1 /*
2 * Copyright (C) 2014-2016 Broadcom Corporation
3 * Copyright (c) 2017 Red Hat, Inc.
4 * Written by Prem Mallappa, Eric Auger
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * Author: Prem Mallappa <pmallapp@broadcom.com>
16 *
17 */
18
19 #include "qemu/osdep.h"
20 #include "trace.h"
21 #include "exec/target_page.h"
22 #include "hw/core/cpu.h"
23 #include "hw/qdev-properties.h"
24 #include "qapi/error.h"
25 #include "qemu/jhash.h"
26 #include "qemu/module.h"
27
28 #include "qemu/error-report.h"
29 #include "hw/arm/smmu-common.h"
30 #include "smmu-internal.h"
31
32 /* IOTLB Management */
33
smmu_iotlb_key_hash(gconstpointer v)34 static guint smmu_iotlb_key_hash(gconstpointer v)
35 {
36 SMMUIOTLBKey *key = (SMMUIOTLBKey *)v;
37 uint32_t a, b, c;
38
39 /* Jenkins hash */
40 a = b = c = JHASH_INITVAL + sizeof(*key);
41 a += key->asid + key->vmid + key->level + key->tg;
42 b += extract64(key->iova, 0, 32);
43 c += extract64(key->iova, 32, 32);
44
45 __jhash_mix(a, b, c);
46 __jhash_final(a, b, c);
47
48 return c;
49 }
50
smmu_iotlb_key_equal(gconstpointer v1,gconstpointer v2)51 static gboolean smmu_iotlb_key_equal(gconstpointer v1, gconstpointer v2)
52 {
53 SMMUIOTLBKey *k1 = (SMMUIOTLBKey *)v1, *k2 = (SMMUIOTLBKey *)v2;
54
55 return (k1->asid == k2->asid) && (k1->iova == k2->iova) &&
56 (k1->level == k2->level) && (k1->tg == k2->tg) &&
57 (k1->vmid == k2->vmid);
58 }
59
smmu_get_iotlb_key(int asid,int vmid,uint64_t iova,uint8_t tg,uint8_t level)60 SMMUIOTLBKey smmu_get_iotlb_key(int asid, int vmid, uint64_t iova,
61 uint8_t tg, uint8_t level)
62 {
63 SMMUIOTLBKey key = {.asid = asid, .vmid = vmid, .iova = iova,
64 .tg = tg, .level = level};
65
66 return key;
67 }
68
smmu_iotlb_lookup_all_levels(SMMUState * bs,SMMUTransCfg * cfg,SMMUTransTableInfo * tt,hwaddr iova)69 static SMMUTLBEntry *smmu_iotlb_lookup_all_levels(SMMUState *bs,
70 SMMUTransCfg *cfg,
71 SMMUTransTableInfo *tt,
72 hwaddr iova)
73 {
74 uint8_t tg = (tt->granule_sz - 10) / 2;
75 uint8_t inputsize = 64 - tt->tsz;
76 uint8_t stride = tt->granule_sz - 3;
77 uint8_t level = 4 - (inputsize - 4) / stride;
78 SMMUTLBEntry *entry = NULL;
79
80 while (level <= 3) {
81 uint64_t subpage_size = 1ULL << level_shift(level, tt->granule_sz);
82 uint64_t mask = subpage_size - 1;
83 SMMUIOTLBKey key;
84
85 key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid,
86 iova & ~mask, tg, level);
87 entry = g_hash_table_lookup(bs->iotlb, &key);
88 if (entry) {
89 break;
90 }
91 level++;
92 }
93 return entry;
94 }
95
96 /**
97 * smmu_iotlb_lookup - Look up for a TLB entry.
98 * @bs: SMMU state which includes the TLB instance
99 * @cfg: Configuration of the translation
100 * @tt: Translation table info (granule and tsz)
101 * @iova: IOVA address to lookup
102 *
103 * returns a valid entry on success, otherwise NULL.
104 * In case of nested translation, tt can be updated to include
105 * the granule of the found entry as it might different from
106 * the IOVA granule.
107 */
smmu_iotlb_lookup(SMMUState * bs,SMMUTransCfg * cfg,SMMUTransTableInfo * tt,hwaddr iova)108 SMMUTLBEntry *smmu_iotlb_lookup(SMMUState *bs, SMMUTransCfg *cfg,
109 SMMUTransTableInfo *tt, hwaddr iova)
110 {
111 SMMUTLBEntry *entry = NULL;
112
113 entry = smmu_iotlb_lookup_all_levels(bs, cfg, tt, iova);
114 /*
115 * For nested translation also try the s2 granule, as the TLB will insert
116 * it if the size of s2 tlb entry was smaller.
117 */
118 if (!entry && (cfg->stage == SMMU_NESTED) &&
119 (cfg->s2cfg.granule_sz != tt->granule_sz)) {
120 tt->granule_sz = cfg->s2cfg.granule_sz;
121 entry = smmu_iotlb_lookup_all_levels(bs, cfg, tt, iova);
122 }
123
124 if (entry) {
125 cfg->iotlb_hits++;
126 trace_smmu_iotlb_lookup_hit(cfg->asid, cfg->s2cfg.vmid, iova,
127 cfg->iotlb_hits, cfg->iotlb_misses,
128 100 * cfg->iotlb_hits /
129 (cfg->iotlb_hits + cfg->iotlb_misses));
130 } else {
131 cfg->iotlb_misses++;
132 trace_smmu_iotlb_lookup_miss(cfg->asid, cfg->s2cfg.vmid, iova,
133 cfg->iotlb_hits, cfg->iotlb_misses,
134 100 * cfg->iotlb_hits /
135 (cfg->iotlb_hits + cfg->iotlb_misses));
136 }
137 return entry;
138 }
139
smmu_iotlb_insert(SMMUState * bs,SMMUTransCfg * cfg,SMMUTLBEntry * new)140 void smmu_iotlb_insert(SMMUState *bs, SMMUTransCfg *cfg, SMMUTLBEntry *new)
141 {
142 SMMUIOTLBKey *key = g_new0(SMMUIOTLBKey, 1);
143 uint8_t tg = (new->granule - 10) / 2;
144
145 if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
146 smmu_iotlb_inv_all(bs);
147 }
148
149 *key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid, new->entry.iova,
150 tg, new->level);
151 trace_smmu_iotlb_insert(cfg->asid, cfg->s2cfg.vmid, new->entry.iova,
152 tg, new->level);
153 g_hash_table_insert(bs->iotlb, key, new);
154 }
155
smmu_iotlb_inv_all(SMMUState * s)156 void smmu_iotlb_inv_all(SMMUState *s)
157 {
158 trace_smmu_iotlb_inv_all();
159 g_hash_table_remove_all(s->iotlb);
160 }
161
smmu_hash_remove_by_asid_vmid(gpointer key,gpointer value,gpointer user_data)162 static gboolean smmu_hash_remove_by_asid_vmid(gpointer key, gpointer value,
163 gpointer user_data)
164 {
165 SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
166 SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
167
168 return (SMMU_IOTLB_ASID(*iotlb_key) == info->asid) &&
169 (SMMU_IOTLB_VMID(*iotlb_key) == info->vmid);
170 }
171
smmu_hash_remove_by_vmid(gpointer key,gpointer value,gpointer user_data)172 static gboolean smmu_hash_remove_by_vmid(gpointer key, gpointer value,
173 gpointer user_data)
174 {
175 int vmid = *(int *)user_data;
176 SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
177
178 return SMMU_IOTLB_VMID(*iotlb_key) == vmid;
179 }
180
smmu_hash_remove_by_vmid_s1(gpointer key,gpointer value,gpointer user_data)181 static gboolean smmu_hash_remove_by_vmid_s1(gpointer key, gpointer value,
182 gpointer user_data)
183 {
184 int vmid = *(int *)user_data;
185 SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
186
187 return (SMMU_IOTLB_VMID(*iotlb_key) == vmid) &&
188 (SMMU_IOTLB_ASID(*iotlb_key) >= 0);
189 }
190
smmu_hash_remove_by_asid_vmid_iova(gpointer key,gpointer value,gpointer user_data)191 static gboolean smmu_hash_remove_by_asid_vmid_iova(gpointer key, gpointer value,
192 gpointer user_data)
193 {
194 SMMUTLBEntry *iter = (SMMUTLBEntry *)value;
195 IOMMUTLBEntry *entry = &iter->entry;
196 SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
197 SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key;
198
199 if (info->asid >= 0 && info->asid != SMMU_IOTLB_ASID(iotlb_key)) {
200 return false;
201 }
202 if (info->vmid >= 0 && info->vmid != SMMU_IOTLB_VMID(iotlb_key)) {
203 return false;
204 }
205 return ((info->iova & ~entry->addr_mask) == entry->iova) ||
206 ((entry->iova & ~info->mask) == info->iova);
207 }
208
smmu_hash_remove_by_vmid_ipa(gpointer key,gpointer value,gpointer user_data)209 static gboolean smmu_hash_remove_by_vmid_ipa(gpointer key, gpointer value,
210 gpointer user_data)
211 {
212 SMMUTLBEntry *iter = (SMMUTLBEntry *)value;
213 IOMMUTLBEntry *entry = &iter->entry;
214 SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
215 SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key;
216
217 if (SMMU_IOTLB_ASID(iotlb_key) >= 0) {
218 /* This is a stage-1 address. */
219 return false;
220 }
221 if (info->vmid != SMMU_IOTLB_VMID(iotlb_key)) {
222 return false;
223 }
224 return ((info->iova & ~entry->addr_mask) == entry->iova) ||
225 ((entry->iova & ~info->mask) == info->iova);
226 }
227
smmu_iotlb_inv_iova(SMMUState * s,int asid,int vmid,dma_addr_t iova,uint8_t tg,uint64_t num_pages,uint8_t ttl)228 void smmu_iotlb_inv_iova(SMMUState *s, int asid, int vmid, dma_addr_t iova,
229 uint8_t tg, uint64_t num_pages, uint8_t ttl)
230 {
231 /* if tg is not set we use 4KB range invalidation */
232 uint8_t granule = tg ? tg * 2 + 10 : 12;
233
234 if (ttl && (num_pages == 1) && (asid >= 0)) {
235 SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, iova, tg, ttl);
236
237 if (g_hash_table_remove(s->iotlb, &key)) {
238 return;
239 }
240 /*
241 * if the entry is not found, let's see if it does not
242 * belong to a larger IOTLB entry
243 */
244 }
245
246 SMMUIOTLBPageInvInfo info = {
247 .asid = asid, .iova = iova,
248 .vmid = vmid,
249 .mask = (num_pages * 1 << granule) - 1};
250
251 g_hash_table_foreach_remove(s->iotlb,
252 smmu_hash_remove_by_asid_vmid_iova,
253 &info);
254 }
255
256 /*
257 * Similar to smmu_iotlb_inv_iova(), but for Stage-2, ASID is always -1,
258 * in Stage-1 invalidation ASID = -1, means don't care.
259 */
smmu_iotlb_inv_ipa(SMMUState * s,int vmid,dma_addr_t ipa,uint8_t tg,uint64_t num_pages,uint8_t ttl)260 void smmu_iotlb_inv_ipa(SMMUState *s, int vmid, dma_addr_t ipa, uint8_t tg,
261 uint64_t num_pages, uint8_t ttl)
262 {
263 uint8_t granule = tg ? tg * 2 + 10 : 12;
264 int asid = -1;
265
266 if (ttl && (num_pages == 1)) {
267 SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, ipa, tg, ttl);
268
269 if (g_hash_table_remove(s->iotlb, &key)) {
270 return;
271 }
272 }
273
274 SMMUIOTLBPageInvInfo info = {
275 .iova = ipa,
276 .vmid = vmid,
277 .mask = (num_pages << granule) - 1};
278
279 g_hash_table_foreach_remove(s->iotlb,
280 smmu_hash_remove_by_vmid_ipa,
281 &info);
282 }
283
smmu_iotlb_inv_asid_vmid(SMMUState * s,int asid,int vmid)284 void smmu_iotlb_inv_asid_vmid(SMMUState *s, int asid, int vmid)
285 {
286 SMMUIOTLBPageInvInfo info = {
287 .asid = asid,
288 .vmid = vmid,
289 };
290
291 trace_smmu_iotlb_inv_asid_vmid(asid, vmid);
292 g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_asid_vmid, &info);
293 }
294
smmu_iotlb_inv_vmid(SMMUState * s,int vmid)295 void smmu_iotlb_inv_vmid(SMMUState *s, int vmid)
296 {
297 trace_smmu_iotlb_inv_vmid(vmid);
298 g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid, &vmid);
299 }
300
smmu_iotlb_inv_vmid_s1(SMMUState * s,int vmid)301 inline void smmu_iotlb_inv_vmid_s1(SMMUState *s, int vmid)
302 {
303 trace_smmu_iotlb_inv_vmid_s1(vmid);
304 g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid_s1, &vmid);
305 }
306
307 /* VMSAv8-64 Translation */
308
309 /**
310 * get_pte - Get the content of a page table entry located at
311 * @base_addr[@index]
312 */
get_pte(dma_addr_t baseaddr,uint32_t index,uint64_t * pte,SMMUPTWEventInfo * info)313 static int get_pte(dma_addr_t baseaddr, uint32_t index, uint64_t *pte,
314 SMMUPTWEventInfo *info)
315 {
316 int ret;
317 dma_addr_t addr = baseaddr + index * sizeof(*pte);
318
319 /* TODO: guarantee 64-bit single-copy atomicity */
320 ret = ldq_le_dma(&address_space_memory, addr, pte, MEMTXATTRS_UNSPECIFIED);
321
322 if (ret != MEMTX_OK) {
323 info->type = SMMU_PTW_ERR_WALK_EABT;
324 info->addr = addr;
325 return -EINVAL;
326 }
327 trace_smmu_get_pte(baseaddr, index, addr, *pte);
328 return 0;
329 }
330
331 /* VMSAv8-64 Translation Table Format Descriptor Decoding */
332
333 /**
334 * get_page_pte_address - returns the L3 descriptor output address,
335 * ie. the page frame
336 * ARM ARM spec: Figure D4-17 VMSAv8-64 level 3 descriptor format
337 */
get_page_pte_address(uint64_t pte,int granule_sz)338 static inline hwaddr get_page_pte_address(uint64_t pte, int granule_sz)
339 {
340 return PTE_ADDRESS(pte, granule_sz);
341 }
342
343 /**
344 * get_table_pte_address - return table descriptor output address,
345 * ie. address of next level table
346 * ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats
347 */
get_table_pte_address(uint64_t pte,int granule_sz)348 static inline hwaddr get_table_pte_address(uint64_t pte, int granule_sz)
349 {
350 return PTE_ADDRESS(pte, granule_sz);
351 }
352
353 /**
354 * get_block_pte_address - return block descriptor output address and block size
355 * ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats
356 */
get_block_pte_address(uint64_t pte,int level,int granule_sz,uint64_t * bsz)357 static inline hwaddr get_block_pte_address(uint64_t pte, int level,
358 int granule_sz, uint64_t *bsz)
359 {
360 int n = level_shift(level, granule_sz);
361
362 *bsz = 1ULL << n;
363 return PTE_ADDRESS(pte, n);
364 }
365
select_tt(SMMUTransCfg * cfg,dma_addr_t iova)366 SMMUTransTableInfo *select_tt(SMMUTransCfg *cfg, dma_addr_t iova)
367 {
368 bool tbi = extract64(iova, 55, 1) ? TBI1(cfg->tbi) : TBI0(cfg->tbi);
369 uint8_t tbi_byte = tbi * 8;
370
371 if (cfg->tt[0].tsz &&
372 !extract64(iova, 64 - cfg->tt[0].tsz, cfg->tt[0].tsz - tbi_byte)) {
373 /* there is a ttbr0 region and we are in it (high bits all zero) */
374 return &cfg->tt[0];
375 } else if (cfg->tt[1].tsz &&
376 sextract64(iova, 64 - cfg->tt[1].tsz, cfg->tt[1].tsz - tbi_byte) == -1) {
377 /* there is a ttbr1 region and we are in it (high bits all one) */
378 return &cfg->tt[1];
379 } else if (!cfg->tt[0].tsz) {
380 /* ttbr0 region is "everything not in the ttbr1 region" */
381 return &cfg->tt[0];
382 } else if (!cfg->tt[1].tsz) {
383 /* ttbr1 region is "everything not in the ttbr0 region" */
384 return &cfg->tt[1];
385 }
386 /* in the gap between the two regions, this is a Translation fault */
387 return NULL;
388 }
389
390 /* Translate stage-1 table address using stage-2 page table. */
translate_table_addr_ipa(SMMUState * bs,dma_addr_t * table_addr,SMMUTransCfg * cfg,SMMUPTWEventInfo * info)391 static inline int translate_table_addr_ipa(SMMUState *bs,
392 dma_addr_t *table_addr,
393 SMMUTransCfg *cfg,
394 SMMUPTWEventInfo *info)
395 {
396 dma_addr_t addr = *table_addr;
397 SMMUTLBEntry *cached_entry;
398 int asid;
399
400 /*
401 * The translation table walks performed from TTB0 or TTB1 are always
402 * performed in IPA space if stage 2 translations are enabled.
403 */
404 asid = cfg->asid;
405 cfg->stage = SMMU_STAGE_2;
406 cfg->asid = -1;
407 cached_entry = smmu_translate(bs, cfg, addr, IOMMU_RO, info);
408 cfg->asid = asid;
409 cfg->stage = SMMU_NESTED;
410
411 if (cached_entry) {
412 *table_addr = CACHED_ENTRY_TO_ADDR(cached_entry, addr);
413 return 0;
414 }
415
416 info->stage = SMMU_STAGE_2;
417 info->addr = addr;
418 info->is_ipa_descriptor = true;
419 return -EINVAL;
420 }
421
422 /**
423 * smmu_ptw_64_s1 - VMSAv8-64 Walk of the page tables for a given IOVA
424 * @bs: smmu state which includes TLB instance
425 * @cfg: translation config
426 * @iova: iova to translate
427 * @perm: access type
428 * @tlbe: SMMUTLBEntry (out)
429 * @info: handle to an error info
430 *
431 * Return 0 on success, < 0 on error. In case of error, @info is filled
432 * and tlbe->perm is set to IOMMU_NONE.
433 * Upon success, @tlbe is filled with translated_addr and entry
434 * permission rights.
435 */
smmu_ptw_64_s1(SMMUState * bs,SMMUTransCfg * cfg,dma_addr_t iova,IOMMUAccessFlags perm,SMMUTLBEntry * tlbe,SMMUPTWEventInfo * info)436 static int smmu_ptw_64_s1(SMMUState *bs, SMMUTransCfg *cfg,
437 dma_addr_t iova, IOMMUAccessFlags perm,
438 SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
439 {
440 dma_addr_t baseaddr, indexmask;
441 SMMUStage stage = cfg->stage;
442 SMMUTransTableInfo *tt = select_tt(cfg, iova);
443 uint8_t level, granule_sz, inputsize, stride;
444
445 if (!tt || tt->disabled) {
446 info->type = SMMU_PTW_ERR_TRANSLATION;
447 goto error;
448 }
449
450 granule_sz = tt->granule_sz;
451 stride = VMSA_STRIDE(granule_sz);
452 inputsize = 64 - tt->tsz;
453 level = 4 - (inputsize - 4) / stride;
454 indexmask = VMSA_IDXMSK(inputsize, stride, level);
455
456 baseaddr = extract64(tt->ttb, 0, cfg->oas);
457 baseaddr &= ~indexmask;
458
459 while (level < VMSA_LEVELS) {
460 uint64_t subpage_size = 1ULL << level_shift(level, granule_sz);
461 uint64_t mask = subpage_size - 1;
462 uint32_t offset = iova_level_offset(iova, inputsize, level, granule_sz);
463 uint64_t pte, gpa;
464 dma_addr_t pte_addr = baseaddr + offset * sizeof(pte);
465 uint8_t ap;
466
467 if (get_pte(baseaddr, offset, &pte, info)) {
468 goto error;
469 }
470 trace_smmu_ptw_level(stage, level, iova, subpage_size,
471 baseaddr, offset, pte);
472
473 if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) {
474 trace_smmu_ptw_invalid_pte(stage, level, baseaddr,
475 pte_addr, offset, pte);
476 break;
477 }
478
479 if (is_table_pte(pte, level)) {
480 ap = PTE_APTABLE(pte);
481
482 if (is_permission_fault(ap, perm) && !tt->had) {
483 info->type = SMMU_PTW_ERR_PERMISSION;
484 goto error;
485 }
486 baseaddr = get_table_pte_address(pte, granule_sz);
487 if (cfg->stage == SMMU_NESTED) {
488 if (translate_table_addr_ipa(bs, &baseaddr, cfg, info)) {
489 goto error;
490 }
491 }
492 level++;
493 continue;
494 } else if (is_page_pte(pte, level)) {
495 gpa = get_page_pte_address(pte, granule_sz);
496 trace_smmu_ptw_page_pte(stage, level, iova,
497 baseaddr, pte_addr, pte, gpa);
498 } else {
499 uint64_t block_size;
500
501 gpa = get_block_pte_address(pte, level, granule_sz,
502 &block_size);
503 trace_smmu_ptw_block_pte(stage, level, baseaddr,
504 pte_addr, pte, iova, gpa,
505 block_size >> 20);
506 }
507
508 /*
509 * QEMU does not currently implement HTTU, so if AFFD and PTE.AF
510 * are 0 we take an Access flag fault. (5.4. Context Descriptor)
511 * An Access flag fault takes priority over a Permission fault.
512 */
513 if (!PTE_AF(pte) && !cfg->affd) {
514 info->type = SMMU_PTW_ERR_ACCESS;
515 goto error;
516 }
517
518 ap = PTE_AP(pte);
519 if (is_permission_fault(ap, perm)) {
520 info->type = SMMU_PTW_ERR_PERMISSION;
521 goto error;
522 }
523
524 /*
525 * The address output from the translation causes a stage 1 Address
526 * Size fault if it exceeds the range of the effective IPA size for
527 * the given CD.
528 */
529 if (gpa >= (1ULL << cfg->oas)) {
530 info->type = SMMU_PTW_ERR_ADDR_SIZE;
531 goto error;
532 }
533
534 tlbe->entry.translated_addr = gpa;
535 tlbe->entry.iova = iova & ~mask;
536 tlbe->entry.addr_mask = mask;
537 tlbe->parent_perm = PTE_AP_TO_PERM(ap);
538 tlbe->entry.perm = tlbe->parent_perm;
539 tlbe->level = level;
540 tlbe->granule = granule_sz;
541 return 0;
542 }
543 info->type = SMMU_PTW_ERR_TRANSLATION;
544
545 error:
546 info->stage = SMMU_STAGE_1;
547 tlbe->entry.perm = IOMMU_NONE;
548 return -EINVAL;
549 }
550
551 /**
552 * smmu_ptw_64_s2 - VMSAv8-64 Walk of the page tables for a given ipa
553 * for stage-2.
554 * @cfg: translation config
555 * @ipa: ipa to translate
556 * @perm: access type
557 * @tlbe: SMMUTLBEntry (out)
558 * @info: handle to an error info
559 *
560 * Return 0 on success, < 0 on error. In case of error, @info is filled
561 * and tlbe->perm is set to IOMMU_NONE.
562 * Upon success, @tlbe is filled with translated_addr and entry
563 * permission rights.
564 */
smmu_ptw_64_s2(SMMUTransCfg * cfg,dma_addr_t ipa,IOMMUAccessFlags perm,SMMUTLBEntry * tlbe,SMMUPTWEventInfo * info)565 static int smmu_ptw_64_s2(SMMUTransCfg *cfg,
566 dma_addr_t ipa, IOMMUAccessFlags perm,
567 SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
568 {
569 const SMMUStage stage = SMMU_STAGE_2;
570 int granule_sz = cfg->s2cfg.granule_sz;
571 /* ARM DDI0487I.a: Table D8-7. */
572 int inputsize = 64 - cfg->s2cfg.tsz;
573 int level = get_start_level(cfg->s2cfg.sl0, granule_sz);
574 int stride = VMSA_STRIDE(granule_sz);
575 int idx = pgd_concat_idx(level, granule_sz, ipa);
576 /*
577 * Get the ttb from concatenated structure.
578 * The offset is the idx * size of each ttb(number of ptes * (sizeof(pte))
579 */
580 uint64_t baseaddr = extract64(cfg->s2cfg.vttb, 0, cfg->s2cfg.eff_ps) +
581 (1 << stride) * idx * sizeof(uint64_t);
582 dma_addr_t indexmask = VMSA_IDXMSK(inputsize, stride, level);
583
584 baseaddr &= ~indexmask;
585
586 /*
587 * On input, a stage 2 Translation fault occurs if the IPA is outside the
588 * range configured by the relevant S2T0SZ field of the STE.
589 */
590 if (ipa >= (1ULL << inputsize)) {
591 info->type = SMMU_PTW_ERR_TRANSLATION;
592 goto error_ipa;
593 }
594
595 while (level < VMSA_LEVELS) {
596 uint64_t subpage_size = 1ULL << level_shift(level, granule_sz);
597 uint64_t mask = subpage_size - 1;
598 uint32_t offset = iova_level_offset(ipa, inputsize, level, granule_sz);
599 uint64_t pte, gpa;
600 dma_addr_t pte_addr = baseaddr + offset * sizeof(pte);
601 uint8_t s2ap;
602
603 if (get_pte(baseaddr, offset, &pte, info)) {
604 goto error;
605 }
606 trace_smmu_ptw_level(stage, level, ipa, subpage_size,
607 baseaddr, offset, pte);
608 if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) {
609 trace_smmu_ptw_invalid_pte(stage, level, baseaddr,
610 pte_addr, offset, pte);
611 break;
612 }
613
614 if (is_table_pte(pte, level)) {
615 baseaddr = get_table_pte_address(pte, granule_sz);
616 level++;
617 continue;
618 } else if (is_page_pte(pte, level)) {
619 gpa = get_page_pte_address(pte, granule_sz);
620 trace_smmu_ptw_page_pte(stage, level, ipa,
621 baseaddr, pte_addr, pte, gpa);
622 } else {
623 uint64_t block_size;
624
625 gpa = get_block_pte_address(pte, level, granule_sz,
626 &block_size);
627 trace_smmu_ptw_block_pte(stage, level, baseaddr,
628 pte_addr, pte, ipa, gpa,
629 block_size >> 20);
630 }
631
632 /*
633 * If S2AFFD and PTE.AF are 0 => fault. (5.2. Stream Table Entry)
634 * An Access fault takes priority over a Permission fault.
635 */
636 if (!PTE_AF(pte) && !cfg->s2cfg.affd) {
637 info->type = SMMU_PTW_ERR_ACCESS;
638 goto error_ipa;
639 }
640
641 s2ap = PTE_AP(pte);
642 if (is_permission_fault_s2(s2ap, perm)) {
643 info->type = SMMU_PTW_ERR_PERMISSION;
644 goto error_ipa;
645 }
646
647 /*
648 * The address output from the translation causes a stage 2 Address
649 * Size fault if it exceeds the effective PA output range.
650 */
651 if (gpa >= (1ULL << cfg->s2cfg.eff_ps)) {
652 info->type = SMMU_PTW_ERR_ADDR_SIZE;
653 goto error_ipa;
654 }
655
656 tlbe->entry.translated_addr = gpa;
657 tlbe->entry.iova = ipa & ~mask;
658 tlbe->entry.addr_mask = mask;
659 tlbe->parent_perm = s2ap;
660 tlbe->entry.perm = tlbe->parent_perm;
661 tlbe->level = level;
662 tlbe->granule = granule_sz;
663 return 0;
664 }
665 info->type = SMMU_PTW_ERR_TRANSLATION;
666
667 error_ipa:
668 info->addr = ipa;
669 error:
670 info->stage = SMMU_STAGE_2;
671 tlbe->entry.perm = IOMMU_NONE;
672 return -EINVAL;
673 }
674
675 /*
676 * combine S1 and S2 TLB entries into a single entry.
677 * As a result the S1 entry is overridden with combined data.
678 */
combine_tlb(SMMUTLBEntry * tlbe,SMMUTLBEntry * tlbe_s2,dma_addr_t iova,SMMUTransCfg * cfg)679 static void combine_tlb(SMMUTLBEntry *tlbe, SMMUTLBEntry *tlbe_s2,
680 dma_addr_t iova, SMMUTransCfg *cfg)
681 {
682 if (tlbe_s2->entry.addr_mask < tlbe->entry.addr_mask) {
683 tlbe->entry.addr_mask = tlbe_s2->entry.addr_mask;
684 tlbe->granule = tlbe_s2->granule;
685 tlbe->level = tlbe_s2->level;
686 }
687
688 tlbe->entry.translated_addr = CACHED_ENTRY_TO_ADDR(tlbe_s2,
689 tlbe->entry.translated_addr);
690
691 tlbe->entry.iova = iova & ~tlbe->entry.addr_mask;
692 /* parent_perm has s2 perm while perm keeps s1 perm. */
693 tlbe->parent_perm = tlbe_s2->entry.perm;
694 return;
695 }
696
697 /**
698 * smmu_ptw - Walk the page tables for an IOVA, according to @cfg
699 *
700 * @bs: smmu state which includes TLB instance
701 * @cfg: translation configuration
702 * @iova: iova to translate
703 * @perm: tentative access type
704 * @tlbe: returned entry
705 * @info: ptw event handle
706 *
707 * return 0 on success
708 */
smmu_ptw(SMMUState * bs,SMMUTransCfg * cfg,dma_addr_t iova,IOMMUAccessFlags perm,SMMUTLBEntry * tlbe,SMMUPTWEventInfo * info)709 int smmu_ptw(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t iova,
710 IOMMUAccessFlags perm, SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
711 {
712 int ret;
713 SMMUTLBEntry tlbe_s2;
714 dma_addr_t ipa;
715
716 if (cfg->stage == SMMU_STAGE_1) {
717 return smmu_ptw_64_s1(bs, cfg, iova, perm, tlbe, info);
718 } else if (cfg->stage == SMMU_STAGE_2) {
719 /*
720 * If bypassing stage 1(or unimplemented), the input address is passed
721 * directly to stage 2 as IPA. If the input address of a transaction
722 * exceeds the size of the IAS, a stage 1 Address Size fault occurs.
723 * For AA64, IAS = OAS according to (IHI 0070.E.a) "3.4 Address sizes"
724 */
725 if (iova >= (1ULL << cfg->oas)) {
726 info->type = SMMU_PTW_ERR_ADDR_SIZE;
727 info->stage = SMMU_STAGE_1;
728 tlbe->entry.perm = IOMMU_NONE;
729 return -EINVAL;
730 }
731
732 return smmu_ptw_64_s2(cfg, iova, perm, tlbe, info);
733 }
734
735 /* SMMU_NESTED. */
736 ret = smmu_ptw_64_s1(bs, cfg, iova, perm, tlbe, info);
737 if (ret) {
738 return ret;
739 }
740
741 ipa = CACHED_ENTRY_TO_ADDR(tlbe, iova);
742 ret = smmu_ptw_64_s2(cfg, ipa, perm, &tlbe_s2, info);
743 if (ret) {
744 return ret;
745 }
746
747 combine_tlb(tlbe, &tlbe_s2, iova, cfg);
748 return 0;
749 }
750
smmu_translate(SMMUState * bs,SMMUTransCfg * cfg,dma_addr_t addr,IOMMUAccessFlags flag,SMMUPTWEventInfo * info)751 SMMUTLBEntry *smmu_translate(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t addr,
752 IOMMUAccessFlags flag, SMMUPTWEventInfo *info)
753 {
754 SMMUTLBEntry *cached_entry = NULL;
755 SMMUTransTableInfo *tt;
756 int status;
757
758 /*
759 * Combined attributes used for TLB lookup, holds the attributes for
760 * the input stage.
761 */
762 SMMUTransTableInfo tt_combined;
763
764 if (cfg->stage == SMMU_STAGE_2) {
765 /* Stage2. */
766 tt_combined.granule_sz = cfg->s2cfg.granule_sz;
767 tt_combined.tsz = cfg->s2cfg.tsz;
768 } else {
769 /* Select stage1 translation table. */
770 tt = select_tt(cfg, addr);
771 if (!tt) {
772 info->type = SMMU_PTW_ERR_TRANSLATION;
773 info->stage = SMMU_STAGE_1;
774 return NULL;
775 }
776 tt_combined.granule_sz = tt->granule_sz;
777 tt_combined.tsz = tt->tsz;
778 }
779
780 cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, addr);
781 if (cached_entry) {
782 if ((flag & IOMMU_WO) && !(cached_entry->entry.perm &
783 cached_entry->parent_perm & IOMMU_WO)) {
784 info->type = SMMU_PTW_ERR_PERMISSION;
785 info->stage = !(cached_entry->entry.perm & IOMMU_WO) ?
786 SMMU_STAGE_1 :
787 SMMU_STAGE_2;
788 return NULL;
789 }
790 return cached_entry;
791 }
792
793 cached_entry = g_new0(SMMUTLBEntry, 1);
794 status = smmu_ptw(bs, cfg, addr, flag, cached_entry, info);
795 if (status) {
796 g_free(cached_entry);
797 return NULL;
798 }
799 smmu_iotlb_insert(bs, cfg, cached_entry);
800 return cached_entry;
801 }
802
803 /**
804 * The bus number is used for lookup when SID based invalidation occurs.
805 * In that case we lazily populate the SMMUPciBus array from the bus hash
806 * table. At the time the SMMUPciBus is created (smmu_find_add_as), the bus
807 * numbers may not be always initialized yet.
808 */
smmu_find_smmu_pcibus(SMMUState * s,uint8_t bus_num)809 SMMUPciBus *smmu_find_smmu_pcibus(SMMUState *s, uint8_t bus_num)
810 {
811 SMMUPciBus *smmu_pci_bus = s->smmu_pcibus_by_bus_num[bus_num];
812 GHashTableIter iter;
813
814 if (smmu_pci_bus) {
815 return smmu_pci_bus;
816 }
817
818 g_hash_table_iter_init(&iter, s->smmu_pcibus_by_busptr);
819 while (g_hash_table_iter_next(&iter, NULL, (void **)&smmu_pci_bus)) {
820 if (pci_bus_num(smmu_pci_bus->bus) == bus_num) {
821 s->smmu_pcibus_by_bus_num[bus_num] = smmu_pci_bus;
822 return smmu_pci_bus;
823 }
824 }
825
826 return NULL;
827 }
828
smmu_find_add_as(PCIBus * bus,void * opaque,int devfn)829 static AddressSpace *smmu_find_add_as(PCIBus *bus, void *opaque, int devfn)
830 {
831 SMMUState *s = opaque;
832 SMMUPciBus *sbus = g_hash_table_lookup(s->smmu_pcibus_by_busptr, bus);
833 SMMUDevice *sdev;
834 static unsigned int index;
835
836 if (!sbus) {
837 sbus = g_malloc0(sizeof(SMMUPciBus) +
838 sizeof(SMMUDevice *) * SMMU_PCI_DEVFN_MAX);
839 sbus->bus = bus;
840 g_hash_table_insert(s->smmu_pcibus_by_busptr, bus, sbus);
841 }
842
843 sdev = sbus->pbdev[devfn];
844 if (!sdev) {
845 char *name = g_strdup_printf("%s-%d-%d", s->mrtypename, devfn, index++);
846
847 sdev = sbus->pbdev[devfn] = g_new0(SMMUDevice, 1);
848
849 sdev->smmu = s;
850 sdev->bus = bus;
851 sdev->devfn = devfn;
852
853 memory_region_init_iommu(&sdev->iommu, sizeof(sdev->iommu),
854 s->mrtypename,
855 OBJECT(s), name, UINT64_MAX);
856 address_space_init(&sdev->as,
857 MEMORY_REGION(&sdev->iommu), name);
858 trace_smmu_add_mr(name);
859 g_free(name);
860 }
861
862 return &sdev->as;
863 }
864
865 static const PCIIOMMUOps smmu_ops = {
866 .get_address_space = smmu_find_add_as,
867 };
868
smmu_find_sdev(SMMUState * s,uint32_t sid)869 SMMUDevice *smmu_find_sdev(SMMUState *s, uint32_t sid)
870 {
871 uint8_t bus_n, devfn;
872 SMMUPciBus *smmu_bus;
873
874 bus_n = PCI_BUS_NUM(sid);
875 smmu_bus = smmu_find_smmu_pcibus(s, bus_n);
876 if (smmu_bus) {
877 devfn = SMMU_PCI_DEVFN(sid);
878 return smmu_bus->pbdev[devfn];
879 }
880 return NULL;
881 }
882
883 /* Unmap all notifiers attached to @mr */
smmu_inv_notifiers_mr(IOMMUMemoryRegion * mr)884 static void smmu_inv_notifiers_mr(IOMMUMemoryRegion *mr)
885 {
886 IOMMUNotifier *n;
887
888 trace_smmu_inv_notifiers_mr(mr->parent_obj.name);
889 IOMMU_NOTIFIER_FOREACH(n, mr) {
890 memory_region_unmap_iommu_notifier_range(n);
891 }
892 }
893
894 /* Unmap all notifiers of all mr's */
smmu_inv_notifiers_all(SMMUState * s)895 void smmu_inv_notifiers_all(SMMUState *s)
896 {
897 SMMUDevice *sdev;
898
899 QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
900 smmu_inv_notifiers_mr(&sdev->iommu);
901 }
902 }
903
smmu_base_realize(DeviceState * dev,Error ** errp)904 static void smmu_base_realize(DeviceState *dev, Error **errp)
905 {
906 SMMUState *s = ARM_SMMU(dev);
907 SMMUBaseClass *sbc = ARM_SMMU_GET_CLASS(dev);
908 Error *local_err = NULL;
909
910 sbc->parent_realize(dev, &local_err);
911 if (local_err) {
912 error_propagate(errp, local_err);
913 return;
914 }
915 s->configs = g_hash_table_new_full(NULL, NULL, NULL, g_free);
916 s->iotlb = g_hash_table_new_full(smmu_iotlb_key_hash, smmu_iotlb_key_equal,
917 g_free, g_free);
918 s->smmu_pcibus_by_busptr = g_hash_table_new(NULL, NULL);
919
920 if (s->primary_bus) {
921 pci_setup_iommu(s->primary_bus, &smmu_ops, s);
922 } else {
923 error_setg(errp, "SMMU is not attached to any PCI bus!");
924 }
925 }
926
smmu_base_reset_hold(Object * obj,ResetType type)927 static void smmu_base_reset_hold(Object *obj, ResetType type)
928 {
929 SMMUState *s = ARM_SMMU(obj);
930
931 memset(s->smmu_pcibus_by_bus_num, 0, sizeof(s->smmu_pcibus_by_bus_num));
932
933 g_hash_table_remove_all(s->configs);
934 g_hash_table_remove_all(s->iotlb);
935 }
936
937 static Property smmu_dev_properties[] = {
938 DEFINE_PROP_UINT8("bus_num", SMMUState, bus_num, 0),
939 DEFINE_PROP_LINK("primary-bus", SMMUState, primary_bus,
940 TYPE_PCI_BUS, PCIBus *),
941 DEFINE_PROP_END_OF_LIST(),
942 };
943
smmu_base_class_init(ObjectClass * klass,void * data)944 static void smmu_base_class_init(ObjectClass *klass, void *data)
945 {
946 DeviceClass *dc = DEVICE_CLASS(klass);
947 ResettableClass *rc = RESETTABLE_CLASS(klass);
948 SMMUBaseClass *sbc = ARM_SMMU_CLASS(klass);
949
950 device_class_set_props(dc, smmu_dev_properties);
951 device_class_set_parent_realize(dc, smmu_base_realize,
952 &sbc->parent_realize);
953 rc->phases.hold = smmu_base_reset_hold;
954 }
955
956 static const TypeInfo smmu_base_info = {
957 .name = TYPE_ARM_SMMU,
958 .parent = TYPE_SYS_BUS_DEVICE,
959 .instance_size = sizeof(SMMUState),
960 .class_data = NULL,
961 .class_size = sizeof(SMMUBaseClass),
962 .class_init = smmu_base_class_init,
963 .abstract = true,
964 };
965
smmu_base_register_types(void)966 static void smmu_base_register_types(void)
967 {
968 type_register_static(&smmu_base_info);
969 }
970
971 type_init(smmu_base_register_types)
972
973