1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 * Copyright (c) 2010-2024, IBM Corporation..
8 *
9 * SPDX-License-Identifier: GPL-2.0-or-later
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a copy
12 * of this software and associated documentation files (the "Software"), to deal
13 * in the Software without restriction, including without limitation the rights
14 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15 * copies of the Software, and to permit persons to whom the Software is
16 * furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice shall be included in
19 * all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 * THE SOFTWARE.
28 */
29
30 #include "qemu/osdep.h"
31 #include "qemu/datadir.h"
32 #include "qemu/memalign.h"
33 #include "qemu/guest-random.h"
34 #include "qapi/error.h"
35 #include "qapi/qapi-events-machine.h"
36 #include "qapi/qapi-events-qdev.h"
37 #include "qapi/visitor.h"
38 #include "system/system.h"
39 #include "system/hostmem.h"
40 #include "system/numa.h"
41 #include "system/tcg.h"
42 #include "system/qtest.h"
43 #include "system/reset.h"
44 #include "system/runstate.h"
45 #include "qemu/log.h"
46 #include "hw/fw-path-provider.h"
47 #include "elf.h"
48 #include "net/net.h"
49 #include "system/device_tree.h"
50 #include "system/cpus.h"
51 #include "system/hw_accel.h"
52 #include "kvm_ppc.h"
53 #include "migration/misc.h"
54 #include "migration/qemu-file-types.h"
55 #include "migration/global_state.h"
56 #include "migration/register.h"
57 #include "migration/blocker.h"
58 #include "mmu-hash64.h"
59 #include "mmu-book3s-v3.h"
60 #include "cpu-models.h"
61 #include "hw/core/cpu.h"
62
63 #include "hw/ppc/ppc.h"
64 #include "hw/loader.h"
65
66 #include "hw/ppc/fdt.h"
67 #include "hw/ppc/spapr.h"
68 #include "hw/ppc/spapr_nested.h"
69 #include "hw/ppc/spapr_vio.h"
70 #include "hw/ppc/vof.h"
71 #include "hw/qdev-properties.h"
72 #include "hw/pci-host/spapr.h"
73 #include "hw/pci/msi.h"
74
75 #include "hw/pci/pci.h"
76 #include "hw/scsi/scsi.h"
77 #include "hw/virtio/virtio-scsi.h"
78 #include "hw/virtio/vhost-scsi-common.h"
79
80 #include "system/ram_addr.h"
81 #include "system/confidential-guest-support.h"
82 #include "hw/usb.h"
83 #include "qemu/config-file.h"
84 #include "qemu/error-report.h"
85 #include "trace.h"
86 #include "hw/nmi.h"
87 #include "hw/intc/intc.h"
88
89 #include "hw/ppc/spapr_cpu_core.h"
90 #include "hw/mem/memory-device.h"
91 #include "hw/ppc/spapr_tpm_proxy.h"
92 #include "hw/ppc/spapr_nvdimm.h"
93 #include "hw/ppc/spapr_numa.h"
94
95 #include <libfdt.h>
96
97 /* SLOF memory layout:
98 *
99 * SLOF raw image loaded at 0, copies its romfs right below the flat
100 * device-tree, then position SLOF itself 31M below that
101 *
102 * So we set FW_OVERHEAD to 40MB which should account for all of that
103 * and more
104 *
105 * We load our kernel at 4M, leaving space for SLOF initial image
106 */
107 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
108 #define FW_MAX_SIZE 0x400000
109 #define FW_FILE_NAME "slof.bin"
110 #define FW_FILE_NAME_VOF "vof.bin"
111 #define FW_OVERHEAD 0x2800000
112 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
113
114 #define MIN_RMA_SLOF (128 * MiB)
115
116 #define PHANDLE_INTC 0x00001111
117
118 /* These two functions implement the VCPU id numbering: one to compute them
119 * all and one to identify thread 0 of a VCORE. Any change to the first one
120 * is likely to have an impact on the second one, so let's keep them close.
121 */
spapr_vcpu_id(SpaprMachineState * spapr,int cpu_index)122 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
123 {
124 MachineState *ms = MACHINE(spapr);
125 unsigned int smp_threads = ms->smp.threads;
126
127 assert(spapr->vsmt);
128 return
129 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
130 }
spapr_is_thread0_in_vcore(SpaprMachineState * spapr,PowerPCCPU * cpu)131 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
132 PowerPCCPU *cpu)
133 {
134 assert(spapr->vsmt);
135 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
136 }
137
spapr_max_server_number(SpaprMachineState * spapr)138 int spapr_max_server_number(SpaprMachineState *spapr)
139 {
140 MachineState *ms = MACHINE(spapr);
141
142 assert(spapr->vsmt);
143 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
144 }
145
spapr_fixup_cpu_smt_dt(void * fdt,int offset,PowerPCCPU * cpu,int smt_threads)146 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
147 int smt_threads)
148 {
149 int i, ret = 0;
150 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
151 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
152 int index = spapr_get_vcpu_id(cpu);
153
154 if (cpu->compat_pvr) {
155 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
156 if (ret < 0) {
157 return ret;
158 }
159 }
160
161 /* Build interrupt servers and gservers properties */
162 for (i = 0; i < smt_threads; i++) {
163 servers_prop[i] = cpu_to_be32(index + i);
164 /* Hack, direct the group queues back to cpu 0 */
165 gservers_prop[i*2] = cpu_to_be32(index + i);
166 gservers_prop[i*2 + 1] = 0;
167 }
168 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
169 servers_prop, sizeof(*servers_prop) * smt_threads);
170 if (ret < 0) {
171 return ret;
172 }
173 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
174 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
175
176 return ret;
177 }
178
spapr_dt_pa_features(SpaprMachineState * spapr,PowerPCCPU * cpu,void * fdt,int offset)179 static void spapr_dt_pa_features(SpaprMachineState *spapr,
180 PowerPCCPU *cpu,
181 void *fdt, int offset)
182 {
183 /*
184 * SSO (SAO) ordering is supported on KVM and thread=single hosts,
185 * but not MTTCG, so disable it. To advertise it, a cap would have
186 * to be added, or support implemented for MTTCG.
187 *
188 * Copy/paste is not supported by TCG, so it is not advertised. KVM
189 * can execute them but it has no accelerator drivers which are usable,
190 * so there isn't much need for it anyway.
191 */
192
193 /* These should be kept in sync with pnv */
194 uint8_t pa_features_206[] = { 6, 0,
195 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
196 uint8_t pa_features_207[] = { 24, 0,
197 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
198 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
199 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
200 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
201 uint8_t pa_features_300[] = { 66, 0,
202 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
203 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
204 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
205 /* 6: DS207 */
206 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
207 /* 16: Vector */
208 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
209 /* 18: Vec. Scalar, 20: Vec. XOR */
210 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
211 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
212 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
213 /* 32: LE atomic, 34: EBB + ext EBB */
214 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
215 /* 40: Radix MMU */
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
217 /* 42: PM, 44: PC RA, 46: SC vec'd */
218 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
219 /* 48: SIMD, 50: QP BFP, 52: String */
220 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
221 /* 54: DecFP, 56: DecI, 58: SHA */
222 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
223 /* 60: NM atomic, 62: RNG */
224 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
225 };
226 /* 3.1 removes SAO, HTM support */
227 uint8_t pa_features_31[] = { 74, 0,
228 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
229 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
230 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
231 /* 6: DS207 */
232 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
233 /* 16: Vector */
234 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
235 /* 18: Vec. Scalar, 20: Vec. XOR */
236 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
237 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
239 /* 32: LE atomic, 34: EBB + ext EBB */
240 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
241 /* 40: Radix MMU */
242 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
243 /* 42: PM, 44: PC RA, 46: SC vec'd */
244 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
245 /* 48: SIMD, 50: QP BFP, 52: String */
246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
247 /* 54: DecFP, 56: DecI, 58: SHA */
248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
249 /* 60: NM atomic, 62: RNG, 64: DAWR1 (ISA 3.1) */
250 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
251 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
252 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
253 /* 72: [P]HASHST/[P]HASHCHK */
254 0x80, 0x00, /* 72 - 73 */
255 };
256 uint8_t *pa_features = NULL;
257 size_t pa_size;
258
259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260 pa_features = pa_features_206;
261 pa_size = sizeof(pa_features_206);
262 }
263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264 pa_features = pa_features_207;
265 pa_size = sizeof(pa_features_207);
266 }
267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268 pa_features = pa_features_300;
269 pa_size = sizeof(pa_features_300);
270 }
271 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
272 pa_features = pa_features_31;
273 pa_size = sizeof(pa_features_31);
274 }
275 if (!pa_features) {
276 return;
277 }
278
279 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
280 /*
281 * Note: we keep CI large pages off by default because a 64K capable
282 * guest provisioned with large pages might otherwise try to map a qemu
283 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
284 * even if that qemu runs on a 4k host.
285 * We dd this bit back here if we are confident this is not an issue
286 */
287 pa_features[3] |= 0x20;
288 }
289 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
290 pa_features[24] |= 0x80; /* Transactional memory support */
291 }
292 if (spapr->cas_pre_isa3_guest && pa_size > 40) {
293 /* Workaround for broken kernels that attempt (guest) radix
294 * mode when they can't handle it, if they see the radix bit set
295 * in pa-features. So hide it from them. */
296 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
297 }
298 if (spapr_get_cap(spapr, SPAPR_CAP_DAWR1)) {
299 g_assert(pa_size > 66);
300 pa_features[66] |= 0x80;
301 }
302
303 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
304 }
305
spapr_dt_pi_features(SpaprMachineState * spapr,PowerPCCPU * cpu,void * fdt,int offset)306 static void spapr_dt_pi_features(SpaprMachineState *spapr,
307 PowerPCCPU *cpu,
308 void *fdt, int offset)
309 {
310 uint8_t pi_features[] = { 1, 0,
311 0x00 };
312
313 if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00,
314 0, cpu->compat_pvr)) {
315 /*
316 * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where
317 * all threads are essentially independent CPUs, and msgsndp does not
318 * work (because it is physically-addressed) and therefore is
319 * emulated by KVM, so disable it here to ensure XIVE will be used.
320 * This is both KVM and CPU implementation-specific behaviour so a KVM
321 * cap would be cleanest, but for now this works. If KVM ever permits
322 * native msgsndp execution by guests, a cap could be added at that
323 * time.
324 */
325 pi_features[2] |= 0x08; /* 4: No msgsndp */
326 }
327
328 _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features,
329 sizeof(pi_features))));
330 }
331
spapr_node0_size(MachineState * machine)332 static hwaddr spapr_node0_size(MachineState *machine)
333 {
334 if (machine->numa_state->num_nodes) {
335 int i;
336 for (i = 0; i < machine->numa_state->num_nodes; ++i) {
337 if (machine->numa_state->nodes[i].node_mem) {
338 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
339 machine->ram_size);
340 }
341 }
342 }
343 return machine->ram_size;
344 }
345
add_str(GString * s,const gchar * s1)346 static void add_str(GString *s, const gchar *s1)
347 {
348 g_string_append_len(s, s1, strlen(s1) + 1);
349 }
350
spapr_dt_memory_node(SpaprMachineState * spapr,void * fdt,int nodeid,hwaddr start,hwaddr size)351 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
352 hwaddr start, hwaddr size)
353 {
354 char mem_name[32];
355 uint64_t mem_reg_property[2];
356 int off;
357
358 mem_reg_property[0] = cpu_to_be64(start);
359 mem_reg_property[1] = cpu_to_be64(size);
360
361 sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
362 off = fdt_add_subnode(fdt, 0, mem_name);
363 _FDT(off);
364 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
365 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
366 sizeof(mem_reg_property))));
367 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
368 return off;
369 }
370
spapr_pc_dimm_node(MemoryDeviceInfoList * list,ram_addr_t addr)371 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
372 {
373 MemoryDeviceInfoList *info;
374
375 for (info = list; info; info = info->next) {
376 MemoryDeviceInfo *value = info->value;
377
378 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
379 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
380
381 if (addr >= pcdimm_info->addr &&
382 addr < (pcdimm_info->addr + pcdimm_info->size)) {
383 return pcdimm_info->node;
384 }
385 }
386 }
387
388 return -1;
389 }
390
391 struct sPAPRDrconfCellV2 {
392 uint32_t seq_lmbs;
393 uint64_t base_addr;
394 uint32_t drc_index;
395 uint32_t aa_index;
396 uint32_t flags;
397 } QEMU_PACKED;
398
399 typedef struct DrconfCellQueue {
400 struct sPAPRDrconfCellV2 cell;
401 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
402 } DrconfCellQueue;
403
404 static DrconfCellQueue *
spapr_get_drconf_cell(uint32_t seq_lmbs,uint64_t base_addr,uint32_t drc_index,uint32_t aa_index,uint32_t flags)405 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
406 uint32_t drc_index, uint32_t aa_index,
407 uint32_t flags)
408 {
409 DrconfCellQueue *elem;
410
411 elem = g_malloc0(sizeof(*elem));
412 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
413 elem->cell.base_addr = cpu_to_be64(base_addr);
414 elem->cell.drc_index = cpu_to_be32(drc_index);
415 elem->cell.aa_index = cpu_to_be32(aa_index);
416 elem->cell.flags = cpu_to_be32(flags);
417
418 return elem;
419 }
420
spapr_dt_dynamic_memory_v2(SpaprMachineState * spapr,void * fdt,int offset,MemoryDeviceInfoList * dimms)421 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
422 int offset, MemoryDeviceInfoList *dimms)
423 {
424 MachineState *machine = MACHINE(spapr);
425 uint8_t *int_buf, *cur_index;
426 int ret;
427 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
428 uint64_t addr, cur_addr, size;
429 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
430 uint64_t mem_end = machine->device_memory->base +
431 memory_region_size(&machine->device_memory->mr);
432 uint32_t node, buf_len, nr_entries = 0;
433 SpaprDrc *drc;
434 DrconfCellQueue *elem, *next;
435 MemoryDeviceInfoList *info;
436 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
437 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
438
439 /* Entry to cover RAM and the gap area */
440 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
441 SPAPR_LMB_FLAGS_RESERVED |
442 SPAPR_LMB_FLAGS_DRC_INVALID);
443 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
444 nr_entries++;
445
446 cur_addr = machine->device_memory->base;
447 for (info = dimms; info; info = info->next) {
448 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
449
450 addr = di->addr;
451 size = di->size;
452 node = di->node;
453
454 /*
455 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
456 * area is marked hotpluggable in the next iteration for the bigger
457 * chunk including the NVDIMM occupied area.
458 */
459 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
460 continue;
461
462 /* Entry for hot-pluggable area */
463 if (cur_addr < addr) {
464 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
465 g_assert(drc);
466 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
467 cur_addr, spapr_drc_index(drc), -1, 0);
468 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
469 nr_entries++;
470 }
471
472 /* Entry for DIMM */
473 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
474 g_assert(drc);
475 elem = spapr_get_drconf_cell(size / lmb_size, addr,
476 spapr_drc_index(drc), node,
477 (SPAPR_LMB_FLAGS_ASSIGNED |
478 SPAPR_LMB_FLAGS_HOTREMOVABLE));
479 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
480 nr_entries++;
481 cur_addr = addr + size;
482 }
483
484 /* Entry for remaining hotpluggable area */
485 if (cur_addr < mem_end) {
486 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
487 g_assert(drc);
488 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
489 cur_addr, spapr_drc_index(drc), -1, 0);
490 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
491 nr_entries++;
492 }
493
494 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
495 int_buf = cur_index = g_malloc0(buf_len);
496 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
497 cur_index += sizeof(nr_entries);
498
499 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
500 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
501 cur_index += sizeof(elem->cell);
502 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
503 g_free(elem);
504 }
505
506 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
507 g_free(int_buf);
508 if (ret < 0) {
509 return -1;
510 }
511 return 0;
512 }
513
spapr_dt_dynamic_memory(SpaprMachineState * spapr,void * fdt,int offset,MemoryDeviceInfoList * dimms)514 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
515 int offset, MemoryDeviceInfoList *dimms)
516 {
517 MachineState *machine = MACHINE(spapr);
518 int i, ret;
519 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
520 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
521 uint32_t nr_lmbs = (machine->device_memory->base +
522 memory_region_size(&machine->device_memory->mr)) /
523 lmb_size;
524 uint32_t *int_buf, *cur_index, buf_len;
525
526 /*
527 * Allocate enough buffer size to fit in ibm,dynamic-memory
528 */
529 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
530 cur_index = int_buf = g_malloc0(buf_len);
531 int_buf[0] = cpu_to_be32(nr_lmbs);
532 cur_index++;
533 for (i = 0; i < nr_lmbs; i++) {
534 uint64_t addr = i * lmb_size;
535 uint32_t *dynamic_memory = cur_index;
536
537 if (i >= device_lmb_start) {
538 SpaprDrc *drc;
539
540 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
541 g_assert(drc);
542
543 dynamic_memory[0] = cpu_to_be32(addr >> 32);
544 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
545 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
546 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
547 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
548 if (memory_region_present(get_system_memory(), addr)) {
549 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
550 } else {
551 dynamic_memory[5] = cpu_to_be32(0);
552 }
553 } else {
554 /*
555 * LMB information for RMA, boot time RAM and gap b/n RAM and
556 * device memory region -- all these are marked as reserved
557 * and as having no valid DRC.
558 */
559 dynamic_memory[0] = cpu_to_be32(addr >> 32);
560 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
561 dynamic_memory[2] = cpu_to_be32(0);
562 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
563 dynamic_memory[4] = cpu_to_be32(-1);
564 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
565 SPAPR_LMB_FLAGS_DRC_INVALID);
566 }
567
568 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
569 }
570 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
571 g_free(int_buf);
572 if (ret < 0) {
573 return -1;
574 }
575 return 0;
576 }
577
578 /*
579 * Adds ibm,dynamic-reconfiguration-memory node.
580 * Refer to docs/specs/ppc-spapr-hotplug.rst for the documentation
581 * of this device tree node.
582 */
spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState * spapr,void * fdt)583 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
584 void *fdt)
585 {
586 MachineState *machine = MACHINE(spapr);
587 int ret, offset;
588 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
589 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
590 cpu_to_be32(lmb_size & 0xffffffff)};
591 MemoryDeviceInfoList *dimms = NULL;
592
593 /* Don't create the node if there is no device memory. */
594 if (!machine->device_memory) {
595 return 0;
596 }
597
598 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
599
600 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
601 sizeof(prop_lmb_size));
602 if (ret < 0) {
603 return ret;
604 }
605
606 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
607 if (ret < 0) {
608 return ret;
609 }
610
611 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
612 if (ret < 0) {
613 return ret;
614 }
615
616 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
617 dimms = qmp_memory_device_list();
618 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
619 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
620 } else {
621 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
622 }
623 qapi_free_MemoryDeviceInfoList(dimms);
624
625 if (ret < 0) {
626 return ret;
627 }
628
629 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
630
631 return ret;
632 }
633
spapr_dt_memory(SpaprMachineState * spapr,void * fdt)634 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
635 {
636 MachineState *machine = MACHINE(spapr);
637 hwaddr mem_start, node_size;
638 int i, nb_nodes = machine->numa_state->num_nodes;
639 NodeInfo *nodes = machine->numa_state->nodes;
640
641 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
642 if (!nodes[i].node_mem) {
643 continue;
644 }
645 if (mem_start >= machine->ram_size) {
646 node_size = 0;
647 } else {
648 node_size = nodes[i].node_mem;
649 if (node_size > machine->ram_size - mem_start) {
650 node_size = machine->ram_size - mem_start;
651 }
652 }
653 if (!mem_start) {
654 /* spapr_machine_init() checks for rma_size <= node0_size
655 * already */
656 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
657 mem_start += spapr->rma_size;
658 node_size -= spapr->rma_size;
659 }
660 for ( ; node_size; ) {
661 hwaddr sizetmp = pow2floor(node_size);
662
663 /* mem_start != 0 here */
664 if (ctzl(mem_start) < ctzl(sizetmp)) {
665 sizetmp = 1ULL << ctzl(mem_start);
666 }
667
668 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
669 node_size -= sizetmp;
670 mem_start += sizetmp;
671 }
672 }
673
674 /* Generate ibm,dynamic-reconfiguration-memory node if required */
675 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
676 int ret;
677
678 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
679 if (ret) {
680 return ret;
681 }
682 }
683
684 return 0;
685 }
686
spapr_dt_cpu(CPUState * cs,void * fdt,int offset,SpaprMachineState * spapr)687 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
688 SpaprMachineState *spapr)
689 {
690 MachineState *ms = MACHINE(spapr);
691 PowerPCCPU *cpu = POWERPC_CPU(cs);
692 CPUPPCState *env = &cpu->env;
693 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
694 int index = spapr_get_vcpu_id(cpu);
695 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
696 0xffffffff, 0xffffffff};
697 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
698 : SPAPR_TIMEBASE_FREQ;
699 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
700 uint32_t page_sizes_prop[64];
701 size_t page_sizes_prop_size;
702 unsigned int smp_threads = ms->smp.threads;
703 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
704 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
705 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
706 SpaprDrc *drc;
707 int drc_index;
708 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
709 int i;
710
711 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, env->core_index);
712 if (drc) {
713 drc_index = spapr_drc_index(drc);
714 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
715 }
716
717 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
718 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
719
720 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
721 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
722 env->dcache_line_size)));
723 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
724 env->dcache_line_size)));
725 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
726 env->icache_line_size)));
727 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
728 env->icache_line_size)));
729
730 if (pcc->l1_dcache_size) {
731 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
732 pcc->l1_dcache_size)));
733 } else {
734 warn_report("Unknown L1 dcache size for cpu");
735 }
736 if (pcc->l1_icache_size) {
737 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
738 pcc->l1_icache_size)));
739 } else {
740 warn_report("Unknown L1 icache size for cpu");
741 }
742
743 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
744 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
745 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
746 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
747 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
748 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
749
750 if (ppc_has_spr(cpu, SPR_PURR)) {
751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
752 }
753 if (ppc_has_spr(cpu, SPR_PURR)) {
754 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
755 }
756
757 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
758 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
759 segs, sizeof(segs))));
760 }
761
762 /* Advertise VSX (vector extensions) if available
763 * 1 == VMX / Altivec available
764 * 2 == VSX available
765 *
766 * Only CPUs for which we create core types in spapr_cpu_core.c
767 * are possible, and all of those have VMX */
768 if (env->insns_flags & PPC_ALTIVEC) {
769 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
770 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
771 } else {
772 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
773 }
774 }
775
776 /* Advertise DFP (Decimal Floating Point) if available
777 * 0 / no property == no DFP
778 * 1 == DFP available */
779 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
780 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
781 }
782
783 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
784 sizeof(page_sizes_prop));
785 if (page_sizes_prop_size) {
786 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
787 page_sizes_prop, page_sizes_prop_size)));
788 }
789
790 spapr_dt_pa_features(spapr, cpu, fdt, offset);
791
792 spapr_dt_pi_features(spapr, cpu, fdt, offset);
793
794 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
795 cs->cpu_index / vcpus_per_socket)));
796
797 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
798 pft_size_prop, sizeof(pft_size_prop))));
799
800 if (ms->numa_state->num_nodes > 1) {
801 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
802 }
803
804 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
805
806 if (pcc->radix_page_info) {
807 for (i = 0; i < pcc->radix_page_info->count; i++) {
808 radix_AP_encodings[i] =
809 cpu_to_be32(pcc->radix_page_info->entries[i]);
810 }
811 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
812 radix_AP_encodings,
813 pcc->radix_page_info->count *
814 sizeof(radix_AP_encodings[0]))));
815 }
816
817 /*
818 * We set this property to let the guest know that it can use the large
819 * decrementer and its width in bits.
820 */
821 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
822 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
823 pcc->lrg_decr_bits)));
824 }
825
spapr_dt_one_cpu(void * fdt,SpaprMachineState * spapr,CPUState * cs,int cpus_offset)826 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
827 int cpus_offset)
828 {
829 PowerPCCPU *cpu = POWERPC_CPU(cs);
830 int index = spapr_get_vcpu_id(cpu);
831 DeviceClass *dc = DEVICE_GET_CLASS(cs);
832 g_autofree char *nodename = NULL;
833 int offset;
834
835 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
836 return;
837 }
838
839 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
840 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
841 _FDT(offset);
842 spapr_dt_cpu(cs, fdt, offset, spapr);
843 }
844
845
spapr_dt_cpus(void * fdt,SpaprMachineState * spapr)846 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
847 {
848 CPUState **rev;
849 CPUState *cs;
850 int n_cpus;
851 int cpus_offset;
852 int i;
853
854 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
855 _FDT(cpus_offset);
856 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
857 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
858
859 /*
860 * We walk the CPUs in reverse order to ensure that CPU DT nodes
861 * created by fdt_add_subnode() end up in the right order in FDT
862 * for the guest kernel the enumerate the CPUs correctly.
863 *
864 * The CPU list cannot be traversed in reverse order, so we need
865 * to do extra work.
866 */
867 n_cpus = 0;
868 rev = NULL;
869 CPU_FOREACH(cs) {
870 rev = g_renew(CPUState *, rev, n_cpus + 1);
871 rev[n_cpus++] = cs;
872 }
873
874 for (i = n_cpus - 1; i >= 0; i--) {
875 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
876 }
877
878 g_free(rev);
879 }
880
spapr_dt_rng(void * fdt)881 static int spapr_dt_rng(void *fdt)
882 {
883 int node;
884 int ret;
885
886 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
887 if (node <= 0) {
888 return -1;
889 }
890 ret = fdt_setprop_string(fdt, node, "device_type",
891 "ibm,platform-facilities");
892 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
893 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
894
895 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
896 if (node <= 0) {
897 return -1;
898 }
899 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
900
901 return ret ? -1 : 0;
902 }
903
spapr_dt_rtas(SpaprMachineState * spapr,void * fdt)904 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
905 {
906 MachineState *ms = MACHINE(spapr);
907 int rtas;
908 GString *hypertas = g_string_sized_new(256);
909 GString *qemu_hypertas = g_string_sized_new(256);
910 uint64_t max_device_addr = 0;
911 uint32_t lrdr_capacity[] = {
912 0,
913 0,
914 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
915 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
916 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
917 };
918
919 /* Do we have device memory? */
920 if (MACHINE(spapr)->device_memory) {
921 max_device_addr = MACHINE(spapr)->device_memory->base +
922 memory_region_size(&MACHINE(spapr)->device_memory->mr);
923 } else if (ms->ram_size == ms->maxram_size) {
924 max_device_addr = ms->ram_size;
925 }
926
927 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
928 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
929
930 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
931
932 /* hypertas */
933 add_str(hypertas, "hcall-pft");
934 add_str(hypertas, "hcall-term");
935 add_str(hypertas, "hcall-dabr");
936 add_str(hypertas, "hcall-interrupt");
937 add_str(hypertas, "hcall-tce");
938 add_str(hypertas, "hcall-vio");
939 add_str(hypertas, "hcall-splpar");
940 add_str(hypertas, "hcall-join");
941 add_str(hypertas, "hcall-bulk");
942 add_str(hypertas, "hcall-set-mode");
943 add_str(hypertas, "hcall-sprg0");
944 add_str(hypertas, "hcall-copy");
945 add_str(hypertas, "hcall-debug");
946 add_str(hypertas, "hcall-vphn");
947 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
948 add_str(hypertas, "hcall-rpt-invalidate");
949 }
950
951 add_str(qemu_hypertas, "hcall-memop1");
952
953 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
954 add_str(hypertas, "hcall-multi-tce");
955 }
956
957 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
958 add_str(hypertas, "hcall-hpt-resize");
959 }
960
961 add_str(hypertas, "hcall-watchdog");
962
963 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
964 hypertas->str, hypertas->len));
965 g_string_free(hypertas, TRUE);
966 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
967 qemu_hypertas->str, qemu_hypertas->len));
968 g_string_free(qemu_hypertas, TRUE);
969
970 spapr_numa_write_rtas_dt(spapr, fdt, rtas);
971
972 /*
973 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
974 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
975 *
976 * The system reset requirements are driven by existing Linux and PowerVM
977 * implementation which (contrary to PAPR) saves r3 in the error log
978 * structure like machine check, so Linux expects to find the saved r3
979 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
980 * does not look at the error value).
981 *
982 * System reset interrupts are not subject to interlock like machine
983 * check, so this memory area could be corrupted if the sreset is
984 * interrupted by a machine check (or vice versa) if it was shared. To
985 * prevent this, system reset uses per-CPU areas for the sreset save
986 * area. A system reset that interrupts a system reset handler could
987 * still overwrite this area, but Linux doesn't try to recover in that
988 * case anyway.
989 *
990 * The extra 8 bytes is required because Linux's FWNMI error log check
991 * is off-by-one.
992 *
993 * RTAS_MIN_SIZE is required for the RTAS blob itself.
994 */
995 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
996 RTAS_ERROR_LOG_MAX +
997 ms->smp.max_cpus * sizeof(uint64_t) * 2 +
998 sizeof(uint64_t)));
999 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1000 RTAS_ERROR_LOG_MAX));
1001 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1002 RTAS_EVENT_SCAN_RATE));
1003
1004 g_assert(msi_nonbroken);
1005 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1006
1007 /*
1008 * According to PAPR, rtas ibm,os-term does not guarantee a return
1009 * back to the guest cpu.
1010 *
1011 * While an additional ibm,extended-os-term property indicates
1012 * that rtas call return will always occur. Set this property.
1013 */
1014 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1015
1016 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1017 lrdr_capacity, sizeof(lrdr_capacity)));
1018
1019 spapr_dt_rtas_tokens(fdt, rtas);
1020 }
1021
1022 /*
1023 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1024 * and the XIVE features that the guest may request and thus the valid
1025 * values for bytes 23..26 of option vector 5:
1026 */
spapr_dt_ov5_platform_support(SpaprMachineState * spapr,void * fdt,int chosen)1027 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1028 int chosen)
1029 {
1030 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1031
1032 char val[2 * 4] = {
1033 23, 0x00, /* XICS / XIVE mode */
1034 24, 0x00, /* Hash/Radix, filled in below. */
1035 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1036 26, 0x40, /* Radix options: GTSE == yes. */
1037 };
1038
1039 if (spapr->irq->xics && spapr->irq->xive) {
1040 val[1] = SPAPR_OV5_XIVE_BOTH;
1041 } else if (spapr->irq->xive) {
1042 val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1043 } else {
1044 assert(spapr->irq->xics);
1045 val[1] = SPAPR_OV5_XIVE_LEGACY;
1046 }
1047
1048 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1049 first_ppc_cpu->compat_pvr)) {
1050 /*
1051 * If we're in a pre POWER9 compat mode then the guest should
1052 * do hash and use the legacy interrupt mode
1053 */
1054 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1055 val[3] = 0x00; /* Hash */
1056 spapr_check_mmu_mode(false);
1057 } else if (kvm_enabled()) {
1058 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1059 val[3] = 0x80; /* OV5_MMU_BOTH */
1060 } else if (kvmppc_has_cap_mmu_radix()) {
1061 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1062 } else {
1063 val[3] = 0x00; /* Hash */
1064 }
1065 } else {
1066 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1067 val[3] = 0xC0;
1068 }
1069 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1070 val, sizeof(val)));
1071 }
1072
spapr_dt_chosen(SpaprMachineState * spapr,void * fdt,bool reset)1073 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1074 {
1075 MachineState *machine = MACHINE(spapr);
1076 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1077 int chosen;
1078
1079 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1080
1081 if (reset) {
1082 const char *boot_device = spapr->boot_device;
1083 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1084 size_t cb = 0;
1085 g_autofree char *bootlist = get_boot_devices_list(&cb);
1086
1087 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1088 _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1089 machine->kernel_cmdline));
1090 }
1091
1092 if (spapr->initrd_size) {
1093 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1094 spapr->initrd_base));
1095 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1096 spapr->initrd_base + spapr->initrd_size));
1097 }
1098
1099 if (spapr->kernel_size) {
1100 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1101 cpu_to_be64(spapr->kernel_size) };
1102
1103 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1104 &kprop, sizeof(kprop)));
1105 if (spapr->kernel_le) {
1106 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1107 }
1108 }
1109 if (machine->boot_config.has_menu && machine->boot_config.menu) {
1110 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1111 }
1112 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1113 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1114 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1115
1116 if (cb && bootlist) {
1117 int i;
1118
1119 for (i = 0; i < cb; i++) {
1120 if (bootlist[i] == '\n') {
1121 bootlist[i] = ' ';
1122 }
1123 }
1124 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1125 }
1126
1127 if (boot_device && strlen(boot_device)) {
1128 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1129 }
1130
1131 if (spapr->want_stdout_path && stdout_path) {
1132 /*
1133 * "linux,stdout-path" and "stdout" properties are
1134 * deprecated by linux kernel. New platforms should only
1135 * use the "stdout-path" property. Set the new property
1136 * and continue using older property to remain compatible
1137 * with the existing firmware.
1138 */
1139 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1140 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1141 }
1142
1143 /*
1144 * We can deal with BAR reallocation just fine, advertise it
1145 * to the guest
1146 */
1147 if (smc->linux_pci_probe) {
1148 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1149 }
1150
1151 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1152 }
1153
1154 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1155
1156 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1157 }
1158
spapr_dt_hypervisor(SpaprMachineState * spapr,void * fdt)1159 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1160 {
1161 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1162 * KVM to work under pHyp with some guest co-operation */
1163 int hypervisor;
1164 uint8_t hypercall[16];
1165
1166 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1167 /* indicate KVM hypercall interface */
1168 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1169 if (kvmppc_has_cap_fixup_hcalls()) {
1170 /*
1171 * Older KVM versions with older guest kernels were broken
1172 * with the magic page, don't allow the guest to map it.
1173 */
1174 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1175 sizeof(hypercall))) {
1176 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1177 hypercall, sizeof(hypercall)));
1178 }
1179 }
1180 }
1181
spapr_build_fdt(SpaprMachineState * spapr,bool reset,size_t space)1182 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1183 {
1184 MachineState *machine = MACHINE(spapr);
1185 MachineClass *mc = MACHINE_GET_CLASS(machine);
1186 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1187 uint32_t root_drc_type_mask = 0;
1188 int ret;
1189 void *fdt;
1190 SpaprPhbState *phb;
1191 char *buf;
1192
1193 fdt = g_malloc0(space);
1194 _FDT((fdt_create_empty_tree(fdt, space)));
1195
1196 /* Root node */
1197 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1198 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1199 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1200
1201 /* Guest UUID & Name*/
1202 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1203 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1204 if (qemu_uuid_set) {
1205 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1206 }
1207 g_free(buf);
1208
1209 if (qemu_get_vm_name()) {
1210 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1211 qemu_get_vm_name()));
1212 }
1213
1214 /* Host Model & Serial Number */
1215 if (spapr->host_model) {
1216 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1217 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1218 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1219 g_free(buf);
1220 }
1221
1222 if (spapr->host_serial) {
1223 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1224 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1225 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1226 g_free(buf);
1227 }
1228
1229 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1230 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1231
1232 /* /interrupt controller */
1233 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1234
1235 ret = spapr_dt_memory(spapr, fdt);
1236 if (ret < 0) {
1237 error_report("couldn't setup memory nodes in fdt");
1238 exit(1);
1239 }
1240
1241 /* /vdevice */
1242 spapr_dt_vdevice(spapr->vio_bus, fdt);
1243
1244 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1245 ret = spapr_dt_rng(fdt);
1246 if (ret < 0) {
1247 error_report("could not set up rng device in the fdt");
1248 exit(1);
1249 }
1250 }
1251
1252 QLIST_FOREACH(phb, &spapr->phbs, list) {
1253 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1254 if (ret < 0) {
1255 error_report("couldn't setup PCI devices in fdt");
1256 exit(1);
1257 }
1258 }
1259
1260 spapr_dt_cpus(fdt, spapr);
1261
1262 /* ibm,drc-indexes and friends */
1263 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1264 if (smc->dr_phb_enabled) {
1265 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1266 }
1267 if (mc->nvdimm_supported) {
1268 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1269 }
1270 if (root_drc_type_mask) {
1271 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1272 }
1273
1274 if (mc->has_hotpluggable_cpus) {
1275 int offset = fdt_path_offset(fdt, "/cpus");
1276 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1277 if (ret < 0) {
1278 error_report("Couldn't set up CPU DR device tree properties");
1279 exit(1);
1280 }
1281 }
1282
1283 /* /event-sources */
1284 spapr_dt_events(spapr, fdt);
1285
1286 /* /rtas */
1287 spapr_dt_rtas(spapr, fdt);
1288
1289 /* /chosen */
1290 spapr_dt_chosen(spapr, fdt, reset);
1291
1292 /* /hypervisor */
1293 if (kvm_enabled()) {
1294 spapr_dt_hypervisor(spapr, fdt);
1295 }
1296
1297 /* Build memory reserve map */
1298 if (reset) {
1299 if (spapr->kernel_size) {
1300 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1301 spapr->kernel_size)));
1302 }
1303 if (spapr->initrd_size) {
1304 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1305 spapr->initrd_size)));
1306 }
1307 }
1308
1309 /* NVDIMM devices */
1310 if (mc->nvdimm_supported) {
1311 spapr_dt_persistent_memory(spapr, fdt);
1312 }
1313
1314 return fdt;
1315 }
1316
translate_kernel_address(void * opaque,uint64_t addr)1317 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1318 {
1319 SpaprMachineState *spapr = opaque;
1320
1321 return (addr & 0x0fffffff) + spapr->kernel_addr;
1322 }
1323
emulate_spapr_hypercall(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu)1324 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1325 PowerPCCPU *cpu)
1326 {
1327 CPUPPCState *env = &cpu->env;
1328
1329 /* The TCG path should also be holding the BQL at this point */
1330 g_assert(bql_locked());
1331
1332 g_assert(!vhyp_cpu_in_nested(cpu));
1333
1334 if (FIELD_EX64(env->msr, MSR, PR)) {
1335 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1336 env->gpr[3] = H_PRIVILEGE;
1337 } else {
1338 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1339 }
1340 }
1341
1342 struct LPCRSyncState {
1343 target_ulong value;
1344 target_ulong mask;
1345 };
1346
do_lpcr_sync(CPUState * cs,run_on_cpu_data arg)1347 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1348 {
1349 struct LPCRSyncState *s = arg.host_ptr;
1350 PowerPCCPU *cpu = POWERPC_CPU(cs);
1351 CPUPPCState *env = &cpu->env;
1352 target_ulong lpcr;
1353
1354 cpu_synchronize_state(cs);
1355 lpcr = env->spr[SPR_LPCR];
1356 lpcr &= ~s->mask;
1357 lpcr |= s->value;
1358 ppc_store_lpcr(cpu, lpcr);
1359 }
1360
spapr_set_all_lpcrs(target_ulong value,target_ulong mask)1361 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1362 {
1363 CPUState *cs;
1364 struct LPCRSyncState s = {
1365 .value = value,
1366 .mask = mask
1367 };
1368 CPU_FOREACH(cs) {
1369 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1370 }
1371 }
1372
1373 /* May be used when the machine is not running */
spapr_init_all_lpcrs(target_ulong value,target_ulong mask)1374 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1375 {
1376 CPUState *cs;
1377 CPU_FOREACH(cs) {
1378 PowerPCCPU *cpu = POWERPC_CPU(cs);
1379 CPUPPCState *env = &cpu->env;
1380 target_ulong lpcr;
1381
1382 lpcr = env->spr[SPR_LPCR];
1383 lpcr &= ~(LPCR_HR | LPCR_UPRT);
1384 ppc_store_lpcr(cpu, lpcr);
1385 }
1386 }
1387
spapr_get_pate(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu,target_ulong lpid,ppc_v3_pate_t * entry)1388 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1389 target_ulong lpid, ppc_v3_pate_t *entry)
1390 {
1391 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1393
1394 if (!spapr_cpu->in_nested) {
1395 assert(lpid == 0);
1396
1397 /* Copy PATE1:GR into PATE0:HR */
1398 entry->dw0 = spapr->patb_entry & PATE0_HR;
1399 entry->dw1 = spapr->patb_entry;
1400 return true;
1401 } else {
1402 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
1403 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1404 } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
1405 return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry);
1406 } else {
1407 g_assert_not_reached();
1408 }
1409 }
1410 }
1411
hpte_get_ptr(SpaprMachineState * s,unsigned index)1412 static uint64_t *hpte_get_ptr(SpaprMachineState *s, unsigned index)
1413 {
1414 uint64_t *table = s->htab;
1415
1416 return &table[2 * index];
1417 }
1418
hpte_is_valid(SpaprMachineState * s,unsigned index)1419 static bool hpte_is_valid(SpaprMachineState *s, unsigned index)
1420 {
1421 return ldq_be_p(hpte_get_ptr(s, index)) & HPTE64_V_VALID;
1422 }
1423
hpte_is_dirty(SpaprMachineState * s,unsigned index)1424 static bool hpte_is_dirty(SpaprMachineState *s, unsigned index)
1425 {
1426 return ldq_be_p(hpte_get_ptr(s, index)) & HPTE64_V_HPTE_DIRTY;
1427 }
1428
hpte_set_clean(SpaprMachineState * s,unsigned index)1429 static void hpte_set_clean(SpaprMachineState *s, unsigned index)
1430 {
1431 stq_be_p(hpte_get_ptr(s, index),
1432 ldq_be_p(hpte_get_ptr(s, index)) & ~HPTE64_V_HPTE_DIRTY);
1433 }
1434
hpte_set_dirty(SpaprMachineState * s,unsigned index)1435 static void hpte_set_dirty(SpaprMachineState *s, unsigned index)
1436 {
1437 stq_be_p(hpte_get_ptr(s, index),
1438 ldq_be_p(hpte_get_ptr(s, index)) | HPTE64_V_HPTE_DIRTY);
1439 }
1440
1441 /*
1442 * Get the fd to access the kernel htab, re-opening it if necessary
1443 */
get_htab_fd(SpaprMachineState * spapr)1444 static int get_htab_fd(SpaprMachineState *spapr)
1445 {
1446 Error *local_err = NULL;
1447
1448 if (spapr->htab_fd >= 0) {
1449 return spapr->htab_fd;
1450 }
1451
1452 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1453 if (spapr->htab_fd < 0) {
1454 error_report_err(local_err);
1455 }
1456
1457 return spapr->htab_fd;
1458 }
1459
close_htab_fd(SpaprMachineState * spapr)1460 void close_htab_fd(SpaprMachineState *spapr)
1461 {
1462 if (spapr->htab_fd >= 0) {
1463 close(spapr->htab_fd);
1464 }
1465 spapr->htab_fd = -1;
1466 }
1467
spapr_hpt_mask(PPCVirtualHypervisor * vhyp)1468 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1469 {
1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1471
1472 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1473 }
1474
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor * vhyp)1475 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1476 {
1477 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1478
1479 assert(kvm_enabled());
1480
1481 if (!spapr->htab) {
1482 return 0;
1483 }
1484
1485 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1486 }
1487
spapr_map_hptes(PPCVirtualHypervisor * vhyp,hwaddr ptex,int n)1488 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1489 hwaddr ptex, int n)
1490 {
1491 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1492 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1493
1494 if (!spapr->htab) {
1495 /*
1496 * HTAB is controlled by KVM. Fetch into temporary buffer
1497 */
1498 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1499 kvmppc_read_hptes(hptes, ptex, n);
1500 return hptes;
1501 }
1502
1503 /*
1504 * HTAB is controlled by QEMU. Just point to the internally
1505 * accessible PTEG.
1506 */
1507 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1508 }
1509
spapr_unmap_hptes(PPCVirtualHypervisor * vhyp,const ppc_hash_pte64_t * hptes,hwaddr ptex,int n)1510 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1511 const ppc_hash_pte64_t *hptes,
1512 hwaddr ptex, int n)
1513 {
1514 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1515
1516 if (!spapr->htab) {
1517 g_free((void *)hptes);
1518 }
1519
1520 /* Nothing to do for qemu managed HPT */
1521 }
1522
spapr_store_hpte(PowerPCCPU * cpu,hwaddr ptex,uint64_t pte0,uint64_t pte1)1523 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1524 uint64_t pte0, uint64_t pte1)
1525 {
1526 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1527 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1528
1529 if (!spapr->htab) {
1530 kvmppc_write_hpte(ptex, pte0, pte1);
1531 } else {
1532 if (pte0 & HPTE64_V_VALID) {
1533 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1534 /*
1535 * When setting valid, we write PTE1 first. This ensures
1536 * proper synchronization with the reading code in
1537 * ppc_hash64_pteg_search()
1538 */
1539 smp_wmb();
1540 stq_p(spapr->htab + offset, pte0);
1541 } else {
1542 stq_p(spapr->htab + offset, pte0);
1543 /*
1544 * When clearing it we set PTE0 first. This ensures proper
1545 * synchronization with the reading code in
1546 * ppc_hash64_pteg_search()
1547 */
1548 smp_wmb();
1549 stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1550 }
1551 }
1552 }
1553
spapr_hpte_set_c(PPCVirtualHypervisor * vhyp,hwaddr ptex,uint64_t pte1)1554 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1555 uint64_t pte1)
1556 {
1557 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1558 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1559
1560 if (!spapr->htab) {
1561 /* There should always be a hash table when this is called */
1562 error_report("spapr_hpte_set_c called with no hash table !");
1563 return;
1564 }
1565
1566 /* The HW performs a non-atomic byte update */
1567 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1568 }
1569
spapr_hpte_set_r(PPCVirtualHypervisor * vhyp,hwaddr ptex,uint64_t pte1)1570 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1571 uint64_t pte1)
1572 {
1573 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1574 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1575
1576 if (!spapr->htab) {
1577 /* There should always be a hash table when this is called */
1578 error_report("spapr_hpte_set_r called with no hash table !");
1579 return;
1580 }
1581
1582 /* The HW performs a non-atomic byte update */
1583 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1584 }
1585
spapr_hpt_shift_for_ramsize(uint64_t ramsize)1586 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1587 {
1588 int shift;
1589
1590 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1591 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1592 * that's much more than is needed for Linux guests */
1593 shift = ctz64(pow2ceil(ramsize)) - 7;
1594 shift = MAX(shift, 18); /* Minimum architected size */
1595 shift = MIN(shift, 46); /* Maximum architected size */
1596 return shift;
1597 }
1598
spapr_free_hpt(SpaprMachineState * spapr)1599 void spapr_free_hpt(SpaprMachineState *spapr)
1600 {
1601 qemu_vfree(spapr->htab);
1602 spapr->htab = NULL;
1603 spapr->htab_shift = 0;
1604 close_htab_fd(spapr);
1605 }
1606
spapr_reallocate_hpt(SpaprMachineState * spapr,int shift,Error ** errp)1607 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1608 {
1609 ERRP_GUARD();
1610 long rc;
1611
1612 /* Clean up any HPT info from a previous boot */
1613 spapr_free_hpt(spapr);
1614
1615 rc = kvmppc_reset_htab(shift);
1616
1617 if (rc == -EOPNOTSUPP) {
1618 error_setg(errp, "HPT not supported in nested guests");
1619 return -EOPNOTSUPP;
1620 }
1621
1622 if (rc < 0) {
1623 /* kernel-side HPT needed, but couldn't allocate one */
1624 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1625 shift);
1626 error_append_hint(errp, "Try smaller maxmem?\n");
1627 return -errno;
1628 } else if (rc > 0) {
1629 /* kernel-side HPT allocated */
1630 if (rc != shift) {
1631 error_setg(errp,
1632 "Requested order %d HPT, but kernel allocated order %ld",
1633 shift, rc);
1634 error_append_hint(errp, "Try smaller maxmem?\n");
1635 return -ENOSPC;
1636 }
1637
1638 spapr->htab_shift = shift;
1639 spapr->htab = NULL;
1640 } else {
1641 /* kernel-side HPT not needed, allocate in userspace instead */
1642 size_t size = 1ULL << shift;
1643 int i;
1644
1645 spapr->htab = qemu_memalign(size, size);
1646 memset(spapr->htab, 0, size);
1647 spapr->htab_shift = shift;
1648
1649 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1650 hpte_set_dirty(spapr, i);
1651 }
1652 }
1653 /* We're setting up a hash table, so that means we're not radix */
1654 spapr->patb_entry = 0;
1655 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1656 return 0;
1657 }
1658
spapr_setup_hpt(SpaprMachineState * spapr)1659 void spapr_setup_hpt(SpaprMachineState *spapr)
1660 {
1661 int hpt_shift;
1662
1663 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1664 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1665 } else {
1666 uint64_t current_ram_size;
1667
1668 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1669 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1670 }
1671 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1672
1673 if (kvm_enabled()) {
1674 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1675
1676 /* Check our RMA fits in the possible VRMA */
1677 if (vrma_limit < spapr->rma_size) {
1678 error_report("Unable to create %" HWADDR_PRIu
1679 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1680 spapr->rma_size / MiB, vrma_limit / MiB);
1681 exit(EXIT_FAILURE);
1682 }
1683 }
1684 }
1685
spapr_check_mmu_mode(bool guest_radix)1686 void spapr_check_mmu_mode(bool guest_radix)
1687 {
1688 if (guest_radix) {
1689 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1690 error_report("Guest requested unavailable MMU mode (radix).");
1691 exit(EXIT_FAILURE);
1692 }
1693 } else {
1694 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1695 && !kvmppc_has_cap_mmu_hash_v3()) {
1696 error_report("Guest requested unavailable MMU mode (hash).");
1697 exit(EXIT_FAILURE);
1698 }
1699 }
1700 }
1701
spapr_machine_reset(MachineState * machine,ResetType type)1702 static void spapr_machine_reset(MachineState *machine, ResetType type)
1703 {
1704 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1705 PowerPCCPU *first_ppc_cpu;
1706 hwaddr fdt_addr;
1707 void *fdt;
1708 int rc;
1709
1710 if (type != RESET_TYPE_SNAPSHOT_LOAD) {
1711 /*
1712 * Record-replay snapshot load must not consume random, this was
1713 * already replayed from initial machine reset.
1714 */
1715 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1716 }
1717
1718 if (machine->cgs) {
1719 confidential_guest_kvm_reset(machine->cgs, &error_fatal);
1720 }
1721 spapr_caps_apply(spapr);
1722 spapr_nested_reset(spapr);
1723
1724 first_ppc_cpu = POWERPC_CPU(first_cpu);
1725 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1726 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1727 spapr->max_compat_pvr)) {
1728 /*
1729 * If using KVM with radix mode available, VCPUs can be started
1730 * without a HPT because KVM will start them in radix mode.
1731 * Set the GR bit in PATE so that we know there is no HPT.
1732 */
1733 spapr->patb_entry = PATE1_GR;
1734 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1735 } else {
1736 spapr_setup_hpt(spapr);
1737 }
1738
1739 qemu_devices_reset(type);
1740
1741 spapr_ovec_cleanup(spapr->ov5_cas);
1742 spapr->ov5_cas = spapr_ovec_new();
1743
1744 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1745
1746 /*
1747 * This is fixing some of the default configuration of the XIVE
1748 * devices. To be called after the reset of the machine devices.
1749 */
1750 spapr_irq_reset(spapr, &error_fatal);
1751
1752 /*
1753 * There is no CAS under qtest. Simulate one to please the code that
1754 * depends on spapr->ov5_cas. This is especially needed to test device
1755 * unplug, so we do that before resetting the DRCs.
1756 */
1757 if (qtest_enabled()) {
1758 spapr_ovec_cleanup(spapr->ov5_cas);
1759 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1760 }
1761
1762 spapr_nvdimm_finish_flushes();
1763
1764 /* DRC reset may cause a device to be unplugged. This will cause troubles
1765 * if this device is used by another device (eg, a running vhost backend
1766 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1767 * situations, we reset DRCs after all devices have been reset.
1768 */
1769 spapr_drc_reset_all(spapr);
1770
1771 spapr_clear_pending_events(spapr);
1772
1773 /*
1774 * We place the device tree just below either the top of the RMA,
1775 * or just below 2GB, whichever is lower, so that it can be
1776 * processed with 32-bit real mode code if necessary
1777 */
1778 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1779
1780 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1781 if (spapr->vof) {
1782 spapr_vof_reset(spapr, fdt, &error_fatal);
1783 /*
1784 * Do not pack the FDT as the client may change properties.
1785 * VOF client does not expect the FDT so we do not load it to the VM.
1786 */
1787 } else {
1788 rc = fdt_pack(fdt);
1789 /* Should only fail if we've built a corrupted tree */
1790 assert(rc == 0);
1791
1792 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1793 0, fdt_addr, 0);
1794 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1795 }
1796
1797 g_free(spapr->fdt_blob);
1798 spapr->fdt_size = fdt_totalsize(fdt);
1799 spapr->fdt_initial_size = spapr->fdt_size;
1800 spapr->fdt_blob = fdt;
1801
1802 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1803 machine->fdt = fdt;
1804
1805 /* Set up the entry state */
1806 first_ppc_cpu->env.gpr[5] = 0;
1807
1808 spapr->fwnmi_system_reset_addr = -1;
1809 spapr->fwnmi_machine_check_addr = -1;
1810 spapr->fwnmi_machine_check_interlock = -1;
1811
1812 /* Signal all vCPUs waiting on this condition */
1813 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1814
1815 migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1816 }
1817
spapr_create_nvram(SpaprMachineState * spapr)1818 static void spapr_create_nvram(SpaprMachineState *spapr)
1819 {
1820 DeviceState *dev = qdev_new("spapr-nvram");
1821 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1822
1823 if (dinfo) {
1824 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1825 &error_fatal);
1826 }
1827
1828 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1829
1830 spapr->nvram = (struct SpaprNvram *)dev;
1831 }
1832
spapr_rtc_create(SpaprMachineState * spapr)1833 static void spapr_rtc_create(SpaprMachineState *spapr)
1834 {
1835 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1836 sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1837 &error_fatal, NULL);
1838 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1839 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1840 "date");
1841 }
1842
1843 /* Returns whether we want to use VGA or not */
spapr_vga_init(PCIBus * pci_bus,Error ** errp)1844 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1845 {
1846 vga_interface_created = true;
1847 switch (vga_interface_type) {
1848 case VGA_NONE:
1849 return false;
1850 case VGA_DEVICE:
1851 return true;
1852 case VGA_STD:
1853 case VGA_VIRTIO:
1854 case VGA_CIRRUS:
1855 return pci_vga_init(pci_bus) != NULL;
1856 default:
1857 error_setg(errp,
1858 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1859 return false;
1860 }
1861 }
1862
spapr_pre_load(void * opaque)1863 static int spapr_pre_load(void *opaque)
1864 {
1865 int rc;
1866
1867 rc = spapr_caps_pre_load(opaque);
1868 if (rc) {
1869 return rc;
1870 }
1871
1872 return 0;
1873 }
1874
spapr_post_load(void * opaque,int version_id)1875 static int spapr_post_load(void *opaque, int version_id)
1876 {
1877 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1878 int err = 0;
1879
1880 err = spapr_caps_post_migration(spapr);
1881 if (err) {
1882 return err;
1883 }
1884
1885 /*
1886 * In earlier versions, there was no separate qdev for the PAPR
1887 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1888 * So when migrating from those versions, poke the incoming offset
1889 * value into the RTC device
1890 */
1891 if (version_id < 3) {
1892 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1893 if (err) {
1894 return err;
1895 }
1896 }
1897
1898 if (kvm_enabled() && spapr->patb_entry) {
1899 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1900 bool radix = !!(spapr->patb_entry & PATE1_GR);
1901 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1902
1903 /*
1904 * Update LPCR:HR and UPRT as they may not be set properly in
1905 * the stream
1906 */
1907 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1908 LPCR_HR | LPCR_UPRT);
1909
1910 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1911 if (err) {
1912 error_report("Process table config unsupported by the host");
1913 return -EINVAL;
1914 }
1915 }
1916
1917 err = spapr_irq_post_load(spapr, version_id);
1918 if (err) {
1919 return err;
1920 }
1921
1922 return err;
1923 }
1924
spapr_pre_save(void * opaque)1925 static int spapr_pre_save(void *opaque)
1926 {
1927 int rc;
1928
1929 rc = spapr_caps_pre_save(opaque);
1930 if (rc) {
1931 return rc;
1932 }
1933
1934 return 0;
1935 }
1936
version_before_3(void * opaque,int version_id)1937 static bool version_before_3(void *opaque, int version_id)
1938 {
1939 return version_id < 3;
1940 }
1941
spapr_pending_events_needed(void * opaque)1942 static bool spapr_pending_events_needed(void *opaque)
1943 {
1944 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1945 return !QTAILQ_EMPTY(&spapr->pending_events);
1946 }
1947
1948 static const VMStateDescription vmstate_spapr_event_entry = {
1949 .name = "spapr_event_log_entry",
1950 .version_id = 1,
1951 .minimum_version_id = 1,
1952 .fields = (const VMStateField[]) {
1953 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1954 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1955 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1956 NULL, extended_length),
1957 VMSTATE_END_OF_LIST()
1958 },
1959 };
1960
1961 static const VMStateDescription vmstate_spapr_pending_events = {
1962 .name = "spapr_pending_events",
1963 .version_id = 1,
1964 .minimum_version_id = 1,
1965 .needed = spapr_pending_events_needed,
1966 .fields = (const VMStateField[]) {
1967 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1968 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1969 VMSTATE_END_OF_LIST()
1970 },
1971 };
1972
spapr_ov5_cas_needed(void * opaque)1973 static bool spapr_ov5_cas_needed(void *opaque)
1974 {
1975 SpaprMachineState *spapr = opaque;
1976 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1977 bool cas_needed;
1978
1979 /* Prior to the introduction of SpaprOptionVector, we had two option
1980 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1981 * Both of these options encode machine topology into the device-tree
1982 * in such a way that the now-booted OS should still be able to interact
1983 * appropriately with QEMU regardless of what options were actually
1984 * negotiatied on the source side.
1985 *
1986 * As such, we can avoid migrating the CAS-negotiated options if these
1987 * are the only options available on the current machine/platform.
1988 * Since these are the only options available for pseries-2.7 and
1989 * earlier, this allows us to maintain old->new/new->old migration
1990 * compatibility.
1991 *
1992 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1993 * via default pseries-2.8 machines and explicit command-line parameters.
1994 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1995 * of the actual CAS-negotiated values to continue working properly. For
1996 * example, availability of memory unplug depends on knowing whether
1997 * OV5_HP_EVT was negotiated via CAS.
1998 *
1999 * Thus, for any cases where the set of available CAS-negotiatable
2000 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2001 * include the CAS-negotiated options in the migration stream, unless
2002 * if they affect boot time behaviour only.
2003 */
2004 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2005 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2006 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2007
2008 /* We need extra information if we have any bits outside the mask
2009 * defined above */
2010 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2011
2012 spapr_ovec_cleanup(ov5_mask);
2013
2014 return cas_needed;
2015 }
2016
2017 static const VMStateDescription vmstate_spapr_ov5_cas = {
2018 .name = "spapr_option_vector_ov5_cas",
2019 .version_id = 1,
2020 .minimum_version_id = 1,
2021 .needed = spapr_ov5_cas_needed,
2022 .fields = (const VMStateField[]) {
2023 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2024 vmstate_spapr_ovec, SpaprOptionVector),
2025 VMSTATE_END_OF_LIST()
2026 },
2027 };
2028
spapr_patb_entry_needed(void * opaque)2029 static bool spapr_patb_entry_needed(void *opaque)
2030 {
2031 SpaprMachineState *spapr = opaque;
2032
2033 return !!spapr->patb_entry;
2034 }
2035
2036 static const VMStateDescription vmstate_spapr_patb_entry = {
2037 .name = "spapr_patb_entry",
2038 .version_id = 1,
2039 .minimum_version_id = 1,
2040 .needed = spapr_patb_entry_needed,
2041 .fields = (const VMStateField[]) {
2042 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2043 VMSTATE_END_OF_LIST()
2044 },
2045 };
2046
spapr_irq_map_needed(void * opaque)2047 static bool spapr_irq_map_needed(void *opaque)
2048 {
2049 SpaprMachineState *spapr = opaque;
2050
2051 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2052 }
2053
2054 static const VMStateDescription vmstate_spapr_irq_map = {
2055 .name = "spapr_irq_map",
2056 .version_id = 1,
2057 .minimum_version_id = 1,
2058 .needed = spapr_irq_map_needed,
2059 .fields = (const VMStateField[]) {
2060 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2061 VMSTATE_END_OF_LIST()
2062 },
2063 };
2064
spapr_dtb_needed(void * opaque)2065 static bool spapr_dtb_needed(void *opaque)
2066 {
2067 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2068
2069 return smc->update_dt_enabled;
2070 }
2071
spapr_dtb_pre_load(void * opaque)2072 static int spapr_dtb_pre_load(void *opaque)
2073 {
2074 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2075
2076 g_free(spapr->fdt_blob);
2077 spapr->fdt_blob = NULL;
2078 spapr->fdt_size = 0;
2079
2080 return 0;
2081 }
2082
2083 static const VMStateDescription vmstate_spapr_dtb = {
2084 .name = "spapr_dtb",
2085 .version_id = 1,
2086 .minimum_version_id = 1,
2087 .needed = spapr_dtb_needed,
2088 .pre_load = spapr_dtb_pre_load,
2089 .fields = (const VMStateField[]) {
2090 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2091 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2092 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2093 fdt_size),
2094 VMSTATE_END_OF_LIST()
2095 },
2096 };
2097
spapr_fwnmi_needed(void * opaque)2098 static bool spapr_fwnmi_needed(void *opaque)
2099 {
2100 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2101
2102 return spapr->fwnmi_machine_check_addr != -1;
2103 }
2104
spapr_fwnmi_pre_save(void * opaque)2105 static int spapr_fwnmi_pre_save(void *opaque)
2106 {
2107 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2108
2109 /*
2110 * Check if machine check handling is in progress and print a
2111 * warning message.
2112 */
2113 if (spapr->fwnmi_machine_check_interlock != -1) {
2114 warn_report("A machine check is being handled during migration. The"
2115 "handler may run and log hardware error on the destination");
2116 }
2117
2118 return 0;
2119 }
2120
2121 static const VMStateDescription vmstate_spapr_fwnmi = {
2122 .name = "spapr_fwnmi",
2123 .version_id = 1,
2124 .minimum_version_id = 1,
2125 .needed = spapr_fwnmi_needed,
2126 .pre_save = spapr_fwnmi_pre_save,
2127 .fields = (const VMStateField[]) {
2128 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2129 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2130 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2131 VMSTATE_END_OF_LIST()
2132 },
2133 };
2134
2135 static const VMStateDescription vmstate_spapr = {
2136 .name = "spapr",
2137 .version_id = 3,
2138 .minimum_version_id = 1,
2139 .pre_load = spapr_pre_load,
2140 .post_load = spapr_post_load,
2141 .pre_save = spapr_pre_save,
2142 .fields = (const VMStateField[]) {
2143 /* used to be @next_irq */
2144 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2145
2146 /* RTC offset */
2147 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2148
2149 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2150 VMSTATE_END_OF_LIST()
2151 },
2152 .subsections = (const VMStateDescription * const []) {
2153 &vmstate_spapr_ov5_cas,
2154 &vmstate_spapr_patb_entry,
2155 &vmstate_spapr_pending_events,
2156 &vmstate_spapr_cap_htm,
2157 &vmstate_spapr_cap_vsx,
2158 &vmstate_spapr_cap_dfp,
2159 &vmstate_spapr_cap_cfpc,
2160 &vmstate_spapr_cap_sbbc,
2161 &vmstate_spapr_cap_ibs,
2162 &vmstate_spapr_cap_hpt_maxpagesize,
2163 &vmstate_spapr_irq_map,
2164 &vmstate_spapr_cap_nested_kvm_hv,
2165 &vmstate_spapr_dtb,
2166 &vmstate_spapr_cap_large_decr,
2167 &vmstate_spapr_cap_ccf_assist,
2168 &vmstate_spapr_cap_fwnmi,
2169 &vmstate_spapr_fwnmi,
2170 &vmstate_spapr_cap_rpt_invalidate,
2171 &vmstate_spapr_cap_ail_mode_3,
2172 &vmstate_spapr_cap_nested_papr,
2173 &vmstate_spapr_cap_dawr1,
2174 NULL
2175 }
2176 };
2177
htab_save_setup(QEMUFile * f,void * opaque,Error ** errp)2178 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp)
2179 {
2180 SpaprMachineState *spapr = opaque;
2181
2182 /* "Iteration" header */
2183 if (!spapr->htab_shift) {
2184 qemu_put_be32(f, -1);
2185 } else {
2186 qemu_put_be32(f, spapr->htab_shift);
2187 }
2188
2189 if (spapr->htab) {
2190 spapr->htab_save_index = 0;
2191 spapr->htab_first_pass = true;
2192 } else {
2193 if (spapr->htab_shift) {
2194 assert(kvm_enabled());
2195 }
2196 }
2197
2198
2199 return 0;
2200 }
2201
htab_save_chunk(QEMUFile * f,SpaprMachineState * spapr,int chunkstart,int n_valid,int n_invalid)2202 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2203 int chunkstart, int n_valid, int n_invalid)
2204 {
2205 qemu_put_be32(f, chunkstart);
2206 qemu_put_be16(f, n_valid);
2207 qemu_put_be16(f, n_invalid);
2208 qemu_put_buffer(f, (void *)hpte_get_ptr(spapr, chunkstart),
2209 HASH_PTE_SIZE_64 * n_valid);
2210 }
2211
htab_save_end_marker(QEMUFile * f)2212 static void htab_save_end_marker(QEMUFile *f)
2213 {
2214 qemu_put_be32(f, 0);
2215 qemu_put_be16(f, 0);
2216 qemu_put_be16(f, 0);
2217 }
2218
htab_save_first_pass(QEMUFile * f,SpaprMachineState * spapr,int64_t max_ns)2219 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2220 int64_t max_ns)
2221 {
2222 bool has_timeout = max_ns != -1;
2223 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2224 int index = spapr->htab_save_index;
2225 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2226
2227 assert(spapr->htab_first_pass);
2228
2229 do {
2230 int chunkstart;
2231
2232 /* Consume invalid HPTEs */
2233 while ((index < htabslots)
2234 && !hpte_is_valid(spapr, index)) {
2235 hpte_set_clean(spapr, index);
2236 index++;
2237 }
2238
2239 /* Consume valid HPTEs */
2240 chunkstart = index;
2241 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2242 && hpte_is_valid(spapr, index)) {
2243 hpte_set_clean(spapr, index);
2244 index++;
2245 }
2246
2247 if (index > chunkstart) {
2248 int n_valid = index - chunkstart;
2249
2250 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2251
2252 if (has_timeout &&
2253 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2254 break;
2255 }
2256 }
2257 } while ((index < htabslots) && !migration_rate_exceeded(f));
2258
2259 if (index >= htabslots) {
2260 assert(index == htabslots);
2261 index = 0;
2262 spapr->htab_first_pass = false;
2263 }
2264 spapr->htab_save_index = index;
2265 }
2266
htab_save_later_pass(QEMUFile * f,SpaprMachineState * spapr,int64_t max_ns)2267 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2268 int64_t max_ns)
2269 {
2270 bool final = max_ns < 0;
2271 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2272 int examined = 0, sent = 0;
2273 int index = spapr->htab_save_index;
2274 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2275
2276 assert(!spapr->htab_first_pass);
2277
2278 do {
2279 int chunkstart, invalidstart;
2280
2281 /* Consume non-dirty HPTEs */
2282 while ((index < htabslots)
2283 && !hpte_is_dirty(spapr, index)) {
2284 index++;
2285 examined++;
2286 }
2287
2288 chunkstart = index;
2289 /* Consume valid dirty HPTEs */
2290 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2291 && hpte_is_dirty(spapr, index)
2292 && hpte_is_valid(spapr, index)) {
2293 hpte_set_clean(spapr, index);
2294 index++;
2295 examined++;
2296 }
2297
2298 invalidstart = index;
2299 /* Consume invalid dirty HPTEs */
2300 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2301 && hpte_is_dirty(spapr, index)
2302 && !hpte_is_valid(spapr, index)) {
2303 hpte_set_clean(spapr, index);
2304 index++;
2305 examined++;
2306 }
2307
2308 if (index > chunkstart) {
2309 int n_valid = invalidstart - chunkstart;
2310 int n_invalid = index - invalidstart;
2311
2312 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2313 sent += index - chunkstart;
2314
2315 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2316 break;
2317 }
2318 }
2319
2320 if (examined >= htabslots) {
2321 break;
2322 }
2323
2324 if (index >= htabslots) {
2325 assert(index == htabslots);
2326 index = 0;
2327 }
2328 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2329
2330 if (index >= htabslots) {
2331 assert(index == htabslots);
2332 index = 0;
2333 }
2334
2335 spapr->htab_save_index = index;
2336
2337 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2338 }
2339
2340 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2341 #define MAX_KVM_BUF_SIZE 2048
2342
htab_save_iterate(QEMUFile * f,void * opaque)2343 static int htab_save_iterate(QEMUFile *f, void *opaque)
2344 {
2345 SpaprMachineState *spapr = opaque;
2346 int fd;
2347 int rc = 0;
2348
2349 /* Iteration header */
2350 if (!spapr->htab_shift) {
2351 qemu_put_be32(f, -1);
2352 return 1;
2353 } else {
2354 qemu_put_be32(f, 0);
2355 }
2356
2357 if (!spapr->htab) {
2358 assert(kvm_enabled());
2359
2360 fd = get_htab_fd(spapr);
2361 if (fd < 0) {
2362 return fd;
2363 }
2364
2365 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2366 if (rc < 0) {
2367 return rc;
2368 }
2369 } else if (spapr->htab_first_pass) {
2370 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2371 } else {
2372 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2373 }
2374
2375 htab_save_end_marker(f);
2376
2377 return rc;
2378 }
2379
htab_save_complete(QEMUFile * f,void * opaque)2380 static int htab_save_complete(QEMUFile *f, void *opaque)
2381 {
2382 SpaprMachineState *spapr = opaque;
2383 int fd;
2384
2385 /* Iteration header */
2386 if (!spapr->htab_shift) {
2387 qemu_put_be32(f, -1);
2388 return 0;
2389 } else {
2390 qemu_put_be32(f, 0);
2391 }
2392
2393 if (!spapr->htab) {
2394 int rc;
2395
2396 assert(kvm_enabled());
2397
2398 fd = get_htab_fd(spapr);
2399 if (fd < 0) {
2400 return fd;
2401 }
2402
2403 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2404 if (rc < 0) {
2405 return rc;
2406 }
2407 } else {
2408 if (spapr->htab_first_pass) {
2409 htab_save_first_pass(f, spapr, -1);
2410 }
2411 htab_save_later_pass(f, spapr, -1);
2412 }
2413
2414 /* End marker */
2415 htab_save_end_marker(f);
2416
2417 return 0;
2418 }
2419
htab_load(QEMUFile * f,void * opaque,int version_id)2420 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2421 {
2422 SpaprMachineState *spapr = opaque;
2423 uint32_t section_hdr;
2424 int fd = -1;
2425 Error *local_err = NULL;
2426
2427 if (version_id < 1 || version_id > 1) {
2428 error_report("htab_load() bad version");
2429 return -EINVAL;
2430 }
2431
2432 section_hdr = qemu_get_be32(f);
2433
2434 if (section_hdr == -1) {
2435 spapr_free_hpt(spapr);
2436 return 0;
2437 }
2438
2439 if (section_hdr) {
2440 int ret;
2441
2442 /* First section gives the htab size */
2443 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2444 if (ret < 0) {
2445 error_report_err(local_err);
2446 return ret;
2447 }
2448 return 0;
2449 }
2450
2451 if (!spapr->htab) {
2452 assert(kvm_enabled());
2453
2454 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2455 if (fd < 0) {
2456 error_report_err(local_err);
2457 return fd;
2458 }
2459 }
2460
2461 while (true) {
2462 uint32_t index;
2463 uint16_t n_valid, n_invalid;
2464
2465 index = qemu_get_be32(f);
2466 n_valid = qemu_get_be16(f);
2467 n_invalid = qemu_get_be16(f);
2468
2469 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2470 /* End of Stream */
2471 break;
2472 }
2473
2474 if ((index + n_valid + n_invalid) >
2475 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2476 /* Bad index in stream */
2477 error_report(
2478 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2479 index, n_valid, n_invalid, spapr->htab_shift);
2480 return -EINVAL;
2481 }
2482
2483 if (spapr->htab) {
2484 if (n_valid) {
2485 qemu_get_buffer(f, (void *)hpte_get_ptr(spapr, index),
2486 HASH_PTE_SIZE_64 * n_valid);
2487 }
2488 if (n_invalid) {
2489 memset(hpte_get_ptr(spapr, index + n_valid), 0,
2490 HASH_PTE_SIZE_64 * n_invalid);
2491 }
2492 } else {
2493 int rc;
2494
2495 assert(fd >= 0);
2496
2497 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2498 &local_err);
2499 if (rc < 0) {
2500 error_report_err(local_err);
2501 return rc;
2502 }
2503 }
2504 }
2505
2506 if (!spapr->htab) {
2507 assert(fd >= 0);
2508 close(fd);
2509 }
2510
2511 return 0;
2512 }
2513
htab_save_cleanup(void * opaque)2514 static void htab_save_cleanup(void *opaque)
2515 {
2516 SpaprMachineState *spapr = opaque;
2517
2518 close_htab_fd(spapr);
2519 }
2520
2521 static SaveVMHandlers savevm_htab_handlers = {
2522 .save_setup = htab_save_setup,
2523 .save_live_iterate = htab_save_iterate,
2524 .save_complete = htab_save_complete,
2525 .save_cleanup = htab_save_cleanup,
2526 .load_state = htab_load,
2527 };
2528
spapr_boot_set(void * opaque,const char * boot_device,Error ** errp)2529 static void spapr_boot_set(void *opaque, const char *boot_device,
2530 Error **errp)
2531 {
2532 SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2533
2534 g_free(spapr->boot_device);
2535 spapr->boot_device = g_strdup(boot_device);
2536 }
2537
spapr_create_lmb_dr_connectors(SpaprMachineState * spapr)2538 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2539 {
2540 MachineState *machine = MACHINE(spapr);
2541 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2542 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2543 int i;
2544
2545 g_assert(!nr_lmbs || machine->device_memory);
2546 for (i = 0; i < nr_lmbs; i++) {
2547 uint64_t addr;
2548
2549 addr = i * lmb_size + machine->device_memory->base;
2550 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2551 addr / lmb_size);
2552 }
2553 }
2554
2555 /*
2556 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2557 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2558 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2559 */
spapr_validate_node_memory(MachineState * machine,Error ** errp)2560 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2561 {
2562 int i;
2563
2564 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2565 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2566 " is not aligned to %" PRIu64 " MiB",
2567 machine->ram_size,
2568 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2569 return;
2570 }
2571
2572 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2573 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2574 " is not aligned to %" PRIu64 " MiB",
2575 machine->ram_size,
2576 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2577 return;
2578 }
2579
2580 for (i = 0; i < machine->numa_state->num_nodes; i++) {
2581 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2582 error_setg(errp,
2583 "Node %d memory size 0x%" PRIx64
2584 " is not aligned to %" PRIu64 " MiB",
2585 i, machine->numa_state->nodes[i].node_mem,
2586 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2587 return;
2588 }
2589 }
2590 }
2591
2592 /* find cpu slot in machine->possible_cpus by core_id */
spapr_find_cpu_slot(MachineState * ms,uint32_t id,int * idx)2593 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2594 {
2595 int index = id / ms->smp.threads;
2596
2597 if (index >= ms->possible_cpus->len) {
2598 return NULL;
2599 }
2600 if (idx) {
2601 *idx = index;
2602 }
2603 return &ms->possible_cpus->cpus[index];
2604 }
2605
spapr_set_vsmt_mode(SpaprMachineState * spapr,Error ** errp)2606 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2607 {
2608 MachineState *ms = MACHINE(spapr);
2609 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2610 Error *local_err = NULL;
2611 bool vsmt_user = !!spapr->vsmt;
2612 int kvm_smt = kvmppc_smt_threads();
2613 int ret;
2614 unsigned int smp_threads = ms->smp.threads;
2615
2616 if (tcg_enabled()) {
2617 if (smp_threads > 1 &&
2618 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2619 spapr->max_compat_pvr)) {
2620 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2621 return;
2622 }
2623
2624 if (smp_threads > 8) {
2625 error_setg(errp, "TCG cannot support more than 8 threads/core "
2626 "on a pseries machine");
2627 return;
2628 }
2629 }
2630 if (!is_power_of_2(smp_threads)) {
2631 error_setg(errp, "Cannot support %d threads/core on a pseries "
2632 "machine because it must be a power of 2", smp_threads);
2633 return;
2634 }
2635
2636 /* Determine the VSMT mode to use: */
2637 if (vsmt_user) {
2638 if (spapr->vsmt < smp_threads) {
2639 error_setg(errp, "Cannot support VSMT mode %d"
2640 " because it must be >= threads/core (%d)",
2641 spapr->vsmt, smp_threads);
2642 return;
2643 }
2644 /* In this case, spapr->vsmt has been set by the command line */
2645 } else if (!smc->smp_threads_vsmt) {
2646 /*
2647 * Default VSMT value is tricky, because we need it to be as
2648 * consistent as possible (for migration), but this requires
2649 * changing it for at least some existing cases. We pick 8 as
2650 * the value that we'd get with KVM on POWER8, the
2651 * overwhelmingly common case in production systems.
2652 */
2653 spapr->vsmt = MAX(8, smp_threads);
2654 } else {
2655 spapr->vsmt = smp_threads;
2656 }
2657
2658 /* KVM: If necessary, set the SMT mode: */
2659 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2660 ret = kvmppc_set_smt_threads(spapr->vsmt);
2661 if (ret) {
2662 /* Looks like KVM isn't able to change VSMT mode */
2663 error_setg(&local_err,
2664 "Failed to set KVM's VSMT mode to %d (errno %d)",
2665 spapr->vsmt, ret);
2666 /* We can live with that if the default one is big enough
2667 * for the number of threads, and a submultiple of the one
2668 * we want. In this case we'll waste some vcpu ids, but
2669 * behaviour will be correct */
2670 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2671 warn_report_err(local_err);
2672 } else {
2673 if (!vsmt_user) {
2674 error_append_hint(&local_err,
2675 "On PPC, a VM with %d threads/core"
2676 " on a host with %d threads/core"
2677 " requires the use of VSMT mode %d.\n",
2678 smp_threads, kvm_smt, spapr->vsmt);
2679 }
2680 kvmppc_error_append_smt_possible_hint(&local_err);
2681 error_propagate(errp, local_err);
2682 }
2683 }
2684 }
2685 /* else TCG: nothing to do currently */
2686 }
2687
spapr_init_cpus(SpaprMachineState * spapr)2688 static void spapr_init_cpus(SpaprMachineState *spapr)
2689 {
2690 MachineState *machine = MACHINE(spapr);
2691 MachineClass *mc = MACHINE_GET_CLASS(machine);
2692 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2693 const CPUArchIdList *possible_cpus;
2694 unsigned int smp_cpus = machine->smp.cpus;
2695 unsigned int smp_threads = machine->smp.threads;
2696 unsigned int max_cpus = machine->smp.max_cpus;
2697 int boot_cores_nr = smp_cpus / smp_threads;
2698 int i;
2699
2700 possible_cpus = mc->possible_cpu_arch_ids(machine);
2701 if (mc->has_hotpluggable_cpus) {
2702 if (smp_cpus % smp_threads) {
2703 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2704 smp_cpus, smp_threads);
2705 exit(1);
2706 }
2707 if (max_cpus % smp_threads) {
2708 error_report("max_cpus (%u) must be multiple of threads (%u)",
2709 max_cpus, smp_threads);
2710 exit(1);
2711 }
2712 } else {
2713 if (max_cpus != smp_cpus) {
2714 error_report("This machine version does not support CPU hotplug");
2715 exit(1);
2716 }
2717 boot_cores_nr = possible_cpus->len;
2718 }
2719
2720 for (i = 0; i < possible_cpus->len; i++) {
2721 int core_id = i * smp_threads;
2722
2723 if (mc->has_hotpluggable_cpus) {
2724 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2725 spapr_vcpu_id(spapr, core_id));
2726 }
2727
2728 if (i < boot_cores_nr) {
2729 Object *core = object_new(type);
2730 int nr_threads = smp_threads;
2731
2732 /* Handle the partially filled core for older machine types */
2733 if ((i + 1) * smp_threads >= smp_cpus) {
2734 nr_threads = smp_cpus - i * smp_threads;
2735 }
2736
2737 object_property_set_int(core, "nr-threads", nr_threads,
2738 &error_fatal);
2739 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2740 &error_fatal);
2741 qdev_realize(DEVICE(core), NULL, &error_fatal);
2742
2743 object_unref(core);
2744 }
2745 }
2746 }
2747
spapr_create_default_phb(void)2748 static PCIHostState *spapr_create_default_phb(void)
2749 {
2750 DeviceState *dev;
2751
2752 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2753 qdev_prop_set_uint32(dev, "index", 0);
2754 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2755
2756 return PCI_HOST_BRIDGE(dev);
2757 }
2758
spapr_rma_size(SpaprMachineState * spapr,Error ** errp)2759 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2760 {
2761 MachineState *machine = MACHINE(spapr);
2762 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2763 hwaddr rma_size = machine->ram_size;
2764 hwaddr node0_size = spapr_node0_size(machine);
2765
2766 /* RMA has to fit in the first NUMA node */
2767 rma_size = MIN(rma_size, node0_size);
2768
2769 /*
2770 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2771 * never exceed that
2772 */
2773 rma_size = MIN(rma_size, 1 * TiB);
2774
2775 /*
2776 * Clamp the RMA size based on machine type. This is for
2777 * migration compatibility with older qemu versions, which limited
2778 * the RMA size for complicated and mostly bad reasons.
2779 */
2780 if (smc->rma_limit) {
2781 rma_size = MIN(rma_size, smc->rma_limit);
2782 }
2783
2784 if (rma_size < MIN_RMA_SLOF) {
2785 error_setg(errp,
2786 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2787 "ldMiB guest RMA (Real Mode Area memory)",
2788 MIN_RMA_SLOF / MiB);
2789 return 0;
2790 }
2791
2792 return rma_size;
2793 }
2794
spapr_create_nvdimm_dr_connectors(SpaprMachineState * spapr)2795 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2796 {
2797 MachineState *machine = MACHINE(spapr);
2798 int i;
2799
2800 for (i = 0; i < machine->ram_slots; i++) {
2801 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2802 }
2803 }
2804
2805 /* pSeries LPAR / sPAPR hardware init */
spapr_machine_init(MachineState * machine)2806 static void spapr_machine_init(MachineState *machine)
2807 {
2808 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2809 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2810 MachineClass *mc = MACHINE_GET_CLASS(machine);
2811 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2812 const char *bios_name = machine->firmware ?: bios_default;
2813 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2814 const char *kernel_filename = machine->kernel_filename;
2815 const char *initrd_filename = machine->initrd_filename;
2816 PCIHostState *phb;
2817 bool has_vga;
2818 int i;
2819 MemoryRegion *sysmem = get_system_memory();
2820 long load_limit, fw_size;
2821 Error *resize_hpt_err = NULL;
2822 NICInfo *nd;
2823
2824 if (!filename) {
2825 error_report("Could not find LPAR firmware '%s'", bios_name);
2826 exit(1);
2827 }
2828 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2829 if (fw_size <= 0) {
2830 error_report("Could not load LPAR firmware '%s'", filename);
2831 exit(1);
2832 }
2833
2834 /*
2835 * if Secure VM (PEF) support is configured, then initialize it
2836 */
2837 if (machine->cgs) {
2838 confidential_guest_kvm_init(machine->cgs, &error_fatal);
2839 }
2840
2841 msi_nonbroken = true;
2842
2843 QLIST_INIT(&spapr->phbs);
2844 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2845
2846 /* Determine capabilities to run with */
2847 spapr_caps_init(spapr);
2848
2849 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2850 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2851 /*
2852 * If the user explicitly requested a mode we should either
2853 * supply it, or fail completely (which we do below). But if
2854 * it's not set explicitly, we reset our mode to something
2855 * that works
2856 */
2857 if (resize_hpt_err) {
2858 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2859 error_free(resize_hpt_err);
2860 resize_hpt_err = NULL;
2861 } else {
2862 spapr->resize_hpt = smc->resize_hpt_default;
2863 }
2864 }
2865
2866 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2867
2868 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2869 /*
2870 * User requested HPT resize, but this host can't supply it. Bail out
2871 */
2872 error_report_err(resize_hpt_err);
2873 exit(1);
2874 }
2875 error_free(resize_hpt_err);
2876
2877 spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2878
2879 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2880 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2881
2882 /*
2883 * VSMT must be set in order to be able to compute VCPU ids, ie to
2884 * call spapr_max_server_number() or spapr_vcpu_id().
2885 */
2886 spapr_set_vsmt_mode(spapr, &error_fatal);
2887
2888 /* Set up Interrupt Controller before we create the VCPUs */
2889 spapr_irq_init(spapr, &error_fatal);
2890
2891 /* Set up containers for ibm,client-architecture-support negotiated options
2892 */
2893 spapr->ov5 = spapr_ovec_new();
2894 spapr->ov5_cas = spapr_ovec_new();
2895
2896 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2897 spapr_validate_node_memory(machine, &error_fatal);
2898
2899 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2900
2901 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2902 if (!smc->pre_6_2_numa_affinity) {
2903 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2904 }
2905
2906 /* advertise support for dedicated HP event source to guests */
2907 if (spapr->use_hotplug_event_source) {
2908 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2909 }
2910
2911 /* advertise support for HPT resizing */
2912 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2913 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2914 }
2915
2916 /* advertise support for ibm,dyamic-memory-v2 */
2917 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2918
2919 /* advertise XIVE on POWER9 machines */
2920 if (spapr->irq->xive) {
2921 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2922 }
2923
2924 qemu_guest_getrandom_nofail(&spapr->hashpkey_val,
2925 sizeof(spapr->hashpkey_val));
2926
2927 /* init CPUs */
2928 spapr_init_cpus(spapr);
2929
2930 /* Init numa_assoc_array */
2931 spapr_numa_associativity_init(spapr, machine);
2932
2933 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2934 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2935 spapr->max_compat_pvr)) {
2936 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2937 /* KVM and TCG always allow GTSE with radix... */
2938 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2939 }
2940 /* ... but not with hash (currently). */
2941
2942 if (kvm_enabled()) {
2943 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2944 kvmppc_enable_logical_ci_hcalls();
2945 kvmppc_enable_set_mode_hcall();
2946
2947 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2948 kvmppc_enable_clear_ref_mod_hcalls();
2949
2950 /* Enable H_PAGE_INIT */
2951 kvmppc_enable_h_page_init();
2952 }
2953
2954 /* map RAM */
2955 memory_region_add_subregion(sysmem, 0, machine->ram);
2956
2957 /* initialize hotplug memory address space */
2958 if (machine->ram_size < machine->maxram_size) {
2959 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2960 hwaddr device_mem_base;
2961
2962 /*
2963 * Limit the number of hotpluggable memory slots to half the number
2964 * slots that KVM supports, leaving the other half for PCI and other
2965 * devices. However ensure that number of slots doesn't drop below 32.
2966 */
2967 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2968 SPAPR_MAX_RAM_SLOTS;
2969
2970 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2971 max_memslots = SPAPR_MAX_RAM_SLOTS;
2972 }
2973 if (machine->ram_slots > max_memslots) {
2974 error_report("Specified number of memory slots %"
2975 PRIu64" exceeds max supported %d",
2976 machine->ram_slots, max_memslots);
2977 exit(1);
2978 }
2979
2980 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2981 machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2982 }
2983
2984 spapr_create_lmb_dr_connectors(spapr);
2985
2986 if (mc->nvdimm_supported) {
2987 spapr_create_nvdimm_dr_connectors(spapr);
2988 }
2989
2990 /* Set up RTAS event infrastructure */
2991 spapr_events_init(spapr);
2992
2993 /* Set up the RTC RTAS interfaces */
2994 spapr_rtc_create(spapr);
2995
2996 /* Set up VIO bus */
2997 spapr->vio_bus = spapr_vio_bus_init();
2998
2999 for (i = 0; serial_hd(i); i++) {
3000 spapr_vty_create(spapr->vio_bus, serial_hd(i));
3001 }
3002
3003 /* We always have at least the nvram device on VIO */
3004 spapr_create_nvram(spapr);
3005
3006 /*
3007 * Setup hotplug / dynamic-reconfiguration connectors. top-level
3008 * connectors (described in root DT node's "ibm,drc-types" property)
3009 * are pre-initialized here. additional child connectors (such as
3010 * connectors for a PHBs PCI slots) are added as needed during their
3011 * parent's realization.
3012 */
3013 if (smc->dr_phb_enabled) {
3014 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3015 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3016 }
3017 }
3018
3019 /* Set up PCI */
3020 spapr_pci_rtas_init();
3021
3022 phb = spapr_create_default_phb();
3023
3024 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3025 spapr_vlan_create(spapr->vio_bus, nd);
3026 }
3027
3028 pci_init_nic_devices(phb->bus, NULL);
3029
3030 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3031 spapr_vscsi_create(spapr->vio_bus);
3032 }
3033
3034 /* Graphics */
3035 has_vga = spapr_vga_init(phb->bus, &error_fatal);
3036 if (has_vga) {
3037 spapr->want_stdout_path = !machine->enable_graphics;
3038 machine->usb |= defaults_enabled() && !machine->usb_disabled;
3039 } else {
3040 spapr->want_stdout_path = true;
3041 }
3042
3043 if (machine->usb) {
3044 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3045
3046 if (has_vga) {
3047 USBBus *usb_bus;
3048
3049 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3050 &error_abort));
3051 usb_create_simple(usb_bus, "usb-kbd");
3052 usb_create_simple(usb_bus, "usb-mouse");
3053 }
3054 }
3055
3056 if (kernel_filename) {
3057 uint64_t loaded_addr = 0;
3058
3059 spapr->kernel_size = load_elf(kernel_filename, NULL,
3060 translate_kernel_address, spapr,
3061 NULL, &loaded_addr, NULL, NULL,
3062 ELFDATA2MSB, PPC_ELF_MACHINE, 0, 0);
3063 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3064 spapr->kernel_size = load_elf(kernel_filename, NULL,
3065 translate_kernel_address, spapr,
3066 NULL, &loaded_addr, NULL, NULL,
3067 ELFDATA2LSB, PPC_ELF_MACHINE, 0, 0);
3068 spapr->kernel_le = spapr->kernel_size > 0;
3069 }
3070 if (spapr->kernel_size < 0) {
3071 error_report("error loading %s: %s", kernel_filename,
3072 load_elf_strerror(spapr->kernel_size));
3073 exit(1);
3074 }
3075
3076 if (spapr->kernel_addr != loaded_addr) {
3077 warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3078 " to 0x%"PRIx64,
3079 spapr->kernel_addr, loaded_addr);
3080 spapr->kernel_addr = loaded_addr;
3081 }
3082
3083 /* load initrd */
3084 if (initrd_filename) {
3085 /* Try to locate the initrd in the gap between the kernel
3086 * and the firmware. Add a bit of space just in case
3087 */
3088 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3089 + 0x1ffff) & ~0xffff;
3090 spapr->initrd_size = load_image_targphys(initrd_filename,
3091 spapr->initrd_base,
3092 load_limit
3093 - spapr->initrd_base);
3094 if (spapr->initrd_size < 0) {
3095 error_report("could not load initial ram disk '%s'",
3096 initrd_filename);
3097 exit(1);
3098 }
3099 }
3100 }
3101
3102 /* FIXME: Should register things through the MachineState's qdev
3103 * interface, this is a legacy from the sPAPREnvironment structure
3104 * which predated MachineState but had a similar function */
3105 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3106 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3107 &savevm_htab_handlers, spapr);
3108
3109 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3110
3111 qemu_register_boot_set(spapr_boot_set, spapr);
3112
3113 /*
3114 * Nothing needs to be done to resume a suspended guest because
3115 * suspending does not change the machine state, so no need for
3116 * a ->wakeup method.
3117 */
3118 qemu_register_wakeup_support();
3119
3120 if (kvm_enabled()) {
3121 /* to stop and start vmclock */
3122 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3123 &spapr->tb);
3124
3125 kvmppc_spapr_enable_inkernel_multitce();
3126 }
3127
3128 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3129 if (spapr->vof) {
3130 spapr->vof->fw_size = fw_size; /* for claim() on itself */
3131 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3132 }
3133
3134 spapr_watchdog_init(spapr);
3135 }
3136
3137 #define DEFAULT_KVM_TYPE "auto"
spapr_kvm_type(MachineState * machine,const char * vm_type)3138 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3139 {
3140 /*
3141 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3142 * accommodate the 'HV' and 'PV' formats that exists in the
3143 * wild. The 'auto' mode is being introduced already as
3144 * lower-case, thus we don't need to bother checking for
3145 * "AUTO".
3146 */
3147 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3148 return 0;
3149 }
3150
3151 if (!g_ascii_strcasecmp(vm_type, "hv")) {
3152 return 1;
3153 }
3154
3155 if (!g_ascii_strcasecmp(vm_type, "pr")) {
3156 return 2;
3157 }
3158
3159 error_report("Unknown kvm-type specified '%s'", vm_type);
3160 return -1;
3161 }
3162
3163 /*
3164 * Implementation of an interface to adjust firmware path
3165 * for the bootindex property handling.
3166 */
spapr_get_fw_dev_path(FWPathProvider * p,BusState * bus,DeviceState * dev)3167 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3168 DeviceState *dev)
3169 {
3170 #define CAST(type, obj, name) \
3171 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3172 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3173 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3174 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3175 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3176
3177 if (d && bus) {
3178 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3179 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3180 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3181
3182 if (spapr) {
3183 /*
3184 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3185 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3186 * 0x8000 | (target << 8) | (bus << 5) | lun
3187 * (see the "Logical unit addressing format" table in SAM5)
3188 */
3189 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3190 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3191 (uint64_t)id << 48);
3192 } else if (virtio) {
3193 /*
3194 * We use SRP luns of the form 01000000 | (target << 8) | lun
3195 * in the top 32 bits of the 64-bit LUN
3196 * Note: the quote above is from SLOF and it is wrong,
3197 * the actual binding is:
3198 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3199 */
3200 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3201 if (d->lun >= 256) {
3202 /* Use the LUN "flat space addressing method" */
3203 id |= 0x4000;
3204 }
3205 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3206 (uint64_t)id << 32);
3207 } else if (usb) {
3208 /*
3209 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3210 * in the top 32 bits of the 64-bit LUN
3211 */
3212 unsigned usb_port = atoi(usb->port->path);
3213 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3214 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3215 (uint64_t)id << 32);
3216 }
3217 }
3218
3219 /*
3220 * SLOF probes the USB devices, and if it recognizes that the device is a
3221 * storage device, it changes its name to "storage" instead of "usb-host",
3222 * and additionally adds a child node for the SCSI LUN, so the correct
3223 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3224 */
3225 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3226 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3227 if (usb_device_is_scsi_storage(usbdev)) {
3228 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3229 }
3230 }
3231
3232 if (phb) {
3233 /* Replace "pci" with "pci@800000020000000" */
3234 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3235 }
3236
3237 if (vsc) {
3238 /* Same logic as virtio above */
3239 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3240 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3241 }
3242
3243 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3244 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3245 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3246 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3247 }
3248
3249 if (pcidev) {
3250 return spapr_pci_fw_dev_name(pcidev);
3251 }
3252
3253 return NULL;
3254 }
3255
spapr_get_kvm_type(Object * obj,Error ** errp)3256 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3257 {
3258 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259
3260 return g_strdup(spapr->kvm_type);
3261 }
3262
spapr_set_kvm_type(Object * obj,const char * value,Error ** errp)3263 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3264 {
3265 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3266
3267 g_free(spapr->kvm_type);
3268 spapr->kvm_type = g_strdup(value);
3269 }
3270
spapr_get_modern_hotplug_events(Object * obj,Error ** errp)3271 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3272 {
3273 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3274
3275 return spapr->use_hotplug_event_source;
3276 }
3277
spapr_set_modern_hotplug_events(Object * obj,bool value,Error ** errp)3278 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3279 Error **errp)
3280 {
3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282
3283 spapr->use_hotplug_event_source = value;
3284 }
3285
spapr_get_msix_emulation(Object * obj,Error ** errp)3286 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3287 {
3288 return true;
3289 }
3290
spapr_get_resize_hpt(Object * obj,Error ** errp)3291 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3292 {
3293 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3294
3295 switch (spapr->resize_hpt) {
3296 case SPAPR_RESIZE_HPT_DEFAULT:
3297 return g_strdup("default");
3298 case SPAPR_RESIZE_HPT_DISABLED:
3299 return g_strdup("disabled");
3300 case SPAPR_RESIZE_HPT_ENABLED:
3301 return g_strdup("enabled");
3302 case SPAPR_RESIZE_HPT_REQUIRED:
3303 return g_strdup("required");
3304 }
3305 g_assert_not_reached();
3306 }
3307
spapr_set_resize_hpt(Object * obj,const char * value,Error ** errp)3308 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3309 {
3310 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3311
3312 if (strcmp(value, "default") == 0) {
3313 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3314 } else if (strcmp(value, "disabled") == 0) {
3315 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3316 } else if (strcmp(value, "enabled") == 0) {
3317 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3318 } else if (strcmp(value, "required") == 0) {
3319 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3320 } else {
3321 error_setg(errp, "Bad value for \"resize-hpt\" property");
3322 }
3323 }
3324
spapr_get_vof(Object * obj,Error ** errp)3325 static bool spapr_get_vof(Object *obj, Error **errp)
3326 {
3327 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3328
3329 return spapr->vof != NULL;
3330 }
3331
spapr_set_vof(Object * obj,bool value,Error ** errp)3332 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3333 {
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3335
3336 if (spapr->vof) {
3337 vof_cleanup(spapr->vof);
3338 g_free(spapr->vof);
3339 spapr->vof = NULL;
3340 }
3341 if (!value) {
3342 return;
3343 }
3344 spapr->vof = g_malloc0(sizeof(*spapr->vof));
3345 }
3346
spapr_get_ic_mode(Object * obj,Error ** errp)3347 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3348 {
3349 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350
3351 if (spapr->irq == &spapr_irq_xics_legacy) {
3352 return g_strdup("legacy");
3353 } else if (spapr->irq == &spapr_irq_xics) {
3354 return g_strdup("xics");
3355 } else if (spapr->irq == &spapr_irq_xive) {
3356 return g_strdup("xive");
3357 } else if (spapr->irq == &spapr_irq_dual) {
3358 return g_strdup("dual");
3359 }
3360 g_assert_not_reached();
3361 }
3362
spapr_set_ic_mode(Object * obj,const char * value,Error ** errp)3363 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3364 {
3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3366
3367 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3368 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3369 return;
3370 }
3371
3372 /* The legacy IRQ backend can not be set */
3373 if (strcmp(value, "xics") == 0) {
3374 spapr->irq = &spapr_irq_xics;
3375 } else if (strcmp(value, "xive") == 0) {
3376 spapr->irq = &spapr_irq_xive;
3377 } else if (strcmp(value, "dual") == 0) {
3378 spapr->irq = &spapr_irq_dual;
3379 } else {
3380 error_setg(errp, "Bad value for \"ic-mode\" property");
3381 }
3382 }
3383
spapr_get_host_model(Object * obj,Error ** errp)3384 static char *spapr_get_host_model(Object *obj, Error **errp)
3385 {
3386 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3387
3388 return g_strdup(spapr->host_model);
3389 }
3390
spapr_set_host_model(Object * obj,const char * value,Error ** errp)3391 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3392 {
3393 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3394
3395 g_free(spapr->host_model);
3396 spapr->host_model = g_strdup(value);
3397 }
3398
spapr_get_host_serial(Object * obj,Error ** errp)3399 static char *spapr_get_host_serial(Object *obj, Error **errp)
3400 {
3401 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3402
3403 return g_strdup(spapr->host_serial);
3404 }
3405
spapr_set_host_serial(Object * obj,const char * value,Error ** errp)3406 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3407 {
3408 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3409
3410 g_free(spapr->host_serial);
3411 spapr->host_serial = g_strdup(value);
3412 }
3413
spapr_instance_init(Object * obj)3414 static void spapr_instance_init(Object *obj)
3415 {
3416 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3417 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3418 MachineState *ms = MACHINE(spapr);
3419 MachineClass *mc = MACHINE_GET_CLASS(ms);
3420
3421 /*
3422 * NVDIMM support went live in 5.1 without considering that, in
3423 * other archs, the user needs to enable NVDIMM support with the
3424 * 'nvdimm' machine option and the default behavior is NVDIMM
3425 * support disabled. It is too late to roll back to the standard
3426 * behavior without breaking 5.1 guests.
3427 */
3428 if (mc->nvdimm_supported) {
3429 ms->nvdimms_state->is_enabled = true;
3430 }
3431
3432 spapr->htab_fd = -1;
3433 spapr->use_hotplug_event_source = true;
3434 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3435 object_property_add_str(obj, "kvm-type",
3436 spapr_get_kvm_type, spapr_set_kvm_type);
3437 object_property_set_description(obj, "kvm-type",
3438 "Specifies the KVM virtualization mode (auto,"
3439 " hv, pr). Defaults to 'auto'. This mode will use"
3440 " any available KVM module loaded in the host,"
3441 " where kvm_hv takes precedence if both kvm_hv and"
3442 " kvm_pr are loaded.");
3443 object_property_add_bool(obj, "modern-hotplug-events",
3444 spapr_get_modern_hotplug_events,
3445 spapr_set_modern_hotplug_events);
3446 object_property_set_description(obj, "modern-hotplug-events",
3447 "Use dedicated hotplug event mechanism in"
3448 " place of standard EPOW events when possible"
3449 " (required for memory hot-unplug support)");
3450 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3451 "Maximum permitted CPU compatibility mode");
3452
3453 object_property_add_str(obj, "resize-hpt",
3454 spapr_get_resize_hpt, spapr_set_resize_hpt);
3455 object_property_set_description(obj, "resize-hpt",
3456 "Resizing of the Hash Page Table (enabled, disabled, required)");
3457 object_property_add_uint32_ptr(obj, "vsmt",
3458 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3459 object_property_set_description(obj, "vsmt",
3460 "Virtual SMT: KVM behaves as if this were"
3461 " the host's SMT mode");
3462
3463 object_property_add_bool(obj, "vfio-no-msix-emulation",
3464 spapr_get_msix_emulation, NULL);
3465
3466 object_property_add_uint64_ptr(obj, "kernel-addr",
3467 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3468 object_property_set_description(obj, "kernel-addr",
3469 stringify(KERNEL_LOAD_ADDR)
3470 " for -kernel is the default");
3471 spapr->kernel_addr = KERNEL_LOAD_ADDR;
3472
3473 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3474 object_property_set_description(obj, "x-vof",
3475 "Enable Virtual Open Firmware (experimental)");
3476
3477 /* The machine class defines the default interrupt controller mode */
3478 spapr->irq = smc->irq;
3479 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3480 spapr_set_ic_mode);
3481 object_property_set_description(obj, "ic-mode",
3482 "Specifies the interrupt controller mode (xics, xive, dual)");
3483
3484 object_property_add_str(obj, "host-model",
3485 spapr_get_host_model, spapr_set_host_model);
3486 object_property_set_description(obj, "host-model",
3487 "Host model to advertise in guest device tree");
3488 object_property_add_str(obj, "host-serial",
3489 spapr_get_host_serial, spapr_set_host_serial);
3490 object_property_set_description(obj, "host-serial",
3491 "Host serial number to advertise in guest device tree");
3492 }
3493
spapr_machine_finalizefn(Object * obj)3494 static void spapr_machine_finalizefn(Object *obj)
3495 {
3496 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3497
3498 g_free(spapr->kvm_type);
3499 }
3500
spapr_do_system_reset_on_cpu(CPUState * cs,run_on_cpu_data arg)3501 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3502 {
3503 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3504 CPUPPCState *env = cpu_env(cs);
3505
3506 cpu_synchronize_state(cs);
3507 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3508 if (spapr->fwnmi_system_reset_addr != -1) {
3509 uint64_t rtas_addr, addr;
3510
3511 /* get rtas addr from fdt */
3512 rtas_addr = spapr_get_rtas_addr();
3513 if (!rtas_addr) {
3514 qemu_system_guest_panicked(NULL);
3515 return;
3516 }
3517
3518 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3519 stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3520 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3521 env->gpr[3] = addr;
3522 }
3523 ppc_cpu_do_system_reset(cs);
3524 if (spapr->fwnmi_system_reset_addr != -1) {
3525 env->nip = spapr->fwnmi_system_reset_addr;
3526 }
3527 }
3528
spapr_nmi(NMIState * n,int cpu_index,Error ** errp)3529 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3530 {
3531 CPUState *cs;
3532
3533 CPU_FOREACH(cs) {
3534 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3535 }
3536 }
3537
spapr_lmb_dt_populate(SpaprDrc * drc,SpaprMachineState * spapr,void * fdt,int * fdt_start_offset,Error ** errp)3538 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3539 void *fdt, int *fdt_start_offset, Error **errp)
3540 {
3541 uint64_t addr;
3542 uint32_t node;
3543
3544 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3545 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3546 &error_abort);
3547 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3548 SPAPR_MEMORY_BLOCK_SIZE);
3549 return 0;
3550 }
3551
spapr_add_lmbs(DeviceState * dev,uint64_t addr_start,uint64_t size,bool dedicated_hp_event_source)3552 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3553 bool dedicated_hp_event_source)
3554 {
3555 SpaprDrc *drc;
3556 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3557 int i;
3558 uint64_t addr = addr_start;
3559 bool hotplugged = spapr_drc_hotplugged(dev);
3560
3561 for (i = 0; i < nr_lmbs; i++) {
3562 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3563 addr / SPAPR_MEMORY_BLOCK_SIZE);
3564 g_assert(drc);
3565
3566 /*
3567 * memory_device_get_free_addr() provided a range of free addresses
3568 * that doesn't overlap with any existing mapping at pre-plug. The
3569 * corresponding LMB DRCs are thus assumed to be all attachable.
3570 */
3571 spapr_drc_attach(drc, dev);
3572 if (!hotplugged) {
3573 spapr_drc_reset(drc);
3574 }
3575 addr += SPAPR_MEMORY_BLOCK_SIZE;
3576 }
3577 /* send hotplug notification to the
3578 * guest only in case of hotplugged memory
3579 */
3580 if (hotplugged) {
3581 if (dedicated_hp_event_source) {
3582 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3583 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3584 g_assert(drc);
3585 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3586 nr_lmbs,
3587 spapr_drc_index(drc));
3588 } else {
3589 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3590 nr_lmbs);
3591 }
3592 }
3593 }
3594
spapr_memory_plug(HotplugHandler * hotplug_dev,DeviceState * dev)3595 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3596 {
3597 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3598 PCDIMMDevice *dimm = PC_DIMM(dev);
3599 uint64_t size, addr;
3600 int64_t slot;
3601 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3602
3603 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3604
3605 pc_dimm_plug(dimm, MACHINE(ms));
3606
3607 if (!is_nvdimm) {
3608 addr = object_property_get_uint(OBJECT(dimm),
3609 PC_DIMM_ADDR_PROP, &error_abort);
3610 spapr_add_lmbs(dev, addr, size,
3611 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3612 } else {
3613 slot = object_property_get_int(OBJECT(dimm),
3614 PC_DIMM_SLOT_PROP, &error_abort);
3615 /* We should have valid slot number at this point */
3616 g_assert(slot >= 0);
3617 spapr_add_nvdimm(dev, slot);
3618 }
3619 }
3620
spapr_memory_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)3621 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3622 Error **errp)
3623 {
3624 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3625 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3626 PCDIMMDevice *dimm = PC_DIMM(dev);
3627 Error *local_err = NULL;
3628 uint64_t size;
3629 Object *memdev;
3630 hwaddr pagesize;
3631
3632 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3633 if (local_err) {
3634 error_propagate(errp, local_err);
3635 return;
3636 }
3637
3638 if (is_nvdimm) {
3639 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3640 return;
3641 }
3642 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3643 error_setg(errp, "Hotplugged memory size must be a multiple of "
3644 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3645 return;
3646 }
3647
3648 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3649 &error_abort);
3650 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3651 if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3652 return;
3653 }
3654
3655 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp);
3656 }
3657
3658 struct SpaprDimmState {
3659 PCDIMMDevice *dimm;
3660 uint32_t nr_lmbs;
3661 QTAILQ_ENTRY(SpaprDimmState) next;
3662 };
3663
spapr_pending_dimm_unplugs_find(SpaprMachineState * s,PCDIMMDevice * dimm)3664 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3665 PCDIMMDevice *dimm)
3666 {
3667 SpaprDimmState *dimm_state = NULL;
3668
3669 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3670 if (dimm_state->dimm == dimm) {
3671 break;
3672 }
3673 }
3674 return dimm_state;
3675 }
3676
spapr_pending_dimm_unplugs_add(SpaprMachineState * spapr,uint32_t nr_lmbs,PCDIMMDevice * dimm)3677 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3678 uint32_t nr_lmbs,
3679 PCDIMMDevice *dimm)
3680 {
3681 SpaprDimmState *ds = NULL;
3682
3683 /*
3684 * If this request is for a DIMM whose removal had failed earlier
3685 * (due to guest's refusal to remove the LMBs), we would have this
3686 * dimm already in the pending_dimm_unplugs list. In that
3687 * case don't add again.
3688 */
3689 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3690 if (!ds) {
3691 ds = g_new0(SpaprDimmState, 1);
3692 ds->nr_lmbs = nr_lmbs;
3693 ds->dimm = dimm;
3694 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3695 }
3696 return ds;
3697 }
3698
spapr_pending_dimm_unplugs_remove(SpaprMachineState * spapr,SpaprDimmState * dimm_state)3699 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3700 SpaprDimmState *dimm_state)
3701 {
3702 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3703 g_free(dimm_state);
3704 }
3705
spapr_recover_pending_dimm_state(SpaprMachineState * ms,PCDIMMDevice * dimm)3706 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3707 PCDIMMDevice *dimm)
3708 {
3709 SpaprDrc *drc;
3710 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3711 &error_abort);
3712 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3713 uint32_t avail_lmbs = 0;
3714 uint64_t addr_start, addr;
3715 int i;
3716
3717 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3718 &error_abort);
3719
3720 addr = addr_start;
3721 for (i = 0; i < nr_lmbs; i++) {
3722 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3723 addr / SPAPR_MEMORY_BLOCK_SIZE);
3724 g_assert(drc);
3725 if (drc->dev) {
3726 avail_lmbs++;
3727 }
3728 addr += SPAPR_MEMORY_BLOCK_SIZE;
3729 }
3730
3731 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3732 }
3733
spapr_memory_unplug_rollback(SpaprMachineState * spapr,DeviceState * dev)3734 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3735 {
3736 SpaprDimmState *ds;
3737 PCDIMMDevice *dimm;
3738 SpaprDrc *drc;
3739 uint32_t nr_lmbs;
3740 uint64_t size, addr_start, addr;
3741 int i;
3742
3743 if (!dev) {
3744 return;
3745 }
3746
3747 dimm = PC_DIMM(dev);
3748 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3749
3750 /*
3751 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3752 * unplug state, but one of its DRC is marked as unplug_requested.
3753 * This is bad and weird enough to g_assert() out.
3754 */
3755 g_assert(ds);
3756
3757 spapr_pending_dimm_unplugs_remove(spapr, ds);
3758
3759 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3760 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3761
3762 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3763 &error_abort);
3764
3765 addr = addr_start;
3766 for (i = 0; i < nr_lmbs; i++) {
3767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3768 addr / SPAPR_MEMORY_BLOCK_SIZE);
3769 g_assert(drc);
3770
3771 drc->unplug_requested = false;
3772 addr += SPAPR_MEMORY_BLOCK_SIZE;
3773 }
3774
3775 /*
3776 * Tell QAPI that something happened and the memory
3777 * hotunplug wasn't successful.
3778 */
3779 qapi_event_send_device_unplug_guest_error(dev->id,
3780 dev->canonical_path);
3781 }
3782
3783 /* Callback to be called during DRC release. */
spapr_lmb_release(DeviceState * dev)3784 void spapr_lmb_release(DeviceState *dev)
3785 {
3786 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3787 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3788 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3789
3790 /* This information will get lost if a migration occurs
3791 * during the unplug process. In this case recover it. */
3792 if (ds == NULL) {
3793 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3794 g_assert(ds);
3795 /* The DRC being examined by the caller at least must be counted */
3796 g_assert(ds->nr_lmbs);
3797 }
3798
3799 if (--ds->nr_lmbs) {
3800 return;
3801 }
3802
3803 /*
3804 * Now that all the LMBs have been removed by the guest, call the
3805 * unplug handler chain. This can never fail.
3806 */
3807 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3808 object_unparent(OBJECT(dev));
3809 }
3810
spapr_memory_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)3811 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3812 {
3813 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3814 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3815
3816 /* We really shouldn't get this far without anything to unplug */
3817 g_assert(ds);
3818
3819 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3820 qdev_unrealize(dev);
3821 spapr_pending_dimm_unplugs_remove(spapr, ds);
3822 }
3823
spapr_memory_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)3824 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3825 DeviceState *dev, Error **errp)
3826 {
3827 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3828 PCDIMMDevice *dimm = PC_DIMM(dev);
3829 uint32_t nr_lmbs;
3830 uint64_t size, addr_start, addr;
3831 int i;
3832 SpaprDrc *drc;
3833
3834 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3835 error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3836 return;
3837 }
3838
3839 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3840 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3841
3842 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3843 &error_abort);
3844
3845 /*
3846 * An existing pending dimm state for this DIMM means that there is an
3847 * unplug operation in progress, waiting for the spapr_lmb_release
3848 * callback to complete the job (BQL can't cover that far). In this case,
3849 * bail out to avoid detaching DRCs that were already released.
3850 */
3851 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3852 error_setg(errp, "Memory unplug already in progress for device %s",
3853 dev->id);
3854 return;
3855 }
3856
3857 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3858
3859 addr = addr_start;
3860 for (i = 0; i < nr_lmbs; i++) {
3861 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3862 addr / SPAPR_MEMORY_BLOCK_SIZE);
3863 g_assert(drc);
3864
3865 spapr_drc_unplug_request(drc);
3866 addr += SPAPR_MEMORY_BLOCK_SIZE;
3867 }
3868
3869 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3870 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3871 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3872 nr_lmbs, spapr_drc_index(drc));
3873 }
3874
3875 /* Callback to be called during DRC release. */
spapr_core_release(DeviceState * dev)3876 void spapr_core_release(DeviceState *dev)
3877 {
3878 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3879
3880 /* Call the unplug handler chain. This can never fail. */
3881 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3882 object_unparent(OBJECT(dev));
3883 }
3884
spapr_core_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)3885 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3886 {
3887 MachineState *ms = MACHINE(hotplug_dev);
3888 CPUCore *cc = CPU_CORE(dev);
3889 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3890
3891 assert(core_slot);
3892 core_slot->cpu = NULL;
3893 qdev_unrealize(dev);
3894 }
3895
3896 static
spapr_core_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)3897 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3898 Error **errp)
3899 {
3900 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3901 int index;
3902 SpaprDrc *drc;
3903 CPUCore *cc = CPU_CORE(dev);
3904
3905 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3906 error_setg(errp, "Unable to find CPU core with core-id: %d",
3907 cc->core_id);
3908 return;
3909 }
3910 if (index == 0) {
3911 error_setg(errp, "Boot CPU core may not be unplugged");
3912 return;
3913 }
3914
3915 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3916 spapr_vcpu_id(spapr, cc->core_id));
3917 g_assert(drc);
3918
3919 if (!spapr_drc_unplug_requested(drc)) {
3920 spapr_drc_unplug_request(drc);
3921 }
3922
3923 /*
3924 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3925 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3926 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3927 * attempt (e.g. the kernel will refuse to remove the last online
3928 * CPU), we will never attempt it again because unplug_requested
3929 * will still be 'true' in that case.
3930 */
3931 spapr_hotplug_req_remove_by_index(drc);
3932 }
3933
spapr_core_dt_populate(SpaprDrc * drc,SpaprMachineState * spapr,void * fdt,int * fdt_start_offset,Error ** errp)3934 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3935 void *fdt, int *fdt_start_offset, Error **errp)
3936 {
3937 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3938 CPUState *cs = CPU(core->threads[0]);
3939 PowerPCCPU *cpu = POWERPC_CPU(cs);
3940 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3941 int id = spapr_get_vcpu_id(cpu);
3942 g_autofree char *nodename = NULL;
3943 int offset;
3944
3945 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3946 offset = fdt_add_subnode(fdt, 0, nodename);
3947
3948 spapr_dt_cpu(cs, fdt, offset, spapr);
3949
3950 /*
3951 * spapr_dt_cpu() does not fill the 'name' property in the
3952 * CPU node. The function is called during boot process, before
3953 * and after CAS, and overwriting the 'name' property written
3954 * by SLOF is not allowed.
3955 *
3956 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3957 * CPUs more compatible with the coldplugged ones, which have
3958 * the 'name' property. Linux Kernel also relies on this
3959 * property to identify CPU nodes.
3960 */
3961 _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3962
3963 *fdt_start_offset = offset;
3964 return 0;
3965 }
3966
spapr_core_plug(HotplugHandler * hotplug_dev,DeviceState * dev)3967 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3968 {
3969 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3970 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3971 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3972 CPUCore *cc = CPU_CORE(dev);
3973 SpaprDrc *drc;
3974 CPUArchId *core_slot;
3975 int index;
3976 bool hotplugged = spapr_drc_hotplugged(dev);
3977 int i;
3978
3979 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3980 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3981
3982 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3983 spapr_vcpu_id(spapr, cc->core_id));
3984
3985 g_assert(drc || !mc->has_hotpluggable_cpus);
3986
3987 if (drc) {
3988 /*
3989 * spapr_core_pre_plug() already buys us this is a brand new
3990 * core being plugged into a free slot. Nothing should already
3991 * be attached to the corresponding DRC.
3992 */
3993 spapr_drc_attach(drc, dev);
3994
3995 if (hotplugged) {
3996 /*
3997 * Send hotplug notification interrupt to the guest only
3998 * in case of hotplugged CPUs.
3999 */
4000 spapr_hotplug_req_add_by_index(drc);
4001 } else {
4002 spapr_drc_reset(drc);
4003 }
4004 }
4005
4006 core_slot->cpu = CPU(dev);
4007
4008 /*
4009 * Set compatibility mode to match the boot CPU, which was either set
4010 * by the machine reset code or by CAS. This really shouldn't fail at
4011 * this point.
4012 */
4013 if (hotplugged) {
4014 for (i = 0; i < cc->nr_threads; i++) {
4015 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4016 &error_abort);
4017 }
4018 }
4019
4020 }
4021
spapr_core_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4022 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4023 Error **errp)
4024 {
4025 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4026 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4027 CPUCore *cc = CPU_CORE(dev);
4028 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4029 const char *type = object_get_typename(OBJECT(dev));
4030 CPUArchId *core_slot;
4031 int index;
4032 unsigned int smp_threads = machine->smp.threads;
4033
4034 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4035 error_setg(errp, "CPU hotplug not supported for this machine");
4036 return;
4037 }
4038
4039 if (strcmp(base_core_type, type)) {
4040 error_setg(errp, "CPU core type should be %s", base_core_type);
4041 return;
4042 }
4043
4044 if (cc->core_id % smp_threads) {
4045 error_setg(errp, "invalid core id %d", cc->core_id);
4046 return;
4047 }
4048
4049 /*
4050 * In general we should have homogeneous threads-per-core, but old
4051 * (pre hotplug support) machine types allow the last core to have
4052 * reduced threads as a compatibility hack for when we allowed
4053 * total vcpus not a multiple of threads-per-core.
4054 */
4055 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4056 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4057 smp_threads);
4058 return;
4059 }
4060
4061 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4062 if (!core_slot) {
4063 error_setg(errp, "core id %d out of range", cc->core_id);
4064 return;
4065 }
4066
4067 if (core_slot->cpu) {
4068 error_setg(errp, "core %d already populated", cc->core_id);
4069 return;
4070 }
4071
4072 numa_cpu_pre_plug(core_slot, dev, errp);
4073 }
4074
spapr_phb_dt_populate(SpaprDrc * drc,SpaprMachineState * spapr,void * fdt,int * fdt_start_offset,Error ** errp)4075 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4076 void *fdt, int *fdt_start_offset, Error **errp)
4077 {
4078 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4079 int intc_phandle;
4080
4081 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4082 if (intc_phandle <= 0) {
4083 return -1;
4084 }
4085
4086 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4087 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4088 return -1;
4089 }
4090
4091 /* generally SLOF creates these, for hotplug it's up to QEMU */
4092 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4093
4094 return 0;
4095 }
4096
spapr_phb_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4097 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4098 Error **errp)
4099 {
4100 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4101 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4102 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4103 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4104 SpaprDrc *drc;
4105
4106 if (dev->hotplugged && !smc->dr_phb_enabled) {
4107 error_setg(errp, "PHB hotplug not supported for this machine");
4108 return false;
4109 }
4110
4111 if (sphb->index == (uint32_t)-1) {
4112 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4113 return false;
4114 }
4115
4116 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4117 if (drc && drc->dev) {
4118 error_setg(errp, "PHB %d already attached", sphb->index);
4119 return false;
4120 }
4121
4122 /*
4123 * This will check that sphb->index doesn't exceed the maximum number of
4124 * PHBs for the current machine type.
4125 */
4126 return
4127 smc->phb_placement(spapr, sphb->index,
4128 &sphb->buid, &sphb->io_win_addr,
4129 &sphb->mem_win_addr, &sphb->mem64_win_addr,
4130 windows_supported, sphb->dma_liobn,
4131 errp);
4132 }
4133
spapr_phb_plug(HotplugHandler * hotplug_dev,DeviceState * dev)4134 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4135 {
4136 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4137 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4138 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4139 SpaprDrc *drc;
4140 bool hotplugged = spapr_drc_hotplugged(dev);
4141
4142 if (!smc->dr_phb_enabled) {
4143 return;
4144 }
4145
4146 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4147 /* hotplug hooks should check it's enabled before getting this far */
4148 assert(drc);
4149
4150 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4151 spapr_drc_attach(drc, dev);
4152
4153 if (hotplugged) {
4154 spapr_hotplug_req_add_by_index(drc);
4155 } else {
4156 spapr_drc_reset(drc);
4157 }
4158 }
4159
spapr_phb_release(DeviceState * dev)4160 void spapr_phb_release(DeviceState *dev)
4161 {
4162 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4163
4164 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4165 object_unparent(OBJECT(dev));
4166 }
4167
spapr_phb_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)4168 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4169 {
4170 qdev_unrealize(dev);
4171 }
4172
spapr_phb_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4173 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4174 DeviceState *dev, Error **errp)
4175 {
4176 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4177 SpaprDrc *drc;
4178
4179 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4180 assert(drc);
4181
4182 if (!spapr_drc_unplug_requested(drc)) {
4183 spapr_drc_unplug_request(drc);
4184 spapr_hotplug_req_remove_by_index(drc);
4185 } else {
4186 error_setg(errp,
4187 "PCI Host Bridge unplug already in progress for device %s",
4188 dev->id);
4189 }
4190 }
4191
4192 static
spapr_tpm_proxy_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4193 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4194 Error **errp)
4195 {
4196 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4197
4198 if (spapr->tpm_proxy != NULL) {
4199 error_setg(errp, "Only one TPM proxy can be specified for this machine");
4200 return false;
4201 }
4202
4203 return true;
4204 }
4205
spapr_tpm_proxy_plug(HotplugHandler * hotplug_dev,DeviceState * dev)4206 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4207 {
4208 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4209 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4210
4211 /* Already checked in spapr_tpm_proxy_pre_plug() */
4212 g_assert(spapr->tpm_proxy == NULL);
4213
4214 spapr->tpm_proxy = tpm_proxy;
4215 }
4216
spapr_tpm_proxy_unplug(HotplugHandler * hotplug_dev,DeviceState * dev)4217 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4218 {
4219 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4220
4221 qdev_unrealize(dev);
4222 object_unparent(OBJECT(dev));
4223 spapr->tpm_proxy = NULL;
4224 }
4225
spapr_machine_device_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4226 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4227 DeviceState *dev, Error **errp)
4228 {
4229 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4230 spapr_memory_plug(hotplug_dev, dev);
4231 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4232 spapr_core_plug(hotplug_dev, dev);
4233 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4234 spapr_phb_plug(hotplug_dev, dev);
4235 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4236 spapr_tpm_proxy_plug(hotplug_dev, dev);
4237 }
4238 }
4239
spapr_machine_device_unplug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4240 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4241 DeviceState *dev, Error **errp)
4242 {
4243 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4244 spapr_memory_unplug(hotplug_dev, dev);
4245 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4246 spapr_core_unplug(hotplug_dev, dev);
4247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4248 spapr_phb_unplug(hotplug_dev, dev);
4249 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4250 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4251 }
4252 }
4253
spapr_memory_hot_unplug_supported(SpaprMachineState * spapr)4254 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4255 {
4256 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4257 /*
4258 * CAS will process all pending unplug requests.
4259 *
4260 * HACK: a guest could theoretically have cleared all bits in OV5,
4261 * but none of the guests we care for do.
4262 */
4263 spapr_ovec_empty(spapr->ov5_cas);
4264 }
4265
spapr_machine_device_unplug_request(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4266 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4267 DeviceState *dev, Error **errp)
4268 {
4269 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4270 MachineClass *mc = MACHINE_GET_CLASS(sms);
4271 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4272
4273 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4274 if (spapr_memory_hot_unplug_supported(sms)) {
4275 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4276 } else {
4277 error_setg(errp, "Memory hot unplug not supported for this guest");
4278 }
4279 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4280 if (!mc->has_hotpluggable_cpus) {
4281 error_setg(errp, "CPU hot unplug not supported on this machine");
4282 return;
4283 }
4284 spapr_core_unplug_request(hotplug_dev, dev, errp);
4285 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4286 if (!smc->dr_phb_enabled) {
4287 error_setg(errp, "PHB hot unplug not supported on this machine");
4288 return;
4289 }
4290 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4291 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4292 spapr_tpm_proxy_unplug(hotplug_dev, dev);
4293 }
4294 }
4295
spapr_machine_device_pre_plug(HotplugHandler * hotplug_dev,DeviceState * dev,Error ** errp)4296 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4297 DeviceState *dev, Error **errp)
4298 {
4299 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4300 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4301 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4302 spapr_core_pre_plug(hotplug_dev, dev, errp);
4303 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4304 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4305 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4306 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4307 }
4308 }
4309
spapr_get_hotplug_handler(MachineState * machine,DeviceState * dev)4310 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4311 DeviceState *dev)
4312 {
4313 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4314 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4315 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4316 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4317 return HOTPLUG_HANDLER(machine);
4318 }
4319 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4320 PCIDevice *pcidev = PCI_DEVICE(dev);
4321 PCIBus *root = pci_device_root_bus(pcidev);
4322 SpaprPhbState *phb =
4323 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4324 TYPE_SPAPR_PCI_HOST_BRIDGE);
4325
4326 if (phb) {
4327 return HOTPLUG_HANDLER(phb);
4328 }
4329 }
4330 return NULL;
4331 }
4332
4333 static CpuInstanceProperties
spapr_cpu_index_to_props(MachineState * machine,unsigned cpu_index)4334 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4335 {
4336 CPUArchId *core_slot;
4337 MachineClass *mc = MACHINE_GET_CLASS(machine);
4338
4339 /* make sure possible_cpu are initialized */
4340 mc->possible_cpu_arch_ids(machine);
4341 /* get CPU core slot containing thread that matches cpu_index */
4342 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4343 assert(core_slot);
4344 return core_slot->props;
4345 }
4346
spapr_get_default_cpu_node_id(const MachineState * ms,int idx)4347 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4348 {
4349 return idx / ms->smp.cores % ms->numa_state->num_nodes;
4350 }
4351
spapr_possible_cpu_arch_ids(MachineState * machine)4352 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4353 {
4354 int i;
4355 unsigned int smp_threads = machine->smp.threads;
4356 unsigned int smp_cpus = machine->smp.cpus;
4357 const char *core_type;
4358 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4359 MachineClass *mc = MACHINE_GET_CLASS(machine);
4360
4361 if (!mc->has_hotpluggable_cpus) {
4362 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4363 }
4364 if (machine->possible_cpus) {
4365 assert(machine->possible_cpus->len == spapr_max_cores);
4366 return machine->possible_cpus;
4367 }
4368
4369 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4370 if (!core_type) {
4371 error_report("Unable to find sPAPR CPU Core definition");
4372 exit(1);
4373 }
4374
4375 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4376 sizeof(CPUArchId) * spapr_max_cores);
4377 machine->possible_cpus->len = spapr_max_cores;
4378 for (i = 0; i < machine->possible_cpus->len; i++) {
4379 int core_id = i * smp_threads;
4380
4381 machine->possible_cpus->cpus[i].type = core_type;
4382 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4383 machine->possible_cpus->cpus[i].arch_id = core_id;
4384 machine->possible_cpus->cpus[i].props.has_core_id = true;
4385 machine->possible_cpus->cpus[i].props.core_id = core_id;
4386 }
4387 return machine->possible_cpus;
4388 }
4389
spapr_phb_placement(SpaprMachineState * spapr,uint32_t index,uint64_t * buid,hwaddr * pio,hwaddr * mmio32,hwaddr * mmio64,unsigned n_dma,uint32_t * liobns,Error ** errp)4390 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4391 uint64_t *buid, hwaddr *pio,
4392 hwaddr *mmio32, hwaddr *mmio64,
4393 unsigned n_dma, uint32_t *liobns, Error **errp)
4394 {
4395 /*
4396 * New-style PHB window placement.
4397 *
4398 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4399 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4400 * windows.
4401 *
4402 * Some guest kernels can't work with MMIO windows above 1<<46
4403 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4404 *
4405 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4406 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4407 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4408 * 1TiB 64-bit MMIO windows for each PHB.
4409 */
4410 const uint64_t base_buid = 0x800000020000000ULL;
4411 int i;
4412
4413 /* Sanity check natural alignments */
4414 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4415 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4416 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4417 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4418 /* Sanity check bounds */
4419 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4420 SPAPR_PCI_MEM32_WIN_SIZE);
4421 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4422 SPAPR_PCI_MEM64_WIN_SIZE);
4423
4424 if (index >= SPAPR_MAX_PHBS) {
4425 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4426 SPAPR_MAX_PHBS - 1);
4427 return false;
4428 }
4429
4430 *buid = base_buid + index;
4431 for (i = 0; i < n_dma; ++i) {
4432 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4433 }
4434
4435 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4436 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4437 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4438 return true;
4439 }
4440
spapr_ics_get(XICSFabric * dev,int irq)4441 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4442 {
4443 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4444
4445 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4446 }
4447
spapr_ics_resend(XICSFabric * dev)4448 static void spapr_ics_resend(XICSFabric *dev)
4449 {
4450 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4451
4452 ics_resend(spapr->ics);
4453 }
4454
spapr_icp_get(XICSFabric * xi,int vcpu_id)4455 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4456 {
4457 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4458
4459 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4460 }
4461
spapr_pic_print_info(InterruptStatsProvider * obj,GString * buf)4462 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf)
4463 {
4464 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4465
4466 spapr_irq_print_info(spapr, buf);
4467 g_string_append_printf(buf, "irqchip: %s\n",
4468 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4469 }
4470
4471 /*
4472 * This is a XIVE only operation
4473 */
spapr_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)4474 static bool spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4475 uint8_t nvt_blk, uint32_t nvt_idx,
4476 bool crowd, bool cam_ignore, uint8_t priority,
4477 uint32_t logic_serv, XiveTCTXMatch *match)
4478 {
4479 SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4480 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4481 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4482
4483 /*
4484 * When we implement the save and restore of the thread interrupt
4485 * contexts in the enter/exit CPU handlers of the machine and the
4486 * escalations in QEMU, we should be able to handle non dispatched
4487 * vCPUs.
4488 *
4489 * Until this is done, the sPAPR machine should find at least one
4490 * matching context always.
4491 */
4492 if (!xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd, cam_ignore,
4493 priority, logic_serv, match)) {
4494 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4495 nvt_blk, nvt_idx);
4496 return false;
4497 }
4498
4499 return true;
4500 }
4501
spapr_get_vcpu_id(PowerPCCPU * cpu)4502 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4503 {
4504 return cpu->vcpu_id;
4505 }
4506
spapr_set_vcpu_id(PowerPCCPU * cpu,int cpu_index,Error ** errp)4507 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4508 {
4509 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4510 MachineState *ms = MACHINE(spapr);
4511 int vcpu_id;
4512
4513 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4514
4515 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4516 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4517 error_append_hint(errp, "Adjust the number of cpus to %d "
4518 "or try to raise the number of threads per core\n",
4519 vcpu_id * ms->smp.threads / spapr->vsmt);
4520 return false;
4521 }
4522
4523 cpu->vcpu_id = vcpu_id;
4524 return true;
4525 }
4526
spapr_find_cpu(int vcpu_id)4527 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4528 {
4529 CPUState *cs;
4530
4531 CPU_FOREACH(cs) {
4532 PowerPCCPU *cpu = POWERPC_CPU(cs);
4533
4534 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4535 return cpu;
4536 }
4537 }
4538
4539 return NULL;
4540 }
4541
spapr_cpu_in_nested(PowerPCCPU * cpu)4542 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4543 {
4544 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4545
4546 return spapr_cpu->in_nested;
4547 }
4548
spapr_cpu_exec_enter(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu)4549 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4550 {
4551 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4552
4553 /* These are only called by TCG, KVM maintains dispatch state */
4554
4555 spapr_cpu->prod = false;
4556 if (spapr_cpu->vpa_addr) {
4557 CPUState *cs = CPU(cpu);
4558 uint32_t dispatch;
4559
4560 dispatch = ldl_be_phys(cs->as,
4561 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4562 dispatch++;
4563 if ((dispatch & 1) != 0) {
4564 qemu_log_mask(LOG_GUEST_ERROR,
4565 "VPA: incorrect dispatch counter value for "
4566 "dispatched partition %u, correcting.\n", dispatch);
4567 dispatch++;
4568 }
4569 stl_be_phys(cs->as,
4570 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4571 }
4572 }
4573
spapr_cpu_exec_exit(PPCVirtualHypervisor * vhyp,PowerPCCPU * cpu)4574 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4575 {
4576 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4577
4578 if (spapr_cpu->vpa_addr) {
4579 CPUState *cs = CPU(cpu);
4580 uint32_t dispatch;
4581
4582 dispatch = ldl_be_phys(cs->as,
4583 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4584 dispatch++;
4585 if ((dispatch & 1) != 1) {
4586 qemu_log_mask(LOG_GUEST_ERROR,
4587 "VPA: incorrect dispatch counter value for "
4588 "preempted partition %u, correcting.\n", dispatch);
4589 dispatch++;
4590 }
4591 stl_be_phys(cs->as,
4592 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4593 }
4594 }
4595
spapr_machine_class_init(ObjectClass * oc,const void * data)4596 static void spapr_machine_class_init(ObjectClass *oc, const void *data)
4597 {
4598 MachineClass *mc = MACHINE_CLASS(oc);
4599 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4600 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4601 NMIClass *nc = NMI_CLASS(oc);
4602 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4603 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4604 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4605 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4606 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4607 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4608
4609 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4610 mc->ignore_boot_device_suffixes = true;
4611
4612 /*
4613 * We set up the default / latest behaviour here. The class_init
4614 * functions for the specific versioned machine types can override
4615 * these details for backwards compatibility
4616 */
4617 mc->init = spapr_machine_init;
4618 mc->reset = spapr_machine_reset;
4619 mc->block_default_type = IF_SCSI;
4620
4621 /*
4622 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4623 * In TCG the limit is restricted by the range of CPU IPIs available.
4624 */
4625 mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4626
4627 mc->no_parallel = 1;
4628 mc->default_boot_order = "";
4629 mc->default_ram_size = 512 * MiB;
4630 mc->default_ram_id = "ppc_spapr.ram";
4631 mc->default_display = "std";
4632 mc->kvm_type = spapr_kvm_type;
4633 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4634 mc->pci_allow_0_address = true;
4635 assert(!mc->get_hotplug_handler);
4636 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4637 hc->pre_plug = spapr_machine_device_pre_plug;
4638 hc->plug = spapr_machine_device_plug;
4639 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4640 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4641 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4642 hc->unplug_request = spapr_machine_device_unplug_request;
4643 hc->unplug = spapr_machine_device_unplug;
4644
4645 smc->update_dt_enabled = true;
4646 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4647 mc->has_hotpluggable_cpus = true;
4648 mc->nvdimm_supported = true;
4649 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4650 fwc->get_dev_path = spapr_get_fw_dev_path;
4651 nc->nmi_monitor_handler = spapr_nmi;
4652 smc->phb_placement = spapr_phb_placement;
4653 vhc->cpu_in_nested = spapr_cpu_in_nested;
4654 vhc->deliver_hv_excp = spapr_exit_nested;
4655 vhc->hypercall = emulate_spapr_hypercall;
4656 vhc->hpt_mask = spapr_hpt_mask;
4657 vhc->map_hptes = spapr_map_hptes;
4658 vhc->unmap_hptes = spapr_unmap_hptes;
4659 vhc->hpte_set_c = spapr_hpte_set_c;
4660 vhc->hpte_set_r = spapr_hpte_set_r;
4661 vhc->get_pate = spapr_get_pate;
4662 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4663 vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4664 vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4665 xic->ics_get = spapr_ics_get;
4666 xic->ics_resend = spapr_ics_resend;
4667 xic->icp_get = spapr_icp_get;
4668 ispc->print_info = spapr_pic_print_info;
4669 /* Force NUMA node memory size to be a multiple of
4670 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4671 * in which LMBs are represented and hot-added
4672 */
4673 mc->numa_mem_align_shift = 28;
4674 mc->auto_enable_numa = true;
4675
4676 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4677 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4678 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4679 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4680 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4681 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4682 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4683 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4684 smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF;
4685 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4686 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4687 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4688 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4689 smc->default_caps.caps[SPAPR_CAP_DAWR1] = SPAPR_CAP_ON;
4690
4691 /*
4692 * This cap specifies whether the AIL 3 mode for
4693 * H_SET_RESOURCE is supported. The default is modified
4694 * by default_caps_with_cpu().
4695 */
4696 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4697 spapr_caps_add_properties(smc);
4698 smc->irq = &spapr_irq_dual;
4699 smc->dr_phb_enabled = true;
4700 smc->linux_pci_probe = true;
4701 smc->smp_threads_vsmt = true;
4702 smc->nr_xirqs = SPAPR_NR_XIRQS;
4703 xfc->match_nvt = spapr_match_nvt;
4704 vmc->client_architecture_support = spapr_vof_client_architecture_support;
4705 vmc->quiesce = spapr_vof_quiesce;
4706 vmc->setprop = spapr_vof_setprop;
4707 }
4708
4709 static const TypeInfo spapr_machine_info = {
4710 .name = TYPE_SPAPR_MACHINE,
4711 .parent = TYPE_MACHINE,
4712 .abstract = true,
4713 .instance_size = sizeof(SpaprMachineState),
4714 .instance_init = spapr_instance_init,
4715 .instance_finalize = spapr_machine_finalizefn,
4716 .class_size = sizeof(SpaprMachineClass),
4717 .class_init = spapr_machine_class_init,
4718 .interfaces = (const InterfaceInfo[]) {
4719 { TYPE_FW_PATH_PROVIDER },
4720 { TYPE_NMI },
4721 { TYPE_HOTPLUG_HANDLER },
4722 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4723 { TYPE_XICS_FABRIC },
4724 { TYPE_INTERRUPT_STATS_PROVIDER },
4725 { TYPE_XIVE_FABRIC },
4726 { TYPE_VOF_MACHINE_IF },
4727 { }
4728 },
4729 };
4730
spapr_machine_latest_class_options(MachineClass * mc)4731 static void spapr_machine_latest_class_options(MachineClass *mc)
4732 {
4733 mc->alias = "pseries";
4734 mc->is_default = true;
4735 }
4736
4737 #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...) \
4738 static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)( \
4739 ObjectClass *oc, \
4740 const void *data) \
4741 { \
4742 MachineClass *mc = MACHINE_CLASS(oc); \
4743 MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc); \
4744 MACHINE_VER_DEPRECATION(__VA_ARGS__); \
4745 if (latest) { \
4746 spapr_machine_latest_class_options(mc); \
4747 } \
4748 } \
4749 static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \
4750 { \
4751 .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__), \
4752 .parent = TYPE_SPAPR_MACHINE, \
4753 .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \
4754 }; \
4755 static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void) \
4756 { \
4757 MACHINE_VER_DELETION(__VA_ARGS__); \
4758 type_register_static(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__)); \
4759 } \
4760 type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__))
4761
4762 #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \
4763 DEFINE_SPAPR_MACHINE_IMPL(true, major, minor)
4764 #define DEFINE_SPAPR_MACHINE(major, minor) \
4765 DEFINE_SPAPR_MACHINE_IMPL(false, major, minor)
4766
4767 /*
4768 * pseries-10.1
4769 */
spapr_machine_10_1_class_options(MachineClass * mc)4770 static void spapr_machine_10_1_class_options(MachineClass *mc)
4771 {
4772 /* Defaults for the latest behaviour inherited from the base class */
4773 }
4774
4775 DEFINE_SPAPR_MACHINE_AS_LATEST(10, 1);
4776
4777 /*
4778 * pseries-10.0
4779 */
spapr_machine_10_0_class_options(MachineClass * mc)4780 static void spapr_machine_10_0_class_options(MachineClass *mc)
4781 {
4782 spapr_machine_10_1_class_options(mc);
4783 compat_props_add(mc->compat_props, hw_compat_10_0, hw_compat_10_0_len);
4784 }
4785
4786 DEFINE_SPAPR_MACHINE(10, 0);
4787
4788 /*
4789 * pseries-9.2
4790 */
spapr_machine_9_2_class_options(MachineClass * mc)4791 static void spapr_machine_9_2_class_options(MachineClass *mc)
4792 {
4793 spapr_machine_10_0_class_options(mc);
4794 compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len);
4795 }
4796
4797 DEFINE_SPAPR_MACHINE(9, 2);
4798
4799 /*
4800 * pseries-9.1
4801 */
spapr_machine_9_1_class_options(MachineClass * mc)4802 static void spapr_machine_9_1_class_options(MachineClass *mc)
4803 {
4804 spapr_machine_9_2_class_options(mc);
4805 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len);
4806 }
4807
4808 DEFINE_SPAPR_MACHINE(9, 1);
4809
4810 /*
4811 * pseries-9.0
4812 */
spapr_machine_9_0_class_options(MachineClass * mc)4813 static void spapr_machine_9_0_class_options(MachineClass *mc)
4814 {
4815 spapr_machine_9_1_class_options(mc);
4816 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
4817 }
4818
4819 DEFINE_SPAPR_MACHINE(9, 0);
4820
4821 /*
4822 * pseries-8.2
4823 */
spapr_machine_8_2_class_options(MachineClass * mc)4824 static void spapr_machine_8_2_class_options(MachineClass *mc)
4825 {
4826 spapr_machine_9_0_class_options(mc);
4827 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4828 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4829 }
4830
4831 DEFINE_SPAPR_MACHINE(8, 2);
4832
4833 /*
4834 * pseries-8.1
4835 */
spapr_machine_8_1_class_options(MachineClass * mc)4836 static void spapr_machine_8_1_class_options(MachineClass *mc)
4837 {
4838 spapr_machine_8_2_class_options(mc);
4839 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4840 }
4841
4842 DEFINE_SPAPR_MACHINE(8, 1);
4843
4844 /*
4845 * pseries-8.0
4846 */
spapr_machine_8_0_class_options(MachineClass * mc)4847 static void spapr_machine_8_0_class_options(MachineClass *mc)
4848 {
4849 spapr_machine_8_1_class_options(mc);
4850 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4851 }
4852
4853 DEFINE_SPAPR_MACHINE(8, 0);
4854
4855 /*
4856 * pseries-7.2
4857 */
spapr_machine_7_2_class_options(MachineClass * mc)4858 static void spapr_machine_7_2_class_options(MachineClass *mc)
4859 {
4860 spapr_machine_8_0_class_options(mc);
4861 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4862 }
4863
4864 DEFINE_SPAPR_MACHINE(7, 2);
4865
4866 /*
4867 * pseries-7.1
4868 */
spapr_machine_7_1_class_options(MachineClass * mc)4869 static void spapr_machine_7_1_class_options(MachineClass *mc)
4870 {
4871 spapr_machine_7_2_class_options(mc);
4872 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4873 }
4874
4875 DEFINE_SPAPR_MACHINE(7, 1);
4876
4877 /*
4878 * pseries-7.0
4879 */
spapr_machine_7_0_class_options(MachineClass * mc)4880 static void spapr_machine_7_0_class_options(MachineClass *mc)
4881 {
4882 spapr_machine_7_1_class_options(mc);
4883 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4884 }
4885
4886 DEFINE_SPAPR_MACHINE(7, 0);
4887
4888 /*
4889 * pseries-6.2
4890 */
spapr_machine_6_2_class_options(MachineClass * mc)4891 static void spapr_machine_6_2_class_options(MachineClass *mc)
4892 {
4893 spapr_machine_7_0_class_options(mc);
4894 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4895 }
4896
4897 DEFINE_SPAPR_MACHINE(6, 2);
4898
4899 /*
4900 * pseries-6.1
4901 */
spapr_machine_6_1_class_options(MachineClass * mc)4902 static void spapr_machine_6_1_class_options(MachineClass *mc)
4903 {
4904 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4905
4906 spapr_machine_6_2_class_options(mc);
4907 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4908 smc->pre_6_2_numa_affinity = true;
4909 mc->smp_props.prefer_sockets = true;
4910 }
4911
4912 DEFINE_SPAPR_MACHINE(6, 1);
4913
4914 /*
4915 * pseries-6.0
4916 */
spapr_machine_6_0_class_options(MachineClass * mc)4917 static void spapr_machine_6_0_class_options(MachineClass *mc)
4918 {
4919 spapr_machine_6_1_class_options(mc);
4920 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4921 }
4922
4923 DEFINE_SPAPR_MACHINE(6, 0);
4924
4925 /*
4926 * pseries-5.2
4927 */
spapr_machine_5_2_class_options(MachineClass * mc)4928 static void spapr_machine_5_2_class_options(MachineClass *mc)
4929 {
4930 spapr_machine_6_0_class_options(mc);
4931 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4932 }
4933
4934 DEFINE_SPAPR_MACHINE(5, 2);
4935
4936 /*
4937 * pseries-5.1
4938 */
spapr_machine_5_1_class_options(MachineClass * mc)4939 static void spapr_machine_5_1_class_options(MachineClass *mc)
4940 {
4941 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4942
4943 spapr_machine_5_2_class_options(mc);
4944 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4945 smc->pre_5_2_numa_associativity = true;
4946 }
4947
4948 DEFINE_SPAPR_MACHINE(5, 1);
4949
4950 /*
4951 * pseries-5.0
4952 */
spapr_machine_5_0_class_options(MachineClass * mc)4953 static void spapr_machine_5_0_class_options(MachineClass *mc)
4954 {
4955 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4956 static GlobalProperty compat[] = {
4957 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4958 };
4959
4960 spapr_machine_5_1_class_options(mc);
4961 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4962 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4963 mc->numa_mem_supported = true;
4964 smc->pre_5_1_assoc_refpoints = true;
4965 }
4966
4967 DEFINE_SPAPR_MACHINE(5, 0);
4968
4969 /*
4970 * pseries-4.2
4971 */
spapr_machine_4_2_class_options(MachineClass * mc)4972 static void spapr_machine_4_2_class_options(MachineClass *mc)
4973 {
4974 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4975
4976 spapr_machine_5_0_class_options(mc);
4977 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4978 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4979 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4980 smc->rma_limit = 16 * GiB;
4981 mc->nvdimm_supported = false;
4982 }
4983
4984 DEFINE_SPAPR_MACHINE(4, 2);
4985
4986 /*
4987 * pseries-4.1
4988 */
spapr_machine_4_1_class_options(MachineClass * mc)4989 static void spapr_machine_4_1_class_options(MachineClass *mc)
4990 {
4991 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4992 static GlobalProperty compat[] = {
4993 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4994 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4995 };
4996
4997 spapr_machine_4_2_class_options(mc);
4998 smc->linux_pci_probe = false;
4999 smc->smp_threads_vsmt = false;
5000 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
5001 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5002 }
5003
5004 DEFINE_SPAPR_MACHINE(4, 1);
5005
5006 /*
5007 * pseries-4.0
5008 */
phb_placement_4_0(SpaprMachineState * spapr,uint32_t index,uint64_t * buid,hwaddr * pio,hwaddr * mmio32,hwaddr * mmio64,unsigned n_dma,uint32_t * liobns,Error ** errp)5009 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
5010 uint64_t *buid, hwaddr *pio,
5011 hwaddr *mmio32, hwaddr *mmio64,
5012 unsigned n_dma, uint32_t *liobns, Error **errp)
5013 {
5014 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5015 liobns, errp)) {
5016 return false;
5017 }
5018 return true;
5019 }
spapr_machine_4_0_class_options(MachineClass * mc)5020 static void spapr_machine_4_0_class_options(MachineClass *mc)
5021 {
5022 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5023
5024 spapr_machine_4_1_class_options(mc);
5025 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5026 smc->phb_placement = phb_placement_4_0;
5027 smc->irq = &spapr_irq_xics;
5028 smc->pre_4_1_migration = true;
5029 }
5030
5031 DEFINE_SPAPR_MACHINE(4, 0);
5032
5033 /*
5034 * pseries-3.1
5035 */
spapr_machine_3_1_class_options(MachineClass * mc)5036 static void spapr_machine_3_1_class_options(MachineClass *mc)
5037 {
5038 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5039
5040 spapr_machine_4_0_class_options(mc);
5041 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5042
5043 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5044 smc->update_dt_enabled = false;
5045 smc->dr_phb_enabled = false;
5046 smc->broken_host_serial_model = true;
5047 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5048 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5049 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5050 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5051 }
5052
5053 DEFINE_SPAPR_MACHINE(3, 1);
5054
5055 /*
5056 * pseries-3.0
5057 */
5058
spapr_machine_3_0_class_options(MachineClass * mc)5059 static void spapr_machine_3_0_class_options(MachineClass *mc)
5060 {
5061 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5062
5063 spapr_machine_3_1_class_options(mc);
5064 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5065
5066 smc->legacy_irq_allocation = true;
5067 smc->nr_xirqs = 0x400;
5068 smc->irq = &spapr_irq_xics_legacy;
5069 }
5070
5071 DEFINE_SPAPR_MACHINE(3, 0);
5072
spapr_machine_register_types(void)5073 static void spapr_machine_register_types(void)
5074 {
5075 type_register_static(&spapr_machine_info);
5076 }
5077
5078 type_init(spapr_machine_register_types)
5079