1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 *
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/cpumask.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/crypto.h>
18 #include <crypto/md5.h>
19 #include <crypto/sha1.h>
20 #include <crypto/sha2.h>
21 #include <crypto/aes.h>
22 #include <crypto/internal/des.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29 #include <crypto/scatterwalk.h>
30 #include <crypto/algapi.h>
31
32 #include <asm/hypervisor.h>
33 #include <asm/mdesc.h>
34
35 #include "n2_core.h"
36
37 #define DRV_MODULE_NAME "n2_crypto"
38 #define DRV_MODULE_VERSION "0.2"
39 #define DRV_MODULE_RELDATE "July 28, 2011"
40
41 static const char version[] =
42 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
43
44 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
45 MODULE_DESCRIPTION("Niagara2 Crypto driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 #define N2_CRA_PRIORITY 200
50
51 static DEFINE_MUTEX(spu_lock);
52
53 struct spu_queue {
54 cpumask_t sharing;
55 unsigned long qhandle;
56
57 spinlock_t lock;
58 u8 q_type;
59 void *q;
60 unsigned long head;
61 unsigned long tail;
62 struct list_head jobs;
63
64 unsigned long devino;
65
66 char irq_name[32];
67 unsigned int irq;
68
69 struct list_head list;
70 };
71
72 struct spu_qreg {
73 struct spu_queue *queue;
74 unsigned long type;
75 };
76
77 static struct spu_queue **cpu_to_cwq;
78 static struct spu_queue **cpu_to_mau;
79
spu_next_offset(struct spu_queue * q,unsigned long off)80 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
81 {
82 if (q->q_type == HV_NCS_QTYPE_MAU) {
83 off += MAU_ENTRY_SIZE;
84 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
85 off = 0;
86 } else {
87 off += CWQ_ENTRY_SIZE;
88 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
89 off = 0;
90 }
91 return off;
92 }
93
94 struct n2_request_common {
95 struct list_head entry;
96 unsigned int offset;
97 };
98 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
99
100 /* An async job request records the final tail value it used in
101 * n2_request_common->offset, test to see if that offset is in
102 * the range old_head, new_head, inclusive.
103 */
job_finished(struct spu_queue * q,unsigned int offset,unsigned long old_head,unsigned long new_head)104 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
105 unsigned long old_head, unsigned long new_head)
106 {
107 if (old_head <= new_head) {
108 if (offset > old_head && offset <= new_head)
109 return true;
110 } else {
111 if (offset > old_head || offset <= new_head)
112 return true;
113 }
114 return false;
115 }
116
117 /* When the HEAD marker is unequal to the actual HEAD, we get
118 * a virtual device INO interrupt. We should process the
119 * completed CWQ entries and adjust the HEAD marker to clear
120 * the IRQ.
121 */
cwq_intr(int irq,void * dev_id)122 static irqreturn_t cwq_intr(int irq, void *dev_id)
123 {
124 unsigned long off, new_head, hv_ret;
125 struct spu_queue *q = dev_id;
126
127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128 smp_processor_id(), q->qhandle);
129
130 spin_lock(&q->lock);
131
132 hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
133
134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135 smp_processor_id(), new_head, hv_ret);
136
137 for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
138 /* XXX ... XXX */
139 }
140
141 hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
142 if (hv_ret == HV_EOK)
143 q->head = new_head;
144
145 spin_unlock(&q->lock);
146
147 return IRQ_HANDLED;
148 }
149
mau_intr(int irq,void * dev_id)150 static irqreturn_t mau_intr(int irq, void *dev_id)
151 {
152 struct spu_queue *q = dev_id;
153 unsigned long head, hv_ret;
154
155 spin_lock(&q->lock);
156
157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158 smp_processor_id(), q->qhandle);
159
160 hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
161
162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163 smp_processor_id(), head, hv_ret);
164
165 sun4v_ncs_sethead_marker(q->qhandle, head);
166
167 spin_unlock(&q->lock);
168
169 return IRQ_HANDLED;
170 }
171
spu_queue_next(struct spu_queue * q,void * cur)172 static void *spu_queue_next(struct spu_queue *q, void *cur)
173 {
174 return q->q + spu_next_offset(q, cur - q->q);
175 }
176
spu_queue_num_free(struct spu_queue * q)177 static int spu_queue_num_free(struct spu_queue *q)
178 {
179 unsigned long head = q->head;
180 unsigned long tail = q->tail;
181 unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
182 unsigned long diff;
183
184 if (head > tail)
185 diff = head - tail;
186 else
187 diff = (end - tail) + head;
188
189 return (diff / CWQ_ENTRY_SIZE) - 1;
190 }
191
spu_queue_alloc(struct spu_queue * q,int num_entries)192 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
193 {
194 int avail = spu_queue_num_free(q);
195
196 if (avail >= num_entries)
197 return q->q + q->tail;
198
199 return NULL;
200 }
201
spu_queue_submit(struct spu_queue * q,void * last)202 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
203 {
204 unsigned long hv_ret, new_tail;
205
206 new_tail = spu_next_offset(q, last - q->q);
207
208 hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
209 if (hv_ret == HV_EOK)
210 q->tail = new_tail;
211 return hv_ret;
212 }
213
control_word_base(unsigned int len,unsigned int hmac_key_len,int enc_type,int auth_type,unsigned int hash_len,bool sfas,bool sob,bool eob,bool encrypt,int opcode)214 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
215 int enc_type, int auth_type,
216 unsigned int hash_len,
217 bool sfas, bool sob, bool eob, bool encrypt,
218 int opcode)
219 {
220 u64 word = (len - 1) & CONTROL_LEN;
221
222 word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
223 word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
224 word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
225 if (sfas)
226 word |= CONTROL_STORE_FINAL_AUTH_STATE;
227 if (sob)
228 word |= CONTROL_START_OF_BLOCK;
229 if (eob)
230 word |= CONTROL_END_OF_BLOCK;
231 if (encrypt)
232 word |= CONTROL_ENCRYPT;
233 if (hmac_key_len)
234 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
235 if (hash_len)
236 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
237
238 return word;
239 }
240
241 #if 0
242 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
243 {
244 if (this_len >= 64 ||
245 qp->head != qp->tail)
246 return true;
247 return false;
248 }
249 #endif
250
251 struct n2_ahash_alg {
252 struct list_head entry;
253 const u8 *hash_zero;
254 const u8 *hash_init;
255 u8 hw_op_hashsz;
256 u8 digest_size;
257 u8 auth_type;
258 u8 hmac_type;
259 struct ahash_alg alg;
260 };
261
n2_ahash_alg(struct crypto_tfm * tfm)262 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
263 {
264 struct crypto_alg *alg = tfm->__crt_alg;
265 struct ahash_alg *ahash_alg;
266
267 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
268
269 return container_of(ahash_alg, struct n2_ahash_alg, alg);
270 }
271
272 struct n2_hmac_alg {
273 const char *child_alg;
274 struct n2_ahash_alg derived;
275 };
276
n2_hmac_alg(struct crypto_tfm * tfm)277 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
278 {
279 struct crypto_alg *alg = tfm->__crt_alg;
280 struct ahash_alg *ahash_alg;
281
282 ahash_alg = container_of(alg, struct ahash_alg, halg.base);
283
284 return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
285 }
286
287 struct n2_hash_ctx {
288 struct crypto_ahash *fallback_tfm;
289 };
290
291 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
292
293 struct n2_hmac_ctx {
294 struct n2_hash_ctx base;
295
296 struct crypto_shash *child_shash;
297
298 int hash_key_len;
299 unsigned char hash_key[N2_HASH_KEY_MAX];
300 };
301
302 struct n2_hash_req_ctx {
303 union {
304 struct md5_state md5;
305 struct sha1_state sha1;
306 struct sha256_state sha256;
307 } u;
308
309 struct ahash_request fallback_req;
310 };
311
n2_hash_async_init(struct ahash_request * req)312 static int n2_hash_async_init(struct ahash_request *req)
313 {
314 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
315 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
316 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
317
318 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
319 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
320
321 return crypto_ahash_init(&rctx->fallback_req);
322 }
323
n2_hash_async_update(struct ahash_request * req)324 static int n2_hash_async_update(struct ahash_request *req)
325 {
326 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
327 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
328 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
329
330 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
331 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
332 rctx->fallback_req.nbytes = req->nbytes;
333 rctx->fallback_req.src = req->src;
334
335 return crypto_ahash_update(&rctx->fallback_req);
336 }
337
n2_hash_async_final(struct ahash_request * req)338 static int n2_hash_async_final(struct ahash_request *req)
339 {
340 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
341 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
342 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
343
344 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
345 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
346 rctx->fallback_req.result = req->result;
347
348 return crypto_ahash_final(&rctx->fallback_req);
349 }
350
n2_hash_async_finup(struct ahash_request * req)351 static int n2_hash_async_finup(struct ahash_request *req)
352 {
353 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
354 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
355 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
356
357 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
358 rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
359 rctx->fallback_req.nbytes = req->nbytes;
360 rctx->fallback_req.src = req->src;
361 rctx->fallback_req.result = req->result;
362
363 return crypto_ahash_finup(&rctx->fallback_req);
364 }
365
n2_hash_async_noimport(struct ahash_request * req,const void * in)366 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
367 {
368 return -ENOSYS;
369 }
370
n2_hash_async_noexport(struct ahash_request * req,void * out)371 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
372 {
373 return -ENOSYS;
374 }
375
n2_hash_cra_init(struct crypto_tfm * tfm)376 static int n2_hash_cra_init(struct crypto_tfm *tfm)
377 {
378 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
379 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
380 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
381 struct crypto_ahash *fallback_tfm;
382 int err;
383
384 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
385 CRYPTO_ALG_NEED_FALLBACK);
386 if (IS_ERR(fallback_tfm)) {
387 pr_warn("Fallback driver '%s' could not be loaded!\n",
388 fallback_driver_name);
389 err = PTR_ERR(fallback_tfm);
390 goto out;
391 }
392
393 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
394 crypto_ahash_reqsize(fallback_tfm)));
395
396 ctx->fallback_tfm = fallback_tfm;
397 return 0;
398
399 out:
400 return err;
401 }
402
n2_hash_cra_exit(struct crypto_tfm * tfm)403 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
404 {
405 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
406 struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
407
408 crypto_free_ahash(ctx->fallback_tfm);
409 }
410
n2_hmac_cra_init(struct crypto_tfm * tfm)411 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
412 {
413 const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
414 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
415 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
416 struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
417 struct crypto_ahash *fallback_tfm;
418 struct crypto_shash *child_shash;
419 int err;
420
421 fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
422 CRYPTO_ALG_NEED_FALLBACK);
423 if (IS_ERR(fallback_tfm)) {
424 pr_warn("Fallback driver '%s' could not be loaded!\n",
425 fallback_driver_name);
426 err = PTR_ERR(fallback_tfm);
427 goto out;
428 }
429
430 child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
431 if (IS_ERR(child_shash)) {
432 pr_warn("Child shash '%s' could not be loaded!\n",
433 n2alg->child_alg);
434 err = PTR_ERR(child_shash);
435 goto out_free_fallback;
436 }
437
438 crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
439 crypto_ahash_reqsize(fallback_tfm)));
440
441 ctx->child_shash = child_shash;
442 ctx->base.fallback_tfm = fallback_tfm;
443 return 0;
444
445 out_free_fallback:
446 crypto_free_ahash(fallback_tfm);
447
448 out:
449 return err;
450 }
451
n2_hmac_cra_exit(struct crypto_tfm * tfm)452 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
453 {
454 struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
455 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
456
457 crypto_free_ahash(ctx->base.fallback_tfm);
458 crypto_free_shash(ctx->child_shash);
459 }
460
n2_hmac_async_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)461 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
462 unsigned int keylen)
463 {
464 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
465 struct crypto_shash *child_shash = ctx->child_shash;
466 struct crypto_ahash *fallback_tfm;
467 int err, bs, ds;
468
469 fallback_tfm = ctx->base.fallback_tfm;
470 err = crypto_ahash_setkey(fallback_tfm, key, keylen);
471 if (err)
472 return err;
473
474 bs = crypto_shash_blocksize(child_shash);
475 ds = crypto_shash_digestsize(child_shash);
476 BUG_ON(ds > N2_HASH_KEY_MAX);
477 if (keylen > bs) {
478 err = crypto_shash_tfm_digest(child_shash, key, keylen,
479 ctx->hash_key);
480 if (err)
481 return err;
482 keylen = ds;
483 } else if (keylen <= N2_HASH_KEY_MAX)
484 memcpy(ctx->hash_key, key, keylen);
485
486 ctx->hash_key_len = keylen;
487
488 return err;
489 }
490
wait_for_tail(struct spu_queue * qp)491 static unsigned long wait_for_tail(struct spu_queue *qp)
492 {
493 unsigned long head, hv_ret;
494
495 do {
496 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
497 if (hv_ret != HV_EOK) {
498 pr_err("Hypervisor error on gethead\n");
499 break;
500 }
501 if (head == qp->tail) {
502 qp->head = head;
503 break;
504 }
505 } while (1);
506 return hv_ret;
507 }
508
submit_and_wait_for_tail(struct spu_queue * qp,struct cwq_initial_entry * ent)509 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
510 struct cwq_initial_entry *ent)
511 {
512 unsigned long hv_ret = spu_queue_submit(qp, ent);
513
514 if (hv_ret == HV_EOK)
515 hv_ret = wait_for_tail(qp);
516
517 return hv_ret;
518 }
519
n2_do_async_digest(struct ahash_request * req,unsigned int auth_type,unsigned int digest_size,unsigned int result_size,void * hash_loc,unsigned long auth_key,unsigned int auth_key_len)520 static int n2_do_async_digest(struct ahash_request *req,
521 unsigned int auth_type, unsigned int digest_size,
522 unsigned int result_size, void *hash_loc,
523 unsigned long auth_key, unsigned int auth_key_len)
524 {
525 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
526 struct cwq_initial_entry *ent;
527 struct crypto_hash_walk walk;
528 struct spu_queue *qp;
529 unsigned long flags;
530 int err = -ENODEV;
531 int nbytes, cpu;
532
533 /* The total effective length of the operation may not
534 * exceed 2^16.
535 */
536 if (unlikely(req->nbytes > (1 << 16))) {
537 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
538 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
539
540 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
541 rctx->fallback_req.base.flags =
542 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
543 rctx->fallback_req.nbytes = req->nbytes;
544 rctx->fallback_req.src = req->src;
545 rctx->fallback_req.result = req->result;
546
547 return crypto_ahash_digest(&rctx->fallback_req);
548 }
549
550 nbytes = crypto_hash_walk_first(req, &walk);
551
552 cpu = get_cpu();
553 qp = cpu_to_cwq[cpu];
554 if (!qp)
555 goto out;
556
557 spin_lock_irqsave(&qp->lock, flags);
558
559 /* XXX can do better, improve this later by doing a by-hand scatterlist
560 * XXX walk, etc.
561 */
562 ent = qp->q + qp->tail;
563
564 ent->control = control_word_base(nbytes, auth_key_len, 0,
565 auth_type, digest_size,
566 false, true, false, false,
567 OPCODE_INPLACE_BIT |
568 OPCODE_AUTH_MAC);
569 ent->src_addr = __pa(walk.data);
570 ent->auth_key_addr = auth_key;
571 ent->auth_iv_addr = __pa(hash_loc);
572 ent->final_auth_state_addr = 0UL;
573 ent->enc_key_addr = 0UL;
574 ent->enc_iv_addr = 0UL;
575 ent->dest_addr = __pa(hash_loc);
576
577 nbytes = crypto_hash_walk_done(&walk, 0);
578 while (nbytes > 0) {
579 ent = spu_queue_next(qp, ent);
580
581 ent->control = (nbytes - 1);
582 ent->src_addr = __pa(walk.data);
583 ent->auth_key_addr = 0UL;
584 ent->auth_iv_addr = 0UL;
585 ent->final_auth_state_addr = 0UL;
586 ent->enc_key_addr = 0UL;
587 ent->enc_iv_addr = 0UL;
588 ent->dest_addr = 0UL;
589
590 nbytes = crypto_hash_walk_done(&walk, 0);
591 }
592 ent->control |= CONTROL_END_OF_BLOCK;
593
594 if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
595 err = -EINVAL;
596 else
597 err = 0;
598
599 spin_unlock_irqrestore(&qp->lock, flags);
600
601 if (!err)
602 memcpy(req->result, hash_loc, result_size);
603 out:
604 put_cpu();
605
606 return err;
607 }
608
n2_hash_async_digest(struct ahash_request * req)609 static int n2_hash_async_digest(struct ahash_request *req)
610 {
611 struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
612 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
613 int ds;
614
615 ds = n2alg->digest_size;
616 if (unlikely(req->nbytes == 0)) {
617 memcpy(req->result, n2alg->hash_zero, ds);
618 return 0;
619 }
620 memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
621
622 return n2_do_async_digest(req, n2alg->auth_type,
623 n2alg->hw_op_hashsz, ds,
624 &rctx->u, 0UL, 0);
625 }
626
n2_hmac_async_digest(struct ahash_request * req)627 static int n2_hmac_async_digest(struct ahash_request *req)
628 {
629 struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
630 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
631 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
632 struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
633 int ds;
634
635 ds = n2alg->derived.digest_size;
636 if (unlikely(req->nbytes == 0) ||
637 unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
638 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
639 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
640
641 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
642 rctx->fallback_req.base.flags =
643 req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
644 rctx->fallback_req.nbytes = req->nbytes;
645 rctx->fallback_req.src = req->src;
646 rctx->fallback_req.result = req->result;
647
648 return crypto_ahash_digest(&rctx->fallback_req);
649 }
650 memcpy(&rctx->u, n2alg->derived.hash_init,
651 n2alg->derived.hw_op_hashsz);
652
653 return n2_do_async_digest(req, n2alg->derived.hmac_type,
654 n2alg->derived.hw_op_hashsz, ds,
655 &rctx->u,
656 __pa(&ctx->hash_key),
657 ctx->hash_key_len);
658 }
659
660 struct n2_skcipher_context {
661 int key_len;
662 int enc_type;
663 union {
664 u8 aes[AES_MAX_KEY_SIZE];
665 u8 des[DES_KEY_SIZE];
666 u8 des3[3 * DES_KEY_SIZE];
667 } key;
668 };
669
670 #define N2_CHUNK_ARR_LEN 16
671
672 struct n2_crypto_chunk {
673 struct list_head entry;
674 unsigned long iv_paddr : 44;
675 unsigned long arr_len : 20;
676 unsigned long dest_paddr;
677 unsigned long dest_final;
678 struct {
679 unsigned long src_paddr : 44;
680 unsigned long src_len : 20;
681 } arr[N2_CHUNK_ARR_LEN];
682 };
683
684 struct n2_request_context {
685 struct skcipher_walk walk;
686 struct list_head chunk_list;
687 struct n2_crypto_chunk chunk;
688 u8 temp_iv[16];
689 };
690
691 /* The SPU allows some level of flexibility for partial cipher blocks
692 * being specified in a descriptor.
693 *
694 * It merely requires that every descriptor's length field is at least
695 * as large as the cipher block size. This means that a cipher block
696 * can span at most 2 descriptors. However, this does not allow a
697 * partial block to span into the final descriptor as that would
698 * violate the rule (since every descriptor's length must be at lest
699 * the block size). So, for example, assuming an 8 byte block size:
700 *
701 * 0xe --> 0xa --> 0x8
702 *
703 * is a valid length sequence, whereas:
704 *
705 * 0xe --> 0xb --> 0x7
706 *
707 * is not a valid sequence.
708 */
709
710 struct n2_skcipher_alg {
711 struct list_head entry;
712 u8 enc_type;
713 struct skcipher_alg skcipher;
714 };
715
n2_skcipher_alg(struct crypto_skcipher * tfm)716 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
717 {
718 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
719
720 return container_of(alg, struct n2_skcipher_alg, skcipher);
721 }
722
723 struct n2_skcipher_request_context {
724 struct skcipher_walk walk;
725 };
726
n2_aes_setkey(struct crypto_skcipher * skcipher,const u8 * key,unsigned int keylen)727 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
728 unsigned int keylen)
729 {
730 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
731 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
732 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
733
734 ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
735
736 switch (keylen) {
737 case AES_KEYSIZE_128:
738 ctx->enc_type |= ENC_TYPE_ALG_AES128;
739 break;
740 case AES_KEYSIZE_192:
741 ctx->enc_type |= ENC_TYPE_ALG_AES192;
742 break;
743 case AES_KEYSIZE_256:
744 ctx->enc_type |= ENC_TYPE_ALG_AES256;
745 break;
746 default:
747 return -EINVAL;
748 }
749
750 ctx->key_len = keylen;
751 memcpy(ctx->key.aes, key, keylen);
752 return 0;
753 }
754
n2_des_setkey(struct crypto_skcipher * skcipher,const u8 * key,unsigned int keylen)755 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
756 unsigned int keylen)
757 {
758 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
759 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
760 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
761 int err;
762
763 err = verify_skcipher_des_key(skcipher, key);
764 if (err)
765 return err;
766
767 ctx->enc_type = n2alg->enc_type;
768
769 ctx->key_len = keylen;
770 memcpy(ctx->key.des, key, keylen);
771 return 0;
772 }
773
n2_3des_setkey(struct crypto_skcipher * skcipher,const u8 * key,unsigned int keylen)774 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
775 unsigned int keylen)
776 {
777 struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
778 struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
779 struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
780 int err;
781
782 err = verify_skcipher_des3_key(skcipher, key);
783 if (err)
784 return err;
785
786 ctx->enc_type = n2alg->enc_type;
787
788 ctx->key_len = keylen;
789 memcpy(ctx->key.des3, key, keylen);
790 return 0;
791 }
792
skcipher_descriptor_len(int nbytes,unsigned int block_size)793 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
794 {
795 int this_len = nbytes;
796
797 this_len -= (nbytes & (block_size - 1));
798 return this_len > (1 << 16) ? (1 << 16) : this_len;
799 }
800
__n2_crypt_chunk(struct crypto_skcipher * skcipher,struct n2_crypto_chunk * cp,struct spu_queue * qp,bool encrypt)801 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
802 struct n2_crypto_chunk *cp,
803 struct spu_queue *qp, bool encrypt)
804 {
805 struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
806 struct cwq_initial_entry *ent;
807 bool in_place;
808 int i;
809
810 ent = spu_queue_alloc(qp, cp->arr_len);
811 if (!ent) {
812 pr_info("queue_alloc() of %d fails\n",
813 cp->arr_len);
814 return -EBUSY;
815 }
816
817 in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
818
819 ent->control = control_word_base(cp->arr[0].src_len,
820 0, ctx->enc_type, 0, 0,
821 false, true, false, encrypt,
822 OPCODE_ENCRYPT |
823 (in_place ? OPCODE_INPLACE_BIT : 0));
824 ent->src_addr = cp->arr[0].src_paddr;
825 ent->auth_key_addr = 0UL;
826 ent->auth_iv_addr = 0UL;
827 ent->final_auth_state_addr = 0UL;
828 ent->enc_key_addr = __pa(&ctx->key);
829 ent->enc_iv_addr = cp->iv_paddr;
830 ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
831
832 for (i = 1; i < cp->arr_len; i++) {
833 ent = spu_queue_next(qp, ent);
834
835 ent->control = cp->arr[i].src_len - 1;
836 ent->src_addr = cp->arr[i].src_paddr;
837 ent->auth_key_addr = 0UL;
838 ent->auth_iv_addr = 0UL;
839 ent->final_auth_state_addr = 0UL;
840 ent->enc_key_addr = 0UL;
841 ent->enc_iv_addr = 0UL;
842 ent->dest_addr = 0UL;
843 }
844 ent->control |= CONTROL_END_OF_BLOCK;
845
846 return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
847 }
848
n2_compute_chunks(struct skcipher_request * req)849 static int n2_compute_chunks(struct skcipher_request *req)
850 {
851 struct n2_request_context *rctx = skcipher_request_ctx(req);
852 struct skcipher_walk *walk = &rctx->walk;
853 struct n2_crypto_chunk *chunk;
854 unsigned long dest_prev;
855 unsigned int tot_len;
856 bool prev_in_place;
857 int err, nbytes;
858
859 err = skcipher_walk_async(walk, req);
860 if (err)
861 return err;
862
863 INIT_LIST_HEAD(&rctx->chunk_list);
864
865 chunk = &rctx->chunk;
866 INIT_LIST_HEAD(&chunk->entry);
867
868 chunk->iv_paddr = 0UL;
869 chunk->arr_len = 0;
870 chunk->dest_paddr = 0UL;
871
872 prev_in_place = false;
873 dest_prev = ~0UL;
874 tot_len = 0;
875
876 while ((nbytes = walk->nbytes) != 0) {
877 unsigned long dest_paddr, src_paddr;
878 bool in_place;
879 int this_len;
880
881 src_paddr = (page_to_phys(walk->src.phys.page) +
882 walk->src.phys.offset);
883 dest_paddr = (page_to_phys(walk->dst.phys.page) +
884 walk->dst.phys.offset);
885 in_place = (src_paddr == dest_paddr);
886 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
887
888 if (chunk->arr_len != 0) {
889 if (in_place != prev_in_place ||
890 (!prev_in_place &&
891 dest_paddr != dest_prev) ||
892 chunk->arr_len == N2_CHUNK_ARR_LEN ||
893 tot_len + this_len > (1 << 16)) {
894 chunk->dest_final = dest_prev;
895 list_add_tail(&chunk->entry,
896 &rctx->chunk_list);
897 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
898 if (!chunk) {
899 err = -ENOMEM;
900 break;
901 }
902 INIT_LIST_HEAD(&chunk->entry);
903 }
904 }
905 if (chunk->arr_len == 0) {
906 chunk->dest_paddr = dest_paddr;
907 tot_len = 0;
908 }
909 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
910 chunk->arr[chunk->arr_len].src_len = this_len;
911 chunk->arr_len++;
912
913 dest_prev = dest_paddr + this_len;
914 prev_in_place = in_place;
915 tot_len += this_len;
916
917 err = skcipher_walk_done(walk, nbytes - this_len);
918 if (err)
919 break;
920 }
921 if (!err && chunk->arr_len != 0) {
922 chunk->dest_final = dest_prev;
923 list_add_tail(&chunk->entry, &rctx->chunk_list);
924 }
925
926 return err;
927 }
928
n2_chunk_complete(struct skcipher_request * req,void * final_iv)929 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
930 {
931 struct n2_request_context *rctx = skcipher_request_ctx(req);
932 struct n2_crypto_chunk *c, *tmp;
933
934 if (final_iv)
935 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
936
937 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
938 list_del(&c->entry);
939 if (unlikely(c != &rctx->chunk))
940 kfree(c);
941 }
942
943 }
944
n2_do_ecb(struct skcipher_request * req,bool encrypt)945 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
946 {
947 struct n2_request_context *rctx = skcipher_request_ctx(req);
948 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
949 int err = n2_compute_chunks(req);
950 struct n2_crypto_chunk *c, *tmp;
951 unsigned long flags, hv_ret;
952 struct spu_queue *qp;
953
954 if (err)
955 return err;
956
957 qp = cpu_to_cwq[get_cpu()];
958 err = -ENODEV;
959 if (!qp)
960 goto out;
961
962 spin_lock_irqsave(&qp->lock, flags);
963
964 list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
965 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
966 if (err)
967 break;
968 list_del(&c->entry);
969 if (unlikely(c != &rctx->chunk))
970 kfree(c);
971 }
972 if (!err) {
973 hv_ret = wait_for_tail(qp);
974 if (hv_ret != HV_EOK)
975 err = -EINVAL;
976 }
977
978 spin_unlock_irqrestore(&qp->lock, flags);
979
980 out:
981 put_cpu();
982
983 n2_chunk_complete(req, NULL);
984 return err;
985 }
986
n2_encrypt_ecb(struct skcipher_request * req)987 static int n2_encrypt_ecb(struct skcipher_request *req)
988 {
989 return n2_do_ecb(req, true);
990 }
991
n2_decrypt_ecb(struct skcipher_request * req)992 static int n2_decrypt_ecb(struct skcipher_request *req)
993 {
994 return n2_do_ecb(req, false);
995 }
996
n2_do_chaining(struct skcipher_request * req,bool encrypt)997 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
998 {
999 struct n2_request_context *rctx = skcipher_request_ctx(req);
1000 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1001 unsigned long flags, hv_ret, iv_paddr;
1002 int err = n2_compute_chunks(req);
1003 struct n2_crypto_chunk *c, *tmp;
1004 struct spu_queue *qp;
1005 void *final_iv_addr;
1006
1007 final_iv_addr = NULL;
1008
1009 if (err)
1010 return err;
1011
1012 qp = cpu_to_cwq[get_cpu()];
1013 err = -ENODEV;
1014 if (!qp)
1015 goto out;
1016
1017 spin_lock_irqsave(&qp->lock, flags);
1018
1019 if (encrypt) {
1020 iv_paddr = __pa(rctx->walk.iv);
1021 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1022 entry) {
1023 c->iv_paddr = iv_paddr;
1024 err = __n2_crypt_chunk(tfm, c, qp, true);
1025 if (err)
1026 break;
1027 iv_paddr = c->dest_final - rctx->walk.blocksize;
1028 list_del(&c->entry);
1029 if (unlikely(c != &rctx->chunk))
1030 kfree(c);
1031 }
1032 final_iv_addr = __va(iv_paddr);
1033 } else {
1034 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1035 entry) {
1036 if (c == &rctx->chunk) {
1037 iv_paddr = __pa(rctx->walk.iv);
1038 } else {
1039 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1040 tmp->arr[tmp->arr_len-1].src_len -
1041 rctx->walk.blocksize);
1042 }
1043 if (!final_iv_addr) {
1044 unsigned long pa;
1045
1046 pa = (c->arr[c->arr_len-1].src_paddr +
1047 c->arr[c->arr_len-1].src_len -
1048 rctx->walk.blocksize);
1049 final_iv_addr = rctx->temp_iv;
1050 memcpy(rctx->temp_iv, __va(pa),
1051 rctx->walk.blocksize);
1052 }
1053 c->iv_paddr = iv_paddr;
1054 err = __n2_crypt_chunk(tfm, c, qp, false);
1055 if (err)
1056 break;
1057 list_del(&c->entry);
1058 if (unlikely(c != &rctx->chunk))
1059 kfree(c);
1060 }
1061 }
1062 if (!err) {
1063 hv_ret = wait_for_tail(qp);
1064 if (hv_ret != HV_EOK)
1065 err = -EINVAL;
1066 }
1067
1068 spin_unlock_irqrestore(&qp->lock, flags);
1069
1070 out:
1071 put_cpu();
1072
1073 n2_chunk_complete(req, err ? NULL : final_iv_addr);
1074 return err;
1075 }
1076
n2_encrypt_chaining(struct skcipher_request * req)1077 static int n2_encrypt_chaining(struct skcipher_request *req)
1078 {
1079 return n2_do_chaining(req, true);
1080 }
1081
n2_decrypt_chaining(struct skcipher_request * req)1082 static int n2_decrypt_chaining(struct skcipher_request *req)
1083 {
1084 return n2_do_chaining(req, false);
1085 }
1086
1087 struct n2_skcipher_tmpl {
1088 const char *name;
1089 const char *drv_name;
1090 u8 block_size;
1091 u8 enc_type;
1092 struct skcipher_alg skcipher;
1093 };
1094
1095 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1096 /* DES: ECB CBC and CFB are supported */
1097 { .name = "ecb(des)",
1098 .drv_name = "ecb-des",
1099 .block_size = DES_BLOCK_SIZE,
1100 .enc_type = (ENC_TYPE_ALG_DES |
1101 ENC_TYPE_CHAINING_ECB),
1102 .skcipher = {
1103 .min_keysize = DES_KEY_SIZE,
1104 .max_keysize = DES_KEY_SIZE,
1105 .setkey = n2_des_setkey,
1106 .encrypt = n2_encrypt_ecb,
1107 .decrypt = n2_decrypt_ecb,
1108 },
1109 },
1110 { .name = "cbc(des)",
1111 .drv_name = "cbc-des",
1112 .block_size = DES_BLOCK_SIZE,
1113 .enc_type = (ENC_TYPE_ALG_DES |
1114 ENC_TYPE_CHAINING_CBC),
1115 .skcipher = {
1116 .ivsize = DES_BLOCK_SIZE,
1117 .min_keysize = DES_KEY_SIZE,
1118 .max_keysize = DES_KEY_SIZE,
1119 .setkey = n2_des_setkey,
1120 .encrypt = n2_encrypt_chaining,
1121 .decrypt = n2_decrypt_chaining,
1122 },
1123 },
1124 { .name = "cfb(des)",
1125 .drv_name = "cfb-des",
1126 .block_size = DES_BLOCK_SIZE,
1127 .enc_type = (ENC_TYPE_ALG_DES |
1128 ENC_TYPE_CHAINING_CFB),
1129 .skcipher = {
1130 .min_keysize = DES_KEY_SIZE,
1131 .max_keysize = DES_KEY_SIZE,
1132 .setkey = n2_des_setkey,
1133 .encrypt = n2_encrypt_chaining,
1134 .decrypt = n2_decrypt_chaining,
1135 },
1136 },
1137
1138 /* 3DES: ECB CBC and CFB are supported */
1139 { .name = "ecb(des3_ede)",
1140 .drv_name = "ecb-3des",
1141 .block_size = DES_BLOCK_SIZE,
1142 .enc_type = (ENC_TYPE_ALG_3DES |
1143 ENC_TYPE_CHAINING_ECB),
1144 .skcipher = {
1145 .min_keysize = 3 * DES_KEY_SIZE,
1146 .max_keysize = 3 * DES_KEY_SIZE,
1147 .setkey = n2_3des_setkey,
1148 .encrypt = n2_encrypt_ecb,
1149 .decrypt = n2_decrypt_ecb,
1150 },
1151 },
1152 { .name = "cbc(des3_ede)",
1153 .drv_name = "cbc-3des",
1154 .block_size = DES_BLOCK_SIZE,
1155 .enc_type = (ENC_TYPE_ALG_3DES |
1156 ENC_TYPE_CHAINING_CBC),
1157 .skcipher = {
1158 .ivsize = DES_BLOCK_SIZE,
1159 .min_keysize = 3 * DES_KEY_SIZE,
1160 .max_keysize = 3 * DES_KEY_SIZE,
1161 .setkey = n2_3des_setkey,
1162 .encrypt = n2_encrypt_chaining,
1163 .decrypt = n2_decrypt_chaining,
1164 },
1165 },
1166 { .name = "cfb(des3_ede)",
1167 .drv_name = "cfb-3des",
1168 .block_size = DES_BLOCK_SIZE,
1169 .enc_type = (ENC_TYPE_ALG_3DES |
1170 ENC_TYPE_CHAINING_CFB),
1171 .skcipher = {
1172 .min_keysize = 3 * DES_KEY_SIZE,
1173 .max_keysize = 3 * DES_KEY_SIZE,
1174 .setkey = n2_3des_setkey,
1175 .encrypt = n2_encrypt_chaining,
1176 .decrypt = n2_decrypt_chaining,
1177 },
1178 },
1179 /* AES: ECB CBC and CTR are supported */
1180 { .name = "ecb(aes)",
1181 .drv_name = "ecb-aes",
1182 .block_size = AES_BLOCK_SIZE,
1183 .enc_type = (ENC_TYPE_ALG_AES128 |
1184 ENC_TYPE_CHAINING_ECB),
1185 .skcipher = {
1186 .min_keysize = AES_MIN_KEY_SIZE,
1187 .max_keysize = AES_MAX_KEY_SIZE,
1188 .setkey = n2_aes_setkey,
1189 .encrypt = n2_encrypt_ecb,
1190 .decrypt = n2_decrypt_ecb,
1191 },
1192 },
1193 { .name = "cbc(aes)",
1194 .drv_name = "cbc-aes",
1195 .block_size = AES_BLOCK_SIZE,
1196 .enc_type = (ENC_TYPE_ALG_AES128 |
1197 ENC_TYPE_CHAINING_CBC),
1198 .skcipher = {
1199 .ivsize = AES_BLOCK_SIZE,
1200 .min_keysize = AES_MIN_KEY_SIZE,
1201 .max_keysize = AES_MAX_KEY_SIZE,
1202 .setkey = n2_aes_setkey,
1203 .encrypt = n2_encrypt_chaining,
1204 .decrypt = n2_decrypt_chaining,
1205 },
1206 },
1207 { .name = "ctr(aes)",
1208 .drv_name = "ctr-aes",
1209 .block_size = AES_BLOCK_SIZE,
1210 .enc_type = (ENC_TYPE_ALG_AES128 |
1211 ENC_TYPE_CHAINING_COUNTER),
1212 .skcipher = {
1213 .ivsize = AES_BLOCK_SIZE,
1214 .min_keysize = AES_MIN_KEY_SIZE,
1215 .max_keysize = AES_MAX_KEY_SIZE,
1216 .setkey = n2_aes_setkey,
1217 .encrypt = n2_encrypt_chaining,
1218 .decrypt = n2_encrypt_chaining,
1219 },
1220 },
1221
1222 };
1223 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1224
1225 static LIST_HEAD(skcipher_algs);
1226
1227 struct n2_hash_tmpl {
1228 const char *name;
1229 const u8 *hash_zero;
1230 const u8 *hash_init;
1231 u8 hw_op_hashsz;
1232 u8 digest_size;
1233 u8 statesize;
1234 u8 block_size;
1235 u8 auth_type;
1236 u8 hmac_type;
1237 };
1238
1239 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1240 cpu_to_le32(MD5_H0),
1241 cpu_to_le32(MD5_H1),
1242 cpu_to_le32(MD5_H2),
1243 cpu_to_le32(MD5_H3),
1244 };
1245 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1246 SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1247 };
1248 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1249 SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1250 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1251 };
1252 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1253 SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1254 SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1255 };
1256
1257 static const struct n2_hash_tmpl hash_tmpls[] = {
1258 { .name = "md5",
1259 .hash_zero = md5_zero_message_hash,
1260 .hash_init = (u8 *)n2_md5_init,
1261 .auth_type = AUTH_TYPE_MD5,
1262 .hmac_type = AUTH_TYPE_HMAC_MD5,
1263 .hw_op_hashsz = MD5_DIGEST_SIZE,
1264 .digest_size = MD5_DIGEST_SIZE,
1265 .statesize = sizeof(struct md5_state),
1266 .block_size = MD5_HMAC_BLOCK_SIZE },
1267 { .name = "sha1",
1268 .hash_zero = sha1_zero_message_hash,
1269 .hash_init = (u8 *)n2_sha1_init,
1270 .auth_type = AUTH_TYPE_SHA1,
1271 .hmac_type = AUTH_TYPE_HMAC_SHA1,
1272 .hw_op_hashsz = SHA1_DIGEST_SIZE,
1273 .digest_size = SHA1_DIGEST_SIZE,
1274 .statesize = sizeof(struct sha1_state),
1275 .block_size = SHA1_BLOCK_SIZE },
1276 { .name = "sha256",
1277 .hash_zero = sha256_zero_message_hash,
1278 .hash_init = (u8 *)n2_sha256_init,
1279 .auth_type = AUTH_TYPE_SHA256,
1280 .hmac_type = AUTH_TYPE_HMAC_SHA256,
1281 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1282 .digest_size = SHA256_DIGEST_SIZE,
1283 .statesize = sizeof(struct sha256_state),
1284 .block_size = SHA256_BLOCK_SIZE },
1285 { .name = "sha224",
1286 .hash_zero = sha224_zero_message_hash,
1287 .hash_init = (u8 *)n2_sha224_init,
1288 .auth_type = AUTH_TYPE_SHA256,
1289 .hmac_type = AUTH_TYPE_RESERVED,
1290 .hw_op_hashsz = SHA256_DIGEST_SIZE,
1291 .digest_size = SHA224_DIGEST_SIZE,
1292 .statesize = sizeof(struct sha256_state),
1293 .block_size = SHA224_BLOCK_SIZE },
1294 };
1295 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1296
1297 static LIST_HEAD(ahash_algs);
1298 static LIST_HEAD(hmac_algs);
1299
1300 static int algs_registered;
1301
__n2_unregister_algs(void)1302 static void __n2_unregister_algs(void)
1303 {
1304 struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1305 struct n2_ahash_alg *alg, *alg_tmp;
1306 struct n2_hmac_alg *hmac, *hmac_tmp;
1307
1308 list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1309 crypto_unregister_skcipher(&skcipher->skcipher);
1310 list_del(&skcipher->entry);
1311 kfree(skcipher);
1312 }
1313 list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1314 crypto_unregister_ahash(&hmac->derived.alg);
1315 list_del(&hmac->derived.entry);
1316 kfree(hmac);
1317 }
1318 list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1319 crypto_unregister_ahash(&alg->alg);
1320 list_del(&alg->entry);
1321 kfree(alg);
1322 }
1323 }
1324
n2_skcipher_init_tfm(struct crypto_skcipher * tfm)1325 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1326 {
1327 crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1328 return 0;
1329 }
1330
__n2_register_one_skcipher(const struct n2_skcipher_tmpl * tmpl)1331 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1332 {
1333 struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1334 struct skcipher_alg *alg;
1335 int err;
1336
1337 if (!p)
1338 return -ENOMEM;
1339
1340 alg = &p->skcipher;
1341 *alg = tmpl->skcipher;
1342
1343 snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1344 snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1345 alg->base.cra_priority = N2_CRA_PRIORITY;
1346 alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1347 CRYPTO_ALG_ALLOCATES_MEMORY;
1348 alg->base.cra_blocksize = tmpl->block_size;
1349 p->enc_type = tmpl->enc_type;
1350 alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1351 alg->base.cra_module = THIS_MODULE;
1352 alg->init = n2_skcipher_init_tfm;
1353
1354 list_add(&p->entry, &skcipher_algs);
1355 err = crypto_register_skcipher(alg);
1356 if (err) {
1357 pr_err("%s alg registration failed\n", alg->base.cra_name);
1358 list_del(&p->entry);
1359 kfree(p);
1360 } else {
1361 pr_info("%s alg registered\n", alg->base.cra_name);
1362 }
1363 return err;
1364 }
1365
__n2_register_one_hmac(struct n2_ahash_alg * n2ahash)1366 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1367 {
1368 struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1369 struct ahash_alg *ahash;
1370 struct crypto_alg *base;
1371 int err;
1372
1373 if (!p)
1374 return -ENOMEM;
1375
1376 p->child_alg = n2ahash->alg.halg.base.cra_name;
1377 memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1378 INIT_LIST_HEAD(&p->derived.entry);
1379
1380 ahash = &p->derived.alg;
1381 ahash->digest = n2_hmac_async_digest;
1382 ahash->setkey = n2_hmac_async_setkey;
1383
1384 base = &ahash->halg.base;
1385 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1386 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1387
1388 base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1389 base->cra_init = n2_hmac_cra_init;
1390 base->cra_exit = n2_hmac_cra_exit;
1391
1392 list_add(&p->derived.entry, &hmac_algs);
1393 err = crypto_register_ahash(ahash);
1394 if (err) {
1395 pr_err("%s alg registration failed\n", base->cra_name);
1396 list_del(&p->derived.entry);
1397 kfree(p);
1398 } else {
1399 pr_info("%s alg registered\n", base->cra_name);
1400 }
1401 return err;
1402 }
1403
__n2_register_one_ahash(const struct n2_hash_tmpl * tmpl)1404 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1405 {
1406 struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1407 struct hash_alg_common *halg;
1408 struct crypto_alg *base;
1409 struct ahash_alg *ahash;
1410 int err;
1411
1412 if (!p)
1413 return -ENOMEM;
1414
1415 p->hash_zero = tmpl->hash_zero;
1416 p->hash_init = tmpl->hash_init;
1417 p->auth_type = tmpl->auth_type;
1418 p->hmac_type = tmpl->hmac_type;
1419 p->hw_op_hashsz = tmpl->hw_op_hashsz;
1420 p->digest_size = tmpl->digest_size;
1421
1422 ahash = &p->alg;
1423 ahash->init = n2_hash_async_init;
1424 ahash->update = n2_hash_async_update;
1425 ahash->final = n2_hash_async_final;
1426 ahash->finup = n2_hash_async_finup;
1427 ahash->digest = n2_hash_async_digest;
1428 ahash->export = n2_hash_async_noexport;
1429 ahash->import = n2_hash_async_noimport;
1430
1431 halg = &ahash->halg;
1432 halg->digestsize = tmpl->digest_size;
1433 halg->statesize = tmpl->statesize;
1434
1435 base = &halg->base;
1436 snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1437 snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1438 base->cra_priority = N2_CRA_PRIORITY;
1439 base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1440 CRYPTO_ALG_NEED_FALLBACK;
1441 base->cra_blocksize = tmpl->block_size;
1442 base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1443 base->cra_module = THIS_MODULE;
1444 base->cra_init = n2_hash_cra_init;
1445 base->cra_exit = n2_hash_cra_exit;
1446
1447 list_add(&p->entry, &ahash_algs);
1448 err = crypto_register_ahash(ahash);
1449 if (err) {
1450 pr_err("%s alg registration failed\n", base->cra_name);
1451 list_del(&p->entry);
1452 kfree(p);
1453 } else {
1454 pr_info("%s alg registered\n", base->cra_name);
1455 }
1456 if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1457 err = __n2_register_one_hmac(p);
1458 return err;
1459 }
1460
n2_register_algs(void)1461 static int n2_register_algs(void)
1462 {
1463 int i, err = 0;
1464
1465 mutex_lock(&spu_lock);
1466 if (algs_registered++)
1467 goto out;
1468
1469 for (i = 0; i < NUM_HASH_TMPLS; i++) {
1470 err = __n2_register_one_ahash(&hash_tmpls[i]);
1471 if (err) {
1472 __n2_unregister_algs();
1473 goto out;
1474 }
1475 }
1476 for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1477 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1478 if (err) {
1479 __n2_unregister_algs();
1480 goto out;
1481 }
1482 }
1483
1484 out:
1485 mutex_unlock(&spu_lock);
1486 return err;
1487 }
1488
n2_unregister_algs(void)1489 static void n2_unregister_algs(void)
1490 {
1491 mutex_lock(&spu_lock);
1492 if (!--algs_registered)
1493 __n2_unregister_algs();
1494 mutex_unlock(&spu_lock);
1495 }
1496
1497 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1498 * a devino. This isn't very useful to us because all of the
1499 * interrupts listed in the device_node have been translated to
1500 * Linux virtual IRQ cookie numbers.
1501 *
1502 * So we have to back-translate, going through the 'intr' and 'ino'
1503 * property tables of the n2cp MDESC node, matching it with the OF
1504 * 'interrupts' property entries, in order to figure out which
1505 * devino goes to which already-translated IRQ.
1506 */
find_devino_index(struct platform_device * dev,struct spu_mdesc_info * ip,unsigned long dev_ino)1507 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1508 unsigned long dev_ino)
1509 {
1510 const unsigned int *dev_intrs;
1511 unsigned int intr;
1512 int i;
1513
1514 for (i = 0; i < ip->num_intrs; i++) {
1515 if (ip->ino_table[i].ino == dev_ino)
1516 break;
1517 }
1518 if (i == ip->num_intrs)
1519 return -ENODEV;
1520
1521 intr = ip->ino_table[i].intr;
1522
1523 dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1524 if (!dev_intrs)
1525 return -ENODEV;
1526
1527 for (i = 0; i < dev->archdata.num_irqs; i++) {
1528 if (dev_intrs[i] == intr)
1529 return i;
1530 }
1531
1532 return -ENODEV;
1533 }
1534
spu_map_ino(struct platform_device * dev,struct spu_mdesc_info * ip,const char * irq_name,struct spu_queue * p,irq_handler_t handler)1535 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1536 const char *irq_name, struct spu_queue *p,
1537 irq_handler_t handler)
1538 {
1539 unsigned long herr;
1540 int index;
1541
1542 herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1543 if (herr)
1544 return -EINVAL;
1545
1546 index = find_devino_index(dev, ip, p->devino);
1547 if (index < 0)
1548 return index;
1549
1550 p->irq = dev->archdata.irqs[index];
1551
1552 sprintf(p->irq_name, "%s-%d", irq_name, index);
1553
1554 return request_irq(p->irq, handler, 0, p->irq_name, p);
1555 }
1556
1557 static struct kmem_cache *queue_cache[2];
1558
new_queue(unsigned long q_type)1559 static void *new_queue(unsigned long q_type)
1560 {
1561 return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1562 }
1563
free_queue(void * p,unsigned long q_type)1564 static void free_queue(void *p, unsigned long q_type)
1565 {
1566 kmem_cache_free(queue_cache[q_type - 1], p);
1567 }
1568
queue_cache_init(void)1569 static int queue_cache_init(void)
1570 {
1571 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1572 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1573 kmem_cache_create("mau_queue",
1574 (MAU_NUM_ENTRIES *
1575 MAU_ENTRY_SIZE),
1576 MAU_ENTRY_SIZE, 0, NULL);
1577 if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1578 return -ENOMEM;
1579
1580 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1581 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1582 kmem_cache_create("cwq_queue",
1583 (CWQ_NUM_ENTRIES *
1584 CWQ_ENTRY_SIZE),
1585 CWQ_ENTRY_SIZE, 0, NULL);
1586 if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1587 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1588 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1589 return -ENOMEM;
1590 }
1591 return 0;
1592 }
1593
queue_cache_destroy(void)1594 static void queue_cache_destroy(void)
1595 {
1596 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1597 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1598 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1599 queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1600 }
1601
spu_queue_register_workfn(void * arg)1602 static long spu_queue_register_workfn(void *arg)
1603 {
1604 struct spu_qreg *qr = arg;
1605 struct spu_queue *p = qr->queue;
1606 unsigned long q_type = qr->type;
1607 unsigned long hv_ret;
1608
1609 hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1610 CWQ_NUM_ENTRIES, &p->qhandle);
1611 if (!hv_ret)
1612 sun4v_ncs_sethead_marker(p->qhandle, 0);
1613
1614 return hv_ret ? -EINVAL : 0;
1615 }
1616
spu_queue_register(struct spu_queue * p,unsigned long q_type)1617 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1618 {
1619 int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1620 struct spu_qreg qr = { .queue = p, .type = q_type };
1621
1622 return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1623 }
1624
spu_queue_setup(struct spu_queue * p)1625 static int spu_queue_setup(struct spu_queue *p)
1626 {
1627 int err;
1628
1629 p->q = new_queue(p->q_type);
1630 if (!p->q)
1631 return -ENOMEM;
1632
1633 err = spu_queue_register(p, p->q_type);
1634 if (err) {
1635 free_queue(p->q, p->q_type);
1636 p->q = NULL;
1637 }
1638
1639 return err;
1640 }
1641
spu_queue_destroy(struct spu_queue * p)1642 static void spu_queue_destroy(struct spu_queue *p)
1643 {
1644 unsigned long hv_ret;
1645
1646 if (!p->q)
1647 return;
1648
1649 hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1650
1651 if (!hv_ret)
1652 free_queue(p->q, p->q_type);
1653 }
1654
spu_list_destroy(struct list_head * list)1655 static void spu_list_destroy(struct list_head *list)
1656 {
1657 struct spu_queue *p, *n;
1658
1659 list_for_each_entry_safe(p, n, list, list) {
1660 int i;
1661
1662 for (i = 0; i < NR_CPUS; i++) {
1663 if (cpu_to_cwq[i] == p)
1664 cpu_to_cwq[i] = NULL;
1665 }
1666
1667 if (p->irq) {
1668 free_irq(p->irq, p);
1669 p->irq = 0;
1670 }
1671 spu_queue_destroy(p);
1672 list_del(&p->list);
1673 kfree(p);
1674 }
1675 }
1676
1677 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1678 * gathering cpu membership information.
1679 */
spu_mdesc_walk_arcs(struct mdesc_handle * mdesc,struct platform_device * dev,u64 node,struct spu_queue * p,struct spu_queue ** table)1680 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1681 struct platform_device *dev,
1682 u64 node, struct spu_queue *p,
1683 struct spu_queue **table)
1684 {
1685 u64 arc;
1686
1687 mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1688 u64 tgt = mdesc_arc_target(mdesc, arc);
1689 const char *name = mdesc_node_name(mdesc, tgt);
1690 const u64 *id;
1691
1692 if (strcmp(name, "cpu"))
1693 continue;
1694 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1695 if (table[*id] != NULL) {
1696 dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1697 dev->dev.of_node);
1698 return -EINVAL;
1699 }
1700 cpumask_set_cpu(*id, &p->sharing);
1701 table[*id] = p;
1702 }
1703 return 0;
1704 }
1705
1706 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
handle_exec_unit(struct spu_mdesc_info * ip,struct list_head * list,struct platform_device * dev,struct mdesc_handle * mdesc,u64 node,const char * iname,unsigned long q_type,irq_handler_t handler,struct spu_queue ** table)1707 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1708 struct platform_device *dev, struct mdesc_handle *mdesc,
1709 u64 node, const char *iname, unsigned long q_type,
1710 irq_handler_t handler, struct spu_queue **table)
1711 {
1712 struct spu_queue *p;
1713 int err;
1714
1715 p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1716 if (!p) {
1717 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1718 dev->dev.of_node);
1719 return -ENOMEM;
1720 }
1721
1722 cpumask_clear(&p->sharing);
1723 spin_lock_init(&p->lock);
1724 p->q_type = q_type;
1725 INIT_LIST_HEAD(&p->jobs);
1726 list_add(&p->list, list);
1727
1728 err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1729 if (err)
1730 return err;
1731
1732 err = spu_queue_setup(p);
1733 if (err)
1734 return err;
1735
1736 return spu_map_ino(dev, ip, iname, p, handler);
1737 }
1738
spu_mdesc_scan(struct mdesc_handle * mdesc,struct platform_device * dev,struct spu_mdesc_info * ip,struct list_head * list,const char * exec_name,unsigned long q_type,irq_handler_t handler,struct spu_queue ** table)1739 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1740 struct spu_mdesc_info *ip, struct list_head *list,
1741 const char *exec_name, unsigned long q_type,
1742 irq_handler_t handler, struct spu_queue **table)
1743 {
1744 int err = 0;
1745 u64 node;
1746
1747 mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1748 const char *type;
1749
1750 type = mdesc_get_property(mdesc, node, "type", NULL);
1751 if (!type || strcmp(type, exec_name))
1752 continue;
1753
1754 err = handle_exec_unit(ip, list, dev, mdesc, node,
1755 exec_name, q_type, handler, table);
1756 if (err) {
1757 spu_list_destroy(list);
1758 break;
1759 }
1760 }
1761
1762 return err;
1763 }
1764
get_irq_props(struct mdesc_handle * mdesc,u64 node,struct spu_mdesc_info * ip)1765 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1766 struct spu_mdesc_info *ip)
1767 {
1768 const u64 *ino;
1769 int ino_len;
1770 int i;
1771
1772 ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1773 if (!ino) {
1774 printk("NO 'ino'\n");
1775 return -ENODEV;
1776 }
1777
1778 ip->num_intrs = ino_len / sizeof(u64);
1779 ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1780 ip->num_intrs),
1781 GFP_KERNEL);
1782 if (!ip->ino_table)
1783 return -ENOMEM;
1784
1785 for (i = 0; i < ip->num_intrs; i++) {
1786 struct ino_blob *b = &ip->ino_table[i];
1787 b->intr = i + 1;
1788 b->ino = ino[i];
1789 }
1790
1791 return 0;
1792 }
1793
grab_mdesc_irq_props(struct mdesc_handle * mdesc,struct platform_device * dev,struct spu_mdesc_info * ip,const char * node_name)1794 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1795 struct platform_device *dev,
1796 struct spu_mdesc_info *ip,
1797 const char *node_name)
1798 {
1799 u64 node, reg;
1800
1801 if (of_property_read_reg(dev->dev.of_node, 0, ®, NULL) < 0)
1802 return -ENODEV;
1803
1804 mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1805 const char *name;
1806 const u64 *chdl;
1807
1808 name = mdesc_get_property(mdesc, node, "name", NULL);
1809 if (!name || strcmp(name, node_name))
1810 continue;
1811 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1812 if (!chdl || (*chdl != reg))
1813 continue;
1814 ip->cfg_handle = *chdl;
1815 return get_irq_props(mdesc, node, ip);
1816 }
1817
1818 return -ENODEV;
1819 }
1820
1821 static unsigned long n2_spu_hvapi_major;
1822 static unsigned long n2_spu_hvapi_minor;
1823
n2_spu_hvapi_register(void)1824 static int n2_spu_hvapi_register(void)
1825 {
1826 int err;
1827
1828 n2_spu_hvapi_major = 2;
1829 n2_spu_hvapi_minor = 0;
1830
1831 err = sun4v_hvapi_register(HV_GRP_NCS,
1832 n2_spu_hvapi_major,
1833 &n2_spu_hvapi_minor);
1834
1835 if (!err)
1836 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1837 n2_spu_hvapi_major,
1838 n2_spu_hvapi_minor);
1839
1840 return err;
1841 }
1842
n2_spu_hvapi_unregister(void)1843 static void n2_spu_hvapi_unregister(void)
1844 {
1845 sun4v_hvapi_unregister(HV_GRP_NCS);
1846 }
1847
1848 static int global_ref;
1849
grab_global_resources(void)1850 static int grab_global_resources(void)
1851 {
1852 int err = 0;
1853
1854 mutex_lock(&spu_lock);
1855
1856 if (global_ref++)
1857 goto out;
1858
1859 err = n2_spu_hvapi_register();
1860 if (err)
1861 goto out;
1862
1863 err = queue_cache_init();
1864 if (err)
1865 goto out_hvapi_release;
1866
1867 err = -ENOMEM;
1868 cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1869 GFP_KERNEL);
1870 if (!cpu_to_cwq)
1871 goto out_queue_cache_destroy;
1872
1873 cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1874 GFP_KERNEL);
1875 if (!cpu_to_mau)
1876 goto out_free_cwq_table;
1877
1878 err = 0;
1879
1880 out:
1881 if (err)
1882 global_ref--;
1883 mutex_unlock(&spu_lock);
1884 return err;
1885
1886 out_free_cwq_table:
1887 kfree(cpu_to_cwq);
1888 cpu_to_cwq = NULL;
1889
1890 out_queue_cache_destroy:
1891 queue_cache_destroy();
1892
1893 out_hvapi_release:
1894 n2_spu_hvapi_unregister();
1895 goto out;
1896 }
1897
release_global_resources(void)1898 static void release_global_resources(void)
1899 {
1900 mutex_lock(&spu_lock);
1901 if (!--global_ref) {
1902 kfree(cpu_to_cwq);
1903 cpu_to_cwq = NULL;
1904
1905 kfree(cpu_to_mau);
1906 cpu_to_mau = NULL;
1907
1908 queue_cache_destroy();
1909 n2_spu_hvapi_unregister();
1910 }
1911 mutex_unlock(&spu_lock);
1912 }
1913
alloc_n2cp(void)1914 static struct n2_crypto *alloc_n2cp(void)
1915 {
1916 struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1917
1918 if (np)
1919 INIT_LIST_HEAD(&np->cwq_list);
1920
1921 return np;
1922 }
1923
free_n2cp(struct n2_crypto * np)1924 static void free_n2cp(struct n2_crypto *np)
1925 {
1926 kfree(np->cwq_info.ino_table);
1927 np->cwq_info.ino_table = NULL;
1928
1929 kfree(np);
1930 }
1931
n2_spu_driver_version(void)1932 static void n2_spu_driver_version(void)
1933 {
1934 static int n2_spu_version_printed;
1935
1936 if (n2_spu_version_printed++ == 0)
1937 pr_info("%s", version);
1938 }
1939
n2_crypto_probe(struct platform_device * dev)1940 static int n2_crypto_probe(struct platform_device *dev)
1941 {
1942 struct mdesc_handle *mdesc;
1943 struct n2_crypto *np;
1944 int err;
1945
1946 n2_spu_driver_version();
1947
1948 pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1949
1950 np = alloc_n2cp();
1951 if (!np) {
1952 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1953 dev->dev.of_node);
1954 return -ENOMEM;
1955 }
1956
1957 err = grab_global_resources();
1958 if (err) {
1959 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1960 dev->dev.of_node);
1961 goto out_free_n2cp;
1962 }
1963
1964 mdesc = mdesc_grab();
1965
1966 if (!mdesc) {
1967 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1968 dev->dev.of_node);
1969 err = -ENODEV;
1970 goto out_free_global;
1971 }
1972 err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1973 if (err) {
1974 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1975 dev->dev.of_node);
1976 mdesc_release(mdesc);
1977 goto out_free_global;
1978 }
1979
1980 err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1981 "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1982 cpu_to_cwq);
1983 mdesc_release(mdesc);
1984
1985 if (err) {
1986 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1987 dev->dev.of_node);
1988 goto out_free_global;
1989 }
1990
1991 err = n2_register_algs();
1992 if (err) {
1993 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1994 dev->dev.of_node);
1995 goto out_free_spu_list;
1996 }
1997
1998 dev_set_drvdata(&dev->dev, np);
1999
2000 return 0;
2001
2002 out_free_spu_list:
2003 spu_list_destroy(&np->cwq_list);
2004
2005 out_free_global:
2006 release_global_resources();
2007
2008 out_free_n2cp:
2009 free_n2cp(np);
2010
2011 return err;
2012 }
2013
n2_crypto_remove(struct platform_device * dev)2014 static int n2_crypto_remove(struct platform_device *dev)
2015 {
2016 struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2017
2018 n2_unregister_algs();
2019
2020 spu_list_destroy(&np->cwq_list);
2021
2022 release_global_resources();
2023
2024 free_n2cp(np);
2025
2026 return 0;
2027 }
2028
alloc_ncp(void)2029 static struct n2_mau *alloc_ncp(void)
2030 {
2031 struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2032
2033 if (mp)
2034 INIT_LIST_HEAD(&mp->mau_list);
2035
2036 return mp;
2037 }
2038
free_ncp(struct n2_mau * mp)2039 static void free_ncp(struct n2_mau *mp)
2040 {
2041 kfree(mp->mau_info.ino_table);
2042 mp->mau_info.ino_table = NULL;
2043
2044 kfree(mp);
2045 }
2046
n2_mau_probe(struct platform_device * dev)2047 static int n2_mau_probe(struct platform_device *dev)
2048 {
2049 struct mdesc_handle *mdesc;
2050 struct n2_mau *mp;
2051 int err;
2052
2053 n2_spu_driver_version();
2054
2055 pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2056
2057 mp = alloc_ncp();
2058 if (!mp) {
2059 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2060 dev->dev.of_node);
2061 return -ENOMEM;
2062 }
2063
2064 err = grab_global_resources();
2065 if (err) {
2066 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2067 dev->dev.of_node);
2068 goto out_free_ncp;
2069 }
2070
2071 mdesc = mdesc_grab();
2072
2073 if (!mdesc) {
2074 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2075 dev->dev.of_node);
2076 err = -ENODEV;
2077 goto out_free_global;
2078 }
2079
2080 err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2081 if (err) {
2082 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2083 dev->dev.of_node);
2084 mdesc_release(mdesc);
2085 goto out_free_global;
2086 }
2087
2088 err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2089 "mau", HV_NCS_QTYPE_MAU, mau_intr,
2090 cpu_to_mau);
2091 mdesc_release(mdesc);
2092
2093 if (err) {
2094 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2095 dev->dev.of_node);
2096 goto out_free_global;
2097 }
2098
2099 dev_set_drvdata(&dev->dev, mp);
2100
2101 return 0;
2102
2103 out_free_global:
2104 release_global_resources();
2105
2106 out_free_ncp:
2107 free_ncp(mp);
2108
2109 return err;
2110 }
2111
n2_mau_remove(struct platform_device * dev)2112 static int n2_mau_remove(struct platform_device *dev)
2113 {
2114 struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2115
2116 spu_list_destroy(&mp->mau_list);
2117
2118 release_global_resources();
2119
2120 free_ncp(mp);
2121
2122 return 0;
2123 }
2124
2125 static const struct of_device_id n2_crypto_match[] = {
2126 {
2127 .name = "n2cp",
2128 .compatible = "SUNW,n2-cwq",
2129 },
2130 {
2131 .name = "n2cp",
2132 .compatible = "SUNW,vf-cwq",
2133 },
2134 {
2135 .name = "n2cp",
2136 .compatible = "SUNW,kt-cwq",
2137 },
2138 {},
2139 };
2140
2141 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2142
2143 static struct platform_driver n2_crypto_driver = {
2144 .driver = {
2145 .name = "n2cp",
2146 .of_match_table = n2_crypto_match,
2147 },
2148 .probe = n2_crypto_probe,
2149 .remove = n2_crypto_remove,
2150 };
2151
2152 static const struct of_device_id n2_mau_match[] = {
2153 {
2154 .name = "ncp",
2155 .compatible = "SUNW,n2-mau",
2156 },
2157 {
2158 .name = "ncp",
2159 .compatible = "SUNW,vf-mau",
2160 },
2161 {
2162 .name = "ncp",
2163 .compatible = "SUNW,kt-mau",
2164 },
2165 {},
2166 };
2167
2168 MODULE_DEVICE_TABLE(of, n2_mau_match);
2169
2170 static struct platform_driver n2_mau_driver = {
2171 .driver = {
2172 .name = "ncp",
2173 .of_match_table = n2_mau_match,
2174 },
2175 .probe = n2_mau_probe,
2176 .remove = n2_mau_remove,
2177 };
2178
2179 static struct platform_driver * const drivers[] = {
2180 &n2_crypto_driver,
2181 &n2_mau_driver,
2182 };
2183
n2_init(void)2184 static int __init n2_init(void)
2185 {
2186 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2187 }
2188
n2_exit(void)2189 static void __exit n2_exit(void)
2190 {
2191 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2192 }
2193
2194 module_init(n2_init);
2195 module_exit(n2_exit);
2196