xref: /openbmc/linux/drivers/net/phy/sfp.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18 
19 #include "sfp.h"
20 #include "swphy.h"
21 
22 enum {
23 	GPIO_MODDEF0,
24 	GPIO_LOS,
25 	GPIO_TX_FAULT,
26 	GPIO_TX_DISABLE,
27 	GPIO_RS0,
28 	GPIO_RS1,
29 	GPIO_MAX,
30 
31 	SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 	SFP_F_LOS = BIT(GPIO_LOS),
33 	SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 	SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 	SFP_F_RS0 = BIT(GPIO_RS0),
36 	SFP_F_RS1 = BIT(GPIO_RS1),
37 
38 	SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39 
40 	SFP_E_INSERT = 0,
41 	SFP_E_REMOVE,
42 	SFP_E_DEV_ATTACH,
43 	SFP_E_DEV_DETACH,
44 	SFP_E_DEV_DOWN,
45 	SFP_E_DEV_UP,
46 	SFP_E_TX_FAULT,
47 	SFP_E_TX_CLEAR,
48 	SFP_E_LOS_HIGH,
49 	SFP_E_LOS_LOW,
50 	SFP_E_TIMEOUT,
51 
52 	SFP_MOD_EMPTY = 0,
53 	SFP_MOD_ERROR,
54 	SFP_MOD_PROBE,
55 	SFP_MOD_WAITDEV,
56 	SFP_MOD_HPOWER,
57 	SFP_MOD_WAITPWR,
58 	SFP_MOD_PRESENT,
59 
60 	SFP_DEV_DETACHED = 0,
61 	SFP_DEV_DOWN,
62 	SFP_DEV_UP,
63 
64 	SFP_S_DOWN = 0,
65 	SFP_S_FAIL,
66 	SFP_S_WAIT,
67 	SFP_S_INIT,
68 	SFP_S_INIT_PHY,
69 	SFP_S_INIT_TX_FAULT,
70 	SFP_S_WAIT_LOS,
71 	SFP_S_LINK_UP,
72 	SFP_S_TX_FAULT,
73 	SFP_S_REINIT,
74 	SFP_S_TX_DISABLE,
75 };
76 
77 static const char  * const mod_state_strings[] = {
78 	[SFP_MOD_EMPTY] = "empty",
79 	[SFP_MOD_ERROR] = "error",
80 	[SFP_MOD_PROBE] = "probe",
81 	[SFP_MOD_WAITDEV] = "waitdev",
82 	[SFP_MOD_HPOWER] = "hpower",
83 	[SFP_MOD_WAITPWR] = "waitpwr",
84 	[SFP_MOD_PRESENT] = "present",
85 };
86 
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 	if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 		return "Unknown module state";
91 	return mod_state_strings[mod_state];
92 }
93 
94 static const char * const dev_state_strings[] = {
95 	[SFP_DEV_DETACHED] = "detached",
96 	[SFP_DEV_DOWN] = "down",
97 	[SFP_DEV_UP] = "up",
98 };
99 
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 	if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 		return "Unknown device state";
104 	return dev_state_strings[dev_state];
105 }
106 
107 static const char * const event_strings[] = {
108 	[SFP_E_INSERT] = "insert",
109 	[SFP_E_REMOVE] = "remove",
110 	[SFP_E_DEV_ATTACH] = "dev_attach",
111 	[SFP_E_DEV_DETACH] = "dev_detach",
112 	[SFP_E_DEV_DOWN] = "dev_down",
113 	[SFP_E_DEV_UP] = "dev_up",
114 	[SFP_E_TX_FAULT] = "tx_fault",
115 	[SFP_E_TX_CLEAR] = "tx_clear",
116 	[SFP_E_LOS_HIGH] = "los_high",
117 	[SFP_E_LOS_LOW] = "los_low",
118 	[SFP_E_TIMEOUT] = "timeout",
119 };
120 
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 	if (event >= ARRAY_SIZE(event_strings))
124 		return "Unknown event";
125 	return event_strings[event];
126 }
127 
128 static const char * const sm_state_strings[] = {
129 	[SFP_S_DOWN] = "down",
130 	[SFP_S_FAIL] = "fail",
131 	[SFP_S_WAIT] = "wait",
132 	[SFP_S_INIT] = "init",
133 	[SFP_S_INIT_PHY] = "init_phy",
134 	[SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 	[SFP_S_WAIT_LOS] = "wait_los",
136 	[SFP_S_LINK_UP] = "link_up",
137 	[SFP_S_TX_FAULT] = "tx_fault",
138 	[SFP_S_REINIT] = "reinit",
139 	[SFP_S_TX_DISABLE] = "tx_disable",
140 };
141 
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 	if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 		return "Unknown state";
146 	return sm_state_strings[sm_state];
147 }
148 
149 static const char *gpio_names[] = {
150 	"mod-def0",
151 	"los",
152 	"tx-fault",
153 	"tx-disable",
154 	"rate-select0",
155 	"rate-select1",
156 };
157 
158 static const enum gpiod_flags gpio_flags[] = {
159 	GPIOD_IN,
160 	GPIOD_IN,
161 	GPIOD_IN,
162 	GPIOD_ASIS,
163 	GPIOD_ASIS,
164 	GPIOD_ASIS,
165 };
166 
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168  * non-cooled module to initialise its laser safety circuitry. We wait
169  * an initial T_WAIT period before we check the tx fault to give any PHY
170  * on board (for a copper SFP) time to initialise.
171  */
172 #define T_WAIT			msecs_to_jiffies(50)
173 #define T_START_UP		msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON	msecs_to_jiffies(60000)
175 
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177  * an indicated TX_FAULT.
178  */
179 #define T_RESET_US		10
180 #define T_FAULT_RECOVER		msecs_to_jiffies(1000)
181 
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183  * time. If the TX_FAULT signal is not deasserted after this number of
184  * attempts at clearing it, we decide that the module is faulty.
185  * N_FAULT is the same but after the module has initialised.
186  */
187 #define N_FAULT_INIT		5
188 #define N_FAULT			5
189 
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191  * R_PHY_RETRY is the number of attempts.
192  */
193 #define T_PHY_RETRY		msecs_to_jiffies(50)
194 #define R_PHY_RETRY		12
195 
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197  * the same length on the PCB, which means it's possible for MOD DEF 0 to
198  * connect before the I2C bus on MOD DEF 1/2.
199  *
200  * The SFF-8472 specifies t_serial ("Time from power on until module is
201  * ready for data transmission over the two wire serial bus.") as 300ms.
202  */
203 #define T_SERIAL		msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL		msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT	msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT	10
207 #define T_PROBE_RETRY_SLOW	msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW	12
209 
210 /* SFP modules appear to always have their PHY configured for bus address
211  * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212  * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213  * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214  */
215 #define SFP_PHY_ADDR		22
216 #define SFP_PHY_ADDR_ROLLBALL	17
217 
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219  * at a time. Some SFP modules and also some Linux I2C drivers do not like
220  * reads longer than 16 bytes.
221  */
222 #define SFP_EEPROM_BLOCK_SIZE	16
223 
224 struct sff_data {
225 	unsigned int gpios;
226 	bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228 
229 struct sfp {
230 	struct device *dev;
231 	struct i2c_adapter *i2c;
232 	struct mii_bus *i2c_mii;
233 	struct sfp_bus *sfp_bus;
234 	enum mdio_i2c_proto mdio_protocol;
235 	struct phy_device *mod_phy;
236 	const struct sff_data *type;
237 	size_t i2c_block_size;
238 	u32 max_power_mW;
239 
240 	unsigned int (*get_state)(struct sfp *);
241 	void (*set_state)(struct sfp *, unsigned int);
242 	int (*read)(struct sfp *, bool, u8, void *, size_t);
243 	int (*write)(struct sfp *, bool, u8, void *, size_t);
244 
245 	struct gpio_desc *gpio[GPIO_MAX];
246 	int gpio_irq[GPIO_MAX];
247 
248 	bool need_poll;
249 
250 	/* Access rules:
251 	 * state_hw_drive: st_mutex held
252 	 * state_hw_mask: st_mutex held
253 	 * state_soft_mask: st_mutex held
254 	 * state: st_mutex held unless reading input bits
255 	 */
256 	struct mutex st_mutex;			/* Protects state */
257 	unsigned int state_hw_drive;
258 	unsigned int state_hw_mask;
259 	unsigned int state_soft_mask;
260 	unsigned int state;
261 
262 	struct delayed_work poll;
263 	struct delayed_work timeout;
264 	struct mutex sm_mutex;			/* Protects state machine */
265 	unsigned char sm_mod_state;
266 	unsigned char sm_mod_tries_init;
267 	unsigned char sm_mod_tries;
268 	unsigned char sm_dev_state;
269 	unsigned short sm_state;
270 	unsigned char sm_fault_retries;
271 	unsigned char sm_phy_retries;
272 
273 	struct sfp_eeprom_id id;
274 	unsigned int module_power_mW;
275 	unsigned int module_t_start_up;
276 	unsigned int module_t_wait;
277 
278 	unsigned int rate_kbd;
279 	unsigned int rs_threshold_kbd;
280 	unsigned int rs_state_mask;
281 
282 	bool have_a2;
283 	bool tx_fault_ignore;
284 
285 	const struct sfp_quirk *quirk;
286 
287 #if IS_ENABLED(CONFIG_HWMON)
288 	struct sfp_diag diag;
289 	struct delayed_work hwmon_probe;
290 	unsigned int hwmon_tries;
291 	struct device *hwmon_dev;
292 	char *hwmon_name;
293 #endif
294 
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 	struct dentry *debugfs_dir;
297 #endif
298 };
299 
sff_module_supported(const struct sfp_eeprom_id * id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 	return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 	       id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305 
306 static const struct sff_data sff_data = {
307 	.gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 	.module_supported = sff_module_supported,
309 };
310 
sfp_module_supported(const struct sfp_eeprom_id * id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 	if (id->base.phys_id == SFF8024_ID_SFP &&
314 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 		return true;
316 
317 	/* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 	 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 	 * as supported based on vendor name and pn match.
320 	 */
321 	if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 	    id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 	    !memcmp(id->base.vendor_name, "UBNT            ", 16) &&
324 	    !memcmp(id->base.vendor_pn, "UF-INSTANT      ", 16))
325 		return true;
326 
327 	return false;
328 }
329 
330 static const struct sff_data sfp_data = {
331 	.gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 		 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 	.module_supported = sfp_module_supported,
334 };
335 
336 static const struct of_device_id sfp_of_match[] = {
337 	{ .compatible = "sff,sff", .data = &sff_data, },
338 	{ .compatible = "sff,sfp", .data = &sfp_data, },
339 	{ },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342 
sfp_fixup_long_startup(struct sfp * sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 	sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347 
sfp_fixup_ignore_tx_fault(struct sfp * sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 	sfp->tx_fault_ignore = true;
351 }
352 
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 	sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359 
sfp_fixup_rollball_proto(struct sfp * sfp,unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 	sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 	sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365 
sfp_fixup_fs_10gt(struct sfp * sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 	sfp_fixup_10gbaset_30m(sfp);
369 
370 	// These SFPs need 4 seconds before the PHY can be accessed
371 	sfp_fixup_rollball_proto(sfp, 4);
372 }
373 
sfp_fixup_halny_gsfp(struct sfp * sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 	/* Ignore the TX_FAULT and LOS signals on this module.
377 	 * these are possibly used for other purposes on this
378 	 * module, e.g. a serial port.
379 	 */
380 	sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382 
sfp_fixup_rollball(struct sfp * sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 	// Rollball SFPs need 25 seconds before the PHY can be accessed
386 	sfp_fixup_rollball_proto(sfp, 25);
387 }
388 
sfp_fixup_rollball_cc(struct sfp * sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 	sfp_fixup_rollball(sfp);
392 
393 	/* Some RollBall SFPs may have wrong (zero) extended compliance code
394 	 * burned in EEPROM. For PHY probing we need the correct one.
395 	 */
396 	sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398 
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 				unsigned long *modes,
401 				unsigned long *interfaces)
402 {
403 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406 
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 				      unsigned long *modes,
409 				      unsigned long *interfaces)
410 {
411 	linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413 
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 			       unsigned long *modes,
416 			       unsigned long *interfaces)
417 {
418 	/* Copper 2.5G SFP */
419 	linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 	__set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 	sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423 
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 				      unsigned long *modes,
426 				      unsigned long *interfaces)
427 {
428 	/* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 	 * types including 10G Ethernet which is not truth. So clear all claimed
430 	 * modes and set only one mode which module supports: 1000baseX_Full.
431 	 */
432 	linkmode_zero(modes);
433 	linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435 
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 	{ .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440 
441 static const struct sfp_quirk sfp_quirks[] = {
442 	// Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 	// report 2500MBd NRZ in their EEPROM
444 	SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
445 		  sfp_fixup_ignore_tx_fault),
446 
447 	// Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
448 	// NRZ in their EEPROM
449 	SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
450 		  sfp_fixup_long_startup),
451 
452 	// Fiberstore SFP-10G-T doesn't identify as copper, and uses the
453 	// Rollball protocol to talk to the PHY.
454 	SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
455 
456 	// Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
457 	// NRZ in their EEPROM
458 	SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
459 		  sfp_fixup_ignore_tx_fault),
460 
461 	SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
462 
463 	// HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
464 	// 2600MBd in their EERPOM
465 	SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
466 
467 	// Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
468 	// their EEPROM
469 	SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
470 		  sfp_fixup_ignore_tx_fault),
471 
472 	// FS 2.5G Base-T
473 	SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
474 
475 	// Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
476 	// 2500MBd NRZ in their EEPROM
477 	SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
478 
479 	SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
480 
481 	// Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
482 	// Rollball protocol to talk to the PHY.
483 	SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
484 	SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
485 
486 	// OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
487 	SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
488 
489 	SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
490 	SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
491 	SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
492 	SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
493 	SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
494 	SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
495 };
496 
sfp_strlen(const char * str,size_t maxlen)497 static size_t sfp_strlen(const char *str, size_t maxlen)
498 {
499 	size_t size, i;
500 
501 	/* Trailing characters should be filled with space chars, but
502 	 * some manufacturers can't read SFF-8472 and use NUL.
503 	 */
504 	for (i = 0, size = 0; i < maxlen; i++)
505 		if (str[i] != ' ' && str[i] != '\0')
506 			size = i + 1;
507 
508 	return size;
509 }
510 
sfp_match(const char * qs,const char * str,size_t len)511 static bool sfp_match(const char *qs, const char *str, size_t len)
512 {
513 	if (!qs)
514 		return true;
515 	if (strlen(qs) != len)
516 		return false;
517 	return !strncmp(qs, str, len);
518 }
519 
sfp_lookup_quirk(const struct sfp_eeprom_id * id)520 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
521 {
522 	const struct sfp_quirk *q;
523 	unsigned int i;
524 	size_t vs, ps;
525 
526 	vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
527 	ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
528 
529 	for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
530 		if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
531 		    sfp_match(q->part, id->base.vendor_pn, ps))
532 			return q;
533 
534 	return NULL;
535 }
536 
537 static unsigned long poll_jiffies;
538 
sfp_gpio_get_state(struct sfp * sfp)539 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
540 {
541 	unsigned int i, state, v;
542 
543 	for (i = state = 0; i < GPIO_MAX; i++) {
544 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
545 			continue;
546 
547 		v = gpiod_get_value_cansleep(sfp->gpio[i]);
548 		if (v)
549 			state |= BIT(i);
550 	}
551 
552 	return state;
553 }
554 
sff_gpio_get_state(struct sfp * sfp)555 static unsigned int sff_gpio_get_state(struct sfp *sfp)
556 {
557 	return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
558 }
559 
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)560 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
561 {
562 	unsigned int drive;
563 
564 	if (state & SFP_F_PRESENT)
565 		/* If the module is present, drive the requested signals */
566 		drive = sfp->state_hw_drive;
567 	else
568 		/* Otherwise, let them float to the pull-ups */
569 		drive = 0;
570 
571 	if (sfp->gpio[GPIO_TX_DISABLE]) {
572 		if (drive & SFP_F_TX_DISABLE)
573 			gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
574 					       state & SFP_F_TX_DISABLE);
575 		else
576 			gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
577 	}
578 
579 	if (sfp->gpio[GPIO_RS0]) {
580 		if (drive & SFP_F_RS0)
581 			gpiod_direction_output(sfp->gpio[GPIO_RS0],
582 					       state & SFP_F_RS0);
583 		else
584 			gpiod_direction_input(sfp->gpio[GPIO_RS0]);
585 	}
586 
587 	if (sfp->gpio[GPIO_RS1]) {
588 		if (drive & SFP_F_RS1)
589 			gpiod_direction_output(sfp->gpio[GPIO_RS1],
590 					       state & SFP_F_RS1);
591 		else
592 			gpiod_direction_input(sfp->gpio[GPIO_RS1]);
593 	}
594 }
595 
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)596 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
597 			size_t len)
598 {
599 	struct i2c_msg msgs[2];
600 	u8 bus_addr = a2 ? 0x51 : 0x50;
601 	size_t block_size = sfp->i2c_block_size;
602 	size_t this_len;
603 	int ret;
604 
605 	msgs[0].addr = bus_addr;
606 	msgs[0].flags = 0;
607 	msgs[0].len = 1;
608 	msgs[0].buf = &dev_addr;
609 	msgs[1].addr = bus_addr;
610 	msgs[1].flags = I2C_M_RD;
611 	msgs[1].len = len;
612 	msgs[1].buf = buf;
613 
614 	while (len) {
615 		this_len = len;
616 		if (this_len > block_size)
617 			this_len = block_size;
618 
619 		msgs[1].len = this_len;
620 
621 		ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
622 		if (ret < 0)
623 			return ret;
624 
625 		if (ret != ARRAY_SIZE(msgs))
626 			break;
627 
628 		msgs[1].buf += this_len;
629 		dev_addr += this_len;
630 		len -= this_len;
631 	}
632 
633 	return msgs[1].buf - (u8 *)buf;
634 }
635 
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)636 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
637 	size_t len)
638 {
639 	struct i2c_msg msgs[1];
640 	u8 bus_addr = a2 ? 0x51 : 0x50;
641 	int ret;
642 
643 	msgs[0].addr = bus_addr;
644 	msgs[0].flags = 0;
645 	msgs[0].len = 1 + len;
646 	msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
647 	if (!msgs[0].buf)
648 		return -ENOMEM;
649 
650 	msgs[0].buf[0] = dev_addr;
651 	memcpy(&msgs[0].buf[1], buf, len);
652 
653 	ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
654 
655 	kfree(msgs[0].buf);
656 
657 	if (ret < 0)
658 		return ret;
659 
660 	return ret == ARRAY_SIZE(msgs) ? len : 0;
661 }
662 
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)663 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
664 {
665 	if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
666 		return -EINVAL;
667 
668 	sfp->i2c = i2c;
669 	sfp->read = sfp_i2c_read;
670 	sfp->write = sfp_i2c_write;
671 
672 	return 0;
673 }
674 
sfp_i2c_mdiobus_create(struct sfp * sfp)675 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
676 {
677 	struct mii_bus *i2c_mii;
678 	int ret;
679 
680 	i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
681 	if (IS_ERR(i2c_mii))
682 		return PTR_ERR(i2c_mii);
683 
684 	i2c_mii->name = "SFP I2C Bus";
685 	i2c_mii->phy_mask = ~0;
686 
687 	ret = mdiobus_register(i2c_mii);
688 	if (ret < 0) {
689 		mdiobus_free(i2c_mii);
690 		return ret;
691 	}
692 
693 	sfp->i2c_mii = i2c_mii;
694 
695 	return 0;
696 }
697 
sfp_i2c_mdiobus_destroy(struct sfp * sfp)698 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
699 {
700 	mdiobus_unregister(sfp->i2c_mii);
701 	sfp->i2c_mii = NULL;
702 }
703 
704 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)705 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
706 {
707 	return sfp->read(sfp, a2, addr, buf, len);
708 }
709 
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)710 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
711 {
712 	return sfp->write(sfp, a2, addr, buf, len);
713 }
714 
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)715 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
716 {
717 	int ret;
718 	u8 old, v;
719 
720 	ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
721 	if (ret != sizeof(old))
722 		return ret;
723 
724 	v = (old & ~mask) | (val & mask);
725 	if (v == old)
726 		return sizeof(v);
727 
728 	return sfp_write(sfp, a2, addr, &v, sizeof(v));
729 }
730 
sfp_soft_get_state(struct sfp * sfp)731 static unsigned int sfp_soft_get_state(struct sfp *sfp)
732 {
733 	unsigned int state = 0;
734 	u8 status;
735 	int ret;
736 
737 	ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
738 	if (ret == sizeof(status)) {
739 		if (status & SFP_STATUS_RX_LOS)
740 			state |= SFP_F_LOS;
741 		if (status & SFP_STATUS_TX_FAULT)
742 			state |= SFP_F_TX_FAULT;
743 	} else {
744 		dev_err_ratelimited(sfp->dev,
745 				    "failed to read SFP soft status: %pe\n",
746 				    ERR_PTR(ret));
747 		/* Preserve the current state */
748 		state = sfp->state;
749 	}
750 
751 	return state & sfp->state_soft_mask;
752 }
753 
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)754 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
755 			       unsigned int soft)
756 {
757 	u8 mask = 0;
758 	u8 val = 0;
759 
760 	if (soft & SFP_F_TX_DISABLE)
761 		mask |= SFP_STATUS_TX_DISABLE_FORCE;
762 	if (state & SFP_F_TX_DISABLE)
763 		val |= SFP_STATUS_TX_DISABLE_FORCE;
764 
765 	if (soft & SFP_F_RS0)
766 		mask |= SFP_STATUS_RS0_SELECT;
767 	if (state & SFP_F_RS0)
768 		val |= SFP_STATUS_RS0_SELECT;
769 
770 	if (mask)
771 		sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
772 
773 	val = mask = 0;
774 	if (soft & SFP_F_RS1)
775 		mask |= SFP_EXT_STATUS_RS1_SELECT;
776 	if (state & SFP_F_RS1)
777 		val |= SFP_EXT_STATUS_RS1_SELECT;
778 
779 	if (mask)
780 		sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
781 }
782 
sfp_soft_start_poll(struct sfp * sfp)783 static void sfp_soft_start_poll(struct sfp *sfp)
784 {
785 	const struct sfp_eeprom_id *id = &sfp->id;
786 	unsigned int mask = 0;
787 
788 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
789 		mask |= SFP_F_TX_DISABLE;
790 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
791 		mask |= SFP_F_TX_FAULT;
792 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
793 		mask |= SFP_F_LOS;
794 	if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
795 		mask |= sfp->rs_state_mask;
796 
797 	mutex_lock(&sfp->st_mutex);
798 	// Poll the soft state for hardware pins we want to ignore
799 	sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
800 
801 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
802 	    !sfp->need_poll)
803 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
804 	mutex_unlock(&sfp->st_mutex);
805 }
806 
sfp_soft_stop_poll(struct sfp * sfp)807 static void sfp_soft_stop_poll(struct sfp *sfp)
808 {
809 	mutex_lock(&sfp->st_mutex);
810 	sfp->state_soft_mask = 0;
811 	mutex_unlock(&sfp->st_mutex);
812 }
813 
814 /* sfp_get_state() - must be called with st_mutex held, or in the
815  * initialisation path.
816  */
sfp_get_state(struct sfp * sfp)817 static unsigned int sfp_get_state(struct sfp *sfp)
818 {
819 	unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
820 	unsigned int state;
821 
822 	state = sfp->get_state(sfp) & sfp->state_hw_mask;
823 	if (state & SFP_F_PRESENT && soft)
824 		state |= sfp_soft_get_state(sfp);
825 
826 	return state;
827 }
828 
829 /* sfp_set_state() - must be called with st_mutex held, or in the
830  * initialisation path.
831  */
sfp_set_state(struct sfp * sfp,unsigned int state)832 static void sfp_set_state(struct sfp *sfp, unsigned int state)
833 {
834 	unsigned int soft;
835 
836 	sfp->set_state(sfp, state);
837 
838 	soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
839 	if (state & SFP_F_PRESENT && soft)
840 		sfp_soft_set_state(sfp, state, soft);
841 }
842 
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)843 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
844 {
845 	mutex_lock(&sfp->st_mutex);
846 	sfp->state = (sfp->state & ~mask) | set;
847 	sfp_set_state(sfp, sfp->state);
848 	mutex_unlock(&sfp->st_mutex);
849 }
850 
sfp_check(void * buf,size_t len)851 static unsigned int sfp_check(void *buf, size_t len)
852 {
853 	u8 *p, check;
854 
855 	for (p = buf, check = 0; len; p++, len--)
856 		check += *p;
857 
858 	return check;
859 }
860 
861 /* hwmon */
862 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)863 static umode_t sfp_hwmon_is_visible(const void *data,
864 				    enum hwmon_sensor_types type,
865 				    u32 attr, int channel)
866 {
867 	const struct sfp *sfp = data;
868 
869 	switch (type) {
870 	case hwmon_temp:
871 		switch (attr) {
872 		case hwmon_temp_min_alarm:
873 		case hwmon_temp_max_alarm:
874 		case hwmon_temp_lcrit_alarm:
875 		case hwmon_temp_crit_alarm:
876 		case hwmon_temp_min:
877 		case hwmon_temp_max:
878 		case hwmon_temp_lcrit:
879 		case hwmon_temp_crit:
880 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
881 				return 0;
882 			fallthrough;
883 		case hwmon_temp_input:
884 		case hwmon_temp_label:
885 			return 0444;
886 		default:
887 			return 0;
888 		}
889 	case hwmon_in:
890 		switch (attr) {
891 		case hwmon_in_min_alarm:
892 		case hwmon_in_max_alarm:
893 		case hwmon_in_lcrit_alarm:
894 		case hwmon_in_crit_alarm:
895 		case hwmon_in_min:
896 		case hwmon_in_max:
897 		case hwmon_in_lcrit:
898 		case hwmon_in_crit:
899 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
900 				return 0;
901 			fallthrough;
902 		case hwmon_in_input:
903 		case hwmon_in_label:
904 			return 0444;
905 		default:
906 			return 0;
907 		}
908 	case hwmon_curr:
909 		switch (attr) {
910 		case hwmon_curr_min_alarm:
911 		case hwmon_curr_max_alarm:
912 		case hwmon_curr_lcrit_alarm:
913 		case hwmon_curr_crit_alarm:
914 		case hwmon_curr_min:
915 		case hwmon_curr_max:
916 		case hwmon_curr_lcrit:
917 		case hwmon_curr_crit:
918 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
919 				return 0;
920 			fallthrough;
921 		case hwmon_curr_input:
922 		case hwmon_curr_label:
923 			return 0444;
924 		default:
925 			return 0;
926 		}
927 	case hwmon_power:
928 		/* External calibration of receive power requires
929 		 * floating point arithmetic. Doing that in the kernel
930 		 * is not easy, so just skip it. If the module does
931 		 * not require external calibration, we can however
932 		 * show receiver power, since FP is then not needed.
933 		 */
934 		if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
935 		    channel == 1)
936 			return 0;
937 		switch (attr) {
938 		case hwmon_power_min_alarm:
939 		case hwmon_power_max_alarm:
940 		case hwmon_power_lcrit_alarm:
941 		case hwmon_power_crit_alarm:
942 		case hwmon_power_min:
943 		case hwmon_power_max:
944 		case hwmon_power_lcrit:
945 		case hwmon_power_crit:
946 			if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
947 				return 0;
948 			fallthrough;
949 		case hwmon_power_input:
950 		case hwmon_power_label:
951 			return 0444;
952 		default:
953 			return 0;
954 		}
955 	default:
956 		return 0;
957 	}
958 }
959 
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)960 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
961 {
962 	__be16 val;
963 	int err;
964 
965 	err = sfp_read(sfp, true, reg, &val, sizeof(val));
966 	if (err < 0)
967 		return err;
968 
969 	*value = be16_to_cpu(val);
970 
971 	return 0;
972 }
973 
sfp_hwmon_to_rx_power(long * value)974 static void sfp_hwmon_to_rx_power(long *value)
975 {
976 	*value = DIV_ROUND_CLOSEST(*value, 10);
977 }
978 
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)979 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
980 				long *value)
981 {
982 	if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
983 		*value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
984 }
985 
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)986 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
987 {
988 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
989 			    be16_to_cpu(sfp->diag.cal_t_offset), value);
990 
991 	if (*value >= 0x8000)
992 		*value -= 0x10000;
993 
994 	*value = DIV_ROUND_CLOSEST(*value * 1000, 256);
995 }
996 
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)997 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
998 {
999 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1000 			    be16_to_cpu(sfp->diag.cal_v_offset), value);
1001 
1002 	*value = DIV_ROUND_CLOSEST(*value, 10);
1003 }
1004 
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1005 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1006 {
1007 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1008 			    be16_to_cpu(sfp->diag.cal_txi_offset), value);
1009 
1010 	*value = DIV_ROUND_CLOSEST(*value, 500);
1011 }
1012 
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1013 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1014 {
1015 	sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1016 			    be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1017 
1018 	*value = DIV_ROUND_CLOSEST(*value, 10);
1019 }
1020 
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1021 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1022 {
1023 	int err;
1024 
1025 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1026 	if (err < 0)
1027 		return err;
1028 
1029 	sfp_hwmon_calibrate_temp(sfp, value);
1030 
1031 	return 0;
1032 }
1033 
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1034 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1035 {
1036 	int err;
1037 
1038 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1039 	if (err < 0)
1040 		return err;
1041 
1042 	sfp_hwmon_calibrate_vcc(sfp, value);
1043 
1044 	return 0;
1045 }
1046 
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1047 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1048 {
1049 	int err;
1050 
1051 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1052 	if (err < 0)
1053 		return err;
1054 
1055 	sfp_hwmon_calibrate_bias(sfp, value);
1056 
1057 	return 0;
1058 }
1059 
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1060 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1061 {
1062 	int err;
1063 
1064 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1065 	if (err < 0)
1066 		return err;
1067 
1068 	sfp_hwmon_calibrate_tx_power(sfp, value);
1069 
1070 	return 0;
1071 }
1072 
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1073 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1074 {
1075 	int err;
1076 
1077 	err = sfp_hwmon_read_sensor(sfp, reg, value);
1078 	if (err < 0)
1079 		return err;
1080 
1081 	sfp_hwmon_to_rx_power(value);
1082 
1083 	return 0;
1084 }
1085 
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1086 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1087 {
1088 	u8 status;
1089 	int err;
1090 
1091 	switch (attr) {
1092 	case hwmon_temp_input:
1093 		return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1094 
1095 	case hwmon_temp_lcrit:
1096 		*value = be16_to_cpu(sfp->diag.temp_low_alarm);
1097 		sfp_hwmon_calibrate_temp(sfp, value);
1098 		return 0;
1099 
1100 	case hwmon_temp_min:
1101 		*value = be16_to_cpu(sfp->diag.temp_low_warn);
1102 		sfp_hwmon_calibrate_temp(sfp, value);
1103 		return 0;
1104 	case hwmon_temp_max:
1105 		*value = be16_to_cpu(sfp->diag.temp_high_warn);
1106 		sfp_hwmon_calibrate_temp(sfp, value);
1107 		return 0;
1108 
1109 	case hwmon_temp_crit:
1110 		*value = be16_to_cpu(sfp->diag.temp_high_alarm);
1111 		sfp_hwmon_calibrate_temp(sfp, value);
1112 		return 0;
1113 
1114 	case hwmon_temp_lcrit_alarm:
1115 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1116 		if (err < 0)
1117 			return err;
1118 
1119 		*value = !!(status & SFP_ALARM0_TEMP_LOW);
1120 		return 0;
1121 
1122 	case hwmon_temp_min_alarm:
1123 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1124 		if (err < 0)
1125 			return err;
1126 
1127 		*value = !!(status & SFP_WARN0_TEMP_LOW);
1128 		return 0;
1129 
1130 	case hwmon_temp_max_alarm:
1131 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1132 		if (err < 0)
1133 			return err;
1134 
1135 		*value = !!(status & SFP_WARN0_TEMP_HIGH);
1136 		return 0;
1137 
1138 	case hwmon_temp_crit_alarm:
1139 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1140 		if (err < 0)
1141 			return err;
1142 
1143 		*value = !!(status & SFP_ALARM0_TEMP_HIGH);
1144 		return 0;
1145 	default:
1146 		return -EOPNOTSUPP;
1147 	}
1148 
1149 	return -EOPNOTSUPP;
1150 }
1151 
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1152 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1153 {
1154 	u8 status;
1155 	int err;
1156 
1157 	switch (attr) {
1158 	case hwmon_in_input:
1159 		return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1160 
1161 	case hwmon_in_lcrit:
1162 		*value = be16_to_cpu(sfp->diag.volt_low_alarm);
1163 		sfp_hwmon_calibrate_vcc(sfp, value);
1164 		return 0;
1165 
1166 	case hwmon_in_min:
1167 		*value = be16_to_cpu(sfp->diag.volt_low_warn);
1168 		sfp_hwmon_calibrate_vcc(sfp, value);
1169 		return 0;
1170 
1171 	case hwmon_in_max:
1172 		*value = be16_to_cpu(sfp->diag.volt_high_warn);
1173 		sfp_hwmon_calibrate_vcc(sfp, value);
1174 		return 0;
1175 
1176 	case hwmon_in_crit:
1177 		*value = be16_to_cpu(sfp->diag.volt_high_alarm);
1178 		sfp_hwmon_calibrate_vcc(sfp, value);
1179 		return 0;
1180 
1181 	case hwmon_in_lcrit_alarm:
1182 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1183 		if (err < 0)
1184 			return err;
1185 
1186 		*value = !!(status & SFP_ALARM0_VCC_LOW);
1187 		return 0;
1188 
1189 	case hwmon_in_min_alarm:
1190 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1191 		if (err < 0)
1192 			return err;
1193 
1194 		*value = !!(status & SFP_WARN0_VCC_LOW);
1195 		return 0;
1196 
1197 	case hwmon_in_max_alarm:
1198 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1199 		if (err < 0)
1200 			return err;
1201 
1202 		*value = !!(status & SFP_WARN0_VCC_HIGH);
1203 		return 0;
1204 
1205 	case hwmon_in_crit_alarm:
1206 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1207 		if (err < 0)
1208 			return err;
1209 
1210 		*value = !!(status & SFP_ALARM0_VCC_HIGH);
1211 		return 0;
1212 	default:
1213 		return -EOPNOTSUPP;
1214 	}
1215 
1216 	return -EOPNOTSUPP;
1217 }
1218 
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1219 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1220 {
1221 	u8 status;
1222 	int err;
1223 
1224 	switch (attr) {
1225 	case hwmon_curr_input:
1226 		return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1227 
1228 	case hwmon_curr_lcrit:
1229 		*value = be16_to_cpu(sfp->diag.bias_low_alarm);
1230 		sfp_hwmon_calibrate_bias(sfp, value);
1231 		return 0;
1232 
1233 	case hwmon_curr_min:
1234 		*value = be16_to_cpu(sfp->diag.bias_low_warn);
1235 		sfp_hwmon_calibrate_bias(sfp, value);
1236 		return 0;
1237 
1238 	case hwmon_curr_max:
1239 		*value = be16_to_cpu(sfp->diag.bias_high_warn);
1240 		sfp_hwmon_calibrate_bias(sfp, value);
1241 		return 0;
1242 
1243 	case hwmon_curr_crit:
1244 		*value = be16_to_cpu(sfp->diag.bias_high_alarm);
1245 		sfp_hwmon_calibrate_bias(sfp, value);
1246 		return 0;
1247 
1248 	case hwmon_curr_lcrit_alarm:
1249 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1250 		if (err < 0)
1251 			return err;
1252 
1253 		*value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1254 		return 0;
1255 
1256 	case hwmon_curr_min_alarm:
1257 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1258 		if (err < 0)
1259 			return err;
1260 
1261 		*value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1262 		return 0;
1263 
1264 	case hwmon_curr_max_alarm:
1265 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1266 		if (err < 0)
1267 			return err;
1268 
1269 		*value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1270 		return 0;
1271 
1272 	case hwmon_curr_crit_alarm:
1273 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1274 		if (err < 0)
1275 			return err;
1276 
1277 		*value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1278 		return 0;
1279 	default:
1280 		return -EOPNOTSUPP;
1281 	}
1282 
1283 	return -EOPNOTSUPP;
1284 }
1285 
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1286 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1287 {
1288 	u8 status;
1289 	int err;
1290 
1291 	switch (attr) {
1292 	case hwmon_power_input:
1293 		return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1294 
1295 	case hwmon_power_lcrit:
1296 		*value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1297 		sfp_hwmon_calibrate_tx_power(sfp, value);
1298 		return 0;
1299 
1300 	case hwmon_power_min:
1301 		*value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1302 		sfp_hwmon_calibrate_tx_power(sfp, value);
1303 		return 0;
1304 
1305 	case hwmon_power_max:
1306 		*value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1307 		sfp_hwmon_calibrate_tx_power(sfp, value);
1308 		return 0;
1309 
1310 	case hwmon_power_crit:
1311 		*value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1312 		sfp_hwmon_calibrate_tx_power(sfp, value);
1313 		return 0;
1314 
1315 	case hwmon_power_lcrit_alarm:
1316 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1317 		if (err < 0)
1318 			return err;
1319 
1320 		*value = !!(status & SFP_ALARM0_TXPWR_LOW);
1321 		return 0;
1322 
1323 	case hwmon_power_min_alarm:
1324 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1325 		if (err < 0)
1326 			return err;
1327 
1328 		*value = !!(status & SFP_WARN0_TXPWR_LOW);
1329 		return 0;
1330 
1331 	case hwmon_power_max_alarm:
1332 		err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1333 		if (err < 0)
1334 			return err;
1335 
1336 		*value = !!(status & SFP_WARN0_TXPWR_HIGH);
1337 		return 0;
1338 
1339 	case hwmon_power_crit_alarm:
1340 		err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1341 		if (err < 0)
1342 			return err;
1343 
1344 		*value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1345 		return 0;
1346 	default:
1347 		return -EOPNOTSUPP;
1348 	}
1349 
1350 	return -EOPNOTSUPP;
1351 }
1352 
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1353 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1354 {
1355 	u8 status;
1356 	int err;
1357 
1358 	switch (attr) {
1359 	case hwmon_power_input:
1360 		return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1361 
1362 	case hwmon_power_lcrit:
1363 		*value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1364 		sfp_hwmon_to_rx_power(value);
1365 		return 0;
1366 
1367 	case hwmon_power_min:
1368 		*value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1369 		sfp_hwmon_to_rx_power(value);
1370 		return 0;
1371 
1372 	case hwmon_power_max:
1373 		*value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1374 		sfp_hwmon_to_rx_power(value);
1375 		return 0;
1376 
1377 	case hwmon_power_crit:
1378 		*value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1379 		sfp_hwmon_to_rx_power(value);
1380 		return 0;
1381 
1382 	case hwmon_power_lcrit_alarm:
1383 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1384 		if (err < 0)
1385 			return err;
1386 
1387 		*value = !!(status & SFP_ALARM1_RXPWR_LOW);
1388 		return 0;
1389 
1390 	case hwmon_power_min_alarm:
1391 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1392 		if (err < 0)
1393 			return err;
1394 
1395 		*value = !!(status & SFP_WARN1_RXPWR_LOW);
1396 		return 0;
1397 
1398 	case hwmon_power_max_alarm:
1399 		err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1400 		if (err < 0)
1401 			return err;
1402 
1403 		*value = !!(status & SFP_WARN1_RXPWR_HIGH);
1404 		return 0;
1405 
1406 	case hwmon_power_crit_alarm:
1407 		err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1408 		if (err < 0)
1409 			return err;
1410 
1411 		*value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1412 		return 0;
1413 	default:
1414 		return -EOPNOTSUPP;
1415 	}
1416 
1417 	return -EOPNOTSUPP;
1418 }
1419 
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1420 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1421 			  u32 attr, int channel, long *value)
1422 {
1423 	struct sfp *sfp = dev_get_drvdata(dev);
1424 
1425 	switch (type) {
1426 	case hwmon_temp:
1427 		return sfp_hwmon_temp(sfp, attr, value);
1428 	case hwmon_in:
1429 		return sfp_hwmon_vcc(sfp, attr, value);
1430 	case hwmon_curr:
1431 		return sfp_hwmon_bias(sfp, attr, value);
1432 	case hwmon_power:
1433 		switch (channel) {
1434 		case 0:
1435 			return sfp_hwmon_tx_power(sfp, attr, value);
1436 		case 1:
1437 			return sfp_hwmon_rx_power(sfp, attr, value);
1438 		default:
1439 			return -EOPNOTSUPP;
1440 		}
1441 	default:
1442 		return -EOPNOTSUPP;
1443 	}
1444 }
1445 
1446 static const char *const sfp_hwmon_power_labels[] = {
1447 	"TX_power",
1448 	"RX_power",
1449 };
1450 
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1451 static int sfp_hwmon_read_string(struct device *dev,
1452 				 enum hwmon_sensor_types type,
1453 				 u32 attr, int channel, const char **str)
1454 {
1455 	switch (type) {
1456 	case hwmon_curr:
1457 		switch (attr) {
1458 		case hwmon_curr_label:
1459 			*str = "bias";
1460 			return 0;
1461 		default:
1462 			return -EOPNOTSUPP;
1463 		}
1464 		break;
1465 	case hwmon_temp:
1466 		switch (attr) {
1467 		case hwmon_temp_label:
1468 			*str = "temperature";
1469 			return 0;
1470 		default:
1471 			return -EOPNOTSUPP;
1472 		}
1473 		break;
1474 	case hwmon_in:
1475 		switch (attr) {
1476 		case hwmon_in_label:
1477 			*str = "VCC";
1478 			return 0;
1479 		default:
1480 			return -EOPNOTSUPP;
1481 		}
1482 		break;
1483 	case hwmon_power:
1484 		switch (attr) {
1485 		case hwmon_power_label:
1486 			*str = sfp_hwmon_power_labels[channel];
1487 			return 0;
1488 		default:
1489 			return -EOPNOTSUPP;
1490 		}
1491 		break;
1492 	default:
1493 		return -EOPNOTSUPP;
1494 	}
1495 
1496 	return -EOPNOTSUPP;
1497 }
1498 
1499 static const struct hwmon_ops sfp_hwmon_ops = {
1500 	.is_visible = sfp_hwmon_is_visible,
1501 	.read = sfp_hwmon_read,
1502 	.read_string = sfp_hwmon_read_string,
1503 };
1504 
1505 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1506 	HWMON_CHANNEL_INFO(chip,
1507 			   HWMON_C_REGISTER_TZ),
1508 	HWMON_CHANNEL_INFO(in,
1509 			   HWMON_I_INPUT |
1510 			   HWMON_I_MAX | HWMON_I_MIN |
1511 			   HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1512 			   HWMON_I_CRIT | HWMON_I_LCRIT |
1513 			   HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1514 			   HWMON_I_LABEL),
1515 	HWMON_CHANNEL_INFO(temp,
1516 			   HWMON_T_INPUT |
1517 			   HWMON_T_MAX | HWMON_T_MIN |
1518 			   HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1519 			   HWMON_T_CRIT | HWMON_T_LCRIT |
1520 			   HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1521 			   HWMON_T_LABEL),
1522 	HWMON_CHANNEL_INFO(curr,
1523 			   HWMON_C_INPUT |
1524 			   HWMON_C_MAX | HWMON_C_MIN |
1525 			   HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1526 			   HWMON_C_CRIT | HWMON_C_LCRIT |
1527 			   HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1528 			   HWMON_C_LABEL),
1529 	HWMON_CHANNEL_INFO(power,
1530 			   /* Transmit power */
1531 			   HWMON_P_INPUT |
1532 			   HWMON_P_MAX | HWMON_P_MIN |
1533 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1534 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1535 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1536 			   HWMON_P_LABEL,
1537 			   /* Receive power */
1538 			   HWMON_P_INPUT |
1539 			   HWMON_P_MAX | HWMON_P_MIN |
1540 			   HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1541 			   HWMON_P_CRIT | HWMON_P_LCRIT |
1542 			   HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1543 			   HWMON_P_LABEL),
1544 	NULL,
1545 };
1546 
1547 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1548 	.ops = &sfp_hwmon_ops,
1549 	.info = sfp_hwmon_info,
1550 };
1551 
sfp_hwmon_probe(struct work_struct * work)1552 static void sfp_hwmon_probe(struct work_struct *work)
1553 {
1554 	struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1555 	int err;
1556 
1557 	/* hwmon interface needs to access 16bit registers in atomic way to
1558 	 * guarantee coherency of the diagnostic monitoring data. If it is not
1559 	 * possible to guarantee coherency because EEPROM is broken in such way
1560 	 * that does not support atomic 16bit read operation then we have to
1561 	 * skip registration of hwmon device.
1562 	 */
1563 	if (sfp->i2c_block_size < 2) {
1564 		dev_info(sfp->dev,
1565 			 "skipping hwmon device registration due to broken EEPROM\n");
1566 		dev_info(sfp->dev,
1567 			 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1568 		return;
1569 	}
1570 
1571 	err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1572 	if (err < 0) {
1573 		if (sfp->hwmon_tries--) {
1574 			mod_delayed_work(system_wq, &sfp->hwmon_probe,
1575 					 T_PROBE_RETRY_SLOW);
1576 		} else {
1577 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1578 				 ERR_PTR(err));
1579 		}
1580 		return;
1581 	}
1582 
1583 	sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1584 	if (IS_ERR(sfp->hwmon_name)) {
1585 		dev_err(sfp->dev, "out of memory for hwmon name\n");
1586 		return;
1587 	}
1588 
1589 	sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1590 							 sfp->hwmon_name, sfp,
1591 							 &sfp_hwmon_chip_info,
1592 							 NULL);
1593 	if (IS_ERR(sfp->hwmon_dev))
1594 		dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1595 			PTR_ERR(sfp->hwmon_dev));
1596 }
1597 
sfp_hwmon_insert(struct sfp * sfp)1598 static int sfp_hwmon_insert(struct sfp *sfp)
1599 {
1600 	if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1601 		mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1602 		sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1603 	}
1604 
1605 	return 0;
1606 }
1607 
sfp_hwmon_remove(struct sfp * sfp)1608 static void sfp_hwmon_remove(struct sfp *sfp)
1609 {
1610 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1611 	if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1612 		hwmon_device_unregister(sfp->hwmon_dev);
1613 		sfp->hwmon_dev = NULL;
1614 		kfree(sfp->hwmon_name);
1615 	}
1616 }
1617 
sfp_hwmon_init(struct sfp * sfp)1618 static int sfp_hwmon_init(struct sfp *sfp)
1619 {
1620 	INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1621 
1622 	return 0;
1623 }
1624 
sfp_hwmon_exit(struct sfp * sfp)1625 static void sfp_hwmon_exit(struct sfp *sfp)
1626 {
1627 	cancel_delayed_work_sync(&sfp->hwmon_probe);
1628 }
1629 #else
sfp_hwmon_insert(struct sfp * sfp)1630 static int sfp_hwmon_insert(struct sfp *sfp)
1631 {
1632 	return 0;
1633 }
1634 
sfp_hwmon_remove(struct sfp * sfp)1635 static void sfp_hwmon_remove(struct sfp *sfp)
1636 {
1637 }
1638 
sfp_hwmon_init(struct sfp * sfp)1639 static int sfp_hwmon_init(struct sfp *sfp)
1640 {
1641 	return 0;
1642 }
1643 
sfp_hwmon_exit(struct sfp * sfp)1644 static void sfp_hwmon_exit(struct sfp *sfp)
1645 {
1646 }
1647 #endif
1648 
1649 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1650 static void sfp_module_tx_disable(struct sfp *sfp)
1651 {
1652 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1653 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1654 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1655 }
1656 
sfp_module_tx_enable(struct sfp * sfp)1657 static void sfp_module_tx_enable(struct sfp *sfp)
1658 {
1659 	dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1660 		sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1661 	sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1662 }
1663 
1664 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1665 static int sfp_debug_state_show(struct seq_file *s, void *data)
1666 {
1667 	struct sfp *sfp = s->private;
1668 
1669 	seq_printf(s, "Module state: %s\n",
1670 		   mod_state_to_str(sfp->sm_mod_state));
1671 	seq_printf(s, "Module probe attempts: %d %d\n",
1672 		   R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1673 		   R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1674 	seq_printf(s, "Device state: %s\n",
1675 		   dev_state_to_str(sfp->sm_dev_state));
1676 	seq_printf(s, "Main state: %s\n",
1677 		   sm_state_to_str(sfp->sm_state));
1678 	seq_printf(s, "Fault recovery remaining retries: %d\n",
1679 		   sfp->sm_fault_retries);
1680 	seq_printf(s, "PHY probe remaining retries: %d\n",
1681 		   sfp->sm_phy_retries);
1682 	seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1683 	seq_printf(s, "Rate select threshold: %u kBd\n",
1684 		   sfp->rs_threshold_kbd);
1685 	seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1686 	seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1687 	seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1688 	seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1689 	seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1690 	seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1691 	return 0;
1692 }
1693 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1694 
sfp_debugfs_init(struct sfp * sfp)1695 static void sfp_debugfs_init(struct sfp *sfp)
1696 {
1697 	sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1698 
1699 	debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1700 			    &sfp_debug_state_fops);
1701 }
1702 
sfp_debugfs_exit(struct sfp * sfp)1703 static void sfp_debugfs_exit(struct sfp *sfp)
1704 {
1705 	debugfs_remove_recursive(sfp->debugfs_dir);
1706 }
1707 #else
sfp_debugfs_init(struct sfp * sfp)1708 static void sfp_debugfs_init(struct sfp *sfp)
1709 {
1710 }
1711 
sfp_debugfs_exit(struct sfp * sfp)1712 static void sfp_debugfs_exit(struct sfp *sfp)
1713 {
1714 }
1715 #endif
1716 
sfp_module_tx_fault_reset(struct sfp * sfp)1717 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1718 {
1719 	unsigned int state;
1720 
1721 	mutex_lock(&sfp->st_mutex);
1722 	state = sfp->state;
1723 	if (!(state & SFP_F_TX_DISABLE)) {
1724 		sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1725 
1726 		udelay(T_RESET_US);
1727 
1728 		sfp_set_state(sfp, state);
1729 	}
1730 	mutex_unlock(&sfp->st_mutex);
1731 }
1732 
1733 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1734 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1735 {
1736 	if (timeout)
1737 		mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1738 				 timeout);
1739 	else
1740 		cancel_delayed_work(&sfp->timeout);
1741 }
1742 
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1743 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1744 			unsigned int timeout)
1745 {
1746 	sfp->sm_state = state;
1747 	sfp_sm_set_timer(sfp, timeout);
1748 }
1749 
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1750 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1751 			    unsigned int timeout)
1752 {
1753 	sfp->sm_mod_state = state;
1754 	sfp_sm_set_timer(sfp, timeout);
1755 }
1756 
sfp_sm_phy_detach(struct sfp * sfp)1757 static void sfp_sm_phy_detach(struct sfp *sfp)
1758 {
1759 	sfp_remove_phy(sfp->sfp_bus);
1760 	phy_device_remove(sfp->mod_phy);
1761 	phy_device_free(sfp->mod_phy);
1762 	sfp->mod_phy = NULL;
1763 }
1764 
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1765 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1766 {
1767 	struct phy_device *phy;
1768 	int err;
1769 
1770 	phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1771 	if (phy == ERR_PTR(-ENODEV))
1772 		return PTR_ERR(phy);
1773 	if (IS_ERR(phy)) {
1774 		dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1775 		return PTR_ERR(phy);
1776 	}
1777 
1778 	/* Mark this PHY as being on a SFP module */
1779 	phy->is_on_sfp_module = true;
1780 
1781 	err = phy_device_register(phy);
1782 	if (err) {
1783 		phy_device_free(phy);
1784 		dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1785 			ERR_PTR(err));
1786 		return err;
1787 	}
1788 
1789 	err = sfp_add_phy(sfp->sfp_bus, phy);
1790 	if (err) {
1791 		phy_device_remove(phy);
1792 		phy_device_free(phy);
1793 		dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1794 		return err;
1795 	}
1796 
1797 	sfp->mod_phy = phy;
1798 
1799 	return 0;
1800 }
1801 
sfp_sm_link_up(struct sfp * sfp)1802 static void sfp_sm_link_up(struct sfp *sfp)
1803 {
1804 	sfp_link_up(sfp->sfp_bus);
1805 	sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1806 }
1807 
sfp_sm_link_down(struct sfp * sfp)1808 static void sfp_sm_link_down(struct sfp *sfp)
1809 {
1810 	sfp_link_down(sfp->sfp_bus);
1811 }
1812 
sfp_sm_link_check_los(struct sfp * sfp)1813 static void sfp_sm_link_check_los(struct sfp *sfp)
1814 {
1815 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1816 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1817 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1818 	bool los = false;
1819 
1820 	/* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1821 	 * are set, we assume that no LOS signal is available. If both are
1822 	 * set, we assume LOS is not implemented (and is meaningless.)
1823 	 */
1824 	if (los_options == los_inverted)
1825 		los = !(sfp->state & SFP_F_LOS);
1826 	else if (los_options == los_normal)
1827 		los = !!(sfp->state & SFP_F_LOS);
1828 
1829 	if (los)
1830 		sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1831 	else
1832 		sfp_sm_link_up(sfp);
1833 }
1834 
sfp_los_event_active(struct sfp * sfp,unsigned int event)1835 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1836 {
1837 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1838 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1839 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1840 
1841 	return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1842 	       (los_options == los_normal && event == SFP_E_LOS_HIGH);
1843 }
1844 
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1845 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1846 {
1847 	const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1848 	const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1849 	__be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1850 
1851 	return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1852 	       (los_options == los_normal && event == SFP_E_LOS_LOW);
1853 }
1854 
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1855 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1856 {
1857 	if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1858 		dev_err(sfp->dev,
1859 			"module persistently indicates fault, disabling\n");
1860 		sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1861 	} else {
1862 		if (warn)
1863 			dev_err(sfp->dev, "module transmit fault indicated\n");
1864 
1865 		sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1866 	}
1867 }
1868 
sfp_sm_add_mdio_bus(struct sfp * sfp)1869 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1870 {
1871 	if (sfp->mdio_protocol != MDIO_I2C_NONE)
1872 		return sfp_i2c_mdiobus_create(sfp);
1873 
1874 	return 0;
1875 }
1876 
1877 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1878  * normally sits at I2C bus address 0x56, and may either be a clause 22
1879  * or clause 45 PHY.
1880  *
1881  * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1882  * negotiation enabled, but some may be in 1000base-X - which is for the
1883  * PHY driver to determine.
1884  *
1885  * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1886  * mode according to the negotiated line speed.
1887  */
sfp_sm_probe_for_phy(struct sfp * sfp)1888 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1889 {
1890 	int err = 0;
1891 
1892 	switch (sfp->mdio_protocol) {
1893 	case MDIO_I2C_NONE:
1894 		break;
1895 
1896 	case MDIO_I2C_MARVELL_C22:
1897 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1898 		break;
1899 
1900 	case MDIO_I2C_C45:
1901 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1902 		break;
1903 
1904 	case MDIO_I2C_ROLLBALL:
1905 		err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1906 		break;
1907 	}
1908 
1909 	return err;
1910 }
1911 
sfp_module_parse_power(struct sfp * sfp)1912 static int sfp_module_parse_power(struct sfp *sfp)
1913 {
1914 	u32 power_mW = 1000;
1915 	bool supports_a2;
1916 
1917 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1918 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1919 		power_mW = 1500;
1920 	/* Added in Rev 11.9, but there is no compliance code for this */
1921 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1922 	    sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1923 		power_mW = 2000;
1924 
1925 	/* Power level 1 modules (max. 1W) are always supported. */
1926 	if (power_mW <= 1000) {
1927 		sfp->module_power_mW = power_mW;
1928 		return 0;
1929 	}
1930 
1931 	supports_a2 = sfp->id.ext.sff8472_compliance !=
1932 				SFP_SFF8472_COMPLIANCE_NONE ||
1933 		      sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1934 
1935 	if (power_mW > sfp->max_power_mW) {
1936 		/* Module power specification exceeds the allowed maximum. */
1937 		if (!supports_a2) {
1938 			/* The module appears not to implement bus address
1939 			 * 0xa2, so assume that the module powers up in the
1940 			 * indicated mode.
1941 			 */
1942 			dev_err(sfp->dev,
1943 				"Host does not support %u.%uW modules\n",
1944 				power_mW / 1000, (power_mW / 100) % 10);
1945 			return -EINVAL;
1946 		} else {
1947 			dev_warn(sfp->dev,
1948 				 "Host does not support %u.%uW modules, module left in power mode 1\n",
1949 				 power_mW / 1000, (power_mW / 100) % 10);
1950 			return 0;
1951 		}
1952 	}
1953 
1954 	if (!supports_a2) {
1955 		/* The module power level is below the host maximum and the
1956 		 * module appears not to implement bus address 0xa2, so assume
1957 		 * that the module powers up in the indicated mode.
1958 		 */
1959 		return 0;
1960 	}
1961 
1962 	/* If the module requires a higher power mode, but also requires
1963 	 * an address change sequence, warn the user that the module may
1964 	 * not be functional.
1965 	 */
1966 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1967 		dev_warn(sfp->dev,
1968 			 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1969 			 power_mW / 1000, (power_mW / 100) % 10);
1970 		return 0;
1971 	}
1972 
1973 	sfp->module_power_mW = power_mW;
1974 
1975 	return 0;
1976 }
1977 
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1978 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1979 {
1980 	int err;
1981 
1982 	err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1983 			    SFP_EXT_STATUS_PWRLVL_SELECT,
1984 			    enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1985 	if (err != sizeof(u8)) {
1986 		dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1987 			enable ? "en" : "dis", ERR_PTR(err));
1988 		return -EAGAIN;
1989 	}
1990 
1991 	if (enable)
1992 		dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1993 			 sfp->module_power_mW / 1000,
1994 			 (sfp->module_power_mW / 100) % 10);
1995 
1996 	return 0;
1997 }
1998 
sfp_module_parse_rate_select(struct sfp * sfp)1999 static void sfp_module_parse_rate_select(struct sfp *sfp)
2000 {
2001 	u8 rate_id;
2002 
2003 	sfp->rs_threshold_kbd = 0;
2004 	sfp->rs_state_mask = 0;
2005 
2006 	if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2007 		/* No support for RateSelect */
2008 		return;
2009 
2010 	/* Default to INF-8074 RateSelect operation. The signalling threshold
2011 	 * rate is not well specified, so always select "Full Bandwidth", but
2012 	 * SFF-8079 reveals that it is understood that RS0 will be low for
2013 	 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2014 	 * This method exists prior to SFF-8472.
2015 	 */
2016 	sfp->rs_state_mask = SFP_F_RS0;
2017 	sfp->rs_threshold_kbd = 1594;
2018 
2019 	/* Parse the rate identifier, which is complicated due to history:
2020 	 * SFF-8472 rev 9.5 marks this field as reserved.
2021 	 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2022 	 *  compliance is not required.
2023 	 * SFF-8472 rev 10.2 defines this field using values 0..4
2024 	 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2025 	 * and even values.
2026 	 */
2027 	rate_id = sfp->id.base.rate_id;
2028 	if (rate_id == 0)
2029 		/* Unspecified */
2030 		return;
2031 
2032 	/* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2033 	 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2034 	 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2035 	 */
2036 	if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2037 	    sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2038 	    rate_id == 3)
2039 		rate_id = SFF_RID_8431;
2040 
2041 	if (rate_id & SFF_RID_8079) {
2042 		/* SFF-8079 RateSelect / Application Select in conjunction with
2043 		 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2044 		 * with only bit 0 used, which takes precedence over SFF-8472.
2045 		 */
2046 		if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2047 			/* SFF-8079 Part 1 - rate selection between Fibre
2048 			 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2049 			 * is high for 2125, so we have to subtract 1 to
2050 			 * include it.
2051 			 */
2052 			sfp->rs_threshold_kbd = 2125 - 1;
2053 			sfp->rs_state_mask = SFP_F_RS0;
2054 		}
2055 		return;
2056 	}
2057 
2058 	/* SFF-8472 rev 9.5 does not define the rate identifier */
2059 	if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2060 		return;
2061 
2062 	/* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2063 	 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2064 	 */
2065 	switch (rate_id) {
2066 	case SFF_RID_8431_RX_ONLY:
2067 		sfp->rs_threshold_kbd = 4250;
2068 		sfp->rs_state_mask = SFP_F_RS0;
2069 		break;
2070 
2071 	case SFF_RID_8431_TX_ONLY:
2072 		sfp->rs_threshold_kbd = 4250;
2073 		sfp->rs_state_mask = SFP_F_RS1;
2074 		break;
2075 
2076 	case SFF_RID_8431:
2077 		sfp->rs_threshold_kbd = 4250;
2078 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2079 		break;
2080 
2081 	case SFF_RID_10G8G:
2082 		sfp->rs_threshold_kbd = 9000;
2083 		sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2084 		break;
2085 	}
2086 }
2087 
2088 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2089  * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2090  * not support multibyte reads from the EEPROM. Each multi-byte read
2091  * operation returns just one byte of EEPROM followed by zeros. There is
2092  * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2093  * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2094  * name and vendor id into EEPROM, so there is even no way to detect if
2095  * module is V-SOL V2801F. Therefore check for those zeros in the read
2096  * data and then based on check switch to reading EEPROM to one byte
2097  * at a time.
2098  */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2099 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2100 {
2101 	size_t i, block_size = sfp->i2c_block_size;
2102 
2103 	/* Already using byte IO */
2104 	if (block_size == 1)
2105 		return false;
2106 
2107 	for (i = 1; i < len; i += block_size) {
2108 		if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2109 			return false;
2110 	}
2111 	return true;
2112 }
2113 
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2114 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2115 {
2116 	u8 check;
2117 	int err;
2118 
2119 	if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2120 	    id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2121 	    id->base.connector != SFF8024_CONNECTOR_LC) {
2122 		dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2123 		id->base.phys_id = SFF8024_ID_SFF_8472;
2124 		id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2125 		id->base.connector = SFF8024_CONNECTOR_LC;
2126 		err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2127 		if (err != 3) {
2128 			dev_err(sfp->dev,
2129 				"Failed to rewrite module EEPROM: %pe\n",
2130 				ERR_PTR(err));
2131 			return err;
2132 		}
2133 
2134 		/* Cotsworks modules have been found to require a delay between write operations. */
2135 		mdelay(50);
2136 
2137 		/* Update base structure checksum */
2138 		check = sfp_check(&id->base, sizeof(id->base) - 1);
2139 		err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2140 		if (err != 1) {
2141 			dev_err(sfp->dev,
2142 				"Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2143 				ERR_PTR(err));
2144 			return err;
2145 		}
2146 	}
2147 	return 0;
2148 }
2149 
sfp_module_parse_sff8472(struct sfp * sfp)2150 static int sfp_module_parse_sff8472(struct sfp *sfp)
2151 {
2152 	/* If the module requires address swap mode, warn about it */
2153 	if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2154 		dev_warn(sfp->dev,
2155 			 "module address swap to access page 0xA2 is not supported.\n");
2156 	else
2157 		sfp->have_a2 = true;
2158 
2159 	return 0;
2160 }
2161 
sfp_sm_mod_probe(struct sfp * sfp,bool report)2162 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2163 {
2164 	/* SFP module inserted - read I2C data */
2165 	struct sfp_eeprom_id id;
2166 	bool cotsworks_sfbg;
2167 	unsigned int mask;
2168 	bool cotsworks;
2169 	u8 check;
2170 	int ret;
2171 
2172 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2173 
2174 	ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2175 	if (ret < 0) {
2176 		if (report)
2177 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2178 				ERR_PTR(ret));
2179 		return -EAGAIN;
2180 	}
2181 
2182 	if (ret != sizeof(id.base)) {
2183 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2184 		return -EAGAIN;
2185 	}
2186 
2187 	/* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2188 	 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2189 	 * that EEPROM supports atomic 16bit read operation for diagnostic
2190 	 * fields, so do not switch to one byte reading at a time unless it
2191 	 * is really required and we have no other option.
2192 	 */
2193 	if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2194 		dev_info(sfp->dev,
2195 			 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2196 		dev_info(sfp->dev,
2197 			 "Switching to reading EEPROM to one byte at a time\n");
2198 		sfp->i2c_block_size = 1;
2199 
2200 		ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2201 		if (ret < 0) {
2202 			if (report)
2203 				dev_err(sfp->dev,
2204 					"failed to read EEPROM: %pe\n",
2205 					ERR_PTR(ret));
2206 			return -EAGAIN;
2207 		}
2208 
2209 		if (ret != sizeof(id.base)) {
2210 			dev_err(sfp->dev, "EEPROM short read: %pe\n",
2211 				ERR_PTR(ret));
2212 			return -EAGAIN;
2213 		}
2214 	}
2215 
2216 	/* Cotsworks do not seem to update the checksums when they
2217 	 * do the final programming with the final module part number,
2218 	 * serial number and date code.
2219 	 */
2220 	cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS       ", 16);
2221 	cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2222 
2223 	/* Cotsworks SFF module EEPROM do not always have valid phys_id,
2224 	 * phys_ext_id, and connector bytes.  Rewrite SFF EEPROM bytes if
2225 	 * Cotsworks PN matches and bytes are not correct.
2226 	 */
2227 	if (cotsworks && cotsworks_sfbg) {
2228 		ret = sfp_cotsworks_fixup_check(sfp, &id);
2229 		if (ret < 0)
2230 			return ret;
2231 	}
2232 
2233 	/* Validate the checksum over the base structure */
2234 	check = sfp_check(&id.base, sizeof(id.base) - 1);
2235 	if (check != id.base.cc_base) {
2236 		if (cotsworks) {
2237 			dev_warn(sfp->dev,
2238 				 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2239 				 check, id.base.cc_base);
2240 		} else {
2241 			dev_err(sfp->dev,
2242 				"EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2243 				check, id.base.cc_base);
2244 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2245 				       16, 1, &id, sizeof(id), true);
2246 			return -EINVAL;
2247 		}
2248 	}
2249 
2250 	ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2251 	if (ret < 0) {
2252 		if (report)
2253 			dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2254 				ERR_PTR(ret));
2255 		return -EAGAIN;
2256 	}
2257 
2258 	if (ret != sizeof(id.ext)) {
2259 		dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2260 		return -EAGAIN;
2261 	}
2262 
2263 	check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2264 	if (check != id.ext.cc_ext) {
2265 		if (cotsworks) {
2266 			dev_warn(sfp->dev,
2267 				 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2268 				 check, id.ext.cc_ext);
2269 		} else {
2270 			dev_err(sfp->dev,
2271 				"EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2272 				check, id.ext.cc_ext);
2273 			print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2274 				       16, 1, &id, sizeof(id), true);
2275 			memset(&id.ext, 0, sizeof(id.ext));
2276 		}
2277 	}
2278 
2279 	sfp->id = id;
2280 
2281 	dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2282 		 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2283 		 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2284 		 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2285 		 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2286 		 (int)sizeof(id.ext.datecode), id.ext.datecode);
2287 
2288 	/* Check whether we support this module */
2289 	if (!sfp->type->module_supported(&id)) {
2290 		dev_err(sfp->dev,
2291 			"module is not supported - phys id 0x%02x 0x%02x\n",
2292 			sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2293 		return -EINVAL;
2294 	}
2295 
2296 	if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2297 		ret = sfp_module_parse_sff8472(sfp);
2298 		if (ret < 0)
2299 			return ret;
2300 	}
2301 
2302 	/* Parse the module power requirement */
2303 	ret = sfp_module_parse_power(sfp);
2304 	if (ret < 0)
2305 		return ret;
2306 
2307 	sfp_module_parse_rate_select(sfp);
2308 
2309 	mask = SFP_F_PRESENT;
2310 	if (sfp->gpio[GPIO_TX_DISABLE])
2311 		mask |= SFP_F_TX_DISABLE;
2312 	if (sfp->gpio[GPIO_TX_FAULT])
2313 		mask |= SFP_F_TX_FAULT;
2314 	if (sfp->gpio[GPIO_LOS])
2315 		mask |= SFP_F_LOS;
2316 	if (sfp->gpio[GPIO_RS0])
2317 		mask |= SFP_F_RS0;
2318 	if (sfp->gpio[GPIO_RS1])
2319 		mask |= SFP_F_RS1;
2320 
2321 	sfp->module_t_start_up = T_START_UP;
2322 	sfp->module_t_wait = T_WAIT;
2323 
2324 	sfp->tx_fault_ignore = false;
2325 
2326 	if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2327 	    sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2328 	    sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2329 	    sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2330 		sfp->mdio_protocol = MDIO_I2C_C45;
2331 	else if (sfp->id.base.e1000_base_t)
2332 		sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2333 	else
2334 		sfp->mdio_protocol = MDIO_I2C_NONE;
2335 
2336 	sfp->quirk = sfp_lookup_quirk(&id);
2337 
2338 	mutex_lock(&sfp->st_mutex);
2339 	/* Initialise state bits to use from hardware */
2340 	sfp->state_hw_mask = mask;
2341 
2342 	/* We want to drive the rate select pins that the module is using */
2343 	sfp->state_hw_drive |= sfp->rs_state_mask;
2344 
2345 	if (sfp->quirk && sfp->quirk->fixup)
2346 		sfp->quirk->fixup(sfp);
2347 	mutex_unlock(&sfp->st_mutex);
2348 
2349 	return 0;
2350 }
2351 
sfp_sm_mod_remove(struct sfp * sfp)2352 static void sfp_sm_mod_remove(struct sfp *sfp)
2353 {
2354 	if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2355 		sfp_module_remove(sfp->sfp_bus);
2356 
2357 	sfp_hwmon_remove(sfp);
2358 
2359 	memset(&sfp->id, 0, sizeof(sfp->id));
2360 	sfp->module_power_mW = 0;
2361 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
2362 	sfp->have_a2 = false;
2363 
2364 	dev_info(sfp->dev, "module removed\n");
2365 }
2366 
2367 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2368 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2369 {
2370 	switch (sfp->sm_dev_state) {
2371 	default:
2372 		if (event == SFP_E_DEV_ATTACH)
2373 			sfp->sm_dev_state = SFP_DEV_DOWN;
2374 		break;
2375 
2376 	case SFP_DEV_DOWN:
2377 		if (event == SFP_E_DEV_DETACH)
2378 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2379 		else if (event == SFP_E_DEV_UP)
2380 			sfp->sm_dev_state = SFP_DEV_UP;
2381 		break;
2382 
2383 	case SFP_DEV_UP:
2384 		if (event == SFP_E_DEV_DETACH)
2385 			sfp->sm_dev_state = SFP_DEV_DETACHED;
2386 		else if (event == SFP_E_DEV_DOWN)
2387 			sfp->sm_dev_state = SFP_DEV_DOWN;
2388 		break;
2389 	}
2390 }
2391 
2392 /* This state machine tracks the insert/remove state of the module, probes
2393  * the on-board EEPROM, and sets up the power level.
2394  */
sfp_sm_module(struct sfp * sfp,unsigned int event)2395 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2396 {
2397 	int err;
2398 
2399 	/* Handle remove event globally, it resets this state machine */
2400 	if (event == SFP_E_REMOVE) {
2401 		sfp_sm_mod_remove(sfp);
2402 		sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2403 		return;
2404 	}
2405 
2406 	/* Handle device detach globally */
2407 	if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2408 	    sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2409 		if (sfp->module_power_mW > 1000 &&
2410 		    sfp->sm_mod_state > SFP_MOD_HPOWER)
2411 			sfp_sm_mod_hpower(sfp, false);
2412 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2413 		return;
2414 	}
2415 
2416 	switch (sfp->sm_mod_state) {
2417 	default:
2418 		if (event == SFP_E_INSERT) {
2419 			sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2420 			sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2421 			sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2422 		}
2423 		break;
2424 
2425 	case SFP_MOD_PROBE:
2426 		/* Wait for T_PROBE_INIT to time out */
2427 		if (event != SFP_E_TIMEOUT)
2428 			break;
2429 
2430 		err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2431 		if (err == -EAGAIN) {
2432 			if (sfp->sm_mod_tries_init &&
2433 			   --sfp->sm_mod_tries_init) {
2434 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2435 				break;
2436 			} else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2437 				if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2438 					dev_warn(sfp->dev,
2439 						 "please wait, module slow to respond\n");
2440 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2441 				break;
2442 			}
2443 		}
2444 		if (err < 0) {
2445 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2446 			break;
2447 		}
2448 
2449 		/* Force a poll to re-read the hardware signal state after
2450 		 * sfp_sm_mod_probe() changed state_hw_mask.
2451 		 */
2452 		mod_delayed_work(system_wq, &sfp->poll, 1);
2453 
2454 		err = sfp_hwmon_insert(sfp);
2455 		if (err)
2456 			dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2457 				 ERR_PTR(err));
2458 
2459 		sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2460 		fallthrough;
2461 	case SFP_MOD_WAITDEV:
2462 		/* Ensure that the device is attached before proceeding */
2463 		if (sfp->sm_dev_state < SFP_DEV_DOWN)
2464 			break;
2465 
2466 		/* Report the module insertion to the upstream device */
2467 		err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2468 					sfp->quirk);
2469 		if (err < 0) {
2470 			sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2471 			break;
2472 		}
2473 
2474 		/* If this is a power level 1 module, we are done */
2475 		if (sfp->module_power_mW <= 1000)
2476 			goto insert;
2477 
2478 		sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2479 		fallthrough;
2480 	case SFP_MOD_HPOWER:
2481 		/* Enable high power mode */
2482 		err = sfp_sm_mod_hpower(sfp, true);
2483 		if (err < 0) {
2484 			if (err != -EAGAIN) {
2485 				sfp_module_remove(sfp->sfp_bus);
2486 				sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2487 			} else {
2488 				sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2489 			}
2490 			break;
2491 		}
2492 
2493 		sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2494 		break;
2495 
2496 	case SFP_MOD_WAITPWR:
2497 		/* Wait for T_HPOWER_LEVEL to time out */
2498 		if (event != SFP_E_TIMEOUT)
2499 			break;
2500 
2501 	insert:
2502 		sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2503 		break;
2504 
2505 	case SFP_MOD_PRESENT:
2506 	case SFP_MOD_ERROR:
2507 		break;
2508 	}
2509 }
2510 
sfp_sm_main(struct sfp * sfp,unsigned int event)2511 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2512 {
2513 	unsigned long timeout;
2514 	int ret;
2515 
2516 	/* Some events are global */
2517 	if (sfp->sm_state != SFP_S_DOWN &&
2518 	    (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2519 	     sfp->sm_dev_state != SFP_DEV_UP)) {
2520 		if (sfp->sm_state == SFP_S_LINK_UP &&
2521 		    sfp->sm_dev_state == SFP_DEV_UP)
2522 			sfp_sm_link_down(sfp);
2523 		if (sfp->sm_state > SFP_S_INIT)
2524 			sfp_module_stop(sfp->sfp_bus);
2525 		if (sfp->mod_phy)
2526 			sfp_sm_phy_detach(sfp);
2527 		if (sfp->i2c_mii)
2528 			sfp_i2c_mdiobus_destroy(sfp);
2529 		sfp_module_tx_disable(sfp);
2530 		sfp_soft_stop_poll(sfp);
2531 		sfp_sm_next(sfp, SFP_S_DOWN, 0);
2532 		return;
2533 	}
2534 
2535 	/* The main state machine */
2536 	switch (sfp->sm_state) {
2537 	case SFP_S_DOWN:
2538 		if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2539 		    sfp->sm_dev_state != SFP_DEV_UP)
2540 			break;
2541 
2542 		/* Only use the soft state bits if we have access to the A2h
2543 		 * memory, which implies that we have some level of SFF-8472
2544 		 * compliance.
2545 		 */
2546 		if (sfp->have_a2)
2547 			sfp_soft_start_poll(sfp);
2548 
2549 		sfp_module_tx_enable(sfp);
2550 
2551 		/* Initialise the fault clearance retries */
2552 		sfp->sm_fault_retries = N_FAULT_INIT;
2553 
2554 		/* We need to check the TX_FAULT state, which is not defined
2555 		 * while TX_DISABLE is asserted. The earliest we want to do
2556 		 * anything (such as probe for a PHY) is 50ms (or more on
2557 		 * specific modules).
2558 		 */
2559 		sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2560 		break;
2561 
2562 	case SFP_S_WAIT:
2563 		if (event != SFP_E_TIMEOUT)
2564 			break;
2565 
2566 		if (sfp->state & SFP_F_TX_FAULT) {
2567 			/* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2568 			 * from the TX_DISABLE deassertion for the module to
2569 			 * initialise, which is indicated by TX_FAULT
2570 			 * deasserting.
2571 			 */
2572 			timeout = sfp->module_t_start_up;
2573 			if (timeout > sfp->module_t_wait)
2574 				timeout -= sfp->module_t_wait;
2575 			else
2576 				timeout = 1;
2577 
2578 			sfp_sm_next(sfp, SFP_S_INIT, timeout);
2579 		} else {
2580 			/* TX_FAULT is not asserted, assume the module has
2581 			 * finished initialising.
2582 			 */
2583 			goto init_done;
2584 		}
2585 		break;
2586 
2587 	case SFP_S_INIT:
2588 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2589 			/* TX_FAULT is still asserted after t_init
2590 			 * or t_start_up, so assume there is a fault.
2591 			 */
2592 			sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2593 				     sfp->sm_fault_retries == N_FAULT_INIT);
2594 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2595 	init_done:
2596 			/* Create mdiobus and start trying for PHY */
2597 			ret = sfp_sm_add_mdio_bus(sfp);
2598 			if (ret < 0) {
2599 				sfp_sm_next(sfp, SFP_S_FAIL, 0);
2600 				break;
2601 			}
2602 			sfp->sm_phy_retries = R_PHY_RETRY;
2603 			goto phy_probe;
2604 		}
2605 		break;
2606 
2607 	case SFP_S_INIT_PHY:
2608 		if (event != SFP_E_TIMEOUT)
2609 			break;
2610 	phy_probe:
2611 		/* TX_FAULT deasserted or we timed out with TX_FAULT
2612 		 * clear.  Probe for the PHY and check the LOS state.
2613 		 */
2614 		ret = sfp_sm_probe_for_phy(sfp);
2615 		if (ret == -ENODEV) {
2616 			if (--sfp->sm_phy_retries) {
2617 				sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2618 				break;
2619 			} else {
2620 				dev_info(sfp->dev, "no PHY detected\n");
2621 			}
2622 		} else if (ret) {
2623 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2624 			break;
2625 		}
2626 		if (sfp_module_start(sfp->sfp_bus)) {
2627 			sfp_sm_next(sfp, SFP_S_FAIL, 0);
2628 			break;
2629 		}
2630 		sfp_sm_link_check_los(sfp);
2631 
2632 		/* Reset the fault retry count */
2633 		sfp->sm_fault_retries = N_FAULT;
2634 		break;
2635 
2636 	case SFP_S_INIT_TX_FAULT:
2637 		if (event == SFP_E_TIMEOUT) {
2638 			sfp_module_tx_fault_reset(sfp);
2639 			sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2640 		}
2641 		break;
2642 
2643 	case SFP_S_WAIT_LOS:
2644 		if (event == SFP_E_TX_FAULT)
2645 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2646 		else if (sfp_los_event_inactive(sfp, event))
2647 			sfp_sm_link_up(sfp);
2648 		break;
2649 
2650 	case SFP_S_LINK_UP:
2651 		if (event == SFP_E_TX_FAULT) {
2652 			sfp_sm_link_down(sfp);
2653 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2654 		} else if (sfp_los_event_active(sfp, event)) {
2655 			sfp_sm_link_down(sfp);
2656 			sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2657 		}
2658 		break;
2659 
2660 	case SFP_S_TX_FAULT:
2661 		if (event == SFP_E_TIMEOUT) {
2662 			sfp_module_tx_fault_reset(sfp);
2663 			sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2664 		}
2665 		break;
2666 
2667 	case SFP_S_REINIT:
2668 		if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2669 			sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2670 		} else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2671 			dev_info(sfp->dev, "module transmit fault recovered\n");
2672 			sfp_sm_link_check_los(sfp);
2673 		}
2674 		break;
2675 
2676 	case SFP_S_TX_DISABLE:
2677 		break;
2678 	}
2679 }
2680 
__sfp_sm_event(struct sfp * sfp,unsigned int event)2681 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2682 {
2683 	dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2684 		mod_state_to_str(sfp->sm_mod_state),
2685 		dev_state_to_str(sfp->sm_dev_state),
2686 		sm_state_to_str(sfp->sm_state),
2687 		event_to_str(event));
2688 
2689 	sfp_sm_device(sfp, event);
2690 	sfp_sm_module(sfp, event);
2691 	sfp_sm_main(sfp, event);
2692 
2693 	dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2694 		mod_state_to_str(sfp->sm_mod_state),
2695 		dev_state_to_str(sfp->sm_dev_state),
2696 		sm_state_to_str(sfp->sm_state));
2697 }
2698 
sfp_sm_event(struct sfp * sfp,unsigned int event)2699 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2700 {
2701 	mutex_lock(&sfp->sm_mutex);
2702 	__sfp_sm_event(sfp, event);
2703 	mutex_unlock(&sfp->sm_mutex);
2704 }
2705 
sfp_attach(struct sfp * sfp)2706 static void sfp_attach(struct sfp *sfp)
2707 {
2708 	sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2709 }
2710 
sfp_detach(struct sfp * sfp)2711 static void sfp_detach(struct sfp *sfp)
2712 {
2713 	sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2714 }
2715 
sfp_start(struct sfp * sfp)2716 static void sfp_start(struct sfp *sfp)
2717 {
2718 	sfp_sm_event(sfp, SFP_E_DEV_UP);
2719 }
2720 
sfp_stop(struct sfp * sfp)2721 static void sfp_stop(struct sfp *sfp)
2722 {
2723 	sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2724 }
2725 
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2726 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2727 {
2728 	unsigned int set;
2729 
2730 	sfp->rate_kbd = rate_kbd;
2731 
2732 	if (rate_kbd > sfp->rs_threshold_kbd)
2733 		set = sfp->rs_state_mask;
2734 	else
2735 		set = 0;
2736 
2737 	sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2738 }
2739 
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2740 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2741 {
2742 	/* locking... and check module is present */
2743 
2744 	if (sfp->id.ext.sff8472_compliance &&
2745 	    !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2746 		modinfo->type = ETH_MODULE_SFF_8472;
2747 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2748 	} else {
2749 		modinfo->type = ETH_MODULE_SFF_8079;
2750 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2751 	}
2752 	return 0;
2753 }
2754 
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2755 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2756 			     u8 *data)
2757 {
2758 	unsigned int first, last, len;
2759 	int ret;
2760 
2761 	if (!(sfp->state & SFP_F_PRESENT))
2762 		return -ENODEV;
2763 
2764 	if (ee->len == 0)
2765 		return -EINVAL;
2766 
2767 	first = ee->offset;
2768 	last = ee->offset + ee->len;
2769 	if (first < ETH_MODULE_SFF_8079_LEN) {
2770 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2771 		len -= first;
2772 
2773 		ret = sfp_read(sfp, false, first, data, len);
2774 		if (ret < 0)
2775 			return ret;
2776 
2777 		first += len;
2778 		data += len;
2779 	}
2780 	if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2781 		len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2782 		len -= first;
2783 		first -= ETH_MODULE_SFF_8079_LEN;
2784 
2785 		ret = sfp_read(sfp, true, first, data, len);
2786 		if (ret < 0)
2787 			return ret;
2788 	}
2789 	return 0;
2790 }
2791 
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2792 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2793 				     const struct ethtool_module_eeprom *page,
2794 				     struct netlink_ext_ack *extack)
2795 {
2796 	if (!(sfp->state & SFP_F_PRESENT))
2797 		return -ENODEV;
2798 
2799 	if (page->bank) {
2800 		NL_SET_ERR_MSG(extack, "Banks not supported");
2801 		return -EOPNOTSUPP;
2802 	}
2803 
2804 	if (page->page) {
2805 		NL_SET_ERR_MSG(extack, "Only page 0 supported");
2806 		return -EOPNOTSUPP;
2807 	}
2808 
2809 	if (page->i2c_address != 0x50 &&
2810 	    page->i2c_address != 0x51) {
2811 		NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2812 		return -EOPNOTSUPP;
2813 	}
2814 
2815 	return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2816 			page->data, page->length);
2817 };
2818 
2819 static const struct sfp_socket_ops sfp_module_ops = {
2820 	.attach = sfp_attach,
2821 	.detach = sfp_detach,
2822 	.start = sfp_start,
2823 	.stop = sfp_stop,
2824 	.set_signal_rate = sfp_set_signal_rate,
2825 	.module_info = sfp_module_info,
2826 	.module_eeprom = sfp_module_eeprom,
2827 	.module_eeprom_by_page = sfp_module_eeprom_by_page,
2828 };
2829 
sfp_timeout(struct work_struct * work)2830 static void sfp_timeout(struct work_struct *work)
2831 {
2832 	struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2833 
2834 	rtnl_lock();
2835 	sfp_sm_event(sfp, SFP_E_TIMEOUT);
2836 	rtnl_unlock();
2837 }
2838 
sfp_check_state(struct sfp * sfp)2839 static void sfp_check_state(struct sfp *sfp)
2840 {
2841 	unsigned int state, i, changed;
2842 
2843 	rtnl_lock();
2844 	mutex_lock(&sfp->st_mutex);
2845 	state = sfp_get_state(sfp);
2846 	changed = state ^ sfp->state;
2847 	if (sfp->tx_fault_ignore)
2848 		changed &= SFP_F_PRESENT | SFP_F_LOS;
2849 	else
2850 		changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2851 
2852 	for (i = 0; i < GPIO_MAX; i++)
2853 		if (changed & BIT(i))
2854 			dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2855 				!!(sfp->state & BIT(i)), !!(state & BIT(i)));
2856 
2857 	state |= sfp->state & SFP_F_OUTPUTS;
2858 	sfp->state = state;
2859 	mutex_unlock(&sfp->st_mutex);
2860 
2861 	mutex_lock(&sfp->sm_mutex);
2862 	if (changed & SFP_F_PRESENT)
2863 		__sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2864 				    SFP_E_INSERT : SFP_E_REMOVE);
2865 
2866 	if (changed & SFP_F_TX_FAULT)
2867 		__sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2868 				    SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2869 
2870 	if (changed & SFP_F_LOS)
2871 		__sfp_sm_event(sfp, state & SFP_F_LOS ?
2872 				    SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2873 	mutex_unlock(&sfp->sm_mutex);
2874 	rtnl_unlock();
2875 }
2876 
sfp_irq(int irq,void * data)2877 static irqreturn_t sfp_irq(int irq, void *data)
2878 {
2879 	struct sfp *sfp = data;
2880 
2881 	sfp_check_state(sfp);
2882 
2883 	return IRQ_HANDLED;
2884 }
2885 
sfp_poll(struct work_struct * work)2886 static void sfp_poll(struct work_struct *work)
2887 {
2888 	struct sfp *sfp = container_of(work, struct sfp, poll.work);
2889 
2890 	sfp_check_state(sfp);
2891 
2892 	// st_mutex doesn't need to be held here for state_soft_mask,
2893 	// it's unimportant if we race while reading this.
2894 	if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2895 	    sfp->need_poll)
2896 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2897 }
2898 
sfp_alloc(struct device * dev)2899 static struct sfp *sfp_alloc(struct device *dev)
2900 {
2901 	struct sfp *sfp;
2902 
2903 	sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2904 	if (!sfp)
2905 		return ERR_PTR(-ENOMEM);
2906 
2907 	sfp->dev = dev;
2908 	sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2909 
2910 	mutex_init(&sfp->sm_mutex);
2911 	mutex_init(&sfp->st_mutex);
2912 	INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2913 	INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2914 
2915 	sfp_hwmon_init(sfp);
2916 
2917 	return sfp;
2918 }
2919 
sfp_cleanup(void * data)2920 static void sfp_cleanup(void *data)
2921 {
2922 	struct sfp *sfp = data;
2923 
2924 	sfp_hwmon_exit(sfp);
2925 
2926 	cancel_delayed_work_sync(&sfp->poll);
2927 	cancel_delayed_work_sync(&sfp->timeout);
2928 	if (sfp->i2c_mii) {
2929 		mdiobus_unregister(sfp->i2c_mii);
2930 		mdiobus_free(sfp->i2c_mii);
2931 	}
2932 	if (sfp->i2c)
2933 		i2c_put_adapter(sfp->i2c);
2934 	kfree(sfp);
2935 }
2936 
sfp_i2c_get(struct sfp * sfp)2937 static int sfp_i2c_get(struct sfp *sfp)
2938 {
2939 	struct fwnode_handle *h;
2940 	struct i2c_adapter *i2c;
2941 	int err;
2942 
2943 	h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2944 	if (IS_ERR(h)) {
2945 		dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2946 		return -ENODEV;
2947 	}
2948 
2949 	i2c = i2c_get_adapter_by_fwnode(h);
2950 	if (!i2c) {
2951 		err = -EPROBE_DEFER;
2952 		goto put;
2953 	}
2954 
2955 	err = sfp_i2c_configure(sfp, i2c);
2956 	if (err)
2957 		i2c_put_adapter(i2c);
2958 put:
2959 	fwnode_handle_put(h);
2960 	return err;
2961 }
2962 
sfp_probe(struct platform_device * pdev)2963 static int sfp_probe(struct platform_device *pdev)
2964 {
2965 	const struct sff_data *sff;
2966 	char *sfp_irq_name;
2967 	struct sfp *sfp;
2968 	int err, i;
2969 
2970 	sfp = sfp_alloc(&pdev->dev);
2971 	if (IS_ERR(sfp))
2972 		return PTR_ERR(sfp);
2973 
2974 	platform_set_drvdata(pdev, sfp);
2975 
2976 	err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2977 	if (err < 0)
2978 		return err;
2979 
2980 	sff = device_get_match_data(sfp->dev);
2981 	if (!sff)
2982 		sff = &sfp_data;
2983 
2984 	sfp->type = sff;
2985 
2986 	err = sfp_i2c_get(sfp);
2987 	if (err)
2988 		return err;
2989 
2990 	for (i = 0; i < GPIO_MAX; i++)
2991 		if (sff->gpios & BIT(i)) {
2992 			sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2993 					   gpio_names[i], gpio_flags[i]);
2994 			if (IS_ERR(sfp->gpio[i]))
2995 				return PTR_ERR(sfp->gpio[i]);
2996 		}
2997 
2998 	sfp->state_hw_mask = SFP_F_PRESENT;
2999 	sfp->state_hw_drive = SFP_F_TX_DISABLE;
3000 
3001 	sfp->get_state = sfp_gpio_get_state;
3002 	sfp->set_state = sfp_gpio_set_state;
3003 
3004 	/* Modules that have no detect signal are always present */
3005 	if (!(sfp->gpio[GPIO_MODDEF0]))
3006 		sfp->get_state = sff_gpio_get_state;
3007 
3008 	device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3009 				 &sfp->max_power_mW);
3010 	if (sfp->max_power_mW < 1000) {
3011 		if (sfp->max_power_mW)
3012 			dev_warn(sfp->dev,
3013 				 "Firmware bug: host maximum power should be at least 1W\n");
3014 		sfp->max_power_mW = 1000;
3015 	}
3016 
3017 	dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3018 		 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3019 
3020 	/* Get the initial state, and always signal TX disable,
3021 	 * since the network interface will not be up.
3022 	 */
3023 	sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3024 
3025 	if (sfp->gpio[GPIO_RS0] &&
3026 	    gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3027 		sfp->state |= SFP_F_RS0;
3028 	sfp_set_state(sfp, sfp->state);
3029 	sfp_module_tx_disable(sfp);
3030 	if (sfp->state & SFP_F_PRESENT) {
3031 		rtnl_lock();
3032 		sfp_sm_event(sfp, SFP_E_INSERT);
3033 		rtnl_unlock();
3034 	}
3035 
3036 	for (i = 0; i < GPIO_MAX; i++) {
3037 		if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3038 			continue;
3039 
3040 		sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3041 		if (sfp->gpio_irq[i] < 0) {
3042 			sfp->gpio_irq[i] = 0;
3043 			sfp->need_poll = true;
3044 			continue;
3045 		}
3046 
3047 		sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3048 					      "%s-%s", dev_name(sfp->dev),
3049 					      gpio_names[i]);
3050 
3051 		if (!sfp_irq_name)
3052 			return -ENOMEM;
3053 
3054 		err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3055 						NULL, sfp_irq,
3056 						IRQF_ONESHOT |
3057 						IRQF_TRIGGER_RISING |
3058 						IRQF_TRIGGER_FALLING,
3059 						sfp_irq_name, sfp);
3060 		if (err) {
3061 			sfp->gpio_irq[i] = 0;
3062 			sfp->need_poll = true;
3063 		}
3064 	}
3065 
3066 	if (sfp->need_poll)
3067 		mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3068 
3069 	/* We could have an issue in cases no Tx disable pin is available or
3070 	 * wired as modules using a laser as their light source will continue to
3071 	 * be active when the fiber is removed. This could be a safety issue and
3072 	 * we should at least warn the user about that.
3073 	 */
3074 	if (!sfp->gpio[GPIO_TX_DISABLE])
3075 		dev_warn(sfp->dev,
3076 			 "No tx_disable pin: SFP modules will always be emitting.\n");
3077 
3078 	sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3079 	if (!sfp->sfp_bus)
3080 		return -ENOMEM;
3081 
3082 	sfp_debugfs_init(sfp);
3083 
3084 	return 0;
3085 }
3086 
sfp_remove(struct platform_device * pdev)3087 static int sfp_remove(struct platform_device *pdev)
3088 {
3089 	struct sfp *sfp = platform_get_drvdata(pdev);
3090 
3091 	sfp_debugfs_exit(sfp);
3092 	sfp_unregister_socket(sfp->sfp_bus);
3093 
3094 	rtnl_lock();
3095 	sfp_sm_event(sfp, SFP_E_REMOVE);
3096 	rtnl_unlock();
3097 
3098 	return 0;
3099 }
3100 
sfp_shutdown(struct platform_device * pdev)3101 static void sfp_shutdown(struct platform_device *pdev)
3102 {
3103 	struct sfp *sfp = platform_get_drvdata(pdev);
3104 	int i;
3105 
3106 	for (i = 0; i < GPIO_MAX; i++) {
3107 		if (!sfp->gpio_irq[i])
3108 			continue;
3109 
3110 		devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3111 	}
3112 
3113 	cancel_delayed_work_sync(&sfp->poll);
3114 	cancel_delayed_work_sync(&sfp->timeout);
3115 }
3116 
3117 static struct platform_driver sfp_driver = {
3118 	.probe = sfp_probe,
3119 	.remove = sfp_remove,
3120 	.shutdown = sfp_shutdown,
3121 	.driver = {
3122 		.name = "sfp",
3123 		.of_match_table = sfp_of_match,
3124 	},
3125 };
3126 
sfp_init(void)3127 static int sfp_init(void)
3128 {
3129 	poll_jiffies = msecs_to_jiffies(100);
3130 
3131 	return platform_driver_register(&sfp_driver);
3132 }
3133 module_init(sfp_init);
3134 
sfp_exit(void)3135 static void sfp_exit(void)
3136 {
3137 	platform_driver_unregister(&sfp_driver);
3138 }
3139 module_exit(sfp_exit);
3140 
3141 MODULE_ALIAS("platform:sfp");
3142 MODULE_AUTHOR("Russell King");
3143 MODULE_LICENSE("GPL v2");
3144