xref: /openbmc/qemu/hw/block/m25p80.c (revision 0632746764e29af557702c100ae022cab9573dd9)
1 /*
2  * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3  * set. Known devices table current as of Jun/2012 and taken from linux.
4  * See drivers/mtd/devices/m25p80.c.
5  *
6  * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8  * Copyright (C) 2012 PetaLogix
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 or
13  * (at your option) a later version of the License.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "system/block-backend.h"
27 #include "hw/block/block.h"
28 #include "hw/block/flash.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/qdev-properties-system.h"
31 #include "hw/ssi/ssi.h"
32 #include "migration/vmstate.h"
33 #include "qemu/bitops.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "qemu/error-report.h"
37 #include "qapi/error.h"
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "m25p80_sfdp.h"
41 
42 /* 16 MiB max in 3 byte address mode */
43 #define MAX_3BYTES_SIZE 0x1000000
44 #define SPI_NOR_MAX_ID_LEN 6
45 
46 /* Fields for FlashPartInfo->flags */
47 enum spi_flash_option_flags {
48     ER_4K                  = BIT(0),
49     ER_32K                 = BIT(1),
50     EEPROM                 = BIT(2),
51     HAS_SR_TB              = BIT(3),
52     HAS_SR_BP3_BIT6        = BIT(4),
53 };
54 
55 typedef struct FlashPartInfo {
56     const char *part_name;
57     /*
58      * This array stores the ID bytes.
59      * The first three bytes are the JEDIC ID.
60      * JEDEC ID zero means "no ID" (mostly older chips).
61      */
62     uint8_t id[SPI_NOR_MAX_ID_LEN];
63     uint8_t id_len;
64     /*
65      * there is confusion between manufacturers as to what a sector is. In this
66      * device model, a "sector" is the size that is erased by the ERASE_SECTOR
67      * command (opcode 0xd8).
68      */
69     uint32_t sector_size;
70     uint32_t n_sectors;
71     uint32_t page_size;
72     uint16_t flags;
73     /*
74      * Big sized spi nor are often stacked devices, thus sometime
75      * replace chip erase with die erase.
76      * This field inform how many die is in the chip.
77      */
78     uint8_t die_cnt;
79     uint8_t (*sfdp_read)(uint32_t sfdp_addr);
80 } FlashPartInfo;
81 
82 /* adapted from linux */
83 /* Used when the "_ext_id" is two bytes at most */
84 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
85     .part_name = _part_name,\
86     .id = {\
87         ((_jedec_id) >> 16) & 0xff,\
88         ((_jedec_id) >> 8) & 0xff,\
89         (_jedec_id) & 0xff,\
90         ((_ext_id) >> 8) & 0xff,\
91         (_ext_id) & 0xff,\
92           },\
93     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
94     .sector_size = (_sector_size),\
95     .n_sectors = (_n_sectors),\
96     .page_size = 256,\
97     .flags = (_flags),\
98     .die_cnt = 0
99 
100 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
101     .part_name = _part_name,\
102     .id = {\
103         ((_jedec_id) >> 16) & 0xff,\
104         ((_jedec_id) >> 8) & 0xff,\
105         (_jedec_id) & 0xff,\
106         ((_ext_id) >> 16) & 0xff,\
107         ((_ext_id) >> 8) & 0xff,\
108         (_ext_id) & 0xff,\
109           },\
110     .id_len = 6,\
111     .sector_size = (_sector_size),\
112     .n_sectors = (_n_sectors),\
113     .page_size = 256,\
114     .flags = (_flags),\
115     .die_cnt = 0
116 
117 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
118                     _flags, _die_cnt)\
119     .part_name = _part_name,\
120     .id = {\
121         ((_jedec_id) >> 16) & 0xff,\
122         ((_jedec_id) >> 8) & 0xff,\
123         (_jedec_id) & 0xff,\
124         ((_ext_id) >> 8) & 0xff,\
125         (_ext_id) & 0xff,\
126           },\
127     .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
128     .sector_size = (_sector_size),\
129     .n_sectors = (_n_sectors),\
130     .page_size = 256,\
131     .flags = (_flags),\
132     .die_cnt = _die_cnt
133 
134 #define JEDEC_NUMONYX 0x20
135 #define JEDEC_WINBOND 0xEF
136 #define JEDEC_SPANSION 0x01
137 
138 /* Numonyx (Micron) Configuration register macros */
139 #define VCFG_DUMMY 0x1
140 #define VCFG_WRAP_SEQUENTIAL 0x2
141 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
142 #define NVCFG_XIP_MODE_MASK (7 << 9)
143 #define VCFG_XIP_MODE_DISABLED (1 << 3)
144 #define CFG_DUMMY_CLK_LEN 4
145 #define NVCFG_DUMMY_CLK_POS 12
146 #define VCFG_DUMMY_CLK_POS 4
147 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
148 #define EVCFG_VPP_ACCELERATOR (1 << 3)
149 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
150 #define NVCFG_DUAL_IO_MASK (1 << 2)
151 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
152 #define NVCFG_QUAD_IO_MASK (1 << 3)
153 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
154 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
155 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
156 
157 /* Numonyx (Micron) Flag Status Register macros */
158 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
159 #define FSR_FLASH_READY (1 << 7)
160 
161 /* Spansion configuration registers macros. */
162 #define SPANSION_QUAD_CFG_POS 0
163 #define SPANSION_QUAD_CFG_LEN 1
164 #define SPANSION_DUMMY_CLK_POS 0
165 #define SPANSION_DUMMY_CLK_LEN 4
166 #define SPANSION_ADDR_LEN_POS 7
167 #define SPANSION_ADDR_LEN_LEN 1
168 
169 /*
170  * Spansion read mode command length in bytes,
171  * the mode is currently not supported.
172  */
173 
174 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
175 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
176 
177 static const FlashPartInfo known_devices[] = {
178     /* Atmel -- some are (confusingly) marketed as "DataFlash" */
179     { INFO("at25fs010",   0x1f6601,      0,  32 << 10,   4, ER_4K) },
180     { INFO("at25fs040",   0x1f6604,      0,  64 << 10,   8, ER_4K) },
181 
182     { INFO("at25df041a",  0x1f4401,      0,  64 << 10,   8, ER_4K) },
183     { INFO("at25df321a",  0x1f4701,      0,  64 << 10,  64, ER_4K) },
184     { INFO("at25df641",   0x1f4800,      0,  64 << 10, 128, ER_4K) },
185 
186     { INFO("at26f004",    0x1f0400,      0,  64 << 10,   8, ER_4K) },
187     { INFO("at26df081a",  0x1f4501,      0,  64 << 10,  16, ER_4K) },
188     { INFO("at26df161a",  0x1f4601,      0,  64 << 10,  32, ER_4K) },
189     { INFO("at26df321",   0x1f4700,      0,  64 << 10,  64, ER_4K) },
190 
191     { INFO("at45db081d",  0x1f2500,      0,  64 << 10,  16, ER_4K) },
192 
193     /*
194      * Atmel EEPROMS - it is assumed, that don't care bit in command
195      * is set to 0. Block protection is not supported.
196      */
197     { INFO("at25128a-nonjedec", 0x0,     0,         1, 131072, EEPROM) },
198     { INFO("at25256a-nonjedec", 0x0,     0,         1, 262144, EEPROM) },
199 
200     /* EON -- en25xxx */
201     { INFO("en25f32",     0x1c3116,      0,  64 << 10,  64, ER_4K) },
202     { INFO("en25p32",     0x1c2016,      0,  64 << 10,  64, 0) },
203     { INFO("en25q32b",    0x1c3016,      0,  64 << 10,  64, 0) },
204     { INFO("en25p64",     0x1c2017,      0,  64 << 10, 128, 0) },
205     { INFO("en25q64",     0x1c3017,      0,  64 << 10, 128, ER_4K) },
206 
207     /* GigaDevice */
208     { INFO("gd25q32",     0xc84016,      0,  64 << 10,  64, ER_4K) },
209     { INFO("gd25q64",     0xc84017,      0,  64 << 10, 128, ER_4K) },
210 
211     /* Intel/Numonyx -- xxxs33b */
212     { INFO("160s33b",     0x898911,      0,  64 << 10,  32, 0) },
213     { INFO("320s33b",     0x898912,      0,  64 << 10,  64, 0) },
214     { INFO("640s33b",     0x898913,      0,  64 << 10, 128, 0) },
215     { INFO("n25q064",     0x20ba17,      0,  64 << 10, 128, 0) },
216 
217     /* ISSI */
218     { INFO("is25lq040b",  0x9d4013,      0,  64 << 10,   8, ER_4K) },
219     { INFO("is25lp080d",  0x9d6014,      0,  64 << 10,  16, ER_4K) },
220     { INFO("is25lp016d",  0x9d6015,      0,  64 << 10,  32, ER_4K) },
221     { INFO("is25lp032",   0x9d6016,      0,  64 << 10,  64, ER_4K) },
222     { INFO("is25lp064",   0x9d6017,      0,  64 << 10, 128, ER_4K) },
223     { INFO("is25lp128",   0x9d6018,      0,  64 << 10, 256, ER_4K) },
224     { INFO("is25lp256",   0x9d6019,      0,  64 << 10, 512, ER_4K) },
225     { INFO("is25wp032",   0x9d7016,      0,  64 << 10,  64, ER_4K) },
226     { INFO("is25wp064",   0x9d7017,      0,  64 << 10, 128, ER_4K) },
227     { INFO("is25wp128",   0x9d7018,      0,  64 << 10, 256, ER_4K) },
228     { INFO("is25wp256",   0x9d7019,      0,  64 << 10, 512, ER_4K),
229       .sfdp_read = m25p80_sfdp_is25wp256 },
230 
231     /* Macronix */
232     { INFO("mx25l2005a",  0xc22012,      0,  64 << 10,   4, ER_4K) },
233     { INFO("mx25l4005a",  0xc22013,      0,  64 << 10,   8, ER_4K) },
234     { INFO("mx25l8005",   0xc22014,      0,  64 << 10,  16, 0) },
235     { INFO("mx25l1606e",  0xc22015,      0,  64 << 10,  32, ER_4K) },
236     { INFO("mx25l3205d",  0xc22016,      0,  64 << 10,  64, 0) },
237     { INFO("mx25l6405d",  0xc22017,      0,  64 << 10, 128, 0) },
238     { INFO("mx25l12805d", 0xc22018,      0,  64 << 10, 256, 0) },
239     { INFO("mx25l12855e", 0xc22618,      0,  64 << 10, 256, 0) },
240     { INFO6("mx25l25635e", 0xc22019,     0xc22019,  64 << 10, 512,
241             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635e },
242     { INFO6("mx25l25635f", 0xc22019,     0xc22019,  64 << 10, 512,
243             ER_4K | ER_32K), .sfdp_read = m25p80_sfdp_mx25l25635f },
244     { INFO("mx25l25655e", 0xc22619,      0,  64 << 10, 512, 0) },
245     { INFO("mx66l51235f", 0xc2201a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
246     { INFO("mx66u51235f", 0xc2253a,      0,  64 << 10, 1024, ER_4K | ER_32K) },
247     { INFO("mx66u1g45g",  0xc2253b,      0,  64 << 10, 2048, ER_4K | ER_32K) },
248     { INFO("mx66l1g45g",  0xc2201b,      0,  64 << 10, 2048, ER_4K | ER_32K),
249       .sfdp_read = m25p80_sfdp_mx66l1g45g },
250 
251     /* Micron */
252     { INFO("n25q032a11",  0x20bb16,      0,  64 << 10,  64, ER_4K) },
253     { INFO("n25q032a13",  0x20ba16,      0,  64 << 10,  64, ER_4K) },
254     { INFO("n25q064a11",  0x20bb17,      0,  64 << 10, 128, ER_4K) },
255     { INFO("n25q064a13",  0x20ba17,      0,  64 << 10, 128, ER_4K) },
256     { INFO("n25q128a11",  0x20bb18,      0,  64 << 10, 256, ER_4K) },
257     { INFO("n25q128a13",  0x20ba18,      0,  64 << 10, 256, ER_4K) },
258     { INFO("n25q256a11",  0x20bb19,      0,  64 << 10, 512, ER_4K) },
259     { INFO("n25q256a13",  0x20ba19,      0,  64 << 10, 512, ER_4K),
260       .sfdp_read = m25p80_sfdp_n25q256a },
261     { INFO("n25q512a11",  0x20bb20,      0,  64 << 10, 1024, ER_4K) },
262     { INFO("n25q512a13",  0x20ba20,      0,  64 << 10, 1024, ER_4K) },
263     { INFO("n25q128",     0x20ba18,      0,  64 << 10, 256, 0) },
264     { INFO("n25q256a",    0x20ba19,      0,  64 << 10, 512,
265            ER_4K | HAS_SR_BP3_BIT6 | HAS_SR_TB),
266       .sfdp_read = m25p80_sfdp_n25q256a },
267    { INFO("n25q512a",    0x20ba20,      0,  64 << 10, 1024, ER_4K) },
268     { INFO("n25q512ax3",  0x20ba20,  0x1000,  64 << 10, 1024, ER_4K) },
269     { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K | ER_32K) },
270     { INFO_STACKED("mt35xu01g", 0x2c5b1b, 0x104100, 128 << 10, 1024,
271                    ER_4K | ER_32K, 2),
272                    .sfdp_read = m25p80_sfdp_mt35xu01g },
273     { INFO_STACKED("mt35xu02gbba", 0x2c5b1c, 0x104100, 128 << 10, 2048,
274                    ER_4K | ER_32K, 4),
275                    .sfdp_read = m25p80_sfdp_mt35xu02g },
276     { INFO_STACKED("n25q00",    0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
277     { INFO_STACKED("n25q00a",   0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
278     { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
279     { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
280     { INFO_STACKED("mt25ql02g", 0x20ba22, 0x1040, 64 << 10, 4096,
281                    ER_4K | ER_32K, 2) },
282     { INFO_STACKED("mt25qu02g", 0x20bb22, 0x1040, 64 << 10, 4096,
283                    ER_4K | ER_32K, 2) },
284 
285     /*
286      * Spansion -- single (large) sector size only, at least
287      * for the chips listed here (without boot sectors).
288      */
289     { INFO("s25sl032p",   0x010215, 0x4d00,  64 << 10,  64, ER_4K) },
290     { INFO("s25sl064p",   0x010216, 0x4d00,  64 << 10, 128, ER_4K) },
291     { INFO("s25fl256s0",  0x010219, 0x4d00, 256 << 10, 128, 0) },
292     { INFO("s25fl256s1",  0x010219, 0x4d01,  64 << 10, 512, 0) },
293     { INFO6("s25fl512s",  0x010220, 0x4d0080, 256 << 10, 256, 0) },
294     { INFO6("s70fl01gs",  0x010221, 0x4d0080, 256 << 10, 512, 0) },
295     { INFO("s25sl12800",  0x012018, 0x0300, 256 << 10,  64, 0) },
296     { INFO("s25sl12801",  0x012018, 0x0301,  64 << 10, 256, 0) },
297     { INFO("s25fl129p0",  0x012018, 0x4d00, 256 << 10,  64, 0) },
298     { INFO("s25fl129p1",  0x012018, 0x4d01,  64 << 10, 256, 0) },
299     { INFO("s25sl004a",   0x010212,      0,  64 << 10,   8, 0) },
300     { INFO("s25sl008a",   0x010213,      0,  64 << 10,  16, 0) },
301     { INFO("s25sl016a",   0x010214,      0,  64 << 10,  32, 0) },
302     { INFO("s25sl032a",   0x010215,      0,  64 << 10,  64, 0) },
303     { INFO("s25sl064a",   0x010216,      0,  64 << 10, 128, 0) },
304     { INFO("s25fl016k",   0xef4015,      0,  64 << 10,  32, ER_4K | ER_32K) },
305     { INFO("s25fl064k",   0xef4017,      0,  64 << 10, 128, ER_4K | ER_32K) },
306 
307     /* Spansion --  boot sectors support  */
308     { INFO6("s25fs512s",    0x010220, 0x4d0081, 256 << 10, 256, 0) },
309     { INFO6("s70fs01gs",    0x010221, 0x4d0081, 256 << 10, 512, 0) },
310 
311     /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
312     { INFO("sst25vf040b", 0xbf258d,      0,  64 << 10,   8, ER_4K) },
313     { INFO("sst25vf080b", 0xbf258e,      0,  64 << 10,  16, ER_4K) },
314     { INFO("sst25vf016b", 0xbf2541,      0,  64 << 10,  32, ER_4K) },
315     { INFO("sst25vf032b", 0xbf254a,      0,  64 << 10,  64, ER_4K) },
316     { INFO("sst25wf512",  0xbf2501,      0,  64 << 10,   1, ER_4K) },
317     { INFO("sst25wf010",  0xbf2502,      0,  64 << 10,   2, ER_4K) },
318     { INFO("sst25wf020",  0xbf2503,      0,  64 << 10,   4, ER_4K) },
319     { INFO("sst25wf040",  0xbf2504,      0,  64 << 10,   8, ER_4K) },
320     { INFO("sst25wf080",  0xbf2505,      0,  64 << 10,  16, ER_4K) },
321 
322     /* ST Microelectronics -- newer production may have feature updates */
323     { INFO("m25p05",      0x202010,      0,  32 << 10,   2, 0) },
324     { INFO("m25p10",      0x202011,      0,  32 << 10,   4, 0) },
325     { INFO("m25p20",      0x202012,      0,  64 << 10,   4, 0) },
326     { INFO("m25p40",      0x202013,      0,  64 << 10,   8, 0) },
327     { INFO("m25p80",      0x202014,      0,  64 << 10,  16, 0) },
328     { INFO("m25p16",      0x202015,      0,  64 << 10,  32, 0) },
329     { INFO("m25p32",      0x202016,      0,  64 << 10,  64, 0) },
330     { INFO("m25p64",      0x202017,      0,  64 << 10, 128, 0) },
331     { INFO("m25p128",     0x202018,      0, 256 << 10,  64, 0) },
332     { INFO("n25q032",     0x20ba16,      0,  64 << 10,  64, 0) },
333 
334     { INFO("m45pe10",     0x204011,      0,  64 << 10,   2, 0) },
335     { INFO("m45pe80",     0x204014,      0,  64 << 10,  16, 0) },
336     { INFO("m45pe16",     0x204015,      0,  64 << 10,  32, 0) },
337 
338     { INFO("m25pe20",     0x208012,      0,  64 << 10,   4, 0) },
339     { INFO("m25pe80",     0x208014,      0,  64 << 10,  16, 0) },
340     { INFO("m25pe16",     0x208015,      0,  64 << 10,  32, ER_4K) },
341 
342     { INFO("m25px32",     0x207116,      0,  64 << 10,  64, ER_4K) },
343     { INFO("m25px32-s0",  0x207316,      0,  64 << 10,  64, ER_4K) },
344     { INFO("m25px32-s1",  0x206316,      0,  64 << 10,  64, ER_4K) },
345     { INFO("m25px64",     0x207117,      0,  64 << 10, 128, 0) },
346 
347     /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
348     { INFO("w25x10",      0xef3011,      0,  64 << 10,   2, ER_4K) },
349     { INFO("w25x20",      0xef3012,      0,  64 << 10,   4, ER_4K) },
350     { INFO("w25x40",      0xef3013,      0,  64 << 10,   8, ER_4K) },
351     { INFO("w25x80",      0xef3014,      0,  64 << 10,  16, ER_4K) },
352     { INFO("w25x16",      0xef3015,      0,  64 << 10,  32, ER_4K) },
353     { INFO("w25x32",      0xef3016,      0,  64 << 10,  64, ER_4K) },
354     { INFO("w25q32",      0xef4016,      0,  64 << 10,  64, ER_4K) },
355     { INFO("w25q32dw",    0xef6016,      0,  64 << 10,  64, ER_4K) },
356     { INFO("w25x64",      0xef3017,      0,  64 << 10, 128, ER_4K) },
357     { INFO("w25q64",      0xef4017,      0,  64 << 10, 128, ER_4K) },
358     { INFO("w25q80",      0xef5014,      0,  64 << 10,  16, ER_4K) },
359     { INFO("w25q80bl",    0xef4014,      0,  64 << 10,  16, ER_4K),
360       .sfdp_read = m25p80_sfdp_w25q80bl },
361     { INFO("w25q256",     0xef4019,      0,  64 << 10, 512, ER_4K),
362       .sfdp_read = m25p80_sfdp_w25q256 },
363     { INFO("w25q512jv",   0xef4020,      0,  64 << 10, 1024, ER_4K),
364       .sfdp_read = m25p80_sfdp_w25q512jv },
365     { INFO("w25q01jvq",   0xef4021,      0,  64 << 10, 2048, ER_4K),
366       .sfdp_read = m25p80_sfdp_w25q01jvq },
367     { INFO("w25q02jvm",   0xef7022,      0,  64 << 10, 4096, ER_4K),
368       .sfdp_read = m25p80_sfdp_w25q02jvm },
369 
370     /* Microchip */
371     { INFO("25csm04",      0x29cc00,      0x100,  64 << 10,  8, 0) },
372 };
373 
374 typedef enum {
375     NOP = 0,
376     WRSR = 0x1,
377     WRDI = 0x4,
378     RDSR = 0x5,
379     WREN = 0x6,
380     BRRD = 0x16,
381     BRWR = 0x17,
382     JEDEC_READ = 0x9f,
383     BULK_ERASE_60 = 0x60,
384     BULK_ERASE = 0xc7,
385     READ_FSR = 0x70,
386     RDCR = 0x15,
387     RDSFDP = 0x5a,
388 
389     READ = 0x03,
390     READ4 = 0x13,
391     FAST_READ = 0x0b,
392     FAST_READ4 = 0x0c,
393     DOR = 0x3b,
394     DOR4 = 0x3c,
395     QOR = 0x6b,
396     QOR4 = 0x6c,
397     DIOR = 0xbb,
398     DIOR4 = 0xbc,
399     QIOR = 0xeb,
400     QIOR4 = 0xec,
401 
402     PP = 0x02,
403     PP4 = 0x12,
404     PP4_4 = 0x3e,
405     DPP = 0xa2,
406     QPP = 0x32,
407     QPP_4 = 0x34,
408     RDID_90 = 0x90,
409     RDID_AB = 0xab,
410     AAI_WP = 0xad,
411 
412     ERASE_4K = 0x20,
413     ERASE4_4K = 0x21,
414     ERASE_32K = 0x52,
415     ERASE4_32K = 0x5c,
416     ERASE_SECTOR = 0xd8,
417     ERASE4_SECTOR = 0xdc,
418 
419     EN_4BYTE_ADDR = 0xB7,
420     EX_4BYTE_ADDR = 0xE9,
421 
422     EXTEND_ADDR_READ = 0xC8,
423     EXTEND_ADDR_WRITE = 0xC5,
424 
425     RESET_ENABLE = 0x66,
426     RESET_MEMORY = 0x99,
427 
428     /*
429      * Micron: 0x35 - enable QPI
430      * Spansion: 0x35 - read control register
431      * Winbond: 0x35 - quad enable
432      */
433     RDCR_EQIO = 0x35,
434     RSTQIO = 0xf5,
435 
436     /*
437      * Winbond: 0x31 - write status register 2
438      */
439     WRSR2 = 0x31,
440 
441     RNVCR = 0xB5,
442     WNVCR = 0xB1,
443 
444     RVCR = 0x85,
445     WVCR = 0x81,
446 
447     REVCR = 0x65,
448     WEVCR = 0x61,
449 
450     DIE_ERASE = 0xC4,
451 } FlashCMD;
452 
453 typedef enum {
454     STATE_IDLE,
455     STATE_PAGE_PROGRAM,
456     STATE_READ,
457     STATE_COLLECTING_DATA,
458     STATE_COLLECTING_VAR_LEN_DATA,
459     STATE_READING_DATA,
460     STATE_READING_SFDP,
461 } CMDState;
462 
463 typedef enum {
464     MAN_SPANSION,
465     MAN_MACRONIX,
466     MAN_NUMONYX,
467     MAN_WINBOND,
468     MAN_SST,
469     MAN_ISSI,
470     MAN_GENERIC,
471 } Manufacturer;
472 
473 typedef enum {
474     MODE_STD = 0,
475     MODE_DIO = 1,
476     MODE_QIO = 2
477 } SPIMode;
478 
479 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
480 
481 struct Flash {
482     SSIPeripheral parent_obj;
483 
484     BlockBackend *blk;
485 
486     uint8_t *storage;
487     uint32_t size;
488     int page_size;
489 
490     uint8_t state;
491     uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
492     uint32_t len;
493     uint32_t pos;
494     bool data_read_loop;
495     uint8_t needed_bytes;
496     uint8_t cmd_in_progress;
497     uint32_t cur_addr;
498     uint32_t nonvolatile_cfg;
499     /* Configuration register for Macronix */
500     uint32_t volatile_cfg;
501     uint32_t enh_volatile_cfg;
502     /* Spansion cfg registers. */
503     uint8_t spansion_cr1nv;
504     uint8_t spansion_cr2nv;
505     uint8_t spansion_cr3nv;
506     uint8_t spansion_cr4nv;
507     uint8_t spansion_cr1v;
508     uint8_t spansion_cr2v;
509     uint8_t spansion_cr3v;
510     uint8_t spansion_cr4v;
511     bool wp_level;
512     bool write_enable;
513     bool four_bytes_address_mode;
514     bool reset_enable;
515     bool quad_enable;
516     bool aai_enable;
517     bool block_protect0;
518     bool block_protect1;
519     bool block_protect2;
520     bool block_protect3;
521     bool top_bottom_bit;
522     bool status_register_write_disabled;
523     uint8_t ear;
524 
525     int64_t dirty_page;
526 
527     const FlashPartInfo *pi;
528 
529 };
530 
531 struct M25P80Class {
532     SSIPeripheralClass parent_class;
533     const FlashPartInfo *pi;
534 };
535 
OBJECT_DECLARE_TYPE(Flash,M25P80Class,M25P80)536 OBJECT_DECLARE_TYPE(Flash, M25P80Class, M25P80)
537 
538 static inline Manufacturer get_man(Flash *s)
539 {
540     switch (s->pi->id[0]) {
541     case 0x20:
542         return MAN_NUMONYX;
543     case 0xEF:
544         return MAN_WINBOND;
545     case 0x01:
546         return MAN_SPANSION;
547     case 0xC2:
548         return MAN_MACRONIX;
549     case 0xBF:
550         return MAN_SST;
551     case 0x9D:
552         return MAN_ISSI;
553     default:
554         return MAN_GENERIC;
555     }
556 }
557 
blk_sync_complete(void * opaque,int ret)558 static void blk_sync_complete(void *opaque, int ret)
559 {
560     QEMUIOVector *iov = opaque;
561 
562     qemu_iovec_destroy(iov);
563     g_free(iov);
564 
565     /*
566      * do nothing. Masters do not directly interact with the backing store,
567      * only the working copy so no mutexing required.
568      */
569 }
570 
flash_sync_page(Flash * s,int page)571 static void flash_sync_page(Flash *s, int page)
572 {
573     QEMUIOVector *iov;
574 
575     if (!s->blk || !blk_is_writable(s->blk)) {
576         return;
577     }
578 
579     iov = g_new(QEMUIOVector, 1);
580     qemu_iovec_init(iov, 1);
581     qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
582                    s->pi->page_size);
583     blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
584                     blk_sync_complete, iov);
585 }
586 
flash_sync_area(Flash * s,int64_t off,int64_t len)587 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
588 {
589     QEMUIOVector *iov;
590 
591     if (!s->blk || !blk_is_writable(s->blk)) {
592         return;
593     }
594 
595     assert(!(len % BDRV_SECTOR_SIZE));
596     iov = g_new(QEMUIOVector, 1);
597     qemu_iovec_init(iov, 1);
598     qemu_iovec_add(iov, s->storage + off, len);
599     blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
600 }
601 
flash_erase(Flash * s,int offset,FlashCMD cmd)602 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
603 {
604     uint32_t len;
605     uint8_t capa_to_assert = 0;
606 
607     switch (cmd) {
608     case ERASE_4K:
609     case ERASE4_4K:
610         len = 4 * KiB;
611         capa_to_assert = ER_4K;
612         break;
613     case ERASE_32K:
614     case ERASE4_32K:
615         len = 32 * KiB;
616         capa_to_assert = ER_32K;
617         break;
618     case ERASE_SECTOR:
619     case ERASE4_SECTOR:
620         len = s->pi->sector_size;
621         break;
622     case BULK_ERASE:
623         len = s->size;
624         break;
625     case DIE_ERASE:
626         if (s->pi->die_cnt) {
627             len = s->size / s->pi->die_cnt;
628             offset = offset & (~(len - 1));
629         } else {
630             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
631                           " by device\n");
632             return;
633         }
634         break;
635     default:
636         abort();
637     }
638 
639     trace_m25p80_flash_erase(s, offset, len);
640 
641     if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
642         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
643                       " device\n", len);
644     }
645 
646     if (!s->write_enable) {
647         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
648         return;
649     }
650     memset(s->storage + offset, 0xff, len);
651     flash_sync_area(s, offset, len);
652 }
653 
flash_sync_dirty(Flash * s,int64_t newpage)654 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
655 {
656     if (s->dirty_page >= 0 && s->dirty_page != newpage) {
657         flash_sync_page(s, s->dirty_page);
658         s->dirty_page = newpage;
659     }
660 }
661 
662 static inline
flash_write8(Flash * s,uint32_t addr,uint8_t data)663 void flash_write8(Flash *s, uint32_t addr, uint8_t data)
664 {
665     uint32_t page = addr / s->pi->page_size;
666     uint8_t prev = s->storage[s->cur_addr];
667     uint32_t block_protect_value = (s->block_protect3 << 3) |
668                                    (s->block_protect2 << 2) |
669                                    (s->block_protect1 << 1) |
670                                    (s->block_protect0 << 0);
671 
672     if (!s->write_enable) {
673         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
674         return;
675     }
676 
677     if (block_protect_value > 0) {
678         uint32_t num_protected_sectors = 1 << (block_protect_value - 1);
679         uint32_t sector = addr / s->pi->sector_size;
680 
681         /* top_bottom_bit == 0 means TOP */
682         if (!s->top_bottom_bit) {
683             if (s->pi->n_sectors <= sector + num_protected_sectors) {
684                 qemu_log_mask(LOG_GUEST_ERROR,
685                               "M25P80: write with write protect!\n");
686                 return;
687             }
688         } else {
689             if (sector < num_protected_sectors) {
690                 qemu_log_mask(LOG_GUEST_ERROR,
691                               "M25P80: write with write protect!\n");
692                 return;
693             }
694         }
695     }
696 
697     if ((prev ^ data) & data) {
698         trace_m25p80_programming_zero_to_one(s, addr, prev, data);
699     }
700 
701     if (s->pi->flags & EEPROM) {
702         s->storage[s->cur_addr] = data;
703     } else {
704         s->storage[s->cur_addr] &= data;
705     }
706 
707     flash_sync_dirty(s, page);
708     s->dirty_page = page;
709 }
710 
get_addr_length(Flash * s)711 static inline int get_addr_length(Flash *s)
712 {
713    /* check if eeprom is in use */
714     if (s->pi->flags == EEPROM) {
715         return 2;
716     }
717 
718    switch (s->cmd_in_progress) {
719    case RDSFDP:
720        return 3;
721    case PP4:
722    case PP4_4:
723    case QPP_4:
724    case READ4:
725    case QIOR4:
726    case ERASE4_4K:
727    case ERASE4_32K:
728    case ERASE4_SECTOR:
729    case FAST_READ4:
730    case DOR4:
731    case QOR4:
732    case DIOR4:
733        return 4;
734    default:
735        return s->four_bytes_address_mode ? 4 : 3;
736    }
737 }
738 
complete_collecting_data(Flash * s)739 static void complete_collecting_data(Flash *s)
740 {
741     int i, n;
742 
743     n = get_addr_length(s);
744     s->cur_addr = (n == 3 ? s->ear : 0);
745     for (i = 0; i < n; ++i) {
746         s->cur_addr <<= 8;
747         s->cur_addr |= s->data[i];
748     }
749 
750     s->cur_addr &= s->size - 1;
751 
752     s->state = STATE_IDLE;
753 
754     trace_m25p80_complete_collecting(s, s->cmd_in_progress, n, s->ear,
755                                      s->cur_addr);
756 
757     switch (s->cmd_in_progress) {
758     case DPP:
759     case QPP:
760     case QPP_4:
761     case PP:
762     case PP4:
763     case PP4_4:
764         s->state = STATE_PAGE_PROGRAM;
765         break;
766     case AAI_WP:
767         /* AAI programming starts from the even address */
768         s->cur_addr &= ~BIT(0);
769         s->state = STATE_PAGE_PROGRAM;
770         break;
771     case READ:
772     case READ4:
773     case FAST_READ:
774     case FAST_READ4:
775     case DOR:
776     case DOR4:
777     case QOR:
778     case QOR4:
779     case DIOR:
780     case DIOR4:
781     case QIOR:
782     case QIOR4:
783         s->state = STATE_READ;
784         break;
785     case ERASE_4K:
786     case ERASE4_4K:
787     case ERASE_32K:
788     case ERASE4_32K:
789     case ERASE_SECTOR:
790     case ERASE4_SECTOR:
791     case DIE_ERASE:
792         flash_erase(s, s->cur_addr, s->cmd_in_progress);
793         break;
794     case WRSR:
795         s->status_register_write_disabled = extract32(s->data[0], 7, 1);
796         s->block_protect0 = extract32(s->data[0], 2, 1);
797         s->block_protect1 = extract32(s->data[0], 3, 1);
798         s->block_protect2 = extract32(s->data[0], 4, 1);
799         if (s->pi->flags & HAS_SR_TB) {
800             s->top_bottom_bit = extract32(s->data[0], 5, 1);
801         }
802         if (s->pi->flags & HAS_SR_BP3_BIT6) {
803             s->block_protect3 = extract32(s->data[0], 6, 1);
804         }
805 
806         switch (get_man(s)) {
807         case MAN_SPANSION:
808             s->quad_enable = !!(s->data[1] & 0x02);
809             break;
810         case MAN_ISSI:
811             s->quad_enable = extract32(s->data[0], 6, 1);
812             break;
813         case MAN_MACRONIX:
814             s->quad_enable = extract32(s->data[0], 6, 1);
815             if (s->len > 1) {
816                 s->volatile_cfg = s->data[1];
817                 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
818             }
819             break;
820         case MAN_WINBOND:
821             if (s->len > 1) {
822                 s->quad_enable = !!(s->data[1] & 0x02);
823             }
824             break;
825         default:
826             break;
827         }
828         if (s->write_enable) {
829             s->write_enable = false;
830         }
831         break;
832     case WRSR2:
833         switch (get_man(s)) {
834         case MAN_WINBOND:
835             s->quad_enable = !!(s->data[0] & 0x02);
836             break;
837         default:
838             break;
839         }
840         break;
841     case BRWR:
842     case EXTEND_ADDR_WRITE:
843         s->ear = s->data[0];
844         break;
845     case WNVCR:
846         s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
847         break;
848     case WVCR:
849         s->volatile_cfg = s->data[0];
850         break;
851     case WEVCR:
852         s->enh_volatile_cfg = s->data[0];
853         break;
854     case RDID_90:
855     case RDID_AB:
856         if (get_man(s) == MAN_SST) {
857             if (s->cur_addr <= 1) {
858                 if (s->cur_addr) {
859                     s->data[0] = s->pi->id[2];
860                     s->data[1] = s->pi->id[0];
861                 } else {
862                     s->data[0] = s->pi->id[0];
863                     s->data[1] = s->pi->id[2];
864                 }
865                 s->pos = 0;
866                 s->len = 2;
867                 s->data_read_loop = true;
868                 s->state = STATE_READING_DATA;
869             } else {
870                 qemu_log_mask(LOG_GUEST_ERROR,
871                               "M25P80: Invalid read id address\n");
872             }
873         } else {
874             qemu_log_mask(LOG_GUEST_ERROR,
875                           "M25P80: Read id (command 0x90/0xAB) is not supported"
876                           " by device\n");
877         }
878         break;
879 
880     case RDSFDP:
881         s->state = STATE_READING_SFDP;
882         break;
883 
884     default:
885         break;
886     }
887 }
888 
reset_memory(Flash * s)889 static void reset_memory(Flash *s)
890 {
891     s->cmd_in_progress = NOP;
892     s->cur_addr = 0;
893     s->ear = 0;
894     s->four_bytes_address_mode = false;
895     s->len = 0;
896     s->needed_bytes = 0;
897     s->pos = 0;
898     s->state = STATE_IDLE;
899     s->write_enable = false;
900     s->reset_enable = false;
901     s->quad_enable = false;
902     s->aai_enable = false;
903 
904     switch (get_man(s)) {
905     case MAN_NUMONYX:
906         s->volatile_cfg = 0;
907         s->volatile_cfg |= VCFG_DUMMY;
908         s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
909         if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
910                                 == NVCFG_XIP_MODE_DISABLED) {
911             s->volatile_cfg |= VCFG_XIP_MODE_DISABLED;
912         }
913         s->volatile_cfg |= deposit32(s->volatile_cfg,
914                             VCFG_DUMMY_CLK_POS,
915                             CFG_DUMMY_CLK_LEN,
916                             extract32(s->nonvolatile_cfg,
917                                         NVCFG_DUMMY_CLK_POS,
918                                         CFG_DUMMY_CLK_LEN)
919                             );
920 
921         s->enh_volatile_cfg = 0;
922         s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
923         s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
924         s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
925         if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
926             s->enh_volatile_cfg |= EVCFG_DUAL_IO_DISABLED;
927         }
928         if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
929             s->enh_volatile_cfg |= EVCFG_QUAD_IO_DISABLED;
930         }
931         if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
932             s->four_bytes_address_mode = true;
933         }
934         if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
935             s->ear = s->size / MAX_3BYTES_SIZE - 1;
936         }
937         break;
938     case MAN_MACRONIX:
939         s->volatile_cfg = 0x7;
940         break;
941     case MAN_SPANSION:
942         s->spansion_cr1v = s->spansion_cr1nv;
943         s->spansion_cr2v = s->spansion_cr2nv;
944         s->spansion_cr3v = s->spansion_cr3nv;
945         s->spansion_cr4v = s->spansion_cr4nv;
946         s->quad_enable = extract32(s->spansion_cr1v,
947                                    SPANSION_QUAD_CFG_POS,
948                                    SPANSION_QUAD_CFG_LEN
949                                    );
950         s->four_bytes_address_mode = extract32(s->spansion_cr2v,
951                 SPANSION_ADDR_LEN_POS,
952                 SPANSION_ADDR_LEN_LEN
953                 );
954         break;
955     default:
956         break;
957     }
958 
959     trace_m25p80_reset_done(s);
960 }
961 
numonyx_mode(Flash * s)962 static uint8_t numonyx_mode(Flash *s)
963 {
964     if (!(s->enh_volatile_cfg & EVCFG_QUAD_IO_DISABLED)) {
965         return MODE_QIO;
966     } else if (!(s->enh_volatile_cfg & EVCFG_DUAL_IO_DISABLED)) {
967         return MODE_DIO;
968     } else {
969         return MODE_STD;
970     }
971 }
972 
numonyx_extract_cfg_num_dummies(Flash * s)973 static uint8_t numonyx_extract_cfg_num_dummies(Flash *s)
974 {
975     uint8_t num_dummies;
976     uint8_t mode;
977     assert(get_man(s) == MAN_NUMONYX);
978 
979     mode = numonyx_mode(s);
980     num_dummies = extract32(s->volatile_cfg, 4, 4);
981 
982     if (num_dummies == 0x0 || num_dummies == 0xf) {
983         switch (s->cmd_in_progress) {
984         case QIOR:
985         case QIOR4:
986             num_dummies = 10;
987             break;
988         default:
989             num_dummies = (mode == MODE_QIO) ? 10 : 8;
990             break;
991         }
992     }
993 
994     return num_dummies;
995 }
996 
decode_fast_read_cmd(Flash * s)997 static void decode_fast_read_cmd(Flash *s)
998 {
999     s->needed_bytes = get_addr_length(s);
1000     switch (get_man(s)) {
1001     /* Dummy cycles - modeled with bytes writes instead of bits */
1002     case MAN_SST:
1003         s->needed_bytes += 1;
1004         break;
1005     case MAN_WINBOND:
1006         s->needed_bytes += 8;
1007         break;
1008     case MAN_NUMONYX:
1009         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1010         break;
1011     case MAN_MACRONIX:
1012         if (extract32(s->volatile_cfg, 6, 2) == 1) {
1013             s->needed_bytes += 6;
1014         } else {
1015             s->needed_bytes += 8;
1016         }
1017         break;
1018     case MAN_SPANSION:
1019         s->needed_bytes += extract32(s->spansion_cr2v,
1020                                     SPANSION_DUMMY_CLK_POS,
1021                                     SPANSION_DUMMY_CLK_LEN
1022                                     );
1023         break;
1024     case MAN_ISSI:
1025         /*
1026          * The Fast Read instruction code is followed by address bytes and
1027          * dummy cycles, transmitted via the SI line.
1028          *
1029          * The number of dummy cycles is configurable but this is currently
1030          * unmodeled, hence the default value 8 is used.
1031          *
1032          * QPI (Quad Peripheral Interface) mode has different default value
1033          * of dummy cycles, but this is unsupported at the time being.
1034          */
1035         s->needed_bytes += 1;
1036         break;
1037     default:
1038         break;
1039     }
1040     s->pos = 0;
1041     s->len = 0;
1042     s->state = STATE_COLLECTING_DATA;
1043 }
1044 
decode_dio_read_cmd(Flash * s)1045 static void decode_dio_read_cmd(Flash *s)
1046 {
1047     s->needed_bytes = get_addr_length(s);
1048     /* Dummy cycles modeled with bytes writes instead of bits */
1049     switch (get_man(s)) {
1050     case MAN_WINBOND:
1051         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1052         break;
1053     case MAN_SPANSION:
1054         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1055         s->needed_bytes += extract32(s->spansion_cr2v,
1056                                     SPANSION_DUMMY_CLK_POS,
1057                                     SPANSION_DUMMY_CLK_LEN
1058                                     );
1059         break;
1060     case MAN_NUMONYX:
1061         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1062         break;
1063     case MAN_MACRONIX:
1064         switch (extract32(s->volatile_cfg, 6, 2)) {
1065         case 1:
1066             s->needed_bytes += 6;
1067             break;
1068         case 2:
1069             s->needed_bytes += 8;
1070             break;
1071         default:
1072             s->needed_bytes += 4;
1073             break;
1074         }
1075         break;
1076     case MAN_ISSI:
1077         /*
1078          * The Fast Read Dual I/O instruction code is followed by address bytes
1079          * and dummy cycles, transmitted via the IO1 and IO0 line.
1080          *
1081          * The number of dummy cycles is configurable but this is currently
1082          * unmodeled, hence the default value 4 is used.
1083          */
1084         s->needed_bytes += 1;
1085         break;
1086     default:
1087         break;
1088     }
1089     s->pos = 0;
1090     s->len = 0;
1091     s->state = STATE_COLLECTING_DATA;
1092 }
1093 
decode_qio_read_cmd(Flash * s)1094 static void decode_qio_read_cmd(Flash *s)
1095 {
1096     s->needed_bytes = get_addr_length(s);
1097     /* Dummy cycles modeled with bytes writes instead of bits */
1098     switch (get_man(s)) {
1099     case MAN_WINBOND:
1100         s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
1101         s->needed_bytes += 4;
1102         break;
1103     case MAN_SPANSION:
1104         s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
1105         s->needed_bytes += extract32(s->spansion_cr2v,
1106                                     SPANSION_DUMMY_CLK_POS,
1107                                     SPANSION_DUMMY_CLK_LEN
1108                                     );
1109         break;
1110     case MAN_NUMONYX:
1111         s->needed_bytes += numonyx_extract_cfg_num_dummies(s);
1112         break;
1113     case MAN_MACRONIX:
1114         switch (extract32(s->volatile_cfg, 6, 2)) {
1115         case 1:
1116             s->needed_bytes += 4;
1117             break;
1118         case 2:
1119             s->needed_bytes += 8;
1120             break;
1121         default:
1122             s->needed_bytes += 6;
1123             break;
1124         }
1125         break;
1126     case MAN_ISSI:
1127         /*
1128          * The Fast Read Quad I/O instruction code is followed by address bytes
1129          * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1130          *
1131          * The number of dummy cycles is configurable but this is currently
1132          * unmodeled, hence the default value 6 is used.
1133          *
1134          * QPI (Quad Peripheral Interface) mode has different default value
1135          * of dummy cycles, but this is unsupported at the time being.
1136          */
1137         s->needed_bytes += 3;
1138         break;
1139     default:
1140         break;
1141     }
1142     s->pos = 0;
1143     s->len = 0;
1144     s->state = STATE_COLLECTING_DATA;
1145 }
1146 
is_valid_aai_cmd(uint32_t cmd)1147 static bool is_valid_aai_cmd(uint32_t cmd)
1148 {
1149     return cmd == AAI_WP || cmd == WRDI || cmd == RDSR;
1150 }
1151 
decode_new_cmd(Flash * s,uint32_t value)1152 static void decode_new_cmd(Flash *s, uint32_t value)
1153 {
1154     int i;
1155 
1156     s->cmd_in_progress = value;
1157     trace_m25p80_command_decoded(s, value);
1158 
1159     if (value != RESET_MEMORY) {
1160         s->reset_enable = false;
1161     }
1162 
1163     if (get_man(s) == MAN_SST && s->aai_enable && !is_valid_aai_cmd(value)) {
1164         qemu_log_mask(LOG_GUEST_ERROR,
1165                       "M25P80: Invalid cmd within AAI programming sequence");
1166     }
1167 
1168     switch (value) {
1169 
1170     case ERASE_4K:
1171     case ERASE4_4K:
1172     case ERASE_32K:
1173     case ERASE4_32K:
1174     case ERASE_SECTOR:
1175     case ERASE4_SECTOR:
1176     case PP:
1177     case PP4:
1178     case DIE_ERASE:
1179     case RDID_90:
1180     case RDID_AB:
1181         s->needed_bytes = get_addr_length(s);
1182         s->pos = 0;
1183         s->len = 0;
1184         s->state = STATE_COLLECTING_DATA;
1185         break;
1186     case READ:
1187     case READ4:
1188         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1189             s->needed_bytes = get_addr_length(s);
1190             s->pos = 0;
1191             s->len = 0;
1192             s->state = STATE_COLLECTING_DATA;
1193         } else {
1194             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1195                           "DIO or QIO mode\n", s->cmd_in_progress);
1196         }
1197         break;
1198     case DPP:
1199         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1200             s->needed_bytes = get_addr_length(s);
1201             s->pos = 0;
1202             s->len = 0;
1203             s->state = STATE_COLLECTING_DATA;
1204         } else {
1205             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1206                           "QIO mode\n", s->cmd_in_progress);
1207         }
1208         break;
1209     case QPP:
1210     case QPP_4:
1211     case PP4_4:
1212         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1213             s->needed_bytes = get_addr_length(s);
1214             s->pos = 0;
1215             s->len = 0;
1216             s->state = STATE_COLLECTING_DATA;
1217         } else {
1218             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1219                           "DIO mode\n", s->cmd_in_progress);
1220         }
1221         break;
1222 
1223     case FAST_READ:
1224     case FAST_READ4:
1225         decode_fast_read_cmd(s);
1226         break;
1227     case DOR:
1228     case DOR4:
1229         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1230             decode_fast_read_cmd(s);
1231         } else {
1232             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1233                           "QIO mode\n", s->cmd_in_progress);
1234         }
1235         break;
1236     case QOR:
1237     case QOR4:
1238         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1239             decode_fast_read_cmd(s);
1240         } else {
1241             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1242                           "DIO mode\n", s->cmd_in_progress);
1243         }
1244         break;
1245 
1246     case DIOR:
1247     case DIOR4:
1248         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_QIO) {
1249             decode_dio_read_cmd(s);
1250         } else {
1251             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1252                           "QIO mode\n", s->cmd_in_progress);
1253         }
1254         break;
1255 
1256     case QIOR:
1257     case QIOR4:
1258         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) != MODE_DIO) {
1259             decode_qio_read_cmd(s);
1260         } else {
1261             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute cmd %x in "
1262                           "DIO mode\n", s->cmd_in_progress);
1263         }
1264         break;
1265 
1266     case WRSR:
1267         /*
1268          * If WP# is low and status_register_write_disabled is high,
1269          * status register writes are disabled.
1270          * This is also called "hardware protected mode" (HPM). All other
1271          * combinations of the two states are called "software protected mode"
1272          * (SPM), and status register writes are permitted.
1273          */
1274         if ((s->wp_level == 0 && s->status_register_write_disabled)
1275             || !s->write_enable) {
1276             qemu_log_mask(LOG_GUEST_ERROR,
1277                           "M25P80: Status register write is disabled!\n");
1278             break;
1279         }
1280 
1281         switch (get_man(s)) {
1282         case MAN_SPANSION:
1283             s->needed_bytes = 2;
1284             s->state = STATE_COLLECTING_DATA;
1285             break;
1286         case MAN_MACRONIX:
1287             s->needed_bytes = 2;
1288             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1289             break;
1290         case MAN_WINBOND:
1291             s->needed_bytes = 2;
1292             s->state = STATE_COLLECTING_VAR_LEN_DATA;
1293             break;
1294         default:
1295             s->needed_bytes = 1;
1296             s->state = STATE_COLLECTING_DATA;
1297         }
1298         s->pos = 0;
1299         break;
1300     case WRSR2:
1301         /*
1302          * If WP# is low and status_register_write_disabled is high,
1303          * status register writes are disabled.
1304          * This is also called "hardware protected mode" (HPM). All other
1305          * combinations of the two states are called "software protected mode"
1306          * (SPM), and status register writes are permitted.
1307          */
1308         if ((s->wp_level == 0 && s->status_register_write_disabled)
1309             || !s->write_enable) {
1310             qemu_log_mask(LOG_GUEST_ERROR,
1311                           "M25P80: Status register 2 write is disabled!\n");
1312             break;
1313         }
1314 
1315         switch (get_man(s)) {
1316         case MAN_WINBOND:
1317             s->needed_bytes = 1;
1318             s->state = STATE_COLLECTING_DATA;
1319             s->pos = 0;
1320             break;
1321         default:
1322             break;
1323         }
1324         break;
1325     case WRDI:
1326         s->write_enable = false;
1327         if (get_man(s) == MAN_SST) {
1328             s->aai_enable = false;
1329         }
1330         break;
1331     case WREN:
1332         s->write_enable = true;
1333         break;
1334 
1335     case RDSR:
1336         s->data[0] = (!!s->write_enable) << 1;
1337         s->data[0] |= (!!s->status_register_write_disabled) << 7;
1338         s->data[0] |= (!!s->block_protect0) << 2;
1339         s->data[0] |= (!!s->block_protect1) << 3;
1340         s->data[0] |= (!!s->block_protect2) << 4;
1341         if (s->pi->flags & HAS_SR_TB) {
1342             s->data[0] |= (!!s->top_bottom_bit) << 5;
1343         }
1344         if (s->pi->flags & HAS_SR_BP3_BIT6) {
1345             s->data[0] |= (!!s->block_protect3) << 6;
1346         }
1347 
1348         if (get_man(s) == MAN_MACRONIX || get_man(s) == MAN_ISSI) {
1349             s->data[0] |= (!!s->quad_enable) << 6;
1350         }
1351         if (get_man(s) == MAN_SST) {
1352             s->data[0] |= (!!s->aai_enable) << 6;
1353         }
1354 
1355         s->pos = 0;
1356         s->len = 1;
1357         s->data_read_loop = true;
1358         s->state = STATE_READING_DATA;
1359         break;
1360 
1361     case READ_FSR:
1362         s->data[0] = FSR_FLASH_READY;
1363         if (s->four_bytes_address_mode) {
1364             s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1365         }
1366         s->pos = 0;
1367         s->len = 1;
1368         s->data_read_loop = true;
1369         s->state = STATE_READING_DATA;
1370         break;
1371 
1372     case JEDEC_READ:
1373         if (get_man(s) != MAN_NUMONYX || numonyx_mode(s) == MODE_STD) {
1374             trace_m25p80_populated_jedec(s);
1375             for (i = 0; i < s->pi->id_len; i++) {
1376                 s->data[i] = s->pi->id[i];
1377             }
1378             for (; i < SPI_NOR_MAX_ID_LEN; i++) {
1379                 s->data[i] = 0;
1380             }
1381 
1382             s->len = SPI_NOR_MAX_ID_LEN;
1383             s->pos = 0;
1384             s->state = STATE_READING_DATA;
1385         } else {
1386             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Cannot execute JEDEC read "
1387                           "in DIO or QIO mode\n");
1388         }
1389         break;
1390 
1391     case RDCR:
1392         s->data[0] = s->volatile_cfg & 0xFF;
1393         s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1394         s->pos = 0;
1395         s->len = 1;
1396         s->state = STATE_READING_DATA;
1397         break;
1398 
1399     case BULK_ERASE_60:
1400     case BULK_ERASE:
1401         if (s->write_enable) {
1402             trace_m25p80_chip_erase(s);
1403             flash_erase(s, 0, BULK_ERASE);
1404         } else {
1405             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1406                           "protect!\n");
1407         }
1408         break;
1409     case NOP:
1410         break;
1411     case EN_4BYTE_ADDR:
1412         s->four_bytes_address_mode = true;
1413         break;
1414     case EX_4BYTE_ADDR:
1415         s->four_bytes_address_mode = false;
1416         break;
1417     case BRRD:
1418     case EXTEND_ADDR_READ:
1419         s->data[0] = s->ear;
1420         s->pos = 0;
1421         s->len = 1;
1422         s->state = STATE_READING_DATA;
1423         break;
1424     case BRWR:
1425     case EXTEND_ADDR_WRITE:
1426         if (s->write_enable) {
1427             s->needed_bytes = 1;
1428             s->pos = 0;
1429             s->len = 0;
1430             s->state = STATE_COLLECTING_DATA;
1431         }
1432         break;
1433     case RNVCR:
1434         s->data[0] = s->nonvolatile_cfg & 0xFF;
1435         s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1436         s->pos = 0;
1437         s->len = 2;
1438         s->state = STATE_READING_DATA;
1439         break;
1440     case WNVCR:
1441         if (s->write_enable && get_man(s) == MAN_NUMONYX) {
1442             s->needed_bytes = 2;
1443             s->pos = 0;
1444             s->len = 0;
1445             s->state = STATE_COLLECTING_DATA;
1446         }
1447         break;
1448     case RVCR:
1449         s->data[0] = s->volatile_cfg & 0xFF;
1450         s->pos = 0;
1451         s->len = 1;
1452         s->state = STATE_READING_DATA;
1453         break;
1454     case WVCR:
1455         if (s->write_enable) {
1456             s->needed_bytes = 1;
1457             s->pos = 0;
1458             s->len = 0;
1459             s->state = STATE_COLLECTING_DATA;
1460         }
1461         break;
1462     case REVCR:
1463         s->data[0] = s->enh_volatile_cfg & 0xFF;
1464         s->pos = 0;
1465         s->len = 1;
1466         s->state = STATE_READING_DATA;
1467         break;
1468     case WEVCR:
1469         if (s->write_enable) {
1470             s->needed_bytes = 1;
1471             s->pos = 0;
1472             s->len = 0;
1473             s->state = STATE_COLLECTING_DATA;
1474         }
1475         break;
1476     case RESET_ENABLE:
1477         s->reset_enable = true;
1478         break;
1479     case RESET_MEMORY:
1480         if (s->reset_enable) {
1481             reset_memory(s);
1482         }
1483         break;
1484     case RDCR_EQIO:
1485         switch (get_man(s)) {
1486         case MAN_SPANSION:
1487             s->data[0] = (!!s->quad_enable) << 1;
1488             s->pos = 0;
1489             s->len = 1;
1490             s->state = STATE_READING_DATA;
1491             break;
1492         case MAN_MACRONIX:
1493             s->quad_enable = true;
1494             break;
1495         case MAN_WINBOND:
1496             s->data[0] = (!!s->quad_enable) << 1;
1497             s->pos = 0;
1498             s->len = 1;
1499             s->state = STATE_READING_DATA;
1500             break;
1501         default:
1502             break;
1503         }
1504         break;
1505     case RSTQIO:
1506         s->quad_enable = false;
1507         break;
1508     case AAI_WP:
1509         if (get_man(s) == MAN_SST) {
1510             if (s->write_enable) {
1511                 if (s->aai_enable) {
1512                     s->state = STATE_PAGE_PROGRAM;
1513                 } else {
1514                     s->aai_enable = true;
1515                     s->needed_bytes = get_addr_length(s);
1516                     s->state = STATE_COLLECTING_DATA;
1517                 }
1518             } else {
1519                 qemu_log_mask(LOG_GUEST_ERROR,
1520                               "M25P80: AAI_WP with write protect\n");
1521             }
1522         } else {
1523             qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1524         }
1525         break;
1526     case RDSFDP:
1527         if (s->pi->sfdp_read) {
1528             s->needed_bytes = get_addr_length(s) + 1; /* SFDP addr + dummy */
1529             s->pos = 0;
1530             s->len = 0;
1531             s->state = STATE_COLLECTING_DATA;
1532             break;
1533         }
1534         /* Fallthrough */
1535 
1536     default:
1537         s->pos = 0;
1538         s->len = 1;
1539         s->state = STATE_READING_DATA;
1540         s->data_read_loop = true;
1541         s->data[0] = 0;
1542         qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
1543         break;
1544     }
1545 }
1546 
m25p80_cs(SSIPeripheral * ss,bool select)1547 static int m25p80_cs(SSIPeripheral *ss, bool select)
1548 {
1549     Flash *s = M25P80(ss);
1550 
1551     if (select) {
1552         if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1553             complete_collecting_data(s);
1554         }
1555         s->len = 0;
1556         s->pos = 0;
1557         s->state = STATE_IDLE;
1558         flash_sync_dirty(s, -1);
1559         s->data_read_loop = false;
1560     }
1561 
1562     trace_m25p80_select(s, select ? "de" : "");
1563 
1564     return 0;
1565 }
1566 
m25p80_transfer8(SSIPeripheral * ss,uint32_t tx)1567 static uint32_t m25p80_transfer8(SSIPeripheral *ss, uint32_t tx)
1568 {
1569     Flash *s = M25P80(ss);
1570     uint32_t r = 0;
1571 
1572     trace_m25p80_transfer(s, s->state, s->len, s->needed_bytes, s->pos,
1573                           s->cur_addr, (uint8_t)tx);
1574 
1575     switch (s->state) {
1576 
1577     case STATE_PAGE_PROGRAM:
1578         trace_m25p80_page_program(s, s->cur_addr, (uint8_t)tx);
1579         flash_write8(s, s->cur_addr, (uint8_t)tx);
1580         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1581 
1582         if (get_man(s) == MAN_SST && s->aai_enable && s->cur_addr == 0) {
1583             /*
1584              * There is no wrap mode during AAI programming once the highest
1585              * unprotected memory address is reached. The Write-Enable-Latch
1586              * bit is automatically reset, and AAI programming mode aborts.
1587              */
1588             s->write_enable = false;
1589             s->aai_enable = false;
1590         }
1591 
1592         break;
1593 
1594     case STATE_READ:
1595         r = s->storage[s->cur_addr];
1596         trace_m25p80_read_byte(s, s->cur_addr, (uint8_t)r);
1597         s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
1598         break;
1599 
1600     case STATE_COLLECTING_DATA:
1601     case STATE_COLLECTING_VAR_LEN_DATA:
1602 
1603         if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1604             qemu_log_mask(LOG_GUEST_ERROR,
1605                           "M25P80: Write overrun internal data buffer. "
1606                           "SPI controller (QEMU emulator or guest driver) "
1607                           "is misbehaving\n");
1608             s->len = s->pos = 0;
1609             s->state = STATE_IDLE;
1610             break;
1611         }
1612 
1613         s->data[s->len] = (uint8_t)tx;
1614         s->len++;
1615 
1616         if (s->len == s->needed_bytes) {
1617             complete_collecting_data(s);
1618         }
1619         break;
1620 
1621     case STATE_READING_DATA:
1622 
1623         if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1624             qemu_log_mask(LOG_GUEST_ERROR,
1625                           "M25P80: Read overrun internal data buffer. "
1626                           "SPI controller (QEMU emulator or guest driver) "
1627                           "is misbehaving\n");
1628             s->len = s->pos = 0;
1629             s->state = STATE_IDLE;
1630             break;
1631         }
1632 
1633         r = s->data[s->pos];
1634         trace_m25p80_read_data(s, s->pos, (uint8_t)r);
1635         s->pos++;
1636         if (s->pos == s->len) {
1637             s->pos = 0;
1638             if (!s->data_read_loop) {
1639                 s->state = STATE_IDLE;
1640             }
1641         }
1642         break;
1643     case STATE_READING_SFDP:
1644         assert(s->pi->sfdp_read);
1645         r = s->pi->sfdp_read(s->cur_addr);
1646         trace_m25p80_read_sfdp(s, s->cur_addr, (uint8_t)r);
1647         s->cur_addr = (s->cur_addr + 1) & (M25P80_SFDP_MAX_SIZE - 1);
1648         break;
1649 
1650     default:
1651     case STATE_IDLE:
1652         decode_new_cmd(s, (uint8_t)tx);
1653         break;
1654     }
1655 
1656     return r;
1657 }
1658 
m25p80_write_protect_pin_irq_handler(void * opaque,int n,int level)1659 static void m25p80_write_protect_pin_irq_handler(void *opaque, int n, int level)
1660 {
1661     Flash *s = M25P80(opaque);
1662     /* WP# is just a single pin. */
1663     assert(n == 0);
1664     s->wp_level = !!level;
1665 }
1666 
m25p80_realize(SSIPeripheral * ss,Error ** errp)1667 static void m25p80_realize(SSIPeripheral *ss, Error **errp)
1668 {
1669     Flash *s = M25P80(ss);
1670     M25P80Class *mc = M25P80_GET_CLASS(s);
1671     int ret;
1672 
1673     s->pi = mc->pi;
1674 
1675     s->size = s->pi->sector_size * s->pi->n_sectors;
1676     s->dirty_page = -1;
1677 
1678     if (s->blk) {
1679         uint64_t perm = BLK_PERM_CONSISTENT_READ |
1680                         (blk_supports_write_perm(s->blk) ? BLK_PERM_WRITE : 0);
1681         ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1682         if (ret < 0) {
1683             return;
1684         }
1685 
1686         trace_m25p80_binding(s);
1687         s->storage = blk_blockalign(s->blk, s->size);
1688 
1689         if (!blk_check_size_and_read_all(s->blk, DEVICE(s),
1690                                          s->storage, s->size, errp)) {
1691             return;
1692         }
1693     } else {
1694         trace_m25p80_binding_no_bdrv(s);
1695         s->storage = blk_blockalign(NULL, s->size);
1696         memset(s->storage, 0xFF, s->size);
1697     }
1698 
1699     qdev_init_gpio_in_named(DEVICE(s),
1700                             m25p80_write_protect_pin_irq_handler, "WP#", 1);
1701 }
1702 
m25p80_reset(DeviceState * d)1703 static void m25p80_reset(DeviceState *d)
1704 {
1705     Flash *s = M25P80(d);
1706 
1707     s->wp_level = true;
1708     s->status_register_write_disabled = false;
1709     s->block_protect0 = false;
1710     s->block_protect1 = false;
1711     s->block_protect2 = false;
1712     s->block_protect3 = false;
1713     s->top_bottom_bit = false;
1714 
1715     reset_memory(s);
1716 }
1717 
m25p80_pre_save(void * opaque)1718 static int m25p80_pre_save(void *opaque)
1719 {
1720     flash_sync_dirty((Flash *)opaque, -1);
1721 
1722     return 0;
1723 }
1724 
1725 static const Property m25p80_properties[] = {
1726     /* This is default value for Micron flash */
1727     DEFINE_PROP_BOOL("write-enable", Flash, write_enable, false),
1728     DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
1729     DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1730     DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1731     DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1732     DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
1733     DEFINE_PROP_DRIVE("drive", Flash, blk),
1734 };
1735 
m25p80_pre_load(void * opaque)1736 static int m25p80_pre_load(void *opaque)
1737 {
1738     Flash *s = (Flash *)opaque;
1739 
1740     s->data_read_loop = false;
1741     return 0;
1742 }
1743 
m25p80_data_read_loop_needed(void * opaque)1744 static bool m25p80_data_read_loop_needed(void *opaque)
1745 {
1746     Flash *s = (Flash *)opaque;
1747 
1748     return s->data_read_loop;
1749 }
1750 
1751 static const VMStateDescription vmstate_m25p80_data_read_loop = {
1752     .name = "m25p80/data_read_loop",
1753     .version_id = 1,
1754     .minimum_version_id = 1,
1755     .needed = m25p80_data_read_loop_needed,
1756     .fields = (const VMStateField[]) {
1757         VMSTATE_BOOL(data_read_loop, Flash),
1758         VMSTATE_END_OF_LIST()
1759     }
1760 };
1761 
m25p80_aai_enable_needed(void * opaque)1762 static bool m25p80_aai_enable_needed(void *opaque)
1763 {
1764     Flash *s = (Flash *)opaque;
1765 
1766     return s->aai_enable;
1767 }
1768 
1769 static const VMStateDescription vmstate_m25p80_aai_enable = {
1770     .name = "m25p80/aai_enable",
1771     .version_id = 1,
1772     .minimum_version_id = 1,
1773     .needed = m25p80_aai_enable_needed,
1774     .fields = (const VMStateField[]) {
1775         VMSTATE_BOOL(aai_enable, Flash),
1776         VMSTATE_END_OF_LIST()
1777     }
1778 };
1779 
m25p80_wp_level_srwd_needed(void * opaque)1780 static bool m25p80_wp_level_srwd_needed(void *opaque)
1781 {
1782     Flash *s = (Flash *)opaque;
1783 
1784     return !s->wp_level || s->status_register_write_disabled;
1785 }
1786 
1787 static const VMStateDescription vmstate_m25p80_write_protect = {
1788     .name = "m25p80/write_protect",
1789     .version_id = 1,
1790     .minimum_version_id = 1,
1791     .needed = m25p80_wp_level_srwd_needed,
1792     .fields = (const VMStateField[]) {
1793         VMSTATE_BOOL(wp_level, Flash),
1794         VMSTATE_BOOL(status_register_write_disabled, Flash),
1795         VMSTATE_END_OF_LIST()
1796     }
1797 };
1798 
m25p80_block_protect_needed(void * opaque)1799 static bool m25p80_block_protect_needed(void *opaque)
1800 {
1801     Flash *s = (Flash *)opaque;
1802 
1803     return s->block_protect0 ||
1804            s->block_protect1 ||
1805            s->block_protect2 ||
1806            s->block_protect3 ||
1807            s->top_bottom_bit;
1808 }
1809 
1810 static const VMStateDescription vmstate_m25p80_block_protect = {
1811     .name = "m25p80/block_protect",
1812     .version_id = 1,
1813     .minimum_version_id = 1,
1814     .needed = m25p80_block_protect_needed,
1815     .fields = (const VMStateField[]) {
1816         VMSTATE_BOOL(block_protect0, Flash),
1817         VMSTATE_BOOL(block_protect1, Flash),
1818         VMSTATE_BOOL(block_protect2, Flash),
1819         VMSTATE_BOOL(block_protect3, Flash),
1820         VMSTATE_BOOL(top_bottom_bit, Flash),
1821         VMSTATE_END_OF_LIST()
1822     }
1823 };
1824 
1825 static const VMStateDescription vmstate_m25p80 = {
1826     .name = "m25p80",
1827     .version_id = 0,
1828     .minimum_version_id = 0,
1829     .pre_save = m25p80_pre_save,
1830     .pre_load = m25p80_pre_load,
1831     .fields = (const VMStateField[]) {
1832         VMSTATE_UINT8(state, Flash),
1833         VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
1834         VMSTATE_UINT32(len, Flash),
1835         VMSTATE_UINT32(pos, Flash),
1836         VMSTATE_UINT8(needed_bytes, Flash),
1837         VMSTATE_UINT8(cmd_in_progress, Flash),
1838         VMSTATE_UINT32(cur_addr, Flash),
1839         VMSTATE_BOOL(write_enable, Flash),
1840         VMSTATE_BOOL(reset_enable, Flash),
1841         VMSTATE_UINT8(ear, Flash),
1842         VMSTATE_BOOL(four_bytes_address_mode, Flash),
1843         VMSTATE_UINT32(nonvolatile_cfg, Flash),
1844         VMSTATE_UINT32(volatile_cfg, Flash),
1845         VMSTATE_UINT32(enh_volatile_cfg, Flash),
1846         VMSTATE_BOOL(quad_enable, Flash),
1847         VMSTATE_UINT8(spansion_cr1nv, Flash),
1848         VMSTATE_UINT8(spansion_cr2nv, Flash),
1849         VMSTATE_UINT8(spansion_cr3nv, Flash),
1850         VMSTATE_UINT8(spansion_cr4nv, Flash),
1851         VMSTATE_END_OF_LIST()
1852     },
1853     .subsections = (const VMStateDescription * const []) {
1854         &vmstate_m25p80_data_read_loop,
1855         &vmstate_m25p80_aai_enable,
1856         &vmstate_m25p80_write_protect,
1857         &vmstate_m25p80_block_protect,
1858         NULL
1859     }
1860 };
1861 
m25p80_class_init(ObjectClass * klass,const void * data)1862 static void m25p80_class_init(ObjectClass *klass, const void *data)
1863 {
1864     DeviceClass *dc = DEVICE_CLASS(klass);
1865     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
1866     M25P80Class *mc = M25P80_CLASS(klass);
1867 
1868     k->realize = m25p80_realize;
1869     k->transfer = m25p80_transfer8;
1870     k->set_cs = m25p80_cs;
1871     k->cs_polarity = SSI_CS_LOW;
1872     dc->vmsd = &vmstate_m25p80;
1873     device_class_set_props(dc, m25p80_properties);
1874     device_class_set_legacy_reset(dc, m25p80_reset);
1875     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1876     mc->pi = data;
1877     dc->desc = "Serial Flash";
1878 }
1879 
1880 static const TypeInfo m25p80_info = {
1881     .name           = TYPE_M25P80,
1882     .parent         = TYPE_SSI_PERIPHERAL,
1883     .instance_size  = sizeof(Flash),
1884     .class_size     = sizeof(M25P80Class),
1885     .abstract       = true,
1886 };
1887 
m25p80_register_types(void)1888 static void m25p80_register_types(void)
1889 {
1890     int i;
1891 
1892     type_register_static(&m25p80_info);
1893     for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1894         const TypeInfo ti = {
1895             .name       = known_devices[i].part_name,
1896             .parent     = TYPE_M25P80,
1897             .class_init = m25p80_class_init,
1898             .class_data = &known_devices[i],
1899         };
1900         type_register_static(&ti);
1901     }
1902 }
1903 
type_init(m25p80_register_types)1904 type_init(m25p80_register_types)
1905 
1906 BlockBackend *m25p80_get_blk(DeviceState *dev)
1907 {
1908     return M25P80(dev)->blk;
1909 }
1910