1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #ifdef CONFIG_NET_RX_BUSY_POLL
114 unsigned int sysctl_net_busy_read __read_mostly;
115 unsigned int sysctl_net_busy_poll __read_mostly;
116 #endif
117
118 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134 static void sock_splice_eof(struct file *file);
135
136 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)137 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 {
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144 }
145 #else
146 #define sock_show_fdinfo NULL
147 #endif
148
149 /*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154 static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .llseek = no_llseek,
157 .read_iter = sock_read_iter,
158 .write_iter = sock_write_iter,
159 .poll = sock_poll,
160 .unlocked_ioctl = sock_ioctl,
161 #ifdef CONFIG_COMPAT
162 .compat_ioctl = compat_sock_ioctl,
163 #endif
164 .uring_cmd = io_uring_cmd_sock,
165 .mmap = sock_mmap,
166 .release = sock_close,
167 .fasync = sock_fasync,
168 .splice_write = splice_to_socket,
169 .splice_read = sock_splice_read,
170 .splice_eof = sock_splice_eof,
171 .show_fdinfo = sock_show_fdinfo,
172 };
173
174 static const char * const pf_family_names[] = {
175 [PF_UNSPEC] = "PF_UNSPEC",
176 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
177 [PF_INET] = "PF_INET",
178 [PF_AX25] = "PF_AX25",
179 [PF_IPX] = "PF_IPX",
180 [PF_APPLETALK] = "PF_APPLETALK",
181 [PF_NETROM] = "PF_NETROM",
182 [PF_BRIDGE] = "PF_BRIDGE",
183 [PF_ATMPVC] = "PF_ATMPVC",
184 [PF_X25] = "PF_X25",
185 [PF_INET6] = "PF_INET6",
186 [PF_ROSE] = "PF_ROSE",
187 [PF_DECnet] = "PF_DECnet",
188 [PF_NETBEUI] = "PF_NETBEUI",
189 [PF_SECURITY] = "PF_SECURITY",
190 [PF_KEY] = "PF_KEY",
191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
192 [PF_PACKET] = "PF_PACKET",
193 [PF_ASH] = "PF_ASH",
194 [PF_ECONET] = "PF_ECONET",
195 [PF_ATMSVC] = "PF_ATMSVC",
196 [PF_RDS] = "PF_RDS",
197 [PF_SNA] = "PF_SNA",
198 [PF_IRDA] = "PF_IRDA",
199 [PF_PPPOX] = "PF_PPPOX",
200 [PF_WANPIPE] = "PF_WANPIPE",
201 [PF_LLC] = "PF_LLC",
202 [PF_IB] = "PF_IB",
203 [PF_MPLS] = "PF_MPLS",
204 [PF_CAN] = "PF_CAN",
205 [PF_TIPC] = "PF_TIPC",
206 [PF_BLUETOOTH] = "PF_BLUETOOTH",
207 [PF_IUCV] = "PF_IUCV",
208 [PF_RXRPC] = "PF_RXRPC",
209 [PF_ISDN] = "PF_ISDN",
210 [PF_PHONET] = "PF_PHONET",
211 [PF_IEEE802154] = "PF_IEEE802154",
212 [PF_CAIF] = "PF_CAIF",
213 [PF_ALG] = "PF_ALG",
214 [PF_NFC] = "PF_NFC",
215 [PF_VSOCK] = "PF_VSOCK",
216 [PF_KCM] = "PF_KCM",
217 [PF_QIPCRTR] = "PF_QIPCRTR",
218 [PF_SMC] = "PF_SMC",
219 [PF_XDP] = "PF_XDP",
220 [PF_MCTP] = "PF_MCTP",
221 };
222
223 /*
224 * The protocol list. Each protocol is registered in here.
225 */
226
227 static DEFINE_SPINLOCK(net_family_lock);
228 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229
230 /*
231 * Support routines.
232 * Move socket addresses back and forth across the kernel/user
233 * divide and look after the messy bits.
234 */
235
236 /**
237 * move_addr_to_kernel - copy a socket address into kernel space
238 * @uaddr: Address in user space
239 * @kaddr: Address in kernel space
240 * @ulen: Length in user space
241 *
242 * The address is copied into kernel space. If the provided address is
243 * too long an error code of -EINVAL is returned. If the copy gives
244 * invalid addresses -EFAULT is returned. On a success 0 is returned.
245 */
246
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)247 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248 {
249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 return -EINVAL;
251 if (ulen == 0)
252 return 0;
253 if (copy_from_user(kaddr, uaddr, ulen))
254 return -EFAULT;
255 return audit_sockaddr(ulen, kaddr);
256 }
257
258 /**
259 * move_addr_to_user - copy an address to user space
260 * @kaddr: kernel space address
261 * @klen: length of address in kernel
262 * @uaddr: user space address
263 * @ulen: pointer to user length field
264 *
265 * The value pointed to by ulen on entry is the buffer length available.
266 * This is overwritten with the buffer space used. -EINVAL is returned
267 * if an overlong buffer is specified or a negative buffer size. -EFAULT
268 * is returned if either the buffer or the length field are not
269 * accessible.
270 * After copying the data up to the limit the user specifies, the true
271 * length of the data is written over the length limit the user
272 * specified. Zero is returned for a success.
273 */
274
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)275 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 void __user *uaddr, int __user *ulen)
277 {
278 int err;
279 int len;
280
281 BUG_ON(klen > sizeof(struct sockaddr_storage));
282 err = get_user(len, ulen);
283 if (err)
284 return err;
285 if (len > klen)
286 len = klen;
287 if (len < 0)
288 return -EINVAL;
289 if (len) {
290 if (audit_sockaddr(klen, kaddr))
291 return -ENOMEM;
292 if (copy_to_user(uaddr, kaddr, len))
293 return -EFAULT;
294 }
295 /*
296 * "fromlen shall refer to the value before truncation.."
297 * 1003.1g
298 */
299 return __put_user(klen, ulen);
300 }
301
302 static struct kmem_cache *sock_inode_cachep __ro_after_init;
303
sock_alloc_inode(struct super_block * sb)304 static struct inode *sock_alloc_inode(struct super_block *sb)
305 {
306 struct socket_alloc *ei;
307
308 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
309 if (!ei)
310 return NULL;
311 init_waitqueue_head(&ei->socket.wq.wait);
312 ei->socket.wq.fasync_list = NULL;
313 ei->socket.wq.flags = 0;
314
315 ei->socket.state = SS_UNCONNECTED;
316 ei->socket.flags = 0;
317 ei->socket.ops = NULL;
318 ei->socket.sk = NULL;
319 ei->socket.file = NULL;
320
321 return &ei->vfs_inode;
322 }
323
sock_free_inode(struct inode * inode)324 static void sock_free_inode(struct inode *inode)
325 {
326 struct socket_alloc *ei;
327
328 ei = container_of(inode, struct socket_alloc, vfs_inode);
329 kmem_cache_free(sock_inode_cachep, ei);
330 }
331
init_once(void * foo)332 static void init_once(void *foo)
333 {
334 struct socket_alloc *ei = (struct socket_alloc *)foo;
335
336 inode_init_once(&ei->vfs_inode);
337 }
338
init_inodecache(void)339 static void init_inodecache(void)
340 {
341 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
342 sizeof(struct socket_alloc),
343 0,
344 (SLAB_HWCACHE_ALIGN |
345 SLAB_RECLAIM_ACCOUNT |
346 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 init_once);
348 BUG_ON(sock_inode_cachep == NULL);
349 }
350
351 static const struct super_operations sockfs_ops = {
352 .alloc_inode = sock_alloc_inode,
353 .free_inode = sock_free_inode,
354 .statfs = simple_statfs,
355 };
356
357 /*
358 * sockfs_dname() is called from d_path().
359 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)360 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361 {
362 return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 d_inode(dentry)->i_ino);
364 }
365
366 static const struct dentry_operations sockfs_dentry_operations = {
367 .d_dname = sockfs_dname,
368 };
369
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)370 static int sockfs_xattr_get(const struct xattr_handler *handler,
371 struct dentry *dentry, struct inode *inode,
372 const char *suffix, void *value, size_t size)
373 {
374 if (value) {
375 if (dentry->d_name.len + 1 > size)
376 return -ERANGE;
377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 }
379 return dentry->d_name.len + 1;
380 }
381
382 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385
386 static const struct xattr_handler sockfs_xattr_handler = {
387 .name = XATTR_NAME_SOCKPROTONAME,
388 .get = sockfs_xattr_get,
389 };
390
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)391 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 struct mnt_idmap *idmap,
393 struct dentry *dentry, struct inode *inode,
394 const char *suffix, const void *value,
395 size_t size, int flags)
396 {
397 /* Handled by LSM. */
398 return -EAGAIN;
399 }
400
401 static const struct xattr_handler sockfs_security_xattr_handler = {
402 .prefix = XATTR_SECURITY_PREFIX,
403 .set = sockfs_security_xattr_set,
404 };
405
406 static const struct xattr_handler *sockfs_xattr_handlers[] = {
407 &sockfs_xattr_handler,
408 &sockfs_security_xattr_handler,
409 NULL
410 };
411
sockfs_init_fs_context(struct fs_context * fc)412 static int sockfs_init_fs_context(struct fs_context *fc)
413 {
414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 if (!ctx)
416 return -ENOMEM;
417 ctx->ops = &sockfs_ops;
418 ctx->dops = &sockfs_dentry_operations;
419 ctx->xattr = sockfs_xattr_handlers;
420 return 0;
421 }
422
423 static struct vfsmount *sock_mnt __read_mostly;
424
425 static struct file_system_type sock_fs_type = {
426 .name = "sockfs",
427 .init_fs_context = sockfs_init_fs_context,
428 .kill_sb = kill_anon_super,
429 };
430
431 /*
432 * Obtains the first available file descriptor and sets it up for use.
433 *
434 * These functions create file structures and maps them to fd space
435 * of the current process. On success it returns file descriptor
436 * and file struct implicitly stored in sock->file.
437 * Note that another thread may close file descriptor before we return
438 * from this function. We use the fact that now we do not refer
439 * to socket after mapping. If one day we will need it, this
440 * function will increment ref. count on file by 1.
441 *
442 * In any case returned fd MAY BE not valid!
443 * This race condition is unavoidable
444 * with shared fd spaces, we cannot solve it inside kernel,
445 * but we take care of internal coherence yet.
446 */
447
448 /**
449 * sock_alloc_file - Bind a &socket to a &file
450 * @sock: socket
451 * @flags: file status flags
452 * @dname: protocol name
453 *
454 * Returns the &file bound with @sock, implicitly storing it
455 * in sock->file. If dname is %NULL, sets to "".
456 *
457 * On failure @sock is released, and an ERR pointer is returned.
458 *
459 * This function uses GFP_KERNEL internally.
460 */
461
sock_alloc_file(struct socket * sock,int flags,const char * dname)462 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463 {
464 struct file *file;
465
466 if (!dname)
467 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468
469 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
470 O_RDWR | (flags & O_NONBLOCK),
471 &socket_file_ops);
472 if (IS_ERR(file)) {
473 sock_release(sock);
474 return file;
475 }
476
477 file->f_mode |= FMODE_NOWAIT;
478 sock->file = file;
479 file->private_data = sock;
480 stream_open(SOCK_INODE(sock), file);
481 return file;
482 }
483 EXPORT_SYMBOL(sock_alloc_file);
484
sock_map_fd(struct socket * sock,int flags)485 static int sock_map_fd(struct socket *sock, int flags)
486 {
487 struct file *newfile;
488 int fd = get_unused_fd_flags(flags);
489 if (unlikely(fd < 0)) {
490 sock_release(sock);
491 return fd;
492 }
493
494 newfile = sock_alloc_file(sock, flags, NULL);
495 if (!IS_ERR(newfile)) {
496 fd_install(fd, newfile);
497 return fd;
498 }
499
500 put_unused_fd(fd);
501 return PTR_ERR(newfile);
502 }
503
504 /**
505 * sock_from_file - Return the &socket bounded to @file.
506 * @file: file
507 *
508 * On failure returns %NULL.
509 */
510
sock_from_file(struct file * file)511 struct socket *sock_from_file(struct file *file)
512 {
513 if (file->f_op == &socket_file_ops)
514 return file->private_data; /* set in sock_alloc_file */
515
516 return NULL;
517 }
518 EXPORT_SYMBOL(sock_from_file);
519
520 /**
521 * sockfd_lookup - Go from a file number to its socket slot
522 * @fd: file handle
523 * @err: pointer to an error code return
524 *
525 * The file handle passed in is locked and the socket it is bound
526 * to is returned. If an error occurs the err pointer is overwritten
527 * with a negative errno code and NULL is returned. The function checks
528 * for both invalid handles and passing a handle which is not a socket.
529 *
530 * On a success the socket object pointer is returned.
531 */
532
sockfd_lookup(int fd,int * err)533 struct socket *sockfd_lookup(int fd, int *err)
534 {
535 struct file *file;
536 struct socket *sock;
537
538 file = fget(fd);
539 if (!file) {
540 *err = -EBADF;
541 return NULL;
542 }
543
544 sock = sock_from_file(file);
545 if (!sock) {
546 *err = -ENOTSOCK;
547 fput(file);
548 }
549 return sock;
550 }
551 EXPORT_SYMBOL(sockfd_lookup);
552
sockfd_lookup_light(int fd,int * err,int * fput_needed)553 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554 {
555 struct fd f = fdget(fd);
556 struct socket *sock;
557
558 *err = -EBADF;
559 if (f.file) {
560 sock = sock_from_file(f.file);
561 if (likely(sock)) {
562 *fput_needed = f.flags & FDPUT_FPUT;
563 return sock;
564 }
565 *err = -ENOTSOCK;
566 fdput(f);
567 }
568 return NULL;
569 }
570
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)571 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 size_t size)
573 {
574 ssize_t len;
575 ssize_t used = 0;
576
577 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
578 if (len < 0)
579 return len;
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 buffer += len;
585 }
586
587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 used += len;
589 if (buffer) {
590 if (size < used)
591 return -ERANGE;
592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 buffer += len;
594 }
595
596 return used;
597 }
598
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)599 static int sockfs_setattr(struct mnt_idmap *idmap,
600 struct dentry *dentry, struct iattr *iattr)
601 {
602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603
604 if (!err && (iattr->ia_valid & ATTR_UID)) {
605 struct socket *sock = SOCKET_I(d_inode(dentry));
606
607 if (sock->sk)
608 sock->sk->sk_uid = iattr->ia_uid;
609 else
610 err = -ENOENT;
611 }
612
613 return err;
614 }
615
616 static const struct inode_operations sockfs_inode_ops = {
617 .listxattr = sockfs_listxattr,
618 .setattr = sockfs_setattr,
619 };
620
621 /**
622 * sock_alloc - allocate a socket
623 *
624 * Allocate a new inode and socket object. The two are bound together
625 * and initialised. The socket is then returned. If we are out of inodes
626 * NULL is returned. This functions uses GFP_KERNEL internally.
627 */
628
sock_alloc(void)629 struct socket *sock_alloc(void)
630 {
631 struct inode *inode;
632 struct socket *sock;
633
634 inode = new_inode_pseudo(sock_mnt->mnt_sb);
635 if (!inode)
636 return NULL;
637
638 sock = SOCKET_I(inode);
639
640 inode->i_ino = get_next_ino();
641 inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 inode->i_uid = current_fsuid();
643 inode->i_gid = current_fsgid();
644 inode->i_op = &sockfs_inode_ops;
645
646 return sock;
647 }
648 EXPORT_SYMBOL(sock_alloc);
649
__sock_release(struct socket * sock,struct inode * inode)650 static void __sock_release(struct socket *sock, struct inode *inode)
651 {
652 const struct proto_ops *ops = READ_ONCE(sock->ops);
653
654 if (ops) {
655 struct module *owner = ops->owner;
656
657 if (inode)
658 inode_lock(inode);
659 ops->release(sock);
660 sock->sk = NULL;
661 if (inode)
662 inode_unlock(inode);
663 sock->ops = NULL;
664 module_put(owner);
665 }
666
667 if (sock->wq.fasync_list)
668 pr_err("%s: fasync list not empty!\n", __func__);
669
670 if (!sock->file) {
671 iput(SOCK_INODE(sock));
672 return;
673 }
674 sock->file = NULL;
675 }
676
677 /**
678 * sock_release - close a socket
679 * @sock: socket to close
680 *
681 * The socket is released from the protocol stack if it has a release
682 * callback, and the inode is then released if the socket is bound to
683 * an inode not a file.
684 */
sock_release(struct socket * sock)685 void sock_release(struct socket *sock)
686 {
687 __sock_release(sock, NULL);
688 }
689 EXPORT_SYMBOL(sock_release);
690
__sock_tx_timestamp(__u16 tsflags,__u8 * tx_flags)691 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692 {
693 u8 flags = *tx_flags;
694
695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 flags |= SKBTX_HW_TSTAMP;
697
698 /* PTP hardware clocks can provide a free running cycle counter
699 * as a time base for virtual clocks. Tell driver to use the
700 * free running cycle counter for timestamp if socket is bound
701 * to virtual clock.
702 */
703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 }
706
707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 flags |= SKBTX_SW_TSTAMP;
709
710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 flags |= SKBTX_SCHED_TSTAMP;
712
713 *tx_flags = flags;
714 }
715 EXPORT_SYMBOL(__sock_tx_timestamp);
716
717 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 size_t));
719 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 size_t));
721
call_trace_sock_send_length(struct sock * sk,int ret,int flags)722 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 int flags)
724 {
725 trace_sock_send_length(sk, ret, 0);
726 }
727
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)728 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729 {
730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 inet_sendmsg, sock, msg,
732 msg_data_left(msg));
733 BUG_ON(ret == -EIOCBQUEUED);
734
735 if (trace_sock_send_length_enabled())
736 call_trace_sock_send_length(sock->sk, ret, 0);
737 return ret;
738 }
739
__sock_sendmsg(struct socket * sock,struct msghdr * msg)740 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741 {
742 int err = security_socket_sendmsg(sock, msg,
743 msg_data_left(msg));
744
745 return err ?: sock_sendmsg_nosec(sock, msg);
746 }
747
748 /**
749 * sock_sendmsg - send a message through @sock
750 * @sock: socket
751 * @msg: message to send
752 *
753 * Sends @msg through @sock, passing through LSM.
754 * Returns the number of bytes sent, or an error code.
755 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)756 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757 {
758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 struct sockaddr_storage address;
760 int save_len = msg->msg_namelen;
761 int ret;
762
763 if (msg->msg_name) {
764 memcpy(&address, msg->msg_name, msg->msg_namelen);
765 msg->msg_name = &address;
766 }
767
768 ret = __sock_sendmsg(sock, msg);
769 msg->msg_name = save_addr;
770 msg->msg_namelen = save_len;
771
772 return ret;
773 }
774 EXPORT_SYMBOL(sock_sendmsg);
775
776 /**
777 * kernel_sendmsg - send a message through @sock (kernel-space)
778 * @sock: socket
779 * @msg: message header
780 * @vec: kernel vec
781 * @num: vec array length
782 * @size: total message data size
783 *
784 * Builds the message data with @vec and sends it through @sock.
785 * Returns the number of bytes sent, or an error code.
786 */
787
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)788 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
789 struct kvec *vec, size_t num, size_t size)
790 {
791 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 return sock_sendmsg(sock, msg);
793 }
794 EXPORT_SYMBOL(kernel_sendmsg);
795
796 /**
797 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
798 * @sk: sock
799 * @msg: message header
800 * @vec: output s/g array
801 * @num: output s/g array length
802 * @size: total message data size
803 *
804 * Builds the message data with @vec and sends it through @sock.
805 * Returns the number of bytes sent, or an error code.
806 * Caller must hold @sk.
807 */
808
kernel_sendmsg_locked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)809 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
810 struct kvec *vec, size_t num, size_t size)
811 {
812 struct socket *sock = sk->sk_socket;
813 const struct proto_ops *ops = READ_ONCE(sock->ops);
814
815 if (!ops->sendmsg_locked)
816 return sock_no_sendmsg_locked(sk, msg, size);
817
818 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
819
820 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
821 }
822 EXPORT_SYMBOL(kernel_sendmsg_locked);
823
skb_is_err_queue(const struct sk_buff * skb)824 static bool skb_is_err_queue(const struct sk_buff *skb)
825 {
826 /* pkt_type of skbs enqueued on the error queue are set to
827 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
828 * in recvmsg, since skbs received on a local socket will never
829 * have a pkt_type of PACKET_OUTGOING.
830 */
831 return skb->pkt_type == PACKET_OUTGOING;
832 }
833
834 /* On transmit, software and hardware timestamps are returned independently.
835 * As the two skb clones share the hardware timestamp, which may be updated
836 * before the software timestamp is received, a hardware TX timestamp may be
837 * returned only if there is no software TX timestamp. Ignore false software
838 * timestamps, which may be made in the __sock_recv_timestamp() call when the
839 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
840 * hardware timestamp.
841 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)842 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
843 {
844 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
845 }
846
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)847 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
848 {
849 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
850 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
851 struct net_device *orig_dev;
852 ktime_t hwtstamp;
853
854 rcu_read_lock();
855 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
856 if (orig_dev) {
857 *if_index = orig_dev->ifindex;
858 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
859 } else {
860 hwtstamp = shhwtstamps->hwtstamp;
861 }
862 rcu_read_unlock();
863
864 return hwtstamp;
865 }
866
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)867 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
868 int if_index)
869 {
870 struct scm_ts_pktinfo ts_pktinfo;
871 struct net_device *orig_dev;
872
873 if (!skb_mac_header_was_set(skb))
874 return;
875
876 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
877
878 if (!if_index) {
879 rcu_read_lock();
880 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
881 if (orig_dev)
882 if_index = orig_dev->ifindex;
883 rcu_read_unlock();
884 }
885 ts_pktinfo.if_index = if_index;
886
887 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
888 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
889 sizeof(ts_pktinfo), &ts_pktinfo);
890 }
891
892 /*
893 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
894 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)895 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
896 struct sk_buff *skb)
897 {
898 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
899 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
900 struct scm_timestamping_internal tss;
901 int empty = 1, false_tstamp = 0;
902 struct skb_shared_hwtstamps *shhwtstamps =
903 skb_hwtstamps(skb);
904 int if_index;
905 ktime_t hwtstamp;
906 u32 tsflags;
907
908 /* Race occurred between timestamp enabling and packet
909 receiving. Fill in the current time for now. */
910 if (need_software_tstamp && skb->tstamp == 0) {
911 __net_timestamp(skb);
912 false_tstamp = 1;
913 }
914
915 if (need_software_tstamp) {
916 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
917 if (new_tstamp) {
918 struct __kernel_sock_timeval tv;
919
920 skb_get_new_timestamp(skb, &tv);
921 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
922 sizeof(tv), &tv);
923 } else {
924 struct __kernel_old_timeval tv;
925
926 skb_get_timestamp(skb, &tv);
927 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
928 sizeof(tv), &tv);
929 }
930 } else {
931 if (new_tstamp) {
932 struct __kernel_timespec ts;
933
934 skb_get_new_timestampns(skb, &ts);
935 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
936 sizeof(ts), &ts);
937 } else {
938 struct __kernel_old_timespec ts;
939
940 skb_get_timestampns(skb, &ts);
941 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
942 sizeof(ts), &ts);
943 }
944 }
945 }
946
947 memset(&tss, 0, sizeof(tss));
948 tsflags = READ_ONCE(sk->sk_tsflags);
949 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
950 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
951 empty = 0;
952 if (shhwtstamps &&
953 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
954 !skb_is_swtx_tstamp(skb, false_tstamp)) {
955 if_index = 0;
956 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
957 hwtstamp = get_timestamp(sk, skb, &if_index);
958 else
959 hwtstamp = shhwtstamps->hwtstamp;
960
961 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
962 hwtstamp = ptp_convert_timestamp(&hwtstamp,
963 READ_ONCE(sk->sk_bind_phc));
964
965 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
966 empty = 0;
967
968 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
969 !skb_is_err_queue(skb))
970 put_ts_pktinfo(msg, skb, if_index);
971 }
972 }
973 if (!empty) {
974 if (sock_flag(sk, SOCK_TSTAMP_NEW))
975 put_cmsg_scm_timestamping64(msg, &tss);
976 else
977 put_cmsg_scm_timestamping(msg, &tss);
978
979 if (skb_is_err_queue(skb) && skb->len &&
980 SKB_EXT_ERR(skb)->opt_stats)
981 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
982 skb->len, skb->data);
983 }
984 }
985 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
986
987 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)988 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
989 struct sk_buff *skb)
990 {
991 int ack;
992
993 if (!sock_flag(sk, SOCK_WIFI_STATUS))
994 return;
995 if (!skb->wifi_acked_valid)
996 return;
997
998 ack = skb->wifi_acked;
999
1000 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
1001 }
1002 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1003 #endif
1004
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1005 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1006 struct sk_buff *skb)
1007 {
1008 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1009 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1010 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
1011 }
1012
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1013 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1014 struct sk_buff *skb)
1015 {
1016 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
1017 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1018 __u32 mark = skb->mark;
1019
1020 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
1021 }
1022 }
1023
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1024 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1025 struct sk_buff *skb)
1026 {
1027 sock_recv_timestamp(msg, sk, skb);
1028 sock_recv_drops(msg, sk, skb);
1029 sock_recv_mark(msg, sk, skb);
1030 }
1031 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1032
1033 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1034 size_t, int));
1035 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1036 size_t, int));
1037
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1038 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1039 {
1040 trace_sock_recv_length(sk, ret, flags);
1041 }
1042
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1043 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1044 int flags)
1045 {
1046 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1047 inet6_recvmsg,
1048 inet_recvmsg, sock, msg,
1049 msg_data_left(msg), flags);
1050 if (trace_sock_recv_length_enabled())
1051 call_trace_sock_recv_length(sock->sk, ret, flags);
1052 return ret;
1053 }
1054
1055 /**
1056 * sock_recvmsg - receive a message from @sock
1057 * @sock: socket
1058 * @msg: message to receive
1059 * @flags: message flags
1060 *
1061 * Receives @msg from @sock, passing through LSM. Returns the total number
1062 * of bytes received, or an error.
1063 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1064 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1065 {
1066 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1067
1068 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1069 }
1070 EXPORT_SYMBOL(sock_recvmsg);
1071
1072 /**
1073 * kernel_recvmsg - Receive a message from a socket (kernel space)
1074 * @sock: The socket to receive the message from
1075 * @msg: Received message
1076 * @vec: Input s/g array for message data
1077 * @num: Size of input s/g array
1078 * @size: Number of bytes to read
1079 * @flags: Message flags (MSG_DONTWAIT, etc...)
1080 *
1081 * On return the msg structure contains the scatter/gather array passed in the
1082 * vec argument. The array is modified so that it consists of the unfilled
1083 * portion of the original array.
1084 *
1085 * The returned value is the total number of bytes received, or an error.
1086 */
1087
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1088 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1089 struct kvec *vec, size_t num, size_t size, int flags)
1090 {
1091 msg->msg_control_is_user = false;
1092 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1093 return sock_recvmsg(sock, msg, flags);
1094 }
1095 EXPORT_SYMBOL(kernel_recvmsg);
1096
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1097 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1098 struct pipe_inode_info *pipe, size_t len,
1099 unsigned int flags)
1100 {
1101 struct socket *sock = file->private_data;
1102 const struct proto_ops *ops;
1103
1104 ops = READ_ONCE(sock->ops);
1105 if (unlikely(!ops->splice_read))
1106 return copy_splice_read(file, ppos, pipe, len, flags);
1107
1108 return ops->splice_read(sock, ppos, pipe, len, flags);
1109 }
1110
sock_splice_eof(struct file * file)1111 static void sock_splice_eof(struct file *file)
1112 {
1113 struct socket *sock = file->private_data;
1114 const struct proto_ops *ops;
1115
1116 ops = READ_ONCE(sock->ops);
1117 if (ops->splice_eof)
1118 ops->splice_eof(sock);
1119 }
1120
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1121 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1122 {
1123 struct file *file = iocb->ki_filp;
1124 struct socket *sock = file->private_data;
1125 struct msghdr msg = {.msg_iter = *to,
1126 .msg_iocb = iocb};
1127 ssize_t res;
1128
1129 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1130 msg.msg_flags = MSG_DONTWAIT;
1131
1132 if (iocb->ki_pos != 0)
1133 return -ESPIPE;
1134
1135 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1136 return 0;
1137
1138 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1139 *to = msg.msg_iter;
1140 return res;
1141 }
1142
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1143 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1144 {
1145 struct file *file = iocb->ki_filp;
1146 struct socket *sock = file->private_data;
1147 struct msghdr msg = {.msg_iter = *from,
1148 .msg_iocb = iocb};
1149 ssize_t res;
1150
1151 if (iocb->ki_pos != 0)
1152 return -ESPIPE;
1153
1154 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1155 msg.msg_flags = MSG_DONTWAIT;
1156
1157 if (sock->type == SOCK_SEQPACKET)
1158 msg.msg_flags |= MSG_EOR;
1159
1160 res = __sock_sendmsg(sock, &msg);
1161 *from = msg.msg_iter;
1162 return res;
1163 }
1164
1165 /*
1166 * Atomic setting of ioctl hooks to avoid race
1167 * with module unload.
1168 */
1169
1170 static DEFINE_MUTEX(br_ioctl_mutex);
1171 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1172 unsigned int cmd, struct ifreq *ifr,
1173 void __user *uarg);
1174
brioctl_set(int (* hook)(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg))1175 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1176 unsigned int cmd, struct ifreq *ifr,
1177 void __user *uarg))
1178 {
1179 mutex_lock(&br_ioctl_mutex);
1180 br_ioctl_hook = hook;
1181 mutex_unlock(&br_ioctl_mutex);
1182 }
1183 EXPORT_SYMBOL(brioctl_set);
1184
br_ioctl_call(struct net * net,struct net_bridge * br,unsigned int cmd,struct ifreq * ifr,void __user * uarg)1185 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1186 struct ifreq *ifr, void __user *uarg)
1187 {
1188 int err = -ENOPKG;
1189
1190 if (!br_ioctl_hook)
1191 request_module("bridge");
1192
1193 mutex_lock(&br_ioctl_mutex);
1194 if (br_ioctl_hook)
1195 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1196 mutex_unlock(&br_ioctl_mutex);
1197
1198 return err;
1199 }
1200
1201 static DEFINE_MUTEX(vlan_ioctl_mutex);
1202 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1203
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1204 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1205 {
1206 mutex_lock(&vlan_ioctl_mutex);
1207 vlan_ioctl_hook = hook;
1208 mutex_unlock(&vlan_ioctl_mutex);
1209 }
1210 EXPORT_SYMBOL(vlan_ioctl_set);
1211
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1212 static long sock_do_ioctl(struct net *net, struct socket *sock,
1213 unsigned int cmd, unsigned long arg)
1214 {
1215 const struct proto_ops *ops = READ_ONCE(sock->ops);
1216 struct ifreq ifr;
1217 bool need_copyout;
1218 int err;
1219 void __user *argp = (void __user *)arg;
1220 void __user *data;
1221
1222 err = ops->ioctl(sock, cmd, arg);
1223
1224 /*
1225 * If this ioctl is unknown try to hand it down
1226 * to the NIC driver.
1227 */
1228 if (err != -ENOIOCTLCMD)
1229 return err;
1230
1231 if (!is_socket_ioctl_cmd(cmd))
1232 return -ENOTTY;
1233
1234 if (get_user_ifreq(&ifr, &data, argp))
1235 return -EFAULT;
1236 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1237 if (!err && need_copyout)
1238 if (put_user_ifreq(&ifr, argp))
1239 return -EFAULT;
1240
1241 return err;
1242 }
1243
1244 /*
1245 * With an ioctl, arg may well be a user mode pointer, but we don't know
1246 * what to do with it - that's up to the protocol still.
1247 */
1248
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1249 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1250 {
1251 const struct proto_ops *ops;
1252 struct socket *sock;
1253 struct sock *sk;
1254 void __user *argp = (void __user *)arg;
1255 int pid, err;
1256 struct net *net;
1257
1258 sock = file->private_data;
1259 ops = READ_ONCE(sock->ops);
1260 sk = sock->sk;
1261 net = sock_net(sk);
1262 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1263 struct ifreq ifr;
1264 void __user *data;
1265 bool need_copyout;
1266 if (get_user_ifreq(&ifr, &data, argp))
1267 return -EFAULT;
1268 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1269 if (!err && need_copyout)
1270 if (put_user_ifreq(&ifr, argp))
1271 return -EFAULT;
1272 } else
1273 #ifdef CONFIG_WEXT_CORE
1274 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1275 err = wext_handle_ioctl(net, cmd, argp);
1276 } else
1277 #endif
1278 switch (cmd) {
1279 case FIOSETOWN:
1280 case SIOCSPGRP:
1281 err = -EFAULT;
1282 if (get_user(pid, (int __user *)argp))
1283 break;
1284 err = f_setown(sock->file, pid, 1);
1285 break;
1286 case FIOGETOWN:
1287 case SIOCGPGRP:
1288 err = put_user(f_getown(sock->file),
1289 (int __user *)argp);
1290 break;
1291 case SIOCGIFBR:
1292 case SIOCSIFBR:
1293 case SIOCBRADDBR:
1294 case SIOCBRDELBR:
1295 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1296 break;
1297 case SIOCGIFVLAN:
1298 case SIOCSIFVLAN:
1299 err = -ENOPKG;
1300 if (!vlan_ioctl_hook)
1301 request_module("8021q");
1302
1303 mutex_lock(&vlan_ioctl_mutex);
1304 if (vlan_ioctl_hook)
1305 err = vlan_ioctl_hook(net, argp);
1306 mutex_unlock(&vlan_ioctl_mutex);
1307 break;
1308 case SIOCGSKNS:
1309 err = -EPERM;
1310 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1311 break;
1312
1313 err = open_related_ns(&net->ns, get_net_ns);
1314 break;
1315 case SIOCGSTAMP_OLD:
1316 case SIOCGSTAMPNS_OLD:
1317 if (!ops->gettstamp) {
1318 err = -ENOIOCTLCMD;
1319 break;
1320 }
1321 err = ops->gettstamp(sock, argp,
1322 cmd == SIOCGSTAMP_OLD,
1323 !IS_ENABLED(CONFIG_64BIT));
1324 break;
1325 case SIOCGSTAMP_NEW:
1326 case SIOCGSTAMPNS_NEW:
1327 if (!ops->gettstamp) {
1328 err = -ENOIOCTLCMD;
1329 break;
1330 }
1331 err = ops->gettstamp(sock, argp,
1332 cmd == SIOCGSTAMP_NEW,
1333 false);
1334 break;
1335
1336 case SIOCGIFCONF:
1337 err = dev_ifconf(net, argp);
1338 break;
1339
1340 default:
1341 err = sock_do_ioctl(net, sock, cmd, arg);
1342 break;
1343 }
1344 return err;
1345 }
1346
1347 /**
1348 * sock_create_lite - creates a socket
1349 * @family: protocol family (AF_INET, ...)
1350 * @type: communication type (SOCK_STREAM, ...)
1351 * @protocol: protocol (0, ...)
1352 * @res: new socket
1353 *
1354 * Creates a new socket and assigns it to @res, passing through LSM.
1355 * The new socket initialization is not complete, see kernel_accept().
1356 * Returns 0 or an error. On failure @res is set to %NULL.
1357 * This function internally uses GFP_KERNEL.
1358 */
1359
sock_create_lite(int family,int type,int protocol,struct socket ** res)1360 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1361 {
1362 int err;
1363 struct socket *sock = NULL;
1364
1365 err = security_socket_create(family, type, protocol, 1);
1366 if (err)
1367 goto out;
1368
1369 sock = sock_alloc();
1370 if (!sock) {
1371 err = -ENOMEM;
1372 goto out;
1373 }
1374
1375 sock->type = type;
1376 err = security_socket_post_create(sock, family, type, protocol, 1);
1377 if (err)
1378 goto out_release;
1379
1380 out:
1381 *res = sock;
1382 return err;
1383 out_release:
1384 sock_release(sock);
1385 sock = NULL;
1386 goto out;
1387 }
1388 EXPORT_SYMBOL(sock_create_lite);
1389
1390 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1391 static __poll_t sock_poll(struct file *file, poll_table *wait)
1392 {
1393 struct socket *sock = file->private_data;
1394 const struct proto_ops *ops = READ_ONCE(sock->ops);
1395 __poll_t events = poll_requested_events(wait), flag = 0;
1396
1397 if (!ops->poll)
1398 return 0;
1399
1400 if (sk_can_busy_loop(sock->sk)) {
1401 /* poll once if requested by the syscall */
1402 if (events & POLL_BUSY_LOOP)
1403 sk_busy_loop(sock->sk, 1);
1404
1405 /* if this socket can poll_ll, tell the system call */
1406 flag = POLL_BUSY_LOOP;
1407 }
1408
1409 return ops->poll(file, sock, wait) | flag;
1410 }
1411
sock_mmap(struct file * file,struct vm_area_struct * vma)1412 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1413 {
1414 struct socket *sock = file->private_data;
1415
1416 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1417 }
1418
sock_close(struct inode * inode,struct file * filp)1419 static int sock_close(struct inode *inode, struct file *filp)
1420 {
1421 __sock_release(SOCKET_I(inode), inode);
1422 return 0;
1423 }
1424
1425 /*
1426 * Update the socket async list
1427 *
1428 * Fasync_list locking strategy.
1429 *
1430 * 1. fasync_list is modified only under process context socket lock
1431 * i.e. under semaphore.
1432 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1433 * or under socket lock
1434 */
1435
sock_fasync(int fd,struct file * filp,int on)1436 static int sock_fasync(int fd, struct file *filp, int on)
1437 {
1438 struct socket *sock = filp->private_data;
1439 struct sock *sk = sock->sk;
1440 struct socket_wq *wq = &sock->wq;
1441
1442 if (sk == NULL)
1443 return -EINVAL;
1444
1445 lock_sock(sk);
1446 fasync_helper(fd, filp, on, &wq->fasync_list);
1447
1448 if (!wq->fasync_list)
1449 sock_reset_flag(sk, SOCK_FASYNC);
1450 else
1451 sock_set_flag(sk, SOCK_FASYNC);
1452
1453 release_sock(sk);
1454 return 0;
1455 }
1456
1457 /* This function may be called only under rcu_lock */
1458
sock_wake_async(struct socket_wq * wq,int how,int band)1459 int sock_wake_async(struct socket_wq *wq, int how, int band)
1460 {
1461 if (!wq || !wq->fasync_list)
1462 return -1;
1463
1464 switch (how) {
1465 case SOCK_WAKE_WAITD:
1466 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1467 break;
1468 goto call_kill;
1469 case SOCK_WAKE_SPACE:
1470 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1471 break;
1472 fallthrough;
1473 case SOCK_WAKE_IO:
1474 call_kill:
1475 kill_fasync(&wq->fasync_list, SIGIO, band);
1476 break;
1477 case SOCK_WAKE_URG:
1478 kill_fasync(&wq->fasync_list, SIGURG, band);
1479 }
1480
1481 return 0;
1482 }
1483 EXPORT_SYMBOL(sock_wake_async);
1484
1485 /**
1486 * __sock_create - creates a socket
1487 * @net: net namespace
1488 * @family: protocol family (AF_INET, ...)
1489 * @type: communication type (SOCK_STREAM, ...)
1490 * @protocol: protocol (0, ...)
1491 * @res: new socket
1492 * @kern: boolean for kernel space sockets
1493 *
1494 * Creates a new socket and assigns it to @res, passing through LSM.
1495 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1496 * be set to true if the socket resides in kernel space.
1497 * This function internally uses GFP_KERNEL.
1498 */
1499
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1500 int __sock_create(struct net *net, int family, int type, int protocol,
1501 struct socket **res, int kern)
1502 {
1503 int err;
1504 struct socket *sock;
1505 const struct net_proto_family *pf;
1506
1507 /*
1508 * Check protocol is in range
1509 */
1510 if (family < 0 || family >= NPROTO)
1511 return -EAFNOSUPPORT;
1512 if (type < 0 || type >= SOCK_MAX)
1513 return -EINVAL;
1514
1515 /* Compatibility.
1516
1517 This uglymoron is moved from INET layer to here to avoid
1518 deadlock in module load.
1519 */
1520 if (family == PF_INET && type == SOCK_PACKET) {
1521 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1522 current->comm);
1523 family = PF_PACKET;
1524 }
1525
1526 err = security_socket_create(family, type, protocol, kern);
1527 if (err)
1528 return err;
1529
1530 /*
1531 * Allocate the socket and allow the family to set things up. if
1532 * the protocol is 0, the family is instructed to select an appropriate
1533 * default.
1534 */
1535 sock = sock_alloc();
1536 if (!sock) {
1537 net_warn_ratelimited("socket: no more sockets\n");
1538 return -ENFILE; /* Not exactly a match, but its the
1539 closest posix thing */
1540 }
1541
1542 sock->type = type;
1543
1544 #ifdef CONFIG_MODULES
1545 /* Attempt to load a protocol module if the find failed.
1546 *
1547 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1548 * requested real, full-featured networking support upon configuration.
1549 * Otherwise module support will break!
1550 */
1551 if (rcu_access_pointer(net_families[family]) == NULL)
1552 request_module("net-pf-%d", family);
1553 #endif
1554
1555 rcu_read_lock();
1556 pf = rcu_dereference(net_families[family]);
1557 err = -EAFNOSUPPORT;
1558 if (!pf)
1559 goto out_release;
1560
1561 /*
1562 * We will call the ->create function, that possibly is in a loadable
1563 * module, so we have to bump that loadable module refcnt first.
1564 */
1565 if (!try_module_get(pf->owner))
1566 goto out_release;
1567
1568 /* Now protected by module ref count */
1569 rcu_read_unlock();
1570
1571 err = pf->create(net, sock, protocol, kern);
1572 if (err < 0) {
1573 /* ->create should release the allocated sock->sk object on error
1574 * but it may leave the dangling pointer
1575 */
1576 sock->sk = NULL;
1577 goto out_module_put;
1578 }
1579
1580 /*
1581 * Now to bump the refcnt of the [loadable] module that owns this
1582 * socket at sock_release time we decrement its refcnt.
1583 */
1584 if (!try_module_get(sock->ops->owner))
1585 goto out_module_busy;
1586
1587 /*
1588 * Now that we're done with the ->create function, the [loadable]
1589 * module can have its refcnt decremented
1590 */
1591 module_put(pf->owner);
1592 err = security_socket_post_create(sock, family, type, protocol, kern);
1593 if (err)
1594 goto out_sock_release;
1595 *res = sock;
1596
1597 return 0;
1598
1599 out_module_busy:
1600 err = -EAFNOSUPPORT;
1601 out_module_put:
1602 sock->ops = NULL;
1603 module_put(pf->owner);
1604 out_sock_release:
1605 sock_release(sock);
1606 return err;
1607
1608 out_release:
1609 rcu_read_unlock();
1610 goto out_sock_release;
1611 }
1612 EXPORT_SYMBOL(__sock_create);
1613
1614 /**
1615 * sock_create - creates a socket
1616 * @family: protocol family (AF_INET, ...)
1617 * @type: communication type (SOCK_STREAM, ...)
1618 * @protocol: protocol (0, ...)
1619 * @res: new socket
1620 *
1621 * A wrapper around __sock_create().
1622 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1623 */
1624
sock_create(int family,int type,int protocol,struct socket ** res)1625 int sock_create(int family, int type, int protocol, struct socket **res)
1626 {
1627 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1628 }
1629 EXPORT_SYMBOL(sock_create);
1630
1631 /**
1632 * sock_create_kern - creates a socket (kernel space)
1633 * @net: net namespace
1634 * @family: protocol family (AF_INET, ...)
1635 * @type: communication type (SOCK_STREAM, ...)
1636 * @protocol: protocol (0, ...)
1637 * @res: new socket
1638 *
1639 * A wrapper around __sock_create().
1640 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1641 */
1642
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1643 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1644 {
1645 return __sock_create(net, family, type, protocol, res, 1);
1646 }
1647 EXPORT_SYMBOL(sock_create_kern);
1648
__sys_socket_create(int family,int type,int protocol)1649 static struct socket *__sys_socket_create(int family, int type, int protocol)
1650 {
1651 struct socket *sock;
1652 int retval;
1653
1654 /* Check the SOCK_* constants for consistency. */
1655 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1656 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1657 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1658 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1659
1660 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1661 return ERR_PTR(-EINVAL);
1662 type &= SOCK_TYPE_MASK;
1663
1664 retval = sock_create(family, type, protocol, &sock);
1665 if (retval < 0)
1666 return ERR_PTR(retval);
1667
1668 return sock;
1669 }
1670
__sys_socket_file(int family,int type,int protocol)1671 struct file *__sys_socket_file(int family, int type, int protocol)
1672 {
1673 struct socket *sock;
1674 int flags;
1675
1676 sock = __sys_socket_create(family, type, protocol);
1677 if (IS_ERR(sock))
1678 return ERR_CAST(sock);
1679
1680 flags = type & ~SOCK_TYPE_MASK;
1681 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1682 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1683
1684 return sock_alloc_file(sock, flags, NULL);
1685 }
1686
1687 /* A hook for bpf progs to attach to and update socket protocol.
1688 *
1689 * A static noinline declaration here could cause the compiler to
1690 * optimize away the function. A global noinline declaration will
1691 * keep the definition, but may optimize away the callsite.
1692 * Therefore, __weak is needed to ensure that the call is still
1693 * emitted, by telling the compiler that we don't know what the
1694 * function might eventually be.
1695 *
1696 * __diag_* below are needed to dismiss the missing prototype warning.
1697 */
1698
1699 __diag_push();
1700 __diag_ignore_all("-Wmissing-prototypes",
1701 "A fmod_ret entry point for BPF programs");
1702
update_socket_protocol(int family,int type,int protocol)1703 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1704 {
1705 return protocol;
1706 }
1707
1708 __diag_pop();
1709
__sys_socket(int family,int type,int protocol)1710 int __sys_socket(int family, int type, int protocol)
1711 {
1712 struct socket *sock;
1713 int flags;
1714
1715 sock = __sys_socket_create(family, type,
1716 update_socket_protocol(family, type, protocol));
1717 if (IS_ERR(sock))
1718 return PTR_ERR(sock);
1719
1720 flags = type & ~SOCK_TYPE_MASK;
1721 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1722 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1723
1724 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1725 }
1726
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1727 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1728 {
1729 return __sys_socket(family, type, protocol);
1730 }
1731
1732 /*
1733 * Create a pair of connected sockets.
1734 */
1735
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1736 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1737 {
1738 struct socket *sock1, *sock2;
1739 int fd1, fd2, err;
1740 struct file *newfile1, *newfile2;
1741 int flags;
1742
1743 flags = type & ~SOCK_TYPE_MASK;
1744 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1745 return -EINVAL;
1746 type &= SOCK_TYPE_MASK;
1747
1748 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1749 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1750
1751 /*
1752 * reserve descriptors and make sure we won't fail
1753 * to return them to userland.
1754 */
1755 fd1 = get_unused_fd_flags(flags);
1756 if (unlikely(fd1 < 0))
1757 return fd1;
1758
1759 fd2 = get_unused_fd_flags(flags);
1760 if (unlikely(fd2 < 0)) {
1761 put_unused_fd(fd1);
1762 return fd2;
1763 }
1764
1765 err = put_user(fd1, &usockvec[0]);
1766 if (err)
1767 goto out;
1768
1769 err = put_user(fd2, &usockvec[1]);
1770 if (err)
1771 goto out;
1772
1773 /*
1774 * Obtain the first socket and check if the underlying protocol
1775 * supports the socketpair call.
1776 */
1777
1778 err = sock_create(family, type, protocol, &sock1);
1779 if (unlikely(err < 0))
1780 goto out;
1781
1782 err = sock_create(family, type, protocol, &sock2);
1783 if (unlikely(err < 0)) {
1784 sock_release(sock1);
1785 goto out;
1786 }
1787
1788 err = security_socket_socketpair(sock1, sock2);
1789 if (unlikely(err)) {
1790 sock_release(sock2);
1791 sock_release(sock1);
1792 goto out;
1793 }
1794
1795 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1796 if (unlikely(err < 0)) {
1797 sock_release(sock2);
1798 sock_release(sock1);
1799 goto out;
1800 }
1801
1802 newfile1 = sock_alloc_file(sock1, flags, NULL);
1803 if (IS_ERR(newfile1)) {
1804 err = PTR_ERR(newfile1);
1805 sock_release(sock2);
1806 goto out;
1807 }
1808
1809 newfile2 = sock_alloc_file(sock2, flags, NULL);
1810 if (IS_ERR(newfile2)) {
1811 err = PTR_ERR(newfile2);
1812 fput(newfile1);
1813 goto out;
1814 }
1815
1816 audit_fd_pair(fd1, fd2);
1817
1818 fd_install(fd1, newfile1);
1819 fd_install(fd2, newfile2);
1820 return 0;
1821
1822 out:
1823 put_unused_fd(fd2);
1824 put_unused_fd(fd1);
1825 return err;
1826 }
1827
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1828 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1829 int __user *, usockvec)
1830 {
1831 return __sys_socketpair(family, type, protocol, usockvec);
1832 }
1833
1834 /*
1835 * Bind a name to a socket. Nothing much to do here since it's
1836 * the protocol's responsibility to handle the local address.
1837 *
1838 * We move the socket address to kernel space before we call
1839 * the protocol layer (having also checked the address is ok).
1840 */
1841
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1842 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1843 {
1844 struct socket *sock;
1845 struct sockaddr_storage address;
1846 int err, fput_needed;
1847
1848 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 if (sock) {
1850 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1851 if (!err) {
1852 err = security_socket_bind(sock,
1853 (struct sockaddr *)&address,
1854 addrlen);
1855 if (!err)
1856 err = READ_ONCE(sock->ops)->bind(sock,
1857 (struct sockaddr *)
1858 &address, addrlen);
1859 }
1860 fput_light(sock->file, fput_needed);
1861 }
1862 return err;
1863 }
1864
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1865 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1866 {
1867 return __sys_bind(fd, umyaddr, addrlen);
1868 }
1869
1870 /*
1871 * Perform a listen. Basically, we allow the protocol to do anything
1872 * necessary for a listen, and if that works, we mark the socket as
1873 * ready for listening.
1874 */
1875
__sys_listen(int fd,int backlog)1876 int __sys_listen(int fd, int backlog)
1877 {
1878 struct socket *sock;
1879 int err, fput_needed;
1880 int somaxconn;
1881
1882 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1883 if (sock) {
1884 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1885 if ((unsigned int)backlog > somaxconn)
1886 backlog = somaxconn;
1887
1888 err = security_socket_listen(sock, backlog);
1889 if (!err)
1890 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1891
1892 fput_light(sock->file, fput_needed);
1893 }
1894 return err;
1895 }
1896
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1897 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1898 {
1899 return __sys_listen(fd, backlog);
1900 }
1901
do_accept(struct file * file,unsigned file_flags,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1902 struct file *do_accept(struct file *file, unsigned file_flags,
1903 struct sockaddr __user *upeer_sockaddr,
1904 int __user *upeer_addrlen, int flags)
1905 {
1906 struct socket *sock, *newsock;
1907 struct file *newfile;
1908 int err, len;
1909 struct sockaddr_storage address;
1910 const struct proto_ops *ops;
1911
1912 sock = sock_from_file(file);
1913 if (!sock)
1914 return ERR_PTR(-ENOTSOCK);
1915
1916 newsock = sock_alloc();
1917 if (!newsock)
1918 return ERR_PTR(-ENFILE);
1919 ops = READ_ONCE(sock->ops);
1920
1921 newsock->type = sock->type;
1922 newsock->ops = ops;
1923
1924 /*
1925 * We don't need try_module_get here, as the listening socket (sock)
1926 * has the protocol module (sock->ops->owner) held.
1927 */
1928 __module_get(ops->owner);
1929
1930 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1931 if (IS_ERR(newfile))
1932 return newfile;
1933
1934 err = security_socket_accept(sock, newsock);
1935 if (err)
1936 goto out_fd;
1937
1938 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1939 false);
1940 if (err < 0)
1941 goto out_fd;
1942
1943 if (upeer_sockaddr) {
1944 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1945 if (len < 0) {
1946 err = -ECONNABORTED;
1947 goto out_fd;
1948 }
1949 err = move_addr_to_user(&address,
1950 len, upeer_sockaddr, upeer_addrlen);
1951 if (err < 0)
1952 goto out_fd;
1953 }
1954
1955 /* File flags are not inherited via accept() unlike another OSes. */
1956 return newfile;
1957 out_fd:
1958 fput(newfile);
1959 return ERR_PTR(err);
1960 }
1961
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1962 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1963 int __user *upeer_addrlen, int flags)
1964 {
1965 struct file *newfile;
1966 int newfd;
1967
1968 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1969 return -EINVAL;
1970
1971 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1972 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1973
1974 newfd = get_unused_fd_flags(flags);
1975 if (unlikely(newfd < 0))
1976 return newfd;
1977
1978 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1979 flags);
1980 if (IS_ERR(newfile)) {
1981 put_unused_fd(newfd);
1982 return PTR_ERR(newfile);
1983 }
1984 fd_install(newfd, newfile);
1985 return newfd;
1986 }
1987
1988 /*
1989 * For accept, we attempt to create a new socket, set up the link
1990 * with the client, wake up the client, then return the new
1991 * connected fd. We collect the address of the connector in kernel
1992 * space and move it to user at the very end. This is unclean because
1993 * we open the socket then return an error.
1994 *
1995 * 1003.1g adds the ability to recvmsg() to query connection pending
1996 * status to recvmsg. We need to add that support in a way thats
1997 * clean when we restructure accept also.
1998 */
1999
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)2000 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
2001 int __user *upeer_addrlen, int flags)
2002 {
2003 int ret = -EBADF;
2004 struct fd f;
2005
2006 f = fdget(fd);
2007 if (f.file) {
2008 ret = __sys_accept4_file(f.file, upeer_sockaddr,
2009 upeer_addrlen, flags);
2010 fdput(f);
2011 }
2012
2013 return ret;
2014 }
2015
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2016 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2017 int __user *, upeer_addrlen, int, flags)
2018 {
2019 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2020 }
2021
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2022 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2023 int __user *, upeer_addrlen)
2024 {
2025 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2026 }
2027
2028 /*
2029 * Attempt to connect to a socket with the server address. The address
2030 * is in user space so we verify it is OK and move it to kernel space.
2031 *
2032 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2033 * break bindings
2034 *
2035 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2036 * other SEQPACKET protocols that take time to connect() as it doesn't
2037 * include the -EINPROGRESS status for such sockets.
2038 */
2039
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2040 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2041 int addrlen, int file_flags)
2042 {
2043 struct socket *sock;
2044 int err;
2045
2046 sock = sock_from_file(file);
2047 if (!sock) {
2048 err = -ENOTSOCK;
2049 goto out;
2050 }
2051
2052 err =
2053 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2054 if (err)
2055 goto out;
2056
2057 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2058 addrlen, sock->file->f_flags | file_flags);
2059 out:
2060 return err;
2061 }
2062
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2063 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2064 {
2065 int ret = -EBADF;
2066 struct fd f;
2067
2068 f = fdget(fd);
2069 if (f.file) {
2070 struct sockaddr_storage address;
2071
2072 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2073 if (!ret)
2074 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2075 fdput(f);
2076 }
2077
2078 return ret;
2079 }
2080
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2081 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2082 int, addrlen)
2083 {
2084 return __sys_connect(fd, uservaddr, addrlen);
2085 }
2086
2087 /*
2088 * Get the local address ('name') of a socket object. Move the obtained
2089 * name to user space.
2090 */
2091
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2092 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2093 int __user *usockaddr_len)
2094 {
2095 struct socket *sock;
2096 struct sockaddr_storage address;
2097 int err, fput_needed;
2098
2099 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2100 if (!sock)
2101 goto out;
2102
2103 err = security_socket_getsockname(sock);
2104 if (err)
2105 goto out_put;
2106
2107 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2108 if (err < 0)
2109 goto out_put;
2110 /* "err" is actually length in this case */
2111 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2112
2113 out_put:
2114 fput_light(sock->file, fput_needed);
2115 out:
2116 return err;
2117 }
2118
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2119 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2120 int __user *, usockaddr_len)
2121 {
2122 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2123 }
2124
2125 /*
2126 * Get the remote address ('name') of a socket object. Move the obtained
2127 * name to user space.
2128 */
2129
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2130 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2131 int __user *usockaddr_len)
2132 {
2133 struct socket *sock;
2134 struct sockaddr_storage address;
2135 int err, fput_needed;
2136
2137 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2138 if (sock != NULL) {
2139 const struct proto_ops *ops = READ_ONCE(sock->ops);
2140
2141 err = security_socket_getpeername(sock);
2142 if (err) {
2143 fput_light(sock->file, fput_needed);
2144 return err;
2145 }
2146
2147 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2148 if (err >= 0)
2149 /* "err" is actually length in this case */
2150 err = move_addr_to_user(&address, err, usockaddr,
2151 usockaddr_len);
2152 fput_light(sock->file, fput_needed);
2153 }
2154 return err;
2155 }
2156
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2157 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2158 int __user *, usockaddr_len)
2159 {
2160 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2161 }
2162
2163 /*
2164 * Send a datagram to a given address. We move the address into kernel
2165 * space and check the user space data area is readable before invoking
2166 * the protocol.
2167 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2168 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2169 struct sockaddr __user *addr, int addr_len)
2170 {
2171 struct socket *sock;
2172 struct sockaddr_storage address;
2173 int err;
2174 struct msghdr msg;
2175 struct iovec iov;
2176 int fput_needed;
2177
2178 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2179 if (unlikely(err))
2180 return err;
2181 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 if (!sock)
2183 goto out;
2184
2185 msg.msg_name = NULL;
2186 msg.msg_control = NULL;
2187 msg.msg_controllen = 0;
2188 msg.msg_namelen = 0;
2189 msg.msg_ubuf = NULL;
2190 if (addr) {
2191 err = move_addr_to_kernel(addr, addr_len, &address);
2192 if (err < 0)
2193 goto out_put;
2194 msg.msg_name = (struct sockaddr *)&address;
2195 msg.msg_namelen = addr_len;
2196 }
2197 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2198 if (sock->file->f_flags & O_NONBLOCK)
2199 flags |= MSG_DONTWAIT;
2200 msg.msg_flags = flags;
2201 err = __sock_sendmsg(sock, &msg);
2202
2203 out_put:
2204 fput_light(sock->file, fput_needed);
2205 out:
2206 return err;
2207 }
2208
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2209 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2210 unsigned int, flags, struct sockaddr __user *, addr,
2211 int, addr_len)
2212 {
2213 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2214 }
2215
2216 /*
2217 * Send a datagram down a socket.
2218 */
2219
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2220 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2221 unsigned int, flags)
2222 {
2223 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2224 }
2225
2226 /*
2227 * Receive a frame from the socket and optionally record the address of the
2228 * sender. We verify the buffers are writable and if needed move the
2229 * sender address from kernel to user space.
2230 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2231 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2232 struct sockaddr __user *addr, int __user *addr_len)
2233 {
2234 struct sockaddr_storage address;
2235 struct msghdr msg = {
2236 /* Save some cycles and don't copy the address if not needed */
2237 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2238 };
2239 struct socket *sock;
2240 struct iovec iov;
2241 int err, err2;
2242 int fput_needed;
2243
2244 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2245 if (unlikely(err))
2246 return err;
2247 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2248 if (!sock)
2249 goto out;
2250
2251 if (sock->file->f_flags & O_NONBLOCK)
2252 flags |= MSG_DONTWAIT;
2253 err = sock_recvmsg(sock, &msg, flags);
2254
2255 if (err >= 0 && addr != NULL) {
2256 err2 = move_addr_to_user(&address,
2257 msg.msg_namelen, addr, addr_len);
2258 if (err2 < 0)
2259 err = err2;
2260 }
2261
2262 fput_light(sock->file, fput_needed);
2263 out:
2264 return err;
2265 }
2266
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2267 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2268 unsigned int, flags, struct sockaddr __user *, addr,
2269 int __user *, addr_len)
2270 {
2271 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2272 }
2273
2274 /*
2275 * Receive a datagram from a socket.
2276 */
2277
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2278 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2279 unsigned int, flags)
2280 {
2281 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2282 }
2283
sock_use_custom_sol_socket(const struct socket * sock)2284 static bool sock_use_custom_sol_socket(const struct socket *sock)
2285 {
2286 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2287 }
2288
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2289 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2290 int optname, sockptr_t optval, int optlen)
2291 {
2292 const struct proto_ops *ops;
2293 char *kernel_optval = NULL;
2294 int err;
2295
2296 if (optlen < 0)
2297 return -EINVAL;
2298
2299 err = security_socket_setsockopt(sock, level, optname);
2300 if (err)
2301 goto out_put;
2302
2303 if (!compat)
2304 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2305 optval, &optlen,
2306 &kernel_optval);
2307 if (err < 0)
2308 goto out_put;
2309 if (err > 0) {
2310 err = 0;
2311 goto out_put;
2312 }
2313
2314 if (kernel_optval)
2315 optval = KERNEL_SOCKPTR(kernel_optval);
2316 ops = READ_ONCE(sock->ops);
2317 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2318 err = sock_setsockopt(sock, level, optname, optval, optlen);
2319 else if (unlikely(!ops->setsockopt))
2320 err = -EOPNOTSUPP;
2321 else
2322 err = ops->setsockopt(sock, level, optname, optval,
2323 optlen);
2324 kfree(kernel_optval);
2325 out_put:
2326 return err;
2327 }
2328 EXPORT_SYMBOL(do_sock_setsockopt);
2329
2330 /* Set a socket option. Because we don't know the option lengths we have
2331 * to pass the user mode parameter for the protocols to sort out.
2332 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2333 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2334 int optlen)
2335 {
2336 sockptr_t optval = USER_SOCKPTR(user_optval);
2337 bool compat = in_compat_syscall();
2338 int err, fput_needed;
2339 struct socket *sock;
2340
2341 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2342 if (!sock)
2343 return err;
2344
2345 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2346
2347 fput_light(sock->file, fput_needed);
2348 return err;
2349 }
2350
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2351 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2352 char __user *, optval, int, optlen)
2353 {
2354 return __sys_setsockopt(fd, level, optname, optval, optlen);
2355 }
2356
2357 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2358 int optname));
2359
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2360 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2361 int optname, sockptr_t optval, sockptr_t optlen)
2362 {
2363 int max_optlen __maybe_unused = 0;
2364 const struct proto_ops *ops;
2365 int err;
2366
2367 err = security_socket_getsockopt(sock, level, optname);
2368 if (err)
2369 return err;
2370
2371 if (!compat)
2372 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2373
2374 ops = READ_ONCE(sock->ops);
2375 if (level == SOL_SOCKET) {
2376 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2377 } else if (unlikely(!ops->getsockopt)) {
2378 err = -EOPNOTSUPP;
2379 } else {
2380 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2381 "Invalid argument type"))
2382 return -EOPNOTSUPP;
2383
2384 err = ops->getsockopt(sock, level, optname, optval.user,
2385 optlen.user);
2386 }
2387
2388 if (!compat)
2389 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2390 optval, optlen, max_optlen,
2391 err);
2392
2393 return err;
2394 }
2395 EXPORT_SYMBOL(do_sock_getsockopt);
2396
2397 /*
2398 * Get a socket option. Because we don't know the option lengths we have
2399 * to pass a user mode parameter for the protocols to sort out.
2400 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2401 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2402 int __user *optlen)
2403 {
2404 int err, fput_needed;
2405 struct socket *sock;
2406 bool compat;
2407
2408 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2409 if (!sock)
2410 return err;
2411
2412 compat = in_compat_syscall();
2413 err = do_sock_getsockopt(sock, compat, level, optname,
2414 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2415
2416 fput_light(sock->file, fput_needed);
2417 return err;
2418 }
2419
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2420 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2421 char __user *, optval, int __user *, optlen)
2422 {
2423 return __sys_getsockopt(fd, level, optname, optval, optlen);
2424 }
2425
2426 /*
2427 * Shutdown a socket.
2428 */
2429
__sys_shutdown_sock(struct socket * sock,int how)2430 int __sys_shutdown_sock(struct socket *sock, int how)
2431 {
2432 int err;
2433
2434 err = security_socket_shutdown(sock, how);
2435 if (!err)
2436 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2437
2438 return err;
2439 }
2440
__sys_shutdown(int fd,int how)2441 int __sys_shutdown(int fd, int how)
2442 {
2443 int err, fput_needed;
2444 struct socket *sock;
2445
2446 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2447 if (sock != NULL) {
2448 err = __sys_shutdown_sock(sock, how);
2449 fput_light(sock->file, fput_needed);
2450 }
2451 return err;
2452 }
2453
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2454 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2455 {
2456 return __sys_shutdown(fd, how);
2457 }
2458
2459 /* A couple of helpful macros for getting the address of the 32/64 bit
2460 * fields which are the same type (int / unsigned) on our platforms.
2461 */
2462 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2463 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2464 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2465
2466 struct used_address {
2467 struct sockaddr_storage name;
2468 unsigned int name_len;
2469 };
2470
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2471 int __copy_msghdr(struct msghdr *kmsg,
2472 struct user_msghdr *msg,
2473 struct sockaddr __user **save_addr)
2474 {
2475 ssize_t err;
2476
2477 kmsg->msg_control_is_user = true;
2478 kmsg->msg_get_inq = 0;
2479 kmsg->msg_control_user = msg->msg_control;
2480 kmsg->msg_controllen = msg->msg_controllen;
2481 kmsg->msg_flags = msg->msg_flags;
2482
2483 kmsg->msg_namelen = msg->msg_namelen;
2484 if (!msg->msg_name)
2485 kmsg->msg_namelen = 0;
2486
2487 if (kmsg->msg_namelen < 0)
2488 return -EINVAL;
2489
2490 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2491 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2492
2493 if (save_addr)
2494 *save_addr = msg->msg_name;
2495
2496 if (msg->msg_name && kmsg->msg_namelen) {
2497 if (!save_addr) {
2498 err = move_addr_to_kernel(msg->msg_name,
2499 kmsg->msg_namelen,
2500 kmsg->msg_name);
2501 if (err < 0)
2502 return err;
2503 }
2504 } else {
2505 kmsg->msg_name = NULL;
2506 kmsg->msg_namelen = 0;
2507 }
2508
2509 if (msg->msg_iovlen > UIO_MAXIOV)
2510 return -EMSGSIZE;
2511
2512 kmsg->msg_iocb = NULL;
2513 kmsg->msg_ubuf = NULL;
2514 return 0;
2515 }
2516
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2517 static int copy_msghdr_from_user(struct msghdr *kmsg,
2518 struct user_msghdr __user *umsg,
2519 struct sockaddr __user **save_addr,
2520 struct iovec **iov)
2521 {
2522 struct user_msghdr msg;
2523 ssize_t err;
2524
2525 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2526 return -EFAULT;
2527
2528 err = __copy_msghdr(kmsg, &msg, save_addr);
2529 if (err)
2530 return err;
2531
2532 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2533 msg.msg_iov, msg.msg_iovlen,
2534 UIO_FASTIOV, iov, &kmsg->msg_iter);
2535 return err < 0 ? err : 0;
2536 }
2537
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2538 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2539 unsigned int flags, struct used_address *used_address,
2540 unsigned int allowed_msghdr_flags)
2541 {
2542 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2543 __aligned(sizeof(__kernel_size_t));
2544 /* 20 is size of ipv6_pktinfo */
2545 unsigned char *ctl_buf = ctl;
2546 int ctl_len;
2547 ssize_t err;
2548
2549 err = -ENOBUFS;
2550
2551 if (msg_sys->msg_controllen > INT_MAX)
2552 goto out;
2553 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2554 ctl_len = msg_sys->msg_controllen;
2555 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2556 err =
2557 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2558 sizeof(ctl));
2559 if (err)
2560 goto out;
2561 ctl_buf = msg_sys->msg_control;
2562 ctl_len = msg_sys->msg_controllen;
2563 } else if (ctl_len) {
2564 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2565 CMSG_ALIGN(sizeof(struct cmsghdr)));
2566 if (ctl_len > sizeof(ctl)) {
2567 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2568 if (ctl_buf == NULL)
2569 goto out;
2570 }
2571 err = -EFAULT;
2572 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2573 goto out_freectl;
2574 msg_sys->msg_control = ctl_buf;
2575 msg_sys->msg_control_is_user = false;
2576 }
2577 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2578 msg_sys->msg_flags = flags;
2579
2580 if (sock->file->f_flags & O_NONBLOCK)
2581 msg_sys->msg_flags |= MSG_DONTWAIT;
2582 /*
2583 * If this is sendmmsg() and current destination address is same as
2584 * previously succeeded address, omit asking LSM's decision.
2585 * used_address->name_len is initialized to UINT_MAX so that the first
2586 * destination address never matches.
2587 */
2588 if (used_address && msg_sys->msg_name &&
2589 used_address->name_len == msg_sys->msg_namelen &&
2590 !memcmp(&used_address->name, msg_sys->msg_name,
2591 used_address->name_len)) {
2592 err = sock_sendmsg_nosec(sock, msg_sys);
2593 goto out_freectl;
2594 }
2595 err = __sock_sendmsg(sock, msg_sys);
2596 /*
2597 * If this is sendmmsg() and sending to current destination address was
2598 * successful, remember it.
2599 */
2600 if (used_address && err >= 0) {
2601 used_address->name_len = msg_sys->msg_namelen;
2602 if (msg_sys->msg_name)
2603 memcpy(&used_address->name, msg_sys->msg_name,
2604 used_address->name_len);
2605 }
2606
2607 out_freectl:
2608 if (ctl_buf != ctl)
2609 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2610 out:
2611 return err;
2612 }
2613
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2614 int sendmsg_copy_msghdr(struct msghdr *msg,
2615 struct user_msghdr __user *umsg, unsigned flags,
2616 struct iovec **iov)
2617 {
2618 int err;
2619
2620 if (flags & MSG_CMSG_COMPAT) {
2621 struct compat_msghdr __user *msg_compat;
2622
2623 msg_compat = (struct compat_msghdr __user *) umsg;
2624 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2625 } else {
2626 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2627 }
2628 if (err < 0)
2629 return err;
2630
2631 return 0;
2632 }
2633
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2634 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2635 struct msghdr *msg_sys, unsigned int flags,
2636 struct used_address *used_address,
2637 unsigned int allowed_msghdr_flags)
2638 {
2639 struct sockaddr_storage address;
2640 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2641 ssize_t err;
2642
2643 msg_sys->msg_name = &address;
2644
2645 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2646 if (err < 0)
2647 return err;
2648
2649 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2650 allowed_msghdr_flags);
2651 kfree(iov);
2652 return err;
2653 }
2654
2655 /*
2656 * BSD sendmsg interface
2657 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2658 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2659 unsigned int flags)
2660 {
2661 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2662 }
2663
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2664 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2665 bool forbid_cmsg_compat)
2666 {
2667 int fput_needed, err;
2668 struct msghdr msg_sys;
2669 struct socket *sock;
2670
2671 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2672 return -EINVAL;
2673
2674 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2675 if (!sock)
2676 goto out;
2677
2678 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2679
2680 fput_light(sock->file, fput_needed);
2681 out:
2682 return err;
2683 }
2684
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2685 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2686 {
2687 return __sys_sendmsg(fd, msg, flags, true);
2688 }
2689
2690 /*
2691 * Linux sendmmsg interface
2692 */
2693
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2694 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2695 unsigned int flags, bool forbid_cmsg_compat)
2696 {
2697 int fput_needed, err, datagrams;
2698 struct socket *sock;
2699 struct mmsghdr __user *entry;
2700 struct compat_mmsghdr __user *compat_entry;
2701 struct msghdr msg_sys;
2702 struct used_address used_address;
2703 unsigned int oflags = flags;
2704
2705 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2706 return -EINVAL;
2707
2708 if (vlen > UIO_MAXIOV)
2709 vlen = UIO_MAXIOV;
2710
2711 datagrams = 0;
2712
2713 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2714 if (!sock)
2715 return err;
2716
2717 used_address.name_len = UINT_MAX;
2718 entry = mmsg;
2719 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2720 err = 0;
2721 flags |= MSG_BATCH;
2722
2723 while (datagrams < vlen) {
2724 if (datagrams == vlen - 1)
2725 flags = oflags;
2726
2727 if (MSG_CMSG_COMPAT & flags) {
2728 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2729 &msg_sys, flags, &used_address, MSG_EOR);
2730 if (err < 0)
2731 break;
2732 err = __put_user(err, &compat_entry->msg_len);
2733 ++compat_entry;
2734 } else {
2735 err = ___sys_sendmsg(sock,
2736 (struct user_msghdr __user *)entry,
2737 &msg_sys, flags, &used_address, MSG_EOR);
2738 if (err < 0)
2739 break;
2740 err = put_user(err, &entry->msg_len);
2741 ++entry;
2742 }
2743
2744 if (err)
2745 break;
2746 ++datagrams;
2747 if (msg_data_left(&msg_sys))
2748 break;
2749 cond_resched();
2750 }
2751
2752 fput_light(sock->file, fput_needed);
2753
2754 /* We only return an error if no datagrams were able to be sent */
2755 if (datagrams != 0)
2756 return datagrams;
2757
2758 return err;
2759 }
2760
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2761 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2762 unsigned int, vlen, unsigned int, flags)
2763 {
2764 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2765 }
2766
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2767 int recvmsg_copy_msghdr(struct msghdr *msg,
2768 struct user_msghdr __user *umsg, unsigned flags,
2769 struct sockaddr __user **uaddr,
2770 struct iovec **iov)
2771 {
2772 ssize_t err;
2773
2774 if (MSG_CMSG_COMPAT & flags) {
2775 struct compat_msghdr __user *msg_compat;
2776
2777 msg_compat = (struct compat_msghdr __user *) umsg;
2778 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2779 } else {
2780 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2781 }
2782 if (err < 0)
2783 return err;
2784
2785 return 0;
2786 }
2787
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2788 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2789 struct user_msghdr __user *msg,
2790 struct sockaddr __user *uaddr,
2791 unsigned int flags, int nosec)
2792 {
2793 struct compat_msghdr __user *msg_compat =
2794 (struct compat_msghdr __user *) msg;
2795 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2796 struct sockaddr_storage addr;
2797 unsigned long cmsg_ptr;
2798 int len;
2799 ssize_t err;
2800
2801 msg_sys->msg_name = &addr;
2802 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2803 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2804
2805 /* We assume all kernel code knows the size of sockaddr_storage */
2806 msg_sys->msg_namelen = 0;
2807
2808 if (sock->file->f_flags & O_NONBLOCK)
2809 flags |= MSG_DONTWAIT;
2810
2811 if (unlikely(nosec))
2812 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2813 else
2814 err = sock_recvmsg(sock, msg_sys, flags);
2815
2816 if (err < 0)
2817 goto out;
2818 len = err;
2819
2820 if (uaddr != NULL) {
2821 err = move_addr_to_user(&addr,
2822 msg_sys->msg_namelen, uaddr,
2823 uaddr_len);
2824 if (err < 0)
2825 goto out;
2826 }
2827 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2828 COMPAT_FLAGS(msg));
2829 if (err)
2830 goto out;
2831 if (MSG_CMSG_COMPAT & flags)
2832 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2833 &msg_compat->msg_controllen);
2834 else
2835 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2836 &msg->msg_controllen);
2837 if (err)
2838 goto out;
2839 err = len;
2840 out:
2841 return err;
2842 }
2843
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2844 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2845 struct msghdr *msg_sys, unsigned int flags, int nosec)
2846 {
2847 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2848 /* user mode address pointers */
2849 struct sockaddr __user *uaddr;
2850 ssize_t err;
2851
2852 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2853 if (err < 0)
2854 return err;
2855
2856 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2857 kfree(iov);
2858 return err;
2859 }
2860
2861 /*
2862 * BSD recvmsg interface
2863 */
2864
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2865 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2866 struct user_msghdr __user *umsg,
2867 struct sockaddr __user *uaddr, unsigned int flags)
2868 {
2869 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2870 }
2871
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2872 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2873 bool forbid_cmsg_compat)
2874 {
2875 int fput_needed, err;
2876 struct msghdr msg_sys;
2877 struct socket *sock;
2878
2879 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2880 return -EINVAL;
2881
2882 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2883 if (!sock)
2884 goto out;
2885
2886 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2887
2888 fput_light(sock->file, fput_needed);
2889 out:
2890 return err;
2891 }
2892
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2893 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2894 unsigned int, flags)
2895 {
2896 return __sys_recvmsg(fd, msg, flags, true);
2897 }
2898
2899 /*
2900 * Linux recvmmsg interface
2901 */
2902
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2903 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2904 unsigned int vlen, unsigned int flags,
2905 struct timespec64 *timeout)
2906 {
2907 int fput_needed, err, datagrams;
2908 struct socket *sock;
2909 struct mmsghdr __user *entry;
2910 struct compat_mmsghdr __user *compat_entry;
2911 struct msghdr msg_sys;
2912 struct timespec64 end_time;
2913 struct timespec64 timeout64;
2914
2915 if (timeout &&
2916 poll_select_set_timeout(&end_time, timeout->tv_sec,
2917 timeout->tv_nsec))
2918 return -EINVAL;
2919
2920 datagrams = 0;
2921
2922 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2923 if (!sock)
2924 return err;
2925
2926 if (likely(!(flags & MSG_ERRQUEUE))) {
2927 err = sock_error(sock->sk);
2928 if (err) {
2929 datagrams = err;
2930 goto out_put;
2931 }
2932 }
2933
2934 entry = mmsg;
2935 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2936
2937 while (datagrams < vlen) {
2938 /*
2939 * No need to ask LSM for more than the first datagram.
2940 */
2941 if (MSG_CMSG_COMPAT & flags) {
2942 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2943 &msg_sys, flags & ~MSG_WAITFORONE,
2944 datagrams);
2945 if (err < 0)
2946 break;
2947 err = __put_user(err, &compat_entry->msg_len);
2948 ++compat_entry;
2949 } else {
2950 err = ___sys_recvmsg(sock,
2951 (struct user_msghdr __user *)entry,
2952 &msg_sys, flags & ~MSG_WAITFORONE,
2953 datagrams);
2954 if (err < 0)
2955 break;
2956 err = put_user(err, &entry->msg_len);
2957 ++entry;
2958 }
2959
2960 if (err)
2961 break;
2962 ++datagrams;
2963
2964 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2965 if (flags & MSG_WAITFORONE)
2966 flags |= MSG_DONTWAIT;
2967
2968 if (timeout) {
2969 ktime_get_ts64(&timeout64);
2970 *timeout = timespec64_sub(end_time, timeout64);
2971 if (timeout->tv_sec < 0) {
2972 timeout->tv_sec = timeout->tv_nsec = 0;
2973 break;
2974 }
2975
2976 /* Timeout, return less than vlen datagrams */
2977 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2978 break;
2979 }
2980
2981 /* Out of band data, return right away */
2982 if (msg_sys.msg_flags & MSG_OOB)
2983 break;
2984 cond_resched();
2985 }
2986
2987 if (err == 0)
2988 goto out_put;
2989
2990 if (datagrams == 0) {
2991 datagrams = err;
2992 goto out_put;
2993 }
2994
2995 /*
2996 * We may return less entries than requested (vlen) if the
2997 * sock is non block and there aren't enough datagrams...
2998 */
2999 if (err != -EAGAIN) {
3000 /*
3001 * ... or if recvmsg returns an error after we
3002 * received some datagrams, where we record the
3003 * error to return on the next call or if the
3004 * app asks about it using getsockopt(SO_ERROR).
3005 */
3006 WRITE_ONCE(sock->sk->sk_err, -err);
3007 }
3008 out_put:
3009 fput_light(sock->file, fput_needed);
3010
3011 return datagrams;
3012 }
3013
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)3014 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3015 unsigned int vlen, unsigned int flags,
3016 struct __kernel_timespec __user *timeout,
3017 struct old_timespec32 __user *timeout32)
3018 {
3019 int datagrams;
3020 struct timespec64 timeout_sys;
3021
3022 if (timeout && get_timespec64(&timeout_sys, timeout))
3023 return -EFAULT;
3024
3025 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3026 return -EFAULT;
3027
3028 if (!timeout && !timeout32)
3029 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3030
3031 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3032
3033 if (datagrams <= 0)
3034 return datagrams;
3035
3036 if (timeout && put_timespec64(&timeout_sys, timeout))
3037 datagrams = -EFAULT;
3038
3039 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3040 datagrams = -EFAULT;
3041
3042 return datagrams;
3043 }
3044
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3045 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3046 unsigned int, vlen, unsigned int, flags,
3047 struct __kernel_timespec __user *, timeout)
3048 {
3049 if (flags & MSG_CMSG_COMPAT)
3050 return -EINVAL;
3051
3052 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3053 }
3054
3055 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3056 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3057 unsigned int, vlen, unsigned int, flags,
3058 struct old_timespec32 __user *, timeout)
3059 {
3060 if (flags & MSG_CMSG_COMPAT)
3061 return -EINVAL;
3062
3063 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3064 }
3065 #endif
3066
3067 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3068 /* Argument list sizes for sys_socketcall */
3069 #define AL(x) ((x) * sizeof(unsigned long))
3070 static const unsigned char nargs[21] = {
3071 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3072 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3073 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3074 AL(4), AL(5), AL(4)
3075 };
3076
3077 #undef AL
3078
3079 /*
3080 * System call vectors.
3081 *
3082 * Argument checking cleaned up. Saved 20% in size.
3083 * This function doesn't need to set the kernel lock because
3084 * it is set by the callees.
3085 */
3086
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3087 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3088 {
3089 unsigned long a[AUDITSC_ARGS];
3090 unsigned long a0, a1;
3091 int err;
3092 unsigned int len;
3093
3094 if (call < 1 || call > SYS_SENDMMSG)
3095 return -EINVAL;
3096 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3097
3098 len = nargs[call];
3099 if (len > sizeof(a))
3100 return -EINVAL;
3101
3102 /* copy_from_user should be SMP safe. */
3103 if (copy_from_user(a, args, len))
3104 return -EFAULT;
3105
3106 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3107 if (err)
3108 return err;
3109
3110 a0 = a[0];
3111 a1 = a[1];
3112
3113 switch (call) {
3114 case SYS_SOCKET:
3115 err = __sys_socket(a0, a1, a[2]);
3116 break;
3117 case SYS_BIND:
3118 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3119 break;
3120 case SYS_CONNECT:
3121 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3122 break;
3123 case SYS_LISTEN:
3124 err = __sys_listen(a0, a1);
3125 break;
3126 case SYS_ACCEPT:
3127 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3128 (int __user *)a[2], 0);
3129 break;
3130 case SYS_GETSOCKNAME:
3131 err =
3132 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3133 (int __user *)a[2]);
3134 break;
3135 case SYS_GETPEERNAME:
3136 err =
3137 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3138 (int __user *)a[2]);
3139 break;
3140 case SYS_SOCKETPAIR:
3141 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3142 break;
3143 case SYS_SEND:
3144 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3145 NULL, 0);
3146 break;
3147 case SYS_SENDTO:
3148 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3149 (struct sockaddr __user *)a[4], a[5]);
3150 break;
3151 case SYS_RECV:
3152 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3153 NULL, NULL);
3154 break;
3155 case SYS_RECVFROM:
3156 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3157 (struct sockaddr __user *)a[4],
3158 (int __user *)a[5]);
3159 break;
3160 case SYS_SHUTDOWN:
3161 err = __sys_shutdown(a0, a1);
3162 break;
3163 case SYS_SETSOCKOPT:
3164 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3165 a[4]);
3166 break;
3167 case SYS_GETSOCKOPT:
3168 err =
3169 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3170 (int __user *)a[4]);
3171 break;
3172 case SYS_SENDMSG:
3173 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3174 a[2], true);
3175 break;
3176 case SYS_SENDMMSG:
3177 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3178 a[3], true);
3179 break;
3180 case SYS_RECVMSG:
3181 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3182 a[2], true);
3183 break;
3184 case SYS_RECVMMSG:
3185 if (IS_ENABLED(CONFIG_64BIT))
3186 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3187 a[2], a[3],
3188 (struct __kernel_timespec __user *)a[4],
3189 NULL);
3190 else
3191 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3192 a[2], a[3], NULL,
3193 (struct old_timespec32 __user *)a[4]);
3194 break;
3195 case SYS_ACCEPT4:
3196 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3197 (int __user *)a[2], a[3]);
3198 break;
3199 default:
3200 err = -EINVAL;
3201 break;
3202 }
3203 return err;
3204 }
3205
3206 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3207
3208 /**
3209 * sock_register - add a socket protocol handler
3210 * @ops: description of protocol
3211 *
3212 * This function is called by a protocol handler that wants to
3213 * advertise its address family, and have it linked into the
3214 * socket interface. The value ops->family corresponds to the
3215 * socket system call protocol family.
3216 */
sock_register(const struct net_proto_family * ops)3217 int sock_register(const struct net_proto_family *ops)
3218 {
3219 int err;
3220
3221 if (ops->family >= NPROTO) {
3222 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3223 return -ENOBUFS;
3224 }
3225
3226 spin_lock(&net_family_lock);
3227 if (rcu_dereference_protected(net_families[ops->family],
3228 lockdep_is_held(&net_family_lock)))
3229 err = -EEXIST;
3230 else {
3231 rcu_assign_pointer(net_families[ops->family], ops);
3232 err = 0;
3233 }
3234 spin_unlock(&net_family_lock);
3235
3236 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3237 return err;
3238 }
3239 EXPORT_SYMBOL(sock_register);
3240
3241 /**
3242 * sock_unregister - remove a protocol handler
3243 * @family: protocol family to remove
3244 *
3245 * This function is called by a protocol handler that wants to
3246 * remove its address family, and have it unlinked from the
3247 * new socket creation.
3248 *
3249 * If protocol handler is a module, then it can use module reference
3250 * counts to protect against new references. If protocol handler is not
3251 * a module then it needs to provide its own protection in
3252 * the ops->create routine.
3253 */
sock_unregister(int family)3254 void sock_unregister(int family)
3255 {
3256 BUG_ON(family < 0 || family >= NPROTO);
3257
3258 spin_lock(&net_family_lock);
3259 RCU_INIT_POINTER(net_families[family], NULL);
3260 spin_unlock(&net_family_lock);
3261
3262 synchronize_rcu();
3263
3264 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3265 }
3266 EXPORT_SYMBOL(sock_unregister);
3267
sock_is_registered(int family)3268 bool sock_is_registered(int family)
3269 {
3270 return family < NPROTO && rcu_access_pointer(net_families[family]);
3271 }
3272
sock_init(void)3273 static int __init sock_init(void)
3274 {
3275 int err;
3276 /*
3277 * Initialize the network sysctl infrastructure.
3278 */
3279 err = net_sysctl_init();
3280 if (err)
3281 goto out;
3282
3283 /*
3284 * Initialize skbuff SLAB cache
3285 */
3286 skb_init();
3287
3288 /*
3289 * Initialize the protocols module.
3290 */
3291
3292 init_inodecache();
3293
3294 err = register_filesystem(&sock_fs_type);
3295 if (err)
3296 goto out;
3297 sock_mnt = kern_mount(&sock_fs_type);
3298 if (IS_ERR(sock_mnt)) {
3299 err = PTR_ERR(sock_mnt);
3300 goto out_mount;
3301 }
3302
3303 /* The real protocol initialization is performed in later initcalls.
3304 */
3305
3306 #ifdef CONFIG_NETFILTER
3307 err = netfilter_init();
3308 if (err)
3309 goto out;
3310 #endif
3311
3312 ptp_classifier_init();
3313
3314 out:
3315 return err;
3316
3317 out_mount:
3318 unregister_filesystem(&sock_fs_type);
3319 goto out;
3320 }
3321
3322 core_initcall(sock_init); /* early initcall */
3323
3324 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3325 void socket_seq_show(struct seq_file *seq)
3326 {
3327 seq_printf(seq, "sockets: used %d\n",
3328 sock_inuse_get(seq->private));
3329 }
3330 #endif /* CONFIG_PROC_FS */
3331
3332 /* Handle the fact that while struct ifreq has the same *layout* on
3333 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3334 * which are handled elsewhere, it still has different *size* due to
3335 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3336 * resulting in struct ifreq being 32 and 40 bytes respectively).
3337 * As a result, if the struct happens to be at the end of a page and
3338 * the next page isn't readable/writable, we get a fault. To prevent
3339 * that, copy back and forth to the full size.
3340 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3341 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3342 {
3343 if (in_compat_syscall()) {
3344 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3345
3346 memset(ifr, 0, sizeof(*ifr));
3347 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3348 return -EFAULT;
3349
3350 if (ifrdata)
3351 *ifrdata = compat_ptr(ifr32->ifr_data);
3352
3353 return 0;
3354 }
3355
3356 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3357 return -EFAULT;
3358
3359 if (ifrdata)
3360 *ifrdata = ifr->ifr_data;
3361
3362 return 0;
3363 }
3364 EXPORT_SYMBOL(get_user_ifreq);
3365
put_user_ifreq(struct ifreq * ifr,void __user * arg)3366 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3367 {
3368 size_t size = sizeof(*ifr);
3369
3370 if (in_compat_syscall())
3371 size = sizeof(struct compat_ifreq);
3372
3373 if (copy_to_user(arg, ifr, size))
3374 return -EFAULT;
3375
3376 return 0;
3377 }
3378 EXPORT_SYMBOL(put_user_ifreq);
3379
3380 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3381 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3382 {
3383 compat_uptr_t uptr32;
3384 struct ifreq ifr;
3385 void __user *saved;
3386 int err;
3387
3388 if (get_user_ifreq(&ifr, NULL, uifr32))
3389 return -EFAULT;
3390
3391 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3392 return -EFAULT;
3393
3394 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3395 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3396
3397 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3398 if (!err) {
3399 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3400 if (put_user_ifreq(&ifr, uifr32))
3401 err = -EFAULT;
3402 }
3403 return err;
3404 }
3405
3406 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3407 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3408 struct compat_ifreq __user *u_ifreq32)
3409 {
3410 struct ifreq ifreq;
3411 void __user *data;
3412
3413 if (!is_socket_ioctl_cmd(cmd))
3414 return -ENOTTY;
3415 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3416 return -EFAULT;
3417 ifreq.ifr_data = data;
3418
3419 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3420 }
3421
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3422 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3423 unsigned int cmd, unsigned long arg)
3424 {
3425 void __user *argp = compat_ptr(arg);
3426 struct sock *sk = sock->sk;
3427 struct net *net = sock_net(sk);
3428 const struct proto_ops *ops;
3429
3430 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3431 return sock_ioctl(file, cmd, (unsigned long)argp);
3432
3433 switch (cmd) {
3434 case SIOCWANDEV:
3435 return compat_siocwandev(net, argp);
3436 case SIOCGSTAMP_OLD:
3437 case SIOCGSTAMPNS_OLD:
3438 ops = READ_ONCE(sock->ops);
3439 if (!ops->gettstamp)
3440 return -ENOIOCTLCMD;
3441 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3442 !COMPAT_USE_64BIT_TIME);
3443
3444 case SIOCETHTOOL:
3445 case SIOCBONDSLAVEINFOQUERY:
3446 case SIOCBONDINFOQUERY:
3447 case SIOCSHWTSTAMP:
3448 case SIOCGHWTSTAMP:
3449 return compat_ifr_data_ioctl(net, cmd, argp);
3450
3451 case FIOSETOWN:
3452 case SIOCSPGRP:
3453 case FIOGETOWN:
3454 case SIOCGPGRP:
3455 case SIOCBRADDBR:
3456 case SIOCBRDELBR:
3457 case SIOCGIFVLAN:
3458 case SIOCSIFVLAN:
3459 case SIOCGSKNS:
3460 case SIOCGSTAMP_NEW:
3461 case SIOCGSTAMPNS_NEW:
3462 case SIOCGIFCONF:
3463 case SIOCSIFBR:
3464 case SIOCGIFBR:
3465 return sock_ioctl(file, cmd, arg);
3466
3467 case SIOCGIFFLAGS:
3468 case SIOCSIFFLAGS:
3469 case SIOCGIFMAP:
3470 case SIOCSIFMAP:
3471 case SIOCGIFMETRIC:
3472 case SIOCSIFMETRIC:
3473 case SIOCGIFMTU:
3474 case SIOCSIFMTU:
3475 case SIOCGIFMEM:
3476 case SIOCSIFMEM:
3477 case SIOCGIFHWADDR:
3478 case SIOCSIFHWADDR:
3479 case SIOCADDMULTI:
3480 case SIOCDELMULTI:
3481 case SIOCGIFINDEX:
3482 case SIOCGIFADDR:
3483 case SIOCSIFADDR:
3484 case SIOCSIFHWBROADCAST:
3485 case SIOCDIFADDR:
3486 case SIOCGIFBRDADDR:
3487 case SIOCSIFBRDADDR:
3488 case SIOCGIFDSTADDR:
3489 case SIOCSIFDSTADDR:
3490 case SIOCGIFNETMASK:
3491 case SIOCSIFNETMASK:
3492 case SIOCSIFPFLAGS:
3493 case SIOCGIFPFLAGS:
3494 case SIOCGIFTXQLEN:
3495 case SIOCSIFTXQLEN:
3496 case SIOCBRADDIF:
3497 case SIOCBRDELIF:
3498 case SIOCGIFNAME:
3499 case SIOCSIFNAME:
3500 case SIOCGMIIPHY:
3501 case SIOCGMIIREG:
3502 case SIOCSMIIREG:
3503 case SIOCBONDENSLAVE:
3504 case SIOCBONDRELEASE:
3505 case SIOCBONDSETHWADDR:
3506 case SIOCBONDCHANGEACTIVE:
3507 case SIOCSARP:
3508 case SIOCGARP:
3509 case SIOCDARP:
3510 case SIOCOUTQ:
3511 case SIOCOUTQNSD:
3512 case SIOCATMARK:
3513 return sock_do_ioctl(net, sock, cmd, arg);
3514 }
3515
3516 return -ENOIOCTLCMD;
3517 }
3518
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3519 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3520 unsigned long arg)
3521 {
3522 struct socket *sock = file->private_data;
3523 const struct proto_ops *ops = READ_ONCE(sock->ops);
3524 int ret = -ENOIOCTLCMD;
3525 struct sock *sk;
3526 struct net *net;
3527
3528 sk = sock->sk;
3529 net = sock_net(sk);
3530
3531 if (ops->compat_ioctl)
3532 ret = ops->compat_ioctl(sock, cmd, arg);
3533
3534 if (ret == -ENOIOCTLCMD &&
3535 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3536 ret = compat_wext_handle_ioctl(net, cmd, arg);
3537
3538 if (ret == -ENOIOCTLCMD)
3539 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3540
3541 return ret;
3542 }
3543 #endif
3544
3545 /**
3546 * kernel_bind - bind an address to a socket (kernel space)
3547 * @sock: socket
3548 * @addr: address
3549 * @addrlen: length of address
3550 *
3551 * Returns 0 or an error.
3552 */
3553
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3554 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3555 {
3556 struct sockaddr_storage address;
3557
3558 memcpy(&address, addr, addrlen);
3559
3560 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3561 addrlen);
3562 }
3563 EXPORT_SYMBOL(kernel_bind);
3564
3565 /**
3566 * kernel_listen - move socket to listening state (kernel space)
3567 * @sock: socket
3568 * @backlog: pending connections queue size
3569 *
3570 * Returns 0 or an error.
3571 */
3572
kernel_listen(struct socket * sock,int backlog)3573 int kernel_listen(struct socket *sock, int backlog)
3574 {
3575 return READ_ONCE(sock->ops)->listen(sock, backlog);
3576 }
3577 EXPORT_SYMBOL(kernel_listen);
3578
3579 /**
3580 * kernel_accept - accept a connection (kernel space)
3581 * @sock: listening socket
3582 * @newsock: new connected socket
3583 * @flags: flags
3584 *
3585 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3586 * If it fails, @newsock is guaranteed to be %NULL.
3587 * Returns 0 or an error.
3588 */
3589
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3590 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3591 {
3592 struct sock *sk = sock->sk;
3593 const struct proto_ops *ops = READ_ONCE(sock->ops);
3594 int err;
3595
3596 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3597 newsock);
3598 if (err < 0)
3599 goto done;
3600
3601 err = ops->accept(sock, *newsock, flags, true);
3602 if (err < 0) {
3603 sock_release(*newsock);
3604 *newsock = NULL;
3605 goto done;
3606 }
3607
3608 (*newsock)->ops = ops;
3609 __module_get(ops->owner);
3610
3611 done:
3612 return err;
3613 }
3614 EXPORT_SYMBOL(kernel_accept);
3615
3616 /**
3617 * kernel_connect - connect a socket (kernel space)
3618 * @sock: socket
3619 * @addr: address
3620 * @addrlen: address length
3621 * @flags: flags (O_NONBLOCK, ...)
3622 *
3623 * For datagram sockets, @addr is the address to which datagrams are sent
3624 * by default, and the only address from which datagrams are received.
3625 * For stream sockets, attempts to connect to @addr.
3626 * Returns 0 or an error code.
3627 */
3628
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3629 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3630 int flags)
3631 {
3632 struct sockaddr_storage address;
3633
3634 memcpy(&address, addr, addrlen);
3635
3636 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3637 addrlen, flags);
3638 }
3639 EXPORT_SYMBOL(kernel_connect);
3640
3641 /**
3642 * kernel_getsockname - get the address which the socket is bound (kernel space)
3643 * @sock: socket
3644 * @addr: address holder
3645 *
3646 * Fills the @addr pointer with the address which the socket is bound.
3647 * Returns the length of the address in bytes or an error code.
3648 */
3649
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3650 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3651 {
3652 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3653 }
3654 EXPORT_SYMBOL(kernel_getsockname);
3655
3656 /**
3657 * kernel_getpeername - get the address which the socket is connected (kernel space)
3658 * @sock: socket
3659 * @addr: address holder
3660 *
3661 * Fills the @addr pointer with the address which the socket is connected.
3662 * Returns the length of the address in bytes or an error code.
3663 */
3664
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3665 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3666 {
3667 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3668 }
3669 EXPORT_SYMBOL(kernel_getpeername);
3670
3671 /**
3672 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3673 * @sock: socket
3674 * @how: connection part
3675 *
3676 * Returns 0 or an error.
3677 */
3678
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3679 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3680 {
3681 return READ_ONCE(sock->ops)->shutdown(sock, how);
3682 }
3683 EXPORT_SYMBOL(kernel_sock_shutdown);
3684
3685 /**
3686 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3687 * @sk: socket
3688 *
3689 * This routine returns the IP overhead imposed by a socket i.e.
3690 * the length of the underlying IP header, depending on whether
3691 * this is an IPv4 or IPv6 socket and the length from IP options turned
3692 * on at the socket. Assumes that the caller has a lock on the socket.
3693 */
3694
kernel_sock_ip_overhead(struct sock * sk)3695 u32 kernel_sock_ip_overhead(struct sock *sk)
3696 {
3697 struct inet_sock *inet;
3698 struct ip_options_rcu *opt;
3699 u32 overhead = 0;
3700 #if IS_ENABLED(CONFIG_IPV6)
3701 struct ipv6_pinfo *np;
3702 struct ipv6_txoptions *optv6 = NULL;
3703 #endif /* IS_ENABLED(CONFIG_IPV6) */
3704
3705 if (!sk)
3706 return overhead;
3707
3708 switch (sk->sk_family) {
3709 case AF_INET:
3710 inet = inet_sk(sk);
3711 overhead += sizeof(struct iphdr);
3712 opt = rcu_dereference_protected(inet->inet_opt,
3713 sock_owned_by_user(sk));
3714 if (opt)
3715 overhead += opt->opt.optlen;
3716 return overhead;
3717 #if IS_ENABLED(CONFIG_IPV6)
3718 case AF_INET6:
3719 np = inet6_sk(sk);
3720 overhead += sizeof(struct ipv6hdr);
3721 if (np)
3722 optv6 = rcu_dereference_protected(np->opt,
3723 sock_owned_by_user(sk));
3724 if (optv6)
3725 overhead += (optv6->opt_flen + optv6->opt_nflen);
3726 return overhead;
3727 #endif /* IS_ENABLED(CONFIG_IPV6) */
3728 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3729 return overhead;
3730 }
3731 }
3732 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3733