1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "sfp.h"
20 #include "swphy.h"
21
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75 };
76
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85 };
86
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92 }
93
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98 };
99
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105 }
106
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119 };
120
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126 }
127
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140 };
141
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147 }
148
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156 };
157
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165 };
166
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
189
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
195
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
209
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
217
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222 #define SFP_EEPROM_BLOCK_SIZE 16
223
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state;
261
262 struct delayed_work poll;
263 struct delayed_work timeout;
264 struct mutex sm_mutex; /* Protects state machine */
265 unsigned char sm_mod_state;
266 unsigned char sm_mod_tries_init;
267 unsigned char sm_mod_tries;
268 unsigned char sm_dev_state;
269 unsigned short sm_state;
270 unsigned char sm_fault_retries;
271 unsigned char sm_phy_retries;
272
273 struct sfp_eeprom_id id;
274 unsigned int module_power_mW;
275 unsigned int module_t_start_up;
276 unsigned int module_t_wait;
277
278 unsigned int rate_kbd;
279 unsigned int rs_threshold_kbd;
280 unsigned int rs_state_mask;
281
282 bool have_a2;
283 bool tx_fault_ignore;
284
285 const struct sfp_quirk *quirk;
286
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
292 char *hwmon_name;
293 #endif
294
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
297 #endif
298 };
299
sff_module_supported(const struct sfp_eeprom_id * id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
309 };
310
sfp_module_supported(const struct sfp_eeprom_id * id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 return true;
316
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
320 */
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
325 return true;
326
327 return false;
328 }
329
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
334 };
335
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
339 { },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342
sfp_fixup_long_startup(struct sfp * sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347
sfp_fixup_ignore_tx_fault(struct sfp * sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 sfp->tx_fault_ignore = true;
351 }
352
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359
sfp_fixup_rollball_proto(struct sfp * sfp,unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365
sfp_fixup_fs_10gt(struct sfp * sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 sfp_fixup_10gbaset_30m(sfp);
369
370 // These SFPs need 4 seconds before the PHY can be accessed
371 sfp_fixup_rollball_proto(sfp, 4);
372 }
373
sfp_fixup_halny_gsfp(struct sfp * sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 /* Ignore the TX_FAULT and LOS signals on this module.
377 * these are possibly used for other purposes on this
378 * module, e.g. a serial port.
379 */
380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382
sfp_fixup_rollball(struct sfp * sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 // Rollball SFPs need 25 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 25);
387 }
388
sfp_fixup_rollball_cc(struct sfp * sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 sfp_fixup_rollball(sfp);
392
393 /* Some RollBall SFPs may have wrong (zero) extended compliance code
394 * burned in EEPROM. For PHY probing we need the correct one.
395 */
396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 unsigned long *modes,
401 unsigned long *interfaces)
402 {
403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 unsigned long *modes,
409 unsigned long *interfaces)
410 {
411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
417 {
418 /* Copper 2.5G SFP */
419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427 {
428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 * types including 10G Ethernet which is not truth. So clear all claimed
430 * modes and set only one mode which module supports: 1000baseX_Full.
431 */
432 linkmode_zero(modes);
433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440
441 static const struct sfp_quirk sfp_quirks[] = {
442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 // report 2500MBd NRZ in their EEPROM
444 SFP_QUIRK_M("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex),
445
446 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
447 // NRZ in their EEPROM
448 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
449 sfp_fixup_long_startup),
450
451 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
452 // Rollball protocol to talk to the PHY.
453 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
454
455 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
456 // NRZ in their EEPROM
457 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
458 sfp_fixup_ignore_tx_fault),
459
460 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
461
462 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
463 // 2600MBd in their EERPOM
464 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
465
466 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
467 // their EEPROM
468 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
469 sfp_fixup_ignore_tx_fault),
470
471 // FS 2.5G Base-T
472 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
473
474 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
475 // 2500MBd NRZ in their EEPROM
476 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
477
478 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
479
480 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
481 // Rollball protocol to talk to the PHY.
482 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
483 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
484
485 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
486 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
487
488 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
489 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
490 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
491 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
492 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
493 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
494 };
495
sfp_strlen(const char * str,size_t maxlen)496 static size_t sfp_strlen(const char *str, size_t maxlen)
497 {
498 size_t size, i;
499
500 /* Trailing characters should be filled with space chars, but
501 * some manufacturers can't read SFF-8472 and use NUL.
502 */
503 for (i = 0, size = 0; i < maxlen; i++)
504 if (str[i] != ' ' && str[i] != '\0')
505 size = i + 1;
506
507 return size;
508 }
509
sfp_match(const char * qs,const char * str,size_t len)510 static bool sfp_match(const char *qs, const char *str, size_t len)
511 {
512 if (!qs)
513 return true;
514 if (strlen(qs) != len)
515 return false;
516 return !strncmp(qs, str, len);
517 }
518
sfp_lookup_quirk(const struct sfp_eeprom_id * id)519 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
520 {
521 const struct sfp_quirk *q;
522 unsigned int i;
523 size_t vs, ps;
524
525 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
526 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
527
528 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
529 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
530 sfp_match(q->part, id->base.vendor_pn, ps))
531 return q;
532
533 return NULL;
534 }
535
536 static unsigned long poll_jiffies;
537
sfp_gpio_get_state(struct sfp * sfp)538 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
539 {
540 unsigned int i, state, v;
541
542 for (i = state = 0; i < GPIO_MAX; i++) {
543 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
544 continue;
545
546 v = gpiod_get_value_cansleep(sfp->gpio[i]);
547 if (v)
548 state |= BIT(i);
549 }
550
551 return state;
552 }
553
sff_gpio_get_state(struct sfp * sfp)554 static unsigned int sff_gpio_get_state(struct sfp *sfp)
555 {
556 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
557 }
558
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)559 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
560 {
561 unsigned int drive;
562
563 if (state & SFP_F_PRESENT)
564 /* If the module is present, drive the requested signals */
565 drive = sfp->state_hw_drive;
566 else
567 /* Otherwise, let them float to the pull-ups */
568 drive = 0;
569
570 if (sfp->gpio[GPIO_TX_DISABLE]) {
571 if (drive & SFP_F_TX_DISABLE)
572 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
573 state & SFP_F_TX_DISABLE);
574 else
575 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
576 }
577
578 if (sfp->gpio[GPIO_RS0]) {
579 if (drive & SFP_F_RS0)
580 gpiod_direction_output(sfp->gpio[GPIO_RS0],
581 state & SFP_F_RS0);
582 else
583 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
584 }
585
586 if (sfp->gpio[GPIO_RS1]) {
587 if (drive & SFP_F_RS1)
588 gpiod_direction_output(sfp->gpio[GPIO_RS1],
589 state & SFP_F_RS1);
590 else
591 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
592 }
593 }
594
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)595 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
596 size_t len)
597 {
598 struct i2c_msg msgs[2];
599 u8 bus_addr = a2 ? 0x51 : 0x50;
600 size_t block_size = sfp->i2c_block_size;
601 size_t this_len;
602 int ret;
603
604 msgs[0].addr = bus_addr;
605 msgs[0].flags = 0;
606 msgs[0].len = 1;
607 msgs[0].buf = &dev_addr;
608 msgs[1].addr = bus_addr;
609 msgs[1].flags = I2C_M_RD;
610 msgs[1].len = len;
611 msgs[1].buf = buf;
612
613 while (len) {
614 this_len = len;
615 if (this_len > block_size)
616 this_len = block_size;
617
618 msgs[1].len = this_len;
619
620 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
621 if (ret < 0)
622 return ret;
623
624 if (ret != ARRAY_SIZE(msgs))
625 break;
626
627 msgs[1].buf += this_len;
628 dev_addr += this_len;
629 len -= this_len;
630 }
631
632 return msgs[1].buf - (u8 *)buf;
633 }
634
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)635 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
636 size_t len)
637 {
638 struct i2c_msg msgs[1];
639 u8 bus_addr = a2 ? 0x51 : 0x50;
640 int ret;
641
642 msgs[0].addr = bus_addr;
643 msgs[0].flags = 0;
644 msgs[0].len = 1 + len;
645 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
646 if (!msgs[0].buf)
647 return -ENOMEM;
648
649 msgs[0].buf[0] = dev_addr;
650 memcpy(&msgs[0].buf[1], buf, len);
651
652 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
653
654 kfree(msgs[0].buf);
655
656 if (ret < 0)
657 return ret;
658
659 return ret == ARRAY_SIZE(msgs) ? len : 0;
660 }
661
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)662 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
663 {
664 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
665 return -EINVAL;
666
667 sfp->i2c = i2c;
668 sfp->read = sfp_i2c_read;
669 sfp->write = sfp_i2c_write;
670
671 return 0;
672 }
673
sfp_i2c_mdiobus_create(struct sfp * sfp)674 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
675 {
676 struct mii_bus *i2c_mii;
677 int ret;
678
679 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
680 if (IS_ERR(i2c_mii))
681 return PTR_ERR(i2c_mii);
682
683 i2c_mii->name = "SFP I2C Bus";
684 i2c_mii->phy_mask = ~0;
685
686 ret = mdiobus_register(i2c_mii);
687 if (ret < 0) {
688 mdiobus_free(i2c_mii);
689 return ret;
690 }
691
692 sfp->i2c_mii = i2c_mii;
693
694 return 0;
695 }
696
sfp_i2c_mdiobus_destroy(struct sfp * sfp)697 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
698 {
699 mdiobus_unregister(sfp->i2c_mii);
700 sfp->i2c_mii = NULL;
701 }
702
703 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)704 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
705 {
706 return sfp->read(sfp, a2, addr, buf, len);
707 }
708
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)709 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
710 {
711 return sfp->write(sfp, a2, addr, buf, len);
712 }
713
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)714 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
715 {
716 int ret;
717 u8 old, v;
718
719 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
720 if (ret != sizeof(old))
721 return ret;
722
723 v = (old & ~mask) | (val & mask);
724 if (v == old)
725 return sizeof(v);
726
727 return sfp_write(sfp, a2, addr, &v, sizeof(v));
728 }
729
sfp_soft_get_state(struct sfp * sfp)730 static unsigned int sfp_soft_get_state(struct sfp *sfp)
731 {
732 unsigned int state = 0;
733 u8 status;
734 int ret;
735
736 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
737 if (ret == sizeof(status)) {
738 if (status & SFP_STATUS_RX_LOS)
739 state |= SFP_F_LOS;
740 if (status & SFP_STATUS_TX_FAULT)
741 state |= SFP_F_TX_FAULT;
742 } else {
743 dev_err_ratelimited(sfp->dev,
744 "failed to read SFP soft status: %pe\n",
745 ERR_PTR(ret));
746 /* Preserve the current state */
747 state = sfp->state;
748 }
749
750 return state & sfp->state_soft_mask;
751 }
752
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)753 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
754 unsigned int soft)
755 {
756 u8 mask = 0;
757 u8 val = 0;
758
759 if (soft & SFP_F_TX_DISABLE)
760 mask |= SFP_STATUS_TX_DISABLE_FORCE;
761 if (state & SFP_F_TX_DISABLE)
762 val |= SFP_STATUS_TX_DISABLE_FORCE;
763
764 if (soft & SFP_F_RS0)
765 mask |= SFP_STATUS_RS0_SELECT;
766 if (state & SFP_F_RS0)
767 val |= SFP_STATUS_RS0_SELECT;
768
769 if (mask)
770 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
771
772 val = mask = 0;
773 if (soft & SFP_F_RS1)
774 mask |= SFP_EXT_STATUS_RS1_SELECT;
775 if (state & SFP_F_RS1)
776 val |= SFP_EXT_STATUS_RS1_SELECT;
777
778 if (mask)
779 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
780 }
781
sfp_soft_start_poll(struct sfp * sfp)782 static void sfp_soft_start_poll(struct sfp *sfp)
783 {
784 const struct sfp_eeprom_id *id = &sfp->id;
785 unsigned int mask = 0;
786
787 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
788 mask |= SFP_F_TX_DISABLE;
789 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
790 mask |= SFP_F_TX_FAULT;
791 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
792 mask |= SFP_F_LOS;
793 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
794 mask |= sfp->rs_state_mask;
795
796 mutex_lock(&sfp->st_mutex);
797 // Poll the soft state for hardware pins we want to ignore
798 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
799
800 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
801 !sfp->need_poll)
802 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
803 mutex_unlock(&sfp->st_mutex);
804 }
805
sfp_soft_stop_poll(struct sfp * sfp)806 static void sfp_soft_stop_poll(struct sfp *sfp)
807 {
808 mutex_lock(&sfp->st_mutex);
809 sfp->state_soft_mask = 0;
810 mutex_unlock(&sfp->st_mutex);
811 }
812
813 /* sfp_get_state() - must be called with st_mutex held, or in the
814 * initialisation path.
815 */
sfp_get_state(struct sfp * sfp)816 static unsigned int sfp_get_state(struct sfp *sfp)
817 {
818 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
819 unsigned int state;
820
821 state = sfp->get_state(sfp) & sfp->state_hw_mask;
822 if (state & SFP_F_PRESENT && soft)
823 state |= sfp_soft_get_state(sfp);
824
825 return state;
826 }
827
828 /* sfp_set_state() - must be called with st_mutex held, or in the
829 * initialisation path.
830 */
sfp_set_state(struct sfp * sfp,unsigned int state)831 static void sfp_set_state(struct sfp *sfp, unsigned int state)
832 {
833 unsigned int soft;
834
835 sfp->set_state(sfp, state);
836
837 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
838 if (state & SFP_F_PRESENT && soft)
839 sfp_soft_set_state(sfp, state, soft);
840 }
841
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)842 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
843 {
844 mutex_lock(&sfp->st_mutex);
845 sfp->state = (sfp->state & ~mask) | set;
846 sfp_set_state(sfp, sfp->state);
847 mutex_unlock(&sfp->st_mutex);
848 }
849
sfp_check(void * buf,size_t len)850 static unsigned int sfp_check(void *buf, size_t len)
851 {
852 u8 *p, check;
853
854 for (p = buf, check = 0; len; p++, len--)
855 check += *p;
856
857 return check;
858 }
859
860 /* hwmon */
861 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)862 static umode_t sfp_hwmon_is_visible(const void *data,
863 enum hwmon_sensor_types type,
864 u32 attr, int channel)
865 {
866 const struct sfp *sfp = data;
867
868 switch (type) {
869 case hwmon_temp:
870 switch (attr) {
871 case hwmon_temp_min_alarm:
872 case hwmon_temp_max_alarm:
873 case hwmon_temp_lcrit_alarm:
874 case hwmon_temp_crit_alarm:
875 case hwmon_temp_min:
876 case hwmon_temp_max:
877 case hwmon_temp_lcrit:
878 case hwmon_temp_crit:
879 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
880 return 0;
881 fallthrough;
882 case hwmon_temp_input:
883 case hwmon_temp_label:
884 return 0444;
885 default:
886 return 0;
887 }
888 case hwmon_in:
889 switch (attr) {
890 case hwmon_in_min_alarm:
891 case hwmon_in_max_alarm:
892 case hwmon_in_lcrit_alarm:
893 case hwmon_in_crit_alarm:
894 case hwmon_in_min:
895 case hwmon_in_max:
896 case hwmon_in_lcrit:
897 case hwmon_in_crit:
898 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
899 return 0;
900 fallthrough;
901 case hwmon_in_input:
902 case hwmon_in_label:
903 return 0444;
904 default:
905 return 0;
906 }
907 case hwmon_curr:
908 switch (attr) {
909 case hwmon_curr_min_alarm:
910 case hwmon_curr_max_alarm:
911 case hwmon_curr_lcrit_alarm:
912 case hwmon_curr_crit_alarm:
913 case hwmon_curr_min:
914 case hwmon_curr_max:
915 case hwmon_curr_lcrit:
916 case hwmon_curr_crit:
917 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
918 return 0;
919 fallthrough;
920 case hwmon_curr_input:
921 case hwmon_curr_label:
922 return 0444;
923 default:
924 return 0;
925 }
926 case hwmon_power:
927 /* External calibration of receive power requires
928 * floating point arithmetic. Doing that in the kernel
929 * is not easy, so just skip it. If the module does
930 * not require external calibration, we can however
931 * show receiver power, since FP is then not needed.
932 */
933 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
934 channel == 1)
935 return 0;
936 switch (attr) {
937 case hwmon_power_min_alarm:
938 case hwmon_power_max_alarm:
939 case hwmon_power_lcrit_alarm:
940 case hwmon_power_crit_alarm:
941 case hwmon_power_min:
942 case hwmon_power_max:
943 case hwmon_power_lcrit:
944 case hwmon_power_crit:
945 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
946 return 0;
947 fallthrough;
948 case hwmon_power_input:
949 case hwmon_power_label:
950 return 0444;
951 default:
952 return 0;
953 }
954 default:
955 return 0;
956 }
957 }
958
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)959 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
960 {
961 __be16 val;
962 int err;
963
964 err = sfp_read(sfp, true, reg, &val, sizeof(val));
965 if (err < 0)
966 return err;
967
968 *value = be16_to_cpu(val);
969
970 return 0;
971 }
972
sfp_hwmon_to_rx_power(long * value)973 static void sfp_hwmon_to_rx_power(long *value)
974 {
975 *value = DIV_ROUND_CLOSEST(*value, 10);
976 }
977
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)978 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
979 long *value)
980 {
981 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
982 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
983 }
984
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)985 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
986 {
987 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
988 be16_to_cpu(sfp->diag.cal_t_offset), value);
989
990 if (*value >= 0x8000)
991 *value -= 0x10000;
992
993 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
994 }
995
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)996 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
997 {
998 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
999 be16_to_cpu(sfp->diag.cal_v_offset), value);
1000
1001 *value = DIV_ROUND_CLOSEST(*value, 10);
1002 }
1003
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1004 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1005 {
1006 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1007 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1008
1009 *value = DIV_ROUND_CLOSEST(*value, 500);
1010 }
1011
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1012 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1013 {
1014 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1015 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1016
1017 *value = DIV_ROUND_CLOSEST(*value, 10);
1018 }
1019
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1020 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1021 {
1022 int err;
1023
1024 err = sfp_hwmon_read_sensor(sfp, reg, value);
1025 if (err < 0)
1026 return err;
1027
1028 sfp_hwmon_calibrate_temp(sfp, value);
1029
1030 return 0;
1031 }
1032
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1033 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1034 {
1035 int err;
1036
1037 err = sfp_hwmon_read_sensor(sfp, reg, value);
1038 if (err < 0)
1039 return err;
1040
1041 sfp_hwmon_calibrate_vcc(sfp, value);
1042
1043 return 0;
1044 }
1045
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1046 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1047 {
1048 int err;
1049
1050 err = sfp_hwmon_read_sensor(sfp, reg, value);
1051 if (err < 0)
1052 return err;
1053
1054 sfp_hwmon_calibrate_bias(sfp, value);
1055
1056 return 0;
1057 }
1058
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1059 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1060 {
1061 int err;
1062
1063 err = sfp_hwmon_read_sensor(sfp, reg, value);
1064 if (err < 0)
1065 return err;
1066
1067 sfp_hwmon_calibrate_tx_power(sfp, value);
1068
1069 return 0;
1070 }
1071
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1072 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1073 {
1074 int err;
1075
1076 err = sfp_hwmon_read_sensor(sfp, reg, value);
1077 if (err < 0)
1078 return err;
1079
1080 sfp_hwmon_to_rx_power(value);
1081
1082 return 0;
1083 }
1084
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1085 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1086 {
1087 u8 status;
1088 int err;
1089
1090 switch (attr) {
1091 case hwmon_temp_input:
1092 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1093
1094 case hwmon_temp_lcrit:
1095 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1096 sfp_hwmon_calibrate_temp(sfp, value);
1097 return 0;
1098
1099 case hwmon_temp_min:
1100 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1101 sfp_hwmon_calibrate_temp(sfp, value);
1102 return 0;
1103 case hwmon_temp_max:
1104 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1105 sfp_hwmon_calibrate_temp(sfp, value);
1106 return 0;
1107
1108 case hwmon_temp_crit:
1109 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1110 sfp_hwmon_calibrate_temp(sfp, value);
1111 return 0;
1112
1113 case hwmon_temp_lcrit_alarm:
1114 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1115 if (err < 0)
1116 return err;
1117
1118 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1119 return 0;
1120
1121 case hwmon_temp_min_alarm:
1122 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1123 if (err < 0)
1124 return err;
1125
1126 *value = !!(status & SFP_WARN0_TEMP_LOW);
1127 return 0;
1128
1129 case hwmon_temp_max_alarm:
1130 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1131 if (err < 0)
1132 return err;
1133
1134 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1135 return 0;
1136
1137 case hwmon_temp_crit_alarm:
1138 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1139 if (err < 0)
1140 return err;
1141
1142 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1143 return 0;
1144 default:
1145 return -EOPNOTSUPP;
1146 }
1147
1148 return -EOPNOTSUPP;
1149 }
1150
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1151 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1152 {
1153 u8 status;
1154 int err;
1155
1156 switch (attr) {
1157 case hwmon_in_input:
1158 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1159
1160 case hwmon_in_lcrit:
1161 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1162 sfp_hwmon_calibrate_vcc(sfp, value);
1163 return 0;
1164
1165 case hwmon_in_min:
1166 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1167 sfp_hwmon_calibrate_vcc(sfp, value);
1168 return 0;
1169
1170 case hwmon_in_max:
1171 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1172 sfp_hwmon_calibrate_vcc(sfp, value);
1173 return 0;
1174
1175 case hwmon_in_crit:
1176 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1177 sfp_hwmon_calibrate_vcc(sfp, value);
1178 return 0;
1179
1180 case hwmon_in_lcrit_alarm:
1181 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1182 if (err < 0)
1183 return err;
1184
1185 *value = !!(status & SFP_ALARM0_VCC_LOW);
1186 return 0;
1187
1188 case hwmon_in_min_alarm:
1189 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1190 if (err < 0)
1191 return err;
1192
1193 *value = !!(status & SFP_WARN0_VCC_LOW);
1194 return 0;
1195
1196 case hwmon_in_max_alarm:
1197 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1198 if (err < 0)
1199 return err;
1200
1201 *value = !!(status & SFP_WARN0_VCC_HIGH);
1202 return 0;
1203
1204 case hwmon_in_crit_alarm:
1205 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1206 if (err < 0)
1207 return err;
1208
1209 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1210 return 0;
1211 default:
1212 return -EOPNOTSUPP;
1213 }
1214
1215 return -EOPNOTSUPP;
1216 }
1217
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1218 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1219 {
1220 u8 status;
1221 int err;
1222
1223 switch (attr) {
1224 case hwmon_curr_input:
1225 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1226
1227 case hwmon_curr_lcrit:
1228 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1229 sfp_hwmon_calibrate_bias(sfp, value);
1230 return 0;
1231
1232 case hwmon_curr_min:
1233 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1234 sfp_hwmon_calibrate_bias(sfp, value);
1235 return 0;
1236
1237 case hwmon_curr_max:
1238 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1239 sfp_hwmon_calibrate_bias(sfp, value);
1240 return 0;
1241
1242 case hwmon_curr_crit:
1243 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1244 sfp_hwmon_calibrate_bias(sfp, value);
1245 return 0;
1246
1247 case hwmon_curr_lcrit_alarm:
1248 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1249 if (err < 0)
1250 return err;
1251
1252 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1253 return 0;
1254
1255 case hwmon_curr_min_alarm:
1256 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1257 if (err < 0)
1258 return err;
1259
1260 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1261 return 0;
1262
1263 case hwmon_curr_max_alarm:
1264 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1265 if (err < 0)
1266 return err;
1267
1268 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1269 return 0;
1270
1271 case hwmon_curr_crit_alarm:
1272 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1273 if (err < 0)
1274 return err;
1275
1276 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1277 return 0;
1278 default:
1279 return -EOPNOTSUPP;
1280 }
1281
1282 return -EOPNOTSUPP;
1283 }
1284
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1285 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1286 {
1287 u8 status;
1288 int err;
1289
1290 switch (attr) {
1291 case hwmon_power_input:
1292 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1293
1294 case hwmon_power_lcrit:
1295 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1296 sfp_hwmon_calibrate_tx_power(sfp, value);
1297 return 0;
1298
1299 case hwmon_power_min:
1300 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1301 sfp_hwmon_calibrate_tx_power(sfp, value);
1302 return 0;
1303
1304 case hwmon_power_max:
1305 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1306 sfp_hwmon_calibrate_tx_power(sfp, value);
1307 return 0;
1308
1309 case hwmon_power_crit:
1310 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1311 sfp_hwmon_calibrate_tx_power(sfp, value);
1312 return 0;
1313
1314 case hwmon_power_lcrit_alarm:
1315 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1316 if (err < 0)
1317 return err;
1318
1319 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1320 return 0;
1321
1322 case hwmon_power_min_alarm:
1323 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1324 if (err < 0)
1325 return err;
1326
1327 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1328 return 0;
1329
1330 case hwmon_power_max_alarm:
1331 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1332 if (err < 0)
1333 return err;
1334
1335 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1336 return 0;
1337
1338 case hwmon_power_crit_alarm:
1339 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1340 if (err < 0)
1341 return err;
1342
1343 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1344 return 0;
1345 default:
1346 return -EOPNOTSUPP;
1347 }
1348
1349 return -EOPNOTSUPP;
1350 }
1351
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1352 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1353 {
1354 u8 status;
1355 int err;
1356
1357 switch (attr) {
1358 case hwmon_power_input:
1359 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1360
1361 case hwmon_power_lcrit:
1362 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1363 sfp_hwmon_to_rx_power(value);
1364 return 0;
1365
1366 case hwmon_power_min:
1367 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1368 sfp_hwmon_to_rx_power(value);
1369 return 0;
1370
1371 case hwmon_power_max:
1372 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1373 sfp_hwmon_to_rx_power(value);
1374 return 0;
1375
1376 case hwmon_power_crit:
1377 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1378 sfp_hwmon_to_rx_power(value);
1379 return 0;
1380
1381 case hwmon_power_lcrit_alarm:
1382 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1383 if (err < 0)
1384 return err;
1385
1386 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1387 return 0;
1388
1389 case hwmon_power_min_alarm:
1390 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1391 if (err < 0)
1392 return err;
1393
1394 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1395 return 0;
1396
1397 case hwmon_power_max_alarm:
1398 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1399 if (err < 0)
1400 return err;
1401
1402 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1403 return 0;
1404
1405 case hwmon_power_crit_alarm:
1406 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1407 if (err < 0)
1408 return err;
1409
1410 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1411 return 0;
1412 default:
1413 return -EOPNOTSUPP;
1414 }
1415
1416 return -EOPNOTSUPP;
1417 }
1418
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1419 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1420 u32 attr, int channel, long *value)
1421 {
1422 struct sfp *sfp = dev_get_drvdata(dev);
1423
1424 switch (type) {
1425 case hwmon_temp:
1426 return sfp_hwmon_temp(sfp, attr, value);
1427 case hwmon_in:
1428 return sfp_hwmon_vcc(sfp, attr, value);
1429 case hwmon_curr:
1430 return sfp_hwmon_bias(sfp, attr, value);
1431 case hwmon_power:
1432 switch (channel) {
1433 case 0:
1434 return sfp_hwmon_tx_power(sfp, attr, value);
1435 case 1:
1436 return sfp_hwmon_rx_power(sfp, attr, value);
1437 default:
1438 return -EOPNOTSUPP;
1439 }
1440 default:
1441 return -EOPNOTSUPP;
1442 }
1443 }
1444
1445 static const char *const sfp_hwmon_power_labels[] = {
1446 "TX_power",
1447 "RX_power",
1448 };
1449
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1450 static int sfp_hwmon_read_string(struct device *dev,
1451 enum hwmon_sensor_types type,
1452 u32 attr, int channel, const char **str)
1453 {
1454 switch (type) {
1455 case hwmon_curr:
1456 switch (attr) {
1457 case hwmon_curr_label:
1458 *str = "bias";
1459 return 0;
1460 default:
1461 return -EOPNOTSUPP;
1462 }
1463 break;
1464 case hwmon_temp:
1465 switch (attr) {
1466 case hwmon_temp_label:
1467 *str = "temperature";
1468 return 0;
1469 default:
1470 return -EOPNOTSUPP;
1471 }
1472 break;
1473 case hwmon_in:
1474 switch (attr) {
1475 case hwmon_in_label:
1476 *str = "VCC";
1477 return 0;
1478 default:
1479 return -EOPNOTSUPP;
1480 }
1481 break;
1482 case hwmon_power:
1483 switch (attr) {
1484 case hwmon_power_label:
1485 *str = sfp_hwmon_power_labels[channel];
1486 return 0;
1487 default:
1488 return -EOPNOTSUPP;
1489 }
1490 break;
1491 default:
1492 return -EOPNOTSUPP;
1493 }
1494
1495 return -EOPNOTSUPP;
1496 }
1497
1498 static const struct hwmon_ops sfp_hwmon_ops = {
1499 .is_visible = sfp_hwmon_is_visible,
1500 .read = sfp_hwmon_read,
1501 .read_string = sfp_hwmon_read_string,
1502 };
1503
1504 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1505 HWMON_CHANNEL_INFO(chip,
1506 HWMON_C_REGISTER_TZ),
1507 HWMON_CHANNEL_INFO(in,
1508 HWMON_I_INPUT |
1509 HWMON_I_MAX | HWMON_I_MIN |
1510 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1511 HWMON_I_CRIT | HWMON_I_LCRIT |
1512 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1513 HWMON_I_LABEL),
1514 HWMON_CHANNEL_INFO(temp,
1515 HWMON_T_INPUT |
1516 HWMON_T_MAX | HWMON_T_MIN |
1517 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1518 HWMON_T_CRIT | HWMON_T_LCRIT |
1519 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1520 HWMON_T_LABEL),
1521 HWMON_CHANNEL_INFO(curr,
1522 HWMON_C_INPUT |
1523 HWMON_C_MAX | HWMON_C_MIN |
1524 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1525 HWMON_C_CRIT | HWMON_C_LCRIT |
1526 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1527 HWMON_C_LABEL),
1528 HWMON_CHANNEL_INFO(power,
1529 /* Transmit power */
1530 HWMON_P_INPUT |
1531 HWMON_P_MAX | HWMON_P_MIN |
1532 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1533 HWMON_P_CRIT | HWMON_P_LCRIT |
1534 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1535 HWMON_P_LABEL,
1536 /* Receive power */
1537 HWMON_P_INPUT |
1538 HWMON_P_MAX | HWMON_P_MIN |
1539 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1540 HWMON_P_CRIT | HWMON_P_LCRIT |
1541 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1542 HWMON_P_LABEL),
1543 NULL,
1544 };
1545
1546 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1547 .ops = &sfp_hwmon_ops,
1548 .info = sfp_hwmon_info,
1549 };
1550
sfp_hwmon_probe(struct work_struct * work)1551 static void sfp_hwmon_probe(struct work_struct *work)
1552 {
1553 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1554 int err;
1555
1556 /* hwmon interface needs to access 16bit registers in atomic way to
1557 * guarantee coherency of the diagnostic monitoring data. If it is not
1558 * possible to guarantee coherency because EEPROM is broken in such way
1559 * that does not support atomic 16bit read operation then we have to
1560 * skip registration of hwmon device.
1561 */
1562 if (sfp->i2c_block_size < 2) {
1563 dev_info(sfp->dev,
1564 "skipping hwmon device registration due to broken EEPROM\n");
1565 dev_info(sfp->dev,
1566 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1567 return;
1568 }
1569
1570 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1571 if (err < 0) {
1572 if (sfp->hwmon_tries--) {
1573 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1574 T_PROBE_RETRY_SLOW);
1575 } else {
1576 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1577 ERR_PTR(err));
1578 }
1579 return;
1580 }
1581
1582 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1583 if (IS_ERR(sfp->hwmon_name)) {
1584 dev_err(sfp->dev, "out of memory for hwmon name\n");
1585 return;
1586 }
1587
1588 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1589 sfp->hwmon_name, sfp,
1590 &sfp_hwmon_chip_info,
1591 NULL);
1592 if (IS_ERR(sfp->hwmon_dev))
1593 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1594 PTR_ERR(sfp->hwmon_dev));
1595 }
1596
sfp_hwmon_insert(struct sfp * sfp)1597 static int sfp_hwmon_insert(struct sfp *sfp)
1598 {
1599 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1600 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1601 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1602 }
1603
1604 return 0;
1605 }
1606
sfp_hwmon_remove(struct sfp * sfp)1607 static void sfp_hwmon_remove(struct sfp *sfp)
1608 {
1609 cancel_delayed_work_sync(&sfp->hwmon_probe);
1610 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1611 hwmon_device_unregister(sfp->hwmon_dev);
1612 sfp->hwmon_dev = NULL;
1613 kfree(sfp->hwmon_name);
1614 }
1615 }
1616
sfp_hwmon_init(struct sfp * sfp)1617 static int sfp_hwmon_init(struct sfp *sfp)
1618 {
1619 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1620
1621 return 0;
1622 }
1623
sfp_hwmon_exit(struct sfp * sfp)1624 static void sfp_hwmon_exit(struct sfp *sfp)
1625 {
1626 cancel_delayed_work_sync(&sfp->hwmon_probe);
1627 }
1628 #else
sfp_hwmon_insert(struct sfp * sfp)1629 static int sfp_hwmon_insert(struct sfp *sfp)
1630 {
1631 return 0;
1632 }
1633
sfp_hwmon_remove(struct sfp * sfp)1634 static void sfp_hwmon_remove(struct sfp *sfp)
1635 {
1636 }
1637
sfp_hwmon_init(struct sfp * sfp)1638 static int sfp_hwmon_init(struct sfp *sfp)
1639 {
1640 return 0;
1641 }
1642
sfp_hwmon_exit(struct sfp * sfp)1643 static void sfp_hwmon_exit(struct sfp *sfp)
1644 {
1645 }
1646 #endif
1647
1648 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1649 static void sfp_module_tx_disable(struct sfp *sfp)
1650 {
1651 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1652 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1653 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1654 }
1655
sfp_module_tx_enable(struct sfp * sfp)1656 static void sfp_module_tx_enable(struct sfp *sfp)
1657 {
1658 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1659 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1660 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1661 }
1662
1663 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1664 static int sfp_debug_state_show(struct seq_file *s, void *data)
1665 {
1666 struct sfp *sfp = s->private;
1667
1668 seq_printf(s, "Module state: %s\n",
1669 mod_state_to_str(sfp->sm_mod_state));
1670 seq_printf(s, "Module probe attempts: %d %d\n",
1671 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1672 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1673 seq_printf(s, "Device state: %s\n",
1674 dev_state_to_str(sfp->sm_dev_state));
1675 seq_printf(s, "Main state: %s\n",
1676 sm_state_to_str(sfp->sm_state));
1677 seq_printf(s, "Fault recovery remaining retries: %d\n",
1678 sfp->sm_fault_retries);
1679 seq_printf(s, "PHY probe remaining retries: %d\n",
1680 sfp->sm_phy_retries);
1681 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1682 seq_printf(s, "Rate select threshold: %u kBd\n",
1683 sfp->rs_threshold_kbd);
1684 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1685 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1686 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1687 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1688 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1689 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1690 return 0;
1691 }
1692 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1693
sfp_debugfs_init(struct sfp * sfp)1694 static void sfp_debugfs_init(struct sfp *sfp)
1695 {
1696 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1697
1698 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1699 &sfp_debug_state_fops);
1700 }
1701
sfp_debugfs_exit(struct sfp * sfp)1702 static void sfp_debugfs_exit(struct sfp *sfp)
1703 {
1704 debugfs_remove_recursive(sfp->debugfs_dir);
1705 }
1706 #else
sfp_debugfs_init(struct sfp * sfp)1707 static void sfp_debugfs_init(struct sfp *sfp)
1708 {
1709 }
1710
sfp_debugfs_exit(struct sfp * sfp)1711 static void sfp_debugfs_exit(struct sfp *sfp)
1712 {
1713 }
1714 #endif
1715
sfp_module_tx_fault_reset(struct sfp * sfp)1716 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1717 {
1718 unsigned int state;
1719
1720 mutex_lock(&sfp->st_mutex);
1721 state = sfp->state;
1722 if (!(state & SFP_F_TX_DISABLE)) {
1723 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1724
1725 udelay(T_RESET_US);
1726
1727 sfp_set_state(sfp, state);
1728 }
1729 mutex_unlock(&sfp->st_mutex);
1730 }
1731
1732 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1733 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1734 {
1735 if (timeout)
1736 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1737 timeout);
1738 else
1739 cancel_delayed_work(&sfp->timeout);
1740 }
1741
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1742 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1743 unsigned int timeout)
1744 {
1745 sfp->sm_state = state;
1746 sfp_sm_set_timer(sfp, timeout);
1747 }
1748
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1749 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1750 unsigned int timeout)
1751 {
1752 sfp->sm_mod_state = state;
1753 sfp_sm_set_timer(sfp, timeout);
1754 }
1755
sfp_sm_phy_detach(struct sfp * sfp)1756 static void sfp_sm_phy_detach(struct sfp *sfp)
1757 {
1758 sfp_remove_phy(sfp->sfp_bus);
1759 phy_device_remove(sfp->mod_phy);
1760 phy_device_free(sfp->mod_phy);
1761 sfp->mod_phy = NULL;
1762 }
1763
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1764 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1765 {
1766 struct phy_device *phy;
1767 int err;
1768
1769 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1770 if (phy == ERR_PTR(-ENODEV))
1771 return PTR_ERR(phy);
1772 if (IS_ERR(phy)) {
1773 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1774 return PTR_ERR(phy);
1775 }
1776
1777 /* Mark this PHY as being on a SFP module */
1778 phy->is_on_sfp_module = true;
1779
1780 err = phy_device_register(phy);
1781 if (err) {
1782 phy_device_free(phy);
1783 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1784 ERR_PTR(err));
1785 return err;
1786 }
1787
1788 err = sfp_add_phy(sfp->sfp_bus, phy);
1789 if (err) {
1790 phy_device_remove(phy);
1791 phy_device_free(phy);
1792 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1793 return err;
1794 }
1795
1796 sfp->mod_phy = phy;
1797
1798 return 0;
1799 }
1800
sfp_sm_link_up(struct sfp * sfp)1801 static void sfp_sm_link_up(struct sfp *sfp)
1802 {
1803 sfp_link_up(sfp->sfp_bus);
1804 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1805 }
1806
sfp_sm_link_down(struct sfp * sfp)1807 static void sfp_sm_link_down(struct sfp *sfp)
1808 {
1809 sfp_link_down(sfp->sfp_bus);
1810 }
1811
sfp_sm_link_check_los(struct sfp * sfp)1812 static void sfp_sm_link_check_los(struct sfp *sfp)
1813 {
1814 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1815 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1816 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1817 bool los = false;
1818
1819 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1820 * are set, we assume that no LOS signal is available. If both are
1821 * set, we assume LOS is not implemented (and is meaningless.)
1822 */
1823 if (los_options == los_inverted)
1824 los = !(sfp->state & SFP_F_LOS);
1825 else if (los_options == los_normal)
1826 los = !!(sfp->state & SFP_F_LOS);
1827
1828 if (los)
1829 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1830 else
1831 sfp_sm_link_up(sfp);
1832 }
1833
sfp_los_event_active(struct sfp * sfp,unsigned int event)1834 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1835 {
1836 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1837 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1838 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1839
1840 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1841 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1842 }
1843
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1844 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1845 {
1846 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1847 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1848 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1849
1850 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1851 (los_options == los_normal && event == SFP_E_LOS_LOW);
1852 }
1853
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1854 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1855 {
1856 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1857 dev_err(sfp->dev,
1858 "module persistently indicates fault, disabling\n");
1859 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1860 } else {
1861 if (warn)
1862 dev_err(sfp->dev, "module transmit fault indicated\n");
1863
1864 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1865 }
1866 }
1867
sfp_sm_add_mdio_bus(struct sfp * sfp)1868 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1869 {
1870 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1871 return sfp_i2c_mdiobus_create(sfp);
1872
1873 return 0;
1874 }
1875
1876 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1877 * normally sits at I2C bus address 0x56, and may either be a clause 22
1878 * or clause 45 PHY.
1879 *
1880 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1881 * negotiation enabled, but some may be in 1000base-X - which is for the
1882 * PHY driver to determine.
1883 *
1884 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1885 * mode according to the negotiated line speed.
1886 */
sfp_sm_probe_for_phy(struct sfp * sfp)1887 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1888 {
1889 int err = 0;
1890
1891 switch (sfp->mdio_protocol) {
1892 case MDIO_I2C_NONE:
1893 break;
1894
1895 case MDIO_I2C_MARVELL_C22:
1896 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1897 break;
1898
1899 case MDIO_I2C_C45:
1900 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1901 break;
1902
1903 case MDIO_I2C_ROLLBALL:
1904 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1905 break;
1906 }
1907
1908 return err;
1909 }
1910
sfp_module_parse_power(struct sfp * sfp)1911 static int sfp_module_parse_power(struct sfp *sfp)
1912 {
1913 u32 power_mW = 1000;
1914 bool supports_a2;
1915
1916 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1917 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1918 power_mW = 1500;
1919 /* Added in Rev 11.9, but there is no compliance code for this */
1920 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1921 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1922 power_mW = 2000;
1923
1924 /* Power level 1 modules (max. 1W) are always supported. */
1925 if (power_mW <= 1000) {
1926 sfp->module_power_mW = power_mW;
1927 return 0;
1928 }
1929
1930 supports_a2 = sfp->id.ext.sff8472_compliance !=
1931 SFP_SFF8472_COMPLIANCE_NONE ||
1932 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1933
1934 if (power_mW > sfp->max_power_mW) {
1935 /* Module power specification exceeds the allowed maximum. */
1936 if (!supports_a2) {
1937 /* The module appears not to implement bus address
1938 * 0xa2, so assume that the module powers up in the
1939 * indicated mode.
1940 */
1941 dev_err(sfp->dev,
1942 "Host does not support %u.%uW modules\n",
1943 power_mW / 1000, (power_mW / 100) % 10);
1944 return -EINVAL;
1945 } else {
1946 dev_warn(sfp->dev,
1947 "Host does not support %u.%uW modules, module left in power mode 1\n",
1948 power_mW / 1000, (power_mW / 100) % 10);
1949 return 0;
1950 }
1951 }
1952
1953 if (!supports_a2) {
1954 /* The module power level is below the host maximum and the
1955 * module appears not to implement bus address 0xa2, so assume
1956 * that the module powers up in the indicated mode.
1957 */
1958 return 0;
1959 }
1960
1961 /* If the module requires a higher power mode, but also requires
1962 * an address change sequence, warn the user that the module may
1963 * not be functional.
1964 */
1965 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1966 dev_warn(sfp->dev,
1967 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1968 power_mW / 1000, (power_mW / 100) % 10);
1969 return 0;
1970 }
1971
1972 sfp->module_power_mW = power_mW;
1973
1974 return 0;
1975 }
1976
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1977 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1978 {
1979 int err;
1980
1981 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1982 SFP_EXT_STATUS_PWRLVL_SELECT,
1983 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1984 if (err != sizeof(u8)) {
1985 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1986 enable ? "en" : "dis", ERR_PTR(err));
1987 return -EAGAIN;
1988 }
1989
1990 if (enable)
1991 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1992 sfp->module_power_mW / 1000,
1993 (sfp->module_power_mW / 100) % 10);
1994
1995 return 0;
1996 }
1997
sfp_module_parse_rate_select(struct sfp * sfp)1998 static void sfp_module_parse_rate_select(struct sfp *sfp)
1999 {
2000 u8 rate_id;
2001
2002 sfp->rs_threshold_kbd = 0;
2003 sfp->rs_state_mask = 0;
2004
2005 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2006 /* No support for RateSelect */
2007 return;
2008
2009 /* Default to INF-8074 RateSelect operation. The signalling threshold
2010 * rate is not well specified, so always select "Full Bandwidth", but
2011 * SFF-8079 reveals that it is understood that RS0 will be low for
2012 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2013 * This method exists prior to SFF-8472.
2014 */
2015 sfp->rs_state_mask = SFP_F_RS0;
2016 sfp->rs_threshold_kbd = 1594;
2017
2018 /* Parse the rate identifier, which is complicated due to history:
2019 * SFF-8472 rev 9.5 marks this field as reserved.
2020 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2021 * compliance is not required.
2022 * SFF-8472 rev 10.2 defines this field using values 0..4
2023 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2024 * and even values.
2025 */
2026 rate_id = sfp->id.base.rate_id;
2027 if (rate_id == 0)
2028 /* Unspecified */
2029 return;
2030
2031 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2032 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2033 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2034 */
2035 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2036 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2037 rate_id == 3)
2038 rate_id = SFF_RID_8431;
2039
2040 if (rate_id & SFF_RID_8079) {
2041 /* SFF-8079 RateSelect / Application Select in conjunction with
2042 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2043 * with only bit 0 used, which takes precedence over SFF-8472.
2044 */
2045 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2046 /* SFF-8079 Part 1 - rate selection between Fibre
2047 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2048 * is high for 2125, so we have to subtract 1 to
2049 * include it.
2050 */
2051 sfp->rs_threshold_kbd = 2125 - 1;
2052 sfp->rs_state_mask = SFP_F_RS0;
2053 }
2054 return;
2055 }
2056
2057 /* SFF-8472 rev 9.5 does not define the rate identifier */
2058 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2059 return;
2060
2061 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2062 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2063 */
2064 switch (rate_id) {
2065 case SFF_RID_8431_RX_ONLY:
2066 sfp->rs_threshold_kbd = 4250;
2067 sfp->rs_state_mask = SFP_F_RS0;
2068 break;
2069
2070 case SFF_RID_8431_TX_ONLY:
2071 sfp->rs_threshold_kbd = 4250;
2072 sfp->rs_state_mask = SFP_F_RS1;
2073 break;
2074
2075 case SFF_RID_8431:
2076 sfp->rs_threshold_kbd = 4250;
2077 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2078 break;
2079
2080 case SFF_RID_10G8G:
2081 sfp->rs_threshold_kbd = 9000;
2082 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2083 break;
2084 }
2085 }
2086
2087 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2088 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2089 * not support multibyte reads from the EEPROM. Each multi-byte read
2090 * operation returns just one byte of EEPROM followed by zeros. There is
2091 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2092 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2093 * name and vendor id into EEPROM, so there is even no way to detect if
2094 * module is V-SOL V2801F. Therefore check for those zeros in the read
2095 * data and then based on check switch to reading EEPROM to one byte
2096 * at a time.
2097 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2098 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2099 {
2100 size_t i, block_size = sfp->i2c_block_size;
2101
2102 /* Already using byte IO */
2103 if (block_size == 1)
2104 return false;
2105
2106 for (i = 1; i < len; i += block_size) {
2107 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2108 return false;
2109 }
2110 return true;
2111 }
2112
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2113 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2114 {
2115 u8 check;
2116 int err;
2117
2118 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2119 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2120 id->base.connector != SFF8024_CONNECTOR_LC) {
2121 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2122 id->base.phys_id = SFF8024_ID_SFF_8472;
2123 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2124 id->base.connector = SFF8024_CONNECTOR_LC;
2125 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2126 if (err != 3) {
2127 dev_err(sfp->dev,
2128 "Failed to rewrite module EEPROM: %pe\n",
2129 ERR_PTR(err));
2130 return err;
2131 }
2132
2133 /* Cotsworks modules have been found to require a delay between write operations. */
2134 mdelay(50);
2135
2136 /* Update base structure checksum */
2137 check = sfp_check(&id->base, sizeof(id->base) - 1);
2138 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2139 if (err != 1) {
2140 dev_err(sfp->dev,
2141 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2142 ERR_PTR(err));
2143 return err;
2144 }
2145 }
2146 return 0;
2147 }
2148
sfp_module_parse_sff8472(struct sfp * sfp)2149 static int sfp_module_parse_sff8472(struct sfp *sfp)
2150 {
2151 /* If the module requires address swap mode, warn about it */
2152 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2153 dev_warn(sfp->dev,
2154 "module address swap to access page 0xA2 is not supported.\n");
2155 else
2156 sfp->have_a2 = true;
2157
2158 return 0;
2159 }
2160
sfp_sm_mod_probe(struct sfp * sfp,bool report)2161 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2162 {
2163 /* SFP module inserted - read I2C data */
2164 struct sfp_eeprom_id id;
2165 bool cotsworks_sfbg;
2166 unsigned int mask;
2167 bool cotsworks;
2168 u8 check;
2169 int ret;
2170
2171 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2172
2173 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2174 if (ret < 0) {
2175 if (report)
2176 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2177 ERR_PTR(ret));
2178 return -EAGAIN;
2179 }
2180
2181 if (ret != sizeof(id.base)) {
2182 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2183 return -EAGAIN;
2184 }
2185
2186 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2187 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2188 * that EEPROM supports atomic 16bit read operation for diagnostic
2189 * fields, so do not switch to one byte reading at a time unless it
2190 * is really required and we have no other option.
2191 */
2192 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2193 dev_info(sfp->dev,
2194 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2195 dev_info(sfp->dev,
2196 "Switching to reading EEPROM to one byte at a time\n");
2197 sfp->i2c_block_size = 1;
2198
2199 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2200 if (ret < 0) {
2201 if (report)
2202 dev_err(sfp->dev,
2203 "failed to read EEPROM: %pe\n",
2204 ERR_PTR(ret));
2205 return -EAGAIN;
2206 }
2207
2208 if (ret != sizeof(id.base)) {
2209 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2210 ERR_PTR(ret));
2211 return -EAGAIN;
2212 }
2213 }
2214
2215 /* Cotsworks do not seem to update the checksums when they
2216 * do the final programming with the final module part number,
2217 * serial number and date code.
2218 */
2219 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2220 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2221
2222 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2223 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2224 * Cotsworks PN matches and bytes are not correct.
2225 */
2226 if (cotsworks && cotsworks_sfbg) {
2227 ret = sfp_cotsworks_fixup_check(sfp, &id);
2228 if (ret < 0)
2229 return ret;
2230 }
2231
2232 /* Validate the checksum over the base structure */
2233 check = sfp_check(&id.base, sizeof(id.base) - 1);
2234 if (check != id.base.cc_base) {
2235 if (cotsworks) {
2236 dev_warn(sfp->dev,
2237 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2238 check, id.base.cc_base);
2239 } else {
2240 dev_err(sfp->dev,
2241 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2242 check, id.base.cc_base);
2243 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2244 16, 1, &id, sizeof(id), true);
2245 return -EINVAL;
2246 }
2247 }
2248
2249 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2250 if (ret < 0) {
2251 if (report)
2252 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2253 ERR_PTR(ret));
2254 return -EAGAIN;
2255 }
2256
2257 if (ret != sizeof(id.ext)) {
2258 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2259 return -EAGAIN;
2260 }
2261
2262 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2263 if (check != id.ext.cc_ext) {
2264 if (cotsworks) {
2265 dev_warn(sfp->dev,
2266 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2267 check, id.ext.cc_ext);
2268 } else {
2269 dev_err(sfp->dev,
2270 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2271 check, id.ext.cc_ext);
2272 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2273 16, 1, &id, sizeof(id), true);
2274 memset(&id.ext, 0, sizeof(id.ext));
2275 }
2276 }
2277
2278 sfp->id = id;
2279
2280 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2281 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2282 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2283 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2284 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2285 (int)sizeof(id.ext.datecode), id.ext.datecode);
2286
2287 /* Check whether we support this module */
2288 if (!sfp->type->module_supported(&id)) {
2289 dev_err(sfp->dev,
2290 "module is not supported - phys id 0x%02x 0x%02x\n",
2291 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2292 return -EINVAL;
2293 }
2294
2295 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2296 ret = sfp_module_parse_sff8472(sfp);
2297 if (ret < 0)
2298 return ret;
2299 }
2300
2301 /* Parse the module power requirement */
2302 ret = sfp_module_parse_power(sfp);
2303 if (ret < 0)
2304 return ret;
2305
2306 sfp_module_parse_rate_select(sfp);
2307
2308 mask = SFP_F_PRESENT;
2309 if (sfp->gpio[GPIO_TX_DISABLE])
2310 mask |= SFP_F_TX_DISABLE;
2311 if (sfp->gpio[GPIO_TX_FAULT])
2312 mask |= SFP_F_TX_FAULT;
2313 if (sfp->gpio[GPIO_LOS])
2314 mask |= SFP_F_LOS;
2315 if (sfp->gpio[GPIO_RS0])
2316 mask |= SFP_F_RS0;
2317 if (sfp->gpio[GPIO_RS1])
2318 mask |= SFP_F_RS1;
2319
2320 sfp->module_t_start_up = T_START_UP;
2321 sfp->module_t_wait = T_WAIT;
2322
2323 sfp->tx_fault_ignore = false;
2324
2325 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2326 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2327 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2328 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2329 sfp->mdio_protocol = MDIO_I2C_C45;
2330 else if (sfp->id.base.e1000_base_t)
2331 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2332 else
2333 sfp->mdio_protocol = MDIO_I2C_NONE;
2334
2335 sfp->quirk = sfp_lookup_quirk(&id);
2336
2337 mutex_lock(&sfp->st_mutex);
2338 /* Initialise state bits to use from hardware */
2339 sfp->state_hw_mask = mask;
2340
2341 /* We want to drive the rate select pins that the module is using */
2342 sfp->state_hw_drive |= sfp->rs_state_mask;
2343
2344 if (sfp->quirk && sfp->quirk->fixup)
2345 sfp->quirk->fixup(sfp);
2346 mutex_unlock(&sfp->st_mutex);
2347
2348 return 0;
2349 }
2350
sfp_sm_mod_remove(struct sfp * sfp)2351 static void sfp_sm_mod_remove(struct sfp *sfp)
2352 {
2353 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2354 sfp_module_remove(sfp->sfp_bus);
2355
2356 sfp_hwmon_remove(sfp);
2357
2358 memset(&sfp->id, 0, sizeof(sfp->id));
2359 sfp->module_power_mW = 0;
2360 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2361 sfp->have_a2 = false;
2362
2363 dev_info(sfp->dev, "module removed\n");
2364 }
2365
2366 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2367 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2368 {
2369 switch (sfp->sm_dev_state) {
2370 default:
2371 if (event == SFP_E_DEV_ATTACH)
2372 sfp->sm_dev_state = SFP_DEV_DOWN;
2373 break;
2374
2375 case SFP_DEV_DOWN:
2376 if (event == SFP_E_DEV_DETACH)
2377 sfp->sm_dev_state = SFP_DEV_DETACHED;
2378 else if (event == SFP_E_DEV_UP)
2379 sfp->sm_dev_state = SFP_DEV_UP;
2380 break;
2381
2382 case SFP_DEV_UP:
2383 if (event == SFP_E_DEV_DETACH)
2384 sfp->sm_dev_state = SFP_DEV_DETACHED;
2385 else if (event == SFP_E_DEV_DOWN)
2386 sfp->sm_dev_state = SFP_DEV_DOWN;
2387 break;
2388 }
2389 }
2390
2391 /* This state machine tracks the insert/remove state of the module, probes
2392 * the on-board EEPROM, and sets up the power level.
2393 */
sfp_sm_module(struct sfp * sfp,unsigned int event)2394 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2395 {
2396 int err;
2397
2398 /* Handle remove event globally, it resets this state machine */
2399 if (event == SFP_E_REMOVE) {
2400 sfp_sm_mod_remove(sfp);
2401 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2402 return;
2403 }
2404
2405 /* Handle device detach globally */
2406 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2407 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2408 if (sfp->module_power_mW > 1000 &&
2409 sfp->sm_mod_state > SFP_MOD_HPOWER)
2410 sfp_sm_mod_hpower(sfp, false);
2411 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2412 return;
2413 }
2414
2415 switch (sfp->sm_mod_state) {
2416 default:
2417 if (event == SFP_E_INSERT) {
2418 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2419 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2420 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2421 }
2422 break;
2423
2424 case SFP_MOD_PROBE:
2425 /* Wait for T_PROBE_INIT to time out */
2426 if (event != SFP_E_TIMEOUT)
2427 break;
2428
2429 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2430 if (err == -EAGAIN) {
2431 if (sfp->sm_mod_tries_init &&
2432 --sfp->sm_mod_tries_init) {
2433 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2434 break;
2435 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2436 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2437 dev_warn(sfp->dev,
2438 "please wait, module slow to respond\n");
2439 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2440 break;
2441 }
2442 }
2443 if (err < 0) {
2444 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2445 break;
2446 }
2447
2448 /* Force a poll to re-read the hardware signal state after
2449 * sfp_sm_mod_probe() changed state_hw_mask.
2450 */
2451 mod_delayed_work(system_wq, &sfp->poll, 1);
2452
2453 err = sfp_hwmon_insert(sfp);
2454 if (err)
2455 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2456 ERR_PTR(err));
2457
2458 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2459 fallthrough;
2460 case SFP_MOD_WAITDEV:
2461 /* Ensure that the device is attached before proceeding */
2462 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2463 break;
2464
2465 /* Report the module insertion to the upstream device */
2466 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2467 sfp->quirk);
2468 if (err < 0) {
2469 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2470 break;
2471 }
2472
2473 /* If this is a power level 1 module, we are done */
2474 if (sfp->module_power_mW <= 1000)
2475 goto insert;
2476
2477 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2478 fallthrough;
2479 case SFP_MOD_HPOWER:
2480 /* Enable high power mode */
2481 err = sfp_sm_mod_hpower(sfp, true);
2482 if (err < 0) {
2483 if (err != -EAGAIN) {
2484 sfp_module_remove(sfp->sfp_bus);
2485 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2486 } else {
2487 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2488 }
2489 break;
2490 }
2491
2492 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2493 break;
2494
2495 case SFP_MOD_WAITPWR:
2496 /* Wait for T_HPOWER_LEVEL to time out */
2497 if (event != SFP_E_TIMEOUT)
2498 break;
2499
2500 insert:
2501 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2502 break;
2503
2504 case SFP_MOD_PRESENT:
2505 case SFP_MOD_ERROR:
2506 break;
2507 }
2508 }
2509
sfp_sm_main(struct sfp * sfp,unsigned int event)2510 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2511 {
2512 unsigned long timeout;
2513 int ret;
2514
2515 /* Some events are global */
2516 if (sfp->sm_state != SFP_S_DOWN &&
2517 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2518 sfp->sm_dev_state != SFP_DEV_UP)) {
2519 if (sfp->sm_state == SFP_S_LINK_UP &&
2520 sfp->sm_dev_state == SFP_DEV_UP)
2521 sfp_sm_link_down(sfp);
2522 if (sfp->sm_state > SFP_S_INIT)
2523 sfp_module_stop(sfp->sfp_bus);
2524 if (sfp->mod_phy)
2525 sfp_sm_phy_detach(sfp);
2526 if (sfp->i2c_mii)
2527 sfp_i2c_mdiobus_destroy(sfp);
2528 sfp_module_tx_disable(sfp);
2529 sfp_soft_stop_poll(sfp);
2530 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2531 return;
2532 }
2533
2534 /* The main state machine */
2535 switch (sfp->sm_state) {
2536 case SFP_S_DOWN:
2537 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2538 sfp->sm_dev_state != SFP_DEV_UP)
2539 break;
2540
2541 /* Only use the soft state bits if we have access to the A2h
2542 * memory, which implies that we have some level of SFF-8472
2543 * compliance.
2544 */
2545 if (sfp->have_a2)
2546 sfp_soft_start_poll(sfp);
2547
2548 sfp_module_tx_enable(sfp);
2549
2550 /* Initialise the fault clearance retries */
2551 sfp->sm_fault_retries = N_FAULT_INIT;
2552
2553 /* We need to check the TX_FAULT state, which is not defined
2554 * while TX_DISABLE is asserted. The earliest we want to do
2555 * anything (such as probe for a PHY) is 50ms (or more on
2556 * specific modules).
2557 */
2558 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2559 break;
2560
2561 case SFP_S_WAIT:
2562 if (event != SFP_E_TIMEOUT)
2563 break;
2564
2565 if (sfp->state & SFP_F_TX_FAULT) {
2566 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2567 * from the TX_DISABLE deassertion for the module to
2568 * initialise, which is indicated by TX_FAULT
2569 * deasserting.
2570 */
2571 timeout = sfp->module_t_start_up;
2572 if (timeout > sfp->module_t_wait)
2573 timeout -= sfp->module_t_wait;
2574 else
2575 timeout = 1;
2576
2577 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2578 } else {
2579 /* TX_FAULT is not asserted, assume the module has
2580 * finished initialising.
2581 */
2582 goto init_done;
2583 }
2584 break;
2585
2586 case SFP_S_INIT:
2587 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2588 /* TX_FAULT is still asserted after t_init
2589 * or t_start_up, so assume there is a fault.
2590 */
2591 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2592 sfp->sm_fault_retries == N_FAULT_INIT);
2593 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2594 init_done:
2595 /* Create mdiobus and start trying for PHY */
2596 ret = sfp_sm_add_mdio_bus(sfp);
2597 if (ret < 0) {
2598 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2599 break;
2600 }
2601 sfp->sm_phy_retries = R_PHY_RETRY;
2602 goto phy_probe;
2603 }
2604 break;
2605
2606 case SFP_S_INIT_PHY:
2607 if (event != SFP_E_TIMEOUT)
2608 break;
2609 phy_probe:
2610 /* TX_FAULT deasserted or we timed out with TX_FAULT
2611 * clear. Probe for the PHY and check the LOS state.
2612 */
2613 ret = sfp_sm_probe_for_phy(sfp);
2614 if (ret == -ENODEV) {
2615 if (--sfp->sm_phy_retries) {
2616 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2617 break;
2618 } else {
2619 dev_info(sfp->dev, "no PHY detected\n");
2620 }
2621 } else if (ret) {
2622 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2623 break;
2624 }
2625 if (sfp_module_start(sfp->sfp_bus)) {
2626 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2627 break;
2628 }
2629 sfp_sm_link_check_los(sfp);
2630
2631 /* Reset the fault retry count */
2632 sfp->sm_fault_retries = N_FAULT;
2633 break;
2634
2635 case SFP_S_INIT_TX_FAULT:
2636 if (event == SFP_E_TIMEOUT) {
2637 sfp_module_tx_fault_reset(sfp);
2638 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2639 }
2640 break;
2641
2642 case SFP_S_WAIT_LOS:
2643 if (event == SFP_E_TX_FAULT)
2644 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2645 else if (sfp_los_event_inactive(sfp, event))
2646 sfp_sm_link_up(sfp);
2647 break;
2648
2649 case SFP_S_LINK_UP:
2650 if (event == SFP_E_TX_FAULT) {
2651 sfp_sm_link_down(sfp);
2652 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2653 } else if (sfp_los_event_active(sfp, event)) {
2654 sfp_sm_link_down(sfp);
2655 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2656 }
2657 break;
2658
2659 case SFP_S_TX_FAULT:
2660 if (event == SFP_E_TIMEOUT) {
2661 sfp_module_tx_fault_reset(sfp);
2662 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2663 }
2664 break;
2665
2666 case SFP_S_REINIT:
2667 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2668 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2669 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2670 dev_info(sfp->dev, "module transmit fault recovered\n");
2671 sfp_sm_link_check_los(sfp);
2672 }
2673 break;
2674
2675 case SFP_S_TX_DISABLE:
2676 break;
2677 }
2678 }
2679
__sfp_sm_event(struct sfp * sfp,unsigned int event)2680 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2681 {
2682 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2683 mod_state_to_str(sfp->sm_mod_state),
2684 dev_state_to_str(sfp->sm_dev_state),
2685 sm_state_to_str(sfp->sm_state),
2686 event_to_str(event));
2687
2688 sfp_sm_device(sfp, event);
2689 sfp_sm_module(sfp, event);
2690 sfp_sm_main(sfp, event);
2691
2692 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2693 mod_state_to_str(sfp->sm_mod_state),
2694 dev_state_to_str(sfp->sm_dev_state),
2695 sm_state_to_str(sfp->sm_state));
2696 }
2697
sfp_sm_event(struct sfp * sfp,unsigned int event)2698 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2699 {
2700 mutex_lock(&sfp->sm_mutex);
2701 __sfp_sm_event(sfp, event);
2702 mutex_unlock(&sfp->sm_mutex);
2703 }
2704
sfp_attach(struct sfp * sfp)2705 static void sfp_attach(struct sfp *sfp)
2706 {
2707 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2708 }
2709
sfp_detach(struct sfp * sfp)2710 static void sfp_detach(struct sfp *sfp)
2711 {
2712 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2713 }
2714
sfp_start(struct sfp * sfp)2715 static void sfp_start(struct sfp *sfp)
2716 {
2717 sfp_sm_event(sfp, SFP_E_DEV_UP);
2718 }
2719
sfp_stop(struct sfp * sfp)2720 static void sfp_stop(struct sfp *sfp)
2721 {
2722 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2723 }
2724
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2725 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2726 {
2727 unsigned int set;
2728
2729 sfp->rate_kbd = rate_kbd;
2730
2731 if (rate_kbd > sfp->rs_threshold_kbd)
2732 set = sfp->rs_state_mask;
2733 else
2734 set = 0;
2735
2736 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2737 }
2738
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2739 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2740 {
2741 /* locking... and check module is present */
2742
2743 if (sfp->id.ext.sff8472_compliance &&
2744 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2745 modinfo->type = ETH_MODULE_SFF_8472;
2746 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2747 } else {
2748 modinfo->type = ETH_MODULE_SFF_8079;
2749 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2750 }
2751 return 0;
2752 }
2753
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2754 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2755 u8 *data)
2756 {
2757 unsigned int first, last, len;
2758 int ret;
2759
2760 if (!(sfp->state & SFP_F_PRESENT))
2761 return -ENODEV;
2762
2763 if (ee->len == 0)
2764 return -EINVAL;
2765
2766 first = ee->offset;
2767 last = ee->offset + ee->len;
2768 if (first < ETH_MODULE_SFF_8079_LEN) {
2769 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2770 len -= first;
2771
2772 ret = sfp_read(sfp, false, first, data, len);
2773 if (ret < 0)
2774 return ret;
2775
2776 first += len;
2777 data += len;
2778 }
2779 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2780 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2781 len -= first;
2782 first -= ETH_MODULE_SFF_8079_LEN;
2783
2784 ret = sfp_read(sfp, true, first, data, len);
2785 if (ret < 0)
2786 return ret;
2787 }
2788 return 0;
2789 }
2790
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2791 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2792 const struct ethtool_module_eeprom *page,
2793 struct netlink_ext_ack *extack)
2794 {
2795 if (!(sfp->state & SFP_F_PRESENT))
2796 return -ENODEV;
2797
2798 if (page->bank) {
2799 NL_SET_ERR_MSG(extack, "Banks not supported");
2800 return -EOPNOTSUPP;
2801 }
2802
2803 if (page->page) {
2804 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2805 return -EOPNOTSUPP;
2806 }
2807
2808 if (page->i2c_address != 0x50 &&
2809 page->i2c_address != 0x51) {
2810 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2811 return -EOPNOTSUPP;
2812 }
2813
2814 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2815 page->data, page->length);
2816 };
2817
2818 static const struct sfp_socket_ops sfp_module_ops = {
2819 .attach = sfp_attach,
2820 .detach = sfp_detach,
2821 .start = sfp_start,
2822 .stop = sfp_stop,
2823 .set_signal_rate = sfp_set_signal_rate,
2824 .module_info = sfp_module_info,
2825 .module_eeprom = sfp_module_eeprom,
2826 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2827 };
2828
sfp_timeout(struct work_struct * work)2829 static void sfp_timeout(struct work_struct *work)
2830 {
2831 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2832
2833 rtnl_lock();
2834 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2835 rtnl_unlock();
2836 }
2837
sfp_check_state(struct sfp * sfp)2838 static void sfp_check_state(struct sfp *sfp)
2839 {
2840 unsigned int state, i, changed;
2841
2842 rtnl_lock();
2843 mutex_lock(&sfp->st_mutex);
2844 state = sfp_get_state(sfp);
2845 changed = state ^ sfp->state;
2846 if (sfp->tx_fault_ignore)
2847 changed &= SFP_F_PRESENT | SFP_F_LOS;
2848 else
2849 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2850
2851 for (i = 0; i < GPIO_MAX; i++)
2852 if (changed & BIT(i))
2853 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2854 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2855
2856 state |= sfp->state & SFP_F_OUTPUTS;
2857 sfp->state = state;
2858 mutex_unlock(&sfp->st_mutex);
2859
2860 mutex_lock(&sfp->sm_mutex);
2861 if (changed & SFP_F_PRESENT)
2862 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2863 SFP_E_INSERT : SFP_E_REMOVE);
2864
2865 if (changed & SFP_F_TX_FAULT)
2866 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2867 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2868
2869 if (changed & SFP_F_LOS)
2870 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2871 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2872 mutex_unlock(&sfp->sm_mutex);
2873 rtnl_unlock();
2874 }
2875
sfp_irq(int irq,void * data)2876 static irqreturn_t sfp_irq(int irq, void *data)
2877 {
2878 struct sfp *sfp = data;
2879
2880 sfp_check_state(sfp);
2881
2882 return IRQ_HANDLED;
2883 }
2884
sfp_poll(struct work_struct * work)2885 static void sfp_poll(struct work_struct *work)
2886 {
2887 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2888
2889 sfp_check_state(sfp);
2890
2891 // st_mutex doesn't need to be held here for state_soft_mask,
2892 // it's unimportant if we race while reading this.
2893 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2894 sfp->need_poll)
2895 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2896 }
2897
sfp_alloc(struct device * dev)2898 static struct sfp *sfp_alloc(struct device *dev)
2899 {
2900 struct sfp *sfp;
2901
2902 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2903 if (!sfp)
2904 return ERR_PTR(-ENOMEM);
2905
2906 sfp->dev = dev;
2907 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2908
2909 mutex_init(&sfp->sm_mutex);
2910 mutex_init(&sfp->st_mutex);
2911 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2912 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2913
2914 sfp_hwmon_init(sfp);
2915
2916 return sfp;
2917 }
2918
sfp_cleanup(void * data)2919 static void sfp_cleanup(void *data)
2920 {
2921 struct sfp *sfp = data;
2922
2923 sfp_hwmon_exit(sfp);
2924
2925 cancel_delayed_work_sync(&sfp->poll);
2926 cancel_delayed_work_sync(&sfp->timeout);
2927 if (sfp->i2c_mii) {
2928 mdiobus_unregister(sfp->i2c_mii);
2929 mdiobus_free(sfp->i2c_mii);
2930 }
2931 if (sfp->i2c)
2932 i2c_put_adapter(sfp->i2c);
2933 kfree(sfp);
2934 }
2935
sfp_i2c_get(struct sfp * sfp)2936 static int sfp_i2c_get(struct sfp *sfp)
2937 {
2938 struct fwnode_handle *h;
2939 struct i2c_adapter *i2c;
2940 int err;
2941
2942 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2943 if (IS_ERR(h)) {
2944 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2945 return -ENODEV;
2946 }
2947
2948 i2c = i2c_get_adapter_by_fwnode(h);
2949 if (!i2c) {
2950 err = -EPROBE_DEFER;
2951 goto put;
2952 }
2953
2954 err = sfp_i2c_configure(sfp, i2c);
2955 if (err)
2956 i2c_put_adapter(i2c);
2957 put:
2958 fwnode_handle_put(h);
2959 return err;
2960 }
2961
sfp_probe(struct platform_device * pdev)2962 static int sfp_probe(struct platform_device *pdev)
2963 {
2964 const struct sff_data *sff;
2965 char *sfp_irq_name;
2966 struct sfp *sfp;
2967 int err, i;
2968
2969 sfp = sfp_alloc(&pdev->dev);
2970 if (IS_ERR(sfp))
2971 return PTR_ERR(sfp);
2972
2973 platform_set_drvdata(pdev, sfp);
2974
2975 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2976 if (err < 0)
2977 return err;
2978
2979 sff = device_get_match_data(sfp->dev);
2980 if (!sff)
2981 sff = &sfp_data;
2982
2983 sfp->type = sff;
2984
2985 err = sfp_i2c_get(sfp);
2986 if (err)
2987 return err;
2988
2989 for (i = 0; i < GPIO_MAX; i++)
2990 if (sff->gpios & BIT(i)) {
2991 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2992 gpio_names[i], gpio_flags[i]);
2993 if (IS_ERR(sfp->gpio[i]))
2994 return PTR_ERR(sfp->gpio[i]);
2995 }
2996
2997 sfp->state_hw_mask = SFP_F_PRESENT;
2998 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2999
3000 sfp->get_state = sfp_gpio_get_state;
3001 sfp->set_state = sfp_gpio_set_state;
3002
3003 /* Modules that have no detect signal are always present */
3004 if (!(sfp->gpio[GPIO_MODDEF0]))
3005 sfp->get_state = sff_gpio_get_state;
3006
3007 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3008 &sfp->max_power_mW);
3009 if (sfp->max_power_mW < 1000) {
3010 if (sfp->max_power_mW)
3011 dev_warn(sfp->dev,
3012 "Firmware bug: host maximum power should be at least 1W\n");
3013 sfp->max_power_mW = 1000;
3014 }
3015
3016 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3017 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3018
3019 /* Get the initial state, and always signal TX disable,
3020 * since the network interface will not be up.
3021 */
3022 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3023
3024 if (sfp->gpio[GPIO_RS0] &&
3025 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3026 sfp->state |= SFP_F_RS0;
3027 sfp_set_state(sfp, sfp->state);
3028 sfp_module_tx_disable(sfp);
3029 if (sfp->state & SFP_F_PRESENT) {
3030 rtnl_lock();
3031 sfp_sm_event(sfp, SFP_E_INSERT);
3032 rtnl_unlock();
3033 }
3034
3035 for (i = 0; i < GPIO_MAX; i++) {
3036 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3037 continue;
3038
3039 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3040 if (sfp->gpio_irq[i] < 0) {
3041 sfp->gpio_irq[i] = 0;
3042 sfp->need_poll = true;
3043 continue;
3044 }
3045
3046 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3047 "%s-%s", dev_name(sfp->dev),
3048 gpio_names[i]);
3049
3050 if (!sfp_irq_name)
3051 return -ENOMEM;
3052
3053 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3054 NULL, sfp_irq,
3055 IRQF_ONESHOT |
3056 IRQF_TRIGGER_RISING |
3057 IRQF_TRIGGER_FALLING,
3058 sfp_irq_name, sfp);
3059 if (err) {
3060 sfp->gpio_irq[i] = 0;
3061 sfp->need_poll = true;
3062 }
3063 }
3064
3065 if (sfp->need_poll)
3066 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3067
3068 /* We could have an issue in cases no Tx disable pin is available or
3069 * wired as modules using a laser as their light source will continue to
3070 * be active when the fiber is removed. This could be a safety issue and
3071 * we should at least warn the user about that.
3072 */
3073 if (!sfp->gpio[GPIO_TX_DISABLE])
3074 dev_warn(sfp->dev,
3075 "No tx_disable pin: SFP modules will always be emitting.\n");
3076
3077 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3078 if (!sfp->sfp_bus)
3079 return -ENOMEM;
3080
3081 sfp_debugfs_init(sfp);
3082
3083 return 0;
3084 }
3085
sfp_remove(struct platform_device * pdev)3086 static int sfp_remove(struct platform_device *pdev)
3087 {
3088 struct sfp *sfp = platform_get_drvdata(pdev);
3089
3090 sfp_debugfs_exit(sfp);
3091 sfp_unregister_socket(sfp->sfp_bus);
3092
3093 rtnl_lock();
3094 sfp_sm_event(sfp, SFP_E_REMOVE);
3095 rtnl_unlock();
3096
3097 return 0;
3098 }
3099
sfp_shutdown(struct platform_device * pdev)3100 static void sfp_shutdown(struct platform_device *pdev)
3101 {
3102 struct sfp *sfp = platform_get_drvdata(pdev);
3103 int i;
3104
3105 for (i = 0; i < GPIO_MAX; i++) {
3106 if (!sfp->gpio_irq[i])
3107 continue;
3108
3109 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3110 }
3111
3112 cancel_delayed_work_sync(&sfp->poll);
3113 cancel_delayed_work_sync(&sfp->timeout);
3114 }
3115
3116 static struct platform_driver sfp_driver = {
3117 .probe = sfp_probe,
3118 .remove = sfp_remove,
3119 .shutdown = sfp_shutdown,
3120 .driver = {
3121 .name = "sfp",
3122 .of_match_table = sfp_of_match,
3123 },
3124 };
3125
sfp_init(void)3126 static int sfp_init(void)
3127 {
3128 poll_jiffies = msecs_to_jiffies(100);
3129
3130 return platform_driver_register(&sfp_driver);
3131 }
3132 module_init(sfp_init);
3133
sfp_exit(void)3134 static void sfp_exit(void)
3135 {
3136 platform_driver_unregister(&sfp_driver);
3137 }
3138 module_exit(sfp_exit);
3139
3140 MODULE_ALIAS("platform:sfp");
3141 MODULE_AUTHOR("Russell King");
3142 MODULE_LICENSE("GPL v2");
3143