1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
7
8 */
9
10 /*
11 Module: rt2x00
12 Abstract: rt2x00 global information.
13 */
14
15 #ifndef RT2X00_H
16 #define RT2X00_H
17
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/skbuff.h>
21 #include <linux/workqueue.h>
22 #include <linux/firmware.h>
23 #include <linux/leds.h>
24 #include <linux/mutex.h>
25 #include <linux/etherdevice.h>
26 #include <linux/kfifo.h>
27 #include <linux/hrtimer.h>
28 #include <linux/average.h>
29 #include <linux/usb.h>
30 #include <linux/clk.h>
31
32 #include <net/mac80211.h>
33
34 #include "rt2x00debug.h"
35 #include "rt2x00dump.h"
36 #include "rt2x00leds.h"
37 #include "rt2x00reg.h"
38 #include "rt2x00queue.h"
39
40 /*
41 * Module information.
42 */
43 #define DRV_VERSION "2.3.0"
44 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
45
46 /* Debug definitions.
47 * Debug output has to be enabled during compile time.
48 */
49 #ifdef CONFIG_RT2X00_DEBUG
50 #define DEBUG
51 #endif /* CONFIG_RT2X00_DEBUG */
52
53 /* Utility printing macros
54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55 */
56 #define rt2x00_probe_err(fmt, ...) \
57 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
58 __func__, ##__VA_ARGS__)
59 #define rt2x00_err(dev, fmt, ...) \
60 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \
61 __func__, ##__VA_ARGS__)
62 #define rt2x00_warn(dev, fmt, ...) \
63 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \
64 __func__, ##__VA_ARGS__)
65 #define rt2x00_info(dev, fmt, ...) \
66 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
67 __func__, ##__VA_ARGS__)
68
69 /* Various debug levels */
70 #define rt2x00_dbg(dev, fmt, ...) \
71 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
72 __func__, ##__VA_ARGS__)
73 #define rt2x00_eeprom_dbg(dev, fmt, ...) \
74 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
75 __func__, ##__VA_ARGS__)
76
77 /*
78 * Duration calculations
79 * The rate variable passed is: 100kbs.
80 * To convert from bytes to bits we multiply size with 8,
81 * then the size is multiplied with 10 to make the
82 * real rate -> rate argument correction.
83 */
84 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
85 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86
87 /*
88 * Determine the number of L2 padding bytes required between the header and
89 * the payload.
90 */
91 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
92
93 /*
94 * Determine the alignment requirement,
95 * to make sure the 802.11 payload is padded to a 4-byte boundrary
96 * we must determine the address of the payload and calculate the
97 * amount of bytes needed to move the data.
98 */
99 #define ALIGN_SIZE(__skb, __header) \
100 (((unsigned long)((__skb)->data + (__header))) & 3)
101
102 /*
103 * Constants for extra TX headroom for alignment purposes.
104 */
105 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
106 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
107
108 /*
109 * Standard timing and size defines.
110 * These values should follow the ieee80211 specifications.
111 */
112 #define ACK_SIZE 14
113 #define IEEE80211_HEADER 24
114 #define PLCP 48
115 #define BEACON 100
116 #define PREAMBLE 144
117 #define SHORT_PREAMBLE 72
118 #define SLOT_TIME 20
119 #define SHORT_SLOT_TIME 9
120 #define SIFS 10
121 #define PIFS (SIFS + SLOT_TIME)
122 #define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
123 #define DIFS (PIFS + SLOT_TIME)
124 #define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
125 #define EIFS (SIFS + DIFS + \
126 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127 #define SHORT_EIFS (SIFS + SHORT_DIFS + \
128 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129
130 enum rt2x00_chip_intf {
131 RT2X00_CHIP_INTF_PCI,
132 RT2X00_CHIP_INTF_PCIE,
133 RT2X00_CHIP_INTF_USB,
134 RT2X00_CHIP_INTF_SOC,
135 };
136
137 /*
138 * Chipset identification
139 * The chipset on the device is composed of a RT and RF chip.
140 * The chipset combination is important for determining device capabilities.
141 */
142 struct rt2x00_chip {
143 u16 rt;
144 #define RT2460 0x2460
145 #define RT2560 0x2560
146 #define RT2570 0x2570
147 #define RT2661 0x2661
148 #define RT2573 0x2573
149 #define RT2860 0x2860 /* 2.4GHz */
150 #define RT2872 0x2872 /* WSOC */
151 #define RT2883 0x2883 /* WSOC */
152 #define RT3070 0x3070
153 #define RT3071 0x3071
154 #define RT3090 0x3090 /* 2.4GHz PCIe */
155 #define RT3290 0x3290
156 #define RT3352 0x3352 /* WSOC */
157 #define RT3390 0x3390
158 #define RT3572 0x3572
159 #define RT3593 0x3593
160 #define RT3883 0x3883 /* WSOC */
161 #define RT5350 0x5350 /* WSOC 2.4GHz */
162 #define RT5390 0x5390 /* 2.4GHz */
163 #define RT5392 0x5392 /* 2.4GHz */
164 #define RT5592 0x5592
165 #define RT6352 0x6352 /* WSOC 2.4GHz */
166
167 u16 rf;
168 u16 rev;
169
170 enum rt2x00_chip_intf intf;
171 };
172
173 /*
174 * RF register values that belong to a particular channel.
175 */
176 struct rf_channel {
177 int channel;
178 u32 rf1;
179 u32 rf2;
180 u32 rf3;
181 u32 rf4;
182 };
183
184 /*
185 * Information structure for channel survey.
186 */
187 struct rt2x00_chan_survey {
188 u64 time_idle;
189 u64 time_busy;
190 u64 time_ext_busy;
191 };
192
193 /*
194 * Channel information structure
195 */
196 struct channel_info {
197 unsigned int flags;
198 #define GEOGRAPHY_ALLOWED 0x00000001
199
200 short max_power;
201 short default_power1;
202 short default_power2;
203 short default_power3;
204 };
205
206 /*
207 * Antenna setup values.
208 */
209 struct antenna_setup {
210 enum antenna rx;
211 enum antenna tx;
212 u8 rx_chain_num;
213 u8 tx_chain_num;
214 };
215
216 /*
217 * Quality statistics about the currently active link.
218 */
219 struct link_qual {
220 /*
221 * Statistics required for Link tuning by driver
222 * The rssi value is provided by rt2x00lib during the
223 * link_tuner() callback function.
224 * The false_cca field is filled during the link_stats()
225 * callback function and could be used during the
226 * link_tuner() callback function.
227 */
228 int rssi;
229 int false_cca;
230
231 /*
232 * VGC levels
233 * Hardware driver will tune the VGC level during each call
234 * to the link_tuner() callback function. This vgc_level is
235 * determined based on the link quality statistics like
236 * average RSSI and the false CCA count.
237 *
238 * In some cases the drivers need to differentiate between
239 * the currently "desired" VGC level and the level configured
240 * in the hardware. The latter is important to reduce the
241 * number of BBP register reads to reduce register access
242 * overhead. For this reason we store both values here.
243 */
244 u8 vgc_level;
245 u8 vgc_level_reg;
246
247 /*
248 * Statistics required for Signal quality calculation.
249 * These fields might be changed during the link_stats()
250 * callback function.
251 */
252 int rx_success;
253 int rx_failed;
254 int tx_success;
255 int tx_failed;
256 };
257
258 DECLARE_EWMA(rssi, 10, 8)
259
260 /*
261 * Antenna settings about the currently active link.
262 */
263 struct link_ant {
264 /*
265 * Antenna flags
266 */
267 unsigned int flags;
268 #define ANTENNA_RX_DIVERSITY 0x00000001
269 #define ANTENNA_TX_DIVERSITY 0x00000002
270 #define ANTENNA_MODE_SAMPLE 0x00000004
271
272 /*
273 * Currently active TX/RX antenna setup.
274 * When software diversity is used, this will indicate
275 * which antenna is actually used at this time.
276 */
277 struct antenna_setup active;
278
279 /*
280 * RSSI history information for the antenna.
281 * Used to determine when to switch antenna
282 * when using software diversity.
283 */
284 int rssi_history;
285
286 /*
287 * Current RSSI average of the currently active antenna.
288 * Similar to the avg_rssi in the link_qual structure
289 * this value is updated by using the walking average.
290 */
291 struct ewma_rssi rssi_ant;
292 };
293
294 /*
295 * To optimize the quality of the link we need to store
296 * the quality of received frames and periodically
297 * optimize the link.
298 */
299 struct link {
300 /*
301 * Link tuner counter
302 * The number of times the link has been tuned
303 * since the radio has been switched on.
304 */
305 u32 count;
306
307 /*
308 * Quality measurement values.
309 */
310 struct link_qual qual;
311
312 /*
313 * TX/RX antenna setup.
314 */
315 struct link_ant ant;
316
317 /*
318 * Currently active average RSSI value
319 */
320 struct ewma_rssi avg_rssi;
321
322 /*
323 * Work structure for scheduling periodic link tuning.
324 */
325 struct delayed_work work;
326
327 /*
328 * Work structure for scheduling periodic watchdog monitoring.
329 * This work must be scheduled on the kernel workqueue, while
330 * all other work structures must be queued on the mac80211
331 * workqueue. This guarantees that the watchdog can schedule
332 * other work structures and wait for their completion in order
333 * to bring the device/driver back into the desired state.
334 */
335 struct delayed_work watchdog_work;
336 unsigned int watchdog_interval;
337 bool watchdog_disabled;
338
339 /*
340 * Work structure for scheduling periodic AGC adjustments.
341 */
342 struct delayed_work agc_work;
343
344 /*
345 * Work structure for scheduling periodic VCO calibration.
346 */
347 struct delayed_work vco_work;
348 };
349
350 enum rt2x00_delayed_flags {
351 DELAYED_UPDATE_BEACON,
352 };
353
354 /*
355 * Interface structure
356 * Per interface configuration details, this structure
357 * is allocated as the private data for ieee80211_vif.
358 */
359 struct rt2x00_intf {
360 /*
361 * beacon->skb must be protected with the mutex.
362 */
363 struct mutex beacon_skb_mutex;
364
365 /*
366 * Entry in the beacon queue which belongs to
367 * this interface. Each interface has its own
368 * dedicated beacon entry.
369 */
370 struct queue_entry *beacon;
371 bool enable_beacon;
372
373 /*
374 * Actions that needed rescheduling.
375 */
376 unsigned long delayed_flags;
377
378 /*
379 * Software sequence counter, this is only required
380 * for hardware which doesn't support hardware
381 * sequence counting.
382 */
383 atomic_t seqno;
384 };
385
vif_to_intf(struct ieee80211_vif * vif)386 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
387 {
388 return (struct rt2x00_intf *)vif->drv_priv;
389 }
390
391 /**
392 * struct hw_mode_spec: Hardware specifications structure
393 *
394 * Details about the supported modes, rates and channels
395 * of a particular chipset. This is used by rt2x00lib
396 * to build the ieee80211_hw_mode array for mac80211.
397 *
398 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
399 * @supported_rates: Rate types which are supported (CCK, OFDM).
400 * @num_channels: Number of supported channels. This is used as array size
401 * for @tx_power_a, @tx_power_bg and @channels.
402 * @channels: Device/chipset specific channel values (See &struct rf_channel).
403 * @channels_info: Additional information for channels (See &struct channel_info).
404 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
405 */
406 struct hw_mode_spec {
407 unsigned int supported_bands;
408 #define SUPPORT_BAND_2GHZ 0x00000001
409 #define SUPPORT_BAND_5GHZ 0x00000002
410
411 unsigned int supported_rates;
412 #define SUPPORT_RATE_CCK 0x00000001
413 #define SUPPORT_RATE_OFDM 0x00000002
414
415 unsigned int num_channels;
416 const struct rf_channel *channels;
417 const struct channel_info *channels_info;
418
419 struct ieee80211_sta_ht_cap ht;
420 };
421
422 /*
423 * Configuration structure wrapper around the
424 * mac80211 configuration structure.
425 * When mac80211 configures the driver, rt2x00lib
426 * can precalculate values which are equal for all
427 * rt2x00 drivers. Those values can be stored in here.
428 */
429 struct rt2x00lib_conf {
430 struct ieee80211_conf *conf;
431
432 struct rf_channel rf;
433 struct channel_info channel;
434 };
435
436 /*
437 * Configuration structure for erp settings.
438 */
439 struct rt2x00lib_erp {
440 int short_preamble;
441 int cts_protection;
442
443 u32 basic_rates;
444
445 int slot_time;
446
447 short sifs;
448 short pifs;
449 short difs;
450 short eifs;
451
452 u16 beacon_int;
453 u16 ht_opmode;
454 };
455
456 /*
457 * Configuration structure for hardware encryption.
458 */
459 struct rt2x00lib_crypto {
460 enum cipher cipher;
461
462 enum set_key_cmd cmd;
463 const u8 *address;
464
465 u32 bssidx;
466
467 u8 key[16];
468 u8 tx_mic[8];
469 u8 rx_mic[8];
470
471 int wcid;
472 };
473
474 /*
475 * Configuration structure wrapper around the
476 * rt2x00 interface configuration handler.
477 */
478 struct rt2x00intf_conf {
479 /*
480 * Interface type
481 */
482 enum nl80211_iftype type;
483
484 /*
485 * TSF sync value, this is dependent on the operation type.
486 */
487 enum tsf_sync sync;
488
489 /*
490 * The MAC and BSSID addresses are simple array of bytes,
491 * these arrays are little endian, so when sending the addresses
492 * to the drivers, copy the it into a endian-signed variable.
493 *
494 * Note that all devices (except rt2500usb) have 32 bits
495 * register word sizes. This means that whatever variable we
496 * pass _must_ be a multiple of 32 bits. Otherwise the device
497 * might not accept what we are sending to it.
498 * This will also make it easier for the driver to write
499 * the data to the device.
500 */
501 __le32 mac[2];
502 __le32 bssid[2];
503 };
504
505 /*
506 * Private structure for storing STA details
507 * wcid: Wireless Client ID
508 */
509 struct rt2x00_sta {
510 int wcid;
511 };
512
sta_to_rt2x00_sta(struct ieee80211_sta * sta)513 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
514 {
515 return (struct rt2x00_sta *)sta->drv_priv;
516 }
517
518 /*
519 * rt2x00lib callback functions.
520 */
521 struct rt2x00lib_ops {
522 /*
523 * Interrupt handlers.
524 */
525 irq_handler_t irq_handler;
526
527 /*
528 * TX status tasklet handler.
529 */
530 void (*txstatus_tasklet) (struct tasklet_struct *t);
531 void (*pretbtt_tasklet) (struct tasklet_struct *t);
532 void (*tbtt_tasklet) (struct tasklet_struct *t);
533 void (*rxdone_tasklet) (struct tasklet_struct *t);
534 void (*autowake_tasklet) (struct tasklet_struct *t);
535
536 /*
537 * Device init handlers.
538 */
539 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
540 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
541 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
542 const u8 *data, const size_t len);
543 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
544 const u8 *data, const size_t len);
545
546 /*
547 * Device initialization/deinitialization handlers.
548 */
549 int (*initialize) (struct rt2x00_dev *rt2x00dev);
550 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
551
552 /*
553 * queue initialization handlers
554 */
555 bool (*get_entry_state) (struct queue_entry *entry);
556 void (*clear_entry) (struct queue_entry *entry);
557
558 /*
559 * Radio control handlers.
560 */
561 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
562 enum dev_state state);
563 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
564 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
565 struct link_qual *qual);
566 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
567 struct link_qual *qual);
568 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
569 struct link_qual *qual, const u32 count);
570 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
571 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
572
573 /*
574 * Data queue handlers.
575 */
576 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
577 void (*start_queue) (struct data_queue *queue);
578 void (*kick_queue) (struct data_queue *queue);
579 void (*stop_queue) (struct data_queue *queue);
580 void (*flush_queue) (struct data_queue *queue, bool drop);
581 void (*tx_dma_done) (struct queue_entry *entry);
582
583 /*
584 * TX control handlers
585 */
586 void (*write_tx_desc) (struct queue_entry *entry,
587 struct txentry_desc *txdesc);
588 void (*write_tx_data) (struct queue_entry *entry,
589 struct txentry_desc *txdesc);
590 void (*write_beacon) (struct queue_entry *entry,
591 struct txentry_desc *txdesc);
592 void (*clear_beacon) (struct queue_entry *entry);
593 int (*get_tx_data_len) (struct queue_entry *entry);
594
595 /*
596 * RX control handlers
597 */
598 void (*fill_rxdone) (struct queue_entry *entry,
599 struct rxdone_entry_desc *rxdesc);
600
601 /*
602 * Configuration handlers.
603 */
604 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
605 struct rt2x00lib_crypto *crypto,
606 struct ieee80211_key_conf *key);
607 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
608 struct rt2x00lib_crypto *crypto,
609 struct ieee80211_key_conf *key);
610 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
611 const unsigned int filter_flags);
612 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
613 struct rt2x00_intf *intf,
614 struct rt2x00intf_conf *conf,
615 const unsigned int flags);
616 #define CONFIG_UPDATE_TYPE ( 1 << 1 )
617 #define CONFIG_UPDATE_MAC ( 1 << 2 )
618 #define CONFIG_UPDATE_BSSID ( 1 << 3 )
619
620 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
621 struct rt2x00lib_erp *erp,
622 u32 changed);
623 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
624 struct antenna_setup *ant);
625 void (*config) (struct rt2x00_dev *rt2x00dev,
626 struct rt2x00lib_conf *libconf,
627 const unsigned int changed_flags);
628 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
629 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
630 struct ieee80211_vif *vif,
631 struct ieee80211_sta *sta);
632 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
633 struct ieee80211_sta *sta);
634 };
635
636 /*
637 * rt2x00 driver callback operation structure.
638 */
639 struct rt2x00_ops {
640 const char *name;
641 const unsigned int drv_data_size;
642 const unsigned int max_ap_intf;
643 const unsigned int eeprom_size;
644 const unsigned int rf_size;
645 const unsigned int tx_queues;
646 void (*queue_init)(struct data_queue *queue);
647 const struct rt2x00lib_ops *lib;
648 const void *drv;
649 const struct ieee80211_ops *hw;
650 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
651 const struct rt2x00debug *debugfs;
652 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
653 };
654
655 /*
656 * rt2x00 state flags
657 */
658 enum rt2x00_state_flags {
659 /*
660 * Device flags
661 */
662 DEVICE_STATE_PRESENT,
663 DEVICE_STATE_REGISTERED_HW,
664 DEVICE_STATE_INITIALIZED,
665 DEVICE_STATE_STARTED,
666 DEVICE_STATE_ENABLED_RADIO,
667 DEVICE_STATE_SCANNING,
668 DEVICE_STATE_FLUSHING,
669 DEVICE_STATE_RESET,
670
671 /*
672 * Driver configuration
673 */
674 CONFIG_CHANNEL_HT40,
675 CONFIG_POWERSAVING,
676 CONFIG_HT_DISABLED,
677 CONFIG_MONITORING,
678
679 /*
680 * Mark we currently are sequentially reading TX_STA_FIFO register
681 * FIXME: this is for only rt2800usb, should go to private data
682 */
683 TX_STATUS_READING,
684 };
685
686 /*
687 * rt2x00 capability flags
688 */
689 enum rt2x00_capability_flags {
690 /*
691 * Requirements
692 */
693 REQUIRE_FIRMWARE,
694 REQUIRE_BEACON_GUARD,
695 REQUIRE_ATIM_QUEUE,
696 REQUIRE_DMA,
697 REQUIRE_COPY_IV,
698 REQUIRE_L2PAD,
699 REQUIRE_TXSTATUS_FIFO,
700 REQUIRE_TASKLET_CONTEXT,
701 REQUIRE_SW_SEQNO,
702 REQUIRE_HT_TX_DESC,
703 REQUIRE_PS_AUTOWAKE,
704 REQUIRE_DELAYED_RFKILL,
705
706 /*
707 * Capabilities
708 */
709 CAPABILITY_HW_BUTTON,
710 CAPABILITY_HW_CRYPTO,
711 CAPABILITY_POWER_LIMIT,
712 CAPABILITY_CONTROL_FILTERS,
713 CAPABILITY_CONTROL_FILTER_PSPOLL,
714 CAPABILITY_PRE_TBTT_INTERRUPT,
715 CAPABILITY_LINK_TUNING,
716 CAPABILITY_FRAME_TYPE,
717 CAPABILITY_RF_SEQUENCE,
718 CAPABILITY_EXTERNAL_LNA_A,
719 CAPABILITY_EXTERNAL_LNA_BG,
720 CAPABILITY_DOUBLE_ANTENNA,
721 CAPABILITY_BT_COEXIST,
722 CAPABILITY_VCO_RECALIBRATION,
723 CAPABILITY_EXTERNAL_PA_TX0,
724 CAPABILITY_EXTERNAL_PA_TX1,
725 CAPABILITY_RESTART_HW,
726 };
727
728 /*
729 * Interface combinations
730 */
731 enum {
732 IF_COMB_AP = 0,
733 NUM_IF_COMB,
734 };
735
736 /*
737 * rt2x00 device structure.
738 */
739 struct rt2x00_dev {
740 /*
741 * Device structure.
742 * The structure stored in here depends on the
743 * system bus (PCI or USB).
744 * When accessing this variable, the rt2x00dev_{pci,usb}
745 * macros should be used for correct typecasting.
746 */
747 struct device *dev;
748
749 /*
750 * Callback functions.
751 */
752 const struct rt2x00_ops *ops;
753
754 /*
755 * Driver data.
756 */
757 void *drv_data;
758
759 /*
760 * IEEE80211 control structure.
761 */
762 struct ieee80211_hw *hw;
763 struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
764 struct rt2x00_chan_survey *chan_survey;
765 enum nl80211_band curr_band;
766 int curr_freq;
767
768 /*
769 * If enabled, the debugfs interface structures
770 * required for deregistration of debugfs.
771 */
772 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
773 struct rt2x00debug_intf *debugfs_intf;
774 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
775
776 /*
777 * LED structure for changing the LED status
778 * by mac8011 or the kernel.
779 */
780 #ifdef CONFIG_RT2X00_LIB_LEDS
781 struct rt2x00_led led_radio;
782 struct rt2x00_led led_assoc;
783 struct rt2x00_led led_qual;
784 u16 led_mcu_reg;
785 #endif /* CONFIG_RT2X00_LIB_LEDS */
786
787 /*
788 * Device state flags.
789 * In these flags the current status is stored.
790 * Access to these flags should occur atomically.
791 */
792 unsigned long flags;
793
794 /*
795 * Device capabiltiy flags.
796 * In these flags the device/driver capabilities are stored.
797 * Access to these flags should occur non-atomically.
798 */
799 unsigned long cap_flags;
800
801 /*
802 * Device information, Bus IRQ and name (PCI, SoC)
803 */
804 int irq;
805 const char *name;
806
807 /*
808 * Chipset identification.
809 */
810 struct rt2x00_chip chip;
811
812 /*
813 * hw capability specifications.
814 */
815 struct hw_mode_spec spec;
816
817 /*
818 * This is the default TX/RX antenna setup as indicated
819 * by the device's EEPROM.
820 */
821 struct antenna_setup default_ant;
822
823 /*
824 * Register pointers
825 * csr.base: CSR base register address. (PCI)
826 * csr.cache: CSR cache for usb_control_msg. (USB)
827 */
828 union csr {
829 void __iomem *base;
830 void *cache;
831 } csr;
832
833 /*
834 * Mutex to protect register accesses.
835 * For PCI and USB devices it protects against concurrent indirect
836 * register access (BBP, RF, MCU) since accessing those
837 * registers require multiple calls to the CSR registers.
838 * For USB devices it also protects the csr_cache since that
839 * field is used for normal CSR access and it cannot support
840 * multiple callers simultaneously.
841 */
842 struct mutex csr_mutex;
843
844 /*
845 * Mutex to synchronize config and link tuner.
846 */
847 struct mutex conf_mutex;
848 /*
849 * Current packet filter configuration for the device.
850 * This contains all currently active FIF_* flags send
851 * to us by mac80211 during configure_filter().
852 */
853 unsigned int packet_filter;
854
855 /*
856 * Interface details:
857 * - Open ap interface count.
858 * - Open sta interface count.
859 * - Association count.
860 * - Beaconing enabled count.
861 */
862 unsigned int intf_ap_count;
863 unsigned int intf_sta_count;
864 unsigned int intf_associated;
865 unsigned int intf_beaconing;
866
867 /*
868 * Interface combinations
869 */
870 struct ieee80211_iface_limit if_limits_ap;
871 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
872
873 /*
874 * Link quality
875 */
876 struct link link;
877
878 /*
879 * EEPROM data.
880 */
881 __le16 *eeprom;
882
883 /*
884 * Active RF register values.
885 * These are stored here so we don't need
886 * to read the rf registers and can directly
887 * use this value instead.
888 * This field should be accessed by using
889 * rt2x00_rf_read() and rt2x00_rf_write().
890 */
891 u32 *rf;
892
893 /*
894 * LNA gain
895 */
896 short lna_gain;
897
898 /*
899 * Current TX power value.
900 */
901 u16 tx_power;
902
903 /*
904 * Current retry values.
905 */
906 u8 short_retry;
907 u8 long_retry;
908
909 /*
910 * Rssi <-> Dbm offset
911 */
912 u8 rssi_offset;
913
914 /*
915 * Frequency offset.
916 */
917 u8 freq_offset;
918
919 /*
920 * Association id.
921 */
922 u16 aid;
923
924 /*
925 * Beacon interval.
926 */
927 u16 beacon_int;
928
929 /**
930 * Timestamp of last received beacon
931 */
932 unsigned long last_beacon;
933
934 /*
935 * Low level statistics which will have
936 * to be kept up to date while device is running.
937 */
938 struct ieee80211_low_level_stats low_level_stats;
939
940 /**
941 * Work queue for all work which should not be placed
942 * on the mac80211 workqueue (because of dependencies
943 * between various work structures).
944 */
945 struct workqueue_struct *workqueue;
946
947 /*
948 * Scheduled work.
949 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
950 * which means it cannot be placed on the hw->workqueue
951 * due to RTNL locking requirements.
952 */
953 struct work_struct intf_work;
954
955 /**
956 * Scheduled work for TX/RX done handling (USB devices)
957 */
958 struct work_struct rxdone_work;
959 struct work_struct txdone_work;
960
961 /*
962 * Powersaving work
963 */
964 struct delayed_work autowakeup_work;
965 struct work_struct sleep_work;
966
967 /*
968 * Data queue arrays for RX, TX, Beacon and ATIM.
969 */
970 unsigned int data_queues;
971 struct data_queue *rx;
972 struct data_queue *tx;
973 struct data_queue *bcn;
974 struct data_queue *atim;
975
976 /*
977 * Firmware image.
978 */
979 const struct firmware *fw;
980
981 /*
982 * FIFO for storing tx status reports between isr and tasklet.
983 */
984 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
985
986 /*
987 * Timer to ensure tx status reports are read (rt2800usb).
988 */
989 struct hrtimer txstatus_timer;
990
991 /*
992 * Tasklet for processing tx status reports (rt2800pci).
993 */
994 struct tasklet_struct txstatus_tasklet;
995 struct tasklet_struct pretbtt_tasklet;
996 struct tasklet_struct tbtt_tasklet;
997 struct tasklet_struct rxdone_tasklet;
998 struct tasklet_struct autowake_tasklet;
999
1000 /*
1001 * Used for VCO periodic calibration.
1002 */
1003 int rf_channel;
1004
1005 /*
1006 * Protect the interrupt mask register.
1007 */
1008 spinlock_t irqmask_lock;
1009
1010 /*
1011 * List of BlockAckReq TX entries that need driver BlockAck processing.
1012 */
1013 struct list_head bar_list;
1014 spinlock_t bar_list_lock;
1015
1016 /* Extra TX headroom required for alignment purposes. */
1017 unsigned int extra_tx_headroom;
1018
1019 struct usb_anchor *anchor;
1020 unsigned int num_proto_errs;
1021
1022 /* Clock for System On Chip devices. */
1023 struct clk *clk;
1024 };
1025
1026 struct rt2x00_bar_list_entry {
1027 struct list_head list;
1028 struct rcu_head head;
1029
1030 struct queue_entry *entry;
1031 int block_acked;
1032
1033 /* Relevant parts of the IEEE80211 BAR header */
1034 __u8 ra[6];
1035 __u8 ta[6];
1036 __le16 control;
1037 __le16 start_seq_num;
1038 };
1039
1040 /*
1041 * Register defines.
1042 * Some registers require multiple attempts before success,
1043 * in those cases REGISTER_BUSY_COUNT attempts should be
1044 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1045 * bus delays, we do not have to loop so many times to wait
1046 * for valid register value on that bus.
1047 */
1048 #define REGISTER_BUSY_COUNT 100
1049 #define REGISTER_USB_BUSY_COUNT 20
1050 #define REGISTER_BUSY_DELAY 100
1051
1052 /*
1053 * Generic RF access.
1054 * The RF is being accessed by word index.
1055 */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1056 static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1057 const unsigned int word)
1058 {
1059 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1060 return rt2x00dev->rf[word - 1];
1061 }
1062
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1063 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1064 const unsigned int word, u32 data)
1065 {
1066 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1067 rt2x00dev->rf[word - 1] = data;
1068 }
1069
1070 /*
1071 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1072 */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1073 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1074 const unsigned int word)
1075 {
1076 return (void *)&rt2x00dev->eeprom[word];
1077 }
1078
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)1079 static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1080 const unsigned int word)
1081 {
1082 return le16_to_cpu(rt2x00dev->eeprom[word]);
1083 }
1084
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1085 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1086 const unsigned int word, u16 data)
1087 {
1088 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1089 }
1090
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1091 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1092 const unsigned int byte)
1093 {
1094 return *(((u8 *)rt2x00dev->eeprom) + byte);
1095 }
1096
1097 /*
1098 * Chipset handlers
1099 */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1100 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1101 const u16 rt, const u16 rf, const u16 rev)
1102 {
1103 rt2x00dev->chip.rt = rt;
1104 rt2x00dev->chip.rf = rf;
1105 rt2x00dev->chip.rev = rev;
1106
1107 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1108 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1109 rt2x00dev->chip.rev);
1110 }
1111
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1112 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1113 const u16 rt, const u16 rev)
1114 {
1115 rt2x00dev->chip.rt = rt;
1116 rt2x00dev->chip.rev = rev;
1117
1118 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1119 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1120 }
1121
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1122 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1123 {
1124 rt2x00dev->chip.rf = rf;
1125
1126 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1127 rt2x00dev->chip.rf);
1128 }
1129
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1130 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1131 {
1132 return (rt2x00dev->chip.rt == rt);
1133 }
1134
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1135 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1136 {
1137 return (rt2x00dev->chip.rf == rf);
1138 }
1139
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1140 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1141 {
1142 return rt2x00dev->chip.rev;
1143 }
1144
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1145 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1146 const u16 rt, const u16 rev)
1147 {
1148 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1149 }
1150
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1151 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1152 const u16 rt, const u16 rev)
1153 {
1154 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1155 }
1156
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1157 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1158 const u16 rt, const u16 rev)
1159 {
1160 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1161 }
1162
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1163 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1164 enum rt2x00_chip_intf intf)
1165 {
1166 rt2x00dev->chip.intf = intf;
1167 }
1168
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1169 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1170 enum rt2x00_chip_intf intf)
1171 {
1172 return (rt2x00dev->chip.intf == intf);
1173 }
1174
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1175 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1176 {
1177 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1178 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1179 }
1180
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1181 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1182 {
1183 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1184 }
1185
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1186 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1187 {
1188 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1189 }
1190
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1191 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1192 {
1193 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1194 }
1195
1196 /* Helpers for capability flags */
1197
1198 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1199 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1200 enum rt2x00_capability_flags cap_flag)
1201 {
1202 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1203 }
1204
1205 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1206 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1207 {
1208 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1209 }
1210
1211 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1212 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1213 {
1214 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1215 }
1216
1217 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1218 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1219 {
1220 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1221 }
1222
1223 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1224 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1225 {
1226 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1227 }
1228
1229 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1230 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1231 {
1232 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1233 }
1234
1235 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1236 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1237 {
1238 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1239 }
1240
1241 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1242 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1243 {
1244 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1245 }
1246
1247 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1248 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1249 {
1250 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1251 }
1252
1253 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1254 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1255 {
1256 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1257 }
1258
1259 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1260 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1261 {
1262 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1263 }
1264
1265 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1266 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1267 {
1268 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1269 }
1270
1271 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1272 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1273 {
1274 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1275 }
1276
1277 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1278 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1279 {
1280 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1281 }
1282
1283 static inline bool
rt2x00_has_cap_restart_hw(struct rt2x00_dev * rt2x00dev)1284 rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1285 {
1286 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1287 }
1288
1289 /**
1290 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1291 * @entry: Pointer to &struct queue_entry
1292 *
1293 * Returns -ENOMEM if mapping fail, 0 otherwise.
1294 */
1295 int rt2x00queue_map_txskb(struct queue_entry *entry);
1296
1297 /**
1298 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1299 * @entry: Pointer to &struct queue_entry
1300 */
1301 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1302
1303 /**
1304 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1305 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1306 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1307 *
1308 * Returns NULL for non tx queues.
1309 */
1310 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,enum data_queue_qid queue)1311 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1312 enum data_queue_qid queue)
1313 {
1314 if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS)
1315 queue = rt2x00dev->ops->tx_queues - 1;
1316
1317 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1318 return &rt2x00dev->tx[queue];
1319
1320 if (queue == QID_ATIM)
1321 return rt2x00dev->atim;
1322
1323 return NULL;
1324 }
1325
1326 /**
1327 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1328 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1329 * @index: Index identifier for obtaining the correct index.
1330 */
1331 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1332 enum queue_index index);
1333
1334 /**
1335 * rt2x00queue_pause_queue - Pause a data queue
1336 * @queue: Pointer to &struct data_queue.
1337 *
1338 * This function will pause the data queue locally, preventing
1339 * new frames to be added to the queue (while the hardware is
1340 * still allowed to run).
1341 */
1342 void rt2x00queue_pause_queue(struct data_queue *queue);
1343
1344 /**
1345 * rt2x00queue_unpause_queue - unpause a data queue
1346 * @queue: Pointer to &struct data_queue.
1347 *
1348 * This function will unpause the data queue locally, allowing
1349 * new frames to be added to the queue again.
1350 */
1351 void rt2x00queue_unpause_queue(struct data_queue *queue);
1352
1353 /**
1354 * rt2x00queue_start_queue - Start a data queue
1355 * @queue: Pointer to &struct data_queue.
1356 *
1357 * This function will start handling all pending frames in the queue.
1358 */
1359 void rt2x00queue_start_queue(struct data_queue *queue);
1360
1361 /**
1362 * rt2x00queue_stop_queue - Halt a data queue
1363 * @queue: Pointer to &struct data_queue.
1364 *
1365 * This function will stop all pending frames in the queue.
1366 */
1367 void rt2x00queue_stop_queue(struct data_queue *queue);
1368
1369 /**
1370 * rt2x00queue_flush_queue - Flush a data queue
1371 * @queue: Pointer to &struct data_queue.
1372 * @drop: True to drop all pending frames.
1373 *
1374 * This function will flush the queue. After this call
1375 * the queue is guaranteed to be empty.
1376 */
1377 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1378
1379 /**
1380 * rt2x00queue_start_queues - Start all data queues
1381 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1382 *
1383 * This function will loop through all available queues to start them
1384 */
1385 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1386
1387 /**
1388 * rt2x00queue_stop_queues - Halt all data queues
1389 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1390 *
1391 * This function will loop through all available queues to stop
1392 * any pending frames.
1393 */
1394 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1395
1396 /**
1397 * rt2x00queue_flush_queues - Flush all data queues
1398 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1399 * @drop: True to drop all pending frames.
1400 *
1401 * This function will loop through all available queues to flush
1402 * any pending frames.
1403 */
1404 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1405
1406 /*
1407 * Debugfs handlers.
1408 */
1409 /**
1410 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1411 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1412 * @type: The type of frame that is being dumped.
1413 * @entry: The queue entry containing the frame to be dumped.
1414 */
1415 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1416 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1417 enum rt2x00_dump_type type, struct queue_entry *entry);
1418 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct queue_entry * entry)1419 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1420 enum rt2x00_dump_type type,
1421 struct queue_entry *entry)
1422 {
1423 }
1424 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1425
1426 /*
1427 * Utility functions.
1428 */
1429 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1430 struct ieee80211_vif *vif);
1431 void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1432
1433 /*
1434 * Interrupt context handlers.
1435 */
1436 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1437 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1438 void rt2x00lib_dmastart(struct queue_entry *entry);
1439 void rt2x00lib_dmadone(struct queue_entry *entry);
1440 void rt2x00lib_txdone(struct queue_entry *entry,
1441 struct txdone_entry_desc *txdesc);
1442 void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1443 struct txdone_entry_desc *txdesc);
1444 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1445 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1446
1447 /*
1448 * mac80211 handlers.
1449 */
1450 void rt2x00mac_tx(struct ieee80211_hw *hw,
1451 struct ieee80211_tx_control *control,
1452 struct sk_buff *skb);
1453 int rt2x00mac_start(struct ieee80211_hw *hw);
1454 void rt2x00mac_stop(struct ieee80211_hw *hw);
1455 void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1456 enum ieee80211_reconfig_type reconfig_type);
1457 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1458 struct ieee80211_vif *vif);
1459 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1460 struct ieee80211_vif *vif);
1461 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1462 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1463 unsigned int changed_flags,
1464 unsigned int *total_flags,
1465 u64 multicast);
1466 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1467 bool set);
1468 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1469 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1470 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1471 struct ieee80211_key_conf *key);
1472 #else
1473 #define rt2x00mac_set_key NULL
1474 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1475 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1476 struct ieee80211_vif *vif,
1477 const u8 *mac_addr);
1478 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1479 struct ieee80211_vif *vif);
1480 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1481 struct ieee80211_low_level_stats *stats);
1482 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1483 struct ieee80211_vif *vif,
1484 struct ieee80211_bss_conf *bss_conf,
1485 u64 changes);
1486 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1487 struct ieee80211_vif *vif,
1488 unsigned int link_id, u16 queue,
1489 const struct ieee80211_tx_queue_params *params);
1490 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1491 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1492 u32 queues, bool drop);
1493 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1494 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1495 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1496 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1497 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1498
1499 /*
1500 * Driver allocation handlers.
1501 */
1502 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1503 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1504
1505 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1506 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1507
1508 #endif /* RT2X00_H */
1509