @tag: Tag of the request for which this response is being generated.
1504 *
1505 * Returns the size in bytes of the SRP_RSP response.
1506 *
1507 * An SRP_RSP response contains a SCSI status or service response. See also
1508 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1509 * response.
1510 */
srpt_build_tskmgmt_rsp(struct srpt_rdma_ch * ch,struct srpt_send_ioctx * ioctx,u8 rsp_code,u64 tag)1511 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1512 struct srpt_send_ioctx *ioctx,
1513 u8 rsp_code, u64 tag)
1514 {
1515 struct srp_rsp *srp_rsp;
1516 int resp_data_len;
1517 int resp_len;
1518
1519 resp_data_len = 4;
1520 resp_len = sizeof(*srp_rsp) + resp_data_len;
1521
1522 srp_rsp = ioctx->ioctx.buf;
1523 BUG_ON(!srp_rsp);
1524 memset(srp_rsp, 0, sizeof(*srp_rsp));
1525
1526 srp_rsp->opcode = SRP_RSP;
1527 srp_rsp->req_lim_delta =
1528 cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1529 srp_rsp->tag = tag;
1530
1531 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1532 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1533 srp_rsp->data[3] = rsp_code;
1534
1535 return resp_len;
1536 }
1537
srpt_check_stop_free(struct se_cmd * cmd)1538 static int srpt_check_stop_free(struct se_cmd *cmd)
1539 {
1540 struct srpt_send_ioctx *ioctx = container_of(cmd,
1541 struct srpt_send_ioctx, cmd);
1542
1543 return target_put_sess_cmd(&ioctx->cmd);
1544 }
1545
1546 /**
1547 * srpt_handle_cmd - process a SRP_CMD information unit
1548 * @ch: SRPT RDMA channel.
1549 * @recv_ioctx: Receive I/O context.
1550 * @send_ioctx: Send I/O context.
1551 */
srpt_handle_cmd(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1552 static void srpt_handle_cmd(struct srpt_rdma_ch *ch,
1553 struct srpt_recv_ioctx *recv_ioctx,
1554 struct srpt_send_ioctx *send_ioctx)
1555 {
1556 struct se_cmd *cmd;
1557 struct srp_cmd *srp_cmd;
1558 struct scatterlist *sg = NULL;
1559 unsigned sg_cnt = 0;
1560 u64 data_len;
1561 enum dma_data_direction dir;
1562 int rc;
1563
1564 BUG_ON(!send_ioctx);
1565
1566 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1567 cmd = &send_ioctx->cmd;
1568 cmd->tag = srp_cmd->tag;
1569
1570 switch (srp_cmd->task_attr) {
1571 case SRP_CMD_SIMPLE_Q:
1572 cmd->sam_task_attr = TCM_SIMPLE_TAG;
1573 break;
1574 case SRP_CMD_ORDERED_Q:
1575 default:
1576 cmd->sam_task_attr = TCM_ORDERED_TAG;
1577 break;
1578 case SRP_CMD_HEAD_OF_Q:
1579 cmd->sam_task_attr = TCM_HEAD_TAG;
1580 break;
1581 case SRP_CMD_ACA:
1582 cmd->sam_task_attr = TCM_ACA_TAG;
1583 break;
1584 }
1585
1586 rc = srpt_get_desc_tbl(recv_ioctx, send_ioctx, srp_cmd, &dir,
1587 &sg, &sg_cnt, &data_len, ch->imm_data_offset);
1588 if (rc) {
1589 if (rc != -EAGAIN) {
1590 pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1591 srp_cmd->tag);
1592 }
1593 goto busy;
1594 }
1595
1596 rc = target_init_cmd(cmd, ch->sess, &send_ioctx->sense_data[0],
1597 scsilun_to_int(&srp_cmd->lun), data_len,
1598 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1599 if (rc != 0) {
1600 pr_debug("target_submit_cmd() returned %d for tag %#llx\n", rc,
1601 srp_cmd->tag);
1602 goto busy;
1603 }
1604
1605 if (target_submit_prep(cmd, srp_cmd->cdb, sg, sg_cnt, NULL, 0, NULL, 0,
1606 GFP_KERNEL))
1607 return;
1608
1609 target_submit(cmd);
1610 return;
1611
1612 busy:
1613 target_send_busy(cmd);
1614 }
1615
srp_tmr_to_tcm(int fn)1616 static int srp_tmr_to_tcm(int fn)
1617 {
1618 switch (fn) {
1619 case SRP_TSK_ABORT_TASK:
1620 return TMR_ABORT_TASK;
1621 case SRP_TSK_ABORT_TASK_SET:
1622 return TMR_ABORT_TASK_SET;
1623 case SRP_TSK_CLEAR_TASK_SET:
1624 return TMR_CLEAR_TASK_SET;
1625 case SRP_TSK_LUN_RESET:
1626 return TMR_LUN_RESET;
1627 case SRP_TSK_CLEAR_ACA:
1628 return TMR_CLEAR_ACA;
1629 default:
1630 return -1;
1631 }
1632 }
1633
1634 /**
1635 * srpt_handle_tsk_mgmt - process a SRP_TSK_MGMT information unit
1636 * @ch: SRPT RDMA channel.
1637 * @recv_ioctx: Receive I/O context.
1638 * @send_ioctx: Send I/O context.
1639 *
1640 * Returns 0 if and only if the request will be processed by the target core.
1641 *
1642 * For more information about SRP_TSK_MGMT information units, see also section
1643 * 6.7 in the SRP r16a document.
1644 */
srpt_handle_tsk_mgmt(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx,struct srpt_send_ioctx * send_ioctx)1645 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1646 struct srpt_recv_ioctx *recv_ioctx,
1647 struct srpt_send_ioctx *send_ioctx)
1648 {
1649 struct srp_tsk_mgmt *srp_tsk;
1650 struct se_cmd *cmd;
1651 struct se_session *sess = ch->sess;
1652 int tcm_tmr;
1653 int rc;
1654
1655 BUG_ON(!send_ioctx);
1656
1657 srp_tsk = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1658 cmd = &send_ioctx->cmd;
1659
1660 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld ch %p sess %p\n",
1661 srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch,
1662 ch->sess);
1663
1664 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1665 send_ioctx->cmd.tag = srp_tsk->tag;
1666 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1667 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL,
1668 scsilun_to_int(&srp_tsk->lun), srp_tsk, tcm_tmr,
1669 GFP_KERNEL, srp_tsk->task_tag,
1670 TARGET_SCF_ACK_KREF);
1671 if (rc != 0) {
1672 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1673 cmd->se_tfo->queue_tm_rsp(cmd);
1674 }
1675 return;
1676 }
1677
1678 /**
1679 * srpt_handle_new_iu - process a newly received information unit
1680 * @ch: RDMA channel through which the information unit has been received.
1681 * @recv_ioctx: Receive I/O context associated with the information unit.
1682 */
1683 static bool
srpt_handle_new_iu(struct srpt_rdma_ch * ch,struct srpt_recv_ioctx * recv_ioctx)1684 srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx)
1685 {
1686 struct srpt_send_ioctx *send_ioctx = NULL;
1687 struct srp_cmd *srp_cmd;
1688 bool res = false;
1689 u8 opcode;
1690
1691 BUG_ON(!ch);
1692 BUG_ON(!recv_ioctx);
1693
1694 if (unlikely(ch->state == CH_CONNECTING))
1695 goto push;
1696
1697 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1698 recv_ioctx->ioctx.dma,
1699 recv_ioctx->ioctx.offset + srp_max_req_size,
1700 DMA_FROM_DEVICE);
1701
1702 srp_cmd = recv_ioctx->ioctx.buf + recv_ioctx->ioctx.offset;
1703 opcode = srp_cmd->opcode;
1704 if (opcode == SRP_CMD || opcode == SRP_TSK_MGMT) {
1705 send_ioctx = srpt_get_send_ioctx(ch);
1706 if (unlikely(!send_ioctx))
1707 goto push;
1708 }
1709
1710 if (!list_empty(&recv_ioctx->wait_list)) {
1711 WARN_ON_ONCE(!ch->processing_wait_list);
1712 list_del_init(&recv_ioctx->wait_list);
1713 }
1714
1715 switch (opcode) {
1716 case SRP_CMD:
1717 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1718 break;
1719 case SRP_TSK_MGMT:
1720 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1721 break;
1722 case SRP_I_LOGOUT:
1723 pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1724 break;
1725 case SRP_CRED_RSP:
1726 pr_debug("received SRP_CRED_RSP\n");
1727 break;
1728 case SRP_AER_RSP:
1729 pr_debug("received SRP_AER_RSP\n");
1730 break;
1731 case SRP_RSP:
1732 pr_err("Received SRP_RSP\n");
1733 break;
1734 default:
1735 pr_err("received IU with unknown opcode 0x%x\n", opcode);
1736 break;
1737 }
1738
1739 if (!send_ioctx || !send_ioctx->recv_ioctx)
1740 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
1741 res = true;
1742
1743 out:
1744 return res;
1745
1746 push:
1747 if (list_empty(&recv_ioctx->wait_list)) {
1748 WARN_ON_ONCE(ch->processing_wait_list);
1749 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1750 }
1751 goto out;
1752 }
1753
srpt_recv_done(struct ib_cq * cq,struct ib_wc * wc)1754 static void srpt_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1755 {
1756 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1757 struct srpt_recv_ioctx *ioctx =
1758 container_of(wc->wr_cqe, struct srpt_recv_ioctx, ioctx.cqe);
1759
1760 if (wc->status == IB_WC_SUCCESS) {
1761 int req_lim;
1762
1763 req_lim = atomic_dec_return(&ch->req_lim);
1764 if (unlikely(req_lim < 0))
1765 pr_err("req_lim = %d < 0\n", req_lim);
1766 ioctx->byte_len = wc->byte_len;
1767 srpt_handle_new_iu(ch, ioctx);
1768 } else {
1769 pr_info_ratelimited("receiving failed for ioctx %p with status %d\n",
1770 ioctx, wc->status);
1771 }
1772 }
1773
1774 /*
1775 * This function must be called from the context in which RDMA completions are
1776 * processed because it accesses the wait list without protection against
1777 * access from other threads.
1778 */
srpt_process_wait_list(struct srpt_rdma_ch * ch)1779 static void srpt_process_wait_list(struct srpt_rdma_ch *ch)
1780 {
1781 struct srpt_recv_ioctx *recv_ioctx, *tmp;
1782
1783 WARN_ON_ONCE(ch->state == CH_CONNECTING);
1784
1785 if (list_empty(&ch->cmd_wait_list))
1786 return;
1787
1788 WARN_ON_ONCE(ch->processing_wait_list);
1789 ch->processing_wait_list = true;
1790 list_for_each_entry_safe(recv_ioctx, tmp, &ch->cmd_wait_list,
1791 wait_list) {
1792 if (!srpt_handle_new_iu(ch, recv_ioctx))
1793 break;
1794 }
1795 ch->processing_wait_list = false;
1796 }
1797
1798 /**
1799 * srpt_send_done - send completion callback
1800 * @cq: Completion queue.
1801 * @wc: Work completion.
1802 *
1803 * Note: Although this has not yet been observed during tests, at least in
1804 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1805 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1806 * value in each response is set to one, and it is possible that this response
1807 * makes the initiator send a new request before the send completion for that
1808 * response has been processed. This could e.g. happen if the call to
1809 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1810 * if IB retransmission causes generation of the send completion to be
1811 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1812 * are queued on cmd_wait_list. The code below processes these delayed
1813 * requests one at a time.
1814 */
srpt_send_done(struct ib_cq * cq,struct ib_wc * wc)1815 static void srpt_send_done(struct ib_cq *cq, struct ib_wc *wc)
1816 {
1817 struct srpt_rdma_ch *ch = wc->qp->qp_context;
1818 struct srpt_send_ioctx *ioctx =
1819 container_of(wc->wr_cqe, struct srpt_send_ioctx, ioctx.cqe);
1820 enum srpt_command_state state;
1821
1822 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1823
1824 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT &&
1825 state != SRPT_STATE_MGMT_RSP_SENT);
1826
1827 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
1828
1829 if (wc->status != IB_WC_SUCCESS)
1830 pr_info("sending response for ioctx 0x%p failed with status %d\n",
1831 ioctx, wc->status);
1832
1833 if (state != SRPT_STATE_DONE) {
1834 transport_generic_free_cmd(&ioctx->cmd, 0);
1835 } else {
1836 pr_err("IB completion has been received too late for wr_id = %u.\n",
1837 ioctx->ioctx.index);
1838 }
1839
1840 srpt_process_wait_list(ch);
1841 }
1842
1843 /**
1844 * srpt_create_ch_ib - create receive and send completion queues
1845 * @ch: SRPT RDMA channel.
1846 */
srpt_create_ch_ib(struct srpt_rdma_ch * ch)1847 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
1848 {
1849 struct ib_qp_init_attr *qp_init;
1850 struct srpt_port *sport = ch->sport;
1851 struct srpt_device *sdev = sport->sdev;
1852 const struct ib_device_attr *attrs = &sdev->device->attrs;
1853 int sq_size = sport->port_attrib.srp_sq_size;
1854 int i, ret;
1855
1856 WARN_ON(ch->rq_size < 1);
1857
1858 ret = -ENOMEM;
1859 qp_init = kzalloc(sizeof(*qp_init), GFP_KERNEL);
1860 if (!qp_init)
1861 goto out;
1862
1863 retry:
1864 ch->cq = ib_cq_pool_get(sdev->device, ch->rq_size + sq_size, -1,
1865 IB_POLL_WORKQUEUE);
1866 if (IS_ERR(ch->cq)) {
1867 ret = PTR_ERR(ch->cq);
1868 pr_err("failed to create CQ cqe= %d ret= %d\n",
1869 ch->rq_size + sq_size, ret);
1870 goto out;
1871 }
1872 ch->cq_size = ch->rq_size + sq_size;
1873
1874 qp_init->qp_context = (void *)ch;
1875 qp_init->event_handler = srpt_qp_event;
1876 qp_init->send_cq = ch->cq;
1877 qp_init->recv_cq = ch->cq;
1878 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
1879 qp_init->qp_type = IB_QPT_RC;
1880 /*
1881 * We divide up our send queue size into half SEND WRs to send the
1882 * completions, and half R/W contexts to actually do the RDMA
1883 * READ/WRITE transfers. Note that we need to allocate CQ slots for
1884 * both both, as RDMA contexts will also post completions for the
1885 * RDMA READ case.
1886 */
1887 qp_init->cap.max_send_wr = min(sq_size / 2, attrs->max_qp_wr);
1888 qp_init->cap.max_rdma_ctxs = sq_size / 2;
1889 qp_init->cap.max_send_sge = attrs->max_send_sge;
1890 qp_init->cap.max_recv_sge = 1;
1891 qp_init->port_num = ch->sport->port;
1892 if (sdev->use_srq)
1893 qp_init->srq = sdev->srq;
1894 else
1895 qp_init->cap.max_recv_wr = ch->rq_size;
1896
1897 if (ch->using_rdma_cm) {
1898 ret = rdma_create_qp(ch->rdma_cm.cm_id, sdev->pd, qp_init);
1899 ch->qp = ch->rdma_cm.cm_id->qp;
1900 } else {
1901 ch->qp = ib_create_qp(sdev->pd, qp_init);
1902 if (!IS_ERR(ch->qp)) {
1903 ret = srpt_init_ch_qp(ch, ch->qp);
1904 if (ret)
1905 ib_destroy_qp(ch->qp);
1906 } else {
1907 ret = PTR_ERR(ch->qp);
1908 }
1909 }
1910 if (ret) {
1911 bool retry = sq_size > MIN_SRPT_SQ_SIZE;
1912
1913 if (retry) {
1914 pr_debug("failed to create queue pair with sq_size = %d (%d) - retrying\n",
1915 sq_size, ret);
1916 ib_cq_pool_put(ch->cq, ch->cq_size);
1917 sq_size = max(sq_size / 2, MIN_SRPT_SQ_SIZE);
1918 goto retry;
1919 } else {
1920 pr_err("failed to create queue pair with sq_size = %d (%d)\n",
1921 sq_size, ret);
1922 goto err_destroy_cq;
1923 }
1924 }
1925
1926 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
1927
1928 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d ch= %p\n",
1929 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
1930 qp_init->cap.max_send_wr, ch);
1931
1932 if (!sdev->use_srq)
1933 for (i = 0; i < ch->rq_size; i++)
1934 srpt_post_recv(sdev, ch, ch->ioctx_recv_ring[i]);
1935
1936 out:
1937 kfree(qp_init);
1938 return ret;
1939
1940 err_destroy_cq:
1941 ch->qp = NULL;
1942 ib_cq_pool_put(ch->cq, ch->cq_size);
1943 goto out;
1944 }
1945
srpt_destroy_ch_ib(struct srpt_rdma_ch * ch)1946 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
1947 {
1948 ib_destroy_qp(ch->qp);
1949 ib_cq_pool_put(ch->cq, ch->cq_size);
1950 }
1951
1952 /**
1953 * srpt_close_ch - close a RDMA channel
1954 * @ch: SRPT RDMA channel.
1955 *
1956 * Make sure all resources associated with the channel will be deallocated at
1957 * an appropriate time.
1958 *
1959 * Returns true if and only if the channel state has been modified into
1960 * CH_DRAINING.
1961 */
srpt_close_ch(struct srpt_rdma_ch * ch)1962 static bool srpt_close_ch(struct srpt_rdma_ch *ch)
1963 {
1964 int ret;
1965
1966 if (!srpt_set_ch_state(ch, CH_DRAINING)) {
1967 pr_debug("%s: already closed\n", ch->sess_name);
1968 return false;
1969 }
1970
1971 kref_get(&ch->kref);
1972
1973 ret = srpt_ch_qp_err(ch);
1974 if (ret < 0)
1975 pr_err("%s-%d: changing queue pair into error state failed: %d\n",
1976 ch->sess_name, ch->qp->qp_num, ret);
1977
1978 ret = srpt_zerolength_write(ch);
1979 if (ret < 0) {
1980 pr_err("%s-%d: queuing zero-length write failed: %d\n",
1981 ch->sess_name, ch->qp->qp_num, ret);
1982 if (srpt_set_ch_state(ch, CH_DISCONNECTED))
1983 schedule_work(&ch->release_work);
1984 else
1985 WARN_ON_ONCE(true);
1986 }
1987
1988 kref_put(&ch->kref, srpt_free_ch);
1989
1990 return true;
1991 }
1992
1993 /*
1994 * Change the channel state into CH_DISCONNECTING. If a channel has not yet
1995 * reached the connected state, close it. If a channel is in the connected
1996 * state, send a DREQ. If a DREQ has been received, send a DREP. Note: it is
1997 * the responsibility of the caller to ensure that this function is not
1998 * invoked concurrently with the code that accepts a connection. This means
1999 * that this function must either be invoked from inside a CM callback
2000 * function or that it must be invoked with the srpt_port.mutex held.
2001 */
srpt_disconnect_ch(struct srpt_rdma_ch * ch)2002 static int srpt_disconnect_ch(struct srpt_rdma_ch *ch)
2003 {
2004 int ret;
2005
2006 if (!srpt_set_ch_state(ch, CH_DISCONNECTING))
2007 return -ENOTCONN;
2008
2009 if (ch->using_rdma_cm) {
2010 ret = rdma_disconnect(ch->rdma_cm.cm_id);
2011 } else {
2012 ret = ib_send_cm_dreq(ch->ib_cm.cm_id, NULL, 0);
2013 if (ret < 0)
2014 ret = ib_send_cm_drep(ch->ib_cm.cm_id, NULL, 0);
2015 }
2016
2017 if (ret < 0 && srpt_close_ch(ch))
2018 ret = 0;
2019
2020 return ret;
2021 }
2022
2023 /* Send DREQ and wait for DREP. */
srpt_disconnect_ch_sync(struct srpt_rdma_ch * ch)2024 static void srpt_disconnect_ch_sync(struct srpt_rdma_ch *ch)
2025 {
2026 DECLARE_COMPLETION_ONSTACK(closed);
2027 struct srpt_port *sport = ch->sport;
2028
2029 pr_debug("ch %s-%d state %d\n", ch->sess_name, ch->qp->qp_num,
2030 ch->state);
2031
2032 ch->closed = &closed;
2033
2034 mutex_lock(&sport->mutex);
2035 srpt_disconnect_ch(ch);
2036 mutex_unlock(&sport->mutex);
2037
2038 while (wait_for_completion_timeout(&closed, 5 * HZ) == 0)
2039 pr_info("%s(%s-%d state %d): still waiting ...\n", __func__,
2040 ch->sess_name, ch->qp->qp_num, ch->state);
2041
2042 }
2043
__srpt_close_all_ch(struct srpt_port * sport)2044 static void __srpt_close_all_ch(struct srpt_port *sport)
2045 {
2046 struct srpt_nexus *nexus;
2047 struct srpt_rdma_ch *ch;
2048
2049 lockdep_assert_held(&sport->mutex);
2050
2051 list_for_each_entry(nexus, &sport->nexus_list, entry) {
2052 list_for_each_entry(ch, &nexus->ch_list, list) {
2053 if (srpt_disconnect_ch(ch) >= 0)
2054 pr_info("Closing channel %s-%d because target %s_%d has been disabled\n",
2055 ch->sess_name, ch->qp->qp_num,
2056 dev_name(&sport->sdev->device->dev),
2057 sport->port);
2058 srpt_close_ch(ch);
2059 }
2060 }
2061 }
2062
2063 /*
2064 * Look up (i_port_id, t_port_id) in sport->nexus_list. Create an entry if
2065 * it does not yet exist.
2066 */
srpt_get_nexus(struct srpt_port * sport,const u8 i_port_id[16],const u8 t_port_id[16])2067 static struct srpt_nexus *srpt_get_nexus(struct srpt_port *sport,
2068 const u8 i_port_id[16],
2069 const u8 t_port_id[16])
2070 {
2071 struct srpt_nexus *nexus = NULL, *tmp_nexus = NULL, *n;
2072
2073 for (;;) {
2074 mutex_lock(&sport->mutex);
2075 list_for_each_entry(n, &sport->nexus_list, entry) {
2076 if (memcmp(n->i_port_id, i_port_id, 16) == 0 &&
2077 memcmp(n->t_port_id, t_port_id, 16) == 0) {
2078 nexus = n;
2079 break;
2080 }
2081 }
2082 if (!nexus && tmp_nexus) {
2083 list_add_tail_rcu(&tmp_nexus->entry,
2084 &sport->nexus_list);
2085 swap(nexus, tmp_nexus);
2086 }
2087 mutex_unlock(&sport->mutex);
2088
2089 if (nexus)
2090 break;
2091 tmp_nexus = kzalloc(sizeof(*nexus), GFP_KERNEL);
2092 if (!tmp_nexus) {
2093 nexus = ERR_PTR(-ENOMEM);
2094 break;
2095 }
2096 INIT_LIST_HEAD(&tmp_nexus->ch_list);
2097 memcpy(tmp_nexus->i_port_id, i_port_id, 16);
2098 memcpy(tmp_nexus->t_port_id, t_port_id, 16);
2099 }
2100
2101 kfree(tmp_nexus);
2102
2103 return nexus;
2104 }
2105
srpt_set_enabled(struct srpt_port * sport,bool enabled)2106 static void srpt_set_enabled(struct srpt_port *sport, bool enabled)
2107 __must_hold(&sport->mutex)
2108 {
2109 lockdep_assert_held(&sport->mutex);
2110
2111 if (sport->enabled == enabled)
2112 return;
2113 sport->enabled = enabled;
2114 if (!enabled)
2115 __srpt_close_all_ch(sport);
2116 }
2117
srpt_drop_sport_ref(struct srpt_port * sport)2118 static void srpt_drop_sport_ref(struct srpt_port *sport)
2119 {
2120 if (atomic_dec_return(&sport->refcount) == 0 && sport->freed_channels)
2121 complete(sport->freed_channels);
2122 }
2123
srpt_free_ch(struct kref * kref)2124 static void srpt_free_ch(struct kref *kref)
2125 {
2126 struct srpt_rdma_ch *ch = container_of(kref, struct srpt_rdma_ch, kref);
2127
2128 srpt_drop_sport_ref(ch->sport);
2129 kfree_rcu(ch, rcu);
2130 }
2131
2132 /*
2133 * Shut down the SCSI target session, tell the connection manager to
2134 * disconnect the associated RDMA channel, transition the QP to the error
2135 * state and remove the channel from the channel list. This function is
2136 * typically called from inside srpt_zerolength_write_done(). Concurrent
2137 * srpt_zerolength_write() calls from inside srpt_close_ch() are possible
2138 * as long as the channel is on sport->nexus_list.
2139 */
srpt_release_channel_work(struct work_struct * w)2140 static void srpt_release_channel_work(struct work_struct *w)
2141 {
2142 struct srpt_rdma_ch *ch;
2143 struct srpt_device *sdev;
2144 struct srpt_port *sport;
2145 struct se_session *se_sess;
2146
2147 ch = container_of(w, struct srpt_rdma_ch, release_work);
2148 pr_debug("%s-%d\n", ch->sess_name, ch->qp->qp_num);
2149
2150 sdev = ch->sport->sdev;
2151 BUG_ON(!sdev);
2152
2153 se_sess = ch->sess;
2154 BUG_ON(!se_sess);
2155
2156 target_stop_session(se_sess);
2157 target_wait_for_sess_cmds(se_sess);
2158
2159 target_remove_session(se_sess);
2160 ch->sess = NULL;
2161
2162 if (ch->using_rdma_cm)
2163 rdma_destroy_id(ch->rdma_cm.cm_id);
2164 else
2165 ib_destroy_cm_id(ch->ib_cm.cm_id);
2166
2167 sport = ch->sport;
2168 mutex_lock(&sport->mutex);
2169 list_del_rcu(&ch->list);
2170 mutex_unlock(&sport->mutex);
2171
2172 if (ch->closed)
2173 complete(ch->closed);
2174
2175 srpt_destroy_ch_ib(ch);
2176
2177 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2178 ch->sport->sdev, ch->rq_size,
2179 ch->rsp_buf_cache, DMA_TO_DEVICE);
2180
2181 srpt_cache_put(ch->rsp_buf_cache);
2182
2183 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2184 sdev, ch->rq_size,
2185 ch->req_buf_cache, DMA_FROM_DEVICE);
2186
2187 srpt_cache_put(ch->req_buf_cache);
2188
2189 kref_put(&ch->kref, srpt_free_ch);
2190 }
2191
2192 /**
2193 * srpt_cm_req_recv - process the event IB_CM_REQ_RECEIVED
2194 * @sdev: HCA through which the login request was received.
2195 * @ib_cm_id: IB/CM connection identifier in case of IB/CM.
2196 * @rdma_cm_id: RDMA/CM connection identifier in case of RDMA/CM.
2197 * @port_num: Port through which the REQ message was received.
2198 * @pkey: P_Key of the incoming connection.
2199 * @req: SRP login request.
2200 * @src_addr: GID (IB/CM) or IP address (RDMA/CM) of the port that submitted
2201 * the login request.
2202 *
2203 * Ownership of the cm_id is transferred to the target session if this
2204 * function returns zero. Otherwise the caller remains the owner of cm_id.
2205 */
srpt_cm_req_recv(struct srpt_device * const sdev,struct ib_cm_id * ib_cm_id,struct rdma_cm_id * rdma_cm_id,u8 port_num,__be16 pkey,const struct srp_login_req * req,const char * src_addr)2206 static int srpt_cm_req_recv(struct srpt_device *const sdev,
2207 struct ib_cm_id *ib_cm_id,
2208 struct rdma_cm_id *rdma_cm_id,
2209 u8 port_num, __be16 pkey,
2210 const struct srp_login_req *req,
2211 const char *src_addr)
2212 {
2213 struct srpt_port *sport = &sdev->port[port_num - 1];
2214 struct srpt_nexus *nexus;
2215 struct srp_login_rsp *rsp = NULL;
2216 struct srp_login_rej *rej = NULL;
2217 union {
2218 struct rdma_conn_param rdma_cm;
2219 struct ib_cm_rep_param ib_cm;
2220 } *rep_param = NULL;
2221 struct srpt_rdma_ch *ch = NULL;
2222 char i_port_id[36];
2223 u32 it_iu_len;
2224 int i, tag_num, tag_size, ret;
2225 struct srpt_tpg *stpg;
2226
2227 WARN_ON_ONCE(irqs_disabled());
2228
2229 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2230
2231 pr_info("Received SRP_LOGIN_REQ with i_port_id %pI6, t_port_id %pI6 and it_iu_len %d on port %d (guid=%pI6); pkey %#04x\n",
2232 req->initiator_port_id, req->target_port_id, it_iu_len,
2233 port_num, &sport->gid, be16_to_cpu(pkey));
2234
2235 nexus = srpt_get_nexus(sport, req->initiator_port_id,
2236 req->target_port_id);
2237 if (IS_ERR(nexus)) {
2238 ret = PTR_ERR(nexus);
2239 goto out;
2240 }
2241
2242 ret = -ENOMEM;
2243 rsp = kzalloc(sizeof(*rsp), GFP_KERNEL);
2244 rej = kzalloc(sizeof(*rej), GFP_KERNEL);
2245 rep_param = kzalloc(sizeof(*rep_param), GFP_KERNEL);
2246 if (!rsp || !rej || !rep_param)
2247 goto out;
2248
2249 ret = -EINVAL;
2250 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2251 rej->reason = cpu_to_be32(
2252 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2253 pr_err("rejected SRP_LOGIN_REQ because its length (%d bytes) is out of range (%d .. %d)\n",
2254 it_iu_len, 64, srp_max_req_size);
2255 goto reject;
2256 }
2257
2258 if (!sport->enabled) {
2259 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2260 pr_info("rejected SRP_LOGIN_REQ because target port %s_%d has not yet been enabled\n",
2261 dev_name(&sport->sdev->device->dev), port_num);
2262 goto reject;
2263 }
2264
2265 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2266 || *(__be64 *)(req->target_port_id + 8) !=
2267 cpu_to_be64(srpt_service_guid)) {
2268 rej->reason = cpu_to_be32(
2269 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2270 pr_err("rejected SRP_LOGIN_REQ because it has an invalid target port identifier.\n");
2271 goto reject;
2272 }
2273
2274 ret = -ENOMEM;
2275 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
2276 if (!ch) {
2277 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2278 pr_err("rejected SRP_LOGIN_REQ because out of memory.\n");
2279 goto reject;
2280 }
2281
2282 kref_init(&ch->kref);
2283 ch->pkey = be16_to_cpu(pkey);
2284 ch->nexus = nexus;
2285 ch->zw_cqe.done = srpt_zerolength_write_done;
2286 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2287 ch->sport = sport;
2288 if (rdma_cm_id) {
2289 ch->using_rdma_cm = true;
2290 ch->rdma_cm.cm_id = rdma_cm_id;
2291 rdma_cm_id->context = ch;
2292 } else {
2293 ch->ib_cm.cm_id = ib_cm_id;
2294 ib_cm_id->context = ch;
2295 }
2296 /*
2297 * ch->rq_size should be at least as large as the initiator queue
2298 * depth to avoid that the initiator driver has to report QUEUE_FULL
2299 * to the SCSI mid-layer.
2300 */
2301 ch->rq_size = min(MAX_SRPT_RQ_SIZE, sdev->device->attrs.max_qp_wr);
2302 spin_lock_init(&ch->spinlock);
2303 ch->state = CH_CONNECTING;
2304 INIT_LIST_HEAD(&ch->cmd_wait_list);
2305 ch->max_rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2306
2307 ch->rsp_buf_cache = srpt_cache_get(ch->max_rsp_size);
2308 if (!ch->rsp_buf_cache)
2309 goto free_ch;
2310
2311 ch->ioctx_ring = (struct srpt_send_ioctx **)
2312 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2313 sizeof(*ch->ioctx_ring[0]),
2314 ch->rsp_buf_cache, 0, DMA_TO_DEVICE);
2315 if (!ch->ioctx_ring) {
2316 pr_err("rejected SRP_LOGIN_REQ because creating a new QP SQ ring failed.\n");
2317 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2318 goto free_rsp_cache;
2319 }
2320
2321 for (i = 0; i < ch->rq_size; i++)
2322 ch->ioctx_ring[i]->ch = ch;
2323 if (!sdev->use_srq) {
2324 u16 imm_data_offset = req->req_flags & SRP_IMMED_REQUESTED ?
2325 be16_to_cpu(req->imm_data_offset) : 0;
2326 u16 alignment_offset;
2327 u32 req_sz;
2328
2329 if (req->req_flags & SRP_IMMED_REQUESTED)
2330 pr_debug("imm_data_offset = %d\n",
2331 be16_to_cpu(req->imm_data_offset));
2332 if (imm_data_offset >= sizeof(struct srp_cmd)) {
2333 ch->imm_data_offset = imm_data_offset;
2334 rsp->rsp_flags |= SRP_LOGIN_RSP_IMMED_SUPP;
2335 } else {
2336 ch->imm_data_offset = 0;
2337 }
2338 alignment_offset = round_up(imm_data_offset, 512) -
2339 imm_data_offset;
2340 req_sz = alignment_offset + imm_data_offset + srp_max_req_size;
2341 ch->req_buf_cache = srpt_cache_get(req_sz);
2342 if (!ch->req_buf_cache)
2343 goto free_rsp_ring;
2344
2345 ch->ioctx_recv_ring = (struct srpt_recv_ioctx **)
2346 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2347 sizeof(*ch->ioctx_recv_ring[0]),
2348 ch->req_buf_cache,
2349 alignment_offset,
2350 DMA_FROM_DEVICE);
2351 if (!ch->ioctx_recv_ring) {
2352 pr_err("rejected SRP_LOGIN_REQ because creating a new QP RQ ring failed.\n");
2353 rej->reason =
2354 cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2355 goto free_recv_cache;
2356 }
2357 for (i = 0; i < ch->rq_size; i++)
2358 INIT_LIST_HEAD(&ch->ioctx_recv_ring[i]->wait_list);
2359 }
2360
2361 ret = srpt_create_ch_ib(ch);
2362 if (ret) {
2363 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2364 pr_err("rejected SRP_LOGIN_REQ because creating a new RDMA channel failed.\n");
2365 goto free_recv_ring;
2366 }
2367
2368 strscpy(ch->sess_name, src_addr, sizeof(ch->sess_name));
2369 snprintf(i_port_id, sizeof(i_port_id), "0x%016llx%016llx",
2370 be64_to_cpu(*(__be64 *)nexus->i_port_id),
2371 be64_to_cpu(*(__be64 *)(nexus->i_port_id + 8)));
2372
2373 pr_debug("registering src addr %s or i_port_id %s\n", ch->sess_name,
2374 i_port_id);
2375
2376 tag_num = ch->rq_size;
2377 tag_size = 1; /* ib_srpt does not use se_sess->sess_cmd_map */
2378
2379 if (sport->guid_id) {
2380 mutex_lock(&sport->guid_id->mutex);
2381 list_for_each_entry(stpg, &sport->guid_id->tpg_list, entry) {
2382 if (!IS_ERR_OR_NULL(ch->sess))
2383 break;
2384 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2385 tag_size, TARGET_PROT_NORMAL,
2386 ch->sess_name, ch, NULL);
2387 }
2388 mutex_unlock(&sport->guid_id->mutex);
2389 }
2390
2391 if (sport->gid_id) {
2392 mutex_lock(&sport->gid_id->mutex);
2393 list_for_each_entry(stpg, &sport->gid_id->tpg_list, entry) {
2394 if (!IS_ERR_OR_NULL(ch->sess))
2395 break;
2396 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2397 tag_size, TARGET_PROT_NORMAL, i_port_id,
2398 ch, NULL);
2399 if (!IS_ERR_OR_NULL(ch->sess))
2400 break;
2401 /* Retry without leading "0x" */
2402 ch->sess = target_setup_session(&stpg->tpg, tag_num,
2403 tag_size, TARGET_PROT_NORMAL,
2404 i_port_id + 2, ch, NULL);
2405 }
2406 mutex_unlock(&sport->gid_id->mutex);
2407 }
2408
2409 if (IS_ERR_OR_NULL(ch->sess)) {
2410 WARN_ON_ONCE(ch->sess == NULL);
2411 ret = PTR_ERR(ch->sess);
2412 ch->sess = NULL;
2413 pr_info("Rejected login for initiator %s: ret = %d.\n",
2414 ch->sess_name, ret);
2415 rej->reason = cpu_to_be32(ret == -ENOMEM ?
2416 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES :
2417 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2418 goto destroy_ib;
2419 }
2420
2421 /*
2422 * Once a session has been created destruction of srpt_rdma_ch objects
2423 * will decrement sport->refcount. Hence increment sport->refcount now.
2424 */
2425 atomic_inc(&sport->refcount);
2426
2427 mutex_lock(&sport->mutex);
2428
2429 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2430 struct srpt_rdma_ch *ch2;
2431
2432 list_for_each_entry(ch2, &nexus->ch_list, list) {
2433 if (srpt_disconnect_ch(ch2) < 0)
2434 continue;
2435 pr_info("Relogin - closed existing channel %s\n",
2436 ch2->sess_name);
2437 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2438 }
2439 } else {
2440 rsp->rsp_flags |= SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2441 }
2442
2443 list_add_tail_rcu(&ch->list, &nexus->ch_list);
2444
2445 if (!sport->enabled) {
2446 rej->reason = cpu_to_be32(
2447 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2448 pr_info("rejected SRP_LOGIN_REQ because target %s_%d is not enabled\n",
2449 dev_name(&sdev->device->dev), port_num);
2450 mutex_unlock(&sport->mutex);
2451 ret = -EINVAL;
2452 goto reject;
2453 }
2454
2455 mutex_unlock(&sport->mutex);
2456
2457 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rtr(ch, ch->qp);
2458 if (ret) {
2459 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2460 pr_err("rejected SRP_LOGIN_REQ because enabling RTR failed (error code = %d)\n",
2461 ret);
2462 goto reject;
2463 }
2464
2465 pr_debug("Establish connection sess=%p name=%s ch=%p\n", ch->sess,
2466 ch->sess_name, ch);
2467
2468 /* create srp_login_response */
2469 rsp->opcode = SRP_LOGIN_RSP;
2470 rsp->tag = req->tag;
2471 rsp->max_it_iu_len = cpu_to_be32(srp_max_req_size);
2472 rsp->max_ti_iu_len = req->req_it_iu_len;
2473 ch->max_ti_iu_len = it_iu_len;
2474 rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2475 SRP_BUF_FORMAT_INDIRECT);
2476 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2477 atomic_set(&ch->req_lim, ch->rq_size);
2478 atomic_set(&ch->req_lim_delta, 0);
2479
2480 /* create cm reply */
2481 if (ch->using_rdma_cm) {
2482 rep_param->rdma_cm.private_data = (void *)rsp;
2483 rep_param->rdma_cm.private_data_len = sizeof(*rsp);
2484 rep_param->rdma_cm.rnr_retry_count = 7;
2485 rep_param->rdma_cm.flow_control = 1;
2486 rep_param->rdma_cm.responder_resources = 4;
2487 rep_param->rdma_cm.initiator_depth = 4;
2488 } else {
2489 rep_param->ib_cm.qp_num = ch->qp->qp_num;
2490 rep_param->ib_cm.private_data = (void *)rsp;
2491 rep_param->ib_cm.private_data_len = sizeof(*rsp);
2492 rep_param->ib_cm.rnr_retry_count = 7;
2493 rep_param->ib_cm.flow_control = 1;
2494 rep_param->ib_cm.failover_accepted = 0;
2495 rep_param->ib_cm.srq = 1;
2496 rep_param->ib_cm.responder_resources = 4;
2497 rep_param->ib_cm.initiator_depth = 4;
2498 }
2499
2500 /*
2501 * Hold the sport mutex while accepting a connection to avoid that
2502 * srpt_disconnect_ch() is invoked concurrently with this code.
2503 */
2504 mutex_lock(&sport->mutex);
2505 if (sport->enabled && ch->state == CH_CONNECTING) {
2506 if (ch->using_rdma_cm)
2507 ret = rdma_accept(rdma_cm_id, &rep_param->rdma_cm);
2508 else
2509 ret = ib_send_cm_rep(ib_cm_id, &rep_param->ib_cm);
2510 } else {
2511 ret = -EINVAL;
2512 }
2513 mutex_unlock(&sport->mutex);
2514
2515 switch (ret) {
2516 case 0:
2517 break;
2518 case -EINVAL:
2519 goto reject;
2520 default:
2521 rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2522 pr_err("sending SRP_LOGIN_REQ response failed (error code = %d)\n",
2523 ret);
2524 goto reject;
2525 }
2526
2527 goto out;
2528
2529 destroy_ib:
2530 srpt_destroy_ch_ib(ch);
2531
2532 free_recv_ring:
2533 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_recv_ring,
2534 ch->sport->sdev, ch->rq_size,
2535 ch->req_buf_cache, DMA_FROM_DEVICE);
2536
2537 free_recv_cache:
2538 srpt_cache_put(ch->req_buf_cache);
2539
2540 free_rsp_ring:
2541 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2542 ch->sport->sdev, ch->rq_size,
2543 ch->rsp_buf_cache, DMA_TO_DEVICE);
2544
2545 free_rsp_cache:
2546 srpt_cache_put(ch->rsp_buf_cache);
2547
2548 free_ch:
2549 if (rdma_cm_id)
2550 rdma_cm_id->context = NULL;
2551 else
2552 ib_cm_id->context = NULL;
2553 kfree(ch);
2554 ch = NULL;
2555
2556 WARN_ON_ONCE(ret == 0);
2557
2558 reject:
2559 pr_info("Rejecting login with reason %#x\n", be32_to_cpu(rej->reason));
2560 rej->opcode = SRP_LOGIN_REJ;
2561 rej->tag = req->tag;
2562 rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
2563 SRP_BUF_FORMAT_INDIRECT);
2564
2565 if (rdma_cm_id)
2566 rdma_reject(rdma_cm_id, rej, sizeof(*rej),
2567 IB_CM_REJ_CONSUMER_DEFINED);
2568 else
2569 ib_send_cm_rej(ib_cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2570 rej, sizeof(*rej));
2571
2572 if (ch && ch->sess) {
2573 srpt_close_ch(ch);
2574 /*
2575 * Tell the caller not to free cm_id since
2576 * srpt_release_channel_work() will do that.
2577 */
2578 ret = 0;
2579 }
2580
2581 out:
2582 kfree(rep_param);
2583 kfree(rsp);
2584 kfree(rej);
2585
2586 return ret;
2587 }
2588
srpt_ib_cm_req_recv(struct ib_cm_id * cm_id,const struct ib_cm_req_event_param * param,void * private_data)2589 static int srpt_ib_cm_req_recv(struct ib_cm_id *cm_id,
2590 const struct ib_cm_req_event_param *param,
2591 void *private_data)
2592 {
2593 char sguid[40];
2594
2595 srpt_format_guid(sguid, sizeof(sguid),
2596 ¶m->primary_path->dgid.global.interface_id);
2597
2598 return srpt_cm_req_recv(cm_id->context, cm_id, NULL, param->port,
2599 param->primary_path->pkey,
2600 private_data, sguid);
2601 }
2602
srpt_rdma_cm_req_recv(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2603 static int srpt_rdma_cm_req_recv(struct rdma_cm_id *cm_id,
2604 struct rdma_cm_event *event)
2605 {
2606 struct srpt_device *sdev;
2607 struct srp_login_req req;
2608 const struct srp_login_req_rdma *req_rdma;
2609 struct sa_path_rec *path_rec = cm_id->route.path_rec;
2610 char src_addr[40];
2611
2612 sdev = ib_get_client_data(cm_id->device, &srpt_client);
2613 if (!sdev)
2614 return -ECONNREFUSED;
2615
2616 if (event->param.conn.private_data_len < sizeof(*req_rdma))
2617 return -EINVAL;
2618
2619 /* Transform srp_login_req_rdma into srp_login_req. */
2620 req_rdma = event->param.conn.private_data;
2621 memset(&req, 0, sizeof(req));
2622 req.opcode = req_rdma->opcode;
2623 req.tag = req_rdma->tag;
2624 req.req_it_iu_len = req_rdma->req_it_iu_len;
2625 req.req_buf_fmt = req_rdma->req_buf_fmt;
2626 req.req_flags = req_rdma->req_flags;
2627 memcpy(req.initiator_port_id, req_rdma->initiator_port_id, 16);
2628 memcpy(req.target_port_id, req_rdma->target_port_id, 16);
2629 req.imm_data_offset = req_rdma->imm_data_offset;
2630
2631 snprintf(src_addr, sizeof(src_addr), "%pIS",
2632 &cm_id->route.addr.src_addr);
2633
2634 return srpt_cm_req_recv(sdev, NULL, cm_id, cm_id->port_num,
2635 path_rec ? path_rec->pkey : 0, &req, src_addr);
2636 }
2637
srpt_cm_rej_recv(struct srpt_rdma_ch * ch,enum ib_cm_rej_reason reason,const u8 * private_data,u8 private_data_len)2638 static void srpt_cm_rej_recv(struct srpt_rdma_ch *ch,
2639 enum ib_cm_rej_reason reason,
2640 const u8 *private_data,
2641 u8 private_data_len)
2642 {
2643 char *priv = NULL;
2644 int i;
2645
2646 if (private_data_len && (priv = kmalloc(private_data_len * 3 + 1,
2647 GFP_KERNEL))) {
2648 for (i = 0; i < private_data_len; i++)
2649 sprintf(priv + 3 * i, " %02x", private_data[i]);
2650 }
2651 pr_info("Received CM REJ for ch %s-%d; reason %d%s%s.\n",
2652 ch->sess_name, ch->qp->qp_num, reason, private_data_len ?
2653 "; private data" : "", priv ? priv : " (?)");
2654 kfree(priv);
2655 }
2656
2657 /**
2658 * srpt_cm_rtu_recv - process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event
2659 * @ch: SRPT RDMA channel.
2660 *
2661 * An RTU (ready to use) message indicates that the connection has been
2662 * established and that the recipient may begin transmitting.
2663 */
srpt_cm_rtu_recv(struct srpt_rdma_ch * ch)2664 static void srpt_cm_rtu_recv(struct srpt_rdma_ch *ch)
2665 {
2666 int ret;
2667
2668 ret = ch->using_rdma_cm ? 0 : srpt_ch_qp_rts(ch, ch->qp);
2669 if (ret < 0) {
2670 pr_err("%s-%d: QP transition to RTS failed\n", ch->sess_name,
2671 ch->qp->qp_num);
2672 srpt_close_ch(ch);
2673 return;
2674 }
2675
2676 /*
2677 * Note: calling srpt_close_ch() if the transition to the LIVE state
2678 * fails is not necessary since that means that that function has
2679 * already been invoked from another thread.
2680 */
2681 if (!srpt_set_ch_state(ch, CH_LIVE)) {
2682 pr_err("%s-%d: channel transition to LIVE state failed\n",
2683 ch->sess_name, ch->qp->qp_num);
2684 return;
2685 }
2686
2687 /* Trigger wait list processing. */
2688 ret = srpt_zerolength_write(ch);
2689 WARN_ONCE(ret < 0, "%d\n", ret);
2690 }
2691
2692 /**
2693 * srpt_cm_handler - IB connection manager callback function
2694 * @cm_id: IB/CM connection identifier.
2695 * @event: IB/CM event.
2696 *
2697 * A non-zero return value will cause the caller destroy the CM ID.
2698 *
2699 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2700 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2701 * a non-zero value in any other case will trigger a race with the
2702 * ib_destroy_cm_id() call in srpt_release_channel().
2703 */
srpt_cm_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * event)2704 static int srpt_cm_handler(struct ib_cm_id *cm_id,
2705 const struct ib_cm_event *event)
2706 {
2707 struct srpt_rdma_ch *ch = cm_id->context;
2708 int ret;
2709
2710 ret = 0;
2711 switch (event->event) {
2712 case IB_CM_REQ_RECEIVED:
2713 ret = srpt_ib_cm_req_recv(cm_id, &event->param.req_rcvd,
2714 event->private_data);
2715 break;
2716 case IB_CM_REJ_RECEIVED:
2717 srpt_cm_rej_recv(ch, event->param.rej_rcvd.reason,
2718 event->private_data,
2719 IB_CM_REJ_PRIVATE_DATA_SIZE);
2720 break;
2721 case IB_CM_RTU_RECEIVED:
2722 case IB_CM_USER_ESTABLISHED:
2723 srpt_cm_rtu_recv(ch);
2724 break;
2725 case IB_CM_DREQ_RECEIVED:
2726 srpt_disconnect_ch(ch);
2727 break;
2728 case IB_CM_DREP_RECEIVED:
2729 pr_info("Received CM DREP message for ch %s-%d.\n",
2730 ch->sess_name, ch->qp->qp_num);
2731 srpt_close_ch(ch);
2732 break;
2733 case IB_CM_TIMEWAIT_EXIT:
2734 pr_info("Received CM TimeWait exit for ch %s-%d.\n",
2735 ch->sess_name, ch->qp->qp_num);
2736 srpt_close_ch(ch);
2737 break;
2738 case IB_CM_REP_ERROR:
2739 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2740 ch->qp->qp_num);
2741 break;
2742 case IB_CM_DREQ_ERROR:
2743 pr_info("Received CM DREQ ERROR event.\n");
2744 break;
2745 case IB_CM_MRA_RECEIVED:
2746 pr_info("Received CM MRA event\n");
2747 break;
2748 default:
2749 pr_err("received unrecognized CM event %d\n", event->event);
2750 break;
2751 }
2752
2753 return ret;
2754 }
2755
srpt_rdma_cm_handler(struct rdma_cm_id * cm_id,struct rdma_cm_event * event)2756 static int srpt_rdma_cm_handler(struct rdma_cm_id *cm_id,
2757 struct rdma_cm_event *event)
2758 {
2759 struct srpt_rdma_ch *ch = cm_id->context;
2760 int ret = 0;
2761
2762 switch (event->event) {
2763 case RDMA_CM_EVENT_CONNECT_REQUEST:
2764 ret = srpt_rdma_cm_req_recv(cm_id, event);
2765 break;
2766 case RDMA_CM_EVENT_REJECTED:
2767 srpt_cm_rej_recv(ch, event->status,
2768 event->param.conn.private_data,
2769 event->param.conn.private_data_len);
2770 break;
2771 case RDMA_CM_EVENT_ESTABLISHED:
2772 srpt_cm_rtu_recv(ch);
2773 break;
2774 case RDMA_CM_EVENT_DISCONNECTED:
2775 if (ch->state < CH_DISCONNECTING)
2776 srpt_disconnect_ch(ch);
2777 else
2778 srpt_close_ch(ch);
2779 break;
2780 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
2781 srpt_close_ch(ch);
2782 break;
2783 case RDMA_CM_EVENT_UNREACHABLE:
2784 pr_info("Received CM REP error for ch %s-%d.\n", ch->sess_name,
2785 ch->qp->qp_num);
2786 break;
2787 case RDMA_CM_EVENT_DEVICE_REMOVAL:
2788 case RDMA_CM_EVENT_ADDR_CHANGE:
2789 break;
2790 default:
2791 pr_err("received unrecognized RDMA CM event %d\n",
2792 event->event);
2793 break;
2794 }
2795
2796 return ret;
2797 }
2798
2799 /*
2800 * srpt_write_pending - Start data transfer from initiator to target (write).
2801 */
srpt_write_pending(struct se_cmd * se_cmd)2802 static int srpt_write_pending(struct se_cmd *se_cmd)
2803 {
2804 struct srpt_send_ioctx *ioctx =
2805 container_of(se_cmd, struct srpt_send_ioctx, cmd);
2806 struct srpt_rdma_ch *ch = ioctx->ch;
2807 struct ib_send_wr *first_wr = NULL;
2808 struct ib_cqe *cqe = &ioctx->rdma_cqe;
2809 enum srpt_command_state new_state;
2810 int ret, i;
2811
2812 if (ioctx->recv_ioctx) {
2813 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2814 target_execute_cmd(&ioctx->cmd);
2815 return 0;
2816 }
2817
2818 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2819 WARN_ON(new_state == SRPT_STATE_DONE);
2820
2821 if (atomic_sub_return(ioctx->n_rdma, &ch->sq_wr_avail) < 0) {
2822 pr_warn("%s: IB send queue full (needed %d)\n",
2823 __func__, ioctx->n_rdma);
2824 ret = -ENOMEM;
2825 goto out_undo;
2826 }
2827
2828 cqe->done = srpt_rdma_read_done;
2829 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2830 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2831
2832 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp, ch->sport->port,
2833 cqe, first_wr);
2834 cqe = NULL;
2835 }
2836
2837 ret = ib_post_send(ch->qp, first_wr, NULL);
2838 if (ret) {
2839 pr_err("%s: ib_post_send() returned %d for %d (avail: %d)\n",
2840 __func__, ret, ioctx->n_rdma,
2841 atomic_read(&ch->sq_wr_avail));
2842 goto out_undo;
2843 }
2844
2845 return 0;
2846 out_undo:
2847 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
2848 return ret;
2849 }
2850
tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)2851 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2852 {
2853 switch (tcm_mgmt_status) {
2854 case TMR_FUNCTION_COMPLETE:
2855 return SRP_TSK_MGMT_SUCCESS;
2856 case TMR_FUNCTION_REJECTED:
2857 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2858 }
2859 return SRP_TSK_MGMT_FAILED;
2860 }
2861
2862 /**
2863 * srpt_queue_response - transmit the response to a SCSI command
2864 * @cmd: SCSI target command.
2865 *
2866 * Callback function called by the TCM core. Must not block since it can be
2867 * invoked on the context of the IB completion handler.
2868 */
srpt_queue_response(struct se_cmd * cmd)2869 static void srpt_queue_response(struct se_cmd *cmd)
2870 {
2871 struct srpt_send_ioctx *ioctx =
2872 container_of(cmd, struct srpt_send_ioctx, cmd);
2873 struct srpt_rdma_ch *ch = ioctx->ch;
2874 struct srpt_device *sdev = ch->sport->sdev;
2875 struct ib_send_wr send_wr, *first_wr = &send_wr;
2876 struct ib_sge sge;
2877 enum srpt_command_state state;
2878 int resp_len, ret, i;
2879 u8 srp_tm_status;
2880
2881 state = ioctx->state;
2882 switch (state) {
2883 case SRPT_STATE_NEW:
2884 case SRPT_STATE_DATA_IN:
2885 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2886 break;
2887 case SRPT_STATE_MGMT:
2888 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2889 break;
2890 default:
2891 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2892 ch, ioctx->ioctx.index, ioctx->state);
2893 break;
2894 }
2895
2896 if (WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))
2897 return;
2898
2899 /* For read commands, transfer the data to the initiator. */
2900 if (ioctx->cmd.data_direction == DMA_FROM_DEVICE &&
2901 ioctx->cmd.data_length &&
2902 !ioctx->queue_status_only) {
2903 for (i = ioctx->n_rw_ctx - 1; i >= 0; i--) {
2904 struct srpt_rw_ctx *ctx = &ioctx->rw_ctxs[i];
2905
2906 first_wr = rdma_rw_ctx_wrs(&ctx->rw, ch->qp,
2907 ch->sport->port, NULL, first_wr);
2908 }
2909 }
2910
2911 if (state != SRPT_STATE_MGMT)
2912 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
2913 cmd->scsi_status);
2914 else {
2915 srp_tm_status
2916 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
2917 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
2918 ioctx->cmd.tag);
2919 }
2920
2921 atomic_inc(&ch->req_lim);
2922
2923 if (unlikely(atomic_sub_return(1 + ioctx->n_rdma,
2924 &ch->sq_wr_avail) < 0)) {
2925 pr_warn("%s: IB send queue full (needed %d)\n",
2926 __func__, ioctx->n_rdma);
2927 goto out;
2928 }
2929
2930 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, resp_len,
2931 DMA_TO_DEVICE);
2932
2933 sge.addr = ioctx->ioctx.dma;
2934 sge.length = resp_len;
2935 sge.lkey = sdev->lkey;
2936
2937 ioctx->ioctx.cqe.done = srpt_send_done;
2938 send_wr.next = NULL;
2939 send_wr.wr_cqe = &ioctx->ioctx.cqe;
2940 send_wr.sg_list = &sge;
2941 send_wr.num_sge = 1;
2942 send_wr.opcode = IB_WR_SEND;
2943 send_wr.send_flags = IB_SEND_SIGNALED;
2944
2945 ret = ib_post_send(ch->qp, first_wr, NULL);
2946 if (ret < 0) {
2947 pr_err("%s: sending cmd response failed for tag %llu (%d)\n",
2948 __func__, ioctx->cmd.tag, ret);
2949 goto out;
2950 }
2951
2952 return;
2953
2954 out:
2955 atomic_add(1 + ioctx->n_rdma, &ch->sq_wr_avail);
2956 atomic_dec(&ch->req_lim);
2957 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
2958 target_put_sess_cmd(&ioctx->cmd);
2959 }
2960
srpt_queue_data_in(struct se_cmd * cmd)2961 static int srpt_queue_data_in(struct se_cmd *cmd)
2962 {
2963 srpt_queue_response(cmd);
2964 return 0;
2965 }
2966
srpt_queue_tm_rsp(struct se_cmd * cmd)2967 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
2968 {
2969 srpt_queue_response(cmd);
2970 }
2971
2972 /*
2973 * This function is called for aborted commands if no response is sent to the
2974 * initiator. Make sure that the credits freed by aborting a command are
2975 * returned to the initiator the next time a response is sent by incrementing
2976 * ch->req_lim_delta.
2977 */
srpt_aborted_task(struct se_cmd * cmd)2978 static void srpt_aborted_task(struct se_cmd *cmd)
2979 {
2980 struct srpt_send_ioctx *ioctx = container_of(cmd,
2981 struct srpt_send_ioctx, cmd);
2982 struct srpt_rdma_ch *ch = ioctx->ch;
2983
2984 atomic_inc(&ch->req_lim_delta);
2985 }
2986
srpt_queue_status(struct se_cmd * cmd)2987 static int srpt_queue_status(struct se_cmd *cmd)
2988 {
2989 struct srpt_send_ioctx *ioctx;
2990
2991 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2992 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
2993 if (cmd->se_cmd_flags &
2994 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
2995 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
2996 ioctx->queue_status_only = true;
2997 srpt_queue_response(cmd);
2998 return 0;
2999 }
3000
srpt_refresh_port_work(struct work_struct * work)3001 static void srpt_refresh_port_work(struct work_struct *work)
3002 {
3003 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3004
3005 srpt_refresh_port(sport);
3006 }
3007
3008 /**
3009 * srpt_release_sport - disable login and wait for associated channels
3010 * @sport: SRPT HCA port.
3011 */
srpt_release_sport(struct srpt_port * sport)3012 static int srpt_release_sport(struct srpt_port *sport)
3013 {
3014 DECLARE_COMPLETION_ONSTACK(c);
3015 struct srpt_nexus *nexus, *next_n;
3016 struct srpt_rdma_ch *ch;
3017
3018 WARN_ON_ONCE(irqs_disabled());
3019
3020 sport->freed_channels = &c;
3021
3022 mutex_lock(&sport->mutex);
3023 srpt_set_enabled(sport, false);
3024 mutex_unlock(&sport->mutex);
3025
3026 while (atomic_read(&sport->refcount) > 0 &&
3027 wait_for_completion_timeout(&c, 5 * HZ) <= 0) {
3028 pr_info("%s_%d: waiting for unregistration of %d sessions ...\n",
3029 dev_name(&sport->sdev->device->dev), sport->port,
3030 atomic_read(&sport->refcount));
3031 rcu_read_lock();
3032 list_for_each_entry(nexus, &sport->nexus_list, entry) {
3033 list_for_each_entry(ch, &nexus->ch_list, list) {
3034 pr_info("%s-%d: state %s\n",
3035 ch->sess_name, ch->qp->qp_num,
3036 get_ch_state_name(ch->state));
3037 }
3038 }
3039 rcu_read_unlock();
3040 }
3041
3042 mutex_lock(&sport->mutex);
3043 list_for_each_entry_safe(nexus, next_n, &sport->nexus_list, entry) {
3044 list_del(&nexus->entry);
3045 kfree_rcu(nexus, rcu);
3046 }
3047 mutex_unlock(&sport->mutex);
3048
3049 return 0;
3050 }
3051
3052 struct port_and_port_id {
3053 struct srpt_port *sport;
3054 struct srpt_port_id **port_id;
3055 };
3056
__srpt_lookup_port(const char * name)3057 static struct port_and_port_id __srpt_lookup_port(const char *name)
3058 {
3059 struct ib_device *dev;
3060 struct srpt_device *sdev;
3061 struct srpt_port *sport;
3062 int i;
3063
3064 list_for_each_entry(sdev, &srpt_dev_list, list) {
3065 dev = sdev->device;
3066 if (!dev)
3067 continue;
3068
3069 for (i = 0; i < dev->phys_port_cnt; i++) {
3070 sport = &sdev->port[i];
3071
3072 if (strcmp(sport->guid_name, name) == 0) {
3073 kref_get(&sdev->refcnt);
3074 return (struct port_and_port_id){
3075 sport, &sport->guid_id};
3076 }
3077 if (strcmp(sport->gid_name, name) == 0) {
3078 kref_get(&sdev->refcnt);
3079 return (struct port_and_port_id){
3080 sport, &sport->gid_id};
3081 }
3082 }
3083 }
3084
3085 return (struct port_and_port_id){};
3086 }
3087
3088 /**
3089 * srpt_lookup_port() - Look up an RDMA port by name
3090 * @name: ASCII port name
3091 *
3092 * Increments the RDMA port reference count if an RDMA port pointer is returned.
3093 * The caller must drop that reference count by calling srpt_port_put_ref().
3094 */
srpt_lookup_port(const char * name)3095 static struct port_and_port_id srpt_lookup_port(const char *name)
3096 {
3097 struct port_and_port_id papi;
3098
3099 spin_lock(&srpt_dev_lock);
3100 papi = __srpt_lookup_port(name);
3101 spin_unlock(&srpt_dev_lock);
3102
3103 return papi;
3104 }
3105
srpt_free_srq(struct srpt_device * sdev)3106 static void srpt_free_srq(struct srpt_device *sdev)
3107 {
3108 if (!sdev->srq)
3109 return;
3110
3111 ib_destroy_srq(sdev->srq);
3112 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3113 sdev->srq_size, sdev->req_buf_cache,
3114 DMA_FROM_DEVICE);
3115 srpt_cache_put(sdev->req_buf_cache);
3116 sdev->srq = NULL;
3117 }
3118
srpt_alloc_srq(struct srpt_device * sdev)3119 static int srpt_alloc_srq(struct srpt_device *sdev)
3120 {
3121 struct ib_srq_init_attr srq_attr = {
3122 .event_handler = srpt_srq_event,
3123 .srq_context = (void *)sdev,
3124 .attr.max_wr = sdev->srq_size,
3125 .attr.max_sge = 1,
3126 .srq_type = IB_SRQT_BASIC,
3127 };
3128 struct ib_device *device = sdev->device;
3129 struct ib_srq *srq;
3130 int i;
3131
3132 WARN_ON_ONCE(sdev->srq);
3133 srq = ib_create_srq(sdev->pd, &srq_attr);
3134 if (IS_ERR(srq)) {
3135 pr_debug("ib_create_srq() failed: %ld\n", PTR_ERR(srq));
3136 return PTR_ERR(srq);
3137 }
3138
3139 pr_debug("create SRQ #wr= %d max_allow=%d dev= %s\n", sdev->srq_size,
3140 sdev->device->attrs.max_srq_wr, dev_name(&device->dev));
3141
3142 sdev->req_buf_cache = srpt_cache_get(srp_max_req_size);
3143 if (!sdev->req_buf_cache)
3144 goto free_srq;
3145
3146 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3147 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3148 sizeof(*sdev->ioctx_ring[0]),
3149 sdev->req_buf_cache, 0, DMA_FROM_DEVICE);
3150 if (!sdev->ioctx_ring)
3151 goto free_cache;
3152
3153 sdev->use_srq = true;
3154 sdev->srq = srq;
3155
3156 for (i = 0; i < sdev->srq_size; ++i) {
3157 INIT_LIST_HEAD(&sdev->ioctx_ring[i]->wait_list);
3158 srpt_post_recv(sdev, NULL, sdev->ioctx_ring[i]);
3159 }
3160
3161 return 0;
3162
3163 free_cache:
3164 srpt_cache_put(sdev->req_buf_cache);
3165
3166 free_srq:
3167 ib_destroy_srq(srq);
3168 return -ENOMEM;
3169 }
3170
srpt_use_srq(struct srpt_device * sdev,bool use_srq)3171 static int srpt_use_srq(struct srpt_device *sdev, bool use_srq)
3172 {
3173 struct ib_device *device = sdev->device;
3174 int ret = 0;
3175
3176 if (!use_srq) {
3177 srpt_free_srq(sdev);
3178 sdev->use_srq = false;
3179 } else if (use_srq && !sdev->srq) {
3180 ret = srpt_alloc_srq(sdev);
3181 }
3182 pr_debug("%s(%s): use_srq = %d; ret = %d\n", __func__,
3183 dev_name(&device->dev), sdev->use_srq, ret);
3184 return ret;
3185 }
3186
srpt_free_sdev(struct kref * refcnt)3187 static void srpt_free_sdev(struct kref *refcnt)
3188 {
3189 struct srpt_device *sdev = container_of(refcnt, typeof(*sdev), refcnt);
3190
3191 kfree(sdev);
3192 }
3193
srpt_sdev_put(struct srpt_device * sdev)3194 static void srpt_sdev_put(struct srpt_device *sdev)
3195 {
3196 kref_put(&sdev->refcnt, srpt_free_sdev);
3197 }
3198
3199 /**
3200 * srpt_add_one - InfiniBand device addition callback function
3201 * @device: Describes a HCA.
3202 */
srpt_add_one(struct ib_device * device)3203 static int srpt_add_one(struct ib_device *device)
3204 {
3205 struct srpt_device *sdev;
3206 struct srpt_port *sport;
3207 int ret;
3208 u32 i;
3209
3210 pr_debug("device = %p\n", device);
3211
3212 sdev = kzalloc(struct_size(sdev, port, device->phys_port_cnt),
3213 GFP_KERNEL);
3214 if (!sdev)
3215 return -ENOMEM;
3216
3217 kref_init(&sdev->refcnt);
3218 sdev->device = device;
3219 mutex_init(&sdev->sdev_mutex);
3220
3221 sdev->pd = ib_alloc_pd(device, 0);
3222 if (IS_ERR(sdev->pd)) {
3223 ret = PTR_ERR(sdev->pd);
3224 goto free_dev;
3225 }
3226
3227 sdev->lkey = sdev->pd->local_dma_lkey;
3228
3229 sdev->srq_size = min(srpt_srq_size, sdev->device->attrs.max_srq_wr);
3230
3231 srpt_use_srq(sdev, sdev->port[0].port_attrib.use_srq);
3232
3233 if (!srpt_service_guid)
3234 srpt_service_guid = be64_to_cpu(device->node_guid);
3235
3236 if (rdma_port_get_link_layer(device, 1) == IB_LINK_LAYER_INFINIBAND)
3237 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3238 if (IS_ERR(sdev->cm_id)) {
3239 pr_info("ib_create_cm_id() failed: %ld\n",
3240 PTR_ERR(sdev->cm_id));
3241 ret = PTR_ERR(sdev->cm_id);
3242 sdev->cm_id = NULL;
3243 if (!rdma_cm_id)
3244 goto err_ring;
3245 }
3246
3247 /* print out target login information */
3248 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,pkey=ffff,service_id=%016llx\n",
3249 srpt_service_guid, srpt_service_guid, srpt_service_guid);
3250
3251 /*
3252 * We do not have a consistent service_id (ie. also id_ext of target_id)
3253 * to identify this target. We currently use the guid of the first HCA
3254 * in the system as service_id; therefore, the target_id will change
3255 * if this HCA is gone bad and replaced by different HCA
3256 */
3257 ret = sdev->cm_id ?
3258 ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid)) :
3259 0;
3260 if (ret < 0) {
3261 pr_err("ib_cm_listen() failed: %d (cm_id state = %d)\n", ret,
3262 sdev->cm_id->state);
3263 goto err_cm;
3264 }
3265
3266 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3267 srpt_event_handler);
3268
3269 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3270 sport = &sdev->port[i - 1];
3271 INIT_LIST_HEAD(&sport->nexus_list);
3272 mutex_init(&sport->mutex);
3273 sport->sdev = sdev;
3274 sport->port = i;
3275 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3276 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3277 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3278 sport->port_attrib.use_srq = false;
3279 INIT_WORK(&sport->work, srpt_refresh_port_work);
3280
3281 ret = srpt_refresh_port(sport);
3282 if (ret) {
3283 pr_err("MAD registration failed for %s-%d.\n",
3284 dev_name(&sdev->device->dev), i);
3285 i--;
3286 goto err_port;
3287 }
3288 }
3289
3290 ib_register_event_handler(&sdev->event_handler);
3291 spin_lock(&srpt_dev_lock);
3292 list_add_tail(&sdev->list, &srpt_dev_list);
3293 spin_unlock(&srpt_dev_lock);
3294
3295 ib_set_client_data(device, &srpt_client, sdev);
3296 pr_debug("added %s.\n", dev_name(&device->dev));
3297 return 0;
3298
3299 err_port:
3300 srpt_unregister_mad_agent(sdev, i);
3301 err_cm:
3302 if (sdev->cm_id)
3303 ib_destroy_cm_id(sdev->cm_id);
3304 err_ring:
3305 srpt_free_srq(sdev);
3306 ib_dealloc_pd(sdev->pd);
3307 free_dev:
3308 srpt_sdev_put(sdev);
3309 pr_info("%s(%s) failed.\n", __func__, dev_name(&device->dev));
3310 return ret;
3311 }
3312
3313 /**
3314 * srpt_remove_one - InfiniBand device removal callback function
3315 * @device: Describes a HCA.
3316 * @client_data: The value passed as the third argument to ib_set_client_data().
3317 */
srpt_remove_one(struct ib_device * device,void * client_data)3318 static void srpt_remove_one(struct ib_device *device, void *client_data)
3319 {
3320 struct srpt_device *sdev = client_data;
3321 int i;
3322
3323 srpt_unregister_mad_agent(sdev, sdev->device->phys_port_cnt);
3324
3325 ib_unregister_event_handler(&sdev->event_handler);
3326
3327 /* Cancel any work queued by the just unregistered IB event handler. */
3328 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3329 cancel_work_sync(&sdev->port[i].work);
3330
3331 if (sdev->cm_id)
3332 ib_destroy_cm_id(sdev->cm_id);
3333
3334 ib_set_client_data(device, &srpt_client, NULL);
3335
3336 /*
3337 * Unregistering a target must happen after destroying sdev->cm_id
3338 * such that no new SRP_LOGIN_REQ information units can arrive while
3339 * destroying the target.
3340 */
3341 spin_lock(&srpt_dev_lock);
3342 list_del(&sdev->list);
3343 spin_unlock(&srpt_dev_lock);
3344
3345 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3346 srpt_release_sport(&sdev->port[i]);
3347
3348 srpt_free_srq(sdev);
3349
3350 ib_dealloc_pd(sdev->pd);
3351
3352 srpt_sdev_put(sdev);
3353 }
3354
3355 static struct ib_client srpt_client = {
3356 .name = DRV_NAME,
3357 .add = srpt_add_one,
3358 .remove = srpt_remove_one
3359 };
3360
srpt_check_true(struct se_portal_group * se_tpg)3361 static int srpt_check_true(struct se_portal_group *se_tpg)
3362 {
3363 return 1;
3364 }
3365
srpt_tpg_to_sport(struct se_portal_group * tpg)3366 static struct srpt_port *srpt_tpg_to_sport(struct se_portal_group *tpg)
3367 {
3368 return tpg->se_tpg_wwn->priv;
3369 }
3370
srpt_wwn_to_sport_id(struct se_wwn * wwn)3371 static struct srpt_port_id *srpt_wwn_to_sport_id(struct se_wwn *wwn)
3372 {
3373 struct srpt_port *sport = wwn->priv;
3374
3375 if (sport->guid_id && &sport->guid_id->wwn == wwn)
3376 return sport->guid_id;
3377 if (sport->gid_id && &sport->gid_id->wwn == wwn)
3378 return sport->gid_id;
3379 WARN_ON_ONCE(true);
3380 return NULL;
3381 }
3382
srpt_get_fabric_wwn(struct se_portal_group * tpg)3383 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3384 {
3385 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3386
3387 return stpg->sport_id->name;
3388 }
3389
srpt_get_tag(struct se_portal_group * tpg)3390 static u16 srpt_get_tag(struct se_portal_group *tpg)
3391 {
3392 return 1;
3393 }
3394
srpt_release_cmd(struct se_cmd * se_cmd)3395 static void srpt_release_cmd(struct se_cmd *se_cmd)
3396 {
3397 struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3398 struct srpt_send_ioctx, cmd);
3399 struct srpt_rdma_ch *ch = ioctx->ch;
3400 struct srpt_recv_ioctx *recv_ioctx = ioctx->recv_ioctx;
3401
3402 WARN_ON_ONCE(ioctx->state != SRPT_STATE_DONE &&
3403 !(ioctx->cmd.transport_state & CMD_T_ABORTED));
3404
3405 if (recv_ioctx) {
3406 WARN_ON_ONCE(!list_empty(&recv_ioctx->wait_list));
3407 ioctx->recv_ioctx = NULL;
3408 srpt_post_recv(ch->sport->sdev, ch, recv_ioctx);
3409 }
3410
3411 if (ioctx->n_rw_ctx) {
3412 srpt_free_rw_ctxs(ch, ioctx);
3413 ioctx->n_rw_ctx = 0;
3414 }
3415
3416 target_free_tag(se_cmd->se_sess, se_cmd);
3417 }
3418
3419 /**
3420 * srpt_close_session - forcibly close a session
3421 * @se_sess: SCSI target session.
3422 *
3423 * Callback function invoked by the TCM core to clean up sessions associated
3424 * with a node ACL when the user invokes
3425 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3426 */
srpt_close_session(struct se_session * se_sess)3427 static void srpt_close_session(struct se_session *se_sess)
3428 {
3429 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
3430
3431 srpt_disconnect_ch_sync(ch);
3432 }
3433
3434 /* Note: only used from inside debug printk's by the TCM core. */
srpt_get_tcm_cmd_state(struct se_cmd * se_cmd)3435 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3436 {
3437 struct srpt_send_ioctx *ioctx;
3438
3439 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3440 return ioctx->state;
3441 }
3442
srpt_parse_guid(u64 * guid,const char * name)3443 static int srpt_parse_guid(u64 *guid, const char *name)
3444 {
3445 u16 w[4];
3446 int ret = -EINVAL;
3447
3448 if (sscanf(name, "%hx:%hx:%hx:%hx", &w[0], &w[1], &w[2], &w[3]) != 4)
3449 goto out;
3450 *guid = get_unaligned_be64(w);
3451 ret = 0;
3452 out:
3453 return ret;
3454 }
3455
3456 /**
3457 * srpt_parse_i_port_id - parse an initiator port ID
3458 * @name: ASCII representation of a 128-bit initiator port ID.
3459 * @i_port_id: Binary 128-bit port ID.
3460 */
srpt_parse_i_port_id(u8 i_port_id[16],const char * name)3461 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3462 {
3463 const char *p;
3464 unsigned len, count, leading_zero_bytes;
3465 int ret;
3466
3467 p = name;
3468 if (strncasecmp(p, "0x", 2) == 0)
3469 p += 2;
3470 ret = -EINVAL;
3471 len = strlen(p);
3472 if (len % 2)
3473 goto out;
3474 count = min(len / 2, 16U);
3475 leading_zero_bytes = 16 - count;
3476 memset(i_port_id, 0, leading_zero_bytes);
3477 ret = hex2bin(i_port_id + leading_zero_bytes, p, count);
3478
3479 out:
3480 return ret;
3481 }
3482
3483 /*
3484 * configfs callback function invoked for mkdir
3485 * /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3486 *
3487 * i_port_id must be an initiator port GUID, GID or IP address. See also the
3488 * target_alloc_session() calls in this driver. Examples of valid initiator
3489 * port IDs:
3490 * 0x0000000000000000505400fffe4a0b7b
3491 * 0000000000000000505400fffe4a0b7b
3492 * 5054:00ff:fe4a:0b7b
3493 * 192.168.122.76
3494 */
srpt_init_nodeacl(struct se_node_acl * se_nacl,const char * name)3495 static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3496 {
3497 struct sockaddr_storage sa;
3498 u64 guid;
3499 u8 i_port_id[16];
3500 int ret;
3501
3502 ret = srpt_parse_guid(&guid, name);
3503 if (ret < 0)
3504 ret = srpt_parse_i_port_id(i_port_id, name);
3505 if (ret < 0)
3506 ret = inet_pton_with_scope(&init_net, AF_UNSPEC, name, NULL,
3507 &sa);
3508 if (ret < 0)
3509 pr_err("invalid initiator port ID %s\n", name);
3510 return ret;
3511 }
3512
srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item * item,char * page)3513 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_show(struct config_item *item,
3514 char *page)
3515 {
3516 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3517 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3518
3519 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3520 }
3521
srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item * item,const char * page,size_t count)3522 static ssize_t srpt_tpg_attrib_srp_max_rdma_size_store(struct config_item *item,
3523 const char *page, size_t count)
3524 {
3525 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3526 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3527 unsigned long val;
3528 int ret;
3529
3530 ret = kstrtoul(page, 0, &val);
3531 if (ret < 0) {
3532 pr_err("kstrtoul() failed with ret: %d\n", ret);
3533 return -EINVAL;
3534 }
3535 if (val > MAX_SRPT_RDMA_SIZE) {
3536 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3537 MAX_SRPT_RDMA_SIZE);
3538 return -EINVAL;
3539 }
3540 if (val < DEFAULT_MAX_RDMA_SIZE) {
3541 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3542 val, DEFAULT_MAX_RDMA_SIZE);
3543 return -EINVAL;
3544 }
3545 sport->port_attrib.srp_max_rdma_size = val;
3546
3547 return count;
3548 }
3549
srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item * item,char * page)3550 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_show(struct config_item *item,
3551 char *page)
3552 {
3553 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3554 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3555
3556 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3557 }
3558
srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item * item,const char * page,size_t count)3559 static ssize_t srpt_tpg_attrib_srp_max_rsp_size_store(struct config_item *item,
3560 const char *page, size_t count)
3561 {
3562 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3563 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3564 unsigned long val;
3565 int ret;
3566
3567 ret = kstrtoul(page, 0, &val);
3568 if (ret < 0) {
3569 pr_err("kstrtoul() failed with ret: %d\n", ret);
3570 return -EINVAL;
3571 }
3572 if (val > MAX_SRPT_RSP_SIZE) {
3573 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3574 MAX_SRPT_RSP_SIZE);
3575 return -EINVAL;
3576 }
3577 if (val < MIN_MAX_RSP_SIZE) {
3578 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3579 MIN_MAX_RSP_SIZE);
3580 return -EINVAL;
3581 }
3582 sport->port_attrib.srp_max_rsp_size = val;
3583
3584 return count;
3585 }
3586
srpt_tpg_attrib_srp_sq_size_show(struct config_item * item,char * page)3587 static ssize_t srpt_tpg_attrib_srp_sq_size_show(struct config_item *item,
3588 char *page)
3589 {
3590 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3591 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3592
3593 return sysfs_emit(page, "%u\n", sport->port_attrib.srp_sq_size);
3594 }
3595
srpt_tpg_attrib_srp_sq_size_store(struct config_item * item,const char * page,size_t count)3596 static ssize_t srpt_tpg_attrib_srp_sq_size_store(struct config_item *item,
3597 const char *page, size_t count)
3598 {
3599 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3600 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3601 unsigned long val;
3602 int ret;
3603
3604 ret = kstrtoul(page, 0, &val);
3605 if (ret < 0) {
3606 pr_err("kstrtoul() failed with ret: %d\n", ret);
3607 return -EINVAL;
3608 }
3609 if (val > MAX_SRPT_SRQ_SIZE) {
3610 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3611 MAX_SRPT_SRQ_SIZE);
3612 return -EINVAL;
3613 }
3614 if (val < MIN_SRPT_SRQ_SIZE) {
3615 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3616 MIN_SRPT_SRQ_SIZE);
3617 return -EINVAL;
3618 }
3619 sport->port_attrib.srp_sq_size = val;
3620
3621 return count;
3622 }
3623
srpt_tpg_attrib_use_srq_show(struct config_item * item,char * page)3624 static ssize_t srpt_tpg_attrib_use_srq_show(struct config_item *item,
3625 char *page)
3626 {
3627 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3628 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3629
3630 return sysfs_emit(page, "%d\n", sport->port_attrib.use_srq);
3631 }
3632
srpt_tpg_attrib_use_srq_store(struct config_item * item,const char * page,size_t count)3633 static ssize_t srpt_tpg_attrib_use_srq_store(struct config_item *item,
3634 const char *page, size_t count)
3635 {
3636 struct se_portal_group *se_tpg = attrib_to_tpg(item);
3637 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3638 struct srpt_device *sdev = sport->sdev;
3639 unsigned long val;
3640 bool enabled;
3641 int ret;
3642
3643 ret = kstrtoul(page, 0, &val);
3644 if (ret < 0)
3645 return ret;
3646 if (val != !!val)
3647 return -EINVAL;
3648
3649 ret = mutex_lock_interruptible(&sdev->sdev_mutex);
3650 if (ret < 0)
3651 return ret;
3652 ret = mutex_lock_interruptible(&sport->mutex);
3653 if (ret < 0)
3654 goto unlock_sdev;
3655 enabled = sport->enabled;
3656 /* Log out all initiator systems before changing 'use_srq'. */
3657 srpt_set_enabled(sport, false);
3658 sport->port_attrib.use_srq = val;
3659 srpt_use_srq(sdev, sport->port_attrib.use_srq);
3660 srpt_set_enabled(sport, enabled);
3661 ret = count;
3662 mutex_unlock(&sport->mutex);
3663 unlock_sdev:
3664 mutex_unlock(&sdev->sdev_mutex);
3665
3666 return ret;
3667 }
3668
3669 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rdma_size);
3670 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_max_rsp_size);
3671 CONFIGFS_ATTR(srpt_tpg_attrib_, srp_sq_size);
3672 CONFIGFS_ATTR(srpt_tpg_attrib_, use_srq);
3673
3674 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3675 &srpt_tpg_attrib_attr_srp_max_rdma_size,
3676 &srpt_tpg_attrib_attr_srp_max_rsp_size,
3677 &srpt_tpg_attrib_attr_srp_sq_size,
3678 &srpt_tpg_attrib_attr_use_srq,
3679 NULL,
3680 };
3681
srpt_create_rdma_id(struct sockaddr * listen_addr)3682 static struct rdma_cm_id *srpt_create_rdma_id(struct sockaddr *listen_addr)
3683 {
3684 struct rdma_cm_id *rdma_cm_id;
3685 int ret;
3686
3687 rdma_cm_id = rdma_create_id(&init_net, srpt_rdma_cm_handler,
3688 NULL, RDMA_PS_TCP, IB_QPT_RC);
3689 if (IS_ERR(rdma_cm_id)) {
3690 pr_err("RDMA/CM ID creation failed: %ld\n",
3691 PTR_ERR(rdma_cm_id));
3692 goto out;
3693 }
3694
3695 ret = rdma_bind_addr(rdma_cm_id, listen_addr);
3696 if (ret) {
3697 char addr_str[64];
3698
3699 snprintf(addr_str, sizeof(addr_str), "%pISp", listen_addr);
3700 pr_err("Binding RDMA/CM ID to address %s failed: %d\n",
3701 addr_str, ret);
3702 rdma_destroy_id(rdma_cm_id);
3703 rdma_cm_id = ERR_PTR(ret);
3704 goto out;
3705 }
3706
3707 ret = rdma_listen(rdma_cm_id, 128);
3708 if (ret) {
3709 pr_err("rdma_listen() failed: %d\n", ret);
3710 rdma_destroy_id(rdma_cm_id);
3711 rdma_cm_id = ERR_PTR(ret);
3712 }
3713
3714 out:
3715 return rdma_cm_id;
3716 }
3717
srpt_rdma_cm_port_show(struct config_item * item,char * page)3718 static ssize_t srpt_rdma_cm_port_show(struct config_item *item, char *page)
3719 {
3720 return sysfs_emit(page, "%d\n", rdma_cm_port);
3721 }
3722
srpt_rdma_cm_port_store(struct config_item * item,const char * page,size_t count)3723 static ssize_t srpt_rdma_cm_port_store(struct config_item *item,
3724 const char *page, size_t count)
3725 {
3726 struct sockaddr_in addr4 = { .sin_family = AF_INET };
3727 struct sockaddr_in6 addr6 = { .sin6_family = AF_INET6 };
3728 struct rdma_cm_id *new_id = NULL;
3729 u16 val;
3730 int ret;
3731
3732 ret = kstrtou16(page, 0, &val);
3733 if (ret < 0)
3734 return ret;
3735 ret = count;
3736 if (rdma_cm_port == val)
3737 goto out;
3738
3739 if (val) {
3740 addr6.sin6_port = cpu_to_be16(val);
3741 new_id = srpt_create_rdma_id((struct sockaddr *)&addr6);
3742 if (IS_ERR(new_id)) {
3743 addr4.sin_port = cpu_to_be16(val);
3744 new_id = srpt_create_rdma_id((struct sockaddr *)&addr4);
3745 if (IS_ERR(new_id)) {
3746 ret = PTR_ERR(new_id);
3747 goto out;
3748 }
3749 }
3750 }
3751
3752 mutex_lock(&rdma_cm_mutex);
3753 rdma_cm_port = val;
3754 swap(rdma_cm_id, new_id);
3755 mutex_unlock(&rdma_cm_mutex);
3756
3757 if (new_id)
3758 rdma_destroy_id(new_id);
3759 ret = count;
3760 out:
3761 return ret;
3762 }
3763
3764 CONFIGFS_ATTR(srpt_, rdma_cm_port);
3765
3766 static struct configfs_attribute *srpt_da_attrs[] = {
3767 &srpt_attr_rdma_cm_port,
3768 NULL,
3769 };
3770
srpt_enable_tpg(struct se_portal_group * se_tpg,bool enable)3771 static int srpt_enable_tpg(struct se_portal_group *se_tpg, bool enable)
3772 {
3773 struct srpt_port *sport = srpt_tpg_to_sport(se_tpg);
3774
3775 mutex_lock(&sport->mutex);
3776 srpt_set_enabled(sport, enable);
3777 mutex_unlock(&sport->mutex);
3778
3779 return 0;
3780 }
3781
3782 /**
3783 * srpt_make_tpg - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port/$tpg
3784 * @wwn: Corresponds to $driver/$port.
3785 * @name: $tpg.
3786 */
srpt_make_tpg(struct se_wwn * wwn,const char * name)3787 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3788 const char *name)
3789 {
3790 struct srpt_port_id *sport_id = srpt_wwn_to_sport_id(wwn);
3791 struct srpt_tpg *stpg;
3792 int res = -ENOMEM;
3793
3794 stpg = kzalloc(sizeof(*stpg), GFP_KERNEL);
3795 if (!stpg)
3796 return ERR_PTR(res);
3797 stpg->sport_id = sport_id;
3798 res = core_tpg_register(wwn, &stpg->tpg, SCSI_PROTOCOL_SRP);
3799 if (res) {
3800 kfree(stpg);
3801 return ERR_PTR(res);
3802 }
3803
3804 mutex_lock(&sport_id->mutex);
3805 list_add_tail(&stpg->entry, &sport_id->tpg_list);
3806 mutex_unlock(&sport_id->mutex);
3807
3808 return &stpg->tpg;
3809 }
3810
3811 /**
3812 * srpt_drop_tpg - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port/$tpg
3813 * @tpg: Target portal group to deregister.
3814 */
srpt_drop_tpg(struct se_portal_group * tpg)3815 static void srpt_drop_tpg(struct se_portal_group *tpg)
3816 {
3817 struct srpt_tpg *stpg = container_of(tpg, typeof(*stpg), tpg);
3818 struct srpt_port_id *sport_id = stpg->sport_id;
3819 struct srpt_port *sport = srpt_tpg_to_sport(tpg);
3820
3821 mutex_lock(&sport_id->mutex);
3822 list_del(&stpg->entry);
3823 mutex_unlock(&sport_id->mutex);
3824
3825 sport->enabled = false;
3826 core_tpg_deregister(tpg);
3827 kfree(stpg);
3828 }
3829
3830 /**
3831 * srpt_make_tport - configfs callback invoked for mkdir /sys/kernel/config/target/$driver/$port
3832 * @tf: Not used.
3833 * @group: Not used.
3834 * @name: $port.
3835 */
srpt_make_tport(struct target_fabric_configfs * tf,struct config_group * group,const char * name)3836 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3837 struct config_group *group,
3838 const char *name)
3839 {
3840 struct port_and_port_id papi = srpt_lookup_port(name);
3841 struct srpt_port *sport = papi.sport;
3842 struct srpt_port_id *port_id;
3843
3844 if (!papi.port_id)
3845 return ERR_PTR(-EINVAL);
3846 if (*papi.port_id) {
3847 /* Attempt to create a directory that already exists. */
3848 WARN_ON_ONCE(true);
3849 return &(*papi.port_id)->wwn;
3850 }
3851 port_id = kzalloc(sizeof(*port_id), GFP_KERNEL);
3852 if (!port_id) {
3853 srpt_sdev_put(sport->sdev);
3854 return ERR_PTR(-ENOMEM);
3855 }
3856 mutex_init(&port_id->mutex);
3857 INIT_LIST_HEAD(&port_id->tpg_list);
3858 port_id->wwn.priv = sport;
3859 memcpy(port_id->name, port_id == sport->guid_id ? sport->guid_name :
3860 sport->gid_name, ARRAY_SIZE(port_id->name));
3861
3862 *papi.port_id = port_id;
3863
3864 return &port_id->wwn;
3865 }
3866
3867 /**
3868 * srpt_drop_tport - configfs callback invoked for rmdir /sys/kernel/config/target/$driver/$port
3869 * @wwn: $port.
3870 */
srpt_drop_tport(struct se_wwn * wwn)3871 static void srpt_drop_tport(struct se_wwn *wwn)
3872 {
3873 struct srpt_port_id *port_id = container_of(wwn, typeof(*port_id), wwn);
3874 struct srpt_port *sport = wwn->priv;
3875
3876 if (sport->guid_id == port_id)
3877 sport->guid_id = NULL;
3878 else if (sport->gid_id == port_id)
3879 sport->gid_id = NULL;
3880 else
3881 WARN_ON_ONCE(true);
3882
3883 srpt_sdev_put(sport->sdev);
3884 kfree(port_id);
3885 }
3886
srpt_wwn_version_show(struct config_item * item,char * buf)3887 static ssize_t srpt_wwn_version_show(struct config_item *item, char *buf)
3888 {
3889 return sysfs_emit(buf, "\n");
3890 }
3891
3892 CONFIGFS_ATTR_RO(srpt_wwn_, version);
3893
3894 static struct configfs_attribute *srpt_wwn_attrs[] = {
3895 &srpt_wwn_attr_version,
3896 NULL,
3897 };
3898
3899 static const struct target_core_fabric_ops srpt_template = {
3900 .module = THIS_MODULE,
3901 .fabric_name = "srpt",
3902 .tpg_get_wwn = srpt_get_fabric_wwn,
3903 .tpg_get_tag = srpt_get_tag,
3904 .tpg_check_demo_mode_cache = srpt_check_true,
3905 .tpg_check_demo_mode_write_protect = srpt_check_true,
3906 .release_cmd = srpt_release_cmd,
3907 .check_stop_free = srpt_check_stop_free,
3908 .close_session = srpt_close_session,
3909 .sess_get_initiator_sid = NULL,
3910 .write_pending = srpt_write_pending,
3911 .get_cmd_state = srpt_get_tcm_cmd_state,
3912 .queue_data_in = srpt_queue_data_in,
3913 .queue_status = srpt_queue_status,
3914 .queue_tm_rsp = srpt_queue_tm_rsp,
3915 .aborted_task = srpt_aborted_task,
3916 /*
3917 * Setup function pointers for generic logic in
3918 * target_core_fabric_configfs.c
3919 */
3920 .fabric_make_wwn = srpt_make_tport,
3921 .fabric_drop_wwn = srpt_drop_tport,
3922 .fabric_make_tpg = srpt_make_tpg,
3923 .fabric_enable_tpg = srpt_enable_tpg,
3924 .fabric_drop_tpg = srpt_drop_tpg,
3925 .fabric_init_nodeacl = srpt_init_nodeacl,
3926
3927 .tfc_discovery_attrs = srpt_da_attrs,
3928 .tfc_wwn_attrs = srpt_wwn_attrs,
3929 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs,
3930 };
3931
3932 /**
3933 * srpt_init_module - kernel module initialization
3934 *
3935 * Note: Since ib_register_client() registers callback functions, and since at
3936 * least one of these callback functions (srpt_add_one()) calls target core
3937 * functions, this driver must be registered with the target core before
3938 * ib_register_client() is called.
3939 */
srpt_init_module(void)3940 static int __init srpt_init_module(void)
3941 {
3942 int ret;
3943
3944 ret = -EINVAL;
3945 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3946 pr_err("invalid value %d for kernel module parameter srp_max_req_size -- must be at least %d.\n",
3947 srp_max_req_size, MIN_MAX_REQ_SIZE);
3948 goto out;
3949 }
3950
3951 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3952 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3953 pr_err("invalid value %d for kernel module parameter srpt_srq_size -- must be in the range [%d..%d].\n",
3954 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3955 goto out;
3956 }
3957
3958 ret = target_register_template(&srpt_template);
3959 if (ret)
3960 goto out;
3961
3962 ret = ib_register_client(&srpt_client);
3963 if (ret) {
3964 pr_err("couldn't register IB client\n");
3965 goto out_unregister_target;
3966 }
3967
3968 return 0;
3969
3970 out_unregister_target:
3971 target_unregister_template(&srpt_template);
3972 out:
3973 return ret;
3974 }
3975
srpt_cleanup_module(void)3976 static void __exit srpt_cleanup_module(void)
3977 {
3978 if (rdma_cm_id)
3979 rdma_destroy_id(rdma_cm_id);
3980 ib_unregister_client(&srpt_client);
3981 target_unregister_template(&srpt_template);
3982 }
3983
3984 module_init(srpt_init_module);
3985 module_exit(srpt_cleanup_module);
3986