1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/runstate.h"
42 #include "qemu/log.h"
43 #include "hw/fw-path-provider.h"
44 #include "elf.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/cpus.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm_ppc.h"
50 #include "migration/misc.h"
51 #include "migration/qemu-file-types.h"
52 #include "migration/global_state.h"
53 #include "migration/register.h"
54 #include "migration/blocker.h"
55 #include "mmu-hash64.h"
56 #include "mmu-book3s-v3.h"
57 #include "cpu-models.h"
58 #include "hw/core/cpu.h"
59
60 #include "hw/ppc/ppc.h"
61 #include "hw/loader.h"
62
63 #include "hw/ppc/fdt.h"
64 #include "hw/ppc/spapr.h"
65 #include "hw/ppc/spapr_nested.h"
66 #include "hw/ppc/spapr_vio.h"
67 #include "hw/ppc/vof.h"
68 #include "hw/qdev-properties.h"
69 #include "hw/pci-host/spapr.h"
70 #include "hw/pci/msi.h"
71
72 #include "hw/pci/pci.h"
73 #include "hw/scsi/scsi.h"
74 #include "hw/virtio/virtio-scsi.h"
75 #include "hw/virtio/vhost-scsi-common.h"
76
77 #include "exec/ram_addr.h"
78 #include "exec/confidential-guest-support.h"
79 #include "hw/usb.h"
80 #include "qemu/config-file.h"
81 #include "qemu/error-report.h"
82 #include "trace.h"
83 #include "hw/nmi.h"
84 #include "hw/intc/intc.h"
85
86 #include "hw/ppc/spapr_cpu_core.h"
87 #include "hw/mem/memory-device.h"
88 #include "hw/ppc/spapr_tpm_proxy.h"
89 #include "hw/ppc/spapr_nvdimm.h"
90 #include "hw/ppc/spapr_numa.h"
91
92 #include <libfdt.h>
93
94 /* SLOF memory layout:
95 *
96 * SLOF raw image loaded at 0, copies its romfs right below the flat
97 * device-tree, then position SLOF itself 31M below that
98 *
99 * So we set FW_OVERHEAD to 40MB which should account for all of that
100 * and more
101 *
102 * We load our kernel at 4M, leaving space for SLOF initial image
103 */
104 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
105 #define FW_MAX_SIZE 0x400000
106 #define FW_FILE_NAME "slof.bin"
107 #define FW_FILE_NAME_VOF "vof.bin"
108 #define FW_OVERHEAD 0x2800000
109 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
110
111 #define MIN_RMA_SLOF (128 * MiB)
112
113 #define PHANDLE_INTC 0x00001111
114
115 /* These two functions implement the VCPU id numbering: one to compute them
116 * all and one to identify thread 0 of a VCORE. Any change to the first one
117 * is likely to have an impact on the second one, so let's keep them close.
118 */
spapr_vcpu_id(SpaprMachineState * spapr,int cpu_index)119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
120 {
121 MachineState *ms = MACHINE(spapr);
122 unsigned int smp_threads = ms->smp.threads;
123
124 assert(spapr->vsmt);
125 return
126 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
127 }
spapr_is_thread0_in_vcore(SpaprMachineState * spapr,PowerPCCPU * cpu)128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
129 PowerPCCPU *cpu)
130 {
131 assert(spapr->vsmt);
132 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
133 }
134
pre_2_10_vmstate_dummy_icp_needed(void * opaque)135 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
136 {
137 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
138 * and newer QEMUs don't even have them. In both cases, we don't want
139 * to send anything on the wire.
140 */
141 return false;
142 }
143
144 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
145 /*
146 * Hack ahead. We can't have two devices with the same name and
147 * instance id. So I rename this to pass make check.
148 * Real help from people who knows the hardware is needed.
149 */
150 .name = "icp/server",
151 .version_id = 1,
152 .minimum_version_id = 1,
153 .needed = pre_2_10_vmstate_dummy_icp_needed,
154 .fields = (const VMStateField[]) {
155 VMSTATE_UNUSED(4), /* uint32_t xirr */
156 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
157 VMSTATE_UNUSED(1), /* uint8_t mfrr */
158 VMSTATE_END_OF_LIST()
159 },
160 };
161
162 /*
163 * See comment in hw/intc/xics.c:icp_realize()
164 *
165 * You have to remove vmstate_replace_hack_for_ppc() when you remove
166 * the machine types that need the following function.
167 */
pre_2_10_vmstate_register_dummy_icp(int i)168 static void pre_2_10_vmstate_register_dummy_icp(int i)
169 {
170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171 (void *)(uintptr_t) i);
172 }
173
174 /*
175 * See comment in hw/intc/xics.c:icp_realize()
176 *
177 * You have to remove vmstate_replace_hack_for_ppc() when you remove
178 * the machine types that need the following function.
179 */
pre_2_10_vmstate_unregister_dummy_icp(int i)180 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
181 {
182 /*
183 * This used to be:
184 *
185 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
186 * (void *)(uintptr_t) i);
187 */
188 }
189
spapr_max_server_number(SpaprMachineState * spapr)190 int spapr_max_server_number(SpaprMachineState *spapr)
191 {
192 MachineState *ms = MACHINE(spapr);
193
194 assert(spapr->vsmt);
195 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
196 }
197
spapr_fixup_cpu_smt_dt(void * fdt,int offset,PowerPCCPU * cpu,int smt_threads)198 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
199 int smt_threads)
200 {
201 int i, ret = 0;
202 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
203 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
204 int index = spapr_get_vcpu_id(cpu);
205
206 if (cpu->compat_pvr) {
207 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
208 if (ret < 0) {
209 return ret;
210 }
211 }
212
213 /* Build interrupt servers and gservers properties */
214 for (i = 0; i < smt_threads; i++) {
215 servers_prop[i] = cpu_to_be32(index + i);
216 /* Hack, direct the group queues back to cpu 0 */
217 gservers_prop[i*2] = cpu_to_be32(index + i);
218 gservers_prop[i*2 + 1] = 0;
219 }
220 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
221 servers_prop, sizeof(*servers_prop) * smt_threads);
222 if (ret < 0) {
223 return ret;
224 }
225 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
226 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
227
228 return ret;
229 }
230
spapr_dt_pa_features(SpaprMachineState * spapr,PowerPCCPU * cpu,void * fdt,int offset)231 static void spapr_dt_pa_features(SpaprMachineState *spapr,
232 PowerPCCPU *cpu,
233 void *fdt, int offset)
234 {
235 /*
236 * SSO (SAO) ordering is supported on KVM and thread=single hosts,
237 * but not MTTCG, so disable it. To advertise it, a cap would have
238 * to be added, or support implemented for MTTCG.
239 *
240 * Copy/paste is not supported by TCG, so it is not advertised. KVM
241 * can execute them but it has no accelerator drivers which are usable,
242 * so there isn't much need for it anyway.
243 */
244
245 /* These should be kept in sync with pnv */
246 uint8_t pa_features_206[] = { 6, 0,
247 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
248 uint8_t pa_features_207[] = { 24, 0,
249 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
250 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
251 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
252 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
253 uint8_t pa_features_300[] = { 66, 0,
254 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
255 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
256 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
257 /* 6: DS207 */
258 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
259 /* 16: Vector */
260 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
261 /* 18: Vec. Scalar, 20: Vec. XOR */
262 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
263 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
264 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
265 /* 32: LE atomic, 34: EBB + ext EBB */
266 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
267 /* 40: Radix MMU */
268 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
269 /* 42: PM, 44: PC RA, 46: SC vec'd */
270 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
271 /* 48: SIMD, 50: QP BFP, 52: String */
272 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
273 /* 54: DecFP, 56: DecI, 58: SHA */
274 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
275 /* 60: NM atomic, 62: RNG */
276 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
277 };
278 /* 3.1 removes SAO, HTM support */
279 uint8_t pa_features_31[] = { 74, 0,
280 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
281 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
282 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
283 /* 6: DS207 */
284 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
285 /* 16: Vector */
286 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
287 /* 18: Vec. Scalar, 20: Vec. XOR */
288 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
289 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
291 /* 32: LE atomic, 34: EBB + ext EBB */
292 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
293 /* 40: Radix MMU */
294 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
295 /* 42: PM, 44: PC RA, 46: SC vec'd */
296 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
297 /* 48: SIMD, 50: QP BFP, 52: String */
298 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
299 /* 54: DecFP, 56: DecI, 58: SHA */
300 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
301 /* 60: NM atomic, 62: RNG */
302 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
303 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
304 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
305 /* 72: [P]HASHST/[P]HASHCHK */
306 0x80, 0x00, /* 72 - 73 */
307 };
308 uint8_t *pa_features = NULL;
309 size_t pa_size;
310
311 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
312 pa_features = pa_features_206;
313 pa_size = sizeof(pa_features_206);
314 }
315 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
316 pa_features = pa_features_207;
317 pa_size = sizeof(pa_features_207);
318 }
319 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
320 pa_features = pa_features_300;
321 pa_size = sizeof(pa_features_300);
322 }
323 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
324 pa_features = pa_features_31;
325 pa_size = sizeof(pa_features_31);
326 }
327 if (!pa_features) {
328 return;
329 }
330
331 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
332 /*
333 * Note: we keep CI large pages off by default because a 64K capable
334 * guest provisioned with large pages might otherwise try to map a qemu
335 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
336 * even if that qemu runs on a 4k host.
337 * We dd this bit back here if we are confident this is not an issue
338 */
339 pa_features[3] |= 0x20;
340 }
341 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
342 pa_features[24] |= 0x80; /* Transactional memory support */
343 }
344 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
345 /* Workaround for broken kernels that attempt (guest) radix
346 * mode when they can't handle it, if they see the radix bit set
347 * in pa-features. So hide it from them. */
348 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
349 }
350
351 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
352 }
353
spapr_dt_pi_features(SpaprMachineState * spapr,PowerPCCPU * cpu,void * fdt,int offset)354 static void spapr_dt_pi_features(SpaprMachineState *spapr,
355 PowerPCCPU *cpu,
356 void *fdt, int offset)
357 {
358 uint8_t pi_features[] = { 1, 0,
359 0x00 };
360
361 if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00,
362 0, cpu->compat_pvr)) {
363 /*
364 * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where
365 * all threads are essentially independent CPUs, and msgsndp does not
366 * work (because it is physically-addressed) and therefore is
367 * emulated by KVM, so disable it here to ensure XIVE will be used.
368 * This is both KVM and CPU implementation-specific behaviour so a KVM
369 * cap would be cleanest, but for now this works. If KVM ever permits
370 * native msgsndp execution by guests, a cap could be added at that
371 * time.
372 */
373 pi_features[2] |= 0x08; /* 4: No msgsndp */
374 }
375
376 _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features,
377 sizeof(pi_features))));
378 }
379
spapr_node0_size(MachineState * machine)380 static hwaddr spapr_node0_size(MachineState *machine)
381 {
382 if (machine->numa_state->num_nodes) {
383 int i;
384 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
385 if (machine->numa_state->nodes[i].node_mem) {
386 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
387 machine->ram_size);
388 }
389 }
390 }
391 return machine->ram_size;
392 }
393
add_str(GString * s,const gchar * s1)394 static void add_str(GString *s, const gchar *s1)
395 {
396 g_string_append_len(s, s1, strlen(s1) + 1);
397 }
398
spapr_dt_memory_node(SpaprMachineState * spapr,void * fdt,int nodeid,hwaddr start,hwaddr size)399 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
400 hwaddr start, hwaddr size)
401 {
402 char mem_name[32];
403 uint64_t mem_reg_property[2];
404 int off;
405
406 mem_reg_property[0] = cpu_to_be64(start);
407 mem_reg_property[1] = cpu_to_be64(size);
408
409 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
410 off = fdt_add_subnode(fdt, 0, mem_name);
411 _FDT(off);
412 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
413 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
414 sizeof(mem_reg_property))));
415 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
416 return off;
417 }
418
spapr_pc_dimm_node(MemoryDeviceInfoList * list,ram_addr_t addr)419 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
420 {
421 MemoryDeviceInfoList *info;
422
423 for (info = list; info; info = info->next) {
424 MemoryDeviceInfo *value = info->value;
425
426 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
427 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
428
429 if (addr >= pcdimm_info->addr &&
430 addr < (pcdimm_info->addr + pcdimm_info->size)) {
431 return pcdimm_info->node;
432 }
433 }
434 }
435
436 return -1;
437 }
438
439 struct sPAPRDrconfCellV2 {
440 uint32_t seq_lmbs;
441 uint64_t base_addr;
442 uint32_t drc_index;
443 uint32_t aa_index;
444 uint32_t flags;
445 } QEMU_PACKED;
446
447 typedef struct DrconfCellQueue {
448 struct sPAPRDrconfCellV2 cell;
449 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
450 } DrconfCellQueue;
451
452 static DrconfCellQueue *
spapr_get_drconf_cell(uint32_t seq_lmbs,uint64_t base_addr,uint32_t drc_index,uint32_t aa_index,uint32_t flags)453 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
454 uint32_t drc_index, uint32_t aa_index,
455 uint32_t flags)
456 {
457 DrconfCellQueue *elem;
458
459 elem = g_malloc0(sizeof(*elem));
460 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
461 elem->cell.base_addr = cpu_to_be64(base_addr);
462 elem->cell.drc_index = cpu_to_be32(drc_index);
463 elem->cell.aa_index = cpu_to_be32(aa_index);
464 elem->cell.flags = cpu_to_be32(flags);
465
466 return elem;
467 }
468
spapr_dt_dynamic_memory_v2(SpaprMachineState * spapr,void * fdt,int offset,MemoryDeviceInfoList * dimms)469 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
470 int offset, MemoryDeviceInfoList *dimms)
471 {
472 MachineState *machine = MACHINE(spapr);
473 uint8_t *int_buf, *cur_index;
474 int ret;
475 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
476 uint64_t addr, cur_addr, size;
477 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
478 uint64_t mem_end = machine->device_memory->base +
479 memory_region_size(&machine->device_memory->mr);
480 uint32_t node, buf_len, nr_entries = 0;
481 SpaprDrc *drc;
482 DrconfCellQueue *elem, *next;
483 MemoryDeviceInfoList *info;
484 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
485 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
486
487 /* Entry to cover RAM and the gap area */
488 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
489 SPAPR_LMB_FLAGS_RESERVED |
490 SPAPR_LMB_FLAGS_DRC_INVALID);
491 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
492 nr_entries++;
493
494 cur_addr = machine->device_memory->base;
495 for (info = dimms; info; info = info->next) {
496 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
497
498 addr = di->addr;
499 size = di->size;
500 node = di->node;
501
502 /*
503 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
504 * area is marked hotpluggable in the next iteration for the bigger
505 * chunk including the NVDIMM occupied area.
506 */
507 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
508 continue;
509
510 /* Entry for hot-pluggable area */
511 if (cur_addr < addr) {
512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
513 g_assert(drc);
514 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
515 cur_addr, spapr_drc_index(drc), -1, 0);
516 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
517 nr_entries++;
518 }
519
520 /* Entry for DIMM */
521 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
522 g_assert(drc);
523 elem = spapr_get_drconf_cell(size / lmb_size, addr,
524 spapr_drc_index(drc), node,
525 (SPAPR_LMB_FLAGS_ASSIGNED |
526 SPAPR_LMB_FLAGS_HOTREMOVABLE));
527 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
528 nr_entries++;
529 cur_addr = addr + size;
530 }
531
532 /* Entry for remaining hotpluggable area */
533 if (cur_addr < mem_end) {
534 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
535 g_assert(drc);
536 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
537 cur_addr, spapr_drc_index(drc), -1, 0);
538 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
539 nr_entries++;
540 }
541
542 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
543 int_buf = cur_index = g_malloc0(buf_len);
544 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
545 cur_index += sizeof(nr_entries);
546
547 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
548 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
549 cur_index += sizeof(elem->cell);
550 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
551 g_free(elem);
552 }
553
554 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
555 g_free(int_buf);
556 if (ret < 0) {
557 return -1;
558 }
559 return 0;
560 }
561
spapr_dt_dynamic_memory(SpaprMachineState * spapr,void * fdt,int offset,MemoryDeviceInfoList * dimms)562 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
563 int offset, MemoryDeviceInfoList *dimms)
564 {
565 MachineState *machine = MACHINE(spapr);
566 int i, ret;
567 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
568 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
569 uint32_t nr_lmbs = (machine->device_memory->base +
570 memory_region_size(&machine->device_memory->mr)) /
571 lmb_size;
572 uint32_t *int_buf, *cur_index, buf_len;
573
574 /*
575 * Allocate enough buffer size to fit in ibm,dynamic-memory
576 */
577 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
578 cur_index = int_buf = g_malloc0(buf_len);
579 int_buf[0] = cpu_to_be32(nr_lmbs);
580 cur_index++;
581 for (i = 0; i < nr_lmbs; i++) {
582 uint64_t addr = i * lmb_size;
583 uint32_t *dynamic_memory = cur_index;
584
585 if (i >= device_lmb_start) {
586 SpaprDrc *drc;
587
588 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
589 g_assert(drc);
590
591 dynamic_memory[0] = cpu_to_be32(addr >> 32);
592 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
593 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
594 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
595 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
596 if (memory_region_present(get_system_memory(), addr)) {
597 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
598 } else {
599 dynamic_memory[5] = cpu_to_be32(0);
600 }
601 } else {
602 /*
603 * LMB information for RMA, boot time RAM and gap b/n RAM and
604 * device memory region -- all these are marked as reserved
605 * and as having no valid DRC.
606 */
607 dynamic_memory[0] = cpu_to_be32(addr >> 32);
608 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
609 dynamic_memory[2] = cpu_to_be32(0);
610 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
611 dynamic_memory[4] = cpu_to_be32(-1);
612 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
613 SPAPR_LMB_FLAGS_DRC_INVALID);
614 }
615
616 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
617 }
618 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
619 g_free(int_buf);
620 if (ret < 0) {
621 return -1;
622 }
623 return 0;
624 }
625
626 /*
627 * Adds ibm,dynamic-reconfiguration-memory node.
628 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
629 * of this device tree node.
630 */
spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState * spapr,void * fdt)631 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
632 void *fdt)
633 {
634 MachineState *machine = MACHINE(spapr);
635 int ret, offset;
636 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
637 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
638 cpu_to_be32(lmb_size & 0xffffffff)};
639 MemoryDeviceInfoList *dimms = NULL;
640
641 /* Don't create the node if there is no device memory. */
642 if (!machine->device_memory) {
643 return 0;
644 }
645
646 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
647
648 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
649 sizeof(prop_lmb_size));
650 if (ret < 0) {
651 return ret;
652 }
653
654 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
655 if (ret < 0) {
656 return ret;
657 }
658
659 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
660 if (ret < 0) {
661 return ret;
662 }
663
664 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
665 dimms = qmp_memory_device_list();
666 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
667 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
668 } else {
669 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
670 }
671 qapi_free_MemoryDeviceInfoList(dimms);
672
673 if (ret < 0) {
674 return ret;
675 }
676
677 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
678
679 return ret;
680 }
681
spapr_dt_memory(SpaprMachineState * spapr,void * fdt)682 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
683 {
684 MachineState *machine = MACHINE(spapr);
685 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
686 hwaddr mem_start, node_size;
687 int i, nb_nodes = machine->numa_state->num_nodes;
688 NodeInfo *nodes = machine->numa_state->nodes;
689
690 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
691 if (!nodes[i].node_mem) {
692 continue;
693 }
694 if (mem_start >= machine->ram_size) {
695 node_size = 0;
696 } else {
697 node_size = nodes[i].node_mem;
698 if (node_size > machine->ram_size - mem_start) {
699 node_size = machine->ram_size - mem_start;
700 }
701 }
702 if (!mem_start) {
703 /* spapr_machine_init() checks for rma_size <= node0_size
704 * already */
705 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
706 mem_start += spapr->rma_size;
707 node_size -= spapr->rma_size;
708 }
709 for ( ; node_size; ) {
710 hwaddr sizetmp = pow2floor(node_size);
711
712 /* mem_start != 0 here */
713 if (ctzl(mem_start) < ctzl(sizetmp)) {
714 sizetmp = 1ULL << ctzl(mem_start);
715 }
716
717 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
718 node_size -= sizetmp;
719 mem_start += sizetmp;
720 }
721 }
722
723 /* Generate ibm,dynamic-reconfiguration-memory node if required */
724 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
725 int ret;
726
727 g_assert(smc->dr_lmb_enabled);
728 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
729 if (ret) {
730 return ret;
731 }
732 }
733
734 return 0;
735 }
736
spapr_dt_cpu(CPUState * cs,void * fdt,int offset,SpaprMachineState * spapr)737 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
738 SpaprMachineState *spapr)
739 {
740 MachineState *ms = MACHINE(spapr);
741 PowerPCCPU *cpu = POWERPC_CPU(cs);
742 CPUPPCState *env = &cpu->env;
743 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
744 int index = spapr_get_vcpu_id(cpu);
745 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
746 0xffffffff, 0xffffffff};
747 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
748 : SPAPR_TIMEBASE_FREQ;
749 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
750 uint32_t page_sizes_prop[64];
751 size_t page_sizes_prop_size;
752 unsigned int smp_threads = ms->smp.threads;
753 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
754 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
755 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
756 SpaprDrc *drc;
757 int drc_index;
758 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
759 int i;
760
761 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
762 if (drc) {
763 drc_index = spapr_drc_index(drc);
764 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
765 }
766
767 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
768 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
769
770 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
771 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
772 env->dcache_line_size)));
773 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
774 env->dcache_line_size)));
775 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
776 env->icache_line_size)));
777 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
778 env->icache_line_size)));
779
780 if (pcc->l1_dcache_size) {
781 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
782 pcc->l1_dcache_size)));
783 } else {
784 warn_report("Unknown L1 dcache size for cpu");
785 }
786 if (pcc->l1_icache_size) {
787 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
788 pcc->l1_icache_size)));
789 } else {
790 warn_report("Unknown L1 icache size for cpu");
791 }
792
793 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
794 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
795 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
796 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
797 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
798 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
799
800 if (ppc_has_spr(cpu, SPR_PURR)) {
801 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
802 }
803 if (ppc_has_spr(cpu, SPR_PURR)) {
804 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
805 }
806
807 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
808 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
809 segs, sizeof(segs))));
810 }
811
812 /* Advertise VSX (vector extensions) if available
813 * 1 == VMX / Altivec available
814 * 2 == VSX available
815 *
816 * Only CPUs for which we create core types in spapr_cpu_core.c
817 * are possible, and all of those have VMX */
818 if (env->insns_flags & PPC_ALTIVEC) {
819 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
820 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
821 } else {
822 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
823 }
824 }
825
826 /* Advertise DFP (Decimal Floating Point) if available
827 * 0 / no property == no DFP
828 * 1 == DFP available */
829 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
830 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
831 }
832
833 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
834 sizeof(page_sizes_prop));
835 if (page_sizes_prop_size) {
836 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
837 page_sizes_prop, page_sizes_prop_size)));
838 }
839
840 spapr_dt_pa_features(spapr, cpu, fdt, offset);
841
842 spapr_dt_pi_features(spapr, cpu, fdt, offset);
843
844 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
845 cs->cpu_index / vcpus_per_socket)));
846
847 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
848 pft_size_prop, sizeof(pft_size_prop))));
849
850 if (ms->numa_state->num_nodes > 1) {
851 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
852 }
853
854 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
855
856 if (pcc->radix_page_info) {
857 for (i = 0; i < pcc->radix_page_info->count; i++) {
858 radix_AP_encodings[i] =
859 cpu_to_be32(pcc->radix_page_info->entries[i]);
860 }
861 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
862 radix_AP_encodings,
863 pcc->radix_page_info->count *
864 sizeof(radix_AP_encodings[0]))));
865 }
866
867 /*
868 * We set this property to let the guest know that it can use the large
869 * decrementer and its width in bits.
870 */
871 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
872 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
873 pcc->lrg_decr_bits)));
874 }
875
spapr_dt_one_cpu(void * fdt,SpaprMachineState * spapr,CPUState * cs,int cpus_offset)876 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
877 int cpus_offset)
878 {
879 PowerPCCPU *cpu = POWERPC_CPU(cs);
880 int index = spapr_get_vcpu_id(cpu);
881 DeviceClass *dc = DEVICE_GET_CLASS(cs);
882 g_autofree char *nodename = NULL;
883 int offset;
884
885 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
886 return;
887 }
888
889 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
890 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
891 _FDT(offset);
892 spapr_dt_cpu(cs, fdt, offset, spapr);
893 }
894
895
spapr_dt_cpus(void * fdt,SpaprMachineState * spapr)896 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
897 {
898 CPUState **rev;
899 CPUState *cs;
900 int n_cpus;
901 int cpus_offset;
902 int i;
903
904 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
905 _FDT(cpus_offset);
906 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
907 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
908
909 /*
910 * We walk the CPUs in reverse order to ensure that CPU DT nodes
911 * created by fdt_add_subnode() end up in the right order in FDT
912 * for the guest kernel the enumerate the CPUs correctly.
913 *
914 * The CPU list cannot be traversed in reverse order, so we need
915 * to do extra work.
916 */
917 n_cpus = 0;
918 rev = NULL;
919 CPU_FOREACH(cs) {
920 rev = g_renew(CPUState *, rev, n_cpus + 1);
921 rev[n_cpus++] = cs;
922 }
923
924 for (i = n_cpus - 1; i >= 0; i--) {
925 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
926 }
927
928 g_free(rev);
929 }
930
spapr_dt_rng(void * fdt)931 static int spapr_dt_rng(void *fdt)
932 {
933 int node;
934 int ret;
935
936 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
937 if (node <= 0) {
938 return -1;
939 }
940 ret = fdt_setprop_string(fdt, node, "device_type",
941 "ibm,platform-facilities");
942 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
943 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
944
945 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
946 if (node <= 0) {
947 return -1;
948 }
949 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
950
951 return ret ? -1 : 0;
952 }
953
spapr_dt_rtas(SpaprMachineState * spapr,void * fdt)954 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
955 {
956 MachineState *ms = MACHINE(spapr);
957 int rtas;
958 GString *hypertas = g_string_sized_new(256);
959 GString *qemu_hypertas = g_string_sized_new(256);
960 uint32_t lrdr_capacity[] = {
961 0,
962 0,
963 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
964 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
965 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
966 };
967
968 /* Do we have device memory? */
969 if (MACHINE(spapr)->device_memory) {
970 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
971 memory_region_size(&MACHINE(spapr)->device_memory->mr);
972
973 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
974 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
975 }
976
977 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
978
979 /* hypertas */
980 add_str(hypertas, "hcall-pft");
981 add_str(hypertas, "hcall-term");
982 add_str(hypertas, "hcall-dabr");
983 add_str(hypertas, "hcall-interrupt");
984 add_str(hypertas, "hcall-tce");
985 add_str(hypertas, "hcall-vio");
986 add_str(hypertas, "hcall-splpar");
987 add_str(hypertas, "hcall-join");
988 add_str(hypertas, "hcall-bulk");
989 add_str(hypertas, "hcall-set-mode");
990 add_str(hypertas, "hcall-sprg0");
991 add_str(hypertas, "hcall-copy");
992 add_str(hypertas, "hcall-debug");
993 add_str(hypertas, "hcall-vphn");
994 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
995 add_str(hypertas, "hcall-rpt-invalidate");
996 }
997
998 add_str(qemu_hypertas, "hcall-memop1");
999
1000 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1001 add_str(hypertas, "hcall-multi-tce");
1002 }
1003
1004 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1005 add_str(hypertas, "hcall-hpt-resize");
1006 }
1007
1008 add_str(hypertas, "hcall-watchdog");
1009
1010 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1011 hypertas->str, hypertas->len));
1012 g_string_free(hypertas, TRUE);
1013 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1014 qemu_hypertas->str, qemu_hypertas->len));
1015 g_string_free(qemu_hypertas, TRUE);
1016
1017 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
1018
1019 /*
1020 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
1021 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
1022 *
1023 * The system reset requirements are driven by existing Linux and PowerVM
1024 * implementation which (contrary to PAPR) saves r3 in the error log
1025 * structure like machine check, so Linux expects to find the saved r3
1026 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
1027 * does not look at the error value).
1028 *
1029 * System reset interrupts are not subject to interlock like machine
1030 * check, so this memory area could be corrupted if the sreset is
1031 * interrupted by a machine check (or vice versa) if it was shared. To
1032 * prevent this, system reset uses per-CPU areas for the sreset save
1033 * area. A system reset that interrupts a system reset handler could
1034 * still overwrite this area, but Linux doesn't try to recover in that
1035 * case anyway.
1036 *
1037 * The extra 8 bytes is required because Linux's FWNMI error log check
1038 * is off-by-one.
1039 *
1040 * RTAS_MIN_SIZE is required for the RTAS blob itself.
1041 */
1042 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
1043 RTAS_ERROR_LOG_MAX +
1044 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
1045 sizeof(uint64_t)));
1046 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1047 RTAS_ERROR_LOG_MAX));
1048 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1049 RTAS_EVENT_SCAN_RATE));
1050
1051 g_assert(msi_nonbroken);
1052 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1053
1054 /*
1055 * According to PAPR, rtas ibm,os-term does not guarantee a return
1056 * back to the guest cpu.
1057 *
1058 * While an additional ibm,extended-os-term property indicates
1059 * that rtas call return will always occur. Set this property.
1060 */
1061 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1062
1063 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1064 lrdr_capacity, sizeof(lrdr_capacity)));
1065
1066 spapr_dt_rtas_tokens(fdt, rtas);
1067 }
1068
1069 /*
1070 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1071 * and the XIVE features that the guest may request and thus the valid
1072 * values for bytes 23..26 of option vector 5:
1073 */
spapr_dt_ov5_platform_support(SpaprMachineState * spapr,void * fdt,int chosen)1074 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1075 int chosen)
1076 {
1077 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1078
1079 char val[2 * 4] = {
1080 23, 0x00, /* XICS / XIVE mode */
1081 24, 0x00, /* Hash/Radix, filled in below. */
1082 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1083 26, 0x40, /* Radix options: GTSE == yes. */
1084 };
1085
1086 if (spapr->irq->xics && spapr->irq->xive) {
1087 val[1] = SPAPR_OV5_XIVE_BOTH;
1088 } else if (spapr->irq->xive) {
1089 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1090 } else {
1091 assert(spapr->irq->xics);
1092 val[1] = SPAPR_OV5_XIVE_LEGACY;
1093 }
1094
1095 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1096 first_ppc_cpu->compat_pvr)) {
1097 /*
1098 * If we're in a pre POWER9 compat mode then the guest should
1099 * do hash and use the legacy interrupt mode
1100 */
1101 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1102 val[3] = 0x00; /* Hash */
1103 spapr_check_mmu_mode(false);
1104 } else if (kvm_enabled()) {
1105 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1106 val[3] = 0x80; /* OV5_MMU_BOTH */
1107 } else if (kvmppc_has_cap_mmu_radix()) {
1108 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1109 } else {
1110 val[3] = 0x00; /* Hash */
1111 }
1112 } else {
1113 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1114 val[3] = 0xC0;
1115 }
1116 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1117 val, sizeof(val)));
1118 }
1119
spapr_dt_chosen(SpaprMachineState * spapr,void * fdt,bool reset)1120 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1121 {
1122 MachineState *machine = MACHINE(spapr);
1123 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1124 int chosen;
1125
1126 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1127
1128 if (reset) {
1129 const char *boot_device = spapr->boot_device;
1130 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1131 size_t cb = 0;
1132 g_autofree char *bootlist = get_boot_devices_list(&cb);
1133
1134 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1135 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1136 machine->kernel_cmdline));
1137 }
1138
1139 if (spapr->initrd_size) {
1140 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1141 spapr->initrd_base));
1142 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1143 spapr->initrd_base + spapr->initrd_size));
1144 }
1145
1146 if (spapr->kernel_size) {
1147 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1148 cpu_to_be64(spapr->kernel_size) };
1149
1150 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1151 &kprop, sizeof(kprop)));
1152 if (spapr->kernel_le) {
1153 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1154 }
1155 }
1156 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1157 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1158 }
1159 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1160 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1161 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1162
1163 if (cb && bootlist) {
1164 int i;
1165
1166 for (i = 0; i < cb; i++) {
1167 if (bootlist[i] == '\n') {
1168 bootlist[i] = ' ';
1169 }
1170 }
1171 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1172 }
1173
1174 if (boot_device && strlen(boot_device)) {
1175 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1176 }
1177
1178 if (spapr->want_stdout_path && stdout_path) {
1179 /*
1180 * "linux,stdout-path" and "stdout" properties are
1181 * deprecated by linux kernel. New platforms should only
1182 * use the "stdout-path" property. Set the new property
1183 * and continue using older property to remain compatible
1184 * with the existing firmware.
1185 */
1186 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1187 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1188 }
1189
1190 /*
1191 * We can deal with BAR reallocation just fine, advertise it
1192 * to the guest
1193 */
1194 if (smc->linux_pci_probe) {
1195 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1196 }
1197
1198 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1199 }
1200
1201 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1202
1203 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1204 }
1205
spapr_dt_hypervisor(SpaprMachineState * spapr,void * fdt)1206 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1207 {
1208 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1209 * KVM to work under pHyp with some guest co-operation */
1210 int hypervisor;
1211 uint8_t hypercall[16];
1212
1213 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1214 /* indicate KVM hypercall interface */
1215 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1216 if (kvmppc_has_cap_fixup_hcalls()) {
1217 /*
1218 * Older KVM versions with older guest kernels were broken
1219 * with the magic page, don't allow the guest to map it.
1220 */
1221 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1222 sizeof(hypercall))) {
1223 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1224 hypercall, sizeof(hypercall)));
1225 }
1226 }
1227 }
1228
spapr_build_fdt(SpaprMachineState * spapr,bool reset,size_t space)1229 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1230 {
1231 MachineState *machine = MACHINE(spapr);
1232 MachineClass *mc = MACHINE_GET_CLASS(machine);
1233 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1234 uint32_t root_drc_type_mask = 0;
1235 int ret;
1236 void *fdt;
1237 SpaprPhbState *phb;
1238 char *buf;
1239
1240 fdt = g_malloc0(space);
1241 _FDT((fdt_create_empty_tree(fdt, space)));
1242
1243 /* Root node */
1244 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1245 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1246 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1247
1248 /* Guest UUID & Name*/
1249 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1250 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1251 if (qemu_uuid_set) {
1252 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1253 }
1254 g_free(buf);
1255
1256 if (qemu_get_vm_name()) {
1257 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1258 qemu_get_vm_name()));
1259 }
1260
1261 /* Host Model & Serial Number */
1262 if (spapr->host_model) {
1263 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1264 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1265 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1266 g_free(buf);
1267 }
1268
1269 if (spapr->host_serial) {
1270 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1271 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1272 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1273 g_free(buf);
1274 }
1275
1276 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1277 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1278
1279 /* /interrupt controller */
1280 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1281
1282 ret = spapr_dt_memory(spapr, fdt);
1283 if (ret < 0) {
1284 error_report("couldn't setup memory nodes in fdt");
1285 exit(1);
1286 }
1287
1288 /* /vdevice */
1289 spapr_dt_vdevice(spapr->vio_bus, fdt);
1290
1291 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1292 ret = spapr_dt_rng(fdt);
1293 if (ret < 0) {
1294 error_report("could not set up rng device in the fdt");
1295 exit(1);
1296 }
1297 }
1298
1299 QLIST_FOREACH(phb, &spapr->phbs, list) {
1300 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1301 if (ret < 0) {
1302 error_report("couldn't setup PCI devices in fdt");
1303 exit(1);
1304 }
1305 }
1306
1307 spapr_dt_cpus(fdt, spapr);
1308
1309 /* ibm,drc-indexes and friends */
1310 if (smc->dr_lmb_enabled) {
1311 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1312 }
1313 if (smc->dr_phb_enabled) {
1314 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1315 }
1316 if (mc->nvdimm_supported) {
1317 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1318 }
1319 if (root_drc_type_mask) {
1320 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1321 }
1322
1323 if (mc->has_hotpluggable_cpus) {
1324 int offset = fdt_path_offset(fdt, "/cpus");
1325 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1326 if (ret < 0) {
1327 error_report("Couldn't set up CPU DR device tree properties");
1328 exit(1);
1329 }
1330 }
1331
1332 /* /event-sources */
1333 spapr_dt_events(spapr, fdt);
1334
1335 /* /rtas */
1336 spapr_dt_rtas(spapr, fdt);
1337
1338 /* /chosen */
1339 spapr_dt_chosen(spapr, fdt, reset);
1340
1341 /* /hypervisor */
1342 if (kvm_enabled()) {
1343 spapr_dt_hypervisor(spapr, fdt);
1344 }
1345
1346 /* Build memory reserve map */
1347 if (reset) {
1348 if (spapr->kernel_size) {
1349 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1350 spapr->kernel_size)));
1351 }
1352 if (spapr->initrd_size) {
1353 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1354 spapr->initrd_size)));
1355 }
1356 }
1357
1358 /* NVDIMM devices */
1359 if (mc->nvdimm_supported) {
1360 spapr_dt_persistent_memory(spapr, fdt);
1361 }
1362
1363 return fdt;
1364 }
1365
translate_kernel_address(void * opaque,uint64_t addr)1366 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1367 {
1368 SpaprMachineState *spapr = opaque;
1369
1370 return (addr & 0x0fffffff) + spapr->kernel_addr;
1371 }
1372
emulate_spapr_hypercall(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu)1373 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1374 PowerPCCPU *cpu)
1375 {
1376 CPUPPCState *env = &cpu->env;
1377
1378 /* The TCG path should also be holding the BQL at this point */
1379 g_assert(bql_locked());
1380
1381 g_assert(!vhyp_cpu_in_nested(cpu));
1382
1383 if (FIELD_EX64(env->msr, MSR, PR)) {
1384 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1385 env->gpr[3] = H_PRIVILEGE;
1386 } else {
1387 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1388 }
1389 }
1390
1391 struct LPCRSyncState {
1392 target_ulong value;
1393 target_ulong mask;
1394 };
1395
do_lpcr_sync(CPUState * cs,run_on_cpu_data arg)1396 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1397 {
1398 struct LPCRSyncState *s = arg.host_ptr;
1399 PowerPCCPU *cpu = POWERPC_CPU(cs);
1400 CPUPPCState *env = &cpu->env;
1401 target_ulong lpcr;
1402
1403 cpu_synchronize_state(cs);
1404 lpcr = env->spr[SPR_LPCR];
1405 lpcr &= ~s->mask;
1406 lpcr |= s->value;
1407 ppc_store_lpcr(cpu, lpcr);
1408 }
1409
spapr_set_all_lpcrs(target_ulong value,target_ulong mask)1410 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1411 {
1412 CPUState *cs;
1413 struct LPCRSyncState s = {
1414 .value = value,
1415 .mask = mask
1416 };
1417 CPU_FOREACH(cs) {
1418 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1419 }
1420 }
1421
1422 /* May be used when the machine is not running */
spapr_init_all_lpcrs(target_ulong value,target_ulong mask)1423 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1424 {
1425 CPUState *cs;
1426 CPU_FOREACH(cs) {
1427 PowerPCCPU *cpu = POWERPC_CPU(cs);
1428 CPUPPCState *env = &cpu->env;
1429 target_ulong lpcr;
1430
1431 lpcr = env->spr[SPR_LPCR];
1432 lpcr &= ~(LPCR_HR | LPCR_UPRT);
1433 ppc_store_lpcr(cpu, lpcr);
1434 }
1435 }
1436
spapr_get_pate(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu,target_ulong lpid,ppc_v3_pate_t * entry)1437 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1438 target_ulong lpid, ppc_v3_pate_t *entry)
1439 {
1440 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1441 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1442
1443 if (!spapr_cpu->in_nested) {
1444 assert(lpid == 0);
1445
1446 /* Copy PATE1:GR into PATE0:HR */
1447 entry->dw0 = spapr->patb_entry & PATE0_HR;
1448 entry->dw1 = spapr->patb_entry;
1449 return true;
1450 } else {
1451 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
1452 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1453 } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
1454 return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry);
1455 } else {
1456 g_assert_not_reached();
1457 }
1458 }
1459 }
1460
1461 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1462 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1463 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1464 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1465 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1466
1467 /*
1468 * Get the fd to access the kernel htab, re-opening it if necessary
1469 */
get_htab_fd(SpaprMachineState * spapr)1470 static int get_htab_fd(SpaprMachineState *spapr)
1471 {
1472 Error *local_err = NULL;
1473
1474 if (spapr->htab_fd >= 0) {
1475 return spapr->htab_fd;
1476 }
1477
1478 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1479 if (spapr->htab_fd < 0) {
1480 error_report_err(local_err);
1481 }
1482
1483 return spapr->htab_fd;
1484 }
1485
close_htab_fd(SpaprMachineState * spapr)1486 void close_htab_fd(SpaprMachineState *spapr)
1487 {
1488 if (spapr->htab_fd >= 0) {
1489 close(spapr->htab_fd);
1490 }
1491 spapr->htab_fd = -1;
1492 }
1493
spapr_hpt_mask(PPCVirtualHypervisor * vhyp)1494 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1495 {
1496 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1497
1498 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1499 }
1500
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor * vhyp)1501 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1502 {
1503 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1504
1505 assert(kvm_enabled());
1506
1507 if (!spapr->htab) {
1508 return 0;
1509 }
1510
1511 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1512 }
1513
spapr_map_hptes(PPCVirtualHypervisor * vhyp,hwaddr ptex,int n)1514 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1515 hwaddr ptex, int n)
1516 {
1517 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1518 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1519
1520 if (!spapr->htab) {
1521 /*
1522 * HTAB is controlled by KVM. Fetch into temporary buffer
1523 */
1524 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1525 kvmppc_read_hptes(hptes, ptex, n);
1526 return hptes;
1527 }
1528
1529 /*
1530 * HTAB is controlled by QEMU. Just point to the internally
1531 * accessible PTEG.
1532 */
1533 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1534 }
1535
spapr_unmap_hptes(PPCVirtualHypervisor * vhyp,const ppc_hash_pte64_t * hptes,hwaddr ptex,int n)1536 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1537 const ppc_hash_pte64_t *hptes,
1538 hwaddr ptex, int n)
1539 {
1540 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1541
1542 if (!spapr->htab) {
1543 g_free((void *)hptes);
1544 }
1545
1546 /* Nothing to do for qemu managed HPT */
1547 }
1548
spapr_store_hpte(PowerPCCPU * cpu,hwaddr ptex,uint64_t pte0,uint64_t pte1)1549 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1550 uint64_t pte0, uint64_t pte1)
1551 {
1552 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1553 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1554
1555 if (!spapr->htab) {
1556 kvmppc_write_hpte(ptex, pte0, pte1);
1557 } else {
1558 if (pte0 & HPTE64_V_VALID) {
1559 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1560 /*
1561 * When setting valid, we write PTE1 first. This ensures
1562 * proper synchronization with the reading code in
1563 * ppc_hash64_pteg_search()
1564 */
1565 smp_wmb();
1566 stq_p(spapr->htab + offset, pte0);
1567 } else {
1568 stq_p(spapr->htab + offset, pte0);
1569 /*
1570 * When clearing it we set PTE0 first. This ensures proper
1571 * synchronization with the reading code in
1572 * ppc_hash64_pteg_search()
1573 */
1574 smp_wmb();
1575 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1576 }
1577 }
1578 }
1579
spapr_hpte_set_c(PPCVirtualHypervisor * vhyp,hwaddr ptex,uint64_t pte1)1580 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1581 uint64_t pte1)
1582 {
1583 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1584 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1585
1586 if (!spapr->htab) {
1587 /* There should always be a hash table when this is called */
1588 error_report("spapr_hpte_set_c called with no hash table !");
1589 return;
1590 }
1591
1592 /* The HW performs a non-atomic byte update */
1593 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1594 }
1595
spapr_hpte_set_r(PPCVirtualHypervisor * vhyp,hwaddr ptex,uint64_t pte1)1596 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1597 uint64_t pte1)
1598 {
1599 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1600 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1601
1602 if (!spapr->htab) {
1603 /* There should always be a hash table when this is called */
1604 error_report("spapr_hpte_set_r called with no hash table !");
1605 return;
1606 }
1607
1608 /* The HW performs a non-atomic byte update */
1609 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1610 }
1611
spapr_hpt_shift_for_ramsize(uint64_t ramsize)1612 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1613 {
1614 int shift;
1615
1616 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1617 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1618 * that's much more than is needed for Linux guests */
1619 shift = ctz64(pow2ceil(ramsize)) - 7;
1620 shift = MAX(shift, 18); /* Minimum architected size */
1621 shift = MIN(shift, 46); /* Maximum architected size */
1622 return shift;
1623 }
1624
spapr_free_hpt(SpaprMachineState * spapr)1625 void spapr_free_hpt(SpaprMachineState *spapr)
1626 {
1627 qemu_vfree(spapr->htab);
1628 spapr->htab = NULL;
1629 spapr->htab_shift = 0;
1630 close_htab_fd(spapr);
1631 }
1632
spapr_reallocate_hpt(SpaprMachineState * spapr,int shift,Error ** errp)1633 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1634 {
1635 ERRP_GUARD();
1636 long rc;
1637
1638 /* Clean up any HPT info from a previous boot */
1639 spapr_free_hpt(spapr);
1640
1641 rc = kvmppc_reset_htab(shift);
1642
1643 if (rc == -EOPNOTSUPP) {
1644 error_setg(errp, "HPT not supported in nested guests");
1645 return -EOPNOTSUPP;
1646 }
1647
1648 if (rc < 0) {
1649 /* kernel-side HPT needed, but couldn't allocate one */
1650 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1651 shift);
1652 error_append_hint(errp, "Try smaller maxmem?\n");
1653 return -errno;
1654 } else if (rc > 0) {
1655 /* kernel-side HPT allocated */
1656 if (rc != shift) {
1657 error_setg(errp,
1658 "Requested order %d HPT, but kernel allocated order %ld",
1659 shift, rc);
1660 error_append_hint(errp, "Try smaller maxmem?\n");
1661 return -ENOSPC;
1662 }
1663
1664 spapr->htab_shift = shift;
1665 spapr->htab = NULL;
1666 } else {
1667 /* kernel-side HPT not needed, allocate in userspace instead */
1668 size_t size = 1ULL << shift;
1669 int i;
1670
1671 spapr->htab = qemu_memalign(size, size);
1672 memset(spapr->htab, 0, size);
1673 spapr->htab_shift = shift;
1674
1675 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1676 DIRTY_HPTE(HPTE(spapr->htab, i));
1677 }
1678 }
1679 /* We're setting up a hash table, so that means we're not radix */
1680 spapr->patb_entry = 0;
1681 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1682 return 0;
1683 }
1684
spapr_setup_hpt(SpaprMachineState * spapr)1685 void spapr_setup_hpt(SpaprMachineState *spapr)
1686 {
1687 int hpt_shift;
1688
1689 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1690 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1691 } else {
1692 uint64_t current_ram_size;
1693
1694 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1695 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1696 }
1697 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1698
1699 if (kvm_enabled()) {
1700 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1701
1702 /* Check our RMA fits in the possible VRMA */
1703 if (vrma_limit < spapr->rma_size) {
1704 error_report("Unable to create %" HWADDR_PRIu
1705 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1706 spapr->rma_size / MiB, vrma_limit / MiB);
1707 exit(EXIT_FAILURE);
1708 }
1709 }
1710 }
1711
spapr_check_mmu_mode(bool guest_radix)1712 void spapr_check_mmu_mode(bool guest_radix)
1713 {
1714 if (guest_radix) {
1715 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1716 error_report("Guest requested unavailable MMU mode (radix).");
1717 exit(EXIT_FAILURE);
1718 }
1719 } else {
1720 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1721 && !kvmppc_has_cap_mmu_hash_v3()) {
1722 error_report("Guest requested unavailable MMU mode (hash).");
1723 exit(EXIT_FAILURE);
1724 }
1725 }
1726 }
1727
spapr_machine_reset(MachineState * machine,ShutdownCause reason)1728 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1729 {
1730 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1731 PowerPCCPU *first_ppc_cpu;
1732 hwaddr fdt_addr;
1733 void *fdt;
1734 int rc;
1735
1736 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1737 /*
1738 * Record-replay snapshot load must not consume random, this was
1739 * already replayed from initial machine reset.
1740 */
1741 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1742 }
1743
1744 if (machine->cgs) {
1745 confidential_guest_kvm_reset(machine->cgs, &error_fatal);
1746 }
1747 spapr_caps_apply(spapr);
1748 spapr_nested_reset(spapr);
1749
1750 first_ppc_cpu = POWERPC_CPU(first_cpu);
1751 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1752 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1753 spapr->max_compat_pvr)) {
1754 /*
1755 * If using KVM with radix mode available, VCPUs can be started
1756 * without a HPT because KVM will start them in radix mode.
1757 * Set the GR bit in PATE so that we know there is no HPT.
1758 */
1759 spapr->patb_entry = PATE1_GR;
1760 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1761 } else {
1762 spapr_setup_hpt(spapr);
1763 }
1764
1765 qemu_devices_reset(reason);
1766
1767 spapr_ovec_cleanup(spapr->ov5_cas);
1768 spapr->ov5_cas = spapr_ovec_new();
1769
1770 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1771
1772 /*
1773 * This is fixing some of the default configuration of the XIVE
1774 * devices. To be called after the reset of the machine devices.
1775 */
1776 spapr_irq_reset(spapr, &error_fatal);
1777
1778 /*
1779 * There is no CAS under qtest. Simulate one to please the code that
1780 * depends on spapr->ov5_cas. This is especially needed to test device
1781 * unplug, so we do that before resetting the DRCs.
1782 */
1783 if (qtest_enabled()) {
1784 spapr_ovec_cleanup(spapr->ov5_cas);
1785 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1786 }
1787
1788 spapr_nvdimm_finish_flushes();
1789
1790 /* DRC reset may cause a device to be unplugged. This will cause troubles
1791 * if this device is used by another device (eg, a running vhost backend
1792 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1793 * situations, we reset DRCs after all devices have been reset.
1794 */
1795 spapr_drc_reset_all(spapr);
1796
1797 spapr_clear_pending_events(spapr);
1798
1799 /*
1800 * We place the device tree just below either the top of the RMA,
1801 * or just below 2GB, whichever is lower, so that it can be
1802 * processed with 32-bit real mode code if necessary
1803 */
1804 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1805
1806 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1807 if (spapr->vof) {
1808 spapr_vof_reset(spapr, fdt, &error_fatal);
1809 /*
1810 * Do not pack the FDT as the client may change properties.
1811 * VOF client does not expect the FDT so we do not load it to the VM.
1812 */
1813 } else {
1814 rc = fdt_pack(fdt);
1815 /* Should only fail if we've built a corrupted tree */
1816 assert(rc == 0);
1817
1818 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1819 0, fdt_addr, 0);
1820 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1821 }
1822 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1823
1824 g_free(spapr->fdt_blob);
1825 spapr->fdt_size = fdt_totalsize(fdt);
1826 spapr->fdt_initial_size = spapr->fdt_size;
1827 spapr->fdt_blob = fdt;
1828
1829 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1830 machine->fdt = fdt;
1831
1832 /* Set up the entry state */
1833 first_ppc_cpu->env.gpr[5] = 0;
1834
1835 spapr->fwnmi_system_reset_addr = -1;
1836 spapr->fwnmi_machine_check_addr = -1;
1837 spapr->fwnmi_machine_check_interlock = -1;
1838
1839 /* Signal all vCPUs waiting on this condition */
1840 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1841
1842 migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1843 }
1844
spapr_create_nvram(SpaprMachineState * spapr)1845 static void spapr_create_nvram(SpaprMachineState *spapr)
1846 {
1847 DeviceState *dev = qdev_new("spapr-nvram");
1848 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1849
1850 if (dinfo) {
1851 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1852 &error_fatal);
1853 }
1854
1855 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1856
1857 spapr->nvram = (struct SpaprNvram *)dev;
1858 }
1859
spapr_rtc_create(SpaprMachineState * spapr)1860 static void spapr_rtc_create(SpaprMachineState *spapr)
1861 {
1862 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1863 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1864 &error_fatal, NULL);
1865 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1866 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1867 "date");
1868 }
1869
1870 /* Returns whether we want to use VGA or not */
spapr_vga_init(PCIBus * pci_bus,Error ** errp)1871 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1872 {
1873 vga_interface_created = true;
1874 switch (vga_interface_type) {
1875 case VGA_NONE:
1876 return false;
1877 case VGA_DEVICE:
1878 return true;
1879 case VGA_STD:
1880 case VGA_VIRTIO:
1881 case VGA_CIRRUS:
1882 return pci_vga_init(pci_bus) != NULL;
1883 default:
1884 error_setg(errp,
1885 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1886 return false;
1887 }
1888 }
1889
spapr_pre_load(void * opaque)1890 static int spapr_pre_load(void *opaque)
1891 {
1892 int rc;
1893
1894 rc = spapr_caps_pre_load(opaque);
1895 if (rc) {
1896 return rc;
1897 }
1898
1899 return 0;
1900 }
1901
spapr_post_load(void * opaque,int version_id)1902 static int spapr_post_load(void *opaque, int version_id)
1903 {
1904 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1905 int err = 0;
1906
1907 err = spapr_caps_post_migration(spapr);
1908 if (err) {
1909 return err;
1910 }
1911
1912 /*
1913 * In earlier versions, there was no separate qdev for the PAPR
1914 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1915 * So when migrating from those versions, poke the incoming offset
1916 * value into the RTC device
1917 */
1918 if (version_id < 3) {
1919 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1920 if (err) {
1921 return err;
1922 }
1923 }
1924
1925 if (kvm_enabled() && spapr->patb_entry) {
1926 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1927 bool radix = !!(spapr->patb_entry & PATE1_GR);
1928 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1929
1930 /*
1931 * Update LPCR:HR and UPRT as they may not be set properly in
1932 * the stream
1933 */
1934 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1935 LPCR_HR | LPCR_UPRT);
1936
1937 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1938 if (err) {
1939 error_report("Process table config unsupported by the host");
1940 return -EINVAL;
1941 }
1942 }
1943
1944 err = spapr_irq_post_load(spapr, version_id);
1945 if (err) {
1946 return err;
1947 }
1948
1949 return err;
1950 }
1951
spapr_pre_save(void * opaque)1952 static int spapr_pre_save(void *opaque)
1953 {
1954 int rc;
1955
1956 rc = spapr_caps_pre_save(opaque);
1957 if (rc) {
1958 return rc;
1959 }
1960
1961 return 0;
1962 }
1963
version_before_3(void * opaque,int version_id)1964 static bool version_before_3(void *opaque, int version_id)
1965 {
1966 return version_id < 3;
1967 }
1968
spapr_pending_events_needed(void * opaque)1969 static bool spapr_pending_events_needed(void *opaque)
1970 {
1971 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1972 return !QTAILQ_EMPTY(&spapr->pending_events);
1973 }
1974
1975 static const VMStateDescription vmstate_spapr_event_entry = {
1976 .name = "spapr_event_log_entry",
1977 .version_id = 1,
1978 .minimum_version_id = 1,
1979 .fields = (const VMStateField[]) {
1980 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1981 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1982 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1983 NULL, extended_length),
1984 VMSTATE_END_OF_LIST()
1985 },
1986 };
1987
1988 static const VMStateDescription vmstate_spapr_pending_events = {
1989 .name = "spapr_pending_events",
1990 .version_id = 1,
1991 .minimum_version_id = 1,
1992 .needed = spapr_pending_events_needed,
1993 .fields = (const VMStateField[]) {
1994 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1995 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1996 VMSTATE_END_OF_LIST()
1997 },
1998 };
1999
spapr_ov5_cas_needed(void * opaque)2000 static bool spapr_ov5_cas_needed(void *opaque)
2001 {
2002 SpaprMachineState *spapr = opaque;
2003 SpaprOptionVector *ov5_mask = spapr_ovec_new();
2004 bool cas_needed;
2005
2006 /* Prior to the introduction of SpaprOptionVector, we had two option
2007 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
2008 * Both of these options encode machine topology into the device-tree
2009 * in such a way that the now-booted OS should still be able to interact
2010 * appropriately with QEMU regardless of what options were actually
2011 * negotiatied on the source side.
2012 *
2013 * As such, we can avoid migrating the CAS-negotiated options if these
2014 * are the only options available on the current machine/platform.
2015 * Since these are the only options available for pseries-2.7 and
2016 * earlier, this allows us to maintain old->new/new->old migration
2017 * compatibility.
2018 *
2019 * For QEMU 2.8+, there are additional CAS-negotiatable options available
2020 * via default pseries-2.8 machines and explicit command-line parameters.
2021 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2022 * of the actual CAS-negotiated values to continue working properly. For
2023 * example, availability of memory unplug depends on knowing whether
2024 * OV5_HP_EVT was negotiated via CAS.
2025 *
2026 * Thus, for any cases where the set of available CAS-negotiatable
2027 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2028 * include the CAS-negotiated options in the migration stream, unless
2029 * if they affect boot time behaviour only.
2030 */
2031 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2032 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2033 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2034
2035 /* We need extra information if we have any bits outside the mask
2036 * defined above */
2037 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2038
2039 spapr_ovec_cleanup(ov5_mask);
2040
2041 return cas_needed;
2042 }
2043
2044 static const VMStateDescription vmstate_spapr_ov5_cas = {
2045 .name = "spapr_option_vector_ov5_cas",
2046 .version_id = 1,
2047 .minimum_version_id = 1,
2048 .needed = spapr_ov5_cas_needed,
2049 .fields = (const VMStateField[]) {
2050 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2051 vmstate_spapr_ovec, SpaprOptionVector),
2052 VMSTATE_END_OF_LIST()
2053 },
2054 };
2055
spapr_patb_entry_needed(void * opaque)2056 static bool spapr_patb_entry_needed(void *opaque)
2057 {
2058 SpaprMachineState *spapr = opaque;
2059
2060 return !!spapr->patb_entry;
2061 }
2062
2063 static const VMStateDescription vmstate_spapr_patb_entry = {
2064 .name = "spapr_patb_entry",
2065 .version_id = 1,
2066 .minimum_version_id = 1,
2067 .needed = spapr_patb_entry_needed,
2068 .fields = (const VMStateField[]) {
2069 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2070 VMSTATE_END_OF_LIST()
2071 },
2072 };
2073
spapr_irq_map_needed(void * opaque)2074 static bool spapr_irq_map_needed(void *opaque)
2075 {
2076 SpaprMachineState *spapr = opaque;
2077
2078 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2079 }
2080
2081 static const VMStateDescription vmstate_spapr_irq_map = {
2082 .name = "spapr_irq_map",
2083 .version_id = 1,
2084 .minimum_version_id = 1,
2085 .needed = spapr_irq_map_needed,
2086 .fields = (const VMStateField[]) {
2087 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2088 VMSTATE_END_OF_LIST()
2089 },
2090 };
2091
spapr_dtb_needed(void * opaque)2092 static bool spapr_dtb_needed(void *opaque)
2093 {
2094 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2095
2096 return smc->update_dt_enabled;
2097 }
2098
spapr_dtb_pre_load(void * opaque)2099 static int spapr_dtb_pre_load(void *opaque)
2100 {
2101 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2102
2103 g_free(spapr->fdt_blob);
2104 spapr->fdt_blob = NULL;
2105 spapr->fdt_size = 0;
2106
2107 return 0;
2108 }
2109
2110 static const VMStateDescription vmstate_spapr_dtb = {
2111 .name = "spapr_dtb",
2112 .version_id = 1,
2113 .minimum_version_id = 1,
2114 .needed = spapr_dtb_needed,
2115 .pre_load = spapr_dtb_pre_load,
2116 .fields = (const VMStateField[]) {
2117 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2118 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2119 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2120 fdt_size),
2121 VMSTATE_END_OF_LIST()
2122 },
2123 };
2124
spapr_fwnmi_needed(void * opaque)2125 static bool spapr_fwnmi_needed(void *opaque)
2126 {
2127 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2128
2129 return spapr->fwnmi_machine_check_addr != -1;
2130 }
2131
spapr_fwnmi_pre_save(void * opaque)2132 static int spapr_fwnmi_pre_save(void *opaque)
2133 {
2134 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2135
2136 /*
2137 * Check if machine check handling is in progress and print a
2138 * warning message.
2139 */
2140 if (spapr->fwnmi_machine_check_interlock != -1) {
2141 warn_report("A machine check is being handled during migration. The"
2142 "handler may run and log hardware error on the destination");
2143 }
2144
2145 return 0;
2146 }
2147
2148 static const VMStateDescription vmstate_spapr_fwnmi = {
2149 .name = "spapr_fwnmi",
2150 .version_id = 1,
2151 .minimum_version_id = 1,
2152 .needed = spapr_fwnmi_needed,
2153 .pre_save = spapr_fwnmi_pre_save,
2154 .fields = (const VMStateField[]) {
2155 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2156 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2157 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2158 VMSTATE_END_OF_LIST()
2159 },
2160 };
2161
2162 static const VMStateDescription vmstate_spapr = {
2163 .name = "spapr",
2164 .version_id = 3,
2165 .minimum_version_id = 1,
2166 .pre_load = spapr_pre_load,
2167 .post_load = spapr_post_load,
2168 .pre_save = spapr_pre_save,
2169 .fields = (const VMStateField[]) {
2170 /* used to be @next_irq */
2171 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2172
2173 /* RTC offset */
2174 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2175
2176 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2177 VMSTATE_END_OF_LIST()
2178 },
2179 .subsections = (const VMStateDescription * const []) {
2180 &vmstate_spapr_ov5_cas,
2181 &vmstate_spapr_patb_entry,
2182 &vmstate_spapr_pending_events,
2183 &vmstate_spapr_cap_htm,
2184 &vmstate_spapr_cap_vsx,
2185 &vmstate_spapr_cap_dfp,
2186 &vmstate_spapr_cap_cfpc,
2187 &vmstate_spapr_cap_sbbc,
2188 &vmstate_spapr_cap_ibs,
2189 &vmstate_spapr_cap_hpt_maxpagesize,
2190 &vmstate_spapr_irq_map,
2191 &vmstate_spapr_cap_nested_kvm_hv,
2192 &vmstate_spapr_dtb,
2193 &vmstate_spapr_cap_large_decr,
2194 &vmstate_spapr_cap_ccf_assist,
2195 &vmstate_spapr_cap_fwnmi,
2196 &vmstate_spapr_fwnmi,
2197 &vmstate_spapr_cap_rpt_invalidate,
2198 &vmstate_spapr_cap_ail_mode_3,
2199 &vmstate_spapr_cap_nested_papr,
2200 NULL
2201 }
2202 };
2203
htab_save_setup(QEMUFile * f,void * opaque,Error ** errp)2204 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp)
2205 {
2206 SpaprMachineState *spapr = opaque;
2207
2208 /* "Iteration" header */
2209 if (!spapr->htab_shift) {
2210 qemu_put_be32(f, -1);
2211 } else {
2212 qemu_put_be32(f, spapr->htab_shift);
2213 }
2214
2215 if (spapr->htab) {
2216 spapr->htab_save_index = 0;
2217 spapr->htab_first_pass = true;
2218 } else {
2219 if (spapr->htab_shift) {
2220 assert(kvm_enabled());
2221 }
2222 }
2223
2224
2225 return 0;
2226 }
2227
htab_save_chunk(QEMUFile * f,SpaprMachineState * spapr,int chunkstart,int n_valid,int n_invalid)2228 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2229 int chunkstart, int n_valid, int n_invalid)
2230 {
2231 qemu_put_be32(f, chunkstart);
2232 qemu_put_be16(f, n_valid);
2233 qemu_put_be16(f, n_invalid);
2234 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2235 HASH_PTE_SIZE_64 * n_valid);
2236 }
2237
htab_save_end_marker(QEMUFile * f)2238 static void htab_save_end_marker(QEMUFile *f)
2239 {
2240 qemu_put_be32(f, 0);
2241 qemu_put_be16(f, 0);
2242 qemu_put_be16(f, 0);
2243 }
2244
htab_save_first_pass(QEMUFile * f,SpaprMachineState * spapr,int64_t max_ns)2245 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2246 int64_t max_ns)
2247 {
2248 bool has_timeout = max_ns != -1;
2249 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2250 int index = spapr->htab_save_index;
2251 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2252
2253 assert(spapr->htab_first_pass);
2254
2255 do {
2256 int chunkstart;
2257
2258 /* Consume invalid HPTEs */
2259 while ((index < htabslots)
2260 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2261 CLEAN_HPTE(HPTE(spapr->htab, index));
2262 index++;
2263 }
2264
2265 /* Consume valid HPTEs */
2266 chunkstart = index;
2267 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2268 && HPTE_VALID(HPTE(spapr->htab, index))) {
2269 CLEAN_HPTE(HPTE(spapr->htab, index));
2270 index++;
2271 }
2272
2273 if (index > chunkstart) {
2274 int n_valid = index - chunkstart;
2275
2276 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2277
2278 if (has_timeout &&
2279 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2280 break;
2281 }
2282 }
2283 } while ((index < htabslots) && !migration_rate_exceeded(f));
2284
2285 if (index >= htabslots) {
2286 assert(index == htabslots);
2287 index = 0;
2288 spapr->htab_first_pass = false;
2289 }
2290 spapr->htab_save_index = index;
2291 }
2292
htab_save_later_pass(QEMUFile * f,SpaprMachineState * spapr,int64_t max_ns)2293 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2294 int64_t max_ns)
2295 {
2296 bool final = max_ns < 0;
2297 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2298 int examined = 0, sent = 0;
2299 int index = spapr->htab_save_index;
2300 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2301
2302 assert(!spapr->htab_first_pass);
2303
2304 do {
2305 int chunkstart, invalidstart;
2306
2307 /* Consume non-dirty HPTEs */
2308 while ((index < htabslots)
2309 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2310 index++;
2311 examined++;
2312 }
2313
2314 chunkstart = index;
2315 /* Consume valid dirty HPTEs */
2316 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2317 && HPTE_DIRTY(HPTE(spapr->htab, index))
2318 && HPTE_VALID(HPTE(spapr->htab, index))) {
2319 CLEAN_HPTE(HPTE(spapr->htab, index));
2320 index++;
2321 examined++;
2322 }
2323
2324 invalidstart = index;
2325 /* Consume invalid dirty HPTEs */
2326 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2327 && HPTE_DIRTY(HPTE(spapr->htab, index))
2328 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2329 CLEAN_HPTE(HPTE(spapr->htab, index));
2330 index++;
2331 examined++;
2332 }
2333
2334 if (index > chunkstart) {
2335 int n_valid = invalidstart - chunkstart;
2336 int n_invalid = index - invalidstart;
2337
2338 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2339 sent += index - chunkstart;
2340
2341 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2342 break;
2343 }
2344 }
2345
2346 if (examined >= htabslots) {
2347 break;
2348 }
2349
2350 if (index >= htabslots) {
2351 assert(index == htabslots);
2352 index = 0;
2353 }
2354 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2355
2356 if (index >= htabslots) {
2357 assert(index == htabslots);
2358 index = 0;
2359 }
2360
2361 spapr->htab_save_index = index;
2362
2363 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2364 }
2365
2366 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2367 #define MAX_KVM_BUF_SIZE 2048
2368
htab_save_iterate(QEMUFile * f,void * opaque)2369 static int htab_save_iterate(QEMUFile *f, void *opaque)
2370 {
2371 SpaprMachineState *spapr = opaque;
2372 int fd;
2373 int rc = 0;
2374
2375 /* Iteration header */
2376 if (!spapr->htab_shift) {
2377 qemu_put_be32(f, -1);
2378 return 1;
2379 } else {
2380 qemu_put_be32(f, 0);
2381 }
2382
2383 if (!spapr->htab) {
2384 assert(kvm_enabled());
2385
2386 fd = get_htab_fd(spapr);
2387 if (fd < 0) {
2388 return fd;
2389 }
2390
2391 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2392 if (rc < 0) {
2393 return rc;
2394 }
2395 } else if (spapr->htab_first_pass) {
2396 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2397 } else {
2398 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2399 }
2400
2401 htab_save_end_marker(f);
2402
2403 return rc;
2404 }
2405
htab_save_complete(QEMUFile * f,void * opaque)2406 static int htab_save_complete(QEMUFile *f, void *opaque)
2407 {
2408 SpaprMachineState *spapr = opaque;
2409 int fd;
2410
2411 /* Iteration header */
2412 if (!spapr->htab_shift) {
2413 qemu_put_be32(f, -1);
2414 return 0;
2415 } else {
2416 qemu_put_be32(f, 0);
2417 }
2418
2419 if (!spapr->htab) {
2420 int rc;
2421
2422 assert(kvm_enabled());
2423
2424 fd = get_htab_fd(spapr);
2425 if (fd < 0) {
2426 return fd;
2427 }
2428
2429 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2430 if (rc < 0) {
2431 return rc;
2432 }
2433 } else {
2434 if (spapr->htab_first_pass) {
2435 htab_save_first_pass(f, spapr, -1);
2436 }
2437 htab_save_later_pass(f, spapr, -1);
2438 }
2439
2440 /* End marker */
2441 htab_save_end_marker(f);
2442
2443 return 0;
2444 }
2445
htab_load(QEMUFile * f,void * opaque,int version_id)2446 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2447 {
2448 SpaprMachineState *spapr = opaque;
2449 uint32_t section_hdr;
2450 int fd = -1;
2451 Error *local_err = NULL;
2452
2453 if (version_id < 1 || version_id > 1) {
2454 error_report("htab_load() bad version");
2455 return -EINVAL;
2456 }
2457
2458 section_hdr = qemu_get_be32(f);
2459
2460 if (section_hdr == -1) {
2461 spapr_free_hpt(spapr);
2462 return 0;
2463 }
2464
2465 if (section_hdr) {
2466 int ret;
2467
2468 /* First section gives the htab size */
2469 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2470 if (ret < 0) {
2471 error_report_err(local_err);
2472 return ret;
2473 }
2474 return 0;
2475 }
2476
2477 if (!spapr->htab) {
2478 assert(kvm_enabled());
2479
2480 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2481 if (fd < 0) {
2482 error_report_err(local_err);
2483 return fd;
2484 }
2485 }
2486
2487 while (true) {
2488 uint32_t index;
2489 uint16_t n_valid, n_invalid;
2490
2491 index = qemu_get_be32(f);
2492 n_valid = qemu_get_be16(f);
2493 n_invalid = qemu_get_be16(f);
2494
2495 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2496 /* End of Stream */
2497 break;
2498 }
2499
2500 if ((index + n_valid + n_invalid) >
2501 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2502 /* Bad index in stream */
2503 error_report(
2504 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2505 index, n_valid, n_invalid, spapr->htab_shift);
2506 return -EINVAL;
2507 }
2508
2509 if (spapr->htab) {
2510 if (n_valid) {
2511 qemu_get_buffer(f, HPTE(spapr->htab, index),
2512 HASH_PTE_SIZE_64 * n_valid);
2513 }
2514 if (n_invalid) {
2515 memset(HPTE(spapr->htab, index + n_valid), 0,
2516 HASH_PTE_SIZE_64 * n_invalid);
2517 }
2518 } else {
2519 int rc;
2520
2521 assert(fd >= 0);
2522
2523 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2524 &local_err);
2525 if (rc < 0) {
2526 error_report_err(local_err);
2527 return rc;
2528 }
2529 }
2530 }
2531
2532 if (!spapr->htab) {
2533 assert(fd >= 0);
2534 close(fd);
2535 }
2536
2537 return 0;
2538 }
2539
htab_save_cleanup(void * opaque)2540 static void htab_save_cleanup(void *opaque)
2541 {
2542 SpaprMachineState *spapr = opaque;
2543
2544 close_htab_fd(spapr);
2545 }
2546
2547 static SaveVMHandlers savevm_htab_handlers = {
2548 .save_setup = htab_save_setup,
2549 .save_live_iterate = htab_save_iterate,
2550 .save_live_complete_precopy = htab_save_complete,
2551 .save_cleanup = htab_save_cleanup,
2552 .load_state = htab_load,
2553 };
2554
spapr_boot_set(void * opaque,const char * boot_device,Error ** errp)2555 static void spapr_boot_set(void *opaque, const char *boot_device,
2556 Error **errp)
2557 {
2558 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2559
2560 g_free(spapr->boot_device);
2561 spapr->boot_device = g_strdup(boot_device);
2562 }
2563
spapr_create_lmb_dr_connectors(SpaprMachineState * spapr)2564 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2565 {
2566 MachineState *machine = MACHINE(spapr);
2567 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2568 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2569 int i;
2570
2571 g_assert(!nr_lmbs || machine->device_memory);
2572 for (i = 0; i < nr_lmbs; i++) {
2573 uint64_t addr;
2574
2575 addr = i * lmb_size + machine->device_memory->base;
2576 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2577 addr / lmb_size);
2578 }
2579 }
2580
2581 /*
2582 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2583 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2584 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2585 */
spapr_validate_node_memory(MachineState * machine,Error ** errp)2586 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2587 {
2588 int i;
2589
2590 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2591 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2592 " is not aligned to %" PRIu64 " MiB",
2593 machine->ram_size,
2594 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2595 return;
2596 }
2597
2598 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2599 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2600 " is not aligned to %" PRIu64 " MiB",
2601 machine->ram_size,
2602 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2603 return;
2604 }
2605
2606 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2607 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2608 error_setg(errp,
2609 "Node %d memory size 0x%" PRIx64
2610 " is not aligned to %" PRIu64 " MiB",
2611 i, machine->numa_state->nodes[i].node_mem,
2612 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2613 return;
2614 }
2615 }
2616 }
2617
2618 /* find cpu slot in machine->possible_cpus by core_id */
spapr_find_cpu_slot(MachineState * ms,uint32_t id,int * idx)2619 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2620 {
2621 int index = id / ms->smp.threads;
2622
2623 if (index >= ms->possible_cpus->len) {
2624 return NULL;
2625 }
2626 if (idx) {
2627 *idx = index;
2628 }
2629 return &ms->possible_cpus->cpus[index];
2630 }
2631
spapr_set_vsmt_mode(SpaprMachineState * spapr,Error ** errp)2632 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2633 {
2634 MachineState *ms = MACHINE(spapr);
2635 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2636 Error *local_err = NULL;
2637 bool vsmt_user = !!spapr->vsmt;
2638 int kvm_smt = kvmppc_smt_threads();
2639 int ret;
2640 unsigned int smp_threads = ms->smp.threads;
2641
2642 if (tcg_enabled()) {
2643 if (smp_threads > 1 &&
2644 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2645 spapr->max_compat_pvr)) {
2646 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2647 return;
2648 }
2649
2650 if (smp_threads > 8) {
2651 error_setg(errp, "TCG cannot support more than 8 threads/core "
2652 "on a pseries machine");
2653 return;
2654 }
2655 }
2656 if (!is_power_of_2(smp_threads)) {
2657 error_setg(errp, "Cannot support %d threads/core on a pseries "
2658 "machine because it must be a power of 2", smp_threads);
2659 return;
2660 }
2661
2662 /* Determine the VSMT mode to use: */
2663 if (vsmt_user) {
2664 if (spapr->vsmt < smp_threads) {
2665 error_setg(errp, "Cannot support VSMT mode %d"
2666 " because it must be >= threads/core (%d)",
2667 spapr->vsmt, smp_threads);
2668 return;
2669 }
2670 /* In this case, spapr->vsmt has been set by the command line */
2671 } else if (!smc->smp_threads_vsmt) {
2672 /*
2673 * Default VSMT value is tricky, because we need it to be as
2674 * consistent as possible (for migration), but this requires
2675 * changing it for at least some existing cases. We pick 8 as
2676 * the value that we'd get with KVM on POWER8, the
2677 * overwhelmingly common case in production systems.
2678 */
2679 spapr->vsmt = MAX(8, smp_threads);
2680 } else {
2681 spapr->vsmt = smp_threads;
2682 }
2683
2684 /* KVM: If necessary, set the SMT mode: */
2685 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2686 ret = kvmppc_set_smt_threads(spapr->vsmt);
2687 if (ret) {
2688 /* Looks like KVM isn't able to change VSMT mode */
2689 error_setg(&local_err,
2690 "Failed to set KVM's VSMT mode to %d (errno %d)",
2691 spapr->vsmt, ret);
2692 /* We can live with that if the default one is big enough
2693 * for the number of threads, and a submultiple of the one
2694 * we want. In this case we'll waste some vcpu ids, but
2695 * behaviour will be correct */
2696 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2697 warn_report_err(local_err);
2698 } else {
2699 if (!vsmt_user) {
2700 error_append_hint(&local_err,
2701 "On PPC, a VM with %d threads/core"
2702 " on a host with %d threads/core"
2703 " requires the use of VSMT mode %d.\n",
2704 smp_threads, kvm_smt, spapr->vsmt);
2705 }
2706 kvmppc_error_append_smt_possible_hint(&local_err);
2707 error_propagate(errp, local_err);
2708 }
2709 }
2710 }
2711 /* else TCG: nothing to do currently */
2712 }
2713
spapr_init_cpus(SpaprMachineState * spapr)2714 static void spapr_init_cpus(SpaprMachineState *spapr)
2715 {
2716 MachineState *machine = MACHINE(spapr);
2717 MachineClass *mc = MACHINE_GET_CLASS(machine);
2718 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2719 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2720 const CPUArchIdList *possible_cpus;
2721 unsigned int smp_cpus = machine->smp.cpus;
2722 unsigned int smp_threads = machine->smp.threads;
2723 unsigned int max_cpus = machine->smp.max_cpus;
2724 int boot_cores_nr = smp_cpus / smp_threads;
2725 int i;
2726
2727 possible_cpus = mc->possible_cpu_arch_ids(machine);
2728 if (mc->has_hotpluggable_cpus) {
2729 if (smp_cpus % smp_threads) {
2730 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2731 smp_cpus, smp_threads);
2732 exit(1);
2733 }
2734 if (max_cpus % smp_threads) {
2735 error_report("max_cpus (%u) must be multiple of threads (%u)",
2736 max_cpus, smp_threads);
2737 exit(1);
2738 }
2739 } else {
2740 if (max_cpus != smp_cpus) {
2741 error_report("This machine version does not support CPU hotplug");
2742 exit(1);
2743 }
2744 boot_cores_nr = possible_cpus->len;
2745 }
2746
2747 if (smc->pre_2_10_has_unused_icps) {
2748 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2749 /* Dummy entries get deregistered when real ICPState objects
2750 * are registered during CPU core hotplug.
2751 */
2752 pre_2_10_vmstate_register_dummy_icp(i);
2753 }
2754 }
2755
2756 for (i = 0; i < possible_cpus->len; i++) {
2757 int core_id = i * smp_threads;
2758
2759 if (mc->has_hotpluggable_cpus) {
2760 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2761 spapr_vcpu_id(spapr, core_id));
2762 }
2763
2764 if (i < boot_cores_nr) {
2765 Object *core = object_new(type);
2766 int nr_threads = smp_threads;
2767
2768 /* Handle the partially filled core for older machine types */
2769 if ((i + 1) * smp_threads >= smp_cpus) {
2770 nr_threads = smp_cpus - i * smp_threads;
2771 }
2772
2773 object_property_set_int(core, "nr-threads", nr_threads,
2774 &error_fatal);
2775 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2776 &error_fatal);
2777 qdev_realize(DEVICE(core), NULL, &error_fatal);
2778
2779 object_unref(core);
2780 }
2781 }
2782 }
2783
spapr_create_default_phb(void)2784 static PCIHostState *spapr_create_default_phb(void)
2785 {
2786 DeviceState *dev;
2787
2788 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2789 qdev_prop_set_uint32(dev, "index", 0);
2790 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2791
2792 return PCI_HOST_BRIDGE(dev);
2793 }
2794
spapr_rma_size(SpaprMachineState * spapr,Error ** errp)2795 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2796 {
2797 MachineState *machine = MACHINE(spapr);
2798 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2799 hwaddr rma_size = machine->ram_size;
2800 hwaddr node0_size = spapr_node0_size(machine);
2801
2802 /* RMA has to fit in the first NUMA node */
2803 rma_size = MIN(rma_size, node0_size);
2804
2805 /*
2806 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2807 * never exceed that
2808 */
2809 rma_size = MIN(rma_size, 1 * TiB);
2810
2811 /*
2812 * Clamp the RMA size based on machine type. This is for
2813 * migration compatibility with older qemu versions, which limited
2814 * the RMA size for complicated and mostly bad reasons.
2815 */
2816 if (smc->rma_limit) {
2817 rma_size = MIN(rma_size, smc->rma_limit);
2818 }
2819
2820 if (rma_size < MIN_RMA_SLOF) {
2821 error_setg(errp,
2822 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2823 "ldMiB guest RMA (Real Mode Area memory)",
2824 MIN_RMA_SLOF / MiB);
2825 return 0;
2826 }
2827
2828 return rma_size;
2829 }
2830
spapr_create_nvdimm_dr_connectors(SpaprMachineState * spapr)2831 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2832 {
2833 MachineState *machine = MACHINE(spapr);
2834 int i;
2835
2836 for (i = 0; i < machine->ram_slots; i++) {
2837 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2838 }
2839 }
2840
2841 /* pSeries LPAR / sPAPR hardware init */
spapr_machine_init(MachineState * machine)2842 static void spapr_machine_init(MachineState *machine)
2843 {
2844 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2845 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2846 MachineClass *mc = MACHINE_GET_CLASS(machine);
2847 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2848 const char *bios_name = machine->firmware ?: bios_default;
2849 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2850 const char *kernel_filename = machine->kernel_filename;
2851 const char *initrd_filename = machine->initrd_filename;
2852 PCIHostState *phb;
2853 bool has_vga;
2854 int i;
2855 MemoryRegion *sysmem = get_system_memory();
2856 long load_limit, fw_size;
2857 Error *resize_hpt_err = NULL;
2858 NICInfo *nd;
2859
2860 if (!filename) {
2861 error_report("Could not find LPAR firmware '%s'", bios_name);
2862 exit(1);
2863 }
2864 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2865 if (fw_size <= 0) {
2866 error_report("Could not load LPAR firmware '%s'", filename);
2867 exit(1);
2868 }
2869
2870 /*
2871 * if Secure VM (PEF) support is configured, then initialize it
2872 */
2873 if (machine->cgs) {
2874 confidential_guest_kvm_init(machine->cgs, &error_fatal);
2875 }
2876
2877 msi_nonbroken = true;
2878
2879 QLIST_INIT(&spapr->phbs);
2880 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2881
2882 /* Determine capabilities to run with */
2883 spapr_caps_init(spapr);
2884
2885 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2886 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2887 /*
2888 * If the user explicitly requested a mode we should either
2889 * supply it, or fail completely (which we do below). But if
2890 * it's not set explicitly, we reset our mode to something
2891 * that works
2892 */
2893 if (resize_hpt_err) {
2894 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2895 error_free(resize_hpt_err);
2896 resize_hpt_err = NULL;
2897 } else {
2898 spapr->resize_hpt = smc->resize_hpt_default;
2899 }
2900 }
2901
2902 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2903
2904 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2905 /*
2906 * User requested HPT resize, but this host can't supply it. Bail out
2907 */
2908 error_report_err(resize_hpt_err);
2909 exit(1);
2910 }
2911 error_free(resize_hpt_err);
2912
2913 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2914
2915 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2916 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2917
2918 /*
2919 * VSMT must be set in order to be able to compute VCPU ids, ie to
2920 * call spapr_max_server_number() or spapr_vcpu_id().
2921 */
2922 spapr_set_vsmt_mode(spapr, &error_fatal);
2923
2924 /* Set up Interrupt Controller before we create the VCPUs */
2925 spapr_irq_init(spapr, &error_fatal);
2926
2927 /* Set up containers for ibm,client-architecture-support negotiated options
2928 */
2929 spapr->ov5 = spapr_ovec_new();
2930 spapr->ov5_cas = spapr_ovec_new();
2931
2932 if (smc->dr_lmb_enabled) {
2933 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2934 spapr_validate_node_memory(machine, &error_fatal);
2935 }
2936
2937 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2938
2939 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2940 if (!smc->pre_6_2_numa_affinity) {
2941 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2942 }
2943
2944 /* advertise support for dedicated HP event source to guests */
2945 if (spapr->use_hotplug_event_source) {
2946 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2947 }
2948
2949 /* advertise support for HPT resizing */
2950 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2951 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2952 }
2953
2954 /* advertise support for ibm,dyamic-memory-v2 */
2955 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2956
2957 /* advertise XIVE on POWER9 machines */
2958 if (spapr->irq->xive) {
2959 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2960 }
2961
2962 /* init CPUs */
2963 spapr_init_cpus(spapr);
2964
2965 /* Init numa_assoc_array */
2966 spapr_numa_associativity_init(spapr, machine);
2967
2968 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2969 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2970 spapr->max_compat_pvr)) {
2971 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2972 /* KVM and TCG always allow GTSE with radix... */
2973 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2974 }
2975 /* ... but not with hash (currently). */
2976
2977 if (kvm_enabled()) {
2978 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2979 kvmppc_enable_logical_ci_hcalls();
2980 kvmppc_enable_set_mode_hcall();
2981
2982 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2983 kvmppc_enable_clear_ref_mod_hcalls();
2984
2985 /* Enable H_PAGE_INIT */
2986 kvmppc_enable_h_page_init();
2987 }
2988
2989 /* map RAM */
2990 memory_region_add_subregion(sysmem, 0, machine->ram);
2991
2992 /* initialize hotplug memory address space */
2993 if (machine->ram_size < machine->maxram_size) {
2994 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2995 hwaddr device_mem_base;
2996
2997 /*
2998 * Limit the number of hotpluggable memory slots to half the number
2999 * slots that KVM supports, leaving the other half for PCI and other
3000 * devices. However ensure that number of slots doesn't drop below 32.
3001 */
3002 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
3003 SPAPR_MAX_RAM_SLOTS;
3004
3005 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
3006 max_memslots = SPAPR_MAX_RAM_SLOTS;
3007 }
3008 if (machine->ram_slots > max_memslots) {
3009 error_report("Specified number of memory slots %"
3010 PRIu64" exceeds max supported %d",
3011 machine->ram_slots, max_memslots);
3012 exit(1);
3013 }
3014
3015 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
3016 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
3017 }
3018
3019 if (smc->dr_lmb_enabled) {
3020 spapr_create_lmb_dr_connectors(spapr);
3021 }
3022
3023 if (mc->nvdimm_supported) {
3024 spapr_create_nvdimm_dr_connectors(spapr);
3025 }
3026
3027 /* Set up RTAS event infrastructure */
3028 spapr_events_init(spapr);
3029
3030 /* Set up the RTC RTAS interfaces */
3031 spapr_rtc_create(spapr);
3032
3033 /* Set up VIO bus */
3034 spapr->vio_bus = spapr_vio_bus_init();
3035
3036 for (i = 0; serial_hd(i); i++) {
3037 spapr_vty_create(spapr->vio_bus, serial_hd(i));
3038 }
3039
3040 /* We always have at least the nvram device on VIO */
3041 spapr_create_nvram(spapr);
3042
3043 /*
3044 * Setup hotplug / dynamic-reconfiguration connectors. top-level
3045 * connectors (described in root DT node's "ibm,drc-types" property)
3046 * are pre-initialized here. additional child connectors (such as
3047 * connectors for a PHBs PCI slots) are added as needed during their
3048 * parent's realization.
3049 */
3050 if (smc->dr_phb_enabled) {
3051 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3052 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3053 }
3054 }
3055
3056 /* Set up PCI */
3057 spapr_pci_rtas_init();
3058
3059 phb = spapr_create_default_phb();
3060
3061 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3062 spapr_vlan_create(spapr->vio_bus, nd);
3063 }
3064
3065 pci_init_nic_devices(phb->bus, NULL);
3066
3067 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3068 spapr_vscsi_create(spapr->vio_bus);
3069 }
3070
3071 /* Graphics */
3072 has_vga = spapr_vga_init(phb->bus, &error_fatal);
3073 if (has_vga) {
3074 spapr->want_stdout_path = !machine->enable_graphics;
3075 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3076 } else {
3077 spapr->want_stdout_path = true;
3078 }
3079
3080 if (machine->usb) {
3081 if (smc->use_ohci_by_default) {
3082 pci_create_simple(phb->bus, -1, "pci-ohci");
3083 } else {
3084 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3085 }
3086
3087 if (has_vga) {
3088 USBBus *usb_bus;
3089
3090 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3091 &error_abort));
3092 usb_create_simple(usb_bus, "usb-kbd");
3093 usb_create_simple(usb_bus, "usb-mouse");
3094 }
3095 }
3096
3097 if (kernel_filename) {
3098 uint64_t loaded_addr = 0;
3099
3100 spapr->kernel_size = load_elf(kernel_filename, NULL,
3101 translate_kernel_address, spapr,
3102 NULL, &loaded_addr, NULL, NULL, 1,
3103 PPC_ELF_MACHINE, 0, 0);
3104 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3105 spapr->kernel_size = load_elf(kernel_filename, NULL,
3106 translate_kernel_address, spapr,
3107 NULL, &loaded_addr, NULL, NULL, 0,
3108 PPC_ELF_MACHINE, 0, 0);
3109 spapr->kernel_le = spapr->kernel_size > 0;
3110 }
3111 if (spapr->kernel_size < 0) {
3112 error_report("error loading %s: %s", kernel_filename,
3113 load_elf_strerror(spapr->kernel_size));
3114 exit(1);
3115 }
3116
3117 if (spapr->kernel_addr != loaded_addr) {
3118 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3119 " to 0x%"PRIx64,
3120 spapr->kernel_addr, loaded_addr);
3121 spapr->kernel_addr = loaded_addr;
3122 }
3123
3124 /* load initrd */
3125 if (initrd_filename) {
3126 /* Try to locate the initrd in the gap between the kernel
3127 * and the firmware. Add a bit of space just in case
3128 */
3129 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3130 + 0x1ffff) & ~0xffff;
3131 spapr->initrd_size = load_image_targphys(initrd_filename,
3132 spapr->initrd_base,
3133 load_limit
3134 - spapr->initrd_base);
3135 if (spapr->initrd_size < 0) {
3136 error_report("could not load initial ram disk '%s'",
3137 initrd_filename);
3138 exit(1);
3139 }
3140 }
3141 }
3142
3143 /* FIXME: Should register things through the MachineState's qdev
3144 * interface, this is a legacy from the sPAPREnvironment structure
3145 * which predated MachineState but had a similar function */
3146 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3147 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3148 &savevm_htab_handlers, spapr);
3149
3150 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3151
3152 qemu_register_boot_set(spapr_boot_set, spapr);
3153
3154 /*
3155 * Nothing needs to be done to resume a suspended guest because
3156 * suspending does not change the machine state, so no need for
3157 * a ->wakeup method.
3158 */
3159 qemu_register_wakeup_support();
3160
3161 if (kvm_enabled()) {
3162 /* to stop and start vmclock */
3163 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3164 &spapr->tb);
3165
3166 kvmppc_spapr_enable_inkernel_multitce();
3167 }
3168
3169 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3170 if (spapr->vof) {
3171 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3172 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3173 }
3174
3175 spapr_watchdog_init(spapr);
3176 }
3177
3178 #define DEFAULT_KVM_TYPE "auto"
spapr_kvm_type(MachineState * machine,const char * vm_type)3179 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3180 {
3181 /*
3182 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3183 * accommodate the 'HV' and 'PV' formats that exists in the
3184 * wild. The 'auto' mode is being introduced already as
3185 * lower-case, thus we don't need to bother checking for
3186 * "AUTO".
3187 */
3188 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3189 return 0;
3190 }
3191
3192 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3193 return 1;
3194 }
3195
3196 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3197 return 2;
3198 }
3199
3200 error_report("Unknown kvm-type specified '%s'", vm_type);
3201 return -1;
3202 }
3203
3204 /*
3205 * Implementation of an interface to adjust firmware path
3206 * for the bootindex property handling.
3207 */
spapr_get_fw_dev_path(FWPathProvider * p,BusState * bus,DeviceState * dev)3208 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3209 DeviceState *dev)
3210 {
3211 #define CAST(type, obj, name) \
3212 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3213 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3214 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3215 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3216 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3217
3218 if (d && bus) {
3219 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3220 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3221 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3222
3223 if (spapr) {
3224 /*
3225 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3226 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3227 * 0x8000 | (target << 8) | (bus << 5) | lun
3228 * (see the "Logical unit addressing format" table in SAM5)
3229 */
3230 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3231 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3232 (uint64_t)id << 48);
3233 } else if (virtio) {
3234 /*
3235 * We use SRP luns of the form 01000000 | (target << 8) | lun
3236 * in the top 32 bits of the 64-bit LUN
3237 * Note: the quote above is from SLOF and it is wrong,
3238 * the actual binding is:
3239 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3240 */
3241 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3242 if (d->lun >= 256) {
3243 /* Use the LUN "flat space addressing method" */
3244 id |= 0x4000;
3245 }
3246 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3247 (uint64_t)id << 32);
3248 } else if (usb) {
3249 /*
3250 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3251 * in the top 32 bits of the 64-bit LUN
3252 */
3253 unsigned usb_port = atoi(usb->port->path);
3254 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3255 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3256 (uint64_t)id << 32);
3257 }
3258 }
3259
3260 /*
3261 * SLOF probes the USB devices, and if it recognizes that the device is a
3262 * storage device, it changes its name to "storage" instead of "usb-host",
3263 * and additionally adds a child node for the SCSI LUN, so the correct
3264 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3265 */
3266 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3267 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3268 if (usb_device_is_scsi_storage(usbdev)) {
3269 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3270 }
3271 }
3272
3273 if (phb) {
3274 /* Replace "pci" with "pci@800000020000000" */
3275 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3276 }
3277
3278 if (vsc) {
3279 /* Same logic as virtio above */
3280 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3281 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3282 }
3283
3284 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3285 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3286 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3287 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3288 }
3289
3290 if (pcidev) {
3291 return spapr_pci_fw_dev_name(pcidev);
3292 }
3293
3294 return NULL;
3295 }
3296
spapr_get_kvm_type(Object * obj,Error ** errp)3297 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3298 {
3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300
3301 return g_strdup(spapr->kvm_type);
3302 }
3303
spapr_set_kvm_type(Object * obj,const char * value,Error ** errp)3304 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3305 {
3306 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307
3308 g_free(spapr->kvm_type);
3309 spapr->kvm_type = g_strdup(value);
3310 }
3311
spapr_get_modern_hotplug_events(Object * obj,Error ** errp)3312 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3313 {
3314 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315
3316 return spapr->use_hotplug_event_source;
3317 }
3318
spapr_set_modern_hotplug_events(Object * obj,bool value,Error ** errp)3319 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3320 Error **errp)
3321 {
3322 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323
3324 spapr->use_hotplug_event_source = value;
3325 }
3326
spapr_get_msix_emulation(Object * obj,Error ** errp)3327 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3328 {
3329 return true;
3330 }
3331
spapr_get_resize_hpt(Object * obj,Error ** errp)3332 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3333 {
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335
3336 switch (spapr->resize_hpt) {
3337 case SPAPR_RESIZE_HPT_DEFAULT:
3338 return g_strdup("default");
3339 case SPAPR_RESIZE_HPT_DISABLED:
3340 return g_strdup("disabled");
3341 case SPAPR_RESIZE_HPT_ENABLED:
3342 return g_strdup("enabled");
3343 case SPAPR_RESIZE_HPT_REQUIRED:
3344 return g_strdup("required");
3345 }
3346 g_assert_not_reached();
3347 }
3348
spapr_set_resize_hpt(Object * obj,const char * value,Error ** errp)3349 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3350 {
3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352
3353 if (strcmp(value, "default") == 0) {
3354 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3355 } else if (strcmp(value, "disabled") == 0) {
3356 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3357 } else if (strcmp(value, "enabled") == 0) {
3358 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3359 } else if (strcmp(value, "required") == 0) {
3360 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3361 } else {
3362 error_setg(errp, "Bad value for \"resize-hpt\" property");
3363 }
3364 }
3365
spapr_get_vof(Object * obj,Error ** errp)3366 static bool spapr_get_vof(Object *obj, Error **errp)
3367 {
3368 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3369
3370 return spapr->vof != NULL;
3371 }
3372
spapr_set_vof(Object * obj,bool value,Error ** errp)3373 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3374 {
3375 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3376
3377 if (spapr->vof) {
3378 vof_cleanup(spapr->vof);
3379 g_free(spapr->vof);
3380 spapr->vof = NULL;
3381 }
3382 if (!value) {
3383 return;
3384 }
3385 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3386 }
3387
spapr_get_ic_mode(Object * obj,Error ** errp)3388 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3389 {
3390 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3391
3392 if (spapr->irq == &spapr_irq_xics_legacy) {
3393 return g_strdup("legacy");
3394 } else if (spapr->irq == &spapr_irq_xics) {
3395 return g_strdup("xics");
3396 } else if (spapr->irq == &spapr_irq_xive) {
3397 return g_strdup("xive");
3398 } else if (spapr->irq == &spapr_irq_dual) {
3399 return g_strdup("dual");
3400 }
3401 g_assert_not_reached();
3402 }
3403
spapr_set_ic_mode(Object * obj,const char * value,Error ** errp)3404 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3405 {
3406 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3407
3408 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3409 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3410 return;
3411 }
3412
3413 /* The legacy IRQ backend can not be set */
3414 if (strcmp(value, "xics") == 0) {
3415 spapr->irq = &spapr_irq_xics;
3416 } else if (strcmp(value, "xive") == 0) {
3417 spapr->irq = &spapr_irq_xive;
3418 } else if (strcmp(value, "dual") == 0) {
3419 spapr->irq = &spapr_irq_dual;
3420 } else {
3421 error_setg(errp, "Bad value for \"ic-mode\" property");
3422 }
3423 }
3424
spapr_get_host_model(Object * obj,Error ** errp)3425 static char *spapr_get_host_model(Object *obj, Error **errp)
3426 {
3427 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3428
3429 return g_strdup(spapr->host_model);
3430 }
3431
spapr_set_host_model(Object * obj,const char * value,Error ** errp)3432 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3433 {
3434 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3435
3436 g_free(spapr->host_model);
3437 spapr->host_model = g_strdup(value);
3438 }
3439
spapr_get_host_serial(Object * obj,Error ** errp)3440 static char *spapr_get_host_serial(Object *obj, Error **errp)
3441 {
3442 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3443
3444 return g_strdup(spapr->host_serial);
3445 }
3446
spapr_set_host_serial(Object * obj,const char * value,Error ** errp)3447 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3448 {
3449 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3450
3451 g_free(spapr->host_serial);
3452 spapr->host_serial = g_strdup(value);
3453 }
3454
spapr_instance_init(Object * obj)3455 static void spapr_instance_init(Object *obj)
3456 {
3457 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3458 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3459 MachineState *ms = MACHINE(spapr);
3460 MachineClass *mc = MACHINE_GET_CLASS(ms);
3461
3462 /*
3463 * NVDIMM support went live in 5.1 without considering that, in
3464 * other archs, the user needs to enable NVDIMM support with the
3465 * 'nvdimm' machine option and the default behavior is NVDIMM
3466 * support disabled. It is too late to roll back to the standard
3467 * behavior without breaking 5.1 guests.
3468 */
3469 if (mc->nvdimm_supported) {
3470 ms->nvdimms_state->is_enabled = true;
3471 }
3472
3473 spapr->htab_fd = -1;
3474 spapr->use_hotplug_event_source = true;
3475 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3476 object_property_add_str(obj, "kvm-type",
3477 spapr_get_kvm_type, spapr_set_kvm_type);
3478 object_property_set_description(obj, "kvm-type",
3479 "Specifies the KVM virtualization mode (auto,"
3480 " hv, pr). Defaults to 'auto'. This mode will use"
3481 " any available KVM module loaded in the host,"
3482 " where kvm_hv takes precedence if both kvm_hv and"
3483 " kvm_pr are loaded.");
3484 object_property_add_bool(obj, "modern-hotplug-events",
3485 spapr_get_modern_hotplug_events,
3486 spapr_set_modern_hotplug_events);
3487 object_property_set_description(obj, "modern-hotplug-events",
3488 "Use dedicated hotplug event mechanism in"
3489 " place of standard EPOW events when possible"
3490 " (required for memory hot-unplug support)");
3491 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3492 "Maximum permitted CPU compatibility mode");
3493
3494 object_property_add_str(obj, "resize-hpt",
3495 spapr_get_resize_hpt, spapr_set_resize_hpt);
3496 object_property_set_description(obj, "resize-hpt",
3497 "Resizing of the Hash Page Table (enabled, disabled, required)");
3498 object_property_add_uint32_ptr(obj, "vsmt",
3499 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3500 object_property_set_description(obj, "vsmt",
3501 "Virtual SMT: KVM behaves as if this were"
3502 " the host's SMT mode");
3503
3504 object_property_add_bool(obj, "vfio-no-msix-emulation",
3505 spapr_get_msix_emulation, NULL);
3506
3507 object_property_add_uint64_ptr(obj, "kernel-addr",
3508 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3509 object_property_set_description(obj, "kernel-addr",
3510 stringify(KERNEL_LOAD_ADDR)
3511 " for -kernel is the default");
3512 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3513
3514 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3515 object_property_set_description(obj, "x-vof",
3516 "Enable Virtual Open Firmware (experimental)");
3517
3518 /* The machine class defines the default interrupt controller mode */
3519 spapr->irq = smc->irq;
3520 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3521 spapr_set_ic_mode);
3522 object_property_set_description(obj, "ic-mode",
3523 "Specifies the interrupt controller mode (xics, xive, dual)");
3524
3525 object_property_add_str(obj, "host-model",
3526 spapr_get_host_model, spapr_set_host_model);
3527 object_property_set_description(obj, "host-model",
3528 "Host model to advertise in guest device tree");
3529 object_property_add_str(obj, "host-serial",
3530 spapr_get_host_serial, spapr_set_host_serial);
3531 object_property_set_description(obj, "host-serial",
3532 "Host serial number to advertise in guest device tree");
3533 }
3534
spapr_machine_finalizefn(Object * obj)3535 static void spapr_machine_finalizefn(Object *obj)
3536 {
3537 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3538
3539 g_free(spapr->kvm_type);
3540 }
3541
spapr_do_system_reset_on_cpu(CPUState * cs,run_on_cpu_data arg)3542 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3543 {
3544 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3545 CPUPPCState *env = cpu_env(cs);
3546
3547 cpu_synchronize_state(cs);
3548 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3549 if (spapr->fwnmi_system_reset_addr != -1) {
3550 uint64_t rtas_addr, addr;
3551
3552 /* get rtas addr from fdt */
3553 rtas_addr = spapr_get_rtas_addr();
3554 if (!rtas_addr) {
3555 qemu_system_guest_panicked(NULL);
3556 return;
3557 }
3558
3559 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3560 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3561 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3562 env->gpr[3] = addr;
3563 }
3564 ppc_cpu_do_system_reset(cs);
3565 if (spapr->fwnmi_system_reset_addr != -1) {
3566 env->nip = spapr->fwnmi_system_reset_addr;
3567 }
3568 }
3569
spapr_nmi(NMIState * n,int cpu_index,Error ** errp)3570 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3571 {
3572 CPUState *cs;
3573
3574 CPU_FOREACH(cs) {
3575 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3576 }
3577 }
3578
spapr_lmb_dt_populate(SpaprDrc * drc,SpaprMachineState * spapr,void * fdt,int * fdt_start_offset,Error ** errp)3579 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3580 void *fdt, int *fdt_start_offset, Error **errp)
3581 {
3582 uint64_t addr;
3583 uint32_t node;
3584
3585 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3586 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3587 &error_abort);
3588 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3589 SPAPR_MEMORY_BLOCK_SIZE);
3590 return 0;
3591 }
3592
spapr_add_lmbs(DeviceState * dev,uint64_t addr_start,uint64_t size,bool dedicated_hp_event_source)3593 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3594 bool dedicated_hp_event_source)
3595 {
3596 SpaprDrc *drc;
3597 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3598 int i;
3599 uint64_t addr = addr_start;
3600 bool hotplugged = spapr_drc_hotplugged(dev);
3601
3602 for (i = 0; i < nr_lmbs; i++) {
3603 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3604 addr / SPAPR_MEMORY_BLOCK_SIZE);
3605 g_assert(drc);
3606
3607 /*
3608 * memory_device_get_free_addr() provided a range of free addresses
3609 * that doesn't overlap with any existing mapping at pre-plug. The
3610 * corresponding LMB DRCs are thus assumed to be all attachable.
3611 */
3612 spapr_drc_attach(drc, dev);
3613 if (!hotplugged) {
3614 spapr_drc_reset(drc);
3615 }
3616 addr += SPAPR_MEMORY_BLOCK_SIZE;
3617 }
3618 /* send hotplug notification to the
3619 * guest only in case of hotplugged memory
3620 */
3621 if (hotplugged) {
3622 if (dedicated_hp_event_source) {
3623 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3624 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3625 g_assert(drc);
3626 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3627 nr_lmbs,
3628 spapr_drc_index(drc));
3629 } else {
3630 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3631 nr_lmbs);
3632 }
3633 }
3634 }
3635
spapr_memory_plug(HotplugHandler * hotplug_dev,DeviceState * dev)3636 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3637 {
3638 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3639 PCDIMMDevice *dimm = PC_DIMM(dev);
3640 uint64_t size, addr;
3641 int64_t slot;
3642 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3643
3644 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3645
3646 pc_dimm_plug(dimm, MACHINE(ms));
3647
3648 if (!is_nvdimm) {
3649 addr = object_property_get_uint(OBJECT(dimm),
3650 PC_DIMM_ADDR_PROP, &error_abort);
3651 spapr_add_lmbs(dev, addr, size,
3652 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3653 } else {
3654 slot = object_property_get_int(OBJECT(dimm),
3655 PC_DIMM_SLOT_PROP, &error_abort);
3656 /* We should have valid slot number at this point */
3657 g_assert(slot >= 0);
3658 spapr_add_nvdimm(dev, slot);
3659 }
3660 }
3661
spapr_memory_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)3662 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3663 Error **errp)
3664 {
3665 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3666 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3667 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3668 PCDIMMDevice *dimm = PC_DIMM(dev);
3669 Error *local_err = NULL;
3670 uint64_t size;
3671 Object *memdev;
3672 hwaddr pagesize;
3673
3674 if (!smc->dr_lmb_enabled) {
3675 error_setg(errp, "Memory hotplug not supported for this machine");
3676 return;
3677 }
3678
3679 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3680 if (local_err) {
3681 error_propagate(errp, local_err);
3682 return;
3683 }
3684
3685 if (is_nvdimm) {
3686 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3687 return;
3688 }
3689 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3690 error_setg(errp, "Hotplugged memory size must be a multiple of "
3691 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3692 return;
3693 }
3694
3695 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3696 &error_abort);
3697 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3698 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3699 return;
3700 }
3701
3702 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp);
3703 }
3704
3705 struct SpaprDimmState {
3706 PCDIMMDevice *dimm;
3707 uint32_t nr_lmbs;
3708 QTAILQ_ENTRY(SpaprDimmState) next;
3709 };
3710
spapr_pending_dimm_unplugs_find(SpaprMachineState * s,PCDIMMDevice * dimm)3711 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3712 PCDIMMDevice *dimm)
3713 {
3714 SpaprDimmState *dimm_state = NULL;
3715
3716 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3717 if (dimm_state->dimm == dimm) {
3718 break;
3719 }
3720 }
3721 return dimm_state;
3722 }
3723
spapr_pending_dimm_unplugs_add(SpaprMachineState * spapr,uint32_t nr_lmbs,PCDIMMDevice * dimm)3724 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3725 uint32_t nr_lmbs,
3726 PCDIMMDevice *dimm)
3727 {
3728 SpaprDimmState *ds = NULL;
3729
3730 /*
3731 * If this request is for a DIMM whose removal had failed earlier
3732 * (due to guest's refusal to remove the LMBs), we would have this
3733 * dimm already in the pending_dimm_unplugs list. In that
3734 * case don't add again.
3735 */
3736 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3737 if (!ds) {
3738 ds = g_new0(SpaprDimmState, 1);
3739 ds->nr_lmbs = nr_lmbs;
3740 ds->dimm = dimm;
3741 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3742 }
3743 return ds;
3744 }
3745
spapr_pending_dimm_unplugs_remove(SpaprMachineState * spapr,SpaprDimmState * dimm_state)3746 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3747 SpaprDimmState *dimm_state)
3748 {
3749 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3750 g_free(dimm_state);
3751 }
3752
spapr_recover_pending_dimm_state(SpaprMachineState * ms,PCDIMMDevice * dimm)3753 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3754 PCDIMMDevice *dimm)
3755 {
3756 SpaprDrc *drc;
3757 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3758 &error_abort);
3759 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3760 uint32_t avail_lmbs = 0;
3761 uint64_t addr_start, addr;
3762 int i;
3763
3764 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3765 &error_abort);
3766
3767 addr = addr_start;
3768 for (i = 0; i < nr_lmbs; i++) {
3769 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3770 addr / SPAPR_MEMORY_BLOCK_SIZE);
3771 g_assert(drc);
3772 if (drc->dev) {
3773 avail_lmbs++;
3774 }
3775 addr += SPAPR_MEMORY_BLOCK_SIZE;
3776 }
3777
3778 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3779 }
3780
spapr_memory_unplug_rollback(SpaprMachineState * spapr,DeviceState * dev)3781 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3782 {
3783 SpaprDimmState *ds;
3784 PCDIMMDevice *dimm;
3785 SpaprDrc *drc;
3786 uint32_t nr_lmbs;
3787 uint64_t size, addr_start, addr;
3788 int i;
3789
3790 if (!dev) {
3791 return;
3792 }
3793
3794 dimm = PC_DIMM(dev);
3795 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3796
3797 /*
3798 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3799 * unplug state, but one of its DRC is marked as unplug_requested.
3800 * This is bad and weird enough to g_assert() out.
3801 */
3802 g_assert(ds);
3803
3804 spapr_pending_dimm_unplugs_remove(spapr, ds);
3805
3806 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3807 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3808
3809 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3810 &error_abort);
3811
3812 addr = addr_start;
3813 for (i = 0; i < nr_lmbs; i++) {
3814 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3815 addr / SPAPR_MEMORY_BLOCK_SIZE);
3816 g_assert(drc);
3817
3818 drc->unplug_requested = false;
3819 addr += SPAPR_MEMORY_BLOCK_SIZE;
3820 }
3821
3822 /*
3823 * Tell QAPI that something happened and the memory
3824 * hotunplug wasn't successful.
3825 */
3826 qapi_event_send_device_unplug_guest_error(dev->id,
3827 dev->canonical_path);
3828 }
3829
3830 /* Callback to be called during DRC release. */
spapr_lmb_release(DeviceState * dev)3831 void spapr_lmb_release(DeviceState *dev)
3832 {
3833 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3834 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3835 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3836
3837 /* This information will get lost if a migration occurs
3838 * during the unplug process. In this case recover it. */
3839 if (ds == NULL) {
3840 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3841 g_assert(ds);
3842 /* The DRC being examined by the caller at least must be counted */
3843 g_assert(ds->nr_lmbs);
3844 }
3845
3846 if (--ds->nr_lmbs) {
3847 return;
3848 }
3849
3850 /*
3851 * Now that all the LMBs have been removed by the guest, call the
3852 * unplug handler chain. This can never fail.
3853 */
3854 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3855 object_unparent(OBJECT(dev));
3856 }
3857
spapr_memory_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)3858 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3859 {
3860 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3861 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3862
3863 /* We really shouldn't get this far without anything to unplug */
3864 g_assert(ds);
3865
3866 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3867 qdev_unrealize(dev);
3868 spapr_pending_dimm_unplugs_remove(spapr, ds);
3869 }
3870
spapr_memory_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)3871 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3872 DeviceState *dev, Error **errp)
3873 {
3874 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3875 PCDIMMDevice *dimm = PC_DIMM(dev);
3876 uint32_t nr_lmbs;
3877 uint64_t size, addr_start, addr;
3878 int i;
3879 SpaprDrc *drc;
3880
3881 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3882 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3883 return;
3884 }
3885
3886 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3887 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3888
3889 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3890 &error_abort);
3891
3892 /*
3893 * An existing pending dimm state for this DIMM means that there is an
3894 * unplug operation in progress, waiting for the spapr_lmb_release
3895 * callback to complete the job (BQL can't cover that far). In this case,
3896 * bail out to avoid detaching DRCs that were already released.
3897 */
3898 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3899 error_setg(errp, "Memory unplug already in progress for device %s",
3900 dev->id);
3901 return;
3902 }
3903
3904 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3905
3906 addr = addr_start;
3907 for (i = 0; i < nr_lmbs; i++) {
3908 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3909 addr / SPAPR_MEMORY_BLOCK_SIZE);
3910 g_assert(drc);
3911
3912 spapr_drc_unplug_request(drc);
3913 addr += SPAPR_MEMORY_BLOCK_SIZE;
3914 }
3915
3916 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3917 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3918 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3919 nr_lmbs, spapr_drc_index(drc));
3920 }
3921
3922 /* Callback to be called during DRC release. */
spapr_core_release(DeviceState * dev)3923 void spapr_core_release(DeviceState *dev)
3924 {
3925 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3926
3927 /* Call the unplug handler chain. This can never fail. */
3928 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3929 object_unparent(OBJECT(dev));
3930 }
3931
spapr_core_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)3932 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3933 {
3934 MachineState *ms = MACHINE(hotplug_dev);
3935 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3936 CPUCore *cc = CPU_CORE(dev);
3937 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3938
3939 if (smc->pre_2_10_has_unused_icps) {
3940 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3941 int i;
3942
3943 for (i = 0; i < cc->nr_threads; i++) {
3944 CPUState *cs = CPU(sc->threads[i]);
3945
3946 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3947 }
3948 }
3949
3950 assert(core_slot);
3951 core_slot->cpu = NULL;
3952 qdev_unrealize(dev);
3953 }
3954
3955 static
spapr_core_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)3956 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3957 Error **errp)
3958 {
3959 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3960 int index;
3961 SpaprDrc *drc;
3962 CPUCore *cc = CPU_CORE(dev);
3963
3964 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3965 error_setg(errp, "Unable to find CPU core with core-id: %d",
3966 cc->core_id);
3967 return;
3968 }
3969 if (index == 0) {
3970 error_setg(errp, "Boot CPU core may not be unplugged");
3971 return;
3972 }
3973
3974 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3975 spapr_vcpu_id(spapr, cc->core_id));
3976 g_assert(drc);
3977
3978 if (!spapr_drc_unplug_requested(drc)) {
3979 spapr_drc_unplug_request(drc);
3980 }
3981
3982 /*
3983 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3984 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3985 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3986 * attempt (e.g. the kernel will refuse to remove the last online
3987 * CPU), we will never attempt it again because unplug_requested
3988 * will still be 'true' in that case.
3989 */
3990 spapr_hotplug_req_remove_by_index(drc);
3991 }
3992
spapr_core_dt_populate(SpaprDrc * drc,SpaprMachineState * spapr,void * fdt,int * fdt_start_offset,Error ** errp)3993 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3994 void *fdt, int *fdt_start_offset, Error **errp)
3995 {
3996 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3997 CPUState *cs = CPU(core->threads[0]);
3998 PowerPCCPU *cpu = POWERPC_CPU(cs);
3999 DeviceClass *dc = DEVICE_GET_CLASS(cs);
4000 int id = spapr_get_vcpu_id(cpu);
4001 g_autofree char *nodename = NULL;
4002 int offset;
4003
4004 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
4005 offset = fdt_add_subnode(fdt, 0, nodename);
4006
4007 spapr_dt_cpu(cs, fdt, offset, spapr);
4008
4009 /*
4010 * spapr_dt_cpu() does not fill the 'name' property in the
4011 * CPU node. The function is called during boot process, before
4012 * and after CAS, and overwriting the 'name' property written
4013 * by SLOF is not allowed.
4014 *
4015 * Write it manually after spapr_dt_cpu(). This makes the hotplug
4016 * CPUs more compatible with the coldplugged ones, which have
4017 * the 'name' property. Linux Kernel also relies on this
4018 * property to identify CPU nodes.
4019 */
4020 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
4021
4022 *fdt_start_offset = offset;
4023 return 0;
4024 }
4025
spapr_core_plug(HotplugHandler * hotplug_dev,DeviceState * dev)4026 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4027 {
4028 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4029 MachineClass *mc = MACHINE_GET_CLASS(spapr);
4030 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4031 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
4032 CPUCore *cc = CPU_CORE(dev);
4033 SpaprDrc *drc;
4034 CPUArchId *core_slot;
4035 int index;
4036 bool hotplugged = spapr_drc_hotplugged(dev);
4037 int i;
4038
4039 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4040 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
4041
4042 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
4043 spapr_vcpu_id(spapr, cc->core_id));
4044
4045 g_assert(drc || !mc->has_hotpluggable_cpus);
4046
4047 if (drc) {
4048 /*
4049 * spapr_core_pre_plug() already buys us this is a brand new
4050 * core being plugged into a free slot. Nothing should already
4051 * be attached to the corresponding DRC.
4052 */
4053 spapr_drc_attach(drc, dev);
4054
4055 if (hotplugged) {
4056 /*
4057 * Send hotplug notification interrupt to the guest only
4058 * in case of hotplugged CPUs.
4059 */
4060 spapr_hotplug_req_add_by_index(drc);
4061 } else {
4062 spapr_drc_reset(drc);
4063 }
4064 }
4065
4066 core_slot->cpu = CPU(dev);
4067
4068 /*
4069 * Set compatibility mode to match the boot CPU, which was either set
4070 * by the machine reset code or by CAS. This really shouldn't fail at
4071 * this point.
4072 */
4073 if (hotplugged) {
4074 for (i = 0; i < cc->nr_threads; i++) {
4075 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4076 &error_abort);
4077 }
4078 }
4079
4080 if (smc->pre_2_10_has_unused_icps) {
4081 for (i = 0; i < cc->nr_threads; i++) {
4082 CPUState *cs = CPU(core->threads[i]);
4083 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4084 }
4085 }
4086 }
4087
spapr_core_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4088 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4089 Error **errp)
4090 {
4091 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4092 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4093 CPUCore *cc = CPU_CORE(dev);
4094 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4095 const char *type = object_get_typename(OBJECT(dev));
4096 CPUArchId *core_slot;
4097 int index;
4098 unsigned int smp_threads = machine->smp.threads;
4099
4100 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4101 error_setg(errp, "CPU hotplug not supported for this machine");
4102 return;
4103 }
4104
4105 if (strcmp(base_core_type, type)) {
4106 error_setg(errp, "CPU core type should be %s", base_core_type);
4107 return;
4108 }
4109
4110 if (cc->core_id % smp_threads) {
4111 error_setg(errp, "invalid core id %d", cc->core_id);
4112 return;
4113 }
4114
4115 /*
4116 * In general we should have homogeneous threads-per-core, but old
4117 * (pre hotplug support) machine types allow the last core to have
4118 * reduced threads as a compatibility hack for when we allowed
4119 * total vcpus not a multiple of threads-per-core.
4120 */
4121 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4122 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4123 smp_threads);
4124 return;
4125 }
4126
4127 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4128 if (!core_slot) {
4129 error_setg(errp, "core id %d out of range", cc->core_id);
4130 return;
4131 }
4132
4133 if (core_slot->cpu) {
4134 error_setg(errp, "core %d already populated", cc->core_id);
4135 return;
4136 }
4137
4138 numa_cpu_pre_plug(core_slot, dev, errp);
4139 }
4140
spapr_phb_dt_populate(SpaprDrc * drc,SpaprMachineState * spapr,void * fdt,int * fdt_start_offset,Error ** errp)4141 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4142 void *fdt, int *fdt_start_offset, Error **errp)
4143 {
4144 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4145 int intc_phandle;
4146
4147 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4148 if (intc_phandle <= 0) {
4149 return -1;
4150 }
4151
4152 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4153 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4154 return -1;
4155 }
4156
4157 /* generally SLOF creates these, for hotplug it's up to QEMU */
4158 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4159
4160 return 0;
4161 }
4162
spapr_phb_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4163 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4164 Error **errp)
4165 {
4166 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4167 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4168 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4169 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4170 SpaprDrc *drc;
4171
4172 if (dev->hotplugged && !smc->dr_phb_enabled) {
4173 error_setg(errp, "PHB hotplug not supported for this machine");
4174 return false;
4175 }
4176
4177 if (sphb->index == (uint32_t)-1) {
4178 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4179 return false;
4180 }
4181
4182 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4183 if (drc && drc->dev) {
4184 error_setg(errp, "PHB %d already attached", sphb->index);
4185 return false;
4186 }
4187
4188 /*
4189 * This will check that sphb->index doesn't exceed the maximum number of
4190 * PHBs for the current machine type.
4191 */
4192 return
4193 smc->phb_placement(spapr, sphb->index,
4194 &sphb->buid, &sphb->io_win_addr,
4195 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4196 windows_supported, sphb->dma_liobn,
4197 errp);
4198 }
4199
spapr_phb_plug(HotplugHandler * hotplug_dev,DeviceState * dev)4200 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4201 {
4202 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4203 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4204 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4205 SpaprDrc *drc;
4206 bool hotplugged = spapr_drc_hotplugged(dev);
4207
4208 if (!smc->dr_phb_enabled) {
4209 return;
4210 }
4211
4212 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4213 /* hotplug hooks should check it's enabled before getting this far */
4214 assert(drc);
4215
4216 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4217 spapr_drc_attach(drc, dev);
4218
4219 if (hotplugged) {
4220 spapr_hotplug_req_add_by_index(drc);
4221 } else {
4222 spapr_drc_reset(drc);
4223 }
4224 }
4225
spapr_phb_release(DeviceState * dev)4226 void spapr_phb_release(DeviceState *dev)
4227 {
4228 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4229
4230 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4231 object_unparent(OBJECT(dev));
4232 }
4233
spapr_phb_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)4234 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4235 {
4236 qdev_unrealize(dev);
4237 }
4238
spapr_phb_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4239 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4240 DeviceState *dev, Error **errp)
4241 {
4242 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4243 SpaprDrc *drc;
4244
4245 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4246 assert(drc);
4247
4248 if (!spapr_drc_unplug_requested(drc)) {
4249 spapr_drc_unplug_request(drc);
4250 spapr_hotplug_req_remove_by_index(drc);
4251 } else {
4252 error_setg(errp,
4253 "PCI Host Bridge unplug already in progress for device %s",
4254 dev->id);
4255 }
4256 }
4257
4258 static
spapr_tpm_proxy_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4259 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4260 Error **errp)
4261 {
4262 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4263
4264 if (spapr->tpm_proxy != NULL) {
4265 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4266 return false;
4267 }
4268
4269 return true;
4270 }
4271
spapr_tpm_proxy_plug(HotplugHandler * hotplug_dev,DeviceState * dev)4272 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4273 {
4274 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4275 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4276
4277 /* Already checked in spapr_tpm_proxy_pre_plug() */
4278 g_assert(spapr->tpm_proxy == NULL);
4279
4280 spapr->tpm_proxy = tpm_proxy;
4281 }
4282
spapr_tpm_proxy_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)4283 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4284 {
4285 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4286
4287 qdev_unrealize(dev);
4288 object_unparent(OBJECT(dev));
4289 spapr->tpm_proxy = NULL;
4290 }
4291
spapr_machine_device_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4292 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4293 DeviceState *dev, Error **errp)
4294 {
4295 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4296 spapr_memory_plug(hotplug_dev, dev);
4297 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4298 spapr_core_plug(hotplug_dev, dev);
4299 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4300 spapr_phb_plug(hotplug_dev, dev);
4301 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4302 spapr_tpm_proxy_plug(hotplug_dev, dev);
4303 }
4304 }
4305
spapr_machine_device_unplug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4306 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4307 DeviceState *dev, Error **errp)
4308 {
4309 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4310 spapr_memory_unplug(hotplug_dev, dev);
4311 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4312 spapr_core_unplug(hotplug_dev, dev);
4313 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4314 spapr_phb_unplug(hotplug_dev, dev);
4315 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4316 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4317 }
4318 }
4319
spapr_memory_hot_unplug_supported(SpaprMachineState * spapr)4320 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4321 {
4322 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4323 /*
4324 * CAS will process all pending unplug requests.
4325 *
4326 * HACK: a guest could theoretically have cleared all bits in OV5,
4327 * but none of the guests we care for do.
4328 */
4329 spapr_ovec_empty(spapr->ov5_cas);
4330 }
4331
spapr_machine_device_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4332 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4333 DeviceState *dev, Error **errp)
4334 {
4335 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4336 MachineClass *mc = MACHINE_GET_CLASS(sms);
4337 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4338
4339 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4340 if (spapr_memory_hot_unplug_supported(sms)) {
4341 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4342 } else {
4343 error_setg(errp, "Memory hot unplug not supported for this guest");
4344 }
4345 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4346 if (!mc->has_hotpluggable_cpus) {
4347 error_setg(errp, "CPU hot unplug not supported on this machine");
4348 return;
4349 }
4350 spapr_core_unplug_request(hotplug_dev, dev, errp);
4351 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4352 if (!smc->dr_phb_enabled) {
4353 error_setg(errp, "PHB hot unplug not supported on this machine");
4354 return;
4355 }
4356 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4357 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4358 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4359 }
4360 }
4361
spapr_machine_device_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4362 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4363 DeviceState *dev, Error **errp)
4364 {
4365 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4366 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4367 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4368 spapr_core_pre_plug(hotplug_dev, dev, errp);
4369 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4370 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4371 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4372 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4373 }
4374 }
4375
spapr_get_hotplug_handler(MachineState * machine,DeviceState * dev)4376 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4377 DeviceState *dev)
4378 {
4379 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4380 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4381 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4382 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4383 return HOTPLUG_HANDLER(machine);
4384 }
4385 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4386 PCIDevice *pcidev = PCI_DEVICE(dev);
4387 PCIBus *root = pci_device_root_bus(pcidev);
4388 SpaprPhbState *phb =
4389 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4390 TYPE_SPAPR_PCI_HOST_BRIDGE);
4391
4392 if (phb) {
4393 return HOTPLUG_HANDLER(phb);
4394 }
4395 }
4396 return NULL;
4397 }
4398
4399 static CpuInstanceProperties
spapr_cpu_index_to_props(MachineState * machine,unsigned cpu_index)4400 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4401 {
4402 CPUArchId *core_slot;
4403 MachineClass *mc = MACHINE_GET_CLASS(machine);
4404
4405 /* make sure possible_cpu are initialized */
4406 mc->possible_cpu_arch_ids(machine);
4407 /* get CPU core slot containing thread that matches cpu_index */
4408 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4409 assert(core_slot);
4410 return core_slot->props;
4411 }
4412
spapr_get_default_cpu_node_id(const MachineState * ms,int idx)4413 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4414 {
4415 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4416 }
4417
spapr_possible_cpu_arch_ids(MachineState * machine)4418 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4419 {
4420 int i;
4421 unsigned int smp_threads = machine->smp.threads;
4422 unsigned int smp_cpus = machine->smp.cpus;
4423 const char *core_type;
4424 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4425 MachineClass *mc = MACHINE_GET_CLASS(machine);
4426
4427 if (!mc->has_hotpluggable_cpus) {
4428 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4429 }
4430 if (machine->possible_cpus) {
4431 assert(machine->possible_cpus->len == spapr_max_cores);
4432 return machine->possible_cpus;
4433 }
4434
4435 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4436 if (!core_type) {
4437 error_report("Unable to find sPAPR CPU Core definition");
4438 exit(1);
4439 }
4440
4441 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4442 sizeof(CPUArchId) * spapr_max_cores);
4443 machine->possible_cpus->len = spapr_max_cores;
4444 for (i = 0; i < machine->possible_cpus->len; i++) {
4445 int core_id = i * smp_threads;
4446
4447 machine->possible_cpus->cpus[i].type = core_type;
4448 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4449 machine->possible_cpus->cpus[i].arch_id = core_id;
4450 machine->possible_cpus->cpus[i].props.has_core_id = true;
4451 machine->possible_cpus->cpus[i].props.core_id = core_id;
4452 }
4453 return machine->possible_cpus;
4454 }
4455
spapr_phb_placement(SpaprMachineState * spapr,uint32_t index,uint64_t * buid,hwaddr * pio,hwaddr * mmio32,hwaddr * mmio64,unsigned n_dma,uint32_t * liobns,Error ** errp)4456 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4457 uint64_t *buid, hwaddr *pio,
4458 hwaddr *mmio32, hwaddr *mmio64,
4459 unsigned n_dma, uint32_t *liobns, Error **errp)
4460 {
4461 /*
4462 * New-style PHB window placement.
4463 *
4464 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4465 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4466 * windows.
4467 *
4468 * Some guest kernels can't work with MMIO windows above 1<<46
4469 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4470 *
4471 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4472 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4473 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4474 * 1TiB 64-bit MMIO windows for each PHB.
4475 */
4476 const uint64_t base_buid = 0x800000020000000ULL;
4477 int i;
4478
4479 /* Sanity check natural alignments */
4480 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4481 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4482 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4483 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4484 /* Sanity check bounds */
4485 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4486 SPAPR_PCI_MEM32_WIN_SIZE);
4487 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4488 SPAPR_PCI_MEM64_WIN_SIZE);
4489
4490 if (index >= SPAPR_MAX_PHBS) {
4491 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4492 SPAPR_MAX_PHBS - 1);
4493 return false;
4494 }
4495
4496 *buid = base_buid + index;
4497 for (i = 0; i < n_dma; ++i) {
4498 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4499 }
4500
4501 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4502 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4503 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4504 return true;
4505 }
4506
spapr_ics_get(XICSFabric * dev,int irq)4507 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4508 {
4509 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4510
4511 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4512 }
4513
spapr_ics_resend(XICSFabric * dev)4514 static void spapr_ics_resend(XICSFabric *dev)
4515 {
4516 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4517
4518 ics_resend(spapr->ics);
4519 }
4520
spapr_icp_get(XICSFabric * xi,int vcpu_id)4521 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4522 {
4523 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4524
4525 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4526 }
4527
spapr_pic_print_info(InterruptStatsProvider * obj,GString * buf)4528 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf)
4529 {
4530 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4531
4532 spapr_irq_print_info(spapr, buf);
4533 g_string_append_printf(buf, "irqchip: %s\n",
4534 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4535 }
4536
4537 /*
4538 * This is a XIVE only operation
4539 */
spapr_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)4540 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4541 uint8_t nvt_blk, uint32_t nvt_idx,
4542 bool cam_ignore, uint8_t priority,
4543 uint32_t logic_serv, XiveTCTXMatch *match)
4544 {
4545 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4546 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4547 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4548 int count;
4549
4550 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4551 priority, logic_serv, match);
4552 if (count < 0) {
4553 return count;
4554 }
4555
4556 /*
4557 * When we implement the save and restore of the thread interrupt
4558 * contexts in the enter/exit CPU handlers of the machine and the
4559 * escalations in QEMU, we should be able to handle non dispatched
4560 * vCPUs.
4561 *
4562 * Until this is done, the sPAPR machine should find at least one
4563 * matching context always.
4564 */
4565 if (count == 0) {
4566 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4567 nvt_blk, nvt_idx);
4568 }
4569
4570 return count;
4571 }
4572
spapr_get_vcpu_id(PowerPCCPU * cpu)4573 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4574 {
4575 return cpu->vcpu_id;
4576 }
4577
spapr_set_vcpu_id(PowerPCCPU * cpu,int cpu_index,Error ** errp)4578 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4579 {
4580 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4581 MachineState *ms = MACHINE(spapr);
4582 int vcpu_id;
4583
4584 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4585
4586 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4587 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4588 error_append_hint(errp, "Adjust the number of cpus to %d "
4589 "or try to raise the number of threads per core\n",
4590 vcpu_id * ms->smp.threads / spapr->vsmt);
4591 return false;
4592 }
4593
4594 cpu->vcpu_id = vcpu_id;
4595 return true;
4596 }
4597
spapr_find_cpu(int vcpu_id)4598 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4599 {
4600 CPUState *cs;
4601
4602 CPU_FOREACH(cs) {
4603 PowerPCCPU *cpu = POWERPC_CPU(cs);
4604
4605 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4606 return cpu;
4607 }
4608 }
4609
4610 return NULL;
4611 }
4612
spapr_cpu_in_nested(PowerPCCPU * cpu)4613 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4614 {
4615 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4616
4617 return spapr_cpu->in_nested;
4618 }
4619
spapr_cpu_exec_enter(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu)4620 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4621 {
4622 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4623
4624 /* These are only called by TCG, KVM maintains dispatch state */
4625
4626 spapr_cpu->prod = false;
4627 if (spapr_cpu->vpa_addr) {
4628 CPUState *cs = CPU(cpu);
4629 uint32_t dispatch;
4630
4631 dispatch = ldl_be_phys(cs->as,
4632 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4633 dispatch++;
4634 if ((dispatch & 1) != 0) {
4635 qemu_log_mask(LOG_GUEST_ERROR,
4636 "VPA: incorrect dispatch counter value for "
4637 "dispatched partition %u, correcting.\n", dispatch);
4638 dispatch++;
4639 }
4640 stl_be_phys(cs->as,
4641 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4642 }
4643 }
4644
spapr_cpu_exec_exit(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu)4645 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4646 {
4647 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4648
4649 if (spapr_cpu->vpa_addr) {
4650 CPUState *cs = CPU(cpu);
4651 uint32_t dispatch;
4652
4653 dispatch = ldl_be_phys(cs->as,
4654 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4655 dispatch++;
4656 if ((dispatch & 1) != 1) {
4657 qemu_log_mask(LOG_GUEST_ERROR,
4658 "VPA: incorrect dispatch counter value for "
4659 "preempted partition %u, correcting.\n", dispatch);
4660 dispatch++;
4661 }
4662 stl_be_phys(cs->as,
4663 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4664 }
4665 }
4666
spapr_machine_class_init(ObjectClass * oc,void * data)4667 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4668 {
4669 MachineClass *mc = MACHINE_CLASS(oc);
4670 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4671 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4672 NMIClass *nc = NMI_CLASS(oc);
4673 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4674 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4675 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4676 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4677 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4678 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4679
4680 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4681 mc->ignore_boot_device_suffixes = true;
4682
4683 /*
4684 * We set up the default / latest behaviour here. The class_init
4685 * functions for the specific versioned machine types can override
4686 * these details for backwards compatibility
4687 */
4688 mc->init = spapr_machine_init;
4689 mc->reset = spapr_machine_reset;
4690 mc->block_default_type = IF_SCSI;
4691
4692 /*
4693 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4694 * In TCG the limit is restricted by the range of CPU IPIs available.
4695 */
4696 mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4697
4698 mc->no_parallel = 1;
4699 mc->default_boot_order = "";
4700 mc->default_ram_size = 512 * MiB;
4701 mc->default_ram_id = "ppc_spapr.ram";
4702 mc->default_display = "std";
4703 mc->kvm_type = spapr_kvm_type;
4704 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4705 mc->pci_allow_0_address = true;
4706 assert(!mc->get_hotplug_handler);
4707 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4708 hc->pre_plug = spapr_machine_device_pre_plug;
4709 hc->plug = spapr_machine_device_plug;
4710 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4711 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4712 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4713 hc->unplug_request = spapr_machine_device_unplug_request;
4714 hc->unplug = spapr_machine_device_unplug;
4715
4716 smc->dr_lmb_enabled = true;
4717 smc->update_dt_enabled = true;
4718 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4719 mc->has_hotpluggable_cpus = true;
4720 mc->nvdimm_supported = true;
4721 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4722 fwc->get_dev_path = spapr_get_fw_dev_path;
4723 nc->nmi_monitor_handler = spapr_nmi;
4724 smc->phb_placement = spapr_phb_placement;
4725 vhc->cpu_in_nested = spapr_cpu_in_nested;
4726 vhc->deliver_hv_excp = spapr_exit_nested;
4727 vhc->hypercall = emulate_spapr_hypercall;
4728 vhc->hpt_mask = spapr_hpt_mask;
4729 vhc->map_hptes = spapr_map_hptes;
4730 vhc->unmap_hptes = spapr_unmap_hptes;
4731 vhc->hpte_set_c = spapr_hpte_set_c;
4732 vhc->hpte_set_r = spapr_hpte_set_r;
4733 vhc->get_pate = spapr_get_pate;
4734 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4735 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4736 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4737 xic->ics_get = spapr_ics_get;
4738 xic->ics_resend = spapr_ics_resend;
4739 xic->icp_get = spapr_icp_get;
4740 ispc->print_info = spapr_pic_print_info;
4741 /* Force NUMA node memory size to be a multiple of
4742 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4743 * in which LMBs are represented and hot-added
4744 */
4745 mc->numa_mem_align_shift = 28;
4746 mc->auto_enable_numa = true;
4747
4748 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4749 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4750 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4751 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4752 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4753 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4754 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4755 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4756 smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF;
4757 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4758 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4759 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4760 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4761
4762 /*
4763 * This cap specifies whether the AIL 3 mode for
4764 * H_SET_RESOURCE is supported. The default is modified
4765 * by default_caps_with_cpu().
4766 */
4767 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4768 spapr_caps_add_properties(smc);
4769 smc->irq = &spapr_irq_dual;
4770 smc->dr_phb_enabled = true;
4771 smc->linux_pci_probe = true;
4772 smc->smp_threads_vsmt = true;
4773 smc->nr_xirqs = SPAPR_NR_XIRQS;
4774 xfc->match_nvt = spapr_match_nvt;
4775 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4776 vmc->quiesce = spapr_vof_quiesce;
4777 vmc->setprop = spapr_vof_setprop;
4778 }
4779
4780 static const TypeInfo spapr_machine_info = {
4781 .name = TYPE_SPAPR_MACHINE,
4782 .parent = TYPE_MACHINE,
4783 .abstract = true,
4784 .instance_size = sizeof(SpaprMachineState),
4785 .instance_init = spapr_instance_init,
4786 .instance_finalize = spapr_machine_finalizefn,
4787 .class_size = sizeof(SpaprMachineClass),
4788 .class_init = spapr_machine_class_init,
4789 .interfaces = (InterfaceInfo[]) {
4790 { TYPE_FW_PATH_PROVIDER },
4791 { TYPE_NMI },
4792 { TYPE_HOTPLUG_HANDLER },
4793 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4794 { TYPE_XICS_FABRIC },
4795 { TYPE_INTERRUPT_STATS_PROVIDER },
4796 { TYPE_XIVE_FABRIC },
4797 { TYPE_VOF_MACHINE_IF },
4798 { }
4799 },
4800 };
4801
spapr_machine_latest_class_options(MachineClass * mc)4802 static void spapr_machine_latest_class_options(MachineClass *mc)
4803 {
4804 mc->alias = "pseries";
4805 mc->is_default = true;
4806 }
4807
4808 #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...) \
4809 static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)( \
4810 ObjectClass *oc, \
4811 void *data) \
4812 { \
4813 MachineClass *mc = MACHINE_CLASS(oc); \
4814 MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc); \
4815 MACHINE_VER_DEPRECATION(__VA_ARGS__); \
4816 if (latest) { \
4817 spapr_machine_latest_class_options(mc); \
4818 } \
4819 } \
4820 static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \
4821 { \
4822 .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__), \
4823 .parent = TYPE_SPAPR_MACHINE, \
4824 .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \
4825 }; \
4826 static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void) \
4827 { \
4828 MACHINE_VER_DELETION(__VA_ARGS__); \
4829 type_register(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__)); \
4830 } \
4831 type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__))
4832
4833 #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \
4834 DEFINE_SPAPR_MACHINE_IMPL(true, major, minor)
4835 #define DEFINE_SPAPR_MACHINE(major, minor) \
4836 DEFINE_SPAPR_MACHINE_IMPL(false, major, minor)
4837 #define DEFINE_SPAPR_MACHINE_TAGGED(major, minor, tag) \
4838 DEFINE_SPAPR_MACHINE_IMPL(false, major, minor, _, tag)
4839
4840 /*
4841 * pseries-9.1
4842 */
spapr_machine_9_1_class_options(MachineClass * mc)4843 static void spapr_machine_9_1_class_options(MachineClass *mc)
4844 {
4845 /* Defaults for the latest behaviour inherited from the base class */
4846 }
4847
4848 DEFINE_SPAPR_MACHINE_AS_LATEST(9, 1);
4849
4850 /*
4851 * pseries-9.0
4852 */
spapr_machine_9_0_class_options(MachineClass * mc)4853 static void spapr_machine_9_0_class_options(MachineClass *mc)
4854 {
4855 spapr_machine_9_1_class_options(mc);
4856 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
4857 }
4858
4859 DEFINE_SPAPR_MACHINE(9, 0);
4860
4861 /*
4862 * pseries-8.2
4863 */
spapr_machine_8_2_class_options(MachineClass * mc)4864 static void spapr_machine_8_2_class_options(MachineClass *mc)
4865 {
4866 spapr_machine_9_0_class_options(mc);
4867 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4868 }
4869
4870 DEFINE_SPAPR_MACHINE(8, 2);
4871
4872 /*
4873 * pseries-8.1
4874 */
spapr_machine_8_1_class_options(MachineClass * mc)4875 static void spapr_machine_8_1_class_options(MachineClass *mc)
4876 {
4877 spapr_machine_8_2_class_options(mc);
4878 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4879 }
4880
4881 DEFINE_SPAPR_MACHINE(8, 1);
4882
4883 /*
4884 * pseries-8.0
4885 */
spapr_machine_8_0_class_options(MachineClass * mc)4886 static void spapr_machine_8_0_class_options(MachineClass *mc)
4887 {
4888 spapr_machine_8_1_class_options(mc);
4889 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4890 }
4891
4892 DEFINE_SPAPR_MACHINE(8, 0);
4893
4894 /*
4895 * pseries-7.2
4896 */
spapr_machine_7_2_class_options(MachineClass * mc)4897 static void spapr_machine_7_2_class_options(MachineClass *mc)
4898 {
4899 spapr_machine_8_0_class_options(mc);
4900 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4901 }
4902
4903 DEFINE_SPAPR_MACHINE(7, 2);
4904
4905 /*
4906 * pseries-7.1
4907 */
spapr_machine_7_1_class_options(MachineClass * mc)4908 static void spapr_machine_7_1_class_options(MachineClass *mc)
4909 {
4910 spapr_machine_7_2_class_options(mc);
4911 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4912 }
4913
4914 DEFINE_SPAPR_MACHINE(7, 1);
4915
4916 /*
4917 * pseries-7.0
4918 */
spapr_machine_7_0_class_options(MachineClass * mc)4919 static void spapr_machine_7_0_class_options(MachineClass *mc)
4920 {
4921 spapr_machine_7_1_class_options(mc);
4922 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4923 }
4924
4925 DEFINE_SPAPR_MACHINE(7, 0);
4926
4927 /*
4928 * pseries-6.2
4929 */
spapr_machine_6_2_class_options(MachineClass * mc)4930 static void spapr_machine_6_2_class_options(MachineClass *mc)
4931 {
4932 spapr_machine_7_0_class_options(mc);
4933 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4934 }
4935
4936 DEFINE_SPAPR_MACHINE(6, 2);
4937
4938 /*
4939 * pseries-6.1
4940 */
spapr_machine_6_1_class_options(MachineClass * mc)4941 static void spapr_machine_6_1_class_options(MachineClass *mc)
4942 {
4943 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4944
4945 spapr_machine_6_2_class_options(mc);
4946 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4947 smc->pre_6_2_numa_affinity = true;
4948 mc->smp_props.prefer_sockets = true;
4949 }
4950
4951 DEFINE_SPAPR_MACHINE(6, 1);
4952
4953 /*
4954 * pseries-6.0
4955 */
spapr_machine_6_0_class_options(MachineClass * mc)4956 static void spapr_machine_6_0_class_options(MachineClass *mc)
4957 {
4958 spapr_machine_6_1_class_options(mc);
4959 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4960 }
4961
4962 DEFINE_SPAPR_MACHINE(6, 0);
4963
4964 /*
4965 * pseries-5.2
4966 */
spapr_machine_5_2_class_options(MachineClass * mc)4967 static void spapr_machine_5_2_class_options(MachineClass *mc)
4968 {
4969 spapr_machine_6_0_class_options(mc);
4970 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4971 }
4972
4973 DEFINE_SPAPR_MACHINE(5, 2);
4974
4975 /*
4976 * pseries-5.1
4977 */
spapr_machine_5_1_class_options(MachineClass * mc)4978 static void spapr_machine_5_1_class_options(MachineClass *mc)
4979 {
4980 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4981
4982 spapr_machine_5_2_class_options(mc);
4983 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4984 smc->pre_5_2_numa_associativity = true;
4985 }
4986
4987 DEFINE_SPAPR_MACHINE(5, 1);
4988
4989 /*
4990 * pseries-5.0
4991 */
spapr_machine_5_0_class_options(MachineClass * mc)4992 static void spapr_machine_5_0_class_options(MachineClass *mc)
4993 {
4994 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4995 static GlobalProperty compat[] = {
4996 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4997 };
4998
4999 spapr_machine_5_1_class_options(mc);
5000 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
5001 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5002 mc->numa_mem_supported = true;
5003 smc->pre_5_1_assoc_refpoints = true;
5004 }
5005
5006 DEFINE_SPAPR_MACHINE(5, 0);
5007
5008 /*
5009 * pseries-4.2
5010 */
spapr_machine_4_2_class_options(MachineClass * mc)5011 static void spapr_machine_4_2_class_options(MachineClass *mc)
5012 {
5013 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5014
5015 spapr_machine_5_0_class_options(mc);
5016 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
5017 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
5018 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
5019 smc->rma_limit = 16 * GiB;
5020 mc->nvdimm_supported = false;
5021 }
5022
5023 DEFINE_SPAPR_MACHINE(4, 2);
5024
5025 /*
5026 * pseries-4.1
5027 */
spapr_machine_4_1_class_options(MachineClass * mc)5028 static void spapr_machine_4_1_class_options(MachineClass *mc)
5029 {
5030 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5031 static GlobalProperty compat[] = {
5032 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
5033 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
5034 };
5035
5036 spapr_machine_4_2_class_options(mc);
5037 smc->linux_pci_probe = false;
5038 smc->smp_threads_vsmt = false;
5039 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
5040 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5041 }
5042
5043 DEFINE_SPAPR_MACHINE(4, 1);
5044
5045 /*
5046 * pseries-4.0
5047 */
phb_placement_4_0(SpaprMachineState * spapr,uint32_t index,uint64_t * buid,hwaddr * pio,hwaddr * mmio32,hwaddr * mmio64,unsigned n_dma,uint32_t * liobns,Error ** errp)5048 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
5049 uint64_t *buid, hwaddr *pio,
5050 hwaddr *mmio32, hwaddr *mmio64,
5051 unsigned n_dma, uint32_t *liobns, Error **errp)
5052 {
5053 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5054 liobns, errp)) {
5055 return false;
5056 }
5057 return true;
5058 }
spapr_machine_4_0_class_options(MachineClass * mc)5059 static void spapr_machine_4_0_class_options(MachineClass *mc)
5060 {
5061 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5062
5063 spapr_machine_4_1_class_options(mc);
5064 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5065 smc->phb_placement = phb_placement_4_0;
5066 smc->irq = &spapr_irq_xics;
5067 smc->pre_4_1_migration = true;
5068 }
5069
5070 DEFINE_SPAPR_MACHINE(4, 0);
5071
5072 /*
5073 * pseries-3.1
5074 */
spapr_machine_3_1_class_options(MachineClass * mc)5075 static void spapr_machine_3_1_class_options(MachineClass *mc)
5076 {
5077 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5078
5079 spapr_machine_4_0_class_options(mc);
5080 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5081
5082 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5083 smc->update_dt_enabled = false;
5084 smc->dr_phb_enabled = false;
5085 smc->broken_host_serial_model = true;
5086 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5087 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5088 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5089 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5090 }
5091
5092 DEFINE_SPAPR_MACHINE(3, 1);
5093
5094 /*
5095 * pseries-3.0
5096 */
5097
spapr_machine_3_0_class_options(MachineClass * mc)5098 static void spapr_machine_3_0_class_options(MachineClass *mc)
5099 {
5100 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5101
5102 spapr_machine_3_1_class_options(mc);
5103 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5104
5105 smc->legacy_irq_allocation = true;
5106 smc->nr_xirqs = 0x400;
5107 smc->irq = &spapr_irq_xics_legacy;
5108 }
5109
5110 DEFINE_SPAPR_MACHINE(3, 0);
5111
5112 /*
5113 * pseries-2.12
5114 */
spapr_machine_2_12_class_options(MachineClass * mc)5115 static void spapr_machine_2_12_class_options(MachineClass *mc)
5116 {
5117 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5118 static GlobalProperty compat[] = {
5119 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5120 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5121 };
5122
5123 spapr_machine_3_0_class_options(mc);
5124 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5125 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5126
5127 /* We depend on kvm_enabled() to choose a default value for the
5128 * hpt-max-page-size capability. Of course we can't do it here
5129 * because this is too early and the HW accelerator isn't initialized
5130 * yet. Postpone this to machine init (see default_caps_with_cpu()).
5131 */
5132 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5133 }
5134
5135 DEFINE_SPAPR_MACHINE(2, 12);
5136
spapr_machine_2_12_sxxm_class_options(MachineClass * mc)5137 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5138 {
5139 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5140
5141 spapr_machine_2_12_class_options(mc);
5142 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5143 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5144 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5145 }
5146
5147 DEFINE_SPAPR_MACHINE_TAGGED(2, 12, sxxm);
5148
5149 /*
5150 * pseries-2.11
5151 */
5152
spapr_machine_2_11_class_options(MachineClass * mc)5153 static void spapr_machine_2_11_class_options(MachineClass *mc)
5154 {
5155 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5156
5157 spapr_machine_2_12_class_options(mc);
5158 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5159 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5160 }
5161
5162 DEFINE_SPAPR_MACHINE(2, 11);
5163
5164 /*
5165 * pseries-2.10
5166 */
5167
spapr_machine_2_10_class_options(MachineClass * mc)5168 static void spapr_machine_2_10_class_options(MachineClass *mc)
5169 {
5170 spapr_machine_2_11_class_options(mc);
5171 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5172 }
5173
5174 DEFINE_SPAPR_MACHINE(2, 10);
5175
5176 /*
5177 * pseries-2.9
5178 */
5179
spapr_machine_2_9_class_options(MachineClass * mc)5180 static void spapr_machine_2_9_class_options(MachineClass *mc)
5181 {
5182 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5183 static GlobalProperty compat[] = {
5184 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5185 };
5186
5187 spapr_machine_2_10_class_options(mc);
5188 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5189 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5190 smc->pre_2_10_has_unused_icps = true;
5191 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5192 }
5193
5194 DEFINE_SPAPR_MACHINE(2, 9);
5195
5196 /*
5197 * pseries-2.8
5198 */
5199
spapr_machine_2_8_class_options(MachineClass * mc)5200 static void spapr_machine_2_8_class_options(MachineClass *mc)
5201 {
5202 static GlobalProperty compat[] = {
5203 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5204 };
5205
5206 spapr_machine_2_9_class_options(mc);
5207 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5208 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5209 mc->numa_mem_align_shift = 23;
5210 }
5211
5212 DEFINE_SPAPR_MACHINE(2, 8);
5213
5214 /*
5215 * pseries-2.7
5216 */
5217
phb_placement_2_7(SpaprMachineState * spapr,uint32_t index,uint64_t * buid,hwaddr * pio,hwaddr * mmio32,hwaddr * mmio64,unsigned n_dma,uint32_t * liobns,Error ** errp)5218 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5219 uint64_t *buid, hwaddr *pio,
5220 hwaddr *mmio32, hwaddr *mmio64,
5221 unsigned n_dma, uint32_t *liobns, Error **errp)
5222 {
5223 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5224 const uint64_t base_buid = 0x800000020000000ULL;
5225 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5226 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5227 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5228 const uint32_t max_index = 255;
5229 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5230
5231 uint64_t ram_top = MACHINE(spapr)->ram_size;
5232 hwaddr phb0_base, phb_base;
5233 int i;
5234
5235 /* Do we have device memory? */
5236 if (MACHINE(spapr)->device_memory) {
5237 /* Can't just use maxram_size, because there may be an
5238 * alignment gap between normal and device memory regions
5239 */
5240 ram_top = MACHINE(spapr)->device_memory->base +
5241 memory_region_size(&MACHINE(spapr)->device_memory->mr);
5242 }
5243
5244 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5245
5246 if (index > max_index) {
5247 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5248 max_index);
5249 return false;
5250 }
5251
5252 *buid = base_buid + index;
5253 for (i = 0; i < n_dma; ++i) {
5254 liobns[i] = SPAPR_PCI_LIOBN(index, i);
5255 }
5256
5257 phb_base = phb0_base + index * phb_spacing;
5258 *pio = phb_base + pio_offset;
5259 *mmio32 = phb_base + mmio_offset;
5260 /*
5261 * We don't set the 64-bit MMIO window, relying on the PHB's
5262 * fallback behaviour of automatically splitting a large "32-bit"
5263 * window into contiguous 32-bit and 64-bit windows
5264 */
5265
5266 return true;
5267 }
5268
spapr_machine_2_7_class_options(MachineClass * mc)5269 static void spapr_machine_2_7_class_options(MachineClass *mc)
5270 {
5271 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5272 static GlobalProperty compat[] = {
5273 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5274 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5275 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5276 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5277 };
5278
5279 spapr_machine_2_8_class_options(mc);
5280 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5281 mc->default_machine_opts = "modern-hotplug-events=off";
5282 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5283 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5284 smc->phb_placement = phb_placement_2_7;
5285 }
5286
5287 DEFINE_SPAPR_MACHINE(2, 7);
5288
5289 /*
5290 * pseries-2.6
5291 */
5292
spapr_machine_2_6_class_options(MachineClass * mc)5293 static void spapr_machine_2_6_class_options(MachineClass *mc)
5294 {
5295 static GlobalProperty compat[] = {
5296 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5297 };
5298
5299 spapr_machine_2_7_class_options(mc);
5300 mc->has_hotpluggable_cpus = false;
5301 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5302 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5303 }
5304
5305 DEFINE_SPAPR_MACHINE(2, 6);
5306
5307 /*
5308 * pseries-2.5
5309 */
5310
spapr_machine_2_5_class_options(MachineClass * mc)5311 static void spapr_machine_2_5_class_options(MachineClass *mc)
5312 {
5313 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5314 static GlobalProperty compat[] = {
5315 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5316 };
5317
5318 spapr_machine_2_6_class_options(mc);
5319 smc->use_ohci_by_default = true;
5320 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5321 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5322 }
5323
5324 DEFINE_SPAPR_MACHINE(2, 5);
5325
5326 /*
5327 * pseries-2.4
5328 */
5329
spapr_machine_2_4_class_options(MachineClass * mc)5330 static void spapr_machine_2_4_class_options(MachineClass *mc)
5331 {
5332 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5333
5334 spapr_machine_2_5_class_options(mc);
5335 smc->dr_lmb_enabled = false;
5336 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5337 }
5338
5339 DEFINE_SPAPR_MACHINE(2, 4);
5340
5341 /*
5342 * pseries-2.3
5343 */
5344
spapr_machine_2_3_class_options(MachineClass * mc)5345 static void spapr_machine_2_3_class_options(MachineClass *mc)
5346 {
5347 static GlobalProperty compat[] = {
5348 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5349 };
5350 spapr_machine_2_4_class_options(mc);
5351 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5352 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5353 }
5354 DEFINE_SPAPR_MACHINE(2, 3);
5355
5356 /*
5357 * pseries-2.2
5358 */
5359
spapr_machine_2_2_class_options(MachineClass * mc)5360 static void spapr_machine_2_2_class_options(MachineClass *mc)
5361 {
5362 static GlobalProperty compat[] = {
5363 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5364 };
5365
5366 spapr_machine_2_3_class_options(mc);
5367 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5368 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5369 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5370 }
5371 DEFINE_SPAPR_MACHINE(2, 2);
5372
5373 /*
5374 * pseries-2.1
5375 */
5376
spapr_machine_2_1_class_options(MachineClass * mc)5377 static void spapr_machine_2_1_class_options(MachineClass *mc)
5378 {
5379 spapr_machine_2_2_class_options(mc);
5380 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5381 }
5382 DEFINE_SPAPR_MACHINE(2, 1);
5383
spapr_machine_register_types(void)5384 static void spapr_machine_register_types(void)
5385 {
5386 type_register_static(&spapr_machine_info);
5387 }
5388
5389 type_init(spapr_machine_register_types)
5390