1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef __LINUX_CPUMASK_H 3 #define __LINUX_CPUMASK_H 4 5 /* 6 * Cpumasks provide a bitmap suitable for representing the 7 * set of CPU's in a system, one bit position per CPU number. In general, 8 * only nr_cpu_ids (<= NR_CPUS) bits are valid. 9 */ 10 #include <linux/kernel.h> 11 #include <linux/threads.h> 12 #include <linux/bitmap.h> 13 #include <linux/atomic.h> 14 #include <linux/bug.h> 15 #include <linux/gfp_types.h> 16 #include <linux/numa.h> 17 18 /* Don't assign or return these: may not be this big! */ 19 typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t; 20 21 /** 22 * cpumask_bits - get the bits in a cpumask 23 * @maskp: the struct cpumask * 24 * 25 * You should only assume nr_cpu_ids bits of this mask are valid. This is 26 * a macro so it's const-correct. 27 */ 28 #define cpumask_bits(maskp) ((maskp)->bits) 29 30 /** 31 * cpumask_pr_args - printf args to output a cpumask 32 * @maskp: cpumask to be printed 33 * 34 * Can be used to provide arguments for '%*pb[l]' when printing a cpumask. 35 */ 36 #define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp) 37 38 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 39 #define nr_cpu_ids ((unsigned int)NR_CPUS) 40 #else 41 extern unsigned int nr_cpu_ids; 42 #endif 43 set_nr_cpu_ids(unsigned int nr)44 static inline void set_nr_cpu_ids(unsigned int nr) 45 { 46 #if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS) 47 WARN_ON(nr != nr_cpu_ids); 48 #else 49 nr_cpu_ids = nr; 50 #endif 51 } 52 53 /* 54 * We have several different "preferred sizes" for the cpumask 55 * operations, depending on operation. 56 * 57 * For example, the bitmap scanning and operating operations have 58 * optimized routines that work for the single-word case, but only when 59 * the size is constant. So if NR_CPUS fits in one single word, we are 60 * better off using that small constant, in order to trigger the 61 * optimized bit finding. That is 'small_cpumask_size'. 62 * 63 * The clearing and copying operations will similarly perform better 64 * with a constant size, but we limit that size arbitrarily to four 65 * words. We call this 'large_cpumask_size'. 66 * 67 * Finally, some operations just want the exact limit, either because 68 * they set bits or just don't have any faster fixed-sized versions. We 69 * call this just 'nr_cpumask_bits'. 70 * 71 * Note that these optional constants are always guaranteed to be at 72 * least as big as 'nr_cpu_ids' itself is, and all our cpumask 73 * allocations are at least that size (see cpumask_size()). The 74 * optimization comes from being able to potentially use a compile-time 75 * constant instead of a run-time generated exact number of CPUs. 76 */ 77 #if NR_CPUS <= BITS_PER_LONG 78 #define small_cpumask_bits ((unsigned int)NR_CPUS) 79 #define large_cpumask_bits ((unsigned int)NR_CPUS) 80 #elif NR_CPUS <= 4*BITS_PER_LONG 81 #define small_cpumask_bits nr_cpu_ids 82 #define large_cpumask_bits ((unsigned int)NR_CPUS) 83 #else 84 #define small_cpumask_bits nr_cpu_ids 85 #define large_cpumask_bits nr_cpu_ids 86 #endif 87 #define nr_cpumask_bits nr_cpu_ids 88 89 /* 90 * The following particular system cpumasks and operations manage 91 * possible, present, active and online cpus. 92 * 93 * cpu_possible_mask- has bit 'cpu' set iff cpu is populatable 94 * cpu_present_mask - has bit 'cpu' set iff cpu is populated 95 * cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler 96 * cpu_active_mask - has bit 'cpu' set iff cpu available to migration 97 * 98 * If !CONFIG_HOTPLUG_CPU, present == possible, and active == online. 99 * 100 * The cpu_possible_mask is fixed at boot time, as the set of CPU id's 101 * that it is possible might ever be plugged in at anytime during the 102 * life of that system boot. The cpu_present_mask is dynamic(*), 103 * representing which CPUs are currently plugged in. And 104 * cpu_online_mask is the dynamic subset of cpu_present_mask, 105 * indicating those CPUs available for scheduling. 106 * 107 * If HOTPLUG is enabled, then cpu_present_mask varies dynamically, 108 * depending on what ACPI reports as currently plugged in, otherwise 109 * cpu_present_mask is just a copy of cpu_possible_mask. 110 * 111 * (*) Well, cpu_present_mask is dynamic in the hotplug case. If not 112 * hotplug, it's a copy of cpu_possible_mask, hence fixed at boot. 113 * 114 * Subtleties: 115 * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode 116 * assumption that their single CPU is online. The UP 117 * cpu_{online,possible,present}_masks are placebos. Changing them 118 * will have no useful affect on the following num_*_cpus() 119 * and cpu_*() macros in the UP case. This ugliness is a UP 120 * optimization - don't waste any instructions or memory references 121 * asking if you're online or how many CPUs there are if there is 122 * only one CPU. 123 */ 124 125 extern struct cpumask __cpu_possible_mask; 126 extern struct cpumask __cpu_online_mask; 127 extern struct cpumask __cpu_present_mask; 128 extern struct cpumask __cpu_active_mask; 129 extern struct cpumask __cpu_dying_mask; 130 #define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask) 131 #define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask) 132 #define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask) 133 #define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask) 134 #define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask) 135 136 extern atomic_t __num_online_cpus; 137 138 extern cpumask_t cpus_booted_once_mask; 139 cpu_max_bits_warn(unsigned int cpu,unsigned int bits)140 static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits) 141 { 142 #ifdef CONFIG_DEBUG_PER_CPU_MAPS 143 WARN_ON_ONCE(cpu >= bits); 144 #endif /* CONFIG_DEBUG_PER_CPU_MAPS */ 145 } 146 147 /* verify cpu argument to cpumask_* operators */ cpumask_check(unsigned int cpu)148 static __always_inline unsigned int cpumask_check(unsigned int cpu) 149 { 150 cpu_max_bits_warn(cpu, small_cpumask_bits); 151 return cpu; 152 } 153 154 /** 155 * cpumask_first - get the first cpu in a cpumask 156 * @srcp: the cpumask pointer 157 * 158 * Returns >= nr_cpu_ids if no cpus set. 159 */ cpumask_first(const struct cpumask * srcp)160 static inline unsigned int cpumask_first(const struct cpumask *srcp) 161 { 162 return find_first_bit(cpumask_bits(srcp), small_cpumask_bits); 163 } 164 165 /** 166 * cpumask_first_zero - get the first unset cpu in a cpumask 167 * @srcp: the cpumask pointer 168 * 169 * Returns >= nr_cpu_ids if all cpus are set. 170 */ cpumask_first_zero(const struct cpumask * srcp)171 static inline unsigned int cpumask_first_zero(const struct cpumask *srcp) 172 { 173 return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits); 174 } 175 176 /** 177 * cpumask_first_and - return the first cpu from *srcp1 & *srcp2 178 * @srcp1: the first input 179 * @srcp2: the second input 180 * 181 * Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and(). 182 */ 183 static inline cpumask_first_and(const struct cpumask * srcp1,const struct cpumask * srcp2)184 unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2) 185 { 186 return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 187 } 188 189 /** 190 * cpumask_last - get the last CPU in a cpumask 191 * @srcp: - the cpumask pointer 192 * 193 * Returns >= nr_cpumask_bits if no CPUs set. 194 */ cpumask_last(const struct cpumask * srcp)195 static inline unsigned int cpumask_last(const struct cpumask *srcp) 196 { 197 return find_last_bit(cpumask_bits(srcp), small_cpumask_bits); 198 } 199 200 /** 201 * cpumask_next - get the next cpu in a cpumask 202 * @n: the cpu prior to the place to search (ie. return will be > @n) 203 * @srcp: the cpumask pointer 204 * 205 * Returns >= nr_cpu_ids if no further cpus set. 206 */ 207 static inline cpumask_next(int n,const struct cpumask * srcp)208 unsigned int cpumask_next(int n, const struct cpumask *srcp) 209 { 210 /* -1 is a legal arg here. */ 211 if (n != -1) 212 cpumask_check(n); 213 return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1); 214 } 215 216 /** 217 * cpumask_next_zero - get the next unset cpu in a cpumask 218 * @n: the cpu prior to the place to search (ie. return will be > @n) 219 * @srcp: the cpumask pointer 220 * 221 * Returns >= nr_cpu_ids if no further cpus unset. 222 */ cpumask_next_zero(int n,const struct cpumask * srcp)223 static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp) 224 { 225 /* -1 is a legal arg here. */ 226 if (n != -1) 227 cpumask_check(n); 228 return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1); 229 } 230 231 #if NR_CPUS == 1 232 /* Uniprocessor: there is only one valid CPU */ cpumask_local_spread(unsigned int i,int node)233 static inline unsigned int cpumask_local_spread(unsigned int i, int node) 234 { 235 return 0; 236 } 237 cpumask_any_and_distribute(const struct cpumask * src1p,const struct cpumask * src2p)238 static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 239 const struct cpumask *src2p) 240 { 241 return cpumask_first_and(src1p, src2p); 242 } 243 cpumask_any_distribute(const struct cpumask * srcp)244 static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp) 245 { 246 return cpumask_first(srcp); 247 } 248 #else 249 unsigned int cpumask_local_spread(unsigned int i, int node); 250 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p, 251 const struct cpumask *src2p); 252 unsigned int cpumask_any_distribute(const struct cpumask *srcp); 253 #endif /* NR_CPUS */ 254 255 /** 256 * cpumask_next_and - get the next cpu in *src1p & *src2p 257 * @n: the cpu prior to the place to search (ie. return will be > @n) 258 * @src1p: the first cpumask pointer 259 * @src2p: the second cpumask pointer 260 * 261 * Returns >= nr_cpu_ids if no further cpus set in both. 262 */ 263 static inline cpumask_next_and(int n,const struct cpumask * src1p,const struct cpumask * src2p)264 unsigned int cpumask_next_and(int n, const struct cpumask *src1p, 265 const struct cpumask *src2p) 266 { 267 /* -1 is a legal arg here. */ 268 if (n != -1) 269 cpumask_check(n); 270 return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p), 271 small_cpumask_bits, n + 1); 272 } 273 274 /** 275 * for_each_cpu - iterate over every cpu in a mask 276 * @cpu: the (optionally unsigned) integer iterator 277 * @mask: the cpumask pointer 278 * 279 * After the loop, cpu is >= nr_cpu_ids. 280 */ 281 #define for_each_cpu(cpu, mask) \ 282 for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits) 283 284 #if NR_CPUS == 1 285 static inline cpumask_next_wrap(int n,const struct cpumask * mask,int start,bool wrap)286 unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap) 287 { 288 cpumask_check(start); 289 if (n != -1) 290 cpumask_check(n); 291 292 /* 293 * Return the first available CPU when wrapping, or when starting before cpu0, 294 * since there is only one valid option. 295 */ 296 if (wrap && n >= 0) 297 return nr_cpumask_bits; 298 299 return cpumask_first(mask); 300 } 301 #else 302 unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap); 303 #endif 304 305 /** 306 * for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location 307 * @cpu: the (optionally unsigned) integer iterator 308 * @mask: the cpumask pointer 309 * @start: the start location 310 * 311 * The implementation does not assume any bit in @mask is set (including @start). 312 * 313 * After the loop, cpu is >= nr_cpu_ids. 314 */ 315 #define for_each_cpu_wrap(cpu, mask, start) \ 316 for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start) 317 318 /** 319 * for_each_cpu_and - iterate over every cpu in both masks 320 * @cpu: the (optionally unsigned) integer iterator 321 * @mask1: the first cpumask pointer 322 * @mask2: the second cpumask pointer 323 * 324 * This saves a temporary CPU mask in many places. It is equivalent to: 325 * struct cpumask tmp; 326 * cpumask_and(&tmp, &mask1, &mask2); 327 * for_each_cpu(cpu, &tmp) 328 * ... 329 * 330 * After the loop, cpu is >= nr_cpu_ids. 331 */ 332 #define for_each_cpu_and(cpu, mask1, mask2) \ 333 for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 334 335 /** 336 * for_each_cpu_andnot - iterate over every cpu present in one mask, excluding 337 * those present in another. 338 * @cpu: the (optionally unsigned) integer iterator 339 * @mask1: the first cpumask pointer 340 * @mask2: the second cpumask pointer 341 * 342 * This saves a temporary CPU mask in many places. It is equivalent to: 343 * struct cpumask tmp; 344 * cpumask_andnot(&tmp, &mask1, &mask2); 345 * for_each_cpu(cpu, &tmp) 346 * ... 347 * 348 * After the loop, cpu is >= nr_cpu_ids. 349 */ 350 #define for_each_cpu_andnot(cpu, mask1, mask2) \ 351 for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 352 353 /** 354 * for_each_cpu_or - iterate over every cpu present in either mask 355 * @cpu: the (optionally unsigned) integer iterator 356 * @mask1: the first cpumask pointer 357 * @mask2: the second cpumask pointer 358 * 359 * This saves a temporary CPU mask in many places. It is equivalent to: 360 * struct cpumask tmp; 361 * cpumask_or(&tmp, &mask1, &mask2); 362 * for_each_cpu(cpu, &tmp) 363 * ... 364 * 365 * After the loop, cpu is >= nr_cpu_ids. 366 */ 367 #define for_each_cpu_or(cpu, mask1, mask2) \ 368 for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits) 369 370 /** 371 * cpumask_any_but - return a "random" in a cpumask, but not this one. 372 * @mask: the cpumask to search 373 * @cpu: the cpu to ignore. 374 * 375 * Often used to find any cpu but smp_processor_id() in a mask. 376 * Returns >= nr_cpu_ids if no cpus set. 377 */ 378 static inline cpumask_any_but(const struct cpumask * mask,unsigned int cpu)379 unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu) 380 { 381 unsigned int i; 382 383 cpumask_check(cpu); 384 for_each_cpu(i, mask) 385 if (i != cpu) 386 break; 387 return i; 388 } 389 390 /** 391 * cpumask_nth - get the first cpu in a cpumask 392 * @srcp: the cpumask pointer 393 * @cpu: the N'th cpu to find, starting from 0 394 * 395 * Returns >= nr_cpu_ids if such cpu doesn't exist. 396 */ cpumask_nth(unsigned int cpu,const struct cpumask * srcp)397 static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp) 398 { 399 return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu)); 400 } 401 402 /** 403 * cpumask_nth_and - get the first cpu in 2 cpumasks 404 * @srcp1: the cpumask pointer 405 * @srcp2: the cpumask pointer 406 * @cpu: the N'th cpu to find, starting from 0 407 * 408 * Returns >= nr_cpu_ids if such cpu doesn't exist. 409 */ 410 static inline cpumask_nth_and(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2)411 unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1, 412 const struct cpumask *srcp2) 413 { 414 return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 415 small_cpumask_bits, cpumask_check(cpu)); 416 } 417 418 /** 419 * cpumask_nth_andnot - get the first cpu set in 1st cpumask, and clear in 2nd. 420 * @srcp1: the cpumask pointer 421 * @srcp2: the cpumask pointer 422 * @cpu: the N'th cpu to find, starting from 0 423 * 424 * Returns >= nr_cpu_ids if such cpu doesn't exist. 425 */ 426 static inline cpumask_nth_andnot(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2)427 unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1, 428 const struct cpumask *srcp2) 429 { 430 return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), 431 small_cpumask_bits, cpumask_check(cpu)); 432 } 433 434 /** 435 * cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd. 436 * @srcp1: the cpumask pointer 437 * @srcp2: the cpumask pointer 438 * @srcp3: the cpumask pointer 439 * @cpu: the N'th cpu to find, starting from 0 440 * 441 * Returns >= nr_cpu_ids if such cpu doesn't exist. 442 */ 443 static __always_inline cpumask_nth_and_andnot(unsigned int cpu,const struct cpumask * srcp1,const struct cpumask * srcp2,const struct cpumask * srcp3)444 unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1, 445 const struct cpumask *srcp2, 446 const struct cpumask *srcp3) 447 { 448 return find_nth_and_andnot_bit(cpumask_bits(srcp1), 449 cpumask_bits(srcp2), 450 cpumask_bits(srcp3), 451 small_cpumask_bits, cpumask_check(cpu)); 452 } 453 454 #define CPU_BITS_NONE \ 455 { \ 456 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 457 } 458 459 #define CPU_BITS_CPU0 \ 460 { \ 461 [0] = 1UL \ 462 } 463 464 /** 465 * cpumask_set_cpu - set a cpu in a cpumask 466 * @cpu: cpu number (< nr_cpu_ids) 467 * @dstp: the cpumask pointer 468 */ cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)469 static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 470 { 471 set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 472 } 473 __cpumask_set_cpu(unsigned int cpu,struct cpumask * dstp)474 static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp) 475 { 476 __set_bit(cpumask_check(cpu), cpumask_bits(dstp)); 477 } 478 479 480 /** 481 * cpumask_clear_cpu - clear a cpu in a cpumask 482 * @cpu: cpu number (< nr_cpu_ids) 483 * @dstp: the cpumask pointer 484 */ cpumask_clear_cpu(int cpu,struct cpumask * dstp)485 static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp) 486 { 487 clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 488 } 489 __cpumask_clear_cpu(int cpu,struct cpumask * dstp)490 static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp) 491 { 492 __clear_bit(cpumask_check(cpu), cpumask_bits(dstp)); 493 } 494 495 /** 496 * cpumask_test_cpu - test for a cpu in a cpumask 497 * @cpu: cpu number (< nr_cpu_ids) 498 * @cpumask: the cpumask pointer 499 * 500 * Returns true if @cpu is set in @cpumask, else returns false 501 */ cpumask_test_cpu(int cpu,const struct cpumask * cpumask)502 static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask) 503 { 504 return test_bit(cpumask_check(cpu), cpumask_bits((cpumask))); 505 } 506 507 /** 508 * cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask 509 * @cpu: cpu number (< nr_cpu_ids) 510 * @cpumask: the cpumask pointer 511 * 512 * Returns true if @cpu is set in old bitmap of @cpumask, else returns false 513 * 514 * test_and_set_bit wrapper for cpumasks. 515 */ cpumask_test_and_set_cpu(int cpu,struct cpumask * cpumask)516 static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask) 517 { 518 return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 519 } 520 521 /** 522 * cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask 523 * @cpu: cpu number (< nr_cpu_ids) 524 * @cpumask: the cpumask pointer 525 * 526 * Returns true if @cpu is set in old bitmap of @cpumask, else returns false 527 * 528 * test_and_clear_bit wrapper for cpumasks. 529 */ cpumask_test_and_clear_cpu(int cpu,struct cpumask * cpumask)530 static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask) 531 { 532 return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask)); 533 } 534 535 /** 536 * cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask 537 * @dstp: the cpumask pointer 538 */ cpumask_setall(struct cpumask * dstp)539 static inline void cpumask_setall(struct cpumask *dstp) 540 { 541 if (small_const_nbits(small_cpumask_bits)) { 542 cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits); 543 return; 544 } 545 bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits); 546 } 547 548 /** 549 * cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask 550 * @dstp: the cpumask pointer 551 */ cpumask_clear(struct cpumask * dstp)552 static inline void cpumask_clear(struct cpumask *dstp) 553 { 554 bitmap_zero(cpumask_bits(dstp), large_cpumask_bits); 555 } 556 557 /** 558 * cpumask_and - *dstp = *src1p & *src2p 559 * @dstp: the cpumask result 560 * @src1p: the first input 561 * @src2p: the second input 562 * 563 * If *@dstp is empty, returns false, else returns true 564 */ cpumask_and(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)565 static inline bool cpumask_and(struct cpumask *dstp, 566 const struct cpumask *src1p, 567 const struct cpumask *src2p) 568 { 569 return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p), 570 cpumask_bits(src2p), small_cpumask_bits); 571 } 572 573 /** 574 * cpumask_or - *dstp = *src1p | *src2p 575 * @dstp: the cpumask result 576 * @src1p: the first input 577 * @src2p: the second input 578 */ cpumask_or(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)579 static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p, 580 const struct cpumask *src2p) 581 { 582 bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p), 583 cpumask_bits(src2p), small_cpumask_bits); 584 } 585 586 /** 587 * cpumask_xor - *dstp = *src1p ^ *src2p 588 * @dstp: the cpumask result 589 * @src1p: the first input 590 * @src2p: the second input 591 */ cpumask_xor(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)592 static inline void cpumask_xor(struct cpumask *dstp, 593 const struct cpumask *src1p, 594 const struct cpumask *src2p) 595 { 596 bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p), 597 cpumask_bits(src2p), small_cpumask_bits); 598 } 599 600 /** 601 * cpumask_andnot - *dstp = *src1p & ~*src2p 602 * @dstp: the cpumask result 603 * @src1p: the first input 604 * @src2p: the second input 605 * 606 * If *@dstp is empty, returns false, else returns true 607 */ cpumask_andnot(struct cpumask * dstp,const struct cpumask * src1p,const struct cpumask * src2p)608 static inline bool cpumask_andnot(struct cpumask *dstp, 609 const struct cpumask *src1p, 610 const struct cpumask *src2p) 611 { 612 return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p), 613 cpumask_bits(src2p), small_cpumask_bits); 614 } 615 616 /** 617 * cpumask_equal - *src1p == *src2p 618 * @src1p: the first input 619 * @src2p: the second input 620 */ cpumask_equal(const struct cpumask * src1p,const struct cpumask * src2p)621 static inline bool cpumask_equal(const struct cpumask *src1p, 622 const struct cpumask *src2p) 623 { 624 return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p), 625 small_cpumask_bits); 626 } 627 628 /** 629 * cpumask_or_equal - *src1p | *src2p == *src3p 630 * @src1p: the first input 631 * @src2p: the second input 632 * @src3p: the third input 633 */ cpumask_or_equal(const struct cpumask * src1p,const struct cpumask * src2p,const struct cpumask * src3p)634 static inline bool cpumask_or_equal(const struct cpumask *src1p, 635 const struct cpumask *src2p, 636 const struct cpumask *src3p) 637 { 638 return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p), 639 cpumask_bits(src3p), small_cpumask_bits); 640 } 641 642 /** 643 * cpumask_intersects - (*src1p & *src2p) != 0 644 * @src1p: the first input 645 * @src2p: the second input 646 */ cpumask_intersects(const struct cpumask * src1p,const struct cpumask * src2p)647 static inline bool cpumask_intersects(const struct cpumask *src1p, 648 const struct cpumask *src2p) 649 { 650 return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p), 651 small_cpumask_bits); 652 } 653 654 /** 655 * cpumask_subset - (*src1p & ~*src2p) == 0 656 * @src1p: the first input 657 * @src2p: the second input 658 * 659 * Returns true if *@src1p is a subset of *@src2p, else returns false 660 */ cpumask_subset(const struct cpumask * src1p,const struct cpumask * src2p)661 static inline bool cpumask_subset(const struct cpumask *src1p, 662 const struct cpumask *src2p) 663 { 664 return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p), 665 small_cpumask_bits); 666 } 667 668 /** 669 * cpumask_empty - *srcp == 0 670 * @srcp: the cpumask to that all cpus < nr_cpu_ids are clear. 671 */ cpumask_empty(const struct cpumask * srcp)672 static inline bool cpumask_empty(const struct cpumask *srcp) 673 { 674 return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits); 675 } 676 677 /** 678 * cpumask_full - *srcp == 0xFFFFFFFF... 679 * @srcp: the cpumask to that all cpus < nr_cpu_ids are set. 680 */ cpumask_full(const struct cpumask * srcp)681 static inline bool cpumask_full(const struct cpumask *srcp) 682 { 683 return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits); 684 } 685 686 /** 687 * cpumask_weight - Count of bits in *srcp 688 * @srcp: the cpumask to count bits (< nr_cpu_ids) in. 689 */ cpumask_weight(const struct cpumask * srcp)690 static inline unsigned int cpumask_weight(const struct cpumask *srcp) 691 { 692 return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits); 693 } 694 695 /** 696 * cpumask_weight_and - Count of bits in (*srcp1 & *srcp2) 697 * @srcp1: the cpumask to count bits (< nr_cpu_ids) in. 698 * @srcp2: the cpumask to count bits (< nr_cpu_ids) in. 699 */ cpumask_weight_and(const struct cpumask * srcp1,const struct cpumask * srcp2)700 static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1, 701 const struct cpumask *srcp2) 702 { 703 return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits); 704 } 705 706 /** 707 * cpumask_shift_right - *dstp = *srcp >> n 708 * @dstp: the cpumask result 709 * @srcp: the input to shift 710 * @n: the number of bits to shift by 711 */ cpumask_shift_right(struct cpumask * dstp,const struct cpumask * srcp,int n)712 static inline void cpumask_shift_right(struct cpumask *dstp, 713 const struct cpumask *srcp, int n) 714 { 715 bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n, 716 small_cpumask_bits); 717 } 718 719 /** 720 * cpumask_shift_left - *dstp = *srcp << n 721 * @dstp: the cpumask result 722 * @srcp: the input to shift 723 * @n: the number of bits to shift by 724 */ cpumask_shift_left(struct cpumask * dstp,const struct cpumask * srcp,int n)725 static inline void cpumask_shift_left(struct cpumask *dstp, 726 const struct cpumask *srcp, int n) 727 { 728 bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n, 729 nr_cpumask_bits); 730 } 731 732 /** 733 * cpumask_copy - *dstp = *srcp 734 * @dstp: the result 735 * @srcp: the input cpumask 736 */ cpumask_copy(struct cpumask * dstp,const struct cpumask * srcp)737 static inline void cpumask_copy(struct cpumask *dstp, 738 const struct cpumask *srcp) 739 { 740 bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits); 741 } 742 743 /** 744 * cpumask_any - pick a "random" cpu from *srcp 745 * @srcp: the input cpumask 746 * 747 * Returns >= nr_cpu_ids if no cpus set. 748 */ 749 #define cpumask_any(srcp) cpumask_first(srcp) 750 751 /** 752 * cpumask_any_and - pick a "random" cpu from *mask1 & *mask2 753 * @mask1: the first input cpumask 754 * @mask2: the second input cpumask 755 * 756 * Returns >= nr_cpu_ids if no cpus set. 757 */ 758 #define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2)) 759 760 /** 761 * cpumask_of - the cpumask containing just a given cpu 762 * @cpu: the cpu (<= nr_cpu_ids) 763 */ 764 #define cpumask_of(cpu) (get_cpu_mask(cpu)) 765 766 /** 767 * cpumask_parse_user - extract a cpumask from a user string 768 * @buf: the buffer to extract from 769 * @len: the length of the buffer 770 * @dstp: the cpumask to set. 771 * 772 * Returns -errno, or 0 for success. 773 */ cpumask_parse_user(const char __user * buf,int len,struct cpumask * dstp)774 static inline int cpumask_parse_user(const char __user *buf, int len, 775 struct cpumask *dstp) 776 { 777 return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits); 778 } 779 780 /** 781 * cpumask_parselist_user - extract a cpumask from a user string 782 * @buf: the buffer to extract from 783 * @len: the length of the buffer 784 * @dstp: the cpumask to set. 785 * 786 * Returns -errno, or 0 for success. 787 */ cpumask_parselist_user(const char __user * buf,int len,struct cpumask * dstp)788 static inline int cpumask_parselist_user(const char __user *buf, int len, 789 struct cpumask *dstp) 790 { 791 return bitmap_parselist_user(buf, len, cpumask_bits(dstp), 792 nr_cpumask_bits); 793 } 794 795 /** 796 * cpumask_parse - extract a cpumask from a string 797 * @buf: the buffer to extract from 798 * @dstp: the cpumask to set. 799 * 800 * Returns -errno, or 0 for success. 801 */ cpumask_parse(const char * buf,struct cpumask * dstp)802 static inline int cpumask_parse(const char *buf, struct cpumask *dstp) 803 { 804 return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits); 805 } 806 807 /** 808 * cpulist_parse - extract a cpumask from a user string of ranges 809 * @buf: the buffer to extract from 810 * @dstp: the cpumask to set. 811 * 812 * Returns -errno, or 0 for success. 813 */ cpulist_parse(const char * buf,struct cpumask * dstp)814 static inline int cpulist_parse(const char *buf, struct cpumask *dstp) 815 { 816 return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits); 817 } 818 819 /** 820 * cpumask_size - size to allocate for a 'struct cpumask' in bytes 821 */ cpumask_size(void)822 static inline unsigned int cpumask_size(void) 823 { 824 return bitmap_size(large_cpumask_bits); 825 } 826 827 /* 828 * cpumask_var_t: struct cpumask for stack usage. 829 * 830 * Oh, the wicked games we play! In order to make kernel coding a 831 * little more difficult, we typedef cpumask_var_t to an array or a 832 * pointer: doing &mask on an array is a noop, so it still works. 833 * 834 * ie. 835 * cpumask_var_t tmpmask; 836 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 837 * return -ENOMEM; 838 * 839 * ... use 'tmpmask' like a normal struct cpumask * ... 840 * 841 * free_cpumask_var(tmpmask); 842 * 843 * 844 * However, one notable exception is there. alloc_cpumask_var() allocates 845 * only nr_cpumask_bits bits (in the other hand, real cpumask_t always has 846 * NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t. 847 * 848 * cpumask_var_t tmpmask; 849 * if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL)) 850 * return -ENOMEM; 851 * 852 * var = *tmpmask; 853 * 854 * This code makes NR_CPUS length memcopy and brings to a memory corruption. 855 * cpumask_copy() provide safe copy functionality. 856 * 857 * Note that there is another evil here: If you define a cpumask_var_t 858 * as a percpu variable then the way to obtain the address of the cpumask 859 * structure differently influences what this_cpu_* operation needs to be 860 * used. Please use this_cpu_cpumask_var_t in those cases. The direct use 861 * of this_cpu_ptr() or this_cpu_read() will lead to failures when the 862 * other type of cpumask_var_t implementation is configured. 863 * 864 * Please also note that __cpumask_var_read_mostly can be used to declare 865 * a cpumask_var_t variable itself (not its content) as read mostly. 866 */ 867 #ifdef CONFIG_CPUMASK_OFFSTACK 868 typedef struct cpumask *cpumask_var_t; 869 870 #define this_cpu_cpumask_var_ptr(x) this_cpu_read(x) 871 #define __cpumask_var_read_mostly __read_mostly 872 873 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node); 874 875 static inline zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)876 bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node) 877 { 878 return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node); 879 } 880 881 /** 882 * alloc_cpumask_var - allocate a struct cpumask 883 * @mask: pointer to cpumask_var_t where the cpumask is returned 884 * @flags: GFP_ flags 885 * 886 * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is 887 * a nop returning a constant 1 (in <linux/cpumask.h>). 888 * 889 * See alloc_cpumask_var_node. 890 */ 891 static inline alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)892 bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 893 { 894 return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE); 895 } 896 897 static inline zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)898 bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 899 { 900 return alloc_cpumask_var(mask, flags | __GFP_ZERO); 901 } 902 903 void alloc_bootmem_cpumask_var(cpumask_var_t *mask); 904 void free_cpumask_var(cpumask_var_t mask); 905 void free_bootmem_cpumask_var(cpumask_var_t mask); 906 cpumask_available(cpumask_var_t mask)907 static inline bool cpumask_available(cpumask_var_t mask) 908 { 909 return mask != NULL; 910 } 911 912 #else 913 typedef struct cpumask cpumask_var_t[1]; 914 915 #define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x) 916 #define __cpumask_var_read_mostly 917 alloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)918 static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 919 { 920 return true; 921 } 922 alloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)923 static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 924 int node) 925 { 926 return true; 927 } 928 zalloc_cpumask_var(cpumask_var_t * mask,gfp_t flags)929 static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags) 930 { 931 cpumask_clear(*mask); 932 return true; 933 } 934 zalloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)935 static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, 936 int node) 937 { 938 cpumask_clear(*mask); 939 return true; 940 } 941 alloc_bootmem_cpumask_var(cpumask_var_t * mask)942 static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask) 943 { 944 } 945 free_cpumask_var(cpumask_var_t mask)946 static inline void free_cpumask_var(cpumask_var_t mask) 947 { 948 } 949 free_bootmem_cpumask_var(cpumask_var_t mask)950 static inline void free_bootmem_cpumask_var(cpumask_var_t mask) 951 { 952 } 953 cpumask_available(cpumask_var_t mask)954 static inline bool cpumask_available(cpumask_var_t mask) 955 { 956 return true; 957 } 958 #endif /* CONFIG_CPUMASK_OFFSTACK */ 959 960 /* It's common to want to use cpu_all_mask in struct member initializers, 961 * so it has to refer to an address rather than a pointer. */ 962 extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS); 963 #define cpu_all_mask to_cpumask(cpu_all_bits) 964 965 /* First bits of cpu_bit_bitmap are in fact unset. */ 966 #define cpu_none_mask to_cpumask(cpu_bit_bitmap[0]) 967 968 #if NR_CPUS == 1 969 /* Uniprocessor: the possible/online/present masks are always "1" */ 970 #define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 971 #define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 972 #define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++) 973 #else 974 #define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask) 975 #define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask) 976 #define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask) 977 #endif 978 979 /* Wrappers for arch boot code to manipulate normally-constant masks */ 980 void init_cpu_present(const struct cpumask *src); 981 void init_cpu_possible(const struct cpumask *src); 982 void init_cpu_online(const struct cpumask *src); 983 reset_cpu_possible_mask(void)984 static inline void reset_cpu_possible_mask(void) 985 { 986 bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS); 987 } 988 989 static inline void set_cpu_possible(unsigned int cpu,bool possible)990 set_cpu_possible(unsigned int cpu, bool possible) 991 { 992 if (possible) 993 cpumask_set_cpu(cpu, &__cpu_possible_mask); 994 else 995 cpumask_clear_cpu(cpu, &__cpu_possible_mask); 996 } 997 998 static inline void set_cpu_present(unsigned int cpu,bool present)999 set_cpu_present(unsigned int cpu, bool present) 1000 { 1001 if (present) 1002 cpumask_set_cpu(cpu, &__cpu_present_mask); 1003 else 1004 cpumask_clear_cpu(cpu, &__cpu_present_mask); 1005 } 1006 1007 void set_cpu_online(unsigned int cpu, bool online); 1008 1009 static inline void set_cpu_active(unsigned int cpu,bool active)1010 set_cpu_active(unsigned int cpu, bool active) 1011 { 1012 if (active) 1013 cpumask_set_cpu(cpu, &__cpu_active_mask); 1014 else 1015 cpumask_clear_cpu(cpu, &__cpu_active_mask); 1016 } 1017 1018 static inline void set_cpu_dying(unsigned int cpu,bool dying)1019 set_cpu_dying(unsigned int cpu, bool dying) 1020 { 1021 if (dying) 1022 cpumask_set_cpu(cpu, &__cpu_dying_mask); 1023 else 1024 cpumask_clear_cpu(cpu, &__cpu_dying_mask); 1025 } 1026 1027 /** 1028 * to_cpumask - convert an NR_CPUS bitmap to a struct cpumask * 1029 * @bitmap: the bitmap 1030 * 1031 * There are a few places where cpumask_var_t isn't appropriate and 1032 * static cpumasks must be used (eg. very early boot), yet we don't 1033 * expose the definition of 'struct cpumask'. 1034 * 1035 * This does the conversion, and can be used as a constant initializer. 1036 */ 1037 #define to_cpumask(bitmap) \ 1038 ((struct cpumask *)(1 ? (bitmap) \ 1039 : (void *)sizeof(__check_is_bitmap(bitmap)))) 1040 __check_is_bitmap(const unsigned long * bitmap)1041 static inline int __check_is_bitmap(const unsigned long *bitmap) 1042 { 1043 return 1; 1044 } 1045 1046 /* 1047 * Special-case data structure for "single bit set only" constant CPU masks. 1048 * 1049 * We pre-generate all the 64 (or 32) possible bit positions, with enough 1050 * padding to the left and the right, and return the constant pointer 1051 * appropriately offset. 1052 */ 1053 extern const unsigned long 1054 cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)]; 1055 get_cpu_mask(unsigned int cpu)1056 static inline const struct cpumask *get_cpu_mask(unsigned int cpu) 1057 { 1058 const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG]; 1059 p -= cpu / BITS_PER_LONG; 1060 return to_cpumask(p); 1061 } 1062 1063 #if NR_CPUS > 1 1064 /** 1065 * num_online_cpus() - Read the number of online CPUs 1066 * 1067 * Despite the fact that __num_online_cpus is of type atomic_t, this 1068 * interface gives only a momentary snapshot and is not protected against 1069 * concurrent CPU hotplug operations unless invoked from a cpuhp_lock held 1070 * region. 1071 */ num_online_cpus(void)1072 static __always_inline unsigned int num_online_cpus(void) 1073 { 1074 return raw_atomic_read(&__num_online_cpus); 1075 } 1076 #define num_possible_cpus() cpumask_weight(cpu_possible_mask) 1077 #define num_present_cpus() cpumask_weight(cpu_present_mask) 1078 #define num_active_cpus() cpumask_weight(cpu_active_mask) 1079 cpu_online(unsigned int cpu)1080 static inline bool cpu_online(unsigned int cpu) 1081 { 1082 return cpumask_test_cpu(cpu, cpu_online_mask); 1083 } 1084 cpu_possible(unsigned int cpu)1085 static inline bool cpu_possible(unsigned int cpu) 1086 { 1087 return cpumask_test_cpu(cpu, cpu_possible_mask); 1088 } 1089 cpu_present(unsigned int cpu)1090 static inline bool cpu_present(unsigned int cpu) 1091 { 1092 return cpumask_test_cpu(cpu, cpu_present_mask); 1093 } 1094 cpu_active(unsigned int cpu)1095 static inline bool cpu_active(unsigned int cpu) 1096 { 1097 return cpumask_test_cpu(cpu, cpu_active_mask); 1098 } 1099 cpu_dying(unsigned int cpu)1100 static inline bool cpu_dying(unsigned int cpu) 1101 { 1102 return cpumask_test_cpu(cpu, cpu_dying_mask); 1103 } 1104 1105 #else 1106 1107 #define num_online_cpus() 1U 1108 #define num_possible_cpus() 1U 1109 #define num_present_cpus() 1U 1110 #define num_active_cpus() 1U 1111 cpu_online(unsigned int cpu)1112 static inline bool cpu_online(unsigned int cpu) 1113 { 1114 return cpu == 0; 1115 } 1116 cpu_possible(unsigned int cpu)1117 static inline bool cpu_possible(unsigned int cpu) 1118 { 1119 return cpu == 0; 1120 } 1121 cpu_present(unsigned int cpu)1122 static inline bool cpu_present(unsigned int cpu) 1123 { 1124 return cpu == 0; 1125 } 1126 cpu_active(unsigned int cpu)1127 static inline bool cpu_active(unsigned int cpu) 1128 { 1129 return cpu == 0; 1130 } 1131 cpu_dying(unsigned int cpu)1132 static inline bool cpu_dying(unsigned int cpu) 1133 { 1134 return false; 1135 } 1136 1137 #endif /* NR_CPUS > 1 */ 1138 1139 #define cpu_is_offline(cpu) unlikely(!cpu_online(cpu)) 1140 1141 #if NR_CPUS <= BITS_PER_LONG 1142 #define CPU_BITS_ALL \ 1143 { \ 1144 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1145 } 1146 1147 #else /* NR_CPUS > BITS_PER_LONG */ 1148 1149 #define CPU_BITS_ALL \ 1150 { \ 1151 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1152 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1153 } 1154 #endif /* NR_CPUS > BITS_PER_LONG */ 1155 1156 /** 1157 * cpumap_print_to_pagebuf - copies the cpumask into the buffer either 1158 * as comma-separated list of cpus or hex values of cpumask 1159 * @list: indicates whether the cpumap must be list 1160 * @mask: the cpumask to copy 1161 * @buf: the buffer to copy into 1162 * 1163 * Returns the length of the (null-terminated) @buf string, zero if 1164 * nothing is copied. 1165 */ 1166 static inline ssize_t cpumap_print_to_pagebuf(bool list,char * buf,const struct cpumask * mask)1167 cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask) 1168 { 1169 return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask), 1170 nr_cpu_ids); 1171 } 1172 1173 /** 1174 * cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as 1175 * hex values of cpumask 1176 * 1177 * @buf: the buffer to copy into 1178 * @mask: the cpumask to copy 1179 * @off: in the string from which we are copying, we copy to @buf 1180 * @count: the maximum number of bytes to print 1181 * 1182 * The function prints the cpumask into the buffer as hex values of 1183 * cpumask; Typically used by bin_attribute to export cpumask bitmask 1184 * ABI. 1185 * 1186 * Returns the length of how many bytes have been copied, excluding 1187 * terminating '\0'. 1188 */ 1189 static inline ssize_t cpumap_print_bitmask_to_buf(char * buf,const struct cpumask * mask,loff_t off,size_t count)1190 cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask, 1191 loff_t off, size_t count) 1192 { 1193 return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask), 1194 nr_cpu_ids, off, count) - 1; 1195 } 1196 1197 /** 1198 * cpumap_print_list_to_buf - copies the cpumask into the buffer as 1199 * comma-separated list of cpus 1200 * @buf: the buffer to copy into 1201 * @mask: the cpumask to copy 1202 * @off: in the string from which we are copying, we copy to @buf 1203 * @count: the maximum number of bytes to print 1204 * 1205 * Everything is same with the above cpumap_print_bitmask_to_buf() 1206 * except the print format. 1207 */ 1208 static inline ssize_t cpumap_print_list_to_buf(char * buf,const struct cpumask * mask,loff_t off,size_t count)1209 cpumap_print_list_to_buf(char *buf, const struct cpumask *mask, 1210 loff_t off, size_t count) 1211 { 1212 return bitmap_print_list_to_buf(buf, cpumask_bits(mask), 1213 nr_cpu_ids, off, count) - 1; 1214 } 1215 1216 #if NR_CPUS <= BITS_PER_LONG 1217 #define CPU_MASK_ALL \ 1218 (cpumask_t) { { \ 1219 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1220 } } 1221 #else 1222 #define CPU_MASK_ALL \ 1223 (cpumask_t) { { \ 1224 [0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \ 1225 [BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \ 1226 } } 1227 #endif /* NR_CPUS > BITS_PER_LONG */ 1228 1229 #define CPU_MASK_NONE \ 1230 (cpumask_t) { { \ 1231 [0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \ 1232 } } 1233 1234 #define CPU_MASK_CPU0 \ 1235 (cpumask_t) { { \ 1236 [0] = 1UL \ 1237 } } 1238 1239 /* 1240 * Provide a valid theoretical max size for cpumap and cpulist sysfs files 1241 * to avoid breaking userspace which may allocate a buffer based on the size 1242 * reported by e.g. fstat. 1243 * 1244 * for cpumap NR_CPUS * 9/32 - 1 should be an exact length. 1245 * 1246 * For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up 1247 * to 2 orders of magnitude larger than 8192. And then we divide by 2 to 1248 * cover a worst-case of every other cpu being on one of two nodes for a 1249 * very large NR_CPUS. 1250 * 1251 * Use PAGE_SIZE as a minimum for smaller configurations while avoiding 1252 * unsigned comparison to -1. 1253 */ 1254 #define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \ 1255 ? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE) 1256 #define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE) 1257 1258 #endif /* __LINUX_CPUMASK_H */ 1259