1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98
99 /*
100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101 * inode->i_private (with i_rwsem making sure that it has only one user at
102 * a time): we would prefer not to enlarge the shmem inode just for that.
103 */
104 struct shmem_falloc {
105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 pgoff_t start; /* start of range currently being fallocated */
107 pgoff_t next; /* the next page offset to be fallocated */
108 pgoff_t nr_falloced; /* how many new pages have been fallocated */
109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110 };
111
112 struct shmem_options {
113 unsigned long long blocks;
114 unsigned long long inodes;
115 struct mempolicy *mpol;
116 kuid_t uid;
117 kgid_t gid;
118 umode_t mode;
119 bool full_inums;
120 int huge;
121 int seen;
122 bool noswap;
123 unsigned short quota_types;
124 struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132
133 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)134 static unsigned long shmem_default_max_blocks(void)
135 {
136 return totalram_pages() / 2;
137 }
138
shmem_default_max_inodes(void)139 static unsigned long shmem_default_max_inodes(void)
140 {
141 unsigned long nr_pages = totalram_pages();
142
143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 struct folio **foliop, enum sgp_type sgp,
150 gfp_t gfp, struct vm_area_struct *vma,
151 vm_fault_t *fault_type);
152
SHMEM_SB(struct super_block * sb)153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
shmem_acct_size(unsigned long flags,loff_t size)164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
shmem_unacct_size(unsigned long flags,loff_t size)170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
shmem_acct_block(unsigned long flags,long pages)195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
shmem_unacct_blocks(unsigned long flags,long pages)204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_inode_acct_block(struct inode * inode,long pages)210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 int err = -ENOSPC;
215
216 if (shmem_acct_block(info->flags, pages))
217 return err;
218
219 might_sleep(); /* when quotas */
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224
225 err = dquot_alloc_block_nodirty(inode, pages);
226 if (err)
227 goto unacct;
228
229 percpu_counter_add(&sbinfo->used_blocks, pages);
230 } else {
231 err = dquot_alloc_block_nodirty(inode, pages);
232 if (err)
233 goto unacct;
234 }
235
236 return 0;
237
238 unacct:
239 shmem_unacct_blocks(info->flags, pages);
240 return err;
241 }
242
shmem_inode_unacct_blocks(struct inode * inode,long pages)243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 struct shmem_inode_info *info = SHMEM_I(inode);
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248 might_sleep(); /* when quotas */
249 dquot_free_block_nodirty(inode, pages);
250
251 if (sbinfo->max_blocks)
252 percpu_counter_sub(&sbinfo->used_blocks, pages);
253 shmem_unacct_blocks(info->flags, pages);
254 }
255
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265
vma_is_anon_shmem(struct vm_area_struct * vma)266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270
vma_is_shmem(struct vm_area_struct * vma)271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278
279 #ifdef CONFIG_TMPFS_QUOTA
280
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)281 static int shmem_enable_quotas(struct super_block *sb,
282 unsigned short quota_types)
283 {
284 int type, err = 0;
285
286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 if (!(quota_types & (1 << type)))
289 continue;
290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 DQUOT_USAGE_ENABLED |
292 DQUOT_LIMITS_ENABLED);
293 if (err)
294 goto out_err;
295 }
296 return 0;
297
298 out_err:
299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 type, err);
301 for (type--; type >= 0; type--)
302 dquot_quota_off(sb, type);
303 return err;
304 }
305
shmem_disable_quotas(struct super_block * sb)306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 int type;
309
310 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 dquot_quota_off(sb, type);
312 }
313
shmem_get_dquots(struct inode * inode)314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
315 {
316 return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319
320 /*
321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322 * produces a novel ino for the newly allocated inode.
323 *
324 * It may also be called when making a hard link to permit the space needed by
325 * each dentry. However, in that case, no new inode number is needed since that
326 * internally draws from another pool of inode numbers (currently global
327 * get_next_ino()). This case is indicated by passing NULL as inop.
328 */
329 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 ino_t ino;
334
335 if (!(sb->s_flags & SB_KERNMOUNT)) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 if (sbinfo->max_inodes) {
338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 raw_spin_unlock(&sbinfo->stat_lock);
340 return -ENOSPC;
341 }
342 sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 }
344 if (inop) {
345 ino = sbinfo->next_ino++;
346 if (unlikely(is_zero_ino(ino)))
347 ino = sbinfo->next_ino++;
348 if (unlikely(!sbinfo->full_inums &&
349 ino > UINT_MAX)) {
350 /*
351 * Emulate get_next_ino uint wraparound for
352 * compatibility
353 */
354 if (IS_ENABLED(CONFIG_64BIT))
355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 __func__, MINOR(sb->s_dev));
357 sbinfo->next_ino = 1;
358 ino = sbinfo->next_ino++;
359 }
360 *inop = ino;
361 }
362 raw_spin_unlock(&sbinfo->stat_lock);
363 } else if (inop) {
364 /*
365 * __shmem_file_setup, one of our callers, is lock-free: it
366 * doesn't hold stat_lock in shmem_reserve_inode since
367 * max_inodes is always 0, and is called from potentially
368 * unknown contexts. As such, use a per-cpu batched allocator
369 * which doesn't require the per-sb stat_lock unless we are at
370 * the batch boundary.
371 *
372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 * shmem mounts are not exposed to userspace, so we don't need
374 * to worry about things like glibc compatibility.
375 */
376 ino_t *next_ino;
377
378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 ino = *next_ino;
380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 raw_spin_lock(&sbinfo->stat_lock);
382 ino = sbinfo->next_ino;
383 sbinfo->next_ino += SHMEM_INO_BATCH;
384 raw_spin_unlock(&sbinfo->stat_lock);
385 if (unlikely(is_zero_ino(ino)))
386 ino++;
387 }
388 *inop = ino;
389 *next_ino = ++ino;
390 put_cpu();
391 }
392
393 return 0;
394 }
395
shmem_free_inode(struct super_block * sb,size_t freed_ispace)396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 if (sbinfo->max_inodes) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 }
404 }
405
406 /**
407 * shmem_recalc_inode - recalculate the block usage of an inode
408 * @inode: inode to recalc
409 * @alloced: the change in number of pages allocated to inode
410 * @swapped: the change in number of pages swapped from inode
411 *
412 * We have to calculate the free blocks since the mm can drop
413 * undirtied hole pages behind our back.
414 *
415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 struct shmem_inode_info *info = SHMEM_I(inode);
421 long freed;
422
423 spin_lock(&info->lock);
424 info->alloced += alloced;
425 info->swapped += swapped;
426 freed = info->alloced - info->swapped -
427 READ_ONCE(inode->i_mapping->nrpages);
428 /*
429 * Special case: whereas normally shmem_recalc_inode() is called
430 * after i_mapping->nrpages has already been adjusted (up or down),
431 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 * been freed. Compensate here, to avoid the need for a followup call.
434 */
435 if (swapped > 0)
436 freed += swapped;
437 if (freed > 0)
438 info->alloced -= freed;
439 spin_unlock(&info->lock);
440
441 /* The quota case may block */
442 if (freed > 0)
443 shmem_inode_unacct_blocks(inode, freed);
444 }
445
shmem_charge(struct inode * inode,long pages)446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 struct address_space *mapping = inode->i_mapping;
449
450 if (shmem_inode_acct_block(inode, pages))
451 return false;
452
453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 xa_lock_irq(&mapping->i_pages);
455 mapping->nrpages += pages;
456 xa_unlock_irq(&mapping->i_pages);
457
458 shmem_recalc_inode(inode, pages, 0);
459 return true;
460 }
461
shmem_uncharge(struct inode * inode,long pages)462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 /* pages argument is currently unused: keep it to help debugging */
465 /* nrpages adjustment done by __filemap_remove_folio() or caller */
466
467 shmem_recalc_inode(inode, 0, 0);
468 }
469
470 /*
471 * Replace item expected in xarray by a new item, while holding xa_lock.
472 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)473 static int shmem_replace_entry(struct address_space *mapping,
474 pgoff_t index, void *expected, void *replacement)
475 {
476 XA_STATE(xas, &mapping->i_pages, index);
477 void *item;
478
479 VM_BUG_ON(!expected);
480 VM_BUG_ON(!replacement);
481 item = xas_load(&xas);
482 if (item != expected)
483 return -ENOENT;
484 xas_store(&xas, replacement);
485 return 0;
486 }
487
488 /*
489 * Sometimes, before we decide whether to proceed or to fail, we must check
490 * that an entry was not already brought back from swap by a racing thread.
491 *
492 * Checking page is not enough: by the time a SwapCache page is locked, it
493 * might be reused, and again be SwapCache, using the same swap as before.
494 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)495 static bool shmem_confirm_swap(struct address_space *mapping,
496 pgoff_t index, swp_entry_t swap)
497 {
498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500
501 /*
502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503 *
504 * SHMEM_HUGE_NEVER:
505 * disables huge pages for the mount;
506 * SHMEM_HUGE_ALWAYS:
507 * enables huge pages for the mount;
508 * SHMEM_HUGE_WITHIN_SIZE:
509 * only allocate huge pages if the page will be fully within i_size,
510 * also respect fadvise()/madvise() hints;
511 * SHMEM_HUGE_ADVISE:
512 * only allocate huge pages if requested with fadvise()/madvise();
513 */
514
515 #define SHMEM_HUGE_NEVER 0
516 #define SHMEM_HUGE_ALWAYS 1
517 #define SHMEM_HUGE_WITHIN_SIZE 2
518 #define SHMEM_HUGE_ADVISE 3
519
520 /*
521 * Special values.
522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523 *
524 * SHMEM_HUGE_DENY:
525 * disables huge on shm_mnt and all mounts, for emergency use;
526 * SHMEM_HUGE_FORCE:
527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528 *
529 */
530 #define SHMEM_HUGE_DENY (-1)
531 #define SHMEM_HUGE_FORCE (-2)
532
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537
__shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
539 bool shmem_huge_force, struct mm_struct *mm,
540 unsigned long vm_flags)
541 {
542 loff_t i_size;
543
544 if (!S_ISREG(inode->i_mode))
545 return false;
546 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
547 return false;
548 if (shmem_huge == SHMEM_HUGE_DENY)
549 return false;
550 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
551 return true;
552
553 switch (SHMEM_SB(inode->i_sb)->huge) {
554 case SHMEM_HUGE_ALWAYS:
555 return true;
556 case SHMEM_HUGE_WITHIN_SIZE:
557 index = round_up(index + 1, HPAGE_PMD_NR);
558 i_size = round_up(i_size_read(inode), PAGE_SIZE);
559 if (i_size >> PAGE_SHIFT >= index)
560 return true;
561 fallthrough;
562 case SHMEM_HUGE_ADVISE:
563 if (mm && (vm_flags & VM_HUGEPAGE))
564 return true;
565 fallthrough;
566 default:
567 return false;
568 }
569 }
570
shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)571 bool shmem_is_huge(struct inode *inode, pgoff_t index,
572 bool shmem_huge_force, struct mm_struct *mm,
573 unsigned long vm_flags)
574 {
575 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
576 return false;
577
578 return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
579 }
580
581 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)582 static int shmem_parse_huge(const char *str)
583 {
584 if (!strcmp(str, "never"))
585 return SHMEM_HUGE_NEVER;
586 if (!strcmp(str, "always"))
587 return SHMEM_HUGE_ALWAYS;
588 if (!strcmp(str, "within_size"))
589 return SHMEM_HUGE_WITHIN_SIZE;
590 if (!strcmp(str, "advise"))
591 return SHMEM_HUGE_ADVISE;
592 if (!strcmp(str, "deny"))
593 return SHMEM_HUGE_DENY;
594 if (!strcmp(str, "force"))
595 return SHMEM_HUGE_FORCE;
596 return -EINVAL;
597 }
598 #endif
599
600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)601 static const char *shmem_format_huge(int huge)
602 {
603 switch (huge) {
604 case SHMEM_HUGE_NEVER:
605 return "never";
606 case SHMEM_HUGE_ALWAYS:
607 return "always";
608 case SHMEM_HUGE_WITHIN_SIZE:
609 return "within_size";
610 case SHMEM_HUGE_ADVISE:
611 return "advise";
612 case SHMEM_HUGE_DENY:
613 return "deny";
614 case SHMEM_HUGE_FORCE:
615 return "force";
616 default:
617 VM_BUG_ON(1);
618 return "bad_val";
619 }
620 }
621 #endif
622
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
624 struct shrink_control *sc, unsigned long nr_to_split)
625 {
626 LIST_HEAD(list), *pos, *next;
627 LIST_HEAD(to_remove);
628 struct inode *inode;
629 struct shmem_inode_info *info;
630 struct folio *folio;
631 unsigned long batch = sc ? sc->nr_to_scan : 128;
632 int split = 0;
633
634 if (list_empty(&sbinfo->shrinklist))
635 return SHRINK_STOP;
636
637 spin_lock(&sbinfo->shrinklist_lock);
638 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
639 info = list_entry(pos, struct shmem_inode_info, shrinklist);
640
641 /* pin the inode */
642 inode = igrab(&info->vfs_inode);
643
644 /* inode is about to be evicted */
645 if (!inode) {
646 list_del_init(&info->shrinklist);
647 goto next;
648 }
649
650 /* Check if there's anything to gain */
651 if (round_up(inode->i_size, PAGE_SIZE) ==
652 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
653 list_move(&info->shrinklist, &to_remove);
654 goto next;
655 }
656
657 list_move(&info->shrinklist, &list);
658 next:
659 sbinfo->shrinklist_len--;
660 if (!--batch)
661 break;
662 }
663 spin_unlock(&sbinfo->shrinklist_lock);
664
665 list_for_each_safe(pos, next, &to_remove) {
666 info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 inode = &info->vfs_inode;
668 list_del_init(&info->shrinklist);
669 iput(inode);
670 }
671
672 list_for_each_safe(pos, next, &list) {
673 int ret;
674 pgoff_t index;
675
676 info = list_entry(pos, struct shmem_inode_info, shrinklist);
677 inode = &info->vfs_inode;
678
679 if (nr_to_split && split >= nr_to_split)
680 goto move_back;
681
682 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
683 folio = filemap_get_folio(inode->i_mapping, index);
684 if (IS_ERR(folio))
685 goto drop;
686
687 /* No huge page at the end of the file: nothing to split */
688 if (!folio_test_large(folio)) {
689 folio_put(folio);
690 goto drop;
691 }
692
693 /*
694 * Move the inode on the list back to shrinklist if we failed
695 * to lock the page at this time.
696 *
697 * Waiting for the lock may lead to deadlock in the
698 * reclaim path.
699 */
700 if (!folio_trylock(folio)) {
701 folio_put(folio);
702 goto move_back;
703 }
704
705 ret = split_folio(folio);
706 folio_unlock(folio);
707 folio_put(folio);
708
709 /* If split failed move the inode on the list back to shrinklist */
710 if (ret)
711 goto move_back;
712
713 split++;
714 drop:
715 list_del_init(&info->shrinklist);
716 goto put;
717 move_back:
718 /*
719 * Make sure the inode is either on the global list or deleted
720 * from any local list before iput() since it could be deleted
721 * in another thread once we put the inode (then the local list
722 * is corrupted).
723 */
724 spin_lock(&sbinfo->shrinklist_lock);
725 list_move(&info->shrinklist, &sbinfo->shrinklist);
726 sbinfo->shrinklist_len++;
727 spin_unlock(&sbinfo->shrinklist_lock);
728 put:
729 iput(inode);
730 }
731
732 return split;
733 }
734
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)735 static long shmem_unused_huge_scan(struct super_block *sb,
736 struct shrink_control *sc)
737 {
738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739
740 if (!READ_ONCE(sbinfo->shrinklist_len))
741 return SHRINK_STOP;
742
743 return shmem_unused_huge_shrink(sbinfo, sc, 0);
744 }
745
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)746 static long shmem_unused_huge_count(struct super_block *sb,
747 struct shrink_control *sc)
748 {
749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
750 return READ_ONCE(sbinfo->shrinklist_len);
751 }
752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
753
754 #define shmem_huge SHMEM_HUGE_DENY
755
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
757 struct shrink_control *sc, unsigned long nr_to_split)
758 {
759 return 0;
760 }
761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
762
763 /*
764 * Like filemap_add_folio, but error if expected item has gone.
765 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)766 static int shmem_add_to_page_cache(struct folio *folio,
767 struct address_space *mapping,
768 pgoff_t index, void *expected, gfp_t gfp,
769 struct mm_struct *charge_mm)
770 {
771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 long nr = folio_nr_pages(folio);
773 int error;
774
775 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 VM_BUG_ON(expected && folio_test_large(folio));
779
780 folio_ref_add(folio, nr);
781 folio->mapping = mapping;
782 folio->index = index;
783
784 if (!folio_test_swapcache(folio)) {
785 error = mem_cgroup_charge(folio, charge_mm, gfp);
786 if (error) {
787 if (folio_test_pmd_mappable(folio)) {
788 count_vm_event(THP_FILE_FALLBACK);
789 count_vm_event(THP_FILE_FALLBACK_CHARGE);
790 }
791 goto error;
792 }
793 }
794 folio_throttle_swaprate(folio, gfp);
795
796 do {
797 xas_lock_irq(&xas);
798 if (expected != xas_find_conflict(&xas)) {
799 xas_set_err(&xas, -EEXIST);
800 goto unlock;
801 }
802 if (expected && xas_find_conflict(&xas)) {
803 xas_set_err(&xas, -EEXIST);
804 goto unlock;
805 }
806 xas_store(&xas, folio);
807 if (xas_error(&xas))
808 goto unlock;
809 if (folio_test_pmd_mappable(folio)) {
810 count_vm_event(THP_FILE_ALLOC);
811 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
812 }
813 mapping->nrpages += nr;
814 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
815 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
816 unlock:
817 xas_unlock_irq(&xas);
818 } while (xas_nomem(&xas, gfp));
819
820 if (xas_error(&xas)) {
821 error = xas_error(&xas);
822 goto error;
823 }
824
825 return 0;
826 error:
827 folio->mapping = NULL;
828 folio_ref_sub(folio, nr);
829 return error;
830 }
831
832 /*
833 * Like delete_from_page_cache, but substitutes swap for @folio.
834 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
836 {
837 struct address_space *mapping = folio->mapping;
838 long nr = folio_nr_pages(folio);
839 int error;
840
841 xa_lock_irq(&mapping->i_pages);
842 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
843 folio->mapping = NULL;
844 mapping->nrpages -= nr;
845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
847 xa_unlock_irq(&mapping->i_pages);
848 folio_put(folio);
849 BUG_ON(error);
850 }
851
852 /*
853 * Remove swap entry from page cache, free the swap and its page cache.
854 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)855 static int shmem_free_swap(struct address_space *mapping,
856 pgoff_t index, void *radswap)
857 {
858 void *old;
859
860 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
861 if (old != radswap)
862 return -ENOENT;
863 free_swap_and_cache(radix_to_swp_entry(radswap));
864 return 0;
865 }
866
867 /*
868 * Determine (in bytes) how many of the shmem object's pages mapped by the
869 * given offsets are swapped out.
870 *
871 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
872 * as long as the inode doesn't go away and racy results are not a problem.
873 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)874 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
875 pgoff_t start, pgoff_t end)
876 {
877 XA_STATE(xas, &mapping->i_pages, start);
878 struct page *page;
879 unsigned long swapped = 0;
880 unsigned long max = end - 1;
881
882 rcu_read_lock();
883 xas_for_each(&xas, page, max) {
884 if (xas_retry(&xas, page))
885 continue;
886 if (xa_is_value(page))
887 swapped++;
888 if (xas.xa_index == max)
889 break;
890 if (need_resched()) {
891 xas_pause(&xas);
892 cond_resched_rcu();
893 }
894 }
895
896 rcu_read_unlock();
897
898 return swapped << PAGE_SHIFT;
899 }
900
901 /*
902 * Determine (in bytes) how many of the shmem object's pages mapped by the
903 * given vma is swapped out.
904 *
905 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
906 * as long as the inode doesn't go away and racy results are not a problem.
907 */
shmem_swap_usage(struct vm_area_struct * vma)908 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
909 {
910 struct inode *inode = file_inode(vma->vm_file);
911 struct shmem_inode_info *info = SHMEM_I(inode);
912 struct address_space *mapping = inode->i_mapping;
913 unsigned long swapped;
914
915 /* Be careful as we don't hold info->lock */
916 swapped = READ_ONCE(info->swapped);
917
918 /*
919 * The easier cases are when the shmem object has nothing in swap, or
920 * the vma maps it whole. Then we can simply use the stats that we
921 * already track.
922 */
923 if (!swapped)
924 return 0;
925
926 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
927 return swapped << PAGE_SHIFT;
928
929 /* Here comes the more involved part */
930 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
931 vma->vm_pgoff + vma_pages(vma));
932 }
933
934 /*
935 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
936 */
shmem_unlock_mapping(struct address_space * mapping)937 void shmem_unlock_mapping(struct address_space *mapping)
938 {
939 struct folio_batch fbatch;
940 pgoff_t index = 0;
941
942 folio_batch_init(&fbatch);
943 /*
944 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
945 */
946 while (!mapping_unevictable(mapping) &&
947 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
948 check_move_unevictable_folios(&fbatch);
949 folio_batch_release(&fbatch);
950 cond_resched();
951 }
952 }
953
shmem_get_partial_folio(struct inode * inode,pgoff_t index)954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
955 {
956 struct folio *folio;
957
958 /*
959 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
960 * beyond i_size, and reports fallocated folios as holes.
961 */
962 folio = filemap_get_entry(inode->i_mapping, index);
963 if (!folio)
964 return folio;
965 if (!xa_is_value(folio)) {
966 folio_lock(folio);
967 if (folio->mapping == inode->i_mapping)
968 return folio;
969 /* The folio has been swapped out */
970 folio_unlock(folio);
971 folio_put(folio);
972 }
973 /*
974 * But read a folio back from swap if any of it is within i_size
975 * (although in some cases this is just a waste of time).
976 */
977 folio = NULL;
978 shmem_get_folio(inode, index, &folio, SGP_READ);
979 return folio;
980 }
981
982 /*
983 * Remove range of pages and swap entries from page cache, and free them.
984 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
985 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
987 bool unfalloc)
988 {
989 struct address_space *mapping = inode->i_mapping;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
993 struct folio_batch fbatch;
994 pgoff_t indices[PAGEVEC_SIZE];
995 struct folio *folio;
996 bool same_folio;
997 long nr_swaps_freed = 0;
998 pgoff_t index;
999 int i;
1000
1001 if (lend == -1)
1002 end = -1; /* unsigned, so actually very big */
1003
1004 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1005 info->fallocend = start;
1006
1007 folio_batch_init(&fbatch);
1008 index = start;
1009 while (index < end && find_lock_entries(mapping, &index, end - 1,
1010 &fbatch, indices)) {
1011 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1012 folio = fbatch.folios[i];
1013
1014 if (xa_is_value(folio)) {
1015 if (unfalloc)
1016 continue;
1017 nr_swaps_freed += !shmem_free_swap(mapping,
1018 indices[i], folio);
1019 continue;
1020 }
1021
1022 if (!unfalloc || !folio_test_uptodate(folio))
1023 truncate_inode_folio(mapping, folio);
1024 folio_unlock(folio);
1025 }
1026 folio_batch_remove_exceptionals(&fbatch);
1027 folio_batch_release(&fbatch);
1028 cond_resched();
1029 }
1030
1031 /*
1032 * When undoing a failed fallocate, we want none of the partial folio
1033 * zeroing and splitting below, but shall want to truncate the whole
1034 * folio when !uptodate indicates that it was added by this fallocate,
1035 * even when [lstart, lend] covers only a part of the folio.
1036 */
1037 if (unfalloc)
1038 goto whole_folios;
1039
1040 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1041 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1042 if (folio) {
1043 same_folio = lend < folio_pos(folio) + folio_size(folio);
1044 folio_mark_dirty(folio);
1045 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1046 start = folio_next_index(folio);
1047 if (same_folio)
1048 end = folio->index;
1049 }
1050 folio_unlock(folio);
1051 folio_put(folio);
1052 folio = NULL;
1053 }
1054
1055 if (!same_folio)
1056 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1057 if (folio) {
1058 folio_mark_dirty(folio);
1059 if (!truncate_inode_partial_folio(folio, lstart, lend))
1060 end = folio->index;
1061 folio_unlock(folio);
1062 folio_put(folio);
1063 }
1064
1065 whole_folios:
1066
1067 index = start;
1068 while (index < end) {
1069 cond_resched();
1070
1071 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1072 indices)) {
1073 /* If all gone or hole-punch or unfalloc, we're done */
1074 if (index == start || end != -1)
1075 break;
1076 /* But if truncating, restart to make sure all gone */
1077 index = start;
1078 continue;
1079 }
1080 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1081 folio = fbatch.folios[i];
1082
1083 if (xa_is_value(folio)) {
1084 if (unfalloc)
1085 continue;
1086 if (shmem_free_swap(mapping, indices[i], folio)) {
1087 /* Swap was replaced by page: retry */
1088 index = indices[i];
1089 break;
1090 }
1091 nr_swaps_freed++;
1092 continue;
1093 }
1094
1095 folio_lock(folio);
1096
1097 if (!unfalloc || !folio_test_uptodate(folio)) {
1098 if (folio_mapping(folio) != mapping) {
1099 /* Page was replaced by swap: retry */
1100 folio_unlock(folio);
1101 index = indices[i];
1102 break;
1103 }
1104 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1105 folio);
1106
1107 if (!folio_test_large(folio)) {
1108 truncate_inode_folio(mapping, folio);
1109 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1110 /*
1111 * If we split a page, reset the loop so
1112 * that we pick up the new sub pages.
1113 * Otherwise the THP was entirely
1114 * dropped or the target range was
1115 * zeroed, so just continue the loop as
1116 * is.
1117 */
1118 if (!folio_test_large(folio)) {
1119 folio_unlock(folio);
1120 index = start;
1121 break;
1122 }
1123 }
1124 }
1125 folio_unlock(folio);
1126 }
1127 folio_batch_remove_exceptionals(&fbatch);
1128 folio_batch_release(&fbatch);
1129 }
1130
1131 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1132 }
1133
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1135 {
1136 shmem_undo_range(inode, lstart, lend, false);
1137 inode->i_mtime = inode_set_ctime_current(inode);
1138 inode_inc_iversion(inode);
1139 }
1140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1141
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1142 static int shmem_getattr(struct mnt_idmap *idmap,
1143 const struct path *path, struct kstat *stat,
1144 u32 request_mask, unsigned int query_flags)
1145 {
1146 struct inode *inode = path->dentry->d_inode;
1147 struct shmem_inode_info *info = SHMEM_I(inode);
1148
1149 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1150 shmem_recalc_inode(inode, 0, 0);
1151
1152 if (info->fsflags & FS_APPEND_FL)
1153 stat->attributes |= STATX_ATTR_APPEND;
1154 if (info->fsflags & FS_IMMUTABLE_FL)
1155 stat->attributes |= STATX_ATTR_IMMUTABLE;
1156 if (info->fsflags & FS_NODUMP_FL)
1157 stat->attributes |= STATX_ATTR_NODUMP;
1158 stat->attributes_mask |= (STATX_ATTR_APPEND |
1159 STATX_ATTR_IMMUTABLE |
1160 STATX_ATTR_NODUMP);
1161 generic_fillattr(idmap, request_mask, inode, stat);
1162
1163 if (shmem_is_huge(inode, 0, false, NULL, 0))
1164 stat->blksize = HPAGE_PMD_SIZE;
1165
1166 if (request_mask & STATX_BTIME) {
1167 stat->result_mask |= STATX_BTIME;
1168 stat->btime.tv_sec = info->i_crtime.tv_sec;
1169 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1170 }
1171
1172 return 0;
1173 }
1174
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1175 static int shmem_setattr(struct mnt_idmap *idmap,
1176 struct dentry *dentry, struct iattr *attr)
1177 {
1178 struct inode *inode = d_inode(dentry);
1179 struct shmem_inode_info *info = SHMEM_I(inode);
1180 int error;
1181 bool update_mtime = false;
1182 bool update_ctime = true;
1183
1184 error = setattr_prepare(idmap, dentry, attr);
1185 if (error)
1186 return error;
1187
1188 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1189 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1190 return -EPERM;
1191 }
1192 }
1193
1194 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1195 loff_t oldsize = inode->i_size;
1196 loff_t newsize = attr->ia_size;
1197
1198 /* protected by i_rwsem */
1199 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1200 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1201 return -EPERM;
1202
1203 if (newsize != oldsize) {
1204 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1205 oldsize, newsize);
1206 if (error)
1207 return error;
1208 i_size_write(inode, newsize);
1209 update_mtime = true;
1210 } else {
1211 update_ctime = false;
1212 }
1213 if (newsize <= oldsize) {
1214 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1215 if (oldsize > holebegin)
1216 unmap_mapping_range(inode->i_mapping,
1217 holebegin, 0, 1);
1218 if (info->alloced)
1219 shmem_truncate_range(inode,
1220 newsize, (loff_t)-1);
1221 /* unmap again to remove racily COWed private pages */
1222 if (oldsize > holebegin)
1223 unmap_mapping_range(inode->i_mapping,
1224 holebegin, 0, 1);
1225 }
1226 }
1227
1228 if (is_quota_modification(idmap, inode, attr)) {
1229 error = dquot_initialize(inode);
1230 if (error)
1231 return error;
1232 }
1233
1234 /* Transfer quota accounting */
1235 if (i_uid_needs_update(idmap, attr, inode) ||
1236 i_gid_needs_update(idmap, attr, inode)) {
1237 error = dquot_transfer(idmap, inode, attr);
1238
1239 if (error)
1240 return error;
1241 }
1242
1243 setattr_copy(idmap, inode, attr);
1244 if (attr->ia_valid & ATTR_MODE)
1245 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1246 if (!error && update_ctime) {
1247 inode_set_ctime_current(inode);
1248 if (update_mtime)
1249 inode->i_mtime = inode_get_ctime(inode);
1250 inode_inc_iversion(inode);
1251 }
1252 return error;
1253 }
1254
shmem_evict_inode(struct inode * inode)1255 static void shmem_evict_inode(struct inode *inode)
1256 {
1257 struct shmem_inode_info *info = SHMEM_I(inode);
1258 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1259 size_t freed = 0;
1260
1261 if (shmem_mapping(inode->i_mapping)) {
1262 shmem_unacct_size(info->flags, inode->i_size);
1263 inode->i_size = 0;
1264 mapping_set_exiting(inode->i_mapping);
1265 shmem_truncate_range(inode, 0, (loff_t)-1);
1266 if (!list_empty(&info->shrinklist)) {
1267 spin_lock(&sbinfo->shrinklist_lock);
1268 if (!list_empty(&info->shrinklist)) {
1269 list_del_init(&info->shrinklist);
1270 sbinfo->shrinklist_len--;
1271 }
1272 spin_unlock(&sbinfo->shrinklist_lock);
1273 }
1274 while (!list_empty(&info->swaplist)) {
1275 /* Wait while shmem_unuse() is scanning this inode... */
1276 wait_var_event(&info->stop_eviction,
1277 !atomic_read(&info->stop_eviction));
1278 mutex_lock(&shmem_swaplist_mutex);
1279 /* ...but beware of the race if we peeked too early */
1280 if (!atomic_read(&info->stop_eviction))
1281 list_del_init(&info->swaplist);
1282 mutex_unlock(&shmem_swaplist_mutex);
1283 }
1284 }
1285
1286 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1287 shmem_free_inode(inode->i_sb, freed);
1288 WARN_ON(inode->i_blocks);
1289 clear_inode(inode);
1290 #ifdef CONFIG_TMPFS_QUOTA
1291 dquot_free_inode(inode);
1292 dquot_drop(inode);
1293 #endif
1294 }
1295
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1296 static int shmem_find_swap_entries(struct address_space *mapping,
1297 pgoff_t start, struct folio_batch *fbatch,
1298 pgoff_t *indices, unsigned int type)
1299 {
1300 XA_STATE(xas, &mapping->i_pages, start);
1301 struct folio *folio;
1302 swp_entry_t entry;
1303
1304 rcu_read_lock();
1305 xas_for_each(&xas, folio, ULONG_MAX) {
1306 if (xas_retry(&xas, folio))
1307 continue;
1308
1309 if (!xa_is_value(folio))
1310 continue;
1311
1312 entry = radix_to_swp_entry(folio);
1313 /*
1314 * swapin error entries can be found in the mapping. But they're
1315 * deliberately ignored here as we've done everything we can do.
1316 */
1317 if (swp_type(entry) != type)
1318 continue;
1319
1320 indices[folio_batch_count(fbatch)] = xas.xa_index;
1321 if (!folio_batch_add(fbatch, folio))
1322 break;
1323
1324 if (need_resched()) {
1325 xas_pause(&xas);
1326 cond_resched_rcu();
1327 }
1328 }
1329 rcu_read_unlock();
1330
1331 return xas.xa_index;
1332 }
1333
1334 /*
1335 * Move the swapped pages for an inode to page cache. Returns the count
1336 * of pages swapped in, or the error in case of failure.
1337 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1338 static int shmem_unuse_swap_entries(struct inode *inode,
1339 struct folio_batch *fbatch, pgoff_t *indices)
1340 {
1341 int i = 0;
1342 int ret = 0;
1343 int error = 0;
1344 struct address_space *mapping = inode->i_mapping;
1345
1346 for (i = 0; i < folio_batch_count(fbatch); i++) {
1347 struct folio *folio = fbatch->folios[i];
1348
1349 if (!xa_is_value(folio))
1350 continue;
1351 error = shmem_swapin_folio(inode, indices[i],
1352 &folio, SGP_CACHE,
1353 mapping_gfp_mask(mapping),
1354 NULL, NULL);
1355 if (error == 0) {
1356 folio_unlock(folio);
1357 folio_put(folio);
1358 ret++;
1359 }
1360 if (error == -ENOMEM)
1361 break;
1362 error = 0;
1363 }
1364 return error ? error : ret;
1365 }
1366
1367 /*
1368 * If swap found in inode, free it and move page from swapcache to filecache.
1369 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1370 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1371 {
1372 struct address_space *mapping = inode->i_mapping;
1373 pgoff_t start = 0;
1374 struct folio_batch fbatch;
1375 pgoff_t indices[PAGEVEC_SIZE];
1376 int ret = 0;
1377
1378 do {
1379 folio_batch_init(&fbatch);
1380 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1381 if (folio_batch_count(&fbatch) == 0) {
1382 ret = 0;
1383 break;
1384 }
1385
1386 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1387 if (ret < 0)
1388 break;
1389
1390 start = indices[folio_batch_count(&fbatch) - 1];
1391 } while (true);
1392
1393 return ret;
1394 }
1395
1396 /*
1397 * Read all the shared memory data that resides in the swap
1398 * device 'type' back into memory, so the swap device can be
1399 * unused.
1400 */
shmem_unuse(unsigned int type)1401 int shmem_unuse(unsigned int type)
1402 {
1403 struct shmem_inode_info *info, *next;
1404 int error = 0;
1405
1406 if (list_empty(&shmem_swaplist))
1407 return 0;
1408
1409 mutex_lock(&shmem_swaplist_mutex);
1410 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1411 if (!info->swapped) {
1412 list_del_init(&info->swaplist);
1413 continue;
1414 }
1415 /*
1416 * Drop the swaplist mutex while searching the inode for swap;
1417 * but before doing so, make sure shmem_evict_inode() will not
1418 * remove placeholder inode from swaplist, nor let it be freed
1419 * (igrab() would protect from unlink, but not from unmount).
1420 */
1421 atomic_inc(&info->stop_eviction);
1422 mutex_unlock(&shmem_swaplist_mutex);
1423
1424 error = shmem_unuse_inode(&info->vfs_inode, type);
1425 cond_resched();
1426
1427 mutex_lock(&shmem_swaplist_mutex);
1428 next = list_next_entry(info, swaplist);
1429 if (!info->swapped)
1430 list_del_init(&info->swaplist);
1431 if (atomic_dec_and_test(&info->stop_eviction))
1432 wake_up_var(&info->stop_eviction);
1433 if (error)
1434 break;
1435 }
1436 mutex_unlock(&shmem_swaplist_mutex);
1437
1438 return error;
1439 }
1440
1441 /*
1442 * Move the page from the page cache to the swap cache.
1443 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1444 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1445 {
1446 struct folio *folio = page_folio(page);
1447 struct address_space *mapping = folio->mapping;
1448 struct inode *inode = mapping->host;
1449 struct shmem_inode_info *info = SHMEM_I(inode);
1450 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1451 swp_entry_t swap;
1452 pgoff_t index;
1453
1454 /*
1455 * Our capabilities prevent regular writeback or sync from ever calling
1456 * shmem_writepage; but a stacking filesystem might use ->writepage of
1457 * its underlying filesystem, in which case tmpfs should write out to
1458 * swap only in response to memory pressure, and not for the writeback
1459 * threads or sync.
1460 */
1461 if (WARN_ON_ONCE(!wbc->for_reclaim))
1462 goto redirty;
1463
1464 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1465 goto redirty;
1466
1467 if (!total_swap_pages)
1468 goto redirty;
1469
1470 /*
1471 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1472 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1473 * and its shmem_writeback() needs them to be split when swapping.
1474 */
1475 if (folio_test_large(folio)) {
1476 /* Ensure the subpages are still dirty */
1477 folio_test_set_dirty(folio);
1478 if (split_huge_page(page) < 0)
1479 goto redirty;
1480 folio = page_folio(page);
1481 folio_clear_dirty(folio);
1482 }
1483
1484 index = folio->index;
1485
1486 /*
1487 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1488 * value into swapfile.c, the only way we can correctly account for a
1489 * fallocated folio arriving here is now to initialize it and write it.
1490 *
1491 * That's okay for a folio already fallocated earlier, but if we have
1492 * not yet completed the fallocation, then (a) we want to keep track
1493 * of this folio in case we have to undo it, and (b) it may not be a
1494 * good idea to continue anyway, once we're pushing into swap. So
1495 * reactivate the folio, and let shmem_fallocate() quit when too many.
1496 */
1497 if (!folio_test_uptodate(folio)) {
1498 if (inode->i_private) {
1499 struct shmem_falloc *shmem_falloc;
1500 spin_lock(&inode->i_lock);
1501 shmem_falloc = inode->i_private;
1502 if (shmem_falloc &&
1503 !shmem_falloc->waitq &&
1504 index >= shmem_falloc->start &&
1505 index < shmem_falloc->next)
1506 shmem_falloc->nr_unswapped++;
1507 else
1508 shmem_falloc = NULL;
1509 spin_unlock(&inode->i_lock);
1510 if (shmem_falloc)
1511 goto redirty;
1512 }
1513 folio_zero_range(folio, 0, folio_size(folio));
1514 flush_dcache_folio(folio);
1515 folio_mark_uptodate(folio);
1516 }
1517
1518 swap = folio_alloc_swap(folio);
1519 if (!swap.val)
1520 goto redirty;
1521
1522 /*
1523 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1524 * if it's not already there. Do it now before the folio is
1525 * moved to swap cache, when its pagelock no longer protects
1526 * the inode from eviction. But don't unlock the mutex until
1527 * we've incremented swapped, because shmem_unuse_inode() will
1528 * prune a !swapped inode from the swaplist under this mutex.
1529 */
1530 mutex_lock(&shmem_swaplist_mutex);
1531 if (list_empty(&info->swaplist))
1532 list_add(&info->swaplist, &shmem_swaplist);
1533
1534 if (add_to_swap_cache(folio, swap,
1535 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1536 NULL) == 0) {
1537 shmem_recalc_inode(inode, 0, 1);
1538 swap_shmem_alloc(swap);
1539 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1540
1541 mutex_unlock(&shmem_swaplist_mutex);
1542 BUG_ON(folio_mapped(folio));
1543 swap_writepage(&folio->page, wbc);
1544 return 0;
1545 }
1546
1547 mutex_unlock(&shmem_swaplist_mutex);
1548 put_swap_folio(folio, swap);
1549 redirty:
1550 folio_mark_dirty(folio);
1551 if (wbc->for_reclaim)
1552 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1553 folio_unlock(folio);
1554 return 0;
1555 }
1556
1557 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1558 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1559 {
1560 char buffer[64];
1561
1562 if (!mpol || mpol->mode == MPOL_DEFAULT)
1563 return; /* show nothing */
1564
1565 mpol_to_str(buffer, sizeof(buffer), mpol);
1566
1567 seq_printf(seq, ",mpol=%s", buffer);
1568 }
1569
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1570 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1571 {
1572 struct mempolicy *mpol = NULL;
1573 if (sbinfo->mpol) {
1574 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1575 mpol = sbinfo->mpol;
1576 mpol_get(mpol);
1577 raw_spin_unlock(&sbinfo->stat_lock);
1578 }
1579 return mpol;
1580 }
1581 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1582 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1583 {
1584 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1585 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1586 {
1587 return NULL;
1588 }
1589 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1590 #ifndef CONFIG_NUMA
1591 #define vm_policy vm_private_data
1592 #endif
1593
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1594 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1595 struct shmem_inode_info *info, pgoff_t index)
1596 {
1597 /* Create a pseudo vma that just contains the policy */
1598 vma_init(vma, NULL);
1599 /* Bias interleave by inode number to distribute better across nodes */
1600 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1601 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1602 }
1603
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1604 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1605 {
1606 /* Drop reference taken by mpol_shared_policy_lookup() */
1607 mpol_cond_put(vma->vm_policy);
1608 }
1609
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1610 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1611 struct shmem_inode_info *info, pgoff_t index)
1612 {
1613 struct vm_area_struct pvma;
1614 struct page *page;
1615 struct vm_fault vmf = {
1616 .vma = &pvma,
1617 };
1618
1619 shmem_pseudo_vma_init(&pvma, info, index);
1620 page = swap_cluster_readahead(swap, gfp, &vmf);
1621 shmem_pseudo_vma_destroy(&pvma);
1622
1623 if (!page)
1624 return NULL;
1625 return page_folio(page);
1626 }
1627
1628 /*
1629 * Make sure huge_gfp is always more limited than limit_gfp.
1630 * Some of the flags set permissions, while others set limitations.
1631 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1632 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1633 {
1634 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1635 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1636 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1637 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1638
1639 /* Allow allocations only from the originally specified zones. */
1640 result |= zoneflags;
1641
1642 /*
1643 * Minimize the result gfp by taking the union with the deny flags,
1644 * and the intersection of the allow flags.
1645 */
1646 result |= (limit_gfp & denyflags);
1647 result |= (huge_gfp & limit_gfp) & allowflags;
1648
1649 return result;
1650 }
1651
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1652 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1653 struct shmem_inode_info *info, pgoff_t index)
1654 {
1655 struct vm_area_struct pvma;
1656 struct address_space *mapping = info->vfs_inode.i_mapping;
1657 pgoff_t hindex;
1658 struct folio *folio;
1659
1660 hindex = round_down(index, HPAGE_PMD_NR);
1661 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1662 XA_PRESENT))
1663 return NULL;
1664
1665 shmem_pseudo_vma_init(&pvma, info, hindex);
1666 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1667 shmem_pseudo_vma_destroy(&pvma);
1668 if (!folio)
1669 count_vm_event(THP_FILE_FALLBACK);
1670 return folio;
1671 }
1672
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1673 static struct folio *shmem_alloc_folio(gfp_t gfp,
1674 struct shmem_inode_info *info, pgoff_t index)
1675 {
1676 struct vm_area_struct pvma;
1677 struct folio *folio;
1678
1679 shmem_pseudo_vma_init(&pvma, info, index);
1680 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1681 shmem_pseudo_vma_destroy(&pvma);
1682
1683 return folio;
1684 }
1685
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1686 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1687 pgoff_t index, bool huge)
1688 {
1689 struct shmem_inode_info *info = SHMEM_I(inode);
1690 struct folio *folio;
1691 int nr;
1692 int err;
1693
1694 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1695 huge = false;
1696 nr = huge ? HPAGE_PMD_NR : 1;
1697
1698 err = shmem_inode_acct_block(inode, nr);
1699 if (err)
1700 goto failed;
1701
1702 if (huge)
1703 folio = shmem_alloc_hugefolio(gfp, info, index);
1704 else
1705 folio = shmem_alloc_folio(gfp, info, index);
1706 if (folio) {
1707 __folio_set_locked(folio);
1708 __folio_set_swapbacked(folio);
1709 return folio;
1710 }
1711
1712 err = -ENOMEM;
1713 shmem_inode_unacct_blocks(inode, nr);
1714 failed:
1715 return ERR_PTR(err);
1716 }
1717
1718 /*
1719 * When a page is moved from swapcache to shmem filecache (either by the
1720 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1721 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1722 * ignorance of the mapping it belongs to. If that mapping has special
1723 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1724 * we may need to copy to a suitable page before moving to filecache.
1725 *
1726 * In a future release, this may well be extended to respect cpuset and
1727 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1728 * but for now it is a simple matter of zone.
1729 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1730 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1731 {
1732 return folio_zonenum(folio) > gfp_zone(gfp);
1733 }
1734
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1735 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1736 struct shmem_inode_info *info, pgoff_t index)
1737 {
1738 struct folio *old, *new;
1739 struct address_space *swap_mapping;
1740 swp_entry_t entry;
1741 pgoff_t swap_index;
1742 int error;
1743
1744 old = *foliop;
1745 entry = old->swap;
1746 swap_index = swp_offset(entry);
1747 swap_mapping = swap_address_space(entry);
1748
1749 /*
1750 * We have arrived here because our zones are constrained, so don't
1751 * limit chance of success by further cpuset and node constraints.
1752 */
1753 gfp &= ~GFP_CONSTRAINT_MASK;
1754 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1755 new = shmem_alloc_folio(gfp, info, index);
1756 if (!new)
1757 return -ENOMEM;
1758
1759 folio_get(new);
1760 folio_copy(new, old);
1761 flush_dcache_folio(new);
1762
1763 __folio_set_locked(new);
1764 __folio_set_swapbacked(new);
1765 folio_mark_uptodate(new);
1766 new->swap = entry;
1767 folio_set_swapcache(new);
1768
1769 /*
1770 * Our caller will very soon move newpage out of swapcache, but it's
1771 * a nice clean interface for us to replace oldpage by newpage there.
1772 */
1773 xa_lock_irq(&swap_mapping->i_pages);
1774 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1775 if (!error) {
1776 mem_cgroup_migrate(old, new);
1777 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1778 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1779 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1780 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1781 }
1782 xa_unlock_irq(&swap_mapping->i_pages);
1783
1784 if (unlikely(error)) {
1785 /*
1786 * Is this possible? I think not, now that our callers check
1787 * both PageSwapCache and page_private after getting page lock;
1788 * but be defensive. Reverse old to newpage for clear and free.
1789 */
1790 old = new;
1791 } else {
1792 folio_add_lru(new);
1793 *foliop = new;
1794 }
1795
1796 folio_clear_swapcache(old);
1797 old->private = NULL;
1798
1799 folio_unlock(old);
1800 folio_put_refs(old, 2);
1801 return error;
1802 }
1803
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1804 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1805 struct folio *folio, swp_entry_t swap)
1806 {
1807 struct address_space *mapping = inode->i_mapping;
1808 swp_entry_t swapin_error;
1809 void *old;
1810
1811 swapin_error = make_poisoned_swp_entry();
1812 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1813 swp_to_radix_entry(swap),
1814 swp_to_radix_entry(swapin_error), 0);
1815 if (old != swp_to_radix_entry(swap))
1816 return;
1817
1818 folio_wait_writeback(folio);
1819 delete_from_swap_cache(folio);
1820 /*
1821 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1822 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1823 * in shmem_evict_inode().
1824 */
1825 shmem_recalc_inode(inode, -1, -1);
1826 swap_free(swap);
1827 }
1828
1829 /*
1830 * Swap in the folio pointed to by *foliop.
1831 * Caller has to make sure that *foliop contains a valid swapped folio.
1832 * Returns 0 and the folio in foliop if success. On failure, returns the
1833 * error code and NULL in *foliop.
1834 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1835 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1836 struct folio **foliop, enum sgp_type sgp,
1837 gfp_t gfp, struct vm_area_struct *vma,
1838 vm_fault_t *fault_type)
1839 {
1840 struct address_space *mapping = inode->i_mapping;
1841 struct shmem_inode_info *info = SHMEM_I(inode);
1842 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1843 struct swap_info_struct *si;
1844 struct folio *folio = NULL;
1845 swp_entry_t swap;
1846 int error;
1847
1848 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1849 swap = radix_to_swp_entry(*foliop);
1850 *foliop = NULL;
1851
1852 if (is_poisoned_swp_entry(swap))
1853 return -EIO;
1854
1855 si = get_swap_device(swap);
1856 if (!si) {
1857 if (!shmem_confirm_swap(mapping, index, swap))
1858 return -EEXIST;
1859 else
1860 return -EINVAL;
1861 }
1862
1863 /* Look it up and read it in.. */
1864 folio = swap_cache_get_folio(swap, NULL, 0);
1865 if (!folio) {
1866 /* Or update major stats only when swapin succeeds?? */
1867 if (fault_type) {
1868 *fault_type |= VM_FAULT_MAJOR;
1869 count_vm_event(PGMAJFAULT);
1870 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1871 }
1872 /* Here we actually start the io */
1873 folio = shmem_swapin(swap, gfp, info, index);
1874 if (!folio) {
1875 error = -ENOMEM;
1876 goto failed;
1877 }
1878 }
1879
1880 /* We have to do this with folio locked to prevent races */
1881 folio_lock(folio);
1882 if (!folio_test_swapcache(folio) ||
1883 folio->swap.val != swap.val ||
1884 !shmem_confirm_swap(mapping, index, swap)) {
1885 error = -EEXIST;
1886 goto unlock;
1887 }
1888 if (!folio_test_uptodate(folio)) {
1889 error = -EIO;
1890 goto failed;
1891 }
1892 folio_wait_writeback(folio);
1893
1894 /*
1895 * Some architectures may have to restore extra metadata to the
1896 * folio after reading from swap.
1897 */
1898 arch_swap_restore(swap, folio);
1899
1900 if (shmem_should_replace_folio(folio, gfp)) {
1901 error = shmem_replace_folio(&folio, gfp, info, index);
1902 if (error)
1903 goto failed;
1904 }
1905
1906 error = shmem_add_to_page_cache(folio, mapping, index,
1907 swp_to_radix_entry(swap), gfp,
1908 charge_mm);
1909 if (error)
1910 goto failed;
1911
1912 shmem_recalc_inode(inode, 0, -1);
1913
1914 if (sgp == SGP_WRITE)
1915 folio_mark_accessed(folio);
1916
1917 delete_from_swap_cache(folio);
1918 folio_mark_dirty(folio);
1919 swap_free(swap);
1920 put_swap_device(si);
1921
1922 *foliop = folio;
1923 return 0;
1924 failed:
1925 if (!shmem_confirm_swap(mapping, index, swap))
1926 error = -EEXIST;
1927 if (error == -EIO)
1928 shmem_set_folio_swapin_error(inode, index, folio, swap);
1929 unlock:
1930 if (folio) {
1931 folio_unlock(folio);
1932 folio_put(folio);
1933 }
1934 put_swap_device(si);
1935
1936 return error;
1937 }
1938
1939 /*
1940 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1941 *
1942 * If we allocate a new one we do not mark it dirty. That's up to the
1943 * vm. If we swap it in we mark it dirty since we also free the swap
1944 * entry since a page cannot live in both the swap and page cache.
1945 *
1946 * vma, vmf, and fault_type are only supplied by shmem_fault:
1947 * otherwise they are NULL.
1948 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1949 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1950 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1951 struct vm_area_struct *vma, struct vm_fault *vmf,
1952 vm_fault_t *fault_type)
1953 {
1954 struct address_space *mapping = inode->i_mapping;
1955 struct shmem_inode_info *info = SHMEM_I(inode);
1956 struct shmem_sb_info *sbinfo;
1957 struct mm_struct *charge_mm;
1958 struct folio *folio;
1959 pgoff_t hindex;
1960 gfp_t huge_gfp;
1961 int error;
1962 int once = 0;
1963 int alloced = 0;
1964
1965 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1966 return -EFBIG;
1967 repeat:
1968 if (sgp <= SGP_CACHE &&
1969 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1970 return -EINVAL;
1971 }
1972
1973 sbinfo = SHMEM_SB(inode->i_sb);
1974 charge_mm = vma ? vma->vm_mm : NULL;
1975
1976 folio = filemap_get_entry(mapping, index);
1977 if (folio && vma && userfaultfd_minor(vma)) {
1978 if (!xa_is_value(folio))
1979 folio_put(folio);
1980 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1981 return 0;
1982 }
1983
1984 if (xa_is_value(folio)) {
1985 error = shmem_swapin_folio(inode, index, &folio,
1986 sgp, gfp, vma, fault_type);
1987 if (error == -EEXIST)
1988 goto repeat;
1989
1990 *foliop = folio;
1991 return error;
1992 }
1993
1994 if (folio) {
1995 folio_lock(folio);
1996
1997 /* Has the folio been truncated or swapped out? */
1998 if (unlikely(folio->mapping != mapping)) {
1999 folio_unlock(folio);
2000 folio_put(folio);
2001 goto repeat;
2002 }
2003 if (sgp == SGP_WRITE)
2004 folio_mark_accessed(folio);
2005 if (folio_test_uptodate(folio))
2006 goto out;
2007 /* fallocated folio */
2008 if (sgp != SGP_READ)
2009 goto clear;
2010 folio_unlock(folio);
2011 folio_put(folio);
2012 }
2013
2014 /*
2015 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2016 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2017 */
2018 *foliop = NULL;
2019 if (sgp == SGP_READ)
2020 return 0;
2021 if (sgp == SGP_NOALLOC)
2022 return -ENOENT;
2023
2024 /*
2025 * Fast cache lookup and swap lookup did not find it: allocate.
2026 */
2027
2028 if (vma && userfaultfd_missing(vma)) {
2029 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2030 return 0;
2031 }
2032
2033 if (!shmem_is_huge(inode, index, false,
2034 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2035 goto alloc_nohuge;
2036
2037 huge_gfp = vma_thp_gfp_mask(vma);
2038 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2039 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2040 if (IS_ERR(folio)) {
2041 alloc_nohuge:
2042 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2043 }
2044 if (IS_ERR(folio)) {
2045 int retry = 5;
2046
2047 error = PTR_ERR(folio);
2048 folio = NULL;
2049 if (error != -ENOSPC)
2050 goto unlock;
2051 /*
2052 * Try to reclaim some space by splitting a large folio
2053 * beyond i_size on the filesystem.
2054 */
2055 while (retry--) {
2056 int ret;
2057
2058 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2059 if (ret == SHRINK_STOP)
2060 break;
2061 if (ret)
2062 goto alloc_nohuge;
2063 }
2064 goto unlock;
2065 }
2066
2067 hindex = round_down(index, folio_nr_pages(folio));
2068
2069 if (sgp == SGP_WRITE)
2070 __folio_set_referenced(folio);
2071
2072 error = shmem_add_to_page_cache(folio, mapping, hindex,
2073 NULL, gfp & GFP_RECLAIM_MASK,
2074 charge_mm);
2075 if (error)
2076 goto unacct;
2077
2078 folio_add_lru(folio);
2079 shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2080 alloced = true;
2081
2082 if (folio_test_pmd_mappable(folio) &&
2083 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2084 folio_next_index(folio) - 1) {
2085 /*
2086 * Part of the large folio is beyond i_size: subject
2087 * to shrink under memory pressure.
2088 */
2089 spin_lock(&sbinfo->shrinklist_lock);
2090 /*
2091 * _careful to defend against unlocked access to
2092 * ->shrink_list in shmem_unused_huge_shrink()
2093 */
2094 if (list_empty_careful(&info->shrinklist)) {
2095 list_add_tail(&info->shrinklist,
2096 &sbinfo->shrinklist);
2097 sbinfo->shrinklist_len++;
2098 }
2099 spin_unlock(&sbinfo->shrinklist_lock);
2100 }
2101
2102 /*
2103 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2104 */
2105 if (sgp == SGP_FALLOC)
2106 sgp = SGP_WRITE;
2107 clear:
2108 /*
2109 * Let SGP_WRITE caller clear ends if write does not fill folio;
2110 * but SGP_FALLOC on a folio fallocated earlier must initialize
2111 * it now, lest undo on failure cancel our earlier guarantee.
2112 */
2113 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2114 long i, n = folio_nr_pages(folio);
2115
2116 for (i = 0; i < n; i++)
2117 clear_highpage(folio_page(folio, i));
2118 flush_dcache_folio(folio);
2119 folio_mark_uptodate(folio);
2120 }
2121
2122 /* Perhaps the file has been truncated since we checked */
2123 if (sgp <= SGP_CACHE &&
2124 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2125 if (alloced) {
2126 folio_clear_dirty(folio);
2127 filemap_remove_folio(folio);
2128 shmem_recalc_inode(inode, 0, 0);
2129 }
2130 error = -EINVAL;
2131 goto unlock;
2132 }
2133 out:
2134 *foliop = folio;
2135 return 0;
2136
2137 /*
2138 * Error recovery.
2139 */
2140 unacct:
2141 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2142
2143 if (folio_test_large(folio)) {
2144 folio_unlock(folio);
2145 folio_put(folio);
2146 goto alloc_nohuge;
2147 }
2148 unlock:
2149 if (folio) {
2150 folio_unlock(folio);
2151 folio_put(folio);
2152 }
2153 if (error == -ENOSPC && !once++) {
2154 shmem_recalc_inode(inode, 0, 0);
2155 goto repeat;
2156 }
2157 if (error == -EEXIST)
2158 goto repeat;
2159 return error;
2160 }
2161
shmem_get_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp)2162 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2163 enum sgp_type sgp)
2164 {
2165 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2166 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2167 }
2168
2169 /*
2170 * This is like autoremove_wake_function, but it removes the wait queue
2171 * entry unconditionally - even if something else had already woken the
2172 * target.
2173 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2174 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2175 {
2176 int ret = default_wake_function(wait, mode, sync, key);
2177 list_del_init(&wait->entry);
2178 return ret;
2179 }
2180
shmem_fault(struct vm_fault * vmf)2181 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2182 {
2183 struct vm_area_struct *vma = vmf->vma;
2184 struct inode *inode = file_inode(vma->vm_file);
2185 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2186 struct folio *folio = NULL;
2187 int err;
2188 vm_fault_t ret = VM_FAULT_LOCKED;
2189
2190 /*
2191 * Trinity finds that probing a hole which tmpfs is punching can
2192 * prevent the hole-punch from ever completing: which in turn
2193 * locks writers out with its hold on i_rwsem. So refrain from
2194 * faulting pages into the hole while it's being punched. Although
2195 * shmem_undo_range() does remove the additions, it may be unable to
2196 * keep up, as each new page needs its own unmap_mapping_range() call,
2197 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2198 *
2199 * It does not matter if we sometimes reach this check just before the
2200 * hole-punch begins, so that one fault then races with the punch:
2201 * we just need to make racing faults a rare case.
2202 *
2203 * The implementation below would be much simpler if we just used a
2204 * standard mutex or completion: but we cannot take i_rwsem in fault,
2205 * and bloating every shmem inode for this unlikely case would be sad.
2206 */
2207 if (unlikely(inode->i_private)) {
2208 struct shmem_falloc *shmem_falloc;
2209
2210 spin_lock(&inode->i_lock);
2211 shmem_falloc = inode->i_private;
2212 if (shmem_falloc &&
2213 shmem_falloc->waitq &&
2214 vmf->pgoff >= shmem_falloc->start &&
2215 vmf->pgoff < shmem_falloc->next) {
2216 struct file *fpin;
2217 wait_queue_head_t *shmem_falloc_waitq;
2218 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2219
2220 ret = VM_FAULT_NOPAGE;
2221 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2222 if (fpin)
2223 ret = VM_FAULT_RETRY;
2224
2225 shmem_falloc_waitq = shmem_falloc->waitq;
2226 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2227 TASK_UNINTERRUPTIBLE);
2228 spin_unlock(&inode->i_lock);
2229 schedule();
2230
2231 /*
2232 * shmem_falloc_waitq points into the shmem_fallocate()
2233 * stack of the hole-punching task: shmem_falloc_waitq
2234 * is usually invalid by the time we reach here, but
2235 * finish_wait() does not dereference it in that case;
2236 * though i_lock needed lest racing with wake_up_all().
2237 */
2238 spin_lock(&inode->i_lock);
2239 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2240 spin_unlock(&inode->i_lock);
2241
2242 if (fpin)
2243 fput(fpin);
2244 return ret;
2245 }
2246 spin_unlock(&inode->i_lock);
2247 }
2248
2249 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2250 gfp, vma, vmf, &ret);
2251 if (err)
2252 return vmf_error(err);
2253 if (folio)
2254 vmf->page = folio_file_page(folio, vmf->pgoff);
2255 return ret;
2256 }
2257
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2258 unsigned long shmem_get_unmapped_area(struct file *file,
2259 unsigned long uaddr, unsigned long len,
2260 unsigned long pgoff, unsigned long flags)
2261 {
2262 unsigned long (*get_area)(struct file *,
2263 unsigned long, unsigned long, unsigned long, unsigned long);
2264 unsigned long addr;
2265 unsigned long offset;
2266 unsigned long inflated_len;
2267 unsigned long inflated_addr;
2268 unsigned long inflated_offset;
2269
2270 if (len > TASK_SIZE)
2271 return -ENOMEM;
2272
2273 get_area = current->mm->get_unmapped_area;
2274 addr = get_area(file, uaddr, len, pgoff, flags);
2275
2276 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2277 return addr;
2278 if (IS_ERR_VALUE(addr))
2279 return addr;
2280 if (addr & ~PAGE_MASK)
2281 return addr;
2282 if (addr > TASK_SIZE - len)
2283 return addr;
2284
2285 if (shmem_huge == SHMEM_HUGE_DENY)
2286 return addr;
2287 if (len < HPAGE_PMD_SIZE)
2288 return addr;
2289 if (flags & MAP_FIXED)
2290 return addr;
2291 /*
2292 * Our priority is to support MAP_SHARED mapped hugely;
2293 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2294 * But if caller specified an address hint and we allocated area there
2295 * successfully, respect that as before.
2296 */
2297 if (uaddr == addr)
2298 return addr;
2299
2300 if (shmem_huge != SHMEM_HUGE_FORCE) {
2301 struct super_block *sb;
2302
2303 if (file) {
2304 VM_BUG_ON(file->f_op != &shmem_file_operations);
2305 sb = file_inode(file)->i_sb;
2306 } else {
2307 /*
2308 * Called directly from mm/mmap.c, or drivers/char/mem.c
2309 * for "/dev/zero", to create a shared anonymous object.
2310 */
2311 if (IS_ERR(shm_mnt))
2312 return addr;
2313 sb = shm_mnt->mnt_sb;
2314 }
2315 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2316 return addr;
2317 }
2318
2319 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2320 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2321 return addr;
2322 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2323 return addr;
2324
2325 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2326 if (inflated_len > TASK_SIZE)
2327 return addr;
2328 if (inflated_len < len)
2329 return addr;
2330
2331 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2332 if (IS_ERR_VALUE(inflated_addr))
2333 return addr;
2334 if (inflated_addr & ~PAGE_MASK)
2335 return addr;
2336
2337 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2338 inflated_addr += offset - inflated_offset;
2339 if (inflated_offset > offset)
2340 inflated_addr += HPAGE_PMD_SIZE;
2341
2342 if (inflated_addr > TASK_SIZE - len)
2343 return addr;
2344 return inflated_addr;
2345 }
2346
2347 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2348 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2349 {
2350 struct inode *inode = file_inode(vma->vm_file);
2351 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2352 }
2353
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2354 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2355 unsigned long addr)
2356 {
2357 struct inode *inode = file_inode(vma->vm_file);
2358 pgoff_t index;
2359
2360 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2361 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2362 }
2363 #endif
2364
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2365 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2366 {
2367 struct inode *inode = file_inode(file);
2368 struct shmem_inode_info *info = SHMEM_I(inode);
2369 int retval = -ENOMEM;
2370
2371 /*
2372 * What serializes the accesses to info->flags?
2373 * ipc_lock_object() when called from shmctl_do_lock(),
2374 * no serialization needed when called from shm_destroy().
2375 */
2376 if (lock && !(info->flags & VM_LOCKED)) {
2377 if (!user_shm_lock(inode->i_size, ucounts))
2378 goto out_nomem;
2379 info->flags |= VM_LOCKED;
2380 mapping_set_unevictable(file->f_mapping);
2381 }
2382 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2383 user_shm_unlock(inode->i_size, ucounts);
2384 info->flags &= ~VM_LOCKED;
2385 mapping_clear_unevictable(file->f_mapping);
2386 }
2387 retval = 0;
2388
2389 out_nomem:
2390 return retval;
2391 }
2392
shmem_mmap(struct file * file,struct vm_area_struct * vma)2393 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2394 {
2395 struct inode *inode = file_inode(file);
2396 struct shmem_inode_info *info = SHMEM_I(inode);
2397 int ret;
2398
2399 ret = seal_check_future_write(info->seals, vma);
2400 if (ret)
2401 return ret;
2402
2403 file_accessed(file);
2404 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2405 if (inode->i_nlink)
2406 vma->vm_ops = &shmem_vm_ops;
2407 else
2408 vma->vm_ops = &shmem_anon_vm_ops;
2409 return 0;
2410 }
2411
shmem_file_open(struct inode * inode,struct file * file)2412 static int shmem_file_open(struct inode *inode, struct file *file)
2413 {
2414 file->f_mode |= FMODE_CAN_ODIRECT;
2415 return generic_file_open(inode, file);
2416 }
2417
2418 #ifdef CONFIG_TMPFS_XATTR
2419 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2420
2421 /*
2422 * chattr's fsflags are unrelated to extended attributes,
2423 * but tmpfs has chosen to enable them under the same config option.
2424 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2425 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2426 {
2427 unsigned int i_flags = 0;
2428
2429 if (fsflags & FS_NOATIME_FL)
2430 i_flags |= S_NOATIME;
2431 if (fsflags & FS_APPEND_FL)
2432 i_flags |= S_APPEND;
2433 if (fsflags & FS_IMMUTABLE_FL)
2434 i_flags |= S_IMMUTABLE;
2435 /*
2436 * But FS_NODUMP_FL does not require any action in i_flags.
2437 */
2438 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2439 }
2440 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2441 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2442 {
2443 }
2444 #define shmem_initxattrs NULL
2445 #endif
2446
shmem_get_offset_ctx(struct inode * inode)2447 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2448 {
2449 return &SHMEM_I(inode)->dir_offsets;
2450 }
2451
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2452 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2453 struct super_block *sb,
2454 struct inode *dir, umode_t mode,
2455 dev_t dev, unsigned long flags)
2456 {
2457 struct inode *inode;
2458 struct shmem_inode_info *info;
2459 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2460 ino_t ino;
2461 int err;
2462
2463 err = shmem_reserve_inode(sb, &ino);
2464 if (err)
2465 return ERR_PTR(err);
2466
2467
2468 inode = new_inode(sb);
2469 if (!inode) {
2470 shmem_free_inode(sb, 0);
2471 return ERR_PTR(-ENOSPC);
2472 }
2473
2474 inode->i_ino = ino;
2475 inode_init_owner(idmap, inode, dir, mode);
2476 inode->i_blocks = 0;
2477 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2478 inode->i_generation = get_random_u32();
2479 info = SHMEM_I(inode);
2480 memset(info, 0, (char *)inode - (char *)info);
2481 spin_lock_init(&info->lock);
2482 atomic_set(&info->stop_eviction, 0);
2483 info->seals = F_SEAL_SEAL;
2484 info->flags = flags & VM_NORESERVE;
2485 info->i_crtime = inode->i_mtime;
2486 info->fsflags = (dir == NULL) ? 0 :
2487 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2488 if (info->fsflags)
2489 shmem_set_inode_flags(inode, info->fsflags);
2490 INIT_LIST_HEAD(&info->shrinklist);
2491 INIT_LIST_HEAD(&info->swaplist);
2492 INIT_LIST_HEAD(&info->swaplist);
2493 if (sbinfo->noswap)
2494 mapping_set_unevictable(inode->i_mapping);
2495 simple_xattrs_init(&info->xattrs);
2496 cache_no_acl(inode);
2497 mapping_set_large_folios(inode->i_mapping);
2498
2499 switch (mode & S_IFMT) {
2500 default:
2501 inode->i_op = &shmem_special_inode_operations;
2502 init_special_inode(inode, mode, dev);
2503 break;
2504 case S_IFREG:
2505 inode->i_mapping->a_ops = &shmem_aops;
2506 inode->i_op = &shmem_inode_operations;
2507 inode->i_fop = &shmem_file_operations;
2508 mpol_shared_policy_init(&info->policy,
2509 shmem_get_sbmpol(sbinfo));
2510 break;
2511 case S_IFDIR:
2512 inc_nlink(inode);
2513 /* Some things misbehave if size == 0 on a directory */
2514 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2515 inode->i_op = &shmem_dir_inode_operations;
2516 inode->i_fop = &simple_offset_dir_operations;
2517 simple_offset_init(shmem_get_offset_ctx(inode));
2518 break;
2519 case S_IFLNK:
2520 /*
2521 * Must not load anything in the rbtree,
2522 * mpol_free_shared_policy will not be called.
2523 */
2524 mpol_shared_policy_init(&info->policy, NULL);
2525 break;
2526 }
2527
2528 lockdep_annotate_inode_mutex_key(inode);
2529 return inode;
2530 }
2531
2532 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2533 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2534 struct super_block *sb, struct inode *dir,
2535 umode_t mode, dev_t dev, unsigned long flags)
2536 {
2537 int err;
2538 struct inode *inode;
2539
2540 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2541 if (IS_ERR(inode))
2542 return inode;
2543
2544 err = dquot_initialize(inode);
2545 if (err)
2546 goto errout;
2547
2548 err = dquot_alloc_inode(inode);
2549 if (err) {
2550 dquot_drop(inode);
2551 goto errout;
2552 }
2553 return inode;
2554
2555 errout:
2556 inode->i_flags |= S_NOQUOTA;
2557 iput(inode);
2558 return ERR_PTR(err);
2559 }
2560 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2561 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2562 struct super_block *sb, struct inode *dir,
2563 umode_t mode, dev_t dev, unsigned long flags)
2564 {
2565 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2566 }
2567 #endif /* CONFIG_TMPFS_QUOTA */
2568
2569 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2570 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2571 struct vm_area_struct *dst_vma,
2572 unsigned long dst_addr,
2573 unsigned long src_addr,
2574 uffd_flags_t flags,
2575 struct folio **foliop)
2576 {
2577 struct inode *inode = file_inode(dst_vma->vm_file);
2578 struct shmem_inode_info *info = SHMEM_I(inode);
2579 struct address_space *mapping = inode->i_mapping;
2580 gfp_t gfp = mapping_gfp_mask(mapping);
2581 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2582 void *page_kaddr;
2583 struct folio *folio;
2584 int ret;
2585 pgoff_t max_off;
2586
2587 if (shmem_inode_acct_block(inode, 1)) {
2588 /*
2589 * We may have got a page, returned -ENOENT triggering a retry,
2590 * and now we find ourselves with -ENOMEM. Release the page, to
2591 * avoid a BUG_ON in our caller.
2592 */
2593 if (unlikely(*foliop)) {
2594 folio_put(*foliop);
2595 *foliop = NULL;
2596 }
2597 return -ENOMEM;
2598 }
2599
2600 if (!*foliop) {
2601 ret = -ENOMEM;
2602 folio = shmem_alloc_folio(gfp, info, pgoff);
2603 if (!folio)
2604 goto out_unacct_blocks;
2605
2606 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2607 page_kaddr = kmap_local_folio(folio, 0);
2608 /*
2609 * The read mmap_lock is held here. Despite the
2610 * mmap_lock being read recursive a deadlock is still
2611 * possible if a writer has taken a lock. For example:
2612 *
2613 * process A thread 1 takes read lock on own mmap_lock
2614 * process A thread 2 calls mmap, blocks taking write lock
2615 * process B thread 1 takes page fault, read lock on own mmap lock
2616 * process B thread 2 calls mmap, blocks taking write lock
2617 * process A thread 1 blocks taking read lock on process B
2618 * process B thread 1 blocks taking read lock on process A
2619 *
2620 * Disable page faults to prevent potential deadlock
2621 * and retry the copy outside the mmap_lock.
2622 */
2623 pagefault_disable();
2624 ret = copy_from_user(page_kaddr,
2625 (const void __user *)src_addr,
2626 PAGE_SIZE);
2627 pagefault_enable();
2628 kunmap_local(page_kaddr);
2629
2630 /* fallback to copy_from_user outside mmap_lock */
2631 if (unlikely(ret)) {
2632 *foliop = folio;
2633 ret = -ENOENT;
2634 /* don't free the page */
2635 goto out_unacct_blocks;
2636 }
2637
2638 flush_dcache_folio(folio);
2639 } else { /* ZEROPAGE */
2640 clear_user_highpage(&folio->page, dst_addr);
2641 }
2642 } else {
2643 folio = *foliop;
2644 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2645 *foliop = NULL;
2646 }
2647
2648 VM_BUG_ON(folio_test_locked(folio));
2649 VM_BUG_ON(folio_test_swapbacked(folio));
2650 __folio_set_locked(folio);
2651 __folio_set_swapbacked(folio);
2652 __folio_mark_uptodate(folio);
2653
2654 ret = -EFAULT;
2655 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2656 if (unlikely(pgoff >= max_off))
2657 goto out_release;
2658
2659 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2660 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2661 if (ret)
2662 goto out_release;
2663
2664 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2665 &folio->page, true, flags);
2666 if (ret)
2667 goto out_delete_from_cache;
2668
2669 shmem_recalc_inode(inode, 1, 0);
2670 folio_unlock(folio);
2671 return 0;
2672 out_delete_from_cache:
2673 filemap_remove_folio(folio);
2674 out_release:
2675 folio_unlock(folio);
2676 folio_put(folio);
2677 out_unacct_blocks:
2678 shmem_inode_unacct_blocks(inode, 1);
2679 return ret;
2680 }
2681 #endif /* CONFIG_USERFAULTFD */
2682
2683 #ifdef CONFIG_TMPFS
2684 static const struct inode_operations shmem_symlink_inode_operations;
2685 static const struct inode_operations shmem_short_symlink_operations;
2686
2687 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2688 shmem_write_begin(struct file *file, struct address_space *mapping,
2689 loff_t pos, unsigned len,
2690 struct page **pagep, void **fsdata)
2691 {
2692 struct inode *inode = mapping->host;
2693 struct shmem_inode_info *info = SHMEM_I(inode);
2694 pgoff_t index = pos >> PAGE_SHIFT;
2695 struct folio *folio;
2696 int ret = 0;
2697
2698 /* i_rwsem is held by caller */
2699 if (unlikely(info->seals & (F_SEAL_GROW |
2700 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2701 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2702 return -EPERM;
2703 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2704 return -EPERM;
2705 }
2706
2707 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2708
2709 if (ret)
2710 return ret;
2711
2712 *pagep = folio_file_page(folio, index);
2713 if (PageHWPoison(*pagep)) {
2714 folio_unlock(folio);
2715 folio_put(folio);
2716 *pagep = NULL;
2717 return -EIO;
2718 }
2719
2720 return 0;
2721 }
2722
2723 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2724 shmem_write_end(struct file *file, struct address_space *mapping,
2725 loff_t pos, unsigned len, unsigned copied,
2726 struct page *page, void *fsdata)
2727 {
2728 struct folio *folio = page_folio(page);
2729 struct inode *inode = mapping->host;
2730
2731 if (pos + copied > inode->i_size)
2732 i_size_write(inode, pos + copied);
2733
2734 if (!folio_test_uptodate(folio)) {
2735 if (copied < folio_size(folio)) {
2736 size_t from = offset_in_folio(folio, pos);
2737 folio_zero_segments(folio, 0, from,
2738 from + copied, folio_size(folio));
2739 }
2740 folio_mark_uptodate(folio);
2741 }
2742 folio_mark_dirty(folio);
2743 folio_unlock(folio);
2744 folio_put(folio);
2745
2746 return copied;
2747 }
2748
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2749 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2750 {
2751 struct file *file = iocb->ki_filp;
2752 struct inode *inode = file_inode(file);
2753 struct address_space *mapping = inode->i_mapping;
2754 pgoff_t index;
2755 unsigned long offset;
2756 int error = 0;
2757 ssize_t retval = 0;
2758 loff_t *ppos = &iocb->ki_pos;
2759
2760 index = *ppos >> PAGE_SHIFT;
2761 offset = *ppos & ~PAGE_MASK;
2762
2763 for (;;) {
2764 struct folio *folio = NULL;
2765 struct page *page = NULL;
2766 pgoff_t end_index;
2767 unsigned long nr, ret;
2768 loff_t i_size = i_size_read(inode);
2769
2770 end_index = i_size >> PAGE_SHIFT;
2771 if (index > end_index)
2772 break;
2773 if (index == end_index) {
2774 nr = i_size & ~PAGE_MASK;
2775 if (nr <= offset)
2776 break;
2777 }
2778
2779 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2780 if (error) {
2781 if (error == -EINVAL)
2782 error = 0;
2783 break;
2784 }
2785 if (folio) {
2786 folio_unlock(folio);
2787
2788 page = folio_file_page(folio, index);
2789 if (PageHWPoison(page)) {
2790 folio_put(folio);
2791 error = -EIO;
2792 break;
2793 }
2794 }
2795
2796 /*
2797 * We must evaluate after, since reads (unlike writes)
2798 * are called without i_rwsem protection against truncate
2799 */
2800 nr = PAGE_SIZE;
2801 i_size = i_size_read(inode);
2802 end_index = i_size >> PAGE_SHIFT;
2803 if (index == end_index) {
2804 nr = i_size & ~PAGE_MASK;
2805 if (nr <= offset) {
2806 if (folio)
2807 folio_put(folio);
2808 break;
2809 }
2810 }
2811 nr -= offset;
2812
2813 if (folio) {
2814 /*
2815 * If users can be writing to this page using arbitrary
2816 * virtual addresses, take care about potential aliasing
2817 * before reading the page on the kernel side.
2818 */
2819 if (mapping_writably_mapped(mapping))
2820 flush_dcache_page(page);
2821 /*
2822 * Mark the page accessed if we read the beginning.
2823 */
2824 if (!offset)
2825 folio_mark_accessed(folio);
2826 /*
2827 * Ok, we have the page, and it's up-to-date, so
2828 * now we can copy it to user space...
2829 */
2830 ret = copy_page_to_iter(page, offset, nr, to);
2831 folio_put(folio);
2832
2833 } else if (user_backed_iter(to)) {
2834 /*
2835 * Copy to user tends to be so well optimized, but
2836 * clear_user() not so much, that it is noticeably
2837 * faster to copy the zero page instead of clearing.
2838 */
2839 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2840 } else {
2841 /*
2842 * But submitting the same page twice in a row to
2843 * splice() - or others? - can result in confusion:
2844 * so don't attempt that optimization on pipes etc.
2845 */
2846 ret = iov_iter_zero(nr, to);
2847 }
2848
2849 retval += ret;
2850 offset += ret;
2851 index += offset >> PAGE_SHIFT;
2852 offset &= ~PAGE_MASK;
2853
2854 if (!iov_iter_count(to))
2855 break;
2856 if (ret < nr) {
2857 error = -EFAULT;
2858 break;
2859 }
2860 cond_resched();
2861 }
2862
2863 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2864 file_accessed(file);
2865 return retval ? retval : error;
2866 }
2867
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2868 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2869 {
2870 struct file *file = iocb->ki_filp;
2871 struct inode *inode = file->f_mapping->host;
2872 ssize_t ret;
2873
2874 inode_lock(inode);
2875 ret = generic_write_checks(iocb, from);
2876 if (ret <= 0)
2877 goto unlock;
2878 ret = file_remove_privs(file);
2879 if (ret)
2880 goto unlock;
2881 ret = file_update_time(file);
2882 if (ret)
2883 goto unlock;
2884 ret = generic_perform_write(iocb, from);
2885 unlock:
2886 inode_unlock(inode);
2887 return ret;
2888 }
2889
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2890 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2891 struct pipe_buffer *buf)
2892 {
2893 return true;
2894 }
2895
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2896 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2897 struct pipe_buffer *buf)
2898 {
2899 }
2900
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2901 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2902 struct pipe_buffer *buf)
2903 {
2904 return false;
2905 }
2906
2907 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2908 .release = zero_pipe_buf_release,
2909 .try_steal = zero_pipe_buf_try_steal,
2910 .get = zero_pipe_buf_get,
2911 };
2912
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)2913 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2914 loff_t fpos, size_t size)
2915 {
2916 size_t offset = fpos & ~PAGE_MASK;
2917
2918 size = min_t(size_t, size, PAGE_SIZE - offset);
2919
2920 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2921 struct pipe_buffer *buf = pipe_head_buf(pipe);
2922
2923 *buf = (struct pipe_buffer) {
2924 .ops = &zero_pipe_buf_ops,
2925 .page = ZERO_PAGE(0),
2926 .offset = offset,
2927 .len = size,
2928 };
2929 pipe->head++;
2930 }
2931
2932 return size;
2933 }
2934
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2935 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2936 struct pipe_inode_info *pipe,
2937 size_t len, unsigned int flags)
2938 {
2939 struct inode *inode = file_inode(in);
2940 struct address_space *mapping = inode->i_mapping;
2941 struct folio *folio = NULL;
2942 size_t total_spliced = 0, used, npages, n, part;
2943 loff_t isize;
2944 int error = 0;
2945
2946 /* Work out how much data we can actually add into the pipe */
2947 used = pipe_occupancy(pipe->head, pipe->tail);
2948 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2949 len = min_t(size_t, len, npages * PAGE_SIZE);
2950
2951 do {
2952 if (*ppos >= i_size_read(inode))
2953 break;
2954
2955 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2956 SGP_READ);
2957 if (error) {
2958 if (error == -EINVAL)
2959 error = 0;
2960 break;
2961 }
2962 if (folio) {
2963 folio_unlock(folio);
2964
2965 if (folio_test_hwpoison(folio) ||
2966 (folio_test_large(folio) &&
2967 folio_test_has_hwpoisoned(folio))) {
2968 error = -EIO;
2969 break;
2970 }
2971 }
2972
2973 /*
2974 * i_size must be checked after we know the pages are Uptodate.
2975 *
2976 * Checking i_size after the check allows us to calculate
2977 * the correct value for "nr", which means the zero-filled
2978 * part of the page is not copied back to userspace (unless
2979 * another truncate extends the file - this is desired though).
2980 */
2981 isize = i_size_read(inode);
2982 if (unlikely(*ppos >= isize))
2983 break;
2984 part = min_t(loff_t, isize - *ppos, len);
2985
2986 if (folio) {
2987 /*
2988 * If users can be writing to this page using arbitrary
2989 * virtual addresses, take care about potential aliasing
2990 * before reading the page on the kernel side.
2991 */
2992 if (mapping_writably_mapped(mapping))
2993 flush_dcache_folio(folio);
2994 folio_mark_accessed(folio);
2995 /*
2996 * Ok, we have the page, and it's up-to-date, so we can
2997 * now splice it into the pipe.
2998 */
2999 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3000 folio_put(folio);
3001 folio = NULL;
3002 } else {
3003 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3004 }
3005
3006 if (!n)
3007 break;
3008 len -= n;
3009 total_spliced += n;
3010 *ppos += n;
3011 in->f_ra.prev_pos = *ppos;
3012 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3013 break;
3014
3015 cond_resched();
3016 } while (len);
3017
3018 if (folio)
3019 folio_put(folio);
3020
3021 file_accessed(in);
3022 return total_spliced ? total_spliced : error;
3023 }
3024
shmem_file_llseek(struct file * file,loff_t offset,int whence)3025 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3026 {
3027 struct address_space *mapping = file->f_mapping;
3028 struct inode *inode = mapping->host;
3029
3030 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3031 return generic_file_llseek_size(file, offset, whence,
3032 MAX_LFS_FILESIZE, i_size_read(inode));
3033 if (offset < 0)
3034 return -ENXIO;
3035
3036 inode_lock(inode);
3037 /* We're holding i_rwsem so we can access i_size directly */
3038 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3039 if (offset >= 0)
3040 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3041 inode_unlock(inode);
3042 return offset;
3043 }
3044
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3045 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3046 loff_t len)
3047 {
3048 struct inode *inode = file_inode(file);
3049 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3050 struct shmem_inode_info *info = SHMEM_I(inode);
3051 struct shmem_falloc shmem_falloc;
3052 pgoff_t start, index, end, undo_fallocend;
3053 int error;
3054
3055 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3056 return -EOPNOTSUPP;
3057
3058 inode_lock(inode);
3059
3060 if (mode & FALLOC_FL_PUNCH_HOLE) {
3061 struct address_space *mapping = file->f_mapping;
3062 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3063 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3064 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3065
3066 /* protected by i_rwsem */
3067 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3068 error = -EPERM;
3069 goto out;
3070 }
3071
3072 shmem_falloc.waitq = &shmem_falloc_waitq;
3073 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3074 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3075 spin_lock(&inode->i_lock);
3076 inode->i_private = &shmem_falloc;
3077 spin_unlock(&inode->i_lock);
3078
3079 if ((u64)unmap_end > (u64)unmap_start)
3080 unmap_mapping_range(mapping, unmap_start,
3081 1 + unmap_end - unmap_start, 0);
3082 shmem_truncate_range(inode, offset, offset + len - 1);
3083 /* No need to unmap again: hole-punching leaves COWed pages */
3084
3085 spin_lock(&inode->i_lock);
3086 inode->i_private = NULL;
3087 wake_up_all(&shmem_falloc_waitq);
3088 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3089 spin_unlock(&inode->i_lock);
3090 error = 0;
3091 goto out;
3092 }
3093
3094 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3095 error = inode_newsize_ok(inode, offset + len);
3096 if (error)
3097 goto out;
3098
3099 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3100 error = -EPERM;
3101 goto out;
3102 }
3103
3104 start = offset >> PAGE_SHIFT;
3105 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3106 /* Try to avoid a swapstorm if len is impossible to satisfy */
3107 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3108 error = -ENOSPC;
3109 goto out;
3110 }
3111
3112 shmem_falloc.waitq = NULL;
3113 shmem_falloc.start = start;
3114 shmem_falloc.next = start;
3115 shmem_falloc.nr_falloced = 0;
3116 shmem_falloc.nr_unswapped = 0;
3117 spin_lock(&inode->i_lock);
3118 inode->i_private = &shmem_falloc;
3119 spin_unlock(&inode->i_lock);
3120
3121 /*
3122 * info->fallocend is only relevant when huge pages might be
3123 * involved: to prevent split_huge_page() freeing fallocated
3124 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3125 */
3126 undo_fallocend = info->fallocend;
3127 if (info->fallocend < end)
3128 info->fallocend = end;
3129
3130 for (index = start; index < end; ) {
3131 struct folio *folio;
3132
3133 /*
3134 * Good, the fallocate(2) manpage permits EINTR: we may have
3135 * been interrupted because we are using up too much memory.
3136 */
3137 if (signal_pending(current))
3138 error = -EINTR;
3139 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3140 error = -ENOMEM;
3141 else
3142 error = shmem_get_folio(inode, index, &folio,
3143 SGP_FALLOC);
3144 if (error) {
3145 info->fallocend = undo_fallocend;
3146 /* Remove the !uptodate folios we added */
3147 if (index > start) {
3148 shmem_undo_range(inode,
3149 (loff_t)start << PAGE_SHIFT,
3150 ((loff_t)index << PAGE_SHIFT) - 1, true);
3151 }
3152 goto undone;
3153 }
3154
3155 /*
3156 * Here is a more important optimization than it appears:
3157 * a second SGP_FALLOC on the same large folio will clear it,
3158 * making it uptodate and un-undoable if we fail later.
3159 */
3160 index = folio_next_index(folio);
3161 /* Beware 32-bit wraparound */
3162 if (!index)
3163 index--;
3164
3165 /*
3166 * Inform shmem_writepage() how far we have reached.
3167 * No need for lock or barrier: we have the page lock.
3168 */
3169 if (!folio_test_uptodate(folio))
3170 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3171 shmem_falloc.next = index;
3172
3173 /*
3174 * If !uptodate, leave it that way so that freeable folios
3175 * can be recognized if we need to rollback on error later.
3176 * But mark it dirty so that memory pressure will swap rather
3177 * than free the folios we are allocating (and SGP_CACHE folios
3178 * might still be clean: we now need to mark those dirty too).
3179 */
3180 folio_mark_dirty(folio);
3181 folio_unlock(folio);
3182 folio_put(folio);
3183 cond_resched();
3184 }
3185
3186 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3187 i_size_write(inode, offset + len);
3188 undone:
3189 spin_lock(&inode->i_lock);
3190 inode->i_private = NULL;
3191 spin_unlock(&inode->i_lock);
3192 out:
3193 if (!error)
3194 file_modified(file);
3195 inode_unlock(inode);
3196 return error;
3197 }
3198
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3199 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3200 {
3201 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3202
3203 buf->f_type = TMPFS_MAGIC;
3204 buf->f_bsize = PAGE_SIZE;
3205 buf->f_namelen = NAME_MAX;
3206 if (sbinfo->max_blocks) {
3207 buf->f_blocks = sbinfo->max_blocks;
3208 buf->f_bavail =
3209 buf->f_bfree = sbinfo->max_blocks -
3210 percpu_counter_sum(&sbinfo->used_blocks);
3211 }
3212 if (sbinfo->max_inodes) {
3213 buf->f_files = sbinfo->max_inodes;
3214 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3215 }
3216 /* else leave those fields 0 like simple_statfs */
3217
3218 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3219
3220 return 0;
3221 }
3222
3223 /*
3224 * File creation. Allocate an inode, and we're done..
3225 */
3226 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3227 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3228 struct dentry *dentry, umode_t mode, dev_t dev)
3229 {
3230 struct inode *inode;
3231 int error;
3232
3233 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3234 if (IS_ERR(inode))
3235 return PTR_ERR(inode);
3236
3237 error = simple_acl_create(dir, inode);
3238 if (error)
3239 goto out_iput;
3240 error = security_inode_init_security(inode, dir,
3241 &dentry->d_name,
3242 shmem_initxattrs, NULL);
3243 if (error && error != -EOPNOTSUPP)
3244 goto out_iput;
3245
3246 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3247 if (error)
3248 goto out_iput;
3249
3250 dir->i_size += BOGO_DIRENT_SIZE;
3251 dir->i_mtime = inode_set_ctime_current(dir);
3252 inode_inc_iversion(dir);
3253 d_instantiate(dentry, inode);
3254 dget(dentry); /* Extra count - pin the dentry in core */
3255 return error;
3256
3257 out_iput:
3258 iput(inode);
3259 return error;
3260 }
3261
3262 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3263 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3264 struct file *file, umode_t mode)
3265 {
3266 struct inode *inode;
3267 int error;
3268
3269 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3270
3271 if (IS_ERR(inode)) {
3272 error = PTR_ERR(inode);
3273 goto err_out;
3274 }
3275
3276 error = security_inode_init_security(inode, dir,
3277 NULL,
3278 shmem_initxattrs, NULL);
3279 if (error && error != -EOPNOTSUPP)
3280 goto out_iput;
3281 error = simple_acl_create(dir, inode);
3282 if (error)
3283 goto out_iput;
3284 d_tmpfile(file, inode);
3285
3286 err_out:
3287 return finish_open_simple(file, error);
3288 out_iput:
3289 iput(inode);
3290 return error;
3291 }
3292
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3293 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3294 struct dentry *dentry, umode_t mode)
3295 {
3296 int error;
3297
3298 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3299 if (error)
3300 return error;
3301 inc_nlink(dir);
3302 return 0;
3303 }
3304
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3305 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3306 struct dentry *dentry, umode_t mode, bool excl)
3307 {
3308 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3309 }
3310
3311 /*
3312 * Link a file..
3313 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3314 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3315 {
3316 struct inode *inode = d_inode(old_dentry);
3317 int ret = 0;
3318
3319 /*
3320 * No ordinary (disk based) filesystem counts links as inodes;
3321 * but each new link needs a new dentry, pinning lowmem, and
3322 * tmpfs dentries cannot be pruned until they are unlinked.
3323 * But if an O_TMPFILE file is linked into the tmpfs, the
3324 * first link must skip that, to get the accounting right.
3325 */
3326 if (inode->i_nlink) {
3327 ret = shmem_reserve_inode(inode->i_sb, NULL);
3328 if (ret)
3329 goto out;
3330 }
3331
3332 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3333 if (ret) {
3334 if (inode->i_nlink)
3335 shmem_free_inode(inode->i_sb, 0);
3336 goto out;
3337 }
3338
3339 dir->i_size += BOGO_DIRENT_SIZE;
3340 dir->i_mtime = inode_set_ctime_to_ts(dir,
3341 inode_set_ctime_current(inode));
3342 inode_inc_iversion(dir);
3343 inc_nlink(inode);
3344 ihold(inode); /* New dentry reference */
3345 dget(dentry); /* Extra pinning count for the created dentry */
3346 d_instantiate(dentry, inode);
3347 out:
3348 return ret;
3349 }
3350
shmem_unlink(struct inode * dir,struct dentry * dentry)3351 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3352 {
3353 struct inode *inode = d_inode(dentry);
3354
3355 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3356 shmem_free_inode(inode->i_sb, 0);
3357
3358 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3359
3360 dir->i_size -= BOGO_DIRENT_SIZE;
3361 dir->i_mtime = inode_set_ctime_to_ts(dir,
3362 inode_set_ctime_current(inode));
3363 inode_inc_iversion(dir);
3364 drop_nlink(inode);
3365 dput(dentry); /* Undo the count from "create" - this does all the work */
3366 return 0;
3367 }
3368
shmem_rmdir(struct inode * dir,struct dentry * dentry)3369 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3370 {
3371 if (!simple_empty(dentry))
3372 return -ENOTEMPTY;
3373
3374 drop_nlink(d_inode(dentry));
3375 drop_nlink(dir);
3376 return shmem_unlink(dir, dentry);
3377 }
3378
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3379 static int shmem_whiteout(struct mnt_idmap *idmap,
3380 struct inode *old_dir, struct dentry *old_dentry)
3381 {
3382 struct dentry *whiteout;
3383 int error;
3384
3385 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3386 if (!whiteout)
3387 return -ENOMEM;
3388
3389 error = shmem_mknod(idmap, old_dir, whiteout,
3390 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3391 dput(whiteout);
3392 if (error)
3393 return error;
3394
3395 /*
3396 * Cheat and hash the whiteout while the old dentry is still in
3397 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3398 *
3399 * d_lookup() will consistently find one of them at this point,
3400 * not sure which one, but that isn't even important.
3401 */
3402 d_rehash(whiteout);
3403 return 0;
3404 }
3405
3406 /*
3407 * The VFS layer already does all the dentry stuff for rename,
3408 * we just have to decrement the usage count for the target if
3409 * it exists so that the VFS layer correctly free's it when it
3410 * gets overwritten.
3411 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3412 static int shmem_rename2(struct mnt_idmap *idmap,
3413 struct inode *old_dir, struct dentry *old_dentry,
3414 struct inode *new_dir, struct dentry *new_dentry,
3415 unsigned int flags)
3416 {
3417 struct inode *inode = d_inode(old_dentry);
3418 int they_are_dirs = S_ISDIR(inode->i_mode);
3419 int error;
3420
3421 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3422 return -EINVAL;
3423
3424 if (flags & RENAME_EXCHANGE)
3425 return simple_offset_rename_exchange(old_dir, old_dentry,
3426 new_dir, new_dentry);
3427
3428 if (!simple_empty(new_dentry))
3429 return -ENOTEMPTY;
3430
3431 if (flags & RENAME_WHITEOUT) {
3432 error = shmem_whiteout(idmap, old_dir, old_dentry);
3433 if (error)
3434 return error;
3435 }
3436
3437 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3438 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3439 if (error)
3440 return error;
3441
3442 if (d_really_is_positive(new_dentry)) {
3443 (void) shmem_unlink(new_dir, new_dentry);
3444 if (they_are_dirs) {
3445 drop_nlink(d_inode(new_dentry));
3446 drop_nlink(old_dir);
3447 }
3448 } else if (they_are_dirs) {
3449 drop_nlink(old_dir);
3450 inc_nlink(new_dir);
3451 }
3452
3453 old_dir->i_size -= BOGO_DIRENT_SIZE;
3454 new_dir->i_size += BOGO_DIRENT_SIZE;
3455 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3456 inode_inc_iversion(old_dir);
3457 inode_inc_iversion(new_dir);
3458 return 0;
3459 }
3460
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3461 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3462 struct dentry *dentry, const char *symname)
3463 {
3464 int error;
3465 int len;
3466 struct inode *inode;
3467 struct folio *folio;
3468
3469 len = strlen(symname) + 1;
3470 if (len > PAGE_SIZE)
3471 return -ENAMETOOLONG;
3472
3473 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3474 VM_NORESERVE);
3475
3476 if (IS_ERR(inode))
3477 return PTR_ERR(inode);
3478
3479 error = security_inode_init_security(inode, dir, &dentry->d_name,
3480 shmem_initxattrs, NULL);
3481 if (error && error != -EOPNOTSUPP)
3482 goto out_iput;
3483
3484 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3485 if (error)
3486 goto out_iput;
3487
3488 inode->i_size = len-1;
3489 if (len <= SHORT_SYMLINK_LEN) {
3490 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3491 if (!inode->i_link) {
3492 error = -ENOMEM;
3493 goto out_remove_offset;
3494 }
3495 inode->i_op = &shmem_short_symlink_operations;
3496 } else {
3497 inode_nohighmem(inode);
3498 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3499 if (error)
3500 goto out_remove_offset;
3501 inode->i_mapping->a_ops = &shmem_aops;
3502 inode->i_op = &shmem_symlink_inode_operations;
3503 memcpy(folio_address(folio), symname, len);
3504 folio_mark_uptodate(folio);
3505 folio_mark_dirty(folio);
3506 folio_unlock(folio);
3507 folio_put(folio);
3508 }
3509 dir->i_size += BOGO_DIRENT_SIZE;
3510 dir->i_mtime = inode_set_ctime_current(dir);
3511 inode_inc_iversion(dir);
3512 d_instantiate(dentry, inode);
3513 dget(dentry);
3514 return 0;
3515
3516 out_remove_offset:
3517 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3518 out_iput:
3519 iput(inode);
3520 return error;
3521 }
3522
shmem_put_link(void * arg)3523 static void shmem_put_link(void *arg)
3524 {
3525 folio_mark_accessed(arg);
3526 folio_put(arg);
3527 }
3528
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3529 static const char *shmem_get_link(struct dentry *dentry,
3530 struct inode *inode,
3531 struct delayed_call *done)
3532 {
3533 struct folio *folio = NULL;
3534 int error;
3535
3536 if (!dentry) {
3537 folio = filemap_get_folio(inode->i_mapping, 0);
3538 if (IS_ERR(folio))
3539 return ERR_PTR(-ECHILD);
3540 if (PageHWPoison(folio_page(folio, 0)) ||
3541 !folio_test_uptodate(folio)) {
3542 folio_put(folio);
3543 return ERR_PTR(-ECHILD);
3544 }
3545 } else {
3546 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3547 if (error)
3548 return ERR_PTR(error);
3549 if (!folio)
3550 return ERR_PTR(-ECHILD);
3551 if (PageHWPoison(folio_page(folio, 0))) {
3552 folio_unlock(folio);
3553 folio_put(folio);
3554 return ERR_PTR(-ECHILD);
3555 }
3556 folio_unlock(folio);
3557 }
3558 set_delayed_call(done, shmem_put_link, folio);
3559 return folio_address(folio);
3560 }
3561
3562 #ifdef CONFIG_TMPFS_XATTR
3563
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3564 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3565 {
3566 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3567
3568 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3569
3570 return 0;
3571 }
3572
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3573 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3574 struct dentry *dentry, struct fileattr *fa)
3575 {
3576 struct inode *inode = d_inode(dentry);
3577 struct shmem_inode_info *info = SHMEM_I(inode);
3578
3579 if (fileattr_has_fsx(fa))
3580 return -EOPNOTSUPP;
3581 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3582 return -EOPNOTSUPP;
3583
3584 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3585 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3586
3587 shmem_set_inode_flags(inode, info->fsflags);
3588 inode_set_ctime_current(inode);
3589 inode_inc_iversion(inode);
3590 return 0;
3591 }
3592
3593 /*
3594 * Superblocks without xattr inode operations may get some security.* xattr
3595 * support from the LSM "for free". As soon as we have any other xattrs
3596 * like ACLs, we also need to implement the security.* handlers at
3597 * filesystem level, though.
3598 */
3599
3600 /*
3601 * Callback for security_inode_init_security() for acquiring xattrs.
3602 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3603 static int shmem_initxattrs(struct inode *inode,
3604 const struct xattr *xattr_array,
3605 void *fs_info)
3606 {
3607 struct shmem_inode_info *info = SHMEM_I(inode);
3608 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3609 const struct xattr *xattr;
3610 struct simple_xattr *new_xattr;
3611 size_t ispace = 0;
3612 size_t len;
3613
3614 if (sbinfo->max_inodes) {
3615 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3616 ispace += simple_xattr_space(xattr->name,
3617 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3618 }
3619 if (ispace) {
3620 raw_spin_lock(&sbinfo->stat_lock);
3621 if (sbinfo->free_ispace < ispace)
3622 ispace = 0;
3623 else
3624 sbinfo->free_ispace -= ispace;
3625 raw_spin_unlock(&sbinfo->stat_lock);
3626 if (!ispace)
3627 return -ENOSPC;
3628 }
3629 }
3630
3631 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3632 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3633 if (!new_xattr)
3634 break;
3635
3636 len = strlen(xattr->name) + 1;
3637 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3638 GFP_KERNEL_ACCOUNT);
3639 if (!new_xattr->name) {
3640 kvfree(new_xattr);
3641 break;
3642 }
3643
3644 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3645 XATTR_SECURITY_PREFIX_LEN);
3646 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3647 xattr->name, len);
3648
3649 simple_xattr_add(&info->xattrs, new_xattr);
3650 }
3651
3652 if (xattr->name != NULL) {
3653 if (ispace) {
3654 raw_spin_lock(&sbinfo->stat_lock);
3655 sbinfo->free_ispace += ispace;
3656 raw_spin_unlock(&sbinfo->stat_lock);
3657 }
3658 simple_xattrs_free(&info->xattrs, NULL);
3659 return -ENOMEM;
3660 }
3661
3662 return 0;
3663 }
3664
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3665 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3666 struct dentry *unused, struct inode *inode,
3667 const char *name, void *buffer, size_t size)
3668 {
3669 struct shmem_inode_info *info = SHMEM_I(inode);
3670
3671 name = xattr_full_name(handler, name);
3672 return simple_xattr_get(&info->xattrs, name, buffer, size);
3673 }
3674
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3675 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3676 struct mnt_idmap *idmap,
3677 struct dentry *unused, struct inode *inode,
3678 const char *name, const void *value,
3679 size_t size, int flags)
3680 {
3681 struct shmem_inode_info *info = SHMEM_I(inode);
3682 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3683 struct simple_xattr *old_xattr;
3684 size_t ispace = 0;
3685
3686 name = xattr_full_name(handler, name);
3687 if (value && sbinfo->max_inodes) {
3688 ispace = simple_xattr_space(name, size);
3689 raw_spin_lock(&sbinfo->stat_lock);
3690 if (sbinfo->free_ispace < ispace)
3691 ispace = 0;
3692 else
3693 sbinfo->free_ispace -= ispace;
3694 raw_spin_unlock(&sbinfo->stat_lock);
3695 if (!ispace)
3696 return -ENOSPC;
3697 }
3698
3699 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3700 if (!IS_ERR(old_xattr)) {
3701 ispace = 0;
3702 if (old_xattr && sbinfo->max_inodes)
3703 ispace = simple_xattr_space(old_xattr->name,
3704 old_xattr->size);
3705 simple_xattr_free(old_xattr);
3706 old_xattr = NULL;
3707 inode_set_ctime_current(inode);
3708 inode_inc_iversion(inode);
3709 }
3710 if (ispace) {
3711 raw_spin_lock(&sbinfo->stat_lock);
3712 sbinfo->free_ispace += ispace;
3713 raw_spin_unlock(&sbinfo->stat_lock);
3714 }
3715 return PTR_ERR(old_xattr);
3716 }
3717
3718 static const struct xattr_handler shmem_security_xattr_handler = {
3719 .prefix = XATTR_SECURITY_PREFIX,
3720 .get = shmem_xattr_handler_get,
3721 .set = shmem_xattr_handler_set,
3722 };
3723
3724 static const struct xattr_handler shmem_trusted_xattr_handler = {
3725 .prefix = XATTR_TRUSTED_PREFIX,
3726 .get = shmem_xattr_handler_get,
3727 .set = shmem_xattr_handler_set,
3728 };
3729
3730 static const struct xattr_handler shmem_user_xattr_handler = {
3731 .prefix = XATTR_USER_PREFIX,
3732 .get = shmem_xattr_handler_get,
3733 .set = shmem_xattr_handler_set,
3734 };
3735
3736 static const struct xattr_handler *shmem_xattr_handlers[] = {
3737 &shmem_security_xattr_handler,
3738 &shmem_trusted_xattr_handler,
3739 &shmem_user_xattr_handler,
3740 NULL
3741 };
3742
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3743 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3744 {
3745 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3746 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3747 }
3748 #endif /* CONFIG_TMPFS_XATTR */
3749
3750 static const struct inode_operations shmem_short_symlink_operations = {
3751 .getattr = shmem_getattr,
3752 .setattr = shmem_setattr,
3753 .get_link = simple_get_link,
3754 #ifdef CONFIG_TMPFS_XATTR
3755 .listxattr = shmem_listxattr,
3756 #endif
3757 };
3758
3759 static const struct inode_operations shmem_symlink_inode_operations = {
3760 .getattr = shmem_getattr,
3761 .setattr = shmem_setattr,
3762 .get_link = shmem_get_link,
3763 #ifdef CONFIG_TMPFS_XATTR
3764 .listxattr = shmem_listxattr,
3765 #endif
3766 };
3767
shmem_get_parent(struct dentry * child)3768 static struct dentry *shmem_get_parent(struct dentry *child)
3769 {
3770 return ERR_PTR(-ESTALE);
3771 }
3772
shmem_match(struct inode * ino,void * vfh)3773 static int shmem_match(struct inode *ino, void *vfh)
3774 {
3775 __u32 *fh = vfh;
3776 __u64 inum = fh[2];
3777 inum = (inum << 32) | fh[1];
3778 return ino->i_ino == inum && fh[0] == ino->i_generation;
3779 }
3780
3781 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3782 static struct dentry *shmem_find_alias(struct inode *inode)
3783 {
3784 struct dentry *alias = d_find_alias(inode);
3785
3786 return alias ?: d_find_any_alias(inode);
3787 }
3788
3789
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3790 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3791 struct fid *fid, int fh_len, int fh_type)
3792 {
3793 struct inode *inode;
3794 struct dentry *dentry = NULL;
3795 u64 inum;
3796
3797 if (fh_len < 3)
3798 return NULL;
3799
3800 inum = fid->raw[2];
3801 inum = (inum << 32) | fid->raw[1];
3802
3803 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3804 shmem_match, fid->raw);
3805 if (inode) {
3806 dentry = shmem_find_alias(inode);
3807 iput(inode);
3808 }
3809
3810 return dentry;
3811 }
3812
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3813 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3814 struct inode *parent)
3815 {
3816 if (*len < 3) {
3817 *len = 3;
3818 return FILEID_INVALID;
3819 }
3820
3821 if (inode_unhashed(inode)) {
3822 /* Unfortunately insert_inode_hash is not idempotent,
3823 * so as we hash inodes here rather than at creation
3824 * time, we need a lock to ensure we only try
3825 * to do it once
3826 */
3827 static DEFINE_SPINLOCK(lock);
3828 spin_lock(&lock);
3829 if (inode_unhashed(inode))
3830 __insert_inode_hash(inode,
3831 inode->i_ino + inode->i_generation);
3832 spin_unlock(&lock);
3833 }
3834
3835 fh[0] = inode->i_generation;
3836 fh[1] = inode->i_ino;
3837 fh[2] = ((__u64)inode->i_ino) >> 32;
3838
3839 *len = 3;
3840 return 1;
3841 }
3842
3843 static const struct export_operations shmem_export_ops = {
3844 .get_parent = shmem_get_parent,
3845 .encode_fh = shmem_encode_fh,
3846 .fh_to_dentry = shmem_fh_to_dentry,
3847 };
3848
3849 enum shmem_param {
3850 Opt_gid,
3851 Opt_huge,
3852 Opt_mode,
3853 Opt_mpol,
3854 Opt_nr_blocks,
3855 Opt_nr_inodes,
3856 Opt_size,
3857 Opt_uid,
3858 Opt_inode32,
3859 Opt_inode64,
3860 Opt_noswap,
3861 Opt_quota,
3862 Opt_usrquota,
3863 Opt_grpquota,
3864 Opt_usrquota_block_hardlimit,
3865 Opt_usrquota_inode_hardlimit,
3866 Opt_grpquota_block_hardlimit,
3867 Opt_grpquota_inode_hardlimit,
3868 };
3869
3870 static const struct constant_table shmem_param_enums_huge[] = {
3871 {"never", SHMEM_HUGE_NEVER },
3872 {"always", SHMEM_HUGE_ALWAYS },
3873 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3874 {"advise", SHMEM_HUGE_ADVISE },
3875 {}
3876 };
3877
3878 const struct fs_parameter_spec shmem_fs_parameters[] = {
3879 fsparam_u32 ("gid", Opt_gid),
3880 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3881 fsparam_u32oct("mode", Opt_mode),
3882 fsparam_string("mpol", Opt_mpol),
3883 fsparam_string("nr_blocks", Opt_nr_blocks),
3884 fsparam_string("nr_inodes", Opt_nr_inodes),
3885 fsparam_string("size", Opt_size),
3886 fsparam_u32 ("uid", Opt_uid),
3887 fsparam_flag ("inode32", Opt_inode32),
3888 fsparam_flag ("inode64", Opt_inode64),
3889 fsparam_flag ("noswap", Opt_noswap),
3890 #ifdef CONFIG_TMPFS_QUOTA
3891 fsparam_flag ("quota", Opt_quota),
3892 fsparam_flag ("usrquota", Opt_usrquota),
3893 fsparam_flag ("grpquota", Opt_grpquota),
3894 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3895 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3896 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3897 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3898 #endif
3899 {}
3900 };
3901
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3902 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3903 {
3904 struct shmem_options *ctx = fc->fs_private;
3905 struct fs_parse_result result;
3906 unsigned long long size;
3907 char *rest;
3908 int opt;
3909 kuid_t kuid;
3910 kgid_t kgid;
3911
3912 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3913 if (opt < 0)
3914 return opt;
3915
3916 switch (opt) {
3917 case Opt_size:
3918 size = memparse(param->string, &rest);
3919 if (*rest == '%') {
3920 size <<= PAGE_SHIFT;
3921 size *= totalram_pages();
3922 do_div(size, 100);
3923 rest++;
3924 }
3925 if (*rest)
3926 goto bad_value;
3927 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3928 ctx->seen |= SHMEM_SEEN_BLOCKS;
3929 break;
3930 case Opt_nr_blocks:
3931 ctx->blocks = memparse(param->string, &rest);
3932 if (*rest || ctx->blocks > LONG_MAX)
3933 goto bad_value;
3934 ctx->seen |= SHMEM_SEEN_BLOCKS;
3935 break;
3936 case Opt_nr_inodes:
3937 ctx->inodes = memparse(param->string, &rest);
3938 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3939 goto bad_value;
3940 ctx->seen |= SHMEM_SEEN_INODES;
3941 break;
3942 case Opt_mode:
3943 ctx->mode = result.uint_32 & 07777;
3944 break;
3945 case Opt_uid:
3946 kuid = make_kuid(current_user_ns(), result.uint_32);
3947 if (!uid_valid(kuid))
3948 goto bad_value;
3949
3950 /*
3951 * The requested uid must be representable in the
3952 * filesystem's idmapping.
3953 */
3954 if (!kuid_has_mapping(fc->user_ns, kuid))
3955 goto bad_value;
3956
3957 ctx->uid = kuid;
3958 break;
3959 case Opt_gid:
3960 kgid = make_kgid(current_user_ns(), result.uint_32);
3961 if (!gid_valid(kgid))
3962 goto bad_value;
3963
3964 /*
3965 * The requested gid must be representable in the
3966 * filesystem's idmapping.
3967 */
3968 if (!kgid_has_mapping(fc->user_ns, kgid))
3969 goto bad_value;
3970
3971 ctx->gid = kgid;
3972 break;
3973 case Opt_huge:
3974 ctx->huge = result.uint_32;
3975 if (ctx->huge != SHMEM_HUGE_NEVER &&
3976 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3977 has_transparent_hugepage()))
3978 goto unsupported_parameter;
3979 ctx->seen |= SHMEM_SEEN_HUGE;
3980 break;
3981 case Opt_mpol:
3982 if (IS_ENABLED(CONFIG_NUMA)) {
3983 mpol_put(ctx->mpol);
3984 ctx->mpol = NULL;
3985 if (mpol_parse_str(param->string, &ctx->mpol))
3986 goto bad_value;
3987 break;
3988 }
3989 goto unsupported_parameter;
3990 case Opt_inode32:
3991 ctx->full_inums = false;
3992 ctx->seen |= SHMEM_SEEN_INUMS;
3993 break;
3994 case Opt_inode64:
3995 if (sizeof(ino_t) < 8) {
3996 return invalfc(fc,
3997 "Cannot use inode64 with <64bit inums in kernel\n");
3998 }
3999 ctx->full_inums = true;
4000 ctx->seen |= SHMEM_SEEN_INUMS;
4001 break;
4002 case Opt_noswap:
4003 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4004 return invalfc(fc,
4005 "Turning off swap in unprivileged tmpfs mounts unsupported");
4006 }
4007 ctx->noswap = true;
4008 ctx->seen |= SHMEM_SEEN_NOSWAP;
4009 break;
4010 case Opt_quota:
4011 if (fc->user_ns != &init_user_ns)
4012 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4013 ctx->seen |= SHMEM_SEEN_QUOTA;
4014 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4015 break;
4016 case Opt_usrquota:
4017 if (fc->user_ns != &init_user_ns)
4018 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4019 ctx->seen |= SHMEM_SEEN_QUOTA;
4020 ctx->quota_types |= QTYPE_MASK_USR;
4021 break;
4022 case Opt_grpquota:
4023 if (fc->user_ns != &init_user_ns)
4024 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4025 ctx->seen |= SHMEM_SEEN_QUOTA;
4026 ctx->quota_types |= QTYPE_MASK_GRP;
4027 break;
4028 case Opt_usrquota_block_hardlimit:
4029 size = memparse(param->string, &rest);
4030 if (*rest || !size)
4031 goto bad_value;
4032 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4033 return invalfc(fc,
4034 "User quota block hardlimit too large.");
4035 ctx->qlimits.usrquota_bhardlimit = size;
4036 break;
4037 case Opt_grpquota_block_hardlimit:
4038 size = memparse(param->string, &rest);
4039 if (*rest || !size)
4040 goto bad_value;
4041 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4042 return invalfc(fc,
4043 "Group quota block hardlimit too large.");
4044 ctx->qlimits.grpquota_bhardlimit = size;
4045 break;
4046 case Opt_usrquota_inode_hardlimit:
4047 size = memparse(param->string, &rest);
4048 if (*rest || !size)
4049 goto bad_value;
4050 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4051 return invalfc(fc,
4052 "User quota inode hardlimit too large.");
4053 ctx->qlimits.usrquota_ihardlimit = size;
4054 break;
4055 case Opt_grpquota_inode_hardlimit:
4056 size = memparse(param->string, &rest);
4057 if (*rest || !size)
4058 goto bad_value;
4059 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4060 return invalfc(fc,
4061 "Group quota inode hardlimit too large.");
4062 ctx->qlimits.grpquota_ihardlimit = size;
4063 break;
4064 }
4065 return 0;
4066
4067 unsupported_parameter:
4068 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4069 bad_value:
4070 return invalfc(fc, "Bad value for '%s'", param->key);
4071 }
4072
shmem_parse_options(struct fs_context * fc,void * data)4073 static int shmem_parse_options(struct fs_context *fc, void *data)
4074 {
4075 char *options = data;
4076
4077 if (options) {
4078 int err = security_sb_eat_lsm_opts(options, &fc->security);
4079 if (err)
4080 return err;
4081 }
4082
4083 while (options != NULL) {
4084 char *this_char = options;
4085 for (;;) {
4086 /*
4087 * NUL-terminate this option: unfortunately,
4088 * mount options form a comma-separated list,
4089 * but mpol's nodelist may also contain commas.
4090 */
4091 options = strchr(options, ',');
4092 if (options == NULL)
4093 break;
4094 options++;
4095 if (!isdigit(*options)) {
4096 options[-1] = '\0';
4097 break;
4098 }
4099 }
4100 if (*this_char) {
4101 char *value = strchr(this_char, '=');
4102 size_t len = 0;
4103 int err;
4104
4105 if (value) {
4106 *value++ = '\0';
4107 len = strlen(value);
4108 }
4109 err = vfs_parse_fs_string(fc, this_char, value, len);
4110 if (err < 0)
4111 return err;
4112 }
4113 }
4114 return 0;
4115 }
4116
4117 /*
4118 * Reconfigure a shmem filesystem.
4119 */
shmem_reconfigure(struct fs_context * fc)4120 static int shmem_reconfigure(struct fs_context *fc)
4121 {
4122 struct shmem_options *ctx = fc->fs_private;
4123 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4124 unsigned long used_isp;
4125 struct mempolicy *mpol = NULL;
4126 const char *err;
4127
4128 raw_spin_lock(&sbinfo->stat_lock);
4129 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4130
4131 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4132 if (!sbinfo->max_blocks) {
4133 err = "Cannot retroactively limit size";
4134 goto out;
4135 }
4136 if (percpu_counter_compare(&sbinfo->used_blocks,
4137 ctx->blocks) > 0) {
4138 err = "Too small a size for current use";
4139 goto out;
4140 }
4141 }
4142 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4143 if (!sbinfo->max_inodes) {
4144 err = "Cannot retroactively limit inodes";
4145 goto out;
4146 }
4147 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4148 err = "Too few inodes for current use";
4149 goto out;
4150 }
4151 }
4152
4153 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4154 sbinfo->next_ino > UINT_MAX) {
4155 err = "Current inum too high to switch to 32-bit inums";
4156 goto out;
4157 }
4158 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4159 err = "Cannot disable swap on remount";
4160 goto out;
4161 }
4162 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4163 err = "Cannot enable swap on remount if it was disabled on first mount";
4164 goto out;
4165 }
4166
4167 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4168 !sb_any_quota_loaded(fc->root->d_sb)) {
4169 err = "Cannot enable quota on remount";
4170 goto out;
4171 }
4172
4173 #ifdef CONFIG_TMPFS_QUOTA
4174 #define CHANGED_LIMIT(name) \
4175 (ctx->qlimits.name## hardlimit && \
4176 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4177
4178 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4179 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4180 err = "Cannot change global quota limit on remount";
4181 goto out;
4182 }
4183 #endif /* CONFIG_TMPFS_QUOTA */
4184
4185 if (ctx->seen & SHMEM_SEEN_HUGE)
4186 sbinfo->huge = ctx->huge;
4187 if (ctx->seen & SHMEM_SEEN_INUMS)
4188 sbinfo->full_inums = ctx->full_inums;
4189 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4190 sbinfo->max_blocks = ctx->blocks;
4191 if (ctx->seen & SHMEM_SEEN_INODES) {
4192 sbinfo->max_inodes = ctx->inodes;
4193 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4194 }
4195
4196 /*
4197 * Preserve previous mempolicy unless mpol remount option was specified.
4198 */
4199 if (ctx->mpol) {
4200 mpol = sbinfo->mpol;
4201 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4202 ctx->mpol = NULL;
4203 }
4204
4205 if (ctx->noswap)
4206 sbinfo->noswap = true;
4207
4208 raw_spin_unlock(&sbinfo->stat_lock);
4209 mpol_put(mpol);
4210 return 0;
4211 out:
4212 raw_spin_unlock(&sbinfo->stat_lock);
4213 return invalfc(fc, "%s", err);
4214 }
4215
shmem_show_options(struct seq_file * seq,struct dentry * root)4216 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4217 {
4218 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4219 struct mempolicy *mpol;
4220
4221 if (sbinfo->max_blocks != shmem_default_max_blocks())
4222 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4223 if (sbinfo->max_inodes != shmem_default_max_inodes())
4224 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4225 if (sbinfo->mode != (0777 | S_ISVTX))
4226 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4227 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4228 seq_printf(seq, ",uid=%u",
4229 from_kuid_munged(&init_user_ns, sbinfo->uid));
4230 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4231 seq_printf(seq, ",gid=%u",
4232 from_kgid_munged(&init_user_ns, sbinfo->gid));
4233
4234 /*
4235 * Showing inode{64,32} might be useful even if it's the system default,
4236 * since then people don't have to resort to checking both here and
4237 * /proc/config.gz to confirm 64-bit inums were successfully applied
4238 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4239 *
4240 * We hide it when inode64 isn't the default and we are using 32-bit
4241 * inodes, since that probably just means the feature isn't even under
4242 * consideration.
4243 *
4244 * As such:
4245 *
4246 * +-----------------+-----------------+
4247 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4248 * +------------------+-----------------+-----------------+
4249 * | full_inums=true | show | show |
4250 * | full_inums=false | show | hide |
4251 * +------------------+-----------------+-----------------+
4252 *
4253 */
4254 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4255 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4257 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4258 if (sbinfo->huge)
4259 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4260 #endif
4261 mpol = shmem_get_sbmpol(sbinfo);
4262 shmem_show_mpol(seq, mpol);
4263 mpol_put(mpol);
4264 if (sbinfo->noswap)
4265 seq_printf(seq, ",noswap");
4266 return 0;
4267 }
4268
4269 #endif /* CONFIG_TMPFS */
4270
shmem_put_super(struct super_block * sb)4271 static void shmem_put_super(struct super_block *sb)
4272 {
4273 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4274
4275 #ifdef CONFIG_TMPFS_QUOTA
4276 shmem_disable_quotas(sb);
4277 #endif
4278 free_percpu(sbinfo->ino_batch);
4279 percpu_counter_destroy(&sbinfo->used_blocks);
4280 mpol_put(sbinfo->mpol);
4281 kfree(sbinfo);
4282 sb->s_fs_info = NULL;
4283 }
4284
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4285 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4286 {
4287 struct shmem_options *ctx = fc->fs_private;
4288 struct inode *inode;
4289 struct shmem_sb_info *sbinfo;
4290 int error = -ENOMEM;
4291
4292 /* Round up to L1_CACHE_BYTES to resist false sharing */
4293 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4294 L1_CACHE_BYTES), GFP_KERNEL);
4295 if (!sbinfo)
4296 return error;
4297
4298 sb->s_fs_info = sbinfo;
4299
4300 #ifdef CONFIG_TMPFS
4301 /*
4302 * Per default we only allow half of the physical ram per
4303 * tmpfs instance, limiting inodes to one per page of lowmem;
4304 * but the internal instance is left unlimited.
4305 */
4306 if (!(sb->s_flags & SB_KERNMOUNT)) {
4307 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4308 ctx->blocks = shmem_default_max_blocks();
4309 if (!(ctx->seen & SHMEM_SEEN_INODES))
4310 ctx->inodes = shmem_default_max_inodes();
4311 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4312 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4313 sbinfo->noswap = ctx->noswap;
4314 } else {
4315 sb->s_flags |= SB_NOUSER;
4316 }
4317 sb->s_export_op = &shmem_export_ops;
4318 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4319 #else
4320 sb->s_flags |= SB_NOUSER;
4321 #endif
4322 sbinfo->max_blocks = ctx->blocks;
4323 sbinfo->max_inodes = ctx->inodes;
4324 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4325 if (sb->s_flags & SB_KERNMOUNT) {
4326 sbinfo->ino_batch = alloc_percpu(ino_t);
4327 if (!sbinfo->ino_batch)
4328 goto failed;
4329 }
4330 sbinfo->uid = ctx->uid;
4331 sbinfo->gid = ctx->gid;
4332 sbinfo->full_inums = ctx->full_inums;
4333 sbinfo->mode = ctx->mode;
4334 sbinfo->huge = ctx->huge;
4335 sbinfo->mpol = ctx->mpol;
4336 ctx->mpol = NULL;
4337
4338 raw_spin_lock_init(&sbinfo->stat_lock);
4339 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4340 goto failed;
4341 spin_lock_init(&sbinfo->shrinklist_lock);
4342 INIT_LIST_HEAD(&sbinfo->shrinklist);
4343
4344 sb->s_maxbytes = MAX_LFS_FILESIZE;
4345 sb->s_blocksize = PAGE_SIZE;
4346 sb->s_blocksize_bits = PAGE_SHIFT;
4347 sb->s_magic = TMPFS_MAGIC;
4348 sb->s_op = &shmem_ops;
4349 sb->s_time_gran = 1;
4350 #ifdef CONFIG_TMPFS_XATTR
4351 sb->s_xattr = shmem_xattr_handlers;
4352 #endif
4353 #ifdef CONFIG_TMPFS_POSIX_ACL
4354 sb->s_flags |= SB_POSIXACL;
4355 #endif
4356 uuid_gen(&sb->s_uuid);
4357
4358 #ifdef CONFIG_TMPFS_QUOTA
4359 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4360 sb->dq_op = &shmem_quota_operations;
4361 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4362 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4363
4364 /* Copy the default limits from ctx into sbinfo */
4365 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4366 sizeof(struct shmem_quota_limits));
4367
4368 if (shmem_enable_quotas(sb, ctx->quota_types))
4369 goto failed;
4370 }
4371 #endif /* CONFIG_TMPFS_QUOTA */
4372
4373 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4374 VM_NORESERVE);
4375 if (IS_ERR(inode)) {
4376 error = PTR_ERR(inode);
4377 goto failed;
4378 }
4379 inode->i_uid = sbinfo->uid;
4380 inode->i_gid = sbinfo->gid;
4381 sb->s_root = d_make_root(inode);
4382 if (!sb->s_root)
4383 goto failed;
4384 return 0;
4385
4386 failed:
4387 shmem_put_super(sb);
4388 return error;
4389 }
4390
shmem_get_tree(struct fs_context * fc)4391 static int shmem_get_tree(struct fs_context *fc)
4392 {
4393 return get_tree_nodev(fc, shmem_fill_super);
4394 }
4395
shmem_free_fc(struct fs_context * fc)4396 static void shmem_free_fc(struct fs_context *fc)
4397 {
4398 struct shmem_options *ctx = fc->fs_private;
4399
4400 if (ctx) {
4401 mpol_put(ctx->mpol);
4402 kfree(ctx);
4403 }
4404 }
4405
4406 static const struct fs_context_operations shmem_fs_context_ops = {
4407 .free = shmem_free_fc,
4408 .get_tree = shmem_get_tree,
4409 #ifdef CONFIG_TMPFS
4410 .parse_monolithic = shmem_parse_options,
4411 .parse_param = shmem_parse_one,
4412 .reconfigure = shmem_reconfigure,
4413 #endif
4414 };
4415
4416 static struct kmem_cache *shmem_inode_cachep;
4417
shmem_alloc_inode(struct super_block * sb)4418 static struct inode *shmem_alloc_inode(struct super_block *sb)
4419 {
4420 struct shmem_inode_info *info;
4421 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4422 if (!info)
4423 return NULL;
4424 return &info->vfs_inode;
4425 }
4426
shmem_free_in_core_inode(struct inode * inode)4427 static void shmem_free_in_core_inode(struct inode *inode)
4428 {
4429 if (S_ISLNK(inode->i_mode))
4430 kfree(inode->i_link);
4431 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4432 }
4433
shmem_destroy_inode(struct inode * inode)4434 static void shmem_destroy_inode(struct inode *inode)
4435 {
4436 if (S_ISREG(inode->i_mode))
4437 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4438 if (S_ISDIR(inode->i_mode))
4439 simple_offset_destroy(shmem_get_offset_ctx(inode));
4440 }
4441
shmem_init_inode(void * foo)4442 static void shmem_init_inode(void *foo)
4443 {
4444 struct shmem_inode_info *info = foo;
4445 inode_init_once(&info->vfs_inode);
4446 }
4447
shmem_init_inodecache(void)4448 static void shmem_init_inodecache(void)
4449 {
4450 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4451 sizeof(struct shmem_inode_info),
4452 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4453 }
4454
shmem_destroy_inodecache(void)4455 static void shmem_destroy_inodecache(void)
4456 {
4457 kmem_cache_destroy(shmem_inode_cachep);
4458 }
4459
4460 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)4461 static int shmem_error_remove_page(struct address_space *mapping,
4462 struct page *page)
4463 {
4464 return 0;
4465 }
4466
4467 const struct address_space_operations shmem_aops = {
4468 .writepage = shmem_writepage,
4469 .dirty_folio = noop_dirty_folio,
4470 #ifdef CONFIG_TMPFS
4471 .write_begin = shmem_write_begin,
4472 .write_end = shmem_write_end,
4473 #endif
4474 #ifdef CONFIG_MIGRATION
4475 .migrate_folio = migrate_folio,
4476 #endif
4477 .error_remove_page = shmem_error_remove_page,
4478 };
4479 EXPORT_SYMBOL(shmem_aops);
4480
4481 static const struct file_operations shmem_file_operations = {
4482 .mmap = shmem_mmap,
4483 .open = shmem_file_open,
4484 .get_unmapped_area = shmem_get_unmapped_area,
4485 #ifdef CONFIG_TMPFS
4486 .llseek = shmem_file_llseek,
4487 .read_iter = shmem_file_read_iter,
4488 .write_iter = shmem_file_write_iter,
4489 .fsync = noop_fsync,
4490 .splice_read = shmem_file_splice_read,
4491 .splice_write = iter_file_splice_write,
4492 .fallocate = shmem_fallocate,
4493 #endif
4494 };
4495
4496 static const struct inode_operations shmem_inode_operations = {
4497 .getattr = shmem_getattr,
4498 .setattr = shmem_setattr,
4499 #ifdef CONFIG_TMPFS_XATTR
4500 .listxattr = shmem_listxattr,
4501 .set_acl = simple_set_acl,
4502 .fileattr_get = shmem_fileattr_get,
4503 .fileattr_set = shmem_fileattr_set,
4504 #endif
4505 };
4506
4507 static const struct inode_operations shmem_dir_inode_operations = {
4508 #ifdef CONFIG_TMPFS
4509 .getattr = shmem_getattr,
4510 .create = shmem_create,
4511 .lookup = simple_lookup,
4512 .link = shmem_link,
4513 .unlink = shmem_unlink,
4514 .symlink = shmem_symlink,
4515 .mkdir = shmem_mkdir,
4516 .rmdir = shmem_rmdir,
4517 .mknod = shmem_mknod,
4518 .rename = shmem_rename2,
4519 .tmpfile = shmem_tmpfile,
4520 .get_offset_ctx = shmem_get_offset_ctx,
4521 #endif
4522 #ifdef CONFIG_TMPFS_XATTR
4523 .listxattr = shmem_listxattr,
4524 .fileattr_get = shmem_fileattr_get,
4525 .fileattr_set = shmem_fileattr_set,
4526 #endif
4527 #ifdef CONFIG_TMPFS_POSIX_ACL
4528 .setattr = shmem_setattr,
4529 .set_acl = simple_set_acl,
4530 #endif
4531 };
4532
4533 static const struct inode_operations shmem_special_inode_operations = {
4534 .getattr = shmem_getattr,
4535 #ifdef CONFIG_TMPFS_XATTR
4536 .listxattr = shmem_listxattr,
4537 #endif
4538 #ifdef CONFIG_TMPFS_POSIX_ACL
4539 .setattr = shmem_setattr,
4540 .set_acl = simple_set_acl,
4541 #endif
4542 };
4543
4544 static const struct super_operations shmem_ops = {
4545 .alloc_inode = shmem_alloc_inode,
4546 .free_inode = shmem_free_in_core_inode,
4547 .destroy_inode = shmem_destroy_inode,
4548 #ifdef CONFIG_TMPFS
4549 .statfs = shmem_statfs,
4550 .show_options = shmem_show_options,
4551 #endif
4552 #ifdef CONFIG_TMPFS_QUOTA
4553 .get_dquots = shmem_get_dquots,
4554 #endif
4555 .evict_inode = shmem_evict_inode,
4556 .drop_inode = generic_delete_inode,
4557 .put_super = shmem_put_super,
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 .nr_cached_objects = shmem_unused_huge_count,
4560 .free_cached_objects = shmem_unused_huge_scan,
4561 #endif
4562 };
4563
4564 static const struct vm_operations_struct shmem_vm_ops = {
4565 .fault = shmem_fault,
4566 .map_pages = filemap_map_pages,
4567 #ifdef CONFIG_NUMA
4568 .set_policy = shmem_set_policy,
4569 .get_policy = shmem_get_policy,
4570 #endif
4571 };
4572
4573 static const struct vm_operations_struct shmem_anon_vm_ops = {
4574 .fault = shmem_fault,
4575 .map_pages = filemap_map_pages,
4576 #ifdef CONFIG_NUMA
4577 .set_policy = shmem_set_policy,
4578 .get_policy = shmem_get_policy,
4579 #endif
4580 };
4581
shmem_init_fs_context(struct fs_context * fc)4582 int shmem_init_fs_context(struct fs_context *fc)
4583 {
4584 struct shmem_options *ctx;
4585
4586 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4587 if (!ctx)
4588 return -ENOMEM;
4589
4590 ctx->mode = 0777 | S_ISVTX;
4591 ctx->uid = current_fsuid();
4592 ctx->gid = current_fsgid();
4593
4594 fc->fs_private = ctx;
4595 fc->ops = &shmem_fs_context_ops;
4596 return 0;
4597 }
4598
4599 static struct file_system_type shmem_fs_type = {
4600 .owner = THIS_MODULE,
4601 .name = "tmpfs",
4602 .init_fs_context = shmem_init_fs_context,
4603 #ifdef CONFIG_TMPFS
4604 .parameters = shmem_fs_parameters,
4605 #endif
4606 .kill_sb = kill_litter_super,
4607 #ifdef CONFIG_SHMEM
4608 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4609 #else
4610 .fs_flags = FS_USERNS_MOUNT,
4611 #endif
4612 };
4613
shmem_init(void)4614 void __init shmem_init(void)
4615 {
4616 int error;
4617
4618 shmem_init_inodecache();
4619
4620 #ifdef CONFIG_TMPFS_QUOTA
4621 error = register_quota_format(&shmem_quota_format);
4622 if (error < 0) {
4623 pr_err("Could not register quota format\n");
4624 goto out3;
4625 }
4626 #endif
4627
4628 error = register_filesystem(&shmem_fs_type);
4629 if (error) {
4630 pr_err("Could not register tmpfs\n");
4631 goto out2;
4632 }
4633
4634 shm_mnt = kern_mount(&shmem_fs_type);
4635 if (IS_ERR(shm_mnt)) {
4636 error = PTR_ERR(shm_mnt);
4637 pr_err("Could not kern_mount tmpfs\n");
4638 goto out1;
4639 }
4640
4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4643 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4644 else
4645 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4646 #endif
4647 return;
4648
4649 out1:
4650 unregister_filesystem(&shmem_fs_type);
4651 out2:
4652 #ifdef CONFIG_TMPFS_QUOTA
4653 unregister_quota_format(&shmem_quota_format);
4654 out3:
4655 #endif
4656 shmem_destroy_inodecache();
4657 shm_mnt = ERR_PTR(error);
4658 }
4659
4660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4661 static ssize_t shmem_enabled_show(struct kobject *kobj,
4662 struct kobj_attribute *attr, char *buf)
4663 {
4664 static const int values[] = {
4665 SHMEM_HUGE_ALWAYS,
4666 SHMEM_HUGE_WITHIN_SIZE,
4667 SHMEM_HUGE_ADVISE,
4668 SHMEM_HUGE_NEVER,
4669 SHMEM_HUGE_DENY,
4670 SHMEM_HUGE_FORCE,
4671 };
4672 int len = 0;
4673 int i;
4674
4675 for (i = 0; i < ARRAY_SIZE(values); i++) {
4676 len += sysfs_emit_at(buf, len,
4677 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4678 i ? " " : "",
4679 shmem_format_huge(values[i]));
4680 }
4681
4682 len += sysfs_emit_at(buf, len, "\n");
4683
4684 return len;
4685 }
4686
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4687 static ssize_t shmem_enabled_store(struct kobject *kobj,
4688 struct kobj_attribute *attr, const char *buf, size_t count)
4689 {
4690 char tmp[16];
4691 int huge;
4692
4693 if (count + 1 > sizeof(tmp))
4694 return -EINVAL;
4695 memcpy(tmp, buf, count);
4696 tmp[count] = '\0';
4697 if (count && tmp[count - 1] == '\n')
4698 tmp[count - 1] = '\0';
4699
4700 huge = shmem_parse_huge(tmp);
4701 if (huge == -EINVAL)
4702 return -EINVAL;
4703 if (!has_transparent_hugepage() &&
4704 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4705 return -EINVAL;
4706
4707 shmem_huge = huge;
4708 if (shmem_huge > SHMEM_HUGE_DENY)
4709 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4710 return count;
4711 }
4712
4713 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4715
4716 #else /* !CONFIG_SHMEM */
4717
4718 /*
4719 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4720 *
4721 * This is intended for small system where the benefits of the full
4722 * shmem code (swap-backed and resource-limited) are outweighed by
4723 * their complexity. On systems without swap this code should be
4724 * effectively equivalent, but much lighter weight.
4725 */
4726
4727 static struct file_system_type shmem_fs_type = {
4728 .name = "tmpfs",
4729 .init_fs_context = ramfs_init_fs_context,
4730 .parameters = ramfs_fs_parameters,
4731 .kill_sb = ramfs_kill_sb,
4732 .fs_flags = FS_USERNS_MOUNT,
4733 };
4734
shmem_init(void)4735 void __init shmem_init(void)
4736 {
4737 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4738
4739 shm_mnt = kern_mount(&shmem_fs_type);
4740 BUG_ON(IS_ERR(shm_mnt));
4741 }
4742
shmem_unuse(unsigned int type)4743 int shmem_unuse(unsigned int type)
4744 {
4745 return 0;
4746 }
4747
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4748 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4749 {
4750 return 0;
4751 }
4752
shmem_unlock_mapping(struct address_space * mapping)4753 void shmem_unlock_mapping(struct address_space *mapping)
4754 {
4755 }
4756
4757 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4758 unsigned long shmem_get_unmapped_area(struct file *file,
4759 unsigned long addr, unsigned long len,
4760 unsigned long pgoff, unsigned long flags)
4761 {
4762 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4763 }
4764 #endif
4765
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4766 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4767 {
4768 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4769 }
4770 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4771
4772 #define shmem_vm_ops generic_file_vm_ops
4773 #define shmem_anon_vm_ops generic_file_vm_ops
4774 #define shmem_file_operations ramfs_file_operations
4775 #define shmem_acct_size(flags, size) 0
4776 #define shmem_unacct_size(flags, size) do {} while (0)
4777
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)4778 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4779 umode_t mode, dev_t dev, unsigned long flags)
4780 {
4781 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4782 return inode ? inode : ERR_PTR(-ENOSPC);
4783 }
4784
4785 #endif /* CONFIG_SHMEM */
4786
4787 /* common code */
4788
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4789 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4790 unsigned long flags, unsigned int i_flags)
4791 {
4792 struct inode *inode;
4793 struct file *res;
4794
4795 if (IS_ERR(mnt))
4796 return ERR_CAST(mnt);
4797
4798 if (size < 0 || size > MAX_LFS_FILESIZE)
4799 return ERR_PTR(-EINVAL);
4800
4801 if (shmem_acct_size(flags, size))
4802 return ERR_PTR(-ENOMEM);
4803
4804 if (is_idmapped_mnt(mnt))
4805 return ERR_PTR(-EINVAL);
4806
4807 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4808 S_IFREG | S_IRWXUGO, 0, flags);
4809
4810 if (IS_ERR(inode)) {
4811 shmem_unacct_size(flags, size);
4812 return ERR_CAST(inode);
4813 }
4814 inode->i_flags |= i_flags;
4815 inode->i_size = size;
4816 clear_nlink(inode); /* It is unlinked */
4817 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4818 if (!IS_ERR(res))
4819 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4820 &shmem_file_operations);
4821 if (IS_ERR(res))
4822 iput(inode);
4823 return res;
4824 }
4825
4826 /**
4827 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4828 * kernel internal. There will be NO LSM permission checks against the
4829 * underlying inode. So users of this interface must do LSM checks at a
4830 * higher layer. The users are the big_key and shm implementations. LSM
4831 * checks are provided at the key or shm level rather than the inode.
4832 * @name: name for dentry (to be seen in /proc/<pid>/maps
4833 * @size: size to be set for the file
4834 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4835 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4836 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4837 {
4838 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4839 }
4840
4841 /**
4842 * shmem_file_setup - get an unlinked file living in tmpfs
4843 * @name: name for dentry (to be seen in /proc/<pid>/maps
4844 * @size: size to be set for the file
4845 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4846 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4847 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4848 {
4849 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4850 }
4851 EXPORT_SYMBOL_GPL(shmem_file_setup);
4852
4853 /**
4854 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4855 * @mnt: the tmpfs mount where the file will be created
4856 * @name: name for dentry (to be seen in /proc/<pid>/maps
4857 * @size: size to be set for the file
4858 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4859 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4860 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4861 loff_t size, unsigned long flags)
4862 {
4863 return __shmem_file_setup(mnt, name, size, flags, 0);
4864 }
4865 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4866
4867 /**
4868 * shmem_zero_setup - setup a shared anonymous mapping
4869 * @vma: the vma to be mmapped is prepared by do_mmap
4870 */
shmem_zero_setup(struct vm_area_struct * vma)4871 int shmem_zero_setup(struct vm_area_struct *vma)
4872 {
4873 struct file *file;
4874 loff_t size = vma->vm_end - vma->vm_start;
4875
4876 /*
4877 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4878 * between XFS directory reading and selinux: since this file is only
4879 * accessible to the user through its mapping, use S_PRIVATE flag to
4880 * bypass file security, in the same way as shmem_kernel_file_setup().
4881 */
4882 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4883 if (IS_ERR(file))
4884 return PTR_ERR(file);
4885
4886 if (vma->vm_file)
4887 fput(vma->vm_file);
4888 vma->vm_file = file;
4889 vma->vm_ops = &shmem_anon_vm_ops;
4890
4891 return 0;
4892 }
4893
4894 /**
4895 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4896 * @mapping: the folio's address_space
4897 * @index: the folio index
4898 * @gfp: the page allocator flags to use if allocating
4899 *
4900 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4901 * with any new page allocations done using the specified allocation flags.
4902 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4903 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4904 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4905 *
4906 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4907 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4908 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4909 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4910 pgoff_t index, gfp_t gfp)
4911 {
4912 #ifdef CONFIG_SHMEM
4913 struct inode *inode = mapping->host;
4914 struct folio *folio;
4915 int error;
4916
4917 BUG_ON(!shmem_mapping(mapping));
4918 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4919 gfp, NULL, NULL, NULL);
4920 if (error)
4921 return ERR_PTR(error);
4922
4923 folio_unlock(folio);
4924 return folio;
4925 #else
4926 /*
4927 * The tiny !SHMEM case uses ramfs without swap
4928 */
4929 return mapping_read_folio_gfp(mapping, index, gfp);
4930 #endif
4931 }
4932 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4933
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4934 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4935 pgoff_t index, gfp_t gfp)
4936 {
4937 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4938 struct page *page;
4939
4940 if (IS_ERR(folio))
4941 return &folio->page;
4942
4943 page = folio_file_page(folio, index);
4944 if (PageHWPoison(page)) {
4945 folio_put(folio);
4946 return ERR_PTR(-EIO);
4947 }
4948
4949 return page;
4950 }
4951 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4952