1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <net/flow.h>
35 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
36 #include <linux/netfilter/nf_conntrack_common.h>
37 #endif
38 #include <net/net_debug.h>
39 #include <net/dropreason-core.h>
40
41 /**
42 * DOC: skb checksums
43 *
44 * The interface for checksum offload between the stack and networking drivers
45 * is as follows...
46 *
47 * IP checksum related features
48 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49 *
50 * Drivers advertise checksum offload capabilities in the features of a device.
51 * From the stack's point of view these are capabilities offered by the driver.
52 * A driver typically only advertises features that it is capable of offloading
53 * to its device.
54 *
55 * .. flat-table:: Checksum related device features
56 * :widths: 1 10
57 *
58 * * - %NETIF_F_HW_CSUM
59 * - The driver (or its device) is able to compute one
60 * IP (one's complement) checksum for any combination
61 * of protocols or protocol layering. The checksum is
62 * computed and set in a packet per the CHECKSUM_PARTIAL
63 * interface (see below).
64 *
65 * * - %NETIF_F_IP_CSUM
66 * - Driver (device) is only able to checksum plain
67 * TCP or UDP packets over IPv4. These are specifically
68 * unencapsulated packets of the form IPv4|TCP or
69 * IPv4|UDP where the Protocol field in the IPv4 header
70 * is TCP or UDP. The IPv4 header may contain IP options.
71 * This feature cannot be set in features for a device
72 * with NETIF_F_HW_CSUM also set. This feature is being
73 * DEPRECATED (see below).
74 *
75 * * - %NETIF_F_IPV6_CSUM
76 * - Driver (device) is only able to checksum plain
77 * TCP or UDP packets over IPv6. These are specifically
78 * unencapsulated packets of the form IPv6|TCP or
79 * IPv6|UDP where the Next Header field in the IPv6
80 * header is either TCP or UDP. IPv6 extension headers
81 * are not supported with this feature. This feature
82 * cannot be set in features for a device with
83 * NETIF_F_HW_CSUM also set. This feature is being
84 * DEPRECATED (see below).
85 *
86 * * - %NETIF_F_RXCSUM
87 * - Driver (device) performs receive checksum offload.
88 * This flag is only used to disable the RX checksum
89 * feature for a device. The stack will accept receive
90 * checksum indication in packets received on a device
91 * regardless of whether NETIF_F_RXCSUM is set.
92 *
93 * Checksumming of received packets by device
94 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
95 *
96 * Indication of checksum verification is set in &sk_buff.ip_summed.
97 * Possible values are:
98 *
99 * - %CHECKSUM_NONE
100 *
101 * Device did not checksum this packet e.g. due to lack of capabilities.
102 * The packet contains full (though not verified) checksum in packet but
103 * not in skb->csum. Thus, skb->csum is undefined in this case.
104 *
105 * - %CHECKSUM_UNNECESSARY
106 *
107 * The hardware you're dealing with doesn't calculate the full checksum
108 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
109 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
110 * if their checksums are okay. &sk_buff.csum is still undefined in this case
111 * though. A driver or device must never modify the checksum field in the
112 * packet even if checksum is verified.
113 *
114 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
115 *
116 * - TCP: IPv6 and IPv4.
117 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
118 * zero UDP checksum for either IPv4 or IPv6, the networking stack
119 * may perform further validation in this case.
120 * - GRE: only if the checksum is present in the header.
121 * - SCTP: indicates the CRC in SCTP header has been validated.
122 * - FCOE: indicates the CRC in FC frame has been validated.
123 *
124 * &sk_buff.csum_level indicates the number of consecutive checksums found in
125 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
126 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
127 * and a device is able to verify the checksums for UDP (possibly zero),
128 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
129 * two. If the device were only able to verify the UDP checksum and not
130 * GRE, either because it doesn't support GRE checksum or because GRE
131 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
132 * not considered in this case).
133 *
134 * - %CHECKSUM_COMPLETE
135 *
136 * This is the most generic way. The device supplied checksum of the _whole_
137 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
138 * hardware doesn't need to parse L3/L4 headers to implement this.
139 *
140 * Notes:
141 *
142 * - Even if device supports only some protocols, but is able to produce
143 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
144 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
145 *
146 * - %CHECKSUM_PARTIAL
147 *
148 * A checksum is set up to be offloaded to a device as described in the
149 * output description for CHECKSUM_PARTIAL. This may occur on a packet
150 * received directly from another Linux OS, e.g., a virtualized Linux kernel
151 * on the same host, or it may be set in the input path in GRO or remote
152 * checksum offload. For the purposes of checksum verification, the checksum
153 * referred to by skb->csum_start + skb->csum_offset and any preceding
154 * checksums in the packet are considered verified. Any checksums in the
155 * packet that are after the checksum being offloaded are not considered to
156 * be verified.
157 *
158 * Checksumming on transmit for non-GSO
159 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
160 *
161 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
162 * Values are:
163 *
164 * - %CHECKSUM_PARTIAL
165 *
166 * The driver is required to checksum the packet as seen by hard_start_xmit()
167 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
168 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
169 * A driver may verify that the
170 * csum_start and csum_offset values are valid values given the length and
171 * offset of the packet, but it should not attempt to validate that the
172 * checksum refers to a legitimate transport layer checksum -- it is the
173 * purview of the stack to validate that csum_start and csum_offset are set
174 * correctly.
175 *
176 * When the stack requests checksum offload for a packet, the driver MUST
177 * ensure that the checksum is set correctly. A driver can either offload the
178 * checksum calculation to the device, or call skb_checksum_help (in the case
179 * that the device does not support offload for a particular checksum).
180 *
181 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
182 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
183 * checksum offload capability.
184 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
185 * on network device checksumming capabilities: if a packet does not match
186 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
187 * &sk_buff.csum_not_inet, see :ref:`crc`)
188 * is called to resolve the checksum.
189 *
190 * - %CHECKSUM_NONE
191 *
192 * The skb was already checksummed by the protocol, or a checksum is not
193 * required.
194 *
195 * - %CHECKSUM_UNNECESSARY
196 *
197 * This has the same meaning as CHECKSUM_NONE for checksum offload on
198 * output.
199 *
200 * - %CHECKSUM_COMPLETE
201 *
202 * Not used in checksum output. If a driver observes a packet with this value
203 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
204 *
205 * .. _crc:
206 *
207 * Non-IP checksum (CRC) offloads
208 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
209 *
210 * .. flat-table::
211 * :widths: 1 10
212 *
213 * * - %NETIF_F_SCTP_CRC
214 * - This feature indicates that a device is capable of
215 * offloading the SCTP CRC in a packet. To perform this offload the stack
216 * will set csum_start and csum_offset accordingly, set ip_summed to
217 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
218 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
219 * A driver that supports both IP checksum offload and SCTP CRC32c offload
220 * must verify which offload is configured for a packet by testing the
221 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
222 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
223 *
224 * * - %NETIF_F_FCOE_CRC
225 * - This feature indicates that a device is capable of offloading the FCOE
226 * CRC in a packet. To perform this offload the stack will set ip_summed
227 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
228 * accordingly. Note that there is no indication in the skbuff that the
229 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
230 * both IP checksum offload and FCOE CRC offload must verify which offload
231 * is configured for a packet, presumably by inspecting packet headers.
232 *
233 * Checksumming on output with GSO
234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235 *
236 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
237 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
238 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
239 * part of the GSO operation is implied. If a checksum is being offloaded
240 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
241 * csum_offset are set to refer to the outermost checksum being offloaded
242 * (two offloaded checksums are possible with UDP encapsulation).
243 */
244
245 /* Don't change this without changing skb_csum_unnecessary! */
246 #define CHECKSUM_NONE 0
247 #define CHECKSUM_UNNECESSARY 1
248 #define CHECKSUM_COMPLETE 2
249 #define CHECKSUM_PARTIAL 3
250
251 /* Maximum value in skb->csum_level */
252 #define SKB_MAX_CSUM_LEVEL 3
253
254 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
255 #define SKB_WITH_OVERHEAD(X) \
256 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
257
258 /* For X bytes available in skb->head, what is the minimal
259 * allocation needed, knowing struct skb_shared_info needs
260 * to be aligned.
261 */
262 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
263 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264
265 #define SKB_MAX_ORDER(X, ORDER) \
266 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
267 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
268 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
269
270 /* return minimum truesize of one skb containing X bytes of data */
271 #define SKB_TRUESIZE(X) ((X) + \
272 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
273 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274
275 struct ahash_request;
276 struct net_device;
277 struct scatterlist;
278 struct pipe_inode_info;
279 struct iov_iter;
280 struct napi_struct;
281 struct bpf_prog;
282 union bpf_attr;
283 struct skb_ext;
284 struct ts_config;
285
286 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
287 struct nf_bridge_info {
288 enum {
289 BRNF_PROTO_UNCHANGED,
290 BRNF_PROTO_8021Q,
291 BRNF_PROTO_PPPOE
292 } orig_proto:8;
293 u8 pkt_otherhost:1;
294 u8 in_prerouting:1;
295 u8 bridged_dnat:1;
296 u8 sabotage_in_done:1;
297 __u16 frag_max_size;
298 int physinif;
299
300 /* always valid & non-NULL from FORWARD on, for physdev match */
301 struct net_device *physoutdev;
302 union {
303 /* prerouting: detect dnat in orig/reply direction */
304 __be32 ipv4_daddr;
305 struct in6_addr ipv6_daddr;
306
307 /* after prerouting + nat detected: store original source
308 * mac since neigh resolution overwrites it, only used while
309 * skb is out in neigh layer.
310 */
311 char neigh_header[8];
312 };
313 };
314 #endif
315
316 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
317 /* Chain in tc_skb_ext will be used to share the tc chain with
318 * ovs recirc_id. It will be set to the current chain by tc
319 * and read by ovs to recirc_id.
320 */
321 struct tc_skb_ext {
322 union {
323 u64 act_miss_cookie;
324 __u32 chain;
325 };
326 __u16 mru;
327 __u16 zone;
328 u8 post_ct:1;
329 u8 post_ct_snat:1;
330 u8 post_ct_dnat:1;
331 u8 act_miss:1; /* Set if act_miss_cookie is used */
332 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
333 };
334 #endif
335
336 struct sk_buff_head {
337 /* These two members must be first to match sk_buff. */
338 struct_group_tagged(sk_buff_list, list,
339 struct sk_buff *next;
340 struct sk_buff *prev;
341 );
342
343 __u32 qlen;
344 spinlock_t lock;
345 };
346
347 struct sk_buff;
348
349 #ifndef CONFIG_MAX_SKB_FRAGS
350 # define CONFIG_MAX_SKB_FRAGS 17
351 #endif
352
353 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354
355 extern int sysctl_max_skb_frags;
356
357 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358 * segment using its current segmentation instead.
359 */
360 #define GSO_BY_FRAGS 0xFFFF
361
362 typedef struct bio_vec skb_frag_t;
363
364 /**
365 * skb_frag_size() - Returns the size of a skb fragment
366 * @frag: skb fragment
367 */
skb_frag_size(const skb_frag_t * frag)368 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369 {
370 return frag->bv_len;
371 }
372
373 /**
374 * skb_frag_size_set() - Sets the size of a skb fragment
375 * @frag: skb fragment
376 * @size: size of fragment
377 */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)378 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379 {
380 frag->bv_len = size;
381 }
382
383 /**
384 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385 * @frag: skb fragment
386 * @delta: value to add
387 */
skb_frag_size_add(skb_frag_t * frag,int delta)388 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389 {
390 frag->bv_len += delta;
391 }
392
393 /**
394 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395 * @frag: skb fragment
396 * @delta: value to subtract
397 */
skb_frag_size_sub(skb_frag_t * frag,int delta)398 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399 {
400 frag->bv_len -= delta;
401 }
402
403 /**
404 * skb_frag_must_loop - Test if %p is a high memory page
405 * @p: fragment's page
406 */
skb_frag_must_loop(struct page * p)407 static inline bool skb_frag_must_loop(struct page *p)
408 {
409 #if defined(CONFIG_HIGHMEM)
410 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 return true;
412 #endif
413 return false;
414 }
415
416 /**
417 * skb_frag_foreach_page - loop over pages in a fragment
418 *
419 * @f: skb frag to operate on
420 * @f_off: offset from start of f->bv_page
421 * @f_len: length from f_off to loop over
422 * @p: (temp var) current page
423 * @p_off: (temp var) offset from start of current page,
424 * non-zero only on first page.
425 * @p_len: (temp var) length in current page,
426 * < PAGE_SIZE only on first and last page.
427 * @copied: (temp var) length so far, excluding current p_len.
428 *
429 * A fragment can hold a compound page, in which case per-page
430 * operations, notably kmap_atomic, must be called for each
431 * regular page.
432 */
433 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
434 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
435 p_off = (f_off) & (PAGE_SIZE - 1), \
436 p_len = skb_frag_must_loop(p) ? \
437 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
438 copied = 0; \
439 copied < f_len; \
440 copied += p_len, p++, p_off = 0, \
441 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
442
443 /**
444 * struct skb_shared_hwtstamps - hardware time stamps
445 * @hwtstamp: hardware time stamp transformed into duration
446 * since arbitrary point in time
447 * @netdev_data: address/cookie of network device driver used as
448 * reference to actual hardware time stamp
449 *
450 * Software time stamps generated by ktime_get_real() are stored in
451 * skb->tstamp.
452 *
453 * hwtstamps can only be compared against other hwtstamps from
454 * the same device.
455 *
456 * This structure is attached to packets as part of the
457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
458 */
459 struct skb_shared_hwtstamps {
460 union {
461 ktime_t hwtstamp;
462 void *netdev_data;
463 };
464 };
465
466 /* Definitions for tx_flags in struct skb_shared_info */
467 enum {
468 /* generate hardware time stamp */
469 SKBTX_HW_TSTAMP = 1 << 0,
470
471 /* generate software time stamp when queueing packet to NIC */
472 SKBTX_SW_TSTAMP = 1 << 1,
473
474 /* device driver is going to provide hardware time stamp */
475 SKBTX_IN_PROGRESS = 1 << 2,
476
477 /* generate hardware time stamp based on cycles if supported */
478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
479
480 /* generate wifi status information (where possible) */
481 SKBTX_WIFI_STATUS = 1 << 4,
482
483 /* determine hardware time stamp based on time or cycles */
484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485
486 /* generate software time stamp when entering packet scheduling */
487 SKBTX_SCHED_TSTAMP = 1 << 6,
488 };
489
490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
491 SKBTX_SCHED_TSTAMP)
492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
493 SKBTX_HW_TSTAMP_USE_CYCLES | \
494 SKBTX_ANY_SW_TSTAMP)
495
496 /* Definitions for flags in struct skb_shared_info */
497 enum {
498 /* use zcopy routines */
499 SKBFL_ZEROCOPY_ENABLE = BIT(0),
500
501 /* This indicates at least one fragment might be overwritten
502 * (as in vmsplice(), sendfile() ...)
503 * If we need to compute a TX checksum, we'll need to copy
504 * all frags to avoid possible bad checksum
505 */
506 SKBFL_SHARED_FRAG = BIT(1),
507
508 /* segment contains only zerocopy data and should not be
509 * charged to the kernel memory.
510 */
511 SKBFL_PURE_ZEROCOPY = BIT(2),
512
513 SKBFL_DONT_ORPHAN = BIT(3),
514
515 /* page references are managed by the ubuf_info, so it's safe to
516 * use frags only up until ubuf_info is released
517 */
518 SKBFL_MANAGED_FRAG_REFS = BIT(4),
519 };
520
521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
524
525 /*
526 * The callback notifies userspace to release buffers when skb DMA is done in
527 * lower device, the skb last reference should be 0 when calling this.
528 * The zerocopy_success argument is true if zero copy transmit occurred,
529 * false on data copy or out of memory error caused by data copy attempt.
530 * The ctx field is used to track device context.
531 * The desc field is used to track userspace buffer index.
532 */
533 struct ubuf_info {
534 void (*callback)(struct sk_buff *, struct ubuf_info *,
535 bool zerocopy_success);
536 refcount_t refcnt;
537 u8 flags;
538 };
539
540 struct ubuf_info_msgzc {
541 struct ubuf_info ubuf;
542
543 union {
544 struct {
545 unsigned long desc;
546 void *ctx;
547 };
548 struct {
549 u32 id;
550 u16 len;
551 u16 zerocopy:1;
552 u32 bytelen;
553 };
554 };
555
556 struct mmpin {
557 struct user_struct *user;
558 unsigned int num_pg;
559 } mmp;
560 };
561
562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
564 ubuf)
565
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
568
569 /* This data is invariant across clones and lives at
570 * the end of the header data, ie. at skb->end.
571 */
572 struct skb_shared_info {
573 __u8 flags;
574 __u8 meta_len;
575 __u8 nr_frags;
576 __u8 tx_flags;
577 unsigned short gso_size;
578 /* Warning: this field is not always filled in (UFO)! */
579 unsigned short gso_segs;
580 struct sk_buff *frag_list;
581 struct skb_shared_hwtstamps hwtstamps;
582 unsigned int gso_type;
583 u32 tskey;
584
585 /*
586 * Warning : all fields before dataref are cleared in __alloc_skb()
587 */
588 atomic_t dataref;
589 unsigned int xdp_frags_size;
590
591 /* Intermediate layers must ensure that destructor_arg
592 * remains valid until skb destructor */
593 void * destructor_arg;
594
595 /* must be last field, see pskb_expand_head() */
596 skb_frag_t frags[MAX_SKB_FRAGS];
597 };
598
599 /**
600 * DOC: dataref and headerless skbs
601 *
602 * Transport layers send out clones of payload skbs they hold for
603 * retransmissions. To allow lower layers of the stack to prepend their headers
604 * we split &skb_shared_info.dataref into two halves.
605 * The lower 16 bits count the overall number of references.
606 * The higher 16 bits indicate how many of the references are payload-only.
607 * skb_header_cloned() checks if skb is allowed to add / write the headers.
608 *
609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610 * (via __skb_header_release()). Any clone created from marked skb will get
611 * &sk_buff.hdr_len populated with the available headroom.
612 * If there's the only clone in existence it's able to modify the headroom
613 * at will. The sequence of calls inside the transport layer is::
614 *
615 * <alloc skb>
616 * skb_reserve()
617 * __skb_header_release()
618 * skb_clone()
619 * // send the clone down the stack
620 *
621 * This is not a very generic construct and it depends on the transport layers
622 * doing the right thing. In practice there's usually only one payload-only skb.
623 * Having multiple payload-only skbs with different lengths of hdr_len is not
624 * possible. The payload-only skbs should never leave their owner.
625 */
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
628
629
630 enum {
631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
634 };
635
636 enum {
637 SKB_GSO_TCPV4 = 1 << 0,
638
639 /* This indicates the skb is from an untrusted source. */
640 SKB_GSO_DODGY = 1 << 1,
641
642 /* This indicates the tcp segment has CWR set. */
643 SKB_GSO_TCP_ECN = 1 << 2,
644
645 SKB_GSO_TCP_FIXEDID = 1 << 3,
646
647 SKB_GSO_TCPV6 = 1 << 4,
648
649 SKB_GSO_FCOE = 1 << 5,
650
651 SKB_GSO_GRE = 1 << 6,
652
653 SKB_GSO_GRE_CSUM = 1 << 7,
654
655 SKB_GSO_IPXIP4 = 1 << 8,
656
657 SKB_GSO_IPXIP6 = 1 << 9,
658
659 SKB_GSO_UDP_TUNNEL = 1 << 10,
660
661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
662
663 SKB_GSO_PARTIAL = 1 << 12,
664
665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
666
667 SKB_GSO_SCTP = 1 << 14,
668
669 SKB_GSO_ESP = 1 << 15,
670
671 SKB_GSO_UDP = 1 << 16,
672
673 SKB_GSO_UDP_L4 = 1 << 17,
674
675 SKB_GSO_FRAGLIST = 1 << 18,
676 };
677
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
680 #endif
681
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
684 #else
685 typedef unsigned char *sk_buff_data_t;
686 #endif
687
688 /**
689 * DOC: Basic sk_buff geometry
690 *
691 * struct sk_buff itself is a metadata structure and does not hold any packet
692 * data. All the data is held in associated buffers.
693 *
694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
695 * into two parts:
696 *
697 * - data buffer, containing headers and sometimes payload;
698 * this is the part of the skb operated on by the common helpers
699 * such as skb_put() or skb_pull();
700 * - shared info (struct skb_shared_info) which holds an array of pointers
701 * to read-only data in the (page, offset, length) format.
702 *
703 * Optionally &skb_shared_info.frag_list may point to another skb.
704 *
705 * Basic diagram may look like this::
706 *
707 * ---------------
708 * | sk_buff |
709 * ---------------
710 * ,--------------------------- + head
711 * / ,----------------- + data
712 * / / ,----------- + tail
713 * | | | , + end
714 * | | | |
715 * v v v v
716 * -----------------------------------------------
717 * | headroom | data | tailroom | skb_shared_info |
718 * -----------------------------------------------
719 * + [page frag]
720 * + [page frag]
721 * + [page frag]
722 * + [page frag] ---------
723 * + frag_list --> | sk_buff |
724 * ---------
725 *
726 */
727
728 /**
729 * struct sk_buff - socket buffer
730 * @next: Next buffer in list
731 * @prev: Previous buffer in list
732 * @tstamp: Time we arrived/left
733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734 * for retransmit timer
735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
736 * @list: queue head
737 * @ll_node: anchor in an llist (eg socket defer_list)
738 * @sk: Socket we are owned by
739 * @dev: Device we arrived on/are leaving by
740 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
741 * @cb: Control buffer. Free for use by every layer. Put private vars here
742 * @_skb_refdst: destination entry (with norefcount bit)
743 * @sp: the security path, used for xfrm
744 * @len: Length of actual data
745 * @data_len: Data length
746 * @mac_len: Length of link layer header
747 * @hdr_len: writable header length of cloned skb
748 * @csum: Checksum (must include start/offset pair)
749 * @csum_start: Offset from skb->head where checksumming should start
750 * @csum_offset: Offset from csum_start where checksum should be stored
751 * @priority: Packet queueing priority
752 * @ignore_df: allow local fragmentation
753 * @cloned: Head may be cloned (check refcnt to be sure)
754 * @ip_summed: Driver fed us an IP checksum
755 * @nohdr: Payload reference only, must not modify header
756 * @pkt_type: Packet class
757 * @fclone: skbuff clone status
758 * @ipvs_property: skbuff is owned by ipvs
759 * @inner_protocol_type: whether the inner protocol is
760 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
761 * @remcsum_offload: remote checksum offload is enabled
762 * @offload_fwd_mark: Packet was L2-forwarded in hardware
763 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
764 * @tc_skip_classify: do not classify packet. set by IFB device
765 * @tc_at_ingress: used within tc_classify to distinguish in/egress
766 * @redirected: packet was redirected by packet classifier
767 * @from_ingress: packet was redirected from the ingress path
768 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
769 * @peeked: this packet has been seen already, so stats have been
770 * done for it, don't do them again
771 * @nf_trace: netfilter packet trace flag
772 * @protocol: Packet protocol from driver
773 * @destructor: Destruct function
774 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
775 * @_sk_redir: socket redirection information for skmsg
776 * @_nfct: Associated connection, if any (with nfctinfo bits)
777 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
778 * @skb_iif: ifindex of device we arrived on
779 * @tc_index: Traffic control index
780 * @hash: the packet hash
781 * @queue_mapping: Queue mapping for multiqueue devices
782 * @head_frag: skb was allocated from page fragments,
783 * not allocated by kmalloc() or vmalloc().
784 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
785 * @pp_recycle: mark the packet for recycling instead of freeing (implies
786 * page_pool support on driver)
787 * @active_extensions: active extensions (skb_ext_id types)
788 * @ndisc_nodetype: router type (from link layer)
789 * @ooo_okay: allow the mapping of a socket to a queue to be changed
790 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
791 * ports.
792 * @sw_hash: indicates hash was computed in software stack
793 * @wifi_acked_valid: wifi_acked was set
794 * @wifi_acked: whether frame was acked on wifi or not
795 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
796 * @encapsulation: indicates the inner headers in the skbuff are valid
797 * @encap_hdr_csum: software checksum is needed
798 * @csum_valid: checksum is already valid
799 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
800 * @csum_complete_sw: checksum was completed by software
801 * @csum_level: indicates the number of consecutive checksums found in
802 * the packet minus one that have been verified as
803 * CHECKSUM_UNNECESSARY (max 3)
804 * @dst_pending_confirm: need to confirm neighbour
805 * @decrypted: Decrypted SKB
806 * @slow_gro: state present at GRO time, slower prepare step required
807 * @mono_delivery_time: When set, skb->tstamp has the
808 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
809 * skb->tstamp has the (rcv) timestamp at ingress and
810 * delivery_time at egress.
811 * @napi_id: id of the NAPI struct this skb came from
812 * @sender_cpu: (aka @napi_id) source CPU in XPS
813 * @alloc_cpu: CPU which did the skb allocation.
814 * @secmark: security marking
815 * @mark: Generic packet mark
816 * @reserved_tailroom: (aka @mark) number of bytes of free space available
817 * at the tail of an sk_buff
818 * @vlan_all: vlan fields (proto & tci)
819 * @vlan_proto: vlan encapsulation protocol
820 * @vlan_tci: vlan tag control information
821 * @inner_protocol: Protocol (encapsulation)
822 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
823 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
824 * @inner_transport_header: Inner transport layer header (encapsulation)
825 * @inner_network_header: Network layer header (encapsulation)
826 * @inner_mac_header: Link layer header (encapsulation)
827 * @transport_header: Transport layer header
828 * @network_header: Network layer header
829 * @mac_header: Link layer header
830 * @kcov_handle: KCOV remote handle for remote coverage collection
831 * @tail: Tail pointer
832 * @end: End pointer
833 * @head: Head of buffer
834 * @data: Data head pointer
835 * @truesize: Buffer size
836 * @users: User count - see {datagram,tcp}.c
837 * @extensions: allocated extensions, valid if active_extensions is nonzero
838 */
839
840 struct sk_buff {
841 union {
842 struct {
843 /* These two members must be first to match sk_buff_head. */
844 struct sk_buff *next;
845 struct sk_buff *prev;
846
847 union {
848 struct net_device *dev;
849 /* Some protocols might use this space to store information,
850 * while device pointer would be NULL.
851 * UDP receive path is one user.
852 */
853 unsigned long dev_scratch;
854 };
855 };
856 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
857 struct list_head list;
858 struct llist_node ll_node;
859 };
860
861 struct sock *sk;
862
863 union {
864 ktime_t tstamp;
865 u64 skb_mstamp_ns; /* earliest departure time */
866 };
867 /*
868 * This is the control buffer. It is free to use for every
869 * layer. Please put your private variables there. If you
870 * want to keep them across layers you have to do a skb_clone()
871 * first. This is owned by whoever has the skb queued ATM.
872 */
873 char cb[48] __aligned(8);
874
875 union {
876 struct {
877 unsigned long _skb_refdst;
878 void (*destructor)(struct sk_buff *skb);
879 };
880 struct list_head tcp_tsorted_anchor;
881 #ifdef CONFIG_NET_SOCK_MSG
882 unsigned long _sk_redir;
883 #endif
884 };
885
886 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
887 unsigned long _nfct;
888 #endif
889 unsigned int len,
890 data_len;
891 __u16 mac_len,
892 hdr_len;
893
894 /* Following fields are _not_ copied in __copy_skb_header()
895 * Note that queue_mapping is here mostly to fill a hole.
896 */
897 __u16 queue_mapping;
898
899 /* if you move cloned around you also must adapt those constants */
900 #ifdef __BIG_ENDIAN_BITFIELD
901 #define CLONED_MASK (1 << 7)
902 #else
903 #define CLONED_MASK 1
904 #endif
905 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
906
907 /* private: */
908 __u8 __cloned_offset[0];
909 /* public: */
910 __u8 cloned:1,
911 nohdr:1,
912 fclone:2,
913 peeked:1,
914 head_frag:1,
915 pfmemalloc:1,
916 pp_recycle:1; /* page_pool recycle indicator */
917 #ifdef CONFIG_SKB_EXTENSIONS
918 __u8 active_extensions;
919 #endif
920
921 /* Fields enclosed in headers group are copied
922 * using a single memcpy() in __copy_skb_header()
923 */
924 struct_group(headers,
925
926 /* private: */
927 __u8 __pkt_type_offset[0];
928 /* public: */
929 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
930 __u8 ignore_df:1;
931 __u8 dst_pending_confirm:1;
932 __u8 ip_summed:2;
933 __u8 ooo_okay:1;
934
935 /* private: */
936 __u8 __mono_tc_offset[0];
937 /* public: */
938 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
939 #ifdef CONFIG_NET_XGRESS
940 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
941 __u8 tc_skip_classify:1;
942 #endif
943 __u8 remcsum_offload:1;
944 __u8 csum_complete_sw:1;
945 __u8 csum_level:2;
946 __u8 inner_protocol_type:1;
947
948 __u8 l4_hash:1;
949 __u8 sw_hash:1;
950 #ifdef CONFIG_WIRELESS
951 __u8 wifi_acked_valid:1;
952 __u8 wifi_acked:1;
953 #endif
954 __u8 no_fcs:1;
955 /* Indicates the inner headers are valid in the skbuff. */
956 __u8 encapsulation:1;
957 __u8 encap_hdr_csum:1;
958 __u8 csum_valid:1;
959 #ifdef CONFIG_IPV6_NDISC_NODETYPE
960 __u8 ndisc_nodetype:2;
961 #endif
962
963 #if IS_ENABLED(CONFIG_IP_VS)
964 __u8 ipvs_property:1;
965 #endif
966 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
967 __u8 nf_trace:1;
968 #endif
969 #ifdef CONFIG_NET_SWITCHDEV
970 __u8 offload_fwd_mark:1;
971 __u8 offload_l3_fwd_mark:1;
972 #endif
973 __u8 redirected:1;
974 #ifdef CONFIG_NET_REDIRECT
975 __u8 from_ingress:1;
976 #endif
977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
978 __u8 nf_skip_egress:1;
979 #endif
980 #ifdef CONFIG_TLS_DEVICE
981 __u8 decrypted:1;
982 #endif
983 __u8 slow_gro:1;
984 #if IS_ENABLED(CONFIG_IP_SCTP)
985 __u8 csum_not_inet:1;
986 #endif
987
988 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
989 __u16 tc_index; /* traffic control index */
990 #endif
991
992 u16 alloc_cpu;
993
994 union {
995 __wsum csum;
996 struct {
997 __u16 csum_start;
998 __u16 csum_offset;
999 };
1000 };
1001 __u32 priority;
1002 int skb_iif;
1003 __u32 hash;
1004 union {
1005 u32 vlan_all;
1006 struct {
1007 __be16 vlan_proto;
1008 __u16 vlan_tci;
1009 };
1010 };
1011 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1012 union {
1013 unsigned int napi_id;
1014 unsigned int sender_cpu;
1015 };
1016 #endif
1017 #ifdef CONFIG_NETWORK_SECMARK
1018 __u32 secmark;
1019 #endif
1020
1021 union {
1022 __u32 mark;
1023 __u32 reserved_tailroom;
1024 };
1025
1026 union {
1027 __be16 inner_protocol;
1028 __u8 inner_ipproto;
1029 };
1030
1031 __u16 inner_transport_header;
1032 __u16 inner_network_header;
1033 __u16 inner_mac_header;
1034
1035 __be16 protocol;
1036 __u16 transport_header;
1037 __u16 network_header;
1038 __u16 mac_header;
1039
1040 #ifdef CONFIG_KCOV
1041 u64 kcov_handle;
1042 #endif
1043
1044 ); /* end headers group */
1045
1046 /* These elements must be at the end, see alloc_skb() for details. */
1047 sk_buff_data_t tail;
1048 sk_buff_data_t end;
1049 unsigned char *head,
1050 *data;
1051 unsigned int truesize;
1052 refcount_t users;
1053
1054 #ifdef CONFIG_SKB_EXTENSIONS
1055 /* only useable after checking ->active_extensions != 0 */
1056 struct skb_ext *extensions;
1057 #endif
1058 };
1059
1060 /* if you move pkt_type around you also must adapt those constants */
1061 #ifdef __BIG_ENDIAN_BITFIELD
1062 #define PKT_TYPE_MAX (7 << 5)
1063 #else
1064 #define PKT_TYPE_MAX 7
1065 #endif
1066 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1067
1068 /* if you move tc_at_ingress or mono_delivery_time
1069 * around, you also must adapt these constants.
1070 */
1071 #ifdef __BIG_ENDIAN_BITFIELD
1072 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7)
1073 #define TC_AT_INGRESS_MASK (1 << 6)
1074 #else
1075 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0)
1076 #define TC_AT_INGRESS_MASK (1 << 1)
1077 #endif
1078 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1079
1080 #ifdef __KERNEL__
1081 /*
1082 * Handling routines are only of interest to the kernel
1083 */
1084
1085 #define SKB_ALLOC_FCLONE 0x01
1086 #define SKB_ALLOC_RX 0x02
1087 #define SKB_ALLOC_NAPI 0x04
1088
1089 /**
1090 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1091 * @skb: buffer
1092 */
skb_pfmemalloc(const struct sk_buff * skb)1093 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1094 {
1095 return unlikely(skb->pfmemalloc);
1096 }
1097
1098 /*
1099 * skb might have a dst pointer attached, refcounted or not.
1100 * _skb_refdst low order bit is set if refcount was _not_ taken
1101 */
1102 #define SKB_DST_NOREF 1UL
1103 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1104
1105 /**
1106 * skb_dst - returns skb dst_entry
1107 * @skb: buffer
1108 *
1109 * Returns skb dst_entry, regardless of reference taken or not.
1110 */
skb_dst(const struct sk_buff * skb)1111 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1112 {
1113 /* If refdst was not refcounted, check we still are in a
1114 * rcu_read_lock section
1115 */
1116 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1117 !rcu_read_lock_held() &&
1118 !rcu_read_lock_bh_held());
1119 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1120 }
1121
1122 /**
1123 * skb_dst_set - sets skb dst
1124 * @skb: buffer
1125 * @dst: dst entry
1126 *
1127 * Sets skb dst, assuming a reference was taken on dst and should
1128 * be released by skb_dst_drop()
1129 */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1130 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1131 {
1132 skb->slow_gro |= !!dst;
1133 skb->_skb_refdst = (unsigned long)dst;
1134 }
1135
1136 /**
1137 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1138 * @skb: buffer
1139 * @dst: dst entry
1140 *
1141 * Sets skb dst, assuming a reference was not taken on dst.
1142 * If dst entry is cached, we do not take reference and dst_release
1143 * will be avoided by refdst_drop. If dst entry is not cached, we take
1144 * reference, so that last dst_release can destroy the dst immediately.
1145 */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1146 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1147 {
1148 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1149 skb->slow_gro |= !!dst;
1150 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1151 }
1152
1153 /**
1154 * skb_dst_is_noref - Test if skb dst isn't refcounted
1155 * @skb: buffer
1156 */
skb_dst_is_noref(const struct sk_buff * skb)1157 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1158 {
1159 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1160 }
1161
1162 /**
1163 * skb_rtable - Returns the skb &rtable
1164 * @skb: buffer
1165 */
skb_rtable(const struct sk_buff * skb)1166 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1167 {
1168 return (struct rtable *)skb_dst(skb);
1169 }
1170
1171 /* For mangling skb->pkt_type from user space side from applications
1172 * such as nft, tc, etc, we only allow a conservative subset of
1173 * possible pkt_types to be set.
1174 */
skb_pkt_type_ok(u32 ptype)1175 static inline bool skb_pkt_type_ok(u32 ptype)
1176 {
1177 return ptype <= PACKET_OTHERHOST;
1178 }
1179
1180 /**
1181 * skb_napi_id - Returns the skb's NAPI id
1182 * @skb: buffer
1183 */
skb_napi_id(const struct sk_buff * skb)1184 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1185 {
1186 #ifdef CONFIG_NET_RX_BUSY_POLL
1187 return skb->napi_id;
1188 #else
1189 return 0;
1190 #endif
1191 }
1192
skb_wifi_acked_valid(const struct sk_buff * skb)1193 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1194 {
1195 #ifdef CONFIG_WIRELESS
1196 return skb->wifi_acked_valid;
1197 #else
1198 return 0;
1199 #endif
1200 }
1201
1202 /**
1203 * skb_unref - decrement the skb's reference count
1204 * @skb: buffer
1205 *
1206 * Returns true if we can free the skb.
1207 */
skb_unref(struct sk_buff * skb)1208 static inline bool skb_unref(struct sk_buff *skb)
1209 {
1210 if (unlikely(!skb))
1211 return false;
1212 if (likely(refcount_read(&skb->users) == 1))
1213 smp_rmb();
1214 else if (likely(!refcount_dec_and_test(&skb->users)))
1215 return false;
1216
1217 return true;
1218 }
1219
1220 void __fix_address
1221 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1222
1223 /**
1224 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1225 * @skb: buffer to free
1226 */
kfree_skb(struct sk_buff * skb)1227 static inline void kfree_skb(struct sk_buff *skb)
1228 {
1229 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1230 }
1231
1232 void skb_release_head_state(struct sk_buff *skb);
1233 void kfree_skb_list_reason(struct sk_buff *segs,
1234 enum skb_drop_reason reason);
1235 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1236 void skb_tx_error(struct sk_buff *skb);
1237
kfree_skb_list(struct sk_buff * segs)1238 static inline void kfree_skb_list(struct sk_buff *segs)
1239 {
1240 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1241 }
1242
1243 #ifdef CONFIG_TRACEPOINTS
1244 void consume_skb(struct sk_buff *skb);
1245 #else
consume_skb(struct sk_buff * skb)1246 static inline void consume_skb(struct sk_buff *skb)
1247 {
1248 return kfree_skb(skb);
1249 }
1250 #endif
1251
1252 void __consume_stateless_skb(struct sk_buff *skb);
1253 void __kfree_skb(struct sk_buff *skb);
1254 extern struct kmem_cache *skbuff_cache;
1255
1256 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1257 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1258 bool *fragstolen, int *delta_truesize);
1259
1260 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1261 int node);
1262 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1263 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1264 struct sk_buff *build_skb_around(struct sk_buff *skb,
1265 void *data, unsigned int frag_size);
1266 void skb_attempt_defer_free(struct sk_buff *skb);
1267
1268 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1269 struct sk_buff *slab_build_skb(void *data);
1270
1271 /**
1272 * alloc_skb - allocate a network buffer
1273 * @size: size to allocate
1274 * @priority: allocation mask
1275 *
1276 * This function is a convenient wrapper around __alloc_skb().
1277 */
alloc_skb(unsigned int size,gfp_t priority)1278 static inline struct sk_buff *alloc_skb(unsigned int size,
1279 gfp_t priority)
1280 {
1281 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1282 }
1283
1284 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1285 unsigned long data_len,
1286 int max_page_order,
1287 int *errcode,
1288 gfp_t gfp_mask);
1289 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1290
1291 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1292 struct sk_buff_fclones {
1293 struct sk_buff skb1;
1294
1295 struct sk_buff skb2;
1296
1297 refcount_t fclone_ref;
1298 };
1299
1300 /**
1301 * skb_fclone_busy - check if fclone is busy
1302 * @sk: socket
1303 * @skb: buffer
1304 *
1305 * Returns true if skb is a fast clone, and its clone is not freed.
1306 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1307 * so we also check that didn't happen.
1308 */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1309 static inline bool skb_fclone_busy(const struct sock *sk,
1310 const struct sk_buff *skb)
1311 {
1312 const struct sk_buff_fclones *fclones;
1313
1314 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1315
1316 return skb->fclone == SKB_FCLONE_ORIG &&
1317 refcount_read(&fclones->fclone_ref) > 1 &&
1318 READ_ONCE(fclones->skb2.sk) == sk;
1319 }
1320
1321 /**
1322 * alloc_skb_fclone - allocate a network buffer from fclone cache
1323 * @size: size to allocate
1324 * @priority: allocation mask
1325 *
1326 * This function is a convenient wrapper around __alloc_skb().
1327 */
alloc_skb_fclone(unsigned int size,gfp_t priority)1328 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1329 gfp_t priority)
1330 {
1331 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1332 }
1333
1334 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1335 void skb_headers_offset_update(struct sk_buff *skb, int off);
1336 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1337 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1338 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1339 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1340 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1341 gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1342 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1343 gfp_t gfp_mask)
1344 {
1345 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1346 }
1347
1348 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1349 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1350 unsigned int headroom);
1351 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1352 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1353 int newtailroom, gfp_t priority);
1354 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1355 int offset, int len);
1356 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1357 int offset, int len);
1358 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1359 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1360
1361 /**
1362 * skb_pad - zero pad the tail of an skb
1363 * @skb: buffer to pad
1364 * @pad: space to pad
1365 *
1366 * Ensure that a buffer is followed by a padding area that is zero
1367 * filled. Used by network drivers which may DMA or transfer data
1368 * beyond the buffer end onto the wire.
1369 *
1370 * May return error in out of memory cases. The skb is freed on error.
1371 */
skb_pad(struct sk_buff * skb,int pad)1372 static inline int skb_pad(struct sk_buff *skb, int pad)
1373 {
1374 return __skb_pad(skb, pad, true);
1375 }
1376 #define dev_kfree_skb(a) consume_skb(a)
1377
1378 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1379 int offset, size_t size, size_t max_frags);
1380
1381 struct skb_seq_state {
1382 __u32 lower_offset;
1383 __u32 upper_offset;
1384 __u32 frag_idx;
1385 __u32 stepped_offset;
1386 struct sk_buff *root_skb;
1387 struct sk_buff *cur_skb;
1388 __u8 *frag_data;
1389 __u32 frag_off;
1390 };
1391
1392 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1393 unsigned int to, struct skb_seq_state *st);
1394 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1395 struct skb_seq_state *st);
1396 void skb_abort_seq_read(struct skb_seq_state *st);
1397
1398 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1399 unsigned int to, struct ts_config *config);
1400
1401 /*
1402 * Packet hash types specify the type of hash in skb_set_hash.
1403 *
1404 * Hash types refer to the protocol layer addresses which are used to
1405 * construct a packet's hash. The hashes are used to differentiate or identify
1406 * flows of the protocol layer for the hash type. Hash types are either
1407 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1408 *
1409 * Properties of hashes:
1410 *
1411 * 1) Two packets in different flows have different hash values
1412 * 2) Two packets in the same flow should have the same hash value
1413 *
1414 * A hash at a higher layer is considered to be more specific. A driver should
1415 * set the most specific hash possible.
1416 *
1417 * A driver cannot indicate a more specific hash than the layer at which a hash
1418 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1419 *
1420 * A driver may indicate a hash level which is less specific than the
1421 * actual layer the hash was computed on. For instance, a hash computed
1422 * at L4 may be considered an L3 hash. This should only be done if the
1423 * driver can't unambiguously determine that the HW computed the hash at
1424 * the higher layer. Note that the "should" in the second property above
1425 * permits this.
1426 */
1427 enum pkt_hash_types {
1428 PKT_HASH_TYPE_NONE, /* Undefined type */
1429 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1430 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1431 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1432 };
1433
skb_clear_hash(struct sk_buff * skb)1434 static inline void skb_clear_hash(struct sk_buff *skb)
1435 {
1436 skb->hash = 0;
1437 skb->sw_hash = 0;
1438 skb->l4_hash = 0;
1439 }
1440
skb_clear_hash_if_not_l4(struct sk_buff * skb)1441 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1442 {
1443 if (!skb->l4_hash)
1444 skb_clear_hash(skb);
1445 }
1446
1447 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1448 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1449 {
1450 skb->l4_hash = is_l4;
1451 skb->sw_hash = is_sw;
1452 skb->hash = hash;
1453 }
1454
1455 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1456 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1457 {
1458 /* Used by drivers to set hash from HW */
1459 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1460 }
1461
1462 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1463 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1464 {
1465 __skb_set_hash(skb, hash, true, is_l4);
1466 }
1467
1468 void __skb_get_hash(struct sk_buff *skb);
1469 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1470 u32 skb_get_poff(const struct sk_buff *skb);
1471 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1472 const struct flow_keys_basic *keys, int hlen);
1473 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1474 const void *data, int hlen_proto);
1475
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1476 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1477 int thoff, u8 ip_proto)
1478 {
1479 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1480 }
1481
1482 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1483 const struct flow_dissector_key *key,
1484 unsigned int key_count);
1485
1486 struct bpf_flow_dissector;
1487 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1488 __be16 proto, int nhoff, int hlen, unsigned int flags);
1489
1490 bool __skb_flow_dissect(const struct net *net,
1491 const struct sk_buff *skb,
1492 struct flow_dissector *flow_dissector,
1493 void *target_container, const void *data,
1494 __be16 proto, int nhoff, int hlen, unsigned int flags);
1495
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1496 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1497 struct flow_dissector *flow_dissector,
1498 void *target_container, unsigned int flags)
1499 {
1500 return __skb_flow_dissect(NULL, skb, flow_dissector,
1501 target_container, NULL, 0, 0, 0, flags);
1502 }
1503
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1504 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1505 struct flow_keys *flow,
1506 unsigned int flags)
1507 {
1508 memset(flow, 0, sizeof(*flow));
1509 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1510 flow, NULL, 0, 0, 0, flags);
1511 }
1512
1513 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1514 skb_flow_dissect_flow_keys_basic(const struct net *net,
1515 const struct sk_buff *skb,
1516 struct flow_keys_basic *flow,
1517 const void *data, __be16 proto,
1518 int nhoff, int hlen, unsigned int flags)
1519 {
1520 memset(flow, 0, sizeof(*flow));
1521 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1522 data, proto, nhoff, hlen, flags);
1523 }
1524
1525 void skb_flow_dissect_meta(const struct sk_buff *skb,
1526 struct flow_dissector *flow_dissector,
1527 void *target_container);
1528
1529 /* Gets a skb connection tracking info, ctinfo map should be a
1530 * map of mapsize to translate enum ip_conntrack_info states
1531 * to user states.
1532 */
1533 void
1534 skb_flow_dissect_ct(const struct sk_buff *skb,
1535 struct flow_dissector *flow_dissector,
1536 void *target_container,
1537 u16 *ctinfo_map, size_t mapsize,
1538 bool post_ct, u16 zone);
1539 void
1540 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1541 struct flow_dissector *flow_dissector,
1542 void *target_container);
1543
1544 void skb_flow_dissect_hash(const struct sk_buff *skb,
1545 struct flow_dissector *flow_dissector,
1546 void *target_container);
1547
skb_get_hash(struct sk_buff * skb)1548 static inline __u32 skb_get_hash(struct sk_buff *skb)
1549 {
1550 if (!skb->l4_hash && !skb->sw_hash)
1551 __skb_get_hash(skb);
1552
1553 return skb->hash;
1554 }
1555
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1556 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1557 {
1558 if (!skb->l4_hash && !skb->sw_hash) {
1559 struct flow_keys keys;
1560 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1561
1562 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1563 }
1564
1565 return skb->hash;
1566 }
1567
1568 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1569 const siphash_key_t *perturb);
1570
skb_get_hash_raw(const struct sk_buff * skb)1571 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1572 {
1573 return skb->hash;
1574 }
1575
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1576 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1577 {
1578 to->hash = from->hash;
1579 to->sw_hash = from->sw_hash;
1580 to->l4_hash = from->l4_hash;
1581 };
1582
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1583 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1584 const struct sk_buff *skb2)
1585 {
1586 #ifdef CONFIG_TLS_DEVICE
1587 return skb2->decrypted - skb1->decrypted;
1588 #else
1589 return 0;
1590 #endif
1591 }
1592
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1593 static inline void skb_copy_decrypted(struct sk_buff *to,
1594 const struct sk_buff *from)
1595 {
1596 #ifdef CONFIG_TLS_DEVICE
1597 to->decrypted = from->decrypted;
1598 #endif
1599 }
1600
1601 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1602 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1603 {
1604 return skb->head + skb->end;
1605 }
1606
skb_end_offset(const struct sk_buff * skb)1607 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1608 {
1609 return skb->end;
1610 }
1611
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1612 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1613 {
1614 skb->end = offset;
1615 }
1616 #else
skb_end_pointer(const struct sk_buff * skb)1617 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1618 {
1619 return skb->end;
1620 }
1621
skb_end_offset(const struct sk_buff * skb)1622 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1623 {
1624 return skb->end - skb->head;
1625 }
1626
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1627 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1628 {
1629 skb->end = skb->head + offset;
1630 }
1631 #endif
1632
1633 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1634 struct ubuf_info *uarg);
1635
1636 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1637
1638 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1639 bool success);
1640
1641 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1642 struct sk_buff *skb, struct iov_iter *from,
1643 size_t length);
1644
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1645 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1646 struct msghdr *msg, int len)
1647 {
1648 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1649 }
1650
1651 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1652 struct msghdr *msg, int len,
1653 struct ubuf_info *uarg);
1654
1655 /* Internal */
1656 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1657
skb_hwtstamps(struct sk_buff * skb)1658 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1659 {
1660 return &skb_shinfo(skb)->hwtstamps;
1661 }
1662
skb_zcopy(struct sk_buff * skb)1663 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1664 {
1665 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1666
1667 return is_zcopy ? skb_uarg(skb) : NULL;
1668 }
1669
skb_zcopy_pure(const struct sk_buff * skb)1670 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1671 {
1672 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1673 }
1674
skb_zcopy_managed(const struct sk_buff * skb)1675 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1676 {
1677 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1678 }
1679
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1680 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1681 const struct sk_buff *skb2)
1682 {
1683 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1684 }
1685
net_zcopy_get(struct ubuf_info * uarg)1686 static inline void net_zcopy_get(struct ubuf_info *uarg)
1687 {
1688 refcount_inc(&uarg->refcnt);
1689 }
1690
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1691 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1692 {
1693 skb_shinfo(skb)->destructor_arg = uarg;
1694 skb_shinfo(skb)->flags |= uarg->flags;
1695 }
1696
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1697 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1698 bool *have_ref)
1699 {
1700 if (skb && uarg && !skb_zcopy(skb)) {
1701 if (unlikely(have_ref && *have_ref))
1702 *have_ref = false;
1703 else
1704 net_zcopy_get(uarg);
1705 skb_zcopy_init(skb, uarg);
1706 }
1707 }
1708
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1709 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1710 {
1711 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1712 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1713 }
1714
skb_zcopy_is_nouarg(struct sk_buff * skb)1715 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1716 {
1717 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1718 }
1719
skb_zcopy_get_nouarg(struct sk_buff * skb)1720 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1721 {
1722 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1723 }
1724
net_zcopy_put(struct ubuf_info * uarg)1725 static inline void net_zcopy_put(struct ubuf_info *uarg)
1726 {
1727 if (uarg)
1728 uarg->callback(NULL, uarg, true);
1729 }
1730
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1731 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1732 {
1733 if (uarg) {
1734 if (uarg->callback == msg_zerocopy_callback)
1735 msg_zerocopy_put_abort(uarg, have_uref);
1736 else if (have_uref)
1737 net_zcopy_put(uarg);
1738 }
1739 }
1740
1741 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1742 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1743 {
1744 struct ubuf_info *uarg = skb_zcopy(skb);
1745
1746 if (uarg) {
1747 if (!skb_zcopy_is_nouarg(skb))
1748 uarg->callback(skb, uarg, zerocopy_success);
1749
1750 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1751 }
1752 }
1753
1754 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1755
skb_zcopy_downgrade_managed(struct sk_buff * skb)1756 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1757 {
1758 if (unlikely(skb_zcopy_managed(skb)))
1759 __skb_zcopy_downgrade_managed(skb);
1760 }
1761
skb_mark_not_on_list(struct sk_buff * skb)1762 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1763 {
1764 skb->next = NULL;
1765 }
1766
skb_poison_list(struct sk_buff * skb)1767 static inline void skb_poison_list(struct sk_buff *skb)
1768 {
1769 #ifdef CONFIG_DEBUG_NET
1770 skb->next = SKB_LIST_POISON_NEXT;
1771 #endif
1772 }
1773
1774 /* Iterate through singly-linked GSO fragments of an skb. */
1775 #define skb_list_walk_safe(first, skb, next_skb) \
1776 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1777 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1778
skb_list_del_init(struct sk_buff * skb)1779 static inline void skb_list_del_init(struct sk_buff *skb)
1780 {
1781 __list_del_entry(&skb->list);
1782 skb_mark_not_on_list(skb);
1783 }
1784
1785 /**
1786 * skb_queue_empty - check if a queue is empty
1787 * @list: queue head
1788 *
1789 * Returns true if the queue is empty, false otherwise.
1790 */
skb_queue_empty(const struct sk_buff_head * list)1791 static inline int skb_queue_empty(const struct sk_buff_head *list)
1792 {
1793 return list->next == (const struct sk_buff *) list;
1794 }
1795
1796 /**
1797 * skb_queue_empty_lockless - check if a queue is empty
1798 * @list: queue head
1799 *
1800 * Returns true if the queue is empty, false otherwise.
1801 * This variant can be used in lockless contexts.
1802 */
skb_queue_empty_lockless(const struct sk_buff_head * list)1803 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1804 {
1805 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1806 }
1807
1808
1809 /**
1810 * skb_queue_is_last - check if skb is the last entry in the queue
1811 * @list: queue head
1812 * @skb: buffer
1813 *
1814 * Returns true if @skb is the last buffer on the list.
1815 */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1816 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1817 const struct sk_buff *skb)
1818 {
1819 return skb->next == (const struct sk_buff *) list;
1820 }
1821
1822 /**
1823 * skb_queue_is_first - check if skb is the first entry in the queue
1824 * @list: queue head
1825 * @skb: buffer
1826 *
1827 * Returns true if @skb is the first buffer on the list.
1828 */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1829 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1830 const struct sk_buff *skb)
1831 {
1832 return skb->prev == (const struct sk_buff *) list;
1833 }
1834
1835 /**
1836 * skb_queue_next - return the next packet in the queue
1837 * @list: queue head
1838 * @skb: current buffer
1839 *
1840 * Return the next packet in @list after @skb. It is only valid to
1841 * call this if skb_queue_is_last() evaluates to false.
1842 */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1843 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1844 const struct sk_buff *skb)
1845 {
1846 /* This BUG_ON may seem severe, but if we just return then we
1847 * are going to dereference garbage.
1848 */
1849 BUG_ON(skb_queue_is_last(list, skb));
1850 return skb->next;
1851 }
1852
1853 /**
1854 * skb_queue_prev - return the prev packet in the queue
1855 * @list: queue head
1856 * @skb: current buffer
1857 *
1858 * Return the prev packet in @list before @skb. It is only valid to
1859 * call this if skb_queue_is_first() evaluates to false.
1860 */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1861 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1862 const struct sk_buff *skb)
1863 {
1864 /* This BUG_ON may seem severe, but if we just return then we
1865 * are going to dereference garbage.
1866 */
1867 BUG_ON(skb_queue_is_first(list, skb));
1868 return skb->prev;
1869 }
1870
1871 /**
1872 * skb_get - reference buffer
1873 * @skb: buffer to reference
1874 *
1875 * Makes another reference to a socket buffer and returns a pointer
1876 * to the buffer.
1877 */
skb_get(struct sk_buff * skb)1878 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1879 {
1880 refcount_inc(&skb->users);
1881 return skb;
1882 }
1883
1884 /*
1885 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1886 */
1887
1888 /**
1889 * skb_cloned - is the buffer a clone
1890 * @skb: buffer to check
1891 *
1892 * Returns true if the buffer was generated with skb_clone() and is
1893 * one of multiple shared copies of the buffer. Cloned buffers are
1894 * shared data so must not be written to under normal circumstances.
1895 */
skb_cloned(const struct sk_buff * skb)1896 static inline int skb_cloned(const struct sk_buff *skb)
1897 {
1898 return skb->cloned &&
1899 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1900 }
1901
skb_unclone(struct sk_buff * skb,gfp_t pri)1902 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1903 {
1904 might_sleep_if(gfpflags_allow_blocking(pri));
1905
1906 if (skb_cloned(skb))
1907 return pskb_expand_head(skb, 0, 0, pri);
1908
1909 return 0;
1910 }
1911
1912 /* This variant of skb_unclone() makes sure skb->truesize
1913 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1914 *
1915 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1916 * when various debugging features are in place.
1917 */
1918 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1919 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1920 {
1921 might_sleep_if(gfpflags_allow_blocking(pri));
1922
1923 if (skb_cloned(skb))
1924 return __skb_unclone_keeptruesize(skb, pri);
1925 return 0;
1926 }
1927
1928 /**
1929 * skb_header_cloned - is the header a clone
1930 * @skb: buffer to check
1931 *
1932 * Returns true if modifying the header part of the buffer requires
1933 * the data to be copied.
1934 */
skb_header_cloned(const struct sk_buff * skb)1935 static inline int skb_header_cloned(const struct sk_buff *skb)
1936 {
1937 int dataref;
1938
1939 if (!skb->cloned)
1940 return 0;
1941
1942 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1943 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1944 return dataref != 1;
1945 }
1946
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1947 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1948 {
1949 might_sleep_if(gfpflags_allow_blocking(pri));
1950
1951 if (skb_header_cloned(skb))
1952 return pskb_expand_head(skb, 0, 0, pri);
1953
1954 return 0;
1955 }
1956
1957 /**
1958 * __skb_header_release() - allow clones to use the headroom
1959 * @skb: buffer to operate on
1960 *
1961 * See "DOC: dataref and headerless skbs".
1962 */
__skb_header_release(struct sk_buff * skb)1963 static inline void __skb_header_release(struct sk_buff *skb)
1964 {
1965 skb->nohdr = 1;
1966 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1967 }
1968
1969
1970 /**
1971 * skb_shared - is the buffer shared
1972 * @skb: buffer to check
1973 *
1974 * Returns true if more than one person has a reference to this
1975 * buffer.
1976 */
skb_shared(const struct sk_buff * skb)1977 static inline int skb_shared(const struct sk_buff *skb)
1978 {
1979 return refcount_read(&skb->users) != 1;
1980 }
1981
1982 /**
1983 * skb_share_check - check if buffer is shared and if so clone it
1984 * @skb: buffer to check
1985 * @pri: priority for memory allocation
1986 *
1987 * If the buffer is shared the buffer is cloned and the old copy
1988 * drops a reference. A new clone with a single reference is returned.
1989 * If the buffer is not shared the original buffer is returned. When
1990 * being called from interrupt status or with spinlocks held pri must
1991 * be GFP_ATOMIC.
1992 *
1993 * NULL is returned on a memory allocation failure.
1994 */
skb_share_check(struct sk_buff * skb,gfp_t pri)1995 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1996 {
1997 might_sleep_if(gfpflags_allow_blocking(pri));
1998 if (skb_shared(skb)) {
1999 struct sk_buff *nskb = skb_clone(skb, pri);
2000
2001 if (likely(nskb))
2002 consume_skb(skb);
2003 else
2004 kfree_skb(skb);
2005 skb = nskb;
2006 }
2007 return skb;
2008 }
2009
2010 /*
2011 * Copy shared buffers into a new sk_buff. We effectively do COW on
2012 * packets to handle cases where we have a local reader and forward
2013 * and a couple of other messy ones. The normal one is tcpdumping
2014 * a packet that's being forwarded.
2015 */
2016
2017 /**
2018 * skb_unshare - make a copy of a shared buffer
2019 * @skb: buffer to check
2020 * @pri: priority for memory allocation
2021 *
2022 * If the socket buffer is a clone then this function creates a new
2023 * copy of the data, drops a reference count on the old copy and returns
2024 * the new copy with the reference count at 1. If the buffer is not a clone
2025 * the original buffer is returned. When called with a spinlock held or
2026 * from interrupt state @pri must be %GFP_ATOMIC
2027 *
2028 * %NULL is returned on a memory allocation failure.
2029 */
skb_unshare(struct sk_buff * skb,gfp_t pri)2030 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2031 gfp_t pri)
2032 {
2033 might_sleep_if(gfpflags_allow_blocking(pri));
2034 if (skb_cloned(skb)) {
2035 struct sk_buff *nskb = skb_copy(skb, pri);
2036
2037 /* Free our shared copy */
2038 if (likely(nskb))
2039 consume_skb(skb);
2040 else
2041 kfree_skb(skb);
2042 skb = nskb;
2043 }
2044 return skb;
2045 }
2046
2047 /**
2048 * skb_peek - peek at the head of an &sk_buff_head
2049 * @list_: list to peek at
2050 *
2051 * Peek an &sk_buff. Unlike most other operations you _MUST_
2052 * be careful with this one. A peek leaves the buffer on the
2053 * list and someone else may run off with it. You must hold
2054 * the appropriate locks or have a private queue to do this.
2055 *
2056 * Returns %NULL for an empty list or a pointer to the head element.
2057 * The reference count is not incremented and the reference is therefore
2058 * volatile. Use with caution.
2059 */
skb_peek(const struct sk_buff_head * list_)2060 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2061 {
2062 struct sk_buff *skb = list_->next;
2063
2064 if (skb == (struct sk_buff *)list_)
2065 skb = NULL;
2066 return skb;
2067 }
2068
2069 /**
2070 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2071 * @list_: list to peek at
2072 *
2073 * Like skb_peek(), but the caller knows that the list is not empty.
2074 */
__skb_peek(const struct sk_buff_head * list_)2075 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2076 {
2077 return list_->next;
2078 }
2079
2080 /**
2081 * skb_peek_next - peek skb following the given one from a queue
2082 * @skb: skb to start from
2083 * @list_: list to peek at
2084 *
2085 * Returns %NULL when the end of the list is met or a pointer to the
2086 * next element. The reference count is not incremented and the
2087 * reference is therefore volatile. Use with caution.
2088 */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2089 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2090 const struct sk_buff_head *list_)
2091 {
2092 struct sk_buff *next = skb->next;
2093
2094 if (next == (struct sk_buff *)list_)
2095 next = NULL;
2096 return next;
2097 }
2098
2099 /**
2100 * skb_peek_tail - peek at the tail of an &sk_buff_head
2101 * @list_: list to peek at
2102 *
2103 * Peek an &sk_buff. Unlike most other operations you _MUST_
2104 * be careful with this one. A peek leaves the buffer on the
2105 * list and someone else may run off with it. You must hold
2106 * the appropriate locks or have a private queue to do this.
2107 *
2108 * Returns %NULL for an empty list or a pointer to the tail element.
2109 * The reference count is not incremented and the reference is therefore
2110 * volatile. Use with caution.
2111 */
skb_peek_tail(const struct sk_buff_head * list_)2112 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2113 {
2114 struct sk_buff *skb = READ_ONCE(list_->prev);
2115
2116 if (skb == (struct sk_buff *)list_)
2117 skb = NULL;
2118 return skb;
2119
2120 }
2121
2122 /**
2123 * skb_queue_len - get queue length
2124 * @list_: list to measure
2125 *
2126 * Return the length of an &sk_buff queue.
2127 */
skb_queue_len(const struct sk_buff_head * list_)2128 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2129 {
2130 return list_->qlen;
2131 }
2132
2133 /**
2134 * skb_queue_len_lockless - get queue length
2135 * @list_: list to measure
2136 *
2137 * Return the length of an &sk_buff queue.
2138 * This variant can be used in lockless contexts.
2139 */
skb_queue_len_lockless(const struct sk_buff_head * list_)2140 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2141 {
2142 return READ_ONCE(list_->qlen);
2143 }
2144
2145 /**
2146 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2147 * @list: queue to initialize
2148 *
2149 * This initializes only the list and queue length aspects of
2150 * an sk_buff_head object. This allows to initialize the list
2151 * aspects of an sk_buff_head without reinitializing things like
2152 * the spinlock. It can also be used for on-stack sk_buff_head
2153 * objects where the spinlock is known to not be used.
2154 */
__skb_queue_head_init(struct sk_buff_head * list)2155 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2156 {
2157 list->prev = list->next = (struct sk_buff *)list;
2158 list->qlen = 0;
2159 }
2160
2161 /*
2162 * This function creates a split out lock class for each invocation;
2163 * this is needed for now since a whole lot of users of the skb-queue
2164 * infrastructure in drivers have different locking usage (in hardirq)
2165 * than the networking core (in softirq only). In the long run either the
2166 * network layer or drivers should need annotation to consolidate the
2167 * main types of usage into 3 classes.
2168 */
skb_queue_head_init(struct sk_buff_head * list)2169 static inline void skb_queue_head_init(struct sk_buff_head *list)
2170 {
2171 spin_lock_init(&list->lock);
2172 __skb_queue_head_init(list);
2173 }
2174
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2175 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2176 struct lock_class_key *class)
2177 {
2178 skb_queue_head_init(list);
2179 lockdep_set_class(&list->lock, class);
2180 }
2181
2182 /*
2183 * Insert an sk_buff on a list.
2184 *
2185 * The "__skb_xxxx()" functions are the non-atomic ones that
2186 * can only be called with interrupts disabled.
2187 */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2188 static inline void __skb_insert(struct sk_buff *newsk,
2189 struct sk_buff *prev, struct sk_buff *next,
2190 struct sk_buff_head *list)
2191 {
2192 /* See skb_queue_empty_lockless() and skb_peek_tail()
2193 * for the opposite READ_ONCE()
2194 */
2195 WRITE_ONCE(newsk->next, next);
2196 WRITE_ONCE(newsk->prev, prev);
2197 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2198 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2199 WRITE_ONCE(list->qlen, list->qlen + 1);
2200 }
2201
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2202 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2203 struct sk_buff *prev,
2204 struct sk_buff *next)
2205 {
2206 struct sk_buff *first = list->next;
2207 struct sk_buff *last = list->prev;
2208
2209 WRITE_ONCE(first->prev, prev);
2210 WRITE_ONCE(prev->next, first);
2211
2212 WRITE_ONCE(last->next, next);
2213 WRITE_ONCE(next->prev, last);
2214 }
2215
2216 /**
2217 * skb_queue_splice - join two skb lists, this is designed for stacks
2218 * @list: the new list to add
2219 * @head: the place to add it in the first list
2220 */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2221 static inline void skb_queue_splice(const struct sk_buff_head *list,
2222 struct sk_buff_head *head)
2223 {
2224 if (!skb_queue_empty(list)) {
2225 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2226 head->qlen += list->qlen;
2227 }
2228 }
2229
2230 /**
2231 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2232 * @list: the new list to add
2233 * @head: the place to add it in the first list
2234 *
2235 * The list at @list is reinitialised
2236 */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2237 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2238 struct sk_buff_head *head)
2239 {
2240 if (!skb_queue_empty(list)) {
2241 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2242 head->qlen += list->qlen;
2243 __skb_queue_head_init(list);
2244 }
2245 }
2246
2247 /**
2248 * skb_queue_splice_tail - join two skb lists, each list being a queue
2249 * @list: the new list to add
2250 * @head: the place to add it in the first list
2251 */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2252 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2253 struct sk_buff_head *head)
2254 {
2255 if (!skb_queue_empty(list)) {
2256 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2257 head->qlen += list->qlen;
2258 }
2259 }
2260
2261 /**
2262 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2263 * @list: the new list to add
2264 * @head: the place to add it in the first list
2265 *
2266 * Each of the lists is a queue.
2267 * The list at @list is reinitialised
2268 */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2269 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2270 struct sk_buff_head *head)
2271 {
2272 if (!skb_queue_empty(list)) {
2273 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2274 head->qlen += list->qlen;
2275 __skb_queue_head_init(list);
2276 }
2277 }
2278
2279 /**
2280 * __skb_queue_after - queue a buffer at the list head
2281 * @list: list to use
2282 * @prev: place after this buffer
2283 * @newsk: buffer to queue
2284 *
2285 * Queue a buffer int the middle of a list. This function takes no locks
2286 * and you must therefore hold required locks before calling it.
2287 *
2288 * A buffer cannot be placed on two lists at the same time.
2289 */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2290 static inline void __skb_queue_after(struct sk_buff_head *list,
2291 struct sk_buff *prev,
2292 struct sk_buff *newsk)
2293 {
2294 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2295 }
2296
2297 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2298 struct sk_buff_head *list);
2299
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2300 static inline void __skb_queue_before(struct sk_buff_head *list,
2301 struct sk_buff *next,
2302 struct sk_buff *newsk)
2303 {
2304 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2305 }
2306
2307 /**
2308 * __skb_queue_head - queue a buffer at the list head
2309 * @list: list to use
2310 * @newsk: buffer to queue
2311 *
2312 * Queue a buffer at the start of a list. This function takes no locks
2313 * and you must therefore hold required locks before calling it.
2314 *
2315 * A buffer cannot be placed on two lists at the same time.
2316 */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2317 static inline void __skb_queue_head(struct sk_buff_head *list,
2318 struct sk_buff *newsk)
2319 {
2320 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2321 }
2322 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2323
2324 /**
2325 * __skb_queue_tail - queue a buffer at the list tail
2326 * @list: list to use
2327 * @newsk: buffer to queue
2328 *
2329 * Queue a buffer at the end of a list. This function takes no locks
2330 * and you must therefore hold required locks before calling it.
2331 *
2332 * A buffer cannot be placed on two lists at the same time.
2333 */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2334 static inline void __skb_queue_tail(struct sk_buff_head *list,
2335 struct sk_buff *newsk)
2336 {
2337 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2338 }
2339 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2340
2341 /*
2342 * remove sk_buff from list. _Must_ be called atomically, and with
2343 * the list known..
2344 */
2345 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2346 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2347 {
2348 struct sk_buff *next, *prev;
2349
2350 WRITE_ONCE(list->qlen, list->qlen - 1);
2351 next = skb->next;
2352 prev = skb->prev;
2353 skb->next = skb->prev = NULL;
2354 WRITE_ONCE(next->prev, prev);
2355 WRITE_ONCE(prev->next, next);
2356 }
2357
2358 /**
2359 * __skb_dequeue - remove from the head of the queue
2360 * @list: list to dequeue from
2361 *
2362 * Remove the head of the list. This function does not take any locks
2363 * so must be used with appropriate locks held only. The head item is
2364 * returned or %NULL if the list is empty.
2365 */
__skb_dequeue(struct sk_buff_head * list)2366 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2367 {
2368 struct sk_buff *skb = skb_peek(list);
2369 if (skb)
2370 __skb_unlink(skb, list);
2371 return skb;
2372 }
2373 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2374
2375 /**
2376 * __skb_dequeue_tail - remove from the tail of the queue
2377 * @list: list to dequeue from
2378 *
2379 * Remove the tail of the list. This function does not take any locks
2380 * so must be used with appropriate locks held only. The tail item is
2381 * returned or %NULL if the list is empty.
2382 */
__skb_dequeue_tail(struct sk_buff_head * list)2383 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2384 {
2385 struct sk_buff *skb = skb_peek_tail(list);
2386 if (skb)
2387 __skb_unlink(skb, list);
2388 return skb;
2389 }
2390 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2391
2392
skb_is_nonlinear(const struct sk_buff * skb)2393 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2394 {
2395 return skb->data_len;
2396 }
2397
skb_headlen(const struct sk_buff * skb)2398 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2399 {
2400 return skb->len - skb->data_len;
2401 }
2402
__skb_pagelen(const struct sk_buff * skb)2403 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2404 {
2405 unsigned int i, len = 0;
2406
2407 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2408 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2409 return len;
2410 }
2411
skb_pagelen(const struct sk_buff * skb)2412 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2413 {
2414 return skb_headlen(skb) + __skb_pagelen(skb);
2415 }
2416
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2417 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2418 struct page *page,
2419 int off, int size)
2420 {
2421 frag->bv_page = page;
2422 frag->bv_offset = off;
2423 skb_frag_size_set(frag, size);
2424 }
2425
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2426 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2427 int i, struct page *page,
2428 int off, int size)
2429 {
2430 skb_frag_t *frag = &shinfo->frags[i];
2431
2432 skb_frag_fill_page_desc(frag, page, off, size);
2433 }
2434
2435 /**
2436 * skb_len_add - adds a number to len fields of skb
2437 * @skb: buffer to add len to
2438 * @delta: number of bytes to add
2439 */
skb_len_add(struct sk_buff * skb,int delta)2440 static inline void skb_len_add(struct sk_buff *skb, int delta)
2441 {
2442 skb->len += delta;
2443 skb->data_len += delta;
2444 skb->truesize += delta;
2445 }
2446
2447 /**
2448 * __skb_fill_page_desc - initialise a paged fragment in an skb
2449 * @skb: buffer containing fragment to be initialised
2450 * @i: paged fragment index to initialise
2451 * @page: the page to use for this fragment
2452 * @off: the offset to the data with @page
2453 * @size: the length of the data
2454 *
2455 * Initialises the @i'th fragment of @skb to point to &size bytes at
2456 * offset @off within @page.
2457 *
2458 * Does not take any additional reference on the fragment.
2459 */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2460 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2461 struct page *page, int off, int size)
2462 {
2463 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2464
2465 /* Propagate page pfmemalloc to the skb if we can. The problem is
2466 * that not all callers have unique ownership of the page but rely
2467 * on page_is_pfmemalloc doing the right thing(tm).
2468 */
2469 page = compound_head(page);
2470 if (page_is_pfmemalloc(page))
2471 skb->pfmemalloc = true;
2472 }
2473
2474 /**
2475 * skb_fill_page_desc - initialise a paged fragment in an skb
2476 * @skb: buffer containing fragment to be initialised
2477 * @i: paged fragment index to initialise
2478 * @page: the page to use for this fragment
2479 * @off: the offset to the data with @page
2480 * @size: the length of the data
2481 *
2482 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2483 * @skb to point to @size bytes at offset @off within @page. In
2484 * addition updates @skb such that @i is the last fragment.
2485 *
2486 * Does not take any additional reference on the fragment.
2487 */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2488 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2489 struct page *page, int off, int size)
2490 {
2491 __skb_fill_page_desc(skb, i, page, off, size);
2492 skb_shinfo(skb)->nr_frags = i + 1;
2493 }
2494
2495 /**
2496 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2497 * @skb: buffer containing fragment to be initialised
2498 * @i: paged fragment index to initialise
2499 * @page: the page to use for this fragment
2500 * @off: the offset to the data with @page
2501 * @size: the length of the data
2502 *
2503 * Variant of skb_fill_page_desc() which does not deal with
2504 * pfmemalloc, if page is not owned by us.
2505 */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2506 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2507 struct page *page, int off,
2508 int size)
2509 {
2510 struct skb_shared_info *shinfo = skb_shinfo(skb);
2511
2512 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2513 shinfo->nr_frags = i + 1;
2514 }
2515
2516 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2517 int size, unsigned int truesize);
2518
2519 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2520 unsigned int truesize);
2521
2522 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2523
2524 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2525 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2526 {
2527 return skb->head + skb->tail;
2528 }
2529
skb_reset_tail_pointer(struct sk_buff * skb)2530 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2531 {
2532 skb->tail = skb->data - skb->head;
2533 }
2534
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2535 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2536 {
2537 skb_reset_tail_pointer(skb);
2538 skb->tail += offset;
2539 }
2540
2541 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2542 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2543 {
2544 return skb->tail;
2545 }
2546
skb_reset_tail_pointer(struct sk_buff * skb)2547 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2548 {
2549 skb->tail = skb->data;
2550 }
2551
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2552 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2553 {
2554 skb->tail = skb->data + offset;
2555 }
2556
2557 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2558
skb_assert_len(struct sk_buff * skb)2559 static inline void skb_assert_len(struct sk_buff *skb)
2560 {
2561 #ifdef CONFIG_DEBUG_NET
2562 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2563 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2564 #endif /* CONFIG_DEBUG_NET */
2565 }
2566
2567 /*
2568 * Add data to an sk_buff
2569 */
2570 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2571 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2572 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2573 {
2574 void *tmp = skb_tail_pointer(skb);
2575 SKB_LINEAR_ASSERT(skb);
2576 skb->tail += len;
2577 skb->len += len;
2578 return tmp;
2579 }
2580
__skb_put_zero(struct sk_buff * skb,unsigned int len)2581 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2582 {
2583 void *tmp = __skb_put(skb, len);
2584
2585 memset(tmp, 0, len);
2586 return tmp;
2587 }
2588
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2589 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2590 unsigned int len)
2591 {
2592 void *tmp = __skb_put(skb, len);
2593
2594 memcpy(tmp, data, len);
2595 return tmp;
2596 }
2597
__skb_put_u8(struct sk_buff * skb,u8 val)2598 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2599 {
2600 *(u8 *)__skb_put(skb, 1) = val;
2601 }
2602
skb_put_zero(struct sk_buff * skb,unsigned int len)2603 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2604 {
2605 void *tmp = skb_put(skb, len);
2606
2607 memset(tmp, 0, len);
2608
2609 return tmp;
2610 }
2611
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2612 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2613 unsigned int len)
2614 {
2615 void *tmp = skb_put(skb, len);
2616
2617 memcpy(tmp, data, len);
2618
2619 return tmp;
2620 }
2621
skb_put_u8(struct sk_buff * skb,u8 val)2622 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2623 {
2624 *(u8 *)skb_put(skb, 1) = val;
2625 }
2626
2627 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2628 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2629 {
2630 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2631
2632 skb->data -= len;
2633 skb->len += len;
2634 return skb->data;
2635 }
2636
2637 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2638 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2639 {
2640 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2641
2642 skb->len -= len;
2643 if (unlikely(skb->len < skb->data_len)) {
2644 #if defined(CONFIG_DEBUG_NET)
2645 skb->len += len;
2646 pr_err("__skb_pull(len=%u)\n", len);
2647 skb_dump(KERN_ERR, skb, false);
2648 #endif
2649 BUG();
2650 }
2651 return skb->data += len;
2652 }
2653
skb_pull_inline(struct sk_buff * skb,unsigned int len)2654 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2655 {
2656 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2657 }
2658
2659 void *skb_pull_data(struct sk_buff *skb, size_t len);
2660
2661 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2662
2663 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2664 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2665 {
2666 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2667
2668 if (likely(len <= skb_headlen(skb)))
2669 return SKB_NOT_DROPPED_YET;
2670
2671 if (unlikely(len > skb->len))
2672 return SKB_DROP_REASON_PKT_TOO_SMALL;
2673
2674 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2675 return SKB_DROP_REASON_NOMEM;
2676
2677 return SKB_NOT_DROPPED_YET;
2678 }
2679
pskb_may_pull(struct sk_buff * skb,unsigned int len)2680 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2681 {
2682 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2683 }
2684
pskb_pull(struct sk_buff * skb,unsigned int len)2685 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2686 {
2687 if (!pskb_may_pull(skb, len))
2688 return NULL;
2689
2690 skb->len -= len;
2691 return skb->data += len;
2692 }
2693
2694 void skb_condense(struct sk_buff *skb);
2695
2696 /**
2697 * skb_headroom - bytes at buffer head
2698 * @skb: buffer to check
2699 *
2700 * Return the number of bytes of free space at the head of an &sk_buff.
2701 */
skb_headroom(const struct sk_buff * skb)2702 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2703 {
2704 return skb->data - skb->head;
2705 }
2706
2707 /**
2708 * skb_tailroom - bytes at buffer end
2709 * @skb: buffer to check
2710 *
2711 * Return the number of bytes of free space at the tail of an sk_buff
2712 */
skb_tailroom(const struct sk_buff * skb)2713 static inline int skb_tailroom(const struct sk_buff *skb)
2714 {
2715 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2716 }
2717
2718 /**
2719 * skb_availroom - bytes at buffer end
2720 * @skb: buffer to check
2721 *
2722 * Return the number of bytes of free space at the tail of an sk_buff
2723 * allocated by sk_stream_alloc()
2724 */
skb_availroom(const struct sk_buff * skb)2725 static inline int skb_availroom(const struct sk_buff *skb)
2726 {
2727 if (skb_is_nonlinear(skb))
2728 return 0;
2729
2730 return skb->end - skb->tail - skb->reserved_tailroom;
2731 }
2732
2733 /**
2734 * skb_reserve - adjust headroom
2735 * @skb: buffer to alter
2736 * @len: bytes to move
2737 *
2738 * Increase the headroom of an empty &sk_buff by reducing the tail
2739 * room. This is only allowed for an empty buffer.
2740 */
skb_reserve(struct sk_buff * skb,int len)2741 static inline void skb_reserve(struct sk_buff *skb, int len)
2742 {
2743 skb->data += len;
2744 skb->tail += len;
2745 }
2746
2747 /**
2748 * skb_tailroom_reserve - adjust reserved_tailroom
2749 * @skb: buffer to alter
2750 * @mtu: maximum amount of headlen permitted
2751 * @needed_tailroom: minimum amount of reserved_tailroom
2752 *
2753 * Set reserved_tailroom so that headlen can be as large as possible but
2754 * not larger than mtu and tailroom cannot be smaller than
2755 * needed_tailroom.
2756 * The required headroom should already have been reserved before using
2757 * this function.
2758 */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2759 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2760 unsigned int needed_tailroom)
2761 {
2762 SKB_LINEAR_ASSERT(skb);
2763 if (mtu < skb_tailroom(skb) - needed_tailroom)
2764 /* use at most mtu */
2765 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2766 else
2767 /* use up to all available space */
2768 skb->reserved_tailroom = needed_tailroom;
2769 }
2770
2771 #define ENCAP_TYPE_ETHER 0
2772 #define ENCAP_TYPE_IPPROTO 1
2773
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2774 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2775 __be16 protocol)
2776 {
2777 skb->inner_protocol = protocol;
2778 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2779 }
2780
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2781 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2782 __u8 ipproto)
2783 {
2784 skb->inner_ipproto = ipproto;
2785 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2786 }
2787
skb_reset_inner_headers(struct sk_buff * skb)2788 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2789 {
2790 skb->inner_mac_header = skb->mac_header;
2791 skb->inner_network_header = skb->network_header;
2792 skb->inner_transport_header = skb->transport_header;
2793 }
2794
skb_reset_mac_len(struct sk_buff * skb)2795 static inline void skb_reset_mac_len(struct sk_buff *skb)
2796 {
2797 skb->mac_len = skb->network_header - skb->mac_header;
2798 }
2799
skb_inner_transport_header(const struct sk_buff * skb)2800 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2801 *skb)
2802 {
2803 return skb->head + skb->inner_transport_header;
2804 }
2805
skb_inner_transport_offset(const struct sk_buff * skb)2806 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2807 {
2808 return skb_inner_transport_header(skb) - skb->data;
2809 }
2810
skb_reset_inner_transport_header(struct sk_buff * skb)2811 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2812 {
2813 skb->inner_transport_header = skb->data - skb->head;
2814 }
2815
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2816 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2817 const int offset)
2818 {
2819 skb_reset_inner_transport_header(skb);
2820 skb->inner_transport_header += offset;
2821 }
2822
skb_inner_network_header(const struct sk_buff * skb)2823 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2824 {
2825 return skb->head + skb->inner_network_header;
2826 }
2827
skb_reset_inner_network_header(struct sk_buff * skb)2828 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2829 {
2830 skb->inner_network_header = skb->data - skb->head;
2831 }
2832
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2833 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2834 const int offset)
2835 {
2836 skb_reset_inner_network_header(skb);
2837 skb->inner_network_header += offset;
2838 }
2839
skb_inner_network_header_was_set(const struct sk_buff * skb)2840 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2841 {
2842 return skb->inner_network_header > 0;
2843 }
2844
skb_inner_mac_header(const struct sk_buff * skb)2845 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2846 {
2847 return skb->head + skb->inner_mac_header;
2848 }
2849
skb_reset_inner_mac_header(struct sk_buff * skb)2850 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2851 {
2852 skb->inner_mac_header = skb->data - skb->head;
2853 }
2854
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2855 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2856 const int offset)
2857 {
2858 skb_reset_inner_mac_header(skb);
2859 skb->inner_mac_header += offset;
2860 }
skb_transport_header_was_set(const struct sk_buff * skb)2861 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2862 {
2863 return skb->transport_header != (typeof(skb->transport_header))~0U;
2864 }
2865
skb_transport_header(const struct sk_buff * skb)2866 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2867 {
2868 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2869 return skb->head + skb->transport_header;
2870 }
2871
skb_reset_transport_header(struct sk_buff * skb)2872 static inline void skb_reset_transport_header(struct sk_buff *skb)
2873 {
2874 skb->transport_header = skb->data - skb->head;
2875 }
2876
skb_set_transport_header(struct sk_buff * skb,const int offset)2877 static inline void skb_set_transport_header(struct sk_buff *skb,
2878 const int offset)
2879 {
2880 skb_reset_transport_header(skb);
2881 skb->transport_header += offset;
2882 }
2883
skb_network_header(const struct sk_buff * skb)2884 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2885 {
2886 return skb->head + skb->network_header;
2887 }
2888
skb_reset_network_header(struct sk_buff * skb)2889 static inline void skb_reset_network_header(struct sk_buff *skb)
2890 {
2891 skb->network_header = skb->data - skb->head;
2892 }
2893
skb_set_network_header(struct sk_buff * skb,const int offset)2894 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2895 {
2896 skb_reset_network_header(skb);
2897 skb->network_header += offset;
2898 }
2899
skb_mac_header_was_set(const struct sk_buff * skb)2900 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2901 {
2902 return skb->mac_header != (typeof(skb->mac_header))~0U;
2903 }
2904
skb_mac_header(const struct sk_buff * skb)2905 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2906 {
2907 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2908 return skb->head + skb->mac_header;
2909 }
2910
skb_mac_offset(const struct sk_buff * skb)2911 static inline int skb_mac_offset(const struct sk_buff *skb)
2912 {
2913 return skb_mac_header(skb) - skb->data;
2914 }
2915
skb_mac_header_len(const struct sk_buff * skb)2916 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2917 {
2918 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2919 return skb->network_header - skb->mac_header;
2920 }
2921
skb_unset_mac_header(struct sk_buff * skb)2922 static inline void skb_unset_mac_header(struct sk_buff *skb)
2923 {
2924 skb->mac_header = (typeof(skb->mac_header))~0U;
2925 }
2926
skb_reset_mac_header(struct sk_buff * skb)2927 static inline void skb_reset_mac_header(struct sk_buff *skb)
2928 {
2929 skb->mac_header = skb->data - skb->head;
2930 }
2931
skb_set_mac_header(struct sk_buff * skb,const int offset)2932 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2933 {
2934 skb_reset_mac_header(skb);
2935 skb->mac_header += offset;
2936 }
2937
skb_pop_mac_header(struct sk_buff * skb)2938 static inline void skb_pop_mac_header(struct sk_buff *skb)
2939 {
2940 skb->mac_header = skb->network_header;
2941 }
2942
skb_probe_transport_header(struct sk_buff * skb)2943 static inline void skb_probe_transport_header(struct sk_buff *skb)
2944 {
2945 struct flow_keys_basic keys;
2946
2947 if (skb_transport_header_was_set(skb))
2948 return;
2949
2950 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2951 NULL, 0, 0, 0, 0))
2952 skb_set_transport_header(skb, keys.control.thoff);
2953 }
2954
skb_mac_header_rebuild(struct sk_buff * skb)2955 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2956 {
2957 if (skb_mac_header_was_set(skb)) {
2958 const unsigned char *old_mac = skb_mac_header(skb);
2959
2960 skb_set_mac_header(skb, -skb->mac_len);
2961 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2962 }
2963 }
2964
2965 /* Move the full mac header up to current network_header.
2966 * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
2967 * Must be provided the complete mac header length.
2968 */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)2969 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
2970 {
2971 if (skb_mac_header_was_set(skb)) {
2972 const unsigned char *old_mac = skb_mac_header(skb);
2973
2974 skb_set_mac_header(skb, -full_mac_len);
2975 memmove(skb_mac_header(skb), old_mac, full_mac_len);
2976 __skb_push(skb, full_mac_len - skb->mac_len);
2977 }
2978 }
2979
skb_checksum_start_offset(const struct sk_buff * skb)2980 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2981 {
2982 return skb->csum_start - skb_headroom(skb);
2983 }
2984
skb_checksum_start(const struct sk_buff * skb)2985 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2986 {
2987 return skb->head + skb->csum_start;
2988 }
2989
skb_transport_offset(const struct sk_buff * skb)2990 static inline int skb_transport_offset(const struct sk_buff *skb)
2991 {
2992 return skb_transport_header(skb) - skb->data;
2993 }
2994
skb_network_header_len(const struct sk_buff * skb)2995 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2996 {
2997 return skb->transport_header - skb->network_header;
2998 }
2999
skb_inner_network_header_len(const struct sk_buff * skb)3000 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3001 {
3002 return skb->inner_transport_header - skb->inner_network_header;
3003 }
3004
skb_network_offset(const struct sk_buff * skb)3005 static inline int skb_network_offset(const struct sk_buff *skb)
3006 {
3007 return skb_network_header(skb) - skb->data;
3008 }
3009
skb_inner_network_offset(const struct sk_buff * skb)3010 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3011 {
3012 return skb_inner_network_header(skb) - skb->data;
3013 }
3014
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3015 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3016 {
3017 return pskb_may_pull(skb, skb_network_offset(skb) + len);
3018 }
3019
3020 /*
3021 * CPUs often take a performance hit when accessing unaligned memory
3022 * locations. The actual performance hit varies, it can be small if the
3023 * hardware handles it or large if we have to take an exception and fix it
3024 * in software.
3025 *
3026 * Since an ethernet header is 14 bytes network drivers often end up with
3027 * the IP header at an unaligned offset. The IP header can be aligned by
3028 * shifting the start of the packet by 2 bytes. Drivers should do this
3029 * with:
3030 *
3031 * skb_reserve(skb, NET_IP_ALIGN);
3032 *
3033 * The downside to this alignment of the IP header is that the DMA is now
3034 * unaligned. On some architectures the cost of an unaligned DMA is high
3035 * and this cost outweighs the gains made by aligning the IP header.
3036 *
3037 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3038 * to be overridden.
3039 */
3040 #ifndef NET_IP_ALIGN
3041 #define NET_IP_ALIGN 2
3042 #endif
3043
3044 /*
3045 * The networking layer reserves some headroom in skb data (via
3046 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3047 * the header has to grow. In the default case, if the header has to grow
3048 * 32 bytes or less we avoid the reallocation.
3049 *
3050 * Unfortunately this headroom changes the DMA alignment of the resulting
3051 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3052 * on some architectures. An architecture can override this value,
3053 * perhaps setting it to a cacheline in size (since that will maintain
3054 * cacheline alignment of the DMA). It must be a power of 2.
3055 *
3056 * Various parts of the networking layer expect at least 32 bytes of
3057 * headroom, you should not reduce this.
3058 *
3059 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3060 * to reduce average number of cache lines per packet.
3061 * get_rps_cpu() for example only access one 64 bytes aligned block :
3062 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3063 */
3064 #ifndef NET_SKB_PAD
3065 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3066 #endif
3067
3068 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3069
__skb_set_length(struct sk_buff * skb,unsigned int len)3070 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3071 {
3072 if (WARN_ON(skb_is_nonlinear(skb)))
3073 return;
3074 skb->len = len;
3075 skb_set_tail_pointer(skb, len);
3076 }
3077
__skb_trim(struct sk_buff * skb,unsigned int len)3078 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3079 {
3080 __skb_set_length(skb, len);
3081 }
3082
3083 void skb_trim(struct sk_buff *skb, unsigned int len);
3084
__pskb_trim(struct sk_buff * skb,unsigned int len)3085 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3086 {
3087 if (skb->data_len)
3088 return ___pskb_trim(skb, len);
3089 __skb_trim(skb, len);
3090 return 0;
3091 }
3092
pskb_trim(struct sk_buff * skb,unsigned int len)3093 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3094 {
3095 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3096 }
3097
3098 /**
3099 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3100 * @skb: buffer to alter
3101 * @len: new length
3102 *
3103 * This is identical to pskb_trim except that the caller knows that
3104 * the skb is not cloned so we should never get an error due to out-
3105 * of-memory.
3106 */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3107 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3108 {
3109 int err = pskb_trim(skb, len);
3110 BUG_ON(err);
3111 }
3112
__skb_grow(struct sk_buff * skb,unsigned int len)3113 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3114 {
3115 unsigned int diff = len - skb->len;
3116
3117 if (skb_tailroom(skb) < diff) {
3118 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3119 GFP_ATOMIC);
3120 if (ret)
3121 return ret;
3122 }
3123 __skb_set_length(skb, len);
3124 return 0;
3125 }
3126
3127 /**
3128 * skb_orphan - orphan a buffer
3129 * @skb: buffer to orphan
3130 *
3131 * If a buffer currently has an owner then we call the owner's
3132 * destructor function and make the @skb unowned. The buffer continues
3133 * to exist but is no longer charged to its former owner.
3134 */
skb_orphan(struct sk_buff * skb)3135 static inline void skb_orphan(struct sk_buff *skb)
3136 {
3137 if (skb->destructor) {
3138 skb->destructor(skb);
3139 skb->destructor = NULL;
3140 skb->sk = NULL;
3141 } else {
3142 BUG_ON(skb->sk);
3143 }
3144 }
3145
3146 /**
3147 * skb_orphan_frags - orphan the frags contained in a buffer
3148 * @skb: buffer to orphan frags from
3149 * @gfp_mask: allocation mask for replacement pages
3150 *
3151 * For each frag in the SKB which needs a destructor (i.e. has an
3152 * owner) create a copy of that frag and release the original
3153 * page by calling the destructor.
3154 */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3155 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3156 {
3157 if (likely(!skb_zcopy(skb)))
3158 return 0;
3159 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3160 return 0;
3161 return skb_copy_ubufs(skb, gfp_mask);
3162 }
3163
3164 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3165 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3166 {
3167 if (likely(!skb_zcopy(skb)))
3168 return 0;
3169 return skb_copy_ubufs(skb, gfp_mask);
3170 }
3171
3172 /**
3173 * __skb_queue_purge_reason - empty a list
3174 * @list: list to empty
3175 * @reason: drop reason
3176 *
3177 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3178 * the list and one reference dropped. This function does not take the
3179 * list lock and the caller must hold the relevant locks to use it.
3180 */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3181 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3182 enum skb_drop_reason reason)
3183 {
3184 struct sk_buff *skb;
3185
3186 while ((skb = __skb_dequeue(list)) != NULL)
3187 kfree_skb_reason(skb, reason);
3188 }
3189
__skb_queue_purge(struct sk_buff_head * list)3190 static inline void __skb_queue_purge(struct sk_buff_head *list)
3191 {
3192 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3193 }
3194
3195 void skb_queue_purge_reason(struct sk_buff_head *list,
3196 enum skb_drop_reason reason);
3197
skb_queue_purge(struct sk_buff_head * list)3198 static inline void skb_queue_purge(struct sk_buff_head *list)
3199 {
3200 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3201 }
3202
3203 unsigned int skb_rbtree_purge(struct rb_root *root);
3204 void skb_errqueue_purge(struct sk_buff_head *list);
3205
3206 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3207
3208 /**
3209 * netdev_alloc_frag - allocate a page fragment
3210 * @fragsz: fragment size
3211 *
3212 * Allocates a frag from a page for receive buffer.
3213 * Uses GFP_ATOMIC allocations.
3214 */
netdev_alloc_frag(unsigned int fragsz)3215 static inline void *netdev_alloc_frag(unsigned int fragsz)
3216 {
3217 return __netdev_alloc_frag_align(fragsz, ~0u);
3218 }
3219
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3220 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3221 unsigned int align)
3222 {
3223 WARN_ON_ONCE(!is_power_of_2(align));
3224 return __netdev_alloc_frag_align(fragsz, -align);
3225 }
3226
3227 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3228 gfp_t gfp_mask);
3229
3230 /**
3231 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3232 * @dev: network device to receive on
3233 * @length: length to allocate
3234 *
3235 * Allocate a new &sk_buff and assign it a usage count of one. The
3236 * buffer has unspecified headroom built in. Users should allocate
3237 * the headroom they think they need without accounting for the
3238 * built in space. The built in space is used for optimisations.
3239 *
3240 * %NULL is returned if there is no free memory. Although this function
3241 * allocates memory it can be called from an interrupt.
3242 */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3243 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3244 unsigned int length)
3245 {
3246 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3247 }
3248
3249 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3250 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3251 gfp_t gfp_mask)
3252 {
3253 return __netdev_alloc_skb(NULL, length, gfp_mask);
3254 }
3255
3256 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3257 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3258 {
3259 return netdev_alloc_skb(NULL, length);
3260 }
3261
3262
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3263 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3264 unsigned int length, gfp_t gfp)
3265 {
3266 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3267
3268 if (NET_IP_ALIGN && skb)
3269 skb_reserve(skb, NET_IP_ALIGN);
3270 return skb;
3271 }
3272
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3273 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3274 unsigned int length)
3275 {
3276 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3277 }
3278
skb_free_frag(void * addr)3279 static inline void skb_free_frag(void *addr)
3280 {
3281 page_frag_free(addr);
3282 }
3283
3284 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3285
napi_alloc_frag(unsigned int fragsz)3286 static inline void *napi_alloc_frag(unsigned int fragsz)
3287 {
3288 return __napi_alloc_frag_align(fragsz, ~0u);
3289 }
3290
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3291 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3292 unsigned int align)
3293 {
3294 WARN_ON_ONCE(!is_power_of_2(align));
3295 return __napi_alloc_frag_align(fragsz, -align);
3296 }
3297
3298 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3299 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)3300 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3301 unsigned int length)
3302 {
3303 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3304 }
3305 void napi_consume_skb(struct sk_buff *skb, int budget);
3306
3307 void napi_skb_free_stolen_head(struct sk_buff *skb);
3308 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3309
3310 /**
3311 * __dev_alloc_pages - allocate page for network Rx
3312 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3313 * @order: size of the allocation
3314 *
3315 * Allocate a new page.
3316 *
3317 * %NULL is returned if there is no free memory.
3318 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)3319 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3320 unsigned int order)
3321 {
3322 /* This piece of code contains several assumptions.
3323 * 1. This is for device Rx, therefor a cold page is preferred.
3324 * 2. The expectation is the user wants a compound page.
3325 * 3. If requesting a order 0 page it will not be compound
3326 * due to the check to see if order has a value in prep_new_page
3327 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3328 * code in gfp_to_alloc_flags that should be enforcing this.
3329 */
3330 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3331
3332 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3333 }
3334
dev_alloc_pages(unsigned int order)3335 static inline struct page *dev_alloc_pages(unsigned int order)
3336 {
3337 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3338 }
3339
3340 /**
3341 * __dev_alloc_page - allocate a page for network Rx
3342 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3343 *
3344 * Allocate a new page.
3345 *
3346 * %NULL is returned if there is no free memory.
3347 */
__dev_alloc_page(gfp_t gfp_mask)3348 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3349 {
3350 return __dev_alloc_pages(gfp_mask, 0);
3351 }
3352
dev_alloc_page(void)3353 static inline struct page *dev_alloc_page(void)
3354 {
3355 return dev_alloc_pages(0);
3356 }
3357
3358 /**
3359 * dev_page_is_reusable - check whether a page can be reused for network Rx
3360 * @page: the page to test
3361 *
3362 * A page shouldn't be considered for reusing/recycling if it was allocated
3363 * under memory pressure or at a distant memory node.
3364 *
3365 * Returns false if this page should be returned to page allocator, true
3366 * otherwise.
3367 */
dev_page_is_reusable(const struct page * page)3368 static inline bool dev_page_is_reusable(const struct page *page)
3369 {
3370 return likely(page_to_nid(page) == numa_mem_id() &&
3371 !page_is_pfmemalloc(page));
3372 }
3373
3374 /**
3375 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3376 * @page: The page that was allocated from skb_alloc_page
3377 * @skb: The skb that may need pfmemalloc set
3378 */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3379 static inline void skb_propagate_pfmemalloc(const struct page *page,
3380 struct sk_buff *skb)
3381 {
3382 if (page_is_pfmemalloc(page))
3383 skb->pfmemalloc = true;
3384 }
3385
3386 /**
3387 * skb_frag_off() - Returns the offset of a skb fragment
3388 * @frag: the paged fragment
3389 */
skb_frag_off(const skb_frag_t * frag)3390 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3391 {
3392 return frag->bv_offset;
3393 }
3394
3395 /**
3396 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3397 * @frag: skb fragment
3398 * @delta: value to add
3399 */
skb_frag_off_add(skb_frag_t * frag,int delta)3400 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3401 {
3402 frag->bv_offset += delta;
3403 }
3404
3405 /**
3406 * skb_frag_off_set() - Sets the offset of a skb fragment
3407 * @frag: skb fragment
3408 * @offset: offset of fragment
3409 */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3410 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3411 {
3412 frag->bv_offset = offset;
3413 }
3414
3415 /**
3416 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3417 * @fragto: skb fragment where offset is set
3418 * @fragfrom: skb fragment offset is copied from
3419 */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3420 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3421 const skb_frag_t *fragfrom)
3422 {
3423 fragto->bv_offset = fragfrom->bv_offset;
3424 }
3425
3426 /**
3427 * skb_frag_page - retrieve the page referred to by a paged fragment
3428 * @frag: the paged fragment
3429 *
3430 * Returns the &struct page associated with @frag.
3431 */
skb_frag_page(const skb_frag_t * frag)3432 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3433 {
3434 return frag->bv_page;
3435 }
3436
3437 /**
3438 * __skb_frag_ref - take an addition reference on a paged fragment.
3439 * @frag: the paged fragment
3440 *
3441 * Takes an additional reference on the paged fragment @frag.
3442 */
__skb_frag_ref(skb_frag_t * frag)3443 static inline void __skb_frag_ref(skb_frag_t *frag)
3444 {
3445 get_page(skb_frag_page(frag));
3446 }
3447
3448 /**
3449 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3450 * @skb: the buffer
3451 * @f: the fragment offset.
3452 *
3453 * Takes an additional reference on the @f'th paged fragment of @skb.
3454 */
skb_frag_ref(struct sk_buff * skb,int f)3455 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3456 {
3457 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3458 }
3459
3460 bool napi_pp_put_page(struct page *page, bool napi_safe);
3461
3462 static inline void
skb_page_unref(const struct sk_buff * skb,struct page * page,bool napi_safe)3463 skb_page_unref(const struct sk_buff *skb, struct page *page, bool napi_safe)
3464 {
3465 #ifdef CONFIG_PAGE_POOL
3466 if (skb->pp_recycle && napi_pp_put_page(page, napi_safe))
3467 return;
3468 #endif
3469 put_page(page);
3470 }
3471
3472 static inline void
napi_frag_unref(skb_frag_t * frag,bool recycle,bool napi_safe)3473 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3474 {
3475 struct page *page = skb_frag_page(frag);
3476
3477 #ifdef CONFIG_PAGE_POOL
3478 if (recycle && napi_pp_put_page(page, napi_safe))
3479 return;
3480 #endif
3481 put_page(page);
3482 }
3483
3484 /**
3485 * __skb_frag_unref - release a reference on a paged fragment.
3486 * @frag: the paged fragment
3487 * @recycle: recycle the page if allocated via page_pool
3488 *
3489 * Releases a reference on the paged fragment @frag
3490 * or recycles the page via the page_pool API.
3491 */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3492 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3493 {
3494 napi_frag_unref(frag, recycle, false);
3495 }
3496
3497 /**
3498 * skb_frag_unref - release a reference on a paged fragment of an skb.
3499 * @skb: the buffer
3500 * @f: the fragment offset
3501 *
3502 * Releases a reference on the @f'th paged fragment of @skb.
3503 */
skb_frag_unref(struct sk_buff * skb,int f)3504 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3505 {
3506 struct skb_shared_info *shinfo = skb_shinfo(skb);
3507
3508 if (!skb_zcopy_managed(skb))
3509 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3510 }
3511
3512 /**
3513 * skb_frag_address - gets the address of the data contained in a paged fragment
3514 * @frag: the paged fragment buffer
3515 *
3516 * Returns the address of the data within @frag. The page must already
3517 * be mapped.
3518 */
skb_frag_address(const skb_frag_t * frag)3519 static inline void *skb_frag_address(const skb_frag_t *frag)
3520 {
3521 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3522 }
3523
3524 /**
3525 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3526 * @frag: the paged fragment buffer
3527 *
3528 * Returns the address of the data within @frag. Checks that the page
3529 * is mapped and returns %NULL otherwise.
3530 */
skb_frag_address_safe(const skb_frag_t * frag)3531 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3532 {
3533 void *ptr = page_address(skb_frag_page(frag));
3534 if (unlikely(!ptr))
3535 return NULL;
3536
3537 return ptr + skb_frag_off(frag);
3538 }
3539
3540 /**
3541 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3542 * @fragto: skb fragment where page is set
3543 * @fragfrom: skb fragment page is copied from
3544 */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3545 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3546 const skb_frag_t *fragfrom)
3547 {
3548 fragto->bv_page = fragfrom->bv_page;
3549 }
3550
3551 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3552
3553 /**
3554 * skb_frag_dma_map - maps a paged fragment via the DMA API
3555 * @dev: the device to map the fragment to
3556 * @frag: the paged fragment to map
3557 * @offset: the offset within the fragment (starting at the
3558 * fragment's own offset)
3559 * @size: the number of bytes to map
3560 * @dir: the direction of the mapping (``PCI_DMA_*``)
3561 *
3562 * Maps the page associated with @frag to @device.
3563 */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3564 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3565 const skb_frag_t *frag,
3566 size_t offset, size_t size,
3567 enum dma_data_direction dir)
3568 {
3569 return dma_map_page(dev, skb_frag_page(frag),
3570 skb_frag_off(frag) + offset, size, dir);
3571 }
3572
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3573 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3574 gfp_t gfp_mask)
3575 {
3576 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3577 }
3578
3579
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3580 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3581 gfp_t gfp_mask)
3582 {
3583 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3584 }
3585
3586
3587 /**
3588 * skb_clone_writable - is the header of a clone writable
3589 * @skb: buffer to check
3590 * @len: length up to which to write
3591 *
3592 * Returns true if modifying the header part of the cloned buffer
3593 * does not requires the data to be copied.
3594 */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3595 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3596 {
3597 return !skb_header_cloned(skb) &&
3598 skb_headroom(skb) + len <= skb->hdr_len;
3599 }
3600
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3601 static inline int skb_try_make_writable(struct sk_buff *skb,
3602 unsigned int write_len)
3603 {
3604 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3605 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3606 }
3607
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3608 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3609 int cloned)
3610 {
3611 int delta = 0;
3612
3613 if (headroom > skb_headroom(skb))
3614 delta = headroom - skb_headroom(skb);
3615
3616 if (delta || cloned)
3617 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3618 GFP_ATOMIC);
3619 return 0;
3620 }
3621
3622 /**
3623 * skb_cow - copy header of skb when it is required
3624 * @skb: buffer to cow
3625 * @headroom: needed headroom
3626 *
3627 * If the skb passed lacks sufficient headroom or its data part
3628 * is shared, data is reallocated. If reallocation fails, an error
3629 * is returned and original skb is not changed.
3630 *
3631 * The result is skb with writable area skb->head...skb->tail
3632 * and at least @headroom of space at head.
3633 */
skb_cow(struct sk_buff * skb,unsigned int headroom)3634 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3635 {
3636 return __skb_cow(skb, headroom, skb_cloned(skb));
3637 }
3638
3639 /**
3640 * skb_cow_head - skb_cow but only making the head writable
3641 * @skb: buffer to cow
3642 * @headroom: needed headroom
3643 *
3644 * This function is identical to skb_cow except that we replace the
3645 * skb_cloned check by skb_header_cloned. It should be used when
3646 * you only need to push on some header and do not need to modify
3647 * the data.
3648 */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3649 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3650 {
3651 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3652 }
3653
3654 /**
3655 * skb_padto - pad an skbuff up to a minimal size
3656 * @skb: buffer to pad
3657 * @len: minimal length
3658 *
3659 * Pads up a buffer to ensure the trailing bytes exist and are
3660 * blanked. If the buffer already contains sufficient data it
3661 * is untouched. Otherwise it is extended. Returns zero on
3662 * success. The skb is freed on error.
3663 */
skb_padto(struct sk_buff * skb,unsigned int len)3664 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3665 {
3666 unsigned int size = skb->len;
3667 if (likely(size >= len))
3668 return 0;
3669 return skb_pad(skb, len - size);
3670 }
3671
3672 /**
3673 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3674 * @skb: buffer to pad
3675 * @len: minimal length
3676 * @free_on_error: free buffer on error
3677 *
3678 * Pads up a buffer to ensure the trailing bytes exist and are
3679 * blanked. If the buffer already contains sufficient data it
3680 * is untouched. Otherwise it is extended. Returns zero on
3681 * success. The skb is freed on error if @free_on_error is true.
3682 */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3683 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3684 unsigned int len,
3685 bool free_on_error)
3686 {
3687 unsigned int size = skb->len;
3688
3689 if (unlikely(size < len)) {
3690 len -= size;
3691 if (__skb_pad(skb, len, free_on_error))
3692 return -ENOMEM;
3693 __skb_put(skb, len);
3694 }
3695 return 0;
3696 }
3697
3698 /**
3699 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3700 * @skb: buffer to pad
3701 * @len: minimal length
3702 *
3703 * Pads up a buffer to ensure the trailing bytes exist and are
3704 * blanked. If the buffer already contains sufficient data it
3705 * is untouched. Otherwise it is extended. Returns zero on
3706 * success. The skb is freed on error.
3707 */
skb_put_padto(struct sk_buff * skb,unsigned int len)3708 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3709 {
3710 return __skb_put_padto(skb, len, true);
3711 }
3712
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3713 static inline int skb_add_data(struct sk_buff *skb,
3714 struct iov_iter *from, int copy)
3715 {
3716 const int off = skb->len;
3717
3718 if (skb->ip_summed == CHECKSUM_NONE) {
3719 __wsum csum = 0;
3720 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3721 &csum, from)) {
3722 skb->csum = csum_block_add(skb->csum, csum, off);
3723 return 0;
3724 }
3725 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3726 return 0;
3727
3728 __skb_trim(skb, off);
3729 return -EFAULT;
3730 }
3731
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3732 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3733 const struct page *page, int off)
3734 {
3735 if (skb_zcopy(skb))
3736 return false;
3737 if (i) {
3738 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3739
3740 return page == skb_frag_page(frag) &&
3741 off == skb_frag_off(frag) + skb_frag_size(frag);
3742 }
3743 return false;
3744 }
3745
__skb_linearize(struct sk_buff * skb)3746 static inline int __skb_linearize(struct sk_buff *skb)
3747 {
3748 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3749 }
3750
3751 /**
3752 * skb_linearize - convert paged skb to linear one
3753 * @skb: buffer to linarize
3754 *
3755 * If there is no free memory -ENOMEM is returned, otherwise zero
3756 * is returned and the old skb data released.
3757 */
skb_linearize(struct sk_buff * skb)3758 static inline int skb_linearize(struct sk_buff *skb)
3759 {
3760 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3761 }
3762
3763 /**
3764 * skb_has_shared_frag - can any frag be overwritten
3765 * @skb: buffer to test
3766 *
3767 * Return true if the skb has at least one frag that might be modified
3768 * by an external entity (as in vmsplice()/sendfile())
3769 */
skb_has_shared_frag(const struct sk_buff * skb)3770 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3771 {
3772 return skb_is_nonlinear(skb) &&
3773 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3774 }
3775
3776 /**
3777 * skb_linearize_cow - make sure skb is linear and writable
3778 * @skb: buffer to process
3779 *
3780 * If there is no free memory -ENOMEM is returned, otherwise zero
3781 * is returned and the old skb data released.
3782 */
skb_linearize_cow(struct sk_buff * skb)3783 static inline int skb_linearize_cow(struct sk_buff *skb)
3784 {
3785 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3786 __skb_linearize(skb) : 0;
3787 }
3788
3789 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3790 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3791 unsigned int off)
3792 {
3793 if (skb->ip_summed == CHECKSUM_COMPLETE)
3794 skb->csum = csum_block_sub(skb->csum,
3795 csum_partial(start, len, 0), off);
3796 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3797 skb_checksum_start_offset(skb) < 0)
3798 skb->ip_summed = CHECKSUM_NONE;
3799 }
3800
3801 /**
3802 * skb_postpull_rcsum - update checksum for received skb after pull
3803 * @skb: buffer to update
3804 * @start: start of data before pull
3805 * @len: length of data pulled
3806 *
3807 * After doing a pull on a received packet, you need to call this to
3808 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3809 * CHECKSUM_NONE so that it can be recomputed from scratch.
3810 */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3811 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3812 const void *start, unsigned int len)
3813 {
3814 if (skb->ip_summed == CHECKSUM_COMPLETE)
3815 skb->csum = wsum_negate(csum_partial(start, len,
3816 wsum_negate(skb->csum)));
3817 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3818 skb_checksum_start_offset(skb) < 0)
3819 skb->ip_summed = CHECKSUM_NONE;
3820 }
3821
3822 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3823 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3824 unsigned int off)
3825 {
3826 if (skb->ip_summed == CHECKSUM_COMPLETE)
3827 skb->csum = csum_block_add(skb->csum,
3828 csum_partial(start, len, 0), off);
3829 }
3830
3831 /**
3832 * skb_postpush_rcsum - update checksum for received skb after push
3833 * @skb: buffer to update
3834 * @start: start of data after push
3835 * @len: length of data pushed
3836 *
3837 * After doing a push on a received packet, you need to call this to
3838 * update the CHECKSUM_COMPLETE checksum.
3839 */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3840 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3841 const void *start, unsigned int len)
3842 {
3843 __skb_postpush_rcsum(skb, start, len, 0);
3844 }
3845
3846 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3847
3848 /**
3849 * skb_push_rcsum - push skb and update receive checksum
3850 * @skb: buffer to update
3851 * @len: length of data pulled
3852 *
3853 * This function performs an skb_push on the packet and updates
3854 * the CHECKSUM_COMPLETE checksum. It should be used on
3855 * receive path processing instead of skb_push unless you know
3856 * that the checksum difference is zero (e.g., a valid IP header)
3857 * or you are setting ip_summed to CHECKSUM_NONE.
3858 */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3859 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3860 {
3861 skb_push(skb, len);
3862 skb_postpush_rcsum(skb, skb->data, len);
3863 return skb->data;
3864 }
3865
3866 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3867 /**
3868 * pskb_trim_rcsum - trim received skb and update checksum
3869 * @skb: buffer to trim
3870 * @len: new length
3871 *
3872 * This is exactly the same as pskb_trim except that it ensures the
3873 * checksum of received packets are still valid after the operation.
3874 * It can change skb pointers.
3875 */
3876
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3877 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3878 {
3879 if (likely(len >= skb->len))
3880 return 0;
3881 return pskb_trim_rcsum_slow(skb, len);
3882 }
3883
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3884 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3885 {
3886 if (skb->ip_summed == CHECKSUM_COMPLETE)
3887 skb->ip_summed = CHECKSUM_NONE;
3888 __skb_trim(skb, len);
3889 return 0;
3890 }
3891
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3892 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3893 {
3894 if (skb->ip_summed == CHECKSUM_COMPLETE)
3895 skb->ip_summed = CHECKSUM_NONE;
3896 return __skb_grow(skb, len);
3897 }
3898
3899 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3900 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3901 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3902 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3903 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3904
3905 #define skb_queue_walk(queue, skb) \
3906 for (skb = (queue)->next; \
3907 skb != (struct sk_buff *)(queue); \
3908 skb = skb->next)
3909
3910 #define skb_queue_walk_safe(queue, skb, tmp) \
3911 for (skb = (queue)->next, tmp = skb->next; \
3912 skb != (struct sk_buff *)(queue); \
3913 skb = tmp, tmp = skb->next)
3914
3915 #define skb_queue_walk_from(queue, skb) \
3916 for (; skb != (struct sk_buff *)(queue); \
3917 skb = skb->next)
3918
3919 #define skb_rbtree_walk(skb, root) \
3920 for (skb = skb_rb_first(root); skb != NULL; \
3921 skb = skb_rb_next(skb))
3922
3923 #define skb_rbtree_walk_from(skb) \
3924 for (; skb != NULL; \
3925 skb = skb_rb_next(skb))
3926
3927 #define skb_rbtree_walk_from_safe(skb, tmp) \
3928 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3929 skb = tmp)
3930
3931 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3932 for (tmp = skb->next; \
3933 skb != (struct sk_buff *)(queue); \
3934 skb = tmp, tmp = skb->next)
3935
3936 #define skb_queue_reverse_walk(queue, skb) \
3937 for (skb = (queue)->prev; \
3938 skb != (struct sk_buff *)(queue); \
3939 skb = skb->prev)
3940
3941 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3942 for (skb = (queue)->prev, tmp = skb->prev; \
3943 skb != (struct sk_buff *)(queue); \
3944 skb = tmp, tmp = skb->prev)
3945
3946 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3947 for (tmp = skb->prev; \
3948 skb != (struct sk_buff *)(queue); \
3949 skb = tmp, tmp = skb->prev)
3950
skb_has_frag_list(const struct sk_buff * skb)3951 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3952 {
3953 return skb_shinfo(skb)->frag_list != NULL;
3954 }
3955
skb_frag_list_init(struct sk_buff * skb)3956 static inline void skb_frag_list_init(struct sk_buff *skb)
3957 {
3958 skb_shinfo(skb)->frag_list = NULL;
3959 }
3960
3961 #define skb_walk_frags(skb, iter) \
3962 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3963
3964
3965 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3966 int *err, long *timeo_p,
3967 const struct sk_buff *skb);
3968 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3969 struct sk_buff_head *queue,
3970 unsigned int flags,
3971 int *off, int *err,
3972 struct sk_buff **last);
3973 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3974 struct sk_buff_head *queue,
3975 unsigned int flags, int *off, int *err,
3976 struct sk_buff **last);
3977 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3978 struct sk_buff_head *sk_queue,
3979 unsigned int flags, int *off, int *err);
3980 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3981 __poll_t datagram_poll(struct file *file, struct socket *sock,
3982 struct poll_table_struct *wait);
3983 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3984 struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3985 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3986 struct msghdr *msg, int size)
3987 {
3988 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3989 }
3990 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3991 struct msghdr *msg);
3992 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3993 struct iov_iter *to, int len,
3994 struct ahash_request *hash);
3995 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3996 struct iov_iter *from, int len);
3997 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3998 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3999 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)4000 static inline void skb_free_datagram_locked(struct sock *sk,
4001 struct sk_buff *skb)
4002 {
4003 __skb_free_datagram_locked(sk, skb, 0);
4004 }
4005 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4006 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4007 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4008 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4009 int len);
4010 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4011 struct pipe_inode_info *pipe, unsigned int len,
4012 unsigned int flags);
4013 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4014 int len);
4015 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4016 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4017 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4018 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4019 int len, int hlen);
4020 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4021 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4022 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4023 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4024 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4025 unsigned int offset);
4026 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4027 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4028 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4029 int skb_vlan_pop(struct sk_buff *skb);
4030 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4031 int skb_eth_pop(struct sk_buff *skb);
4032 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4033 const unsigned char *src);
4034 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4035 int mac_len, bool ethernet);
4036 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4037 bool ethernet);
4038 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4039 int skb_mpls_dec_ttl(struct sk_buff *skb);
4040 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4041 gfp_t gfp);
4042
memcpy_from_msg(void * data,struct msghdr * msg,int len)4043 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4044 {
4045 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4046 }
4047
memcpy_to_msg(struct msghdr * msg,void * data,int len)4048 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4049 {
4050 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4051 }
4052
4053 struct skb_checksum_ops {
4054 __wsum (*update)(const void *mem, int len, __wsum wsum);
4055 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4056 };
4057
4058 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4059
4060 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4061 __wsum csum, const struct skb_checksum_ops *ops);
4062 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4063 __wsum csum);
4064
4065 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4066 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4067 const void *data, int hlen, void *buffer)
4068 {
4069 if (likely(hlen - offset >= len))
4070 return (void *)data + offset;
4071
4072 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4073 return NULL;
4074
4075 return buffer;
4076 }
4077
4078 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4079 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4080 {
4081 return __skb_header_pointer(skb, offset, len, skb->data,
4082 skb_headlen(skb), buffer);
4083 }
4084
4085 static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4086 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4087 {
4088 if (likely(skb_headlen(skb) - offset >= len))
4089 return skb->data + offset;
4090 return NULL;
4091 }
4092
4093 /**
4094 * skb_needs_linearize - check if we need to linearize a given skb
4095 * depending on the given device features.
4096 * @skb: socket buffer to check
4097 * @features: net device features
4098 *
4099 * Returns true if either:
4100 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4101 * 2. skb is fragmented and the device does not support SG.
4102 */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4103 static inline bool skb_needs_linearize(struct sk_buff *skb,
4104 netdev_features_t features)
4105 {
4106 return skb_is_nonlinear(skb) &&
4107 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4108 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4109 }
4110
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4111 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4112 void *to,
4113 const unsigned int len)
4114 {
4115 memcpy(to, skb->data, len);
4116 }
4117
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4118 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4119 const int offset, void *to,
4120 const unsigned int len)
4121 {
4122 memcpy(to, skb->data + offset, len);
4123 }
4124
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4125 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4126 const void *from,
4127 const unsigned int len)
4128 {
4129 memcpy(skb->data, from, len);
4130 }
4131
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4132 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4133 const int offset,
4134 const void *from,
4135 const unsigned int len)
4136 {
4137 memcpy(skb->data + offset, from, len);
4138 }
4139
4140 void skb_init(void);
4141
skb_get_ktime(const struct sk_buff * skb)4142 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4143 {
4144 return skb->tstamp;
4145 }
4146
4147 /**
4148 * skb_get_timestamp - get timestamp from a skb
4149 * @skb: skb to get stamp from
4150 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4151 *
4152 * Timestamps are stored in the skb as offsets to a base timestamp.
4153 * This function converts the offset back to a struct timeval and stores
4154 * it in stamp.
4155 */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4156 static inline void skb_get_timestamp(const struct sk_buff *skb,
4157 struct __kernel_old_timeval *stamp)
4158 {
4159 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4160 }
4161
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4162 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4163 struct __kernel_sock_timeval *stamp)
4164 {
4165 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4166
4167 stamp->tv_sec = ts.tv_sec;
4168 stamp->tv_usec = ts.tv_nsec / 1000;
4169 }
4170
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4171 static inline void skb_get_timestampns(const struct sk_buff *skb,
4172 struct __kernel_old_timespec *stamp)
4173 {
4174 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4175
4176 stamp->tv_sec = ts.tv_sec;
4177 stamp->tv_nsec = ts.tv_nsec;
4178 }
4179
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4180 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4181 struct __kernel_timespec *stamp)
4182 {
4183 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4184
4185 stamp->tv_sec = ts.tv_sec;
4186 stamp->tv_nsec = ts.tv_nsec;
4187 }
4188
__net_timestamp(struct sk_buff * skb)4189 static inline void __net_timestamp(struct sk_buff *skb)
4190 {
4191 skb->tstamp = ktime_get_real();
4192 skb->mono_delivery_time = 0;
4193 }
4194
net_timedelta(ktime_t t)4195 static inline ktime_t net_timedelta(ktime_t t)
4196 {
4197 return ktime_sub(ktime_get_real(), t);
4198 }
4199
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,bool mono)4200 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4201 bool mono)
4202 {
4203 skb->tstamp = kt;
4204 skb->mono_delivery_time = kt && mono;
4205 }
4206
4207 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4208
4209 /* It is used in the ingress path to clear the delivery_time.
4210 * If needed, set the skb->tstamp to the (rcv) timestamp.
4211 */
skb_clear_delivery_time(struct sk_buff * skb)4212 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4213 {
4214 if (skb->mono_delivery_time) {
4215 skb->mono_delivery_time = 0;
4216 if (static_branch_unlikely(&netstamp_needed_key))
4217 skb->tstamp = ktime_get_real();
4218 else
4219 skb->tstamp = 0;
4220 }
4221 }
4222
skb_clear_tstamp(struct sk_buff * skb)4223 static inline void skb_clear_tstamp(struct sk_buff *skb)
4224 {
4225 if (skb->mono_delivery_time)
4226 return;
4227
4228 skb->tstamp = 0;
4229 }
4230
skb_tstamp(const struct sk_buff * skb)4231 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4232 {
4233 if (skb->mono_delivery_time)
4234 return 0;
4235
4236 return skb->tstamp;
4237 }
4238
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4239 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4240 {
4241 if (!skb->mono_delivery_time && skb->tstamp)
4242 return skb->tstamp;
4243
4244 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4245 return ktime_get_real();
4246
4247 return 0;
4248 }
4249
skb_metadata_len(const struct sk_buff * skb)4250 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4251 {
4252 return skb_shinfo(skb)->meta_len;
4253 }
4254
skb_metadata_end(const struct sk_buff * skb)4255 static inline void *skb_metadata_end(const struct sk_buff *skb)
4256 {
4257 return skb_mac_header(skb);
4258 }
4259
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4260 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4261 const struct sk_buff *skb_b,
4262 u8 meta_len)
4263 {
4264 const void *a = skb_metadata_end(skb_a);
4265 const void *b = skb_metadata_end(skb_b);
4266 /* Using more efficient varaiant than plain call to memcmp(). */
4267 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4268 u64 diffs = 0;
4269
4270 switch (meta_len) {
4271 #define __it(x, op) (x -= sizeof(u##op))
4272 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4273 case 32: diffs |= __it_diff(a, b, 64);
4274 fallthrough;
4275 case 24: diffs |= __it_diff(a, b, 64);
4276 fallthrough;
4277 case 16: diffs |= __it_diff(a, b, 64);
4278 fallthrough;
4279 case 8: diffs |= __it_diff(a, b, 64);
4280 break;
4281 case 28: diffs |= __it_diff(a, b, 64);
4282 fallthrough;
4283 case 20: diffs |= __it_diff(a, b, 64);
4284 fallthrough;
4285 case 12: diffs |= __it_diff(a, b, 64);
4286 fallthrough;
4287 case 4: diffs |= __it_diff(a, b, 32);
4288 break;
4289 }
4290 return diffs;
4291 #else
4292 return memcmp(a - meta_len, b - meta_len, meta_len);
4293 #endif
4294 }
4295
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4296 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4297 const struct sk_buff *skb_b)
4298 {
4299 u8 len_a = skb_metadata_len(skb_a);
4300 u8 len_b = skb_metadata_len(skb_b);
4301
4302 if (!(len_a | len_b))
4303 return false;
4304
4305 return len_a != len_b ?
4306 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4307 }
4308
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4309 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4310 {
4311 skb_shinfo(skb)->meta_len = meta_len;
4312 }
4313
skb_metadata_clear(struct sk_buff * skb)4314 static inline void skb_metadata_clear(struct sk_buff *skb)
4315 {
4316 skb_metadata_set(skb, 0);
4317 }
4318
4319 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4320
4321 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4322
4323 void skb_clone_tx_timestamp(struct sk_buff *skb);
4324 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4325
4326 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4327
skb_clone_tx_timestamp(struct sk_buff * skb)4328 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4329 {
4330 }
4331
skb_defer_rx_timestamp(struct sk_buff * skb)4332 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4333 {
4334 return false;
4335 }
4336
4337 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4338
4339 /**
4340 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4341 *
4342 * PHY drivers may accept clones of transmitted packets for
4343 * timestamping via their phy_driver.txtstamp method. These drivers
4344 * must call this function to return the skb back to the stack with a
4345 * timestamp.
4346 *
4347 * @skb: clone of the original outgoing packet
4348 * @hwtstamps: hardware time stamps
4349 *
4350 */
4351 void skb_complete_tx_timestamp(struct sk_buff *skb,
4352 struct skb_shared_hwtstamps *hwtstamps);
4353
4354 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4355 struct skb_shared_hwtstamps *hwtstamps,
4356 struct sock *sk, int tstype);
4357
4358 /**
4359 * skb_tstamp_tx - queue clone of skb with send time stamps
4360 * @orig_skb: the original outgoing packet
4361 * @hwtstamps: hardware time stamps, may be NULL if not available
4362 *
4363 * If the skb has a socket associated, then this function clones the
4364 * skb (thus sharing the actual data and optional structures), stores
4365 * the optional hardware time stamping information (if non NULL) or
4366 * generates a software time stamp (otherwise), then queues the clone
4367 * to the error queue of the socket. Errors are silently ignored.
4368 */
4369 void skb_tstamp_tx(struct sk_buff *orig_skb,
4370 struct skb_shared_hwtstamps *hwtstamps);
4371
4372 /**
4373 * skb_tx_timestamp() - Driver hook for transmit timestamping
4374 *
4375 * Ethernet MAC Drivers should call this function in their hard_xmit()
4376 * function immediately before giving the sk_buff to the MAC hardware.
4377 *
4378 * Specifically, one should make absolutely sure that this function is
4379 * called before TX completion of this packet can trigger. Otherwise
4380 * the packet could potentially already be freed.
4381 *
4382 * @skb: A socket buffer.
4383 */
skb_tx_timestamp(struct sk_buff * skb)4384 static inline void skb_tx_timestamp(struct sk_buff *skb)
4385 {
4386 skb_clone_tx_timestamp(skb);
4387 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4388 skb_tstamp_tx(skb, NULL);
4389 }
4390
4391 /**
4392 * skb_complete_wifi_ack - deliver skb with wifi status
4393 *
4394 * @skb: the original outgoing packet
4395 * @acked: ack status
4396 *
4397 */
4398 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4399
4400 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4401 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4402
skb_csum_unnecessary(const struct sk_buff * skb)4403 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4404 {
4405 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4406 skb->csum_valid ||
4407 (skb->ip_summed == CHECKSUM_PARTIAL &&
4408 skb_checksum_start_offset(skb) >= 0));
4409 }
4410
4411 /**
4412 * skb_checksum_complete - Calculate checksum of an entire packet
4413 * @skb: packet to process
4414 *
4415 * This function calculates the checksum over the entire packet plus
4416 * the value of skb->csum. The latter can be used to supply the
4417 * checksum of a pseudo header as used by TCP/UDP. It returns the
4418 * checksum.
4419 *
4420 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4421 * this function can be used to verify that checksum on received
4422 * packets. In that case the function should return zero if the
4423 * checksum is correct. In particular, this function will return zero
4424 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4425 * hardware has already verified the correctness of the checksum.
4426 */
skb_checksum_complete(struct sk_buff * skb)4427 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4428 {
4429 return skb_csum_unnecessary(skb) ?
4430 0 : __skb_checksum_complete(skb);
4431 }
4432
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4433 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4434 {
4435 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4436 if (skb->csum_level == 0)
4437 skb->ip_summed = CHECKSUM_NONE;
4438 else
4439 skb->csum_level--;
4440 }
4441 }
4442
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4443 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4444 {
4445 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4446 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4447 skb->csum_level++;
4448 } else if (skb->ip_summed == CHECKSUM_NONE) {
4449 skb->ip_summed = CHECKSUM_UNNECESSARY;
4450 skb->csum_level = 0;
4451 }
4452 }
4453
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4454 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4455 {
4456 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4457 skb->ip_summed = CHECKSUM_NONE;
4458 skb->csum_level = 0;
4459 }
4460 }
4461
4462 /* Check if we need to perform checksum complete validation.
4463 *
4464 * Returns true if checksum complete is needed, false otherwise
4465 * (either checksum is unnecessary or zero checksum is allowed).
4466 */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4467 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4468 bool zero_okay,
4469 __sum16 check)
4470 {
4471 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4472 skb->csum_valid = 1;
4473 __skb_decr_checksum_unnecessary(skb);
4474 return false;
4475 }
4476
4477 return true;
4478 }
4479
4480 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4481 * in checksum_init.
4482 */
4483 #define CHECKSUM_BREAK 76
4484
4485 /* Unset checksum-complete
4486 *
4487 * Unset checksum complete can be done when packet is being modified
4488 * (uncompressed for instance) and checksum-complete value is
4489 * invalidated.
4490 */
skb_checksum_complete_unset(struct sk_buff * skb)4491 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4492 {
4493 if (skb->ip_summed == CHECKSUM_COMPLETE)
4494 skb->ip_summed = CHECKSUM_NONE;
4495 }
4496
4497 /* Validate (init) checksum based on checksum complete.
4498 *
4499 * Return values:
4500 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4501 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4502 * checksum is stored in skb->csum for use in __skb_checksum_complete
4503 * non-zero: value of invalid checksum
4504 *
4505 */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4506 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4507 bool complete,
4508 __wsum psum)
4509 {
4510 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4511 if (!csum_fold(csum_add(psum, skb->csum))) {
4512 skb->csum_valid = 1;
4513 return 0;
4514 }
4515 }
4516
4517 skb->csum = psum;
4518
4519 if (complete || skb->len <= CHECKSUM_BREAK) {
4520 __sum16 csum;
4521
4522 csum = __skb_checksum_complete(skb);
4523 skb->csum_valid = !csum;
4524 return csum;
4525 }
4526
4527 return 0;
4528 }
4529
null_compute_pseudo(struct sk_buff * skb,int proto)4530 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4531 {
4532 return 0;
4533 }
4534
4535 /* Perform checksum validate (init). Note that this is a macro since we only
4536 * want to calculate the pseudo header which is an input function if necessary.
4537 * First we try to validate without any computation (checksum unnecessary) and
4538 * then calculate based on checksum complete calling the function to compute
4539 * pseudo header.
4540 *
4541 * Return values:
4542 * 0: checksum is validated or try to in skb_checksum_complete
4543 * non-zero: value of invalid checksum
4544 */
4545 #define __skb_checksum_validate(skb, proto, complete, \
4546 zero_okay, check, compute_pseudo) \
4547 ({ \
4548 __sum16 __ret = 0; \
4549 skb->csum_valid = 0; \
4550 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4551 __ret = __skb_checksum_validate_complete(skb, \
4552 complete, compute_pseudo(skb, proto)); \
4553 __ret; \
4554 })
4555
4556 #define skb_checksum_init(skb, proto, compute_pseudo) \
4557 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4558
4559 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4560 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4561
4562 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4563 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4564
4565 #define skb_checksum_validate_zero_check(skb, proto, check, \
4566 compute_pseudo) \
4567 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4568
4569 #define skb_checksum_simple_validate(skb) \
4570 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4571
__skb_checksum_convert_check(struct sk_buff * skb)4572 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4573 {
4574 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4575 }
4576
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4577 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4578 {
4579 skb->csum = ~pseudo;
4580 skb->ip_summed = CHECKSUM_COMPLETE;
4581 }
4582
4583 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4584 do { \
4585 if (__skb_checksum_convert_check(skb)) \
4586 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4587 } while (0)
4588
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4589 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4590 u16 start, u16 offset)
4591 {
4592 skb->ip_summed = CHECKSUM_PARTIAL;
4593 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4594 skb->csum_offset = offset - start;
4595 }
4596
4597 /* Update skbuf and packet to reflect the remote checksum offload operation.
4598 * When called, ptr indicates the starting point for skb->csum when
4599 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4600 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4601 */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4602 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4603 int start, int offset, bool nopartial)
4604 {
4605 __wsum delta;
4606
4607 if (!nopartial) {
4608 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4609 return;
4610 }
4611
4612 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4613 __skb_checksum_complete(skb);
4614 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4615 }
4616
4617 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4618
4619 /* Adjust skb->csum since we changed the packet */
4620 skb->csum = csum_add(skb->csum, delta);
4621 }
4622
skb_nfct(const struct sk_buff * skb)4623 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4624 {
4625 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4626 return (void *)(skb->_nfct & NFCT_PTRMASK);
4627 #else
4628 return NULL;
4629 #endif
4630 }
4631
skb_get_nfct(const struct sk_buff * skb)4632 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4633 {
4634 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4635 return skb->_nfct;
4636 #else
4637 return 0UL;
4638 #endif
4639 }
4640
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4641 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4642 {
4643 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4644 skb->slow_gro |= !!nfct;
4645 skb->_nfct = nfct;
4646 #endif
4647 }
4648
4649 #ifdef CONFIG_SKB_EXTENSIONS
4650 enum skb_ext_id {
4651 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4652 SKB_EXT_BRIDGE_NF,
4653 #endif
4654 #ifdef CONFIG_XFRM
4655 SKB_EXT_SEC_PATH,
4656 #endif
4657 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4658 TC_SKB_EXT,
4659 #endif
4660 #if IS_ENABLED(CONFIG_MPTCP)
4661 SKB_EXT_MPTCP,
4662 #endif
4663 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4664 SKB_EXT_MCTP,
4665 #endif
4666 SKB_EXT_NUM, /* must be last */
4667 };
4668
4669 /**
4670 * struct skb_ext - sk_buff extensions
4671 * @refcnt: 1 on allocation, deallocated on 0
4672 * @offset: offset to add to @data to obtain extension address
4673 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4674 * @data: start of extension data, variable sized
4675 *
4676 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4677 * to use 'u8' types while allowing up to 2kb worth of extension data.
4678 */
4679 struct skb_ext {
4680 refcount_t refcnt;
4681 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4682 u8 chunks; /* same */
4683 char data[] __aligned(8);
4684 };
4685
4686 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4687 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4688 struct skb_ext *ext);
4689 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4690 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4691 void __skb_ext_put(struct skb_ext *ext);
4692
skb_ext_put(struct sk_buff * skb)4693 static inline void skb_ext_put(struct sk_buff *skb)
4694 {
4695 if (skb->active_extensions)
4696 __skb_ext_put(skb->extensions);
4697 }
4698
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4699 static inline void __skb_ext_copy(struct sk_buff *dst,
4700 const struct sk_buff *src)
4701 {
4702 dst->active_extensions = src->active_extensions;
4703
4704 if (src->active_extensions) {
4705 struct skb_ext *ext = src->extensions;
4706
4707 refcount_inc(&ext->refcnt);
4708 dst->extensions = ext;
4709 }
4710 }
4711
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4712 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4713 {
4714 skb_ext_put(dst);
4715 __skb_ext_copy(dst, src);
4716 }
4717
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4718 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4719 {
4720 return !!ext->offset[i];
4721 }
4722
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4723 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4724 {
4725 return skb->active_extensions & (1 << id);
4726 }
4727
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4728 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4729 {
4730 if (skb_ext_exist(skb, id))
4731 __skb_ext_del(skb, id);
4732 }
4733
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4734 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4735 {
4736 if (skb_ext_exist(skb, id)) {
4737 struct skb_ext *ext = skb->extensions;
4738
4739 return (void *)ext + (ext->offset[id] << 3);
4740 }
4741
4742 return NULL;
4743 }
4744
skb_ext_reset(struct sk_buff * skb)4745 static inline void skb_ext_reset(struct sk_buff *skb)
4746 {
4747 if (unlikely(skb->active_extensions)) {
4748 __skb_ext_put(skb->extensions);
4749 skb->active_extensions = 0;
4750 }
4751 }
4752
skb_has_extensions(struct sk_buff * skb)4753 static inline bool skb_has_extensions(struct sk_buff *skb)
4754 {
4755 return unlikely(skb->active_extensions);
4756 }
4757 #else
skb_ext_put(struct sk_buff * skb)4758 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4759 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4760 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4761 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4762 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4763 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4764 #endif /* CONFIG_SKB_EXTENSIONS */
4765
nf_reset_ct(struct sk_buff * skb)4766 static inline void nf_reset_ct(struct sk_buff *skb)
4767 {
4768 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4769 nf_conntrack_put(skb_nfct(skb));
4770 skb->_nfct = 0;
4771 #endif
4772 }
4773
nf_reset_trace(struct sk_buff * skb)4774 static inline void nf_reset_trace(struct sk_buff *skb)
4775 {
4776 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4777 skb->nf_trace = 0;
4778 #endif
4779 }
4780
ipvs_reset(struct sk_buff * skb)4781 static inline void ipvs_reset(struct sk_buff *skb)
4782 {
4783 #if IS_ENABLED(CONFIG_IP_VS)
4784 skb->ipvs_property = 0;
4785 #endif
4786 }
4787
4788 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4789 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4790 bool copy)
4791 {
4792 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4793 dst->_nfct = src->_nfct;
4794 nf_conntrack_get(skb_nfct(src));
4795 #endif
4796 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4797 if (copy)
4798 dst->nf_trace = src->nf_trace;
4799 #endif
4800 }
4801
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4802 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4803 {
4804 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4805 nf_conntrack_put(skb_nfct(dst));
4806 #endif
4807 dst->slow_gro = src->slow_gro;
4808 __nf_copy(dst, src, true);
4809 }
4810
4811 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4812 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4813 {
4814 to->secmark = from->secmark;
4815 }
4816
skb_init_secmark(struct sk_buff * skb)4817 static inline void skb_init_secmark(struct sk_buff *skb)
4818 {
4819 skb->secmark = 0;
4820 }
4821 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4822 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4823 { }
4824
skb_init_secmark(struct sk_buff * skb)4825 static inline void skb_init_secmark(struct sk_buff *skb)
4826 { }
4827 #endif
4828
secpath_exists(const struct sk_buff * skb)4829 static inline int secpath_exists(const struct sk_buff *skb)
4830 {
4831 #ifdef CONFIG_XFRM
4832 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4833 #else
4834 return 0;
4835 #endif
4836 }
4837
skb_irq_freeable(const struct sk_buff * skb)4838 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4839 {
4840 return !skb->destructor &&
4841 !secpath_exists(skb) &&
4842 !skb_nfct(skb) &&
4843 !skb->_skb_refdst &&
4844 !skb_has_frag_list(skb);
4845 }
4846
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4847 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4848 {
4849 skb->queue_mapping = queue_mapping;
4850 }
4851
skb_get_queue_mapping(const struct sk_buff * skb)4852 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4853 {
4854 return skb->queue_mapping;
4855 }
4856
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4857 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4858 {
4859 to->queue_mapping = from->queue_mapping;
4860 }
4861
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4862 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4863 {
4864 skb->queue_mapping = rx_queue + 1;
4865 }
4866
skb_get_rx_queue(const struct sk_buff * skb)4867 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4868 {
4869 return skb->queue_mapping - 1;
4870 }
4871
skb_rx_queue_recorded(const struct sk_buff * skb)4872 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4873 {
4874 return skb->queue_mapping != 0;
4875 }
4876
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4877 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4878 {
4879 skb->dst_pending_confirm = val;
4880 }
4881
skb_get_dst_pending_confirm(const struct sk_buff * skb)4882 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4883 {
4884 return skb->dst_pending_confirm != 0;
4885 }
4886
skb_sec_path(const struct sk_buff * skb)4887 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4888 {
4889 #ifdef CONFIG_XFRM
4890 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4891 #else
4892 return NULL;
4893 #endif
4894 }
4895
skb_is_gso(const struct sk_buff * skb)4896 static inline bool skb_is_gso(const struct sk_buff *skb)
4897 {
4898 return skb_shinfo(skb)->gso_size;
4899 }
4900
4901 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4902 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4903 {
4904 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4905 }
4906
4907 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4908 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4909 {
4910 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4911 }
4912
4913 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4914 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4915 {
4916 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4917 }
4918
skb_gso_reset(struct sk_buff * skb)4919 static inline void skb_gso_reset(struct sk_buff *skb)
4920 {
4921 skb_shinfo(skb)->gso_size = 0;
4922 skb_shinfo(skb)->gso_segs = 0;
4923 skb_shinfo(skb)->gso_type = 0;
4924 }
4925
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4926 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4927 u16 increment)
4928 {
4929 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4930 return;
4931 shinfo->gso_size += increment;
4932 }
4933
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4934 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4935 u16 decrement)
4936 {
4937 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4938 return;
4939 shinfo->gso_size -= decrement;
4940 }
4941
4942 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4943
skb_warn_if_lro(const struct sk_buff * skb)4944 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4945 {
4946 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4947 * wanted then gso_type will be set. */
4948 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4949
4950 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4951 unlikely(shinfo->gso_type == 0)) {
4952 __skb_warn_lro_forwarding(skb);
4953 return true;
4954 }
4955 return false;
4956 }
4957
skb_forward_csum(struct sk_buff * skb)4958 static inline void skb_forward_csum(struct sk_buff *skb)
4959 {
4960 /* Unfortunately we don't support this one. Any brave souls? */
4961 if (skb->ip_summed == CHECKSUM_COMPLETE)
4962 skb->ip_summed = CHECKSUM_NONE;
4963 }
4964
4965 /**
4966 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4967 * @skb: skb to check
4968 *
4969 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4970 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4971 * use this helper, to document places where we make this assertion.
4972 */
skb_checksum_none_assert(const struct sk_buff * skb)4973 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4974 {
4975 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4976 }
4977
4978 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4979
4980 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4981 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4982 unsigned int transport_len,
4983 __sum16(*skb_chkf)(struct sk_buff *skb));
4984
4985 /**
4986 * skb_head_is_locked - Determine if the skb->head is locked down
4987 * @skb: skb to check
4988 *
4989 * The head on skbs build around a head frag can be removed if they are
4990 * not cloned. This function returns true if the skb head is locked down
4991 * due to either being allocated via kmalloc, or by being a clone with
4992 * multiple references to the head.
4993 */
skb_head_is_locked(const struct sk_buff * skb)4994 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4995 {
4996 return !skb->head_frag || skb_cloned(skb);
4997 }
4998
4999 /* Local Checksum Offload.
5000 * Compute outer checksum based on the assumption that the
5001 * inner checksum will be offloaded later.
5002 * See Documentation/networking/checksum-offloads.rst for
5003 * explanation of how this works.
5004 * Fill in outer checksum adjustment (e.g. with sum of outer
5005 * pseudo-header) before calling.
5006 * Also ensure that inner checksum is in linear data area.
5007 */
lco_csum(struct sk_buff * skb)5008 static inline __wsum lco_csum(struct sk_buff *skb)
5009 {
5010 unsigned char *csum_start = skb_checksum_start(skb);
5011 unsigned char *l4_hdr = skb_transport_header(skb);
5012 __wsum partial;
5013
5014 /* Start with complement of inner checksum adjustment */
5015 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5016 skb->csum_offset));
5017
5018 /* Add in checksum of our headers (incl. outer checksum
5019 * adjustment filled in by caller) and return result.
5020 */
5021 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5022 }
5023
skb_is_redirected(const struct sk_buff * skb)5024 static inline bool skb_is_redirected(const struct sk_buff *skb)
5025 {
5026 return skb->redirected;
5027 }
5028
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5029 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5030 {
5031 skb->redirected = 1;
5032 #ifdef CONFIG_NET_REDIRECT
5033 skb->from_ingress = from_ingress;
5034 if (skb->from_ingress)
5035 skb_clear_tstamp(skb);
5036 #endif
5037 }
5038
skb_reset_redirect(struct sk_buff * skb)5039 static inline void skb_reset_redirect(struct sk_buff *skb)
5040 {
5041 skb->redirected = 0;
5042 }
5043
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5044 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5045 bool from_ingress)
5046 {
5047 skb->redirected = 1;
5048 #ifdef CONFIG_NET_REDIRECT
5049 skb->from_ingress = from_ingress;
5050 #endif
5051 }
5052
skb_csum_is_sctp(struct sk_buff * skb)5053 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5054 {
5055 #if IS_ENABLED(CONFIG_IP_SCTP)
5056 return skb->csum_not_inet;
5057 #else
5058 return 0;
5059 #endif
5060 }
5061
skb_reset_csum_not_inet(struct sk_buff * skb)5062 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5063 {
5064 skb->ip_summed = CHECKSUM_NONE;
5065 #if IS_ENABLED(CONFIG_IP_SCTP)
5066 skb->csum_not_inet = 0;
5067 #endif
5068 }
5069
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5070 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5071 const u64 kcov_handle)
5072 {
5073 #ifdef CONFIG_KCOV
5074 skb->kcov_handle = kcov_handle;
5075 #endif
5076 }
5077
skb_get_kcov_handle(struct sk_buff * skb)5078 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5079 {
5080 #ifdef CONFIG_KCOV
5081 return skb->kcov_handle;
5082 #else
5083 return 0;
5084 #endif
5085 }
5086
skb_mark_for_recycle(struct sk_buff * skb)5087 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5088 {
5089 #ifdef CONFIG_PAGE_POOL
5090 skb->pp_recycle = 1;
5091 #endif
5092 }
5093
5094 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5095 ssize_t maxsize, gfp_t gfp);
5096
5097 #endif /* __KERNEL__ */
5098 #endif /* _LINUX_SKBUFF_H */
5099