1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25 #include <linux/io.h>
26
27 /* Minimum number of sample-data-block-tables:
28 * At least one table is required for the sampling buffer structure.
29 * A single table contains up to 511 pointers to sample-data-blocks.
30 */
31 #define CPUM_SF_MIN_SDBT 1
32
33 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
34 * A table contains SDB pointers (8 bytes) and one table-link entry
35 * that points to the origin of the next SDBT.
36 */
37 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
38
39 /* Maximum page offset for an SDBT table-link entry:
40 * If this page offset is reached, a table-link entry to the next SDBT
41 * must be added.
42 */
43 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)44 static inline int require_table_link(const void *sdbt)
45 {
46 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
47 }
48
49 /* Minimum and maximum sampling buffer sizes:
50 *
51 * This number represents the maximum size of the sampling buffer taking
52 * the number of sample-data-block-tables into account. Note that these
53 * numbers apply to the basic-sampling function only.
54 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
55 * the diagnostic-sampling function is active.
56 *
57 * Sampling buffer size Buffer characteristics
58 * ---------------------------------------------------
59 * 64KB == 16 pages (4KB per page)
60 * 1 page for SDB-tables
61 * 15 pages for SDBs
62 *
63 * 32MB == 8192 pages (4KB per page)
64 * 16 pages for SDB-tables
65 * 8176 pages for SDBs
66 */
67 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
68 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
69 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
70
71 struct sf_buffer {
72 unsigned long *sdbt; /* Sample-data-block-table origin */
73 /* buffer characteristics (required for buffer increments) */
74 unsigned long num_sdb; /* Number of sample-data-blocks */
75 unsigned long num_sdbt; /* Number of sample-data-block-tables */
76 unsigned long *tail; /* last sample-data-block-table */
77 };
78
79 struct aux_buffer {
80 struct sf_buffer sfb;
81 unsigned long head; /* index of SDB of buffer head */
82 unsigned long alert_mark; /* index of SDB of alert request position */
83 unsigned long empty_mark; /* mark of SDB not marked full */
84 unsigned long *sdb_index; /* SDB address for fast lookup */
85 unsigned long *sdbt_index; /* SDBT address for fast lookup */
86 };
87
88 struct cpu_hw_sf {
89 /* CPU-measurement sampling information block */
90 struct hws_qsi_info_block qsi;
91 /* CPU-measurement sampling control block */
92 struct hws_lsctl_request_block lsctl;
93 struct sf_buffer sfb; /* Sampling buffer */
94 unsigned int flags; /* Status flags */
95 struct perf_event *event; /* Scheduled perf event */
96 struct perf_output_handle handle; /* AUX buffer output handle */
97 };
98 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
99
100 /* Debug feature */
101 static debug_info_t *sfdbg;
102
103 /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)104 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
105 unsigned long freq)
106 {
107 return (USEC_PER_SEC / freq) * qsi->cpu_speed;
108 }
109
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)110 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
111 unsigned long rate)
112 {
113 return USEC_PER_SEC * qsi->cpu_speed / rate;
114 }
115
116 /* Return TOD timestamp contained in an trailer entry */
trailer_timestamp(struct hws_trailer_entry * te)117 static inline unsigned long long trailer_timestamp(struct hws_trailer_entry *te)
118 {
119 /* TOD in STCKE format */
120 if (te->header.t)
121 return *((unsigned long long *)&te->timestamp[1]);
122
123 /* TOD in STCK format */
124 return *((unsigned long long *)&te->timestamp[0]);
125 }
126
127 /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)128 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
129 {
130 void *ret;
131
132 ret = (void *)v;
133 ret += PAGE_SIZE;
134 ret -= sizeof(struct hws_trailer_entry);
135
136 return ret;
137 }
138
139 /*
140 * Return true if the entry in the sample data block table (sdbt)
141 * is a link to the next sdbt
142 */
is_link_entry(unsigned long * s)143 static inline int is_link_entry(unsigned long *s)
144 {
145 return *s & 0x1UL ? 1 : 0;
146 }
147
148 /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)149 static inline unsigned long *get_next_sdbt(unsigned long *s)
150 {
151 return phys_to_virt(*s & ~0x1UL);
152 }
153
154 /*
155 * sf_disable() - Switch off sampling facility
156 */
sf_disable(void)157 static int sf_disable(void)
158 {
159 struct hws_lsctl_request_block sreq;
160
161 memset(&sreq, 0, sizeof(sreq));
162 return lsctl(&sreq);
163 }
164
165 /*
166 * sf_buffer_available() - Check for an allocated sampling buffer
167 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)168 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
169 {
170 return !!cpuhw->sfb.sdbt;
171 }
172
173 /*
174 * deallocate sampling facility buffer
175 */
free_sampling_buffer(struct sf_buffer * sfb)176 static void free_sampling_buffer(struct sf_buffer *sfb)
177 {
178 unsigned long *sdbt, *curr;
179
180 if (!sfb->sdbt)
181 return;
182
183 sdbt = sfb->sdbt;
184 curr = sdbt;
185
186 /* Free the SDBT after all SDBs are processed... */
187 while (1) {
188 if (!*curr || !sdbt)
189 break;
190
191 /* Process table-link entries */
192 if (is_link_entry(curr)) {
193 curr = get_next_sdbt(curr);
194 if (sdbt)
195 free_page((unsigned long)sdbt);
196
197 /* If the origin is reached, sampling buffer is freed */
198 if (curr == sfb->sdbt)
199 break;
200 else
201 sdbt = curr;
202 } else {
203 /* Process SDB pointer */
204 if (*curr) {
205 free_page((unsigned long)phys_to_virt(*curr));
206 curr++;
207 }
208 }
209 }
210
211 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
212 (unsigned long)sfb->sdbt);
213 memset(sfb, 0, sizeof(*sfb));
214 }
215
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)216 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
217 {
218 struct hws_trailer_entry *te;
219 unsigned long sdb;
220
221 /* Allocate and initialize sample-data-block */
222 sdb = get_zeroed_page(gfp_flags);
223 if (!sdb)
224 return -ENOMEM;
225 te = trailer_entry_ptr(sdb);
226 te->header.a = 1;
227
228 /* Link SDB into the sample-data-block-table */
229 *sdbt = virt_to_phys((void *)sdb);
230
231 return 0;
232 }
233
234 /*
235 * realloc_sampling_buffer() - extend sampler memory
236 *
237 * Allocates new sample-data-blocks and adds them to the specified sampling
238 * buffer memory.
239 *
240 * Important: This modifies the sampling buffer and must be called when the
241 * sampling facility is disabled.
242 *
243 * Returns zero on success, non-zero otherwise.
244 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)245 static int realloc_sampling_buffer(struct sf_buffer *sfb,
246 unsigned long num_sdb, gfp_t gfp_flags)
247 {
248 int i, rc;
249 unsigned long *new, *tail, *tail_prev = NULL;
250
251 if (!sfb->sdbt || !sfb->tail)
252 return -EINVAL;
253
254 if (!is_link_entry(sfb->tail))
255 return -EINVAL;
256
257 /* Append to the existing sampling buffer, overwriting the table-link
258 * register.
259 * The tail variables always points to the "tail" (last and table-link)
260 * entry in an SDB-table.
261 */
262 tail = sfb->tail;
263
264 /* Do a sanity check whether the table-link entry points to
265 * the sampling buffer origin.
266 */
267 if (sfb->sdbt != get_next_sdbt(tail)) {
268 debug_sprintf_event(sfdbg, 3, "%s: "
269 "sampling buffer is not linked: origin %#lx"
270 " tail %#lx\n", __func__,
271 (unsigned long)sfb->sdbt,
272 (unsigned long)tail);
273 return -EINVAL;
274 }
275
276 /* Allocate remaining SDBs */
277 rc = 0;
278 for (i = 0; i < num_sdb; i++) {
279 /* Allocate a new SDB-table if it is full. */
280 if (require_table_link(tail)) {
281 new = (unsigned long *)get_zeroed_page(gfp_flags);
282 if (!new) {
283 rc = -ENOMEM;
284 break;
285 }
286 sfb->num_sdbt++;
287 /* Link current page to tail of chain */
288 *tail = virt_to_phys((void *)new) + 1;
289 tail_prev = tail;
290 tail = new;
291 }
292
293 /* Allocate a new sample-data-block.
294 * If there is not enough memory, stop the realloc process
295 * and simply use what was allocated. If this is a temporary
296 * issue, a new realloc call (if required) might succeed.
297 */
298 rc = alloc_sample_data_block(tail, gfp_flags);
299 if (rc) {
300 /* Undo last SDBT. An SDBT with no SDB at its first
301 * entry but with an SDBT entry instead can not be
302 * handled by the interrupt handler code.
303 * Avoid this situation.
304 */
305 if (tail_prev) {
306 sfb->num_sdbt--;
307 free_page((unsigned long)new);
308 tail = tail_prev;
309 }
310 break;
311 }
312 sfb->num_sdb++;
313 tail++;
314 tail_prev = new = NULL; /* Allocated at least one SBD */
315 }
316
317 /* Link sampling buffer to its origin */
318 *tail = virt_to_phys(sfb->sdbt) + 1;
319 sfb->tail = tail;
320
321 debug_sprintf_event(sfdbg, 4, "%s: new buffer"
322 " settings: sdbt %lu sdb %lu\n", __func__,
323 sfb->num_sdbt, sfb->num_sdb);
324 return rc;
325 }
326
327 /*
328 * allocate_sampling_buffer() - allocate sampler memory
329 *
330 * Allocates and initializes a sampling buffer structure using the
331 * specified number of sample-data-blocks (SDB). For each allocation,
332 * a 4K page is used. The number of sample-data-block-tables (SDBT)
333 * are calculated from SDBs.
334 * Also set the ALERT_REQ mask in each SDBs trailer.
335 *
336 * Returns zero on success, non-zero otherwise.
337 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)338 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
339 {
340 int rc;
341
342 if (sfb->sdbt)
343 return -EINVAL;
344
345 /* Allocate the sample-data-block-table origin */
346 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
347 if (!sfb->sdbt)
348 return -ENOMEM;
349 sfb->num_sdb = 0;
350 sfb->num_sdbt = 1;
351
352 /* Link the table origin to point to itself to prepare for
353 * realloc_sampling_buffer() invocation.
354 */
355 sfb->tail = sfb->sdbt;
356 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
357
358 /* Allocate requested number of sample-data-blocks */
359 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
360 if (rc) {
361 free_sampling_buffer(sfb);
362 debug_sprintf_event(sfdbg, 4, "%s: "
363 "realloc_sampling_buffer failed with rc %i\n",
364 __func__, rc);
365 } else
366 debug_sprintf_event(sfdbg, 4,
367 "%s: tear %#lx dear %#lx\n", __func__,
368 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
369 return rc;
370 }
371
sfb_set_limits(unsigned long min,unsigned long max)372 static void sfb_set_limits(unsigned long min, unsigned long max)
373 {
374 struct hws_qsi_info_block si;
375
376 CPUM_SF_MIN_SDB = min;
377 CPUM_SF_MAX_SDB = max;
378
379 memset(&si, 0, sizeof(si));
380 if (!qsi(&si))
381 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
382 }
383
sfb_max_limit(struct hw_perf_event * hwc)384 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
385 {
386 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
387 : CPUM_SF_MAX_SDB;
388 }
389
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)390 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
391 struct hw_perf_event *hwc)
392 {
393 if (!sfb->sdbt)
394 return SFB_ALLOC_REG(hwc);
395 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
396 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
397 return 0;
398 }
399
sfb_has_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)400 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
401 struct hw_perf_event *hwc)
402 {
403 return sfb_pending_allocs(sfb, hwc) > 0;
404 }
405
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)406 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
407 {
408 /* Limit the number of SDBs to not exceed the maximum */
409 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
410 if (num)
411 SFB_ALLOC_REG(hwc) += num;
412 }
413
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)414 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
415 {
416 SFB_ALLOC_REG(hwc) = 0;
417 sfb_account_allocs(num, hwc);
418 }
419
deallocate_buffers(struct cpu_hw_sf * cpuhw)420 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
421 {
422 if (cpuhw->sfb.sdbt)
423 free_sampling_buffer(&cpuhw->sfb);
424 }
425
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)426 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
427 {
428 unsigned long n_sdb, freq;
429 size_t sample_size;
430
431 /* Calculate sampling buffers using 4K pages
432 *
433 * 1. The sampling size is 32 bytes for basic sampling. This size
434 * is the same for all machine types. Diagnostic
435 * sampling uses auxlilary data buffer setup which provides the
436 * memory for SDBs using linux common code auxiliary trace
437 * setup.
438 *
439 * 2. Function alloc_sampling_buffer() sets the Alert Request
440 * Control indicator to trigger a measurement-alert to harvest
441 * sample-data-blocks (SDB). This is done per SDB. This
442 * measurement alert interrupt fires quick enough to handle
443 * one SDB, on very high frequency and work loads there might
444 * be 2 to 3 SBDs available for sample processing.
445 * Currently there is no need for setup alert request on every
446 * n-th page. This is counterproductive as one IRQ triggers
447 * a very high number of samples to be processed at one IRQ.
448 *
449 * 3. Use the sampling frequency as input.
450 * Compute the number of SDBs and ensure a minimum
451 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
452 * SDBs to handle a higher sampling rate.
453 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
454 * (one SDB) for every 10000 HZ frequency increment.
455 *
456 * 4. Compute the number of sample-data-block-tables (SDBT) and
457 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
458 * to 511 SDBs).
459 */
460 sample_size = sizeof(struct hws_basic_entry);
461 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
462 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
463
464 /* If there is already a sampling buffer allocated, it is very likely
465 * that the sampling facility is enabled too. If the event to be
466 * initialized requires a greater sampling buffer, the allocation must
467 * be postponed. Changing the sampling buffer requires the sampling
468 * facility to be in the disabled state. So, account the number of
469 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
470 * before the event is started.
471 */
472 sfb_init_allocs(n_sdb, hwc);
473 if (sf_buffer_available(cpuhw))
474 return 0;
475
476 debug_sprintf_event(sfdbg, 3,
477 "%s: rate %lu f %lu sdb %lu/%lu"
478 " sample_size %lu cpuhw %p\n", __func__,
479 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
480 sample_size, cpuhw);
481
482 return alloc_sampling_buffer(&cpuhw->sfb,
483 sfb_pending_allocs(&cpuhw->sfb, hwc));
484 }
485
min_percent(unsigned int percent,unsigned long base,unsigned long min)486 static unsigned long min_percent(unsigned int percent, unsigned long base,
487 unsigned long min)
488 {
489 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
490 }
491
compute_sfb_extent(unsigned long ratio,unsigned long base)492 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
493 {
494 /* Use a percentage-based approach to extend the sampling facility
495 * buffer. Accept up to 5% sample data loss.
496 * Vary the extents between 1% to 5% of the current number of
497 * sample-data-blocks.
498 */
499 if (ratio <= 5)
500 return 0;
501 if (ratio <= 25)
502 return min_percent(1, base, 1);
503 if (ratio <= 50)
504 return min_percent(1, base, 1);
505 if (ratio <= 75)
506 return min_percent(2, base, 2);
507 if (ratio <= 100)
508 return min_percent(3, base, 3);
509 if (ratio <= 250)
510 return min_percent(4, base, 4);
511
512 return min_percent(5, base, 8);
513 }
514
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)515 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
516 struct hw_perf_event *hwc)
517 {
518 unsigned long ratio, num;
519
520 if (!OVERFLOW_REG(hwc))
521 return;
522
523 /* The sample_overflow contains the average number of sample data
524 * that has been lost because sample-data-blocks were full.
525 *
526 * Calculate the total number of sample data entries that has been
527 * discarded. Then calculate the ratio of lost samples to total samples
528 * per second in percent.
529 */
530 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
531 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
532
533 /* Compute number of sample-data-blocks */
534 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
535 if (num)
536 sfb_account_allocs(num, hwc);
537
538 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
539 __func__, OVERFLOW_REG(hwc), ratio, num);
540 OVERFLOW_REG(hwc) = 0;
541 }
542
543 /* extend_sampling_buffer() - Extend sampling buffer
544 * @sfb: Sampling buffer structure (for local CPU)
545 * @hwc: Perf event hardware structure
546 *
547 * Use this function to extend the sampling buffer based on the overflow counter
548 * and postponed allocation extents stored in the specified Perf event hardware.
549 *
550 * Important: This function disables the sampling facility in order to safely
551 * change the sampling buffer structure. Do not call this function
552 * when the PMU is active.
553 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)554 static void extend_sampling_buffer(struct sf_buffer *sfb,
555 struct hw_perf_event *hwc)
556 {
557 unsigned long num, num_old;
558 int rc;
559
560 num = sfb_pending_allocs(sfb, hwc);
561 if (!num)
562 return;
563 num_old = sfb->num_sdb;
564
565 /* Disable the sampling facility to reset any states and also
566 * clear pending measurement alerts.
567 */
568 sf_disable();
569
570 /* Extend the sampling buffer.
571 * This memory allocation typically happens in an atomic context when
572 * called by perf. Because this is a reallocation, it is fine if the
573 * new SDB-request cannot be satisfied immediately.
574 */
575 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
576 if (rc)
577 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
578 __func__, rc);
579
580 if (sfb_has_pending_allocs(sfb, hwc))
581 debug_sprintf_event(sfdbg, 5, "%s: "
582 "req %lu alloc %lu remaining %lu\n",
583 __func__, num, sfb->num_sdb - num_old,
584 sfb_pending_allocs(sfb, hwc));
585 }
586
587 /* Number of perf events counting hardware events */
588 static atomic_t num_events;
589 /* Used to avoid races in calling reserve/release_cpumf_hardware */
590 static DEFINE_MUTEX(pmc_reserve_mutex);
591
592 #define PMC_INIT 0
593 #define PMC_RELEASE 1
594 #define PMC_FAILURE 2
setup_pmc_cpu(void * flags)595 static void setup_pmc_cpu(void *flags)
596 {
597 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
598 int err = 0;
599
600 switch (*((int *)flags)) {
601 case PMC_INIT:
602 memset(cpusf, 0, sizeof(*cpusf));
603 err = qsi(&cpusf->qsi);
604 if (err)
605 break;
606 cpusf->flags |= PMU_F_RESERVED;
607 err = sf_disable();
608 break;
609 case PMC_RELEASE:
610 cpusf->flags &= ~PMU_F_RESERVED;
611 err = sf_disable();
612 if (!err)
613 deallocate_buffers(cpusf);
614 break;
615 }
616 if (err) {
617 *((int *)flags) |= PMC_FAILURE;
618 pr_err("Switching off the sampling facility failed with rc %i\n", err);
619 }
620 }
621
release_pmc_hardware(void)622 static void release_pmc_hardware(void)
623 {
624 int flags = PMC_RELEASE;
625
626 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
627 on_each_cpu(setup_pmc_cpu, &flags, 1);
628 }
629
reserve_pmc_hardware(void)630 static int reserve_pmc_hardware(void)
631 {
632 int flags = PMC_INIT;
633
634 on_each_cpu(setup_pmc_cpu, &flags, 1);
635 if (flags & PMC_FAILURE) {
636 release_pmc_hardware();
637 return -ENODEV;
638 }
639 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
640
641 return 0;
642 }
643
hw_perf_event_destroy(struct perf_event * event)644 static void hw_perf_event_destroy(struct perf_event *event)
645 {
646 /* Release PMC if this is the last perf event */
647 if (!atomic_add_unless(&num_events, -1, 1)) {
648 mutex_lock(&pmc_reserve_mutex);
649 if (atomic_dec_return(&num_events) == 0)
650 release_pmc_hardware();
651 mutex_unlock(&pmc_reserve_mutex);
652 }
653 }
654
hw_init_period(struct hw_perf_event * hwc,u64 period)655 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
656 {
657 hwc->sample_period = period;
658 hwc->last_period = hwc->sample_period;
659 local64_set(&hwc->period_left, hwc->sample_period);
660 }
661
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)662 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
663 unsigned long rate)
664 {
665 return clamp_t(unsigned long, rate,
666 si->min_sampl_rate, si->max_sampl_rate);
667 }
668
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)669 static u32 cpumsf_pid_type(struct perf_event *event,
670 u32 pid, enum pid_type type)
671 {
672 struct task_struct *tsk;
673
674 /* Idle process */
675 if (!pid)
676 goto out;
677
678 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
679 pid = -1;
680 if (tsk) {
681 /*
682 * Only top level events contain the pid namespace in which
683 * they are created.
684 */
685 if (event->parent)
686 event = event->parent;
687 pid = __task_pid_nr_ns(tsk, type, event->ns);
688 /*
689 * See also 1d953111b648
690 * "perf/core: Don't report zero PIDs for exiting tasks".
691 */
692 if (!pid && !pid_alive(tsk))
693 pid = -1;
694 }
695 out:
696 return pid;
697 }
698
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)699 static void cpumsf_output_event_pid(struct perf_event *event,
700 struct perf_sample_data *data,
701 struct pt_regs *regs)
702 {
703 u32 pid;
704 struct perf_event_header header;
705 struct perf_output_handle handle;
706
707 /*
708 * Obtain the PID from the basic-sampling data entry and
709 * correct the data->tid_entry.pid value.
710 */
711 pid = data->tid_entry.pid;
712
713 /* Protect callchain buffers, tasks */
714 rcu_read_lock();
715
716 perf_prepare_sample(data, event, regs);
717 perf_prepare_header(&header, data, event, regs);
718 if (perf_output_begin(&handle, data, event, header.size))
719 goto out;
720
721 /* Update the process ID (see also kernel/events/core.c) */
722 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
723 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
724
725 perf_output_sample(&handle, &header, data, event);
726 perf_output_end(&handle);
727 out:
728 rcu_read_unlock();
729 }
730
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)731 static unsigned long getrate(bool freq, unsigned long sample,
732 struct hws_qsi_info_block *si)
733 {
734 unsigned long rate;
735
736 if (freq) {
737 rate = freq_to_sample_rate(si, sample);
738 rate = hw_limit_rate(si, rate);
739 } else {
740 /* The min/max sampling rates specifies the valid range
741 * of sample periods. If the specified sample period is
742 * out of range, limit the period to the range boundary.
743 */
744 rate = hw_limit_rate(si, sample);
745
746 /* The perf core maintains a maximum sample rate that is
747 * configurable through the sysctl interface. Ensure the
748 * sampling rate does not exceed this value. This also helps
749 * to avoid throttling when pushing samples with
750 * perf_event_overflow().
751 */
752 if (sample_rate_to_freq(si, rate) >
753 sysctl_perf_event_sample_rate) {
754 debug_sprintf_event(sfdbg, 1, "%s: "
755 "Sampling rate exceeds maximum "
756 "perf sample rate\n", __func__);
757 rate = 0;
758 }
759 }
760 return rate;
761 }
762
763 /* The sampling information (si) contains information about the
764 * min/max sampling intervals and the CPU speed. So calculate the
765 * correct sampling interval and avoid the whole period adjust
766 * feedback loop.
767 *
768 * Since the CPU Measurement sampling facility can not handle frequency
769 * calculate the sampling interval when frequency is specified using
770 * this formula:
771 * interval := cpu_speed * 1000000 / sample_freq
772 *
773 * Returns errno on bad input and zero on success with parameter interval
774 * set to the correct sampling rate.
775 *
776 * Note: This function turns off freq bit to avoid calling function
777 * perf_adjust_period(). This causes frequency adjustment in the common
778 * code part which causes tremendous variations in the counter values.
779 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)780 static int __hw_perf_event_init_rate(struct perf_event *event,
781 struct hws_qsi_info_block *si)
782 {
783 struct perf_event_attr *attr = &event->attr;
784 struct hw_perf_event *hwc = &event->hw;
785 unsigned long rate;
786
787 if (attr->freq) {
788 if (!attr->sample_freq)
789 return -EINVAL;
790 rate = getrate(attr->freq, attr->sample_freq, si);
791 attr->freq = 0; /* Don't call perf_adjust_period() */
792 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
793 } else {
794 rate = getrate(attr->freq, attr->sample_period, si);
795 if (!rate)
796 return -EINVAL;
797 }
798 attr->sample_period = rate;
799 SAMPL_RATE(hwc) = rate;
800 hw_init_period(hwc, SAMPL_RATE(hwc));
801 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
802 __func__, event->cpu, event->attr.sample_period,
803 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
804 return 0;
805 }
806
__hw_perf_event_init(struct perf_event * event)807 static int __hw_perf_event_init(struct perf_event *event)
808 {
809 struct cpu_hw_sf *cpuhw;
810 struct hws_qsi_info_block si;
811 struct perf_event_attr *attr = &event->attr;
812 struct hw_perf_event *hwc = &event->hw;
813 int cpu, err;
814
815 /* Reserve CPU-measurement sampling facility */
816 err = 0;
817 if (!atomic_inc_not_zero(&num_events)) {
818 mutex_lock(&pmc_reserve_mutex);
819 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
820 err = -EBUSY;
821 else
822 atomic_inc(&num_events);
823 mutex_unlock(&pmc_reserve_mutex);
824 }
825 event->destroy = hw_perf_event_destroy;
826
827 if (err)
828 goto out;
829
830 /* Access per-CPU sampling information (query sampling info) */
831 /*
832 * The event->cpu value can be -1 to count on every CPU, for example,
833 * when attaching to a task. If this is specified, use the query
834 * sampling info from the current CPU, otherwise use event->cpu to
835 * retrieve the per-CPU information.
836 * Later, cpuhw indicates whether to allocate sampling buffers for a
837 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
838 */
839 memset(&si, 0, sizeof(si));
840 cpuhw = NULL;
841 if (event->cpu == -1)
842 qsi(&si);
843 else {
844 /* Event is pinned to a particular CPU, retrieve the per-CPU
845 * sampling structure for accessing the CPU-specific QSI.
846 */
847 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
848 si = cpuhw->qsi;
849 }
850
851 /* Check sampling facility authorization and, if not authorized,
852 * fall back to other PMUs. It is safe to check any CPU because
853 * the authorization is identical for all configured CPUs.
854 */
855 if (!si.as) {
856 err = -ENOENT;
857 goto out;
858 }
859
860 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
861 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
862 err = -EBUSY;
863 goto out;
864 }
865
866 /* Always enable basic sampling */
867 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
868
869 /* Check if diagnostic sampling is requested. Deny if the required
870 * sampling authorization is missing.
871 */
872 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
873 if (!si.ad) {
874 err = -EPERM;
875 goto out;
876 }
877 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
878 }
879
880 err = __hw_perf_event_init_rate(event, &si);
881 if (err)
882 goto out;
883
884 /* Initialize sample data overflow accounting */
885 hwc->extra_reg.reg = REG_OVERFLOW;
886 OVERFLOW_REG(hwc) = 0;
887
888 /* Use AUX buffer. No need to allocate it by ourself */
889 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
890 return 0;
891
892 /* Allocate the per-CPU sampling buffer using the CPU information
893 * from the event. If the event is not pinned to a particular
894 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
895 * buffers for each online CPU.
896 */
897 if (cpuhw)
898 /* Event is pinned to a particular CPU */
899 err = allocate_buffers(cpuhw, hwc);
900 else {
901 /* Event is not pinned, allocate sampling buffer on
902 * each online CPU
903 */
904 for_each_online_cpu(cpu) {
905 cpuhw = &per_cpu(cpu_hw_sf, cpu);
906 err = allocate_buffers(cpuhw, hwc);
907 if (err)
908 break;
909 }
910 }
911
912 /* If PID/TID sampling is active, replace the default overflow
913 * handler to extract and resolve the PIDs from the basic-sampling
914 * data entries.
915 */
916 if (event->attr.sample_type & PERF_SAMPLE_TID)
917 if (is_default_overflow_handler(event))
918 event->overflow_handler = cpumsf_output_event_pid;
919 out:
920 return err;
921 }
922
is_callchain_event(struct perf_event * event)923 static bool is_callchain_event(struct perf_event *event)
924 {
925 u64 sample_type = event->attr.sample_type;
926
927 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
928 PERF_SAMPLE_STACK_USER);
929 }
930
cpumsf_pmu_event_init(struct perf_event * event)931 static int cpumsf_pmu_event_init(struct perf_event *event)
932 {
933 int err;
934
935 /* No support for taken branch sampling */
936 /* No support for callchain, stacks and registers */
937 if (has_branch_stack(event) || is_callchain_event(event))
938 return -EOPNOTSUPP;
939
940 switch (event->attr.type) {
941 case PERF_TYPE_RAW:
942 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
943 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
944 return -ENOENT;
945 break;
946 case PERF_TYPE_HARDWARE:
947 /* Support sampling of CPU cycles in addition to the
948 * counter facility. However, the counter facility
949 * is more precise and, hence, restrict this PMU to
950 * sampling events only.
951 */
952 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
953 return -ENOENT;
954 if (!is_sampling_event(event))
955 return -ENOENT;
956 break;
957 default:
958 return -ENOENT;
959 }
960
961 /* Force reset of idle/hv excludes regardless of what the
962 * user requested.
963 */
964 if (event->attr.exclude_hv)
965 event->attr.exclude_hv = 0;
966 if (event->attr.exclude_idle)
967 event->attr.exclude_idle = 0;
968
969 err = __hw_perf_event_init(event);
970 if (unlikely(err))
971 if (event->destroy)
972 event->destroy(event);
973 return err;
974 }
975
cpumsf_pmu_enable(struct pmu * pmu)976 static void cpumsf_pmu_enable(struct pmu *pmu)
977 {
978 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
979 struct hw_perf_event *hwc;
980 int err;
981
982 if (cpuhw->flags & PMU_F_ENABLED)
983 return;
984
985 if (cpuhw->flags & PMU_F_ERR_MASK)
986 return;
987
988 /* Check whether to extent the sampling buffer.
989 *
990 * Two conditions trigger an increase of the sampling buffer for a
991 * perf event:
992 * 1. Postponed buffer allocations from the event initialization.
993 * 2. Sampling overflows that contribute to pending allocations.
994 *
995 * Note that the extend_sampling_buffer() function disables the sampling
996 * facility, but it can be fully re-enabled using sampling controls that
997 * have been saved in cpumsf_pmu_disable().
998 */
999 if (cpuhw->event) {
1000 hwc = &cpuhw->event->hw;
1001 if (!(SAMPL_DIAG_MODE(hwc))) {
1002 /*
1003 * Account number of overflow-designated
1004 * buffer extents
1005 */
1006 sfb_account_overflows(cpuhw, hwc);
1007 extend_sampling_buffer(&cpuhw->sfb, hwc);
1008 }
1009 /* Rate may be adjusted with ioctl() */
1010 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
1011 }
1012
1013 /* (Re)enable the PMU and sampling facility */
1014 cpuhw->flags |= PMU_F_ENABLED;
1015 barrier();
1016
1017 err = lsctl(&cpuhw->lsctl);
1018 if (err) {
1019 cpuhw->flags &= ~PMU_F_ENABLED;
1020 pr_err("Loading sampling controls failed: op 1 err %i\n", err);
1021 return;
1022 }
1023
1024 /* Load current program parameter */
1025 lpp(&S390_lowcore.lpp);
1026
1027 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
1028 "interval %#lx tear %#lx dear %#lx\n", __func__,
1029 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
1030 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
1031 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1032 }
1033
cpumsf_pmu_disable(struct pmu * pmu)1034 static void cpumsf_pmu_disable(struct pmu *pmu)
1035 {
1036 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1037 struct hws_lsctl_request_block inactive;
1038 struct hws_qsi_info_block si;
1039 int err;
1040
1041 if (!(cpuhw->flags & PMU_F_ENABLED))
1042 return;
1043
1044 if (cpuhw->flags & PMU_F_ERR_MASK)
1045 return;
1046
1047 /* Switch off sampling activation control */
1048 inactive = cpuhw->lsctl;
1049 inactive.cs = 0;
1050 inactive.cd = 0;
1051
1052 err = lsctl(&inactive);
1053 if (err) {
1054 pr_err("Loading sampling controls failed: op 2 err %i\n", err);
1055 return;
1056 }
1057
1058 /* Save state of TEAR and DEAR register contents */
1059 err = qsi(&si);
1060 if (!err) {
1061 /* TEAR/DEAR values are valid only if the sampling facility is
1062 * enabled. Note that cpumsf_pmu_disable() might be called even
1063 * for a disabled sampling facility because cpumsf_pmu_enable()
1064 * controls the enable/disable state.
1065 */
1066 if (si.es) {
1067 cpuhw->lsctl.tear = si.tear;
1068 cpuhw->lsctl.dear = si.dear;
1069 }
1070 } else
1071 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1072 __func__, err);
1073
1074 cpuhw->flags &= ~PMU_F_ENABLED;
1075 }
1076
1077 /* perf_exclude_event() - Filter event
1078 * @event: The perf event
1079 * @regs: pt_regs structure
1080 * @sde_regs: Sample-data-entry (sde) regs structure
1081 *
1082 * Filter perf events according to their exclude specification.
1083 *
1084 * Return non-zero if the event shall be excluded.
1085 */
perf_exclude_event(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)1086 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1087 struct perf_sf_sde_regs *sde_regs)
1088 {
1089 if (event->attr.exclude_user && user_mode(regs))
1090 return 1;
1091 if (event->attr.exclude_kernel && !user_mode(regs))
1092 return 1;
1093 if (event->attr.exclude_guest && sde_regs->in_guest)
1094 return 1;
1095 if (event->attr.exclude_host && !sde_regs->in_guest)
1096 return 1;
1097 return 0;
1098 }
1099
1100 /* perf_push_sample() - Push samples to perf
1101 * @event: The perf event
1102 * @sample: Hardware sample data
1103 *
1104 * Use the hardware sample data to create perf event sample. The sample
1105 * is the pushed to the event subsystem and the function checks for
1106 * possible event overflows. If an event overflow occurs, the PMU is
1107 * stopped.
1108 *
1109 * Return non-zero if an event overflow occurred.
1110 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1111 static int perf_push_sample(struct perf_event *event,
1112 struct hws_basic_entry *basic)
1113 {
1114 int overflow;
1115 struct pt_regs regs;
1116 struct perf_sf_sde_regs *sde_regs;
1117 struct perf_sample_data data;
1118
1119 /* Setup perf sample */
1120 perf_sample_data_init(&data, 0, event->hw.last_period);
1121
1122 /* Setup pt_regs to look like an CPU-measurement external interrupt
1123 * using the Program Request Alert code. The regs.int_parm_long
1124 * field which is unused contains additional sample-data-entry related
1125 * indicators.
1126 */
1127 memset(®s, 0, sizeof(regs));
1128 regs.int_code = 0x1407;
1129 regs.int_parm = CPU_MF_INT_SF_PRA;
1130 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1131
1132 psw_bits(regs.psw).ia = basic->ia;
1133 psw_bits(regs.psw).dat = basic->T;
1134 psw_bits(regs.psw).wait = basic->W;
1135 psw_bits(regs.psw).pstate = basic->P;
1136 psw_bits(regs.psw).as = basic->AS;
1137
1138 /*
1139 * Use the hardware provided configuration level to decide if the
1140 * sample belongs to a guest or host. If that is not available,
1141 * fall back to the following heuristics:
1142 * A non-zero guest program parameter always indicates a guest
1143 * sample. Some early samples or samples from guests without
1144 * lpp usage would be misaccounted to the host. We use the asn
1145 * value as an addon heuristic to detect most of these guest samples.
1146 * If the value differs from 0xffff (the host value), we assume to
1147 * be a KVM guest.
1148 */
1149 switch (basic->CL) {
1150 case 1: /* logical partition */
1151 sde_regs->in_guest = 0;
1152 break;
1153 case 2: /* virtual machine */
1154 sde_regs->in_guest = 1;
1155 break;
1156 default: /* old machine, use heuristics */
1157 if (basic->gpp || basic->prim_asn != 0xffff)
1158 sde_regs->in_guest = 1;
1159 break;
1160 }
1161
1162 /*
1163 * Store the PID value from the sample-data-entry to be
1164 * processed and resolved by cpumsf_output_event_pid().
1165 */
1166 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1167
1168 overflow = 0;
1169 if (perf_exclude_event(event, ®s, sde_regs))
1170 goto out;
1171 if (perf_event_overflow(event, &data, ®s)) {
1172 overflow = 1;
1173 event->pmu->stop(event, 0);
1174 }
1175 perf_event_update_userpage(event);
1176 out:
1177 return overflow;
1178 }
1179
perf_event_count_update(struct perf_event * event,u64 count)1180 static void perf_event_count_update(struct perf_event *event, u64 count)
1181 {
1182 local64_add(count, &event->count);
1183 }
1184
1185 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1186 * @event: The perf event
1187 * @sdbt: Sample-data-block table
1188 * @overflow: Event overflow counter
1189 *
1190 * Walks through a sample-data-block and collects sampling data entries that are
1191 * then pushed to the perf event subsystem. Depending on the sampling function,
1192 * there can be either basic-sampling or combined-sampling data entries. A
1193 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1194 * data entry. The sampling function is determined by the flags in the perf
1195 * event hardware structure. The function always works with a combined-sampling
1196 * data entry but ignores the the diagnostic portion if it is not available.
1197 *
1198 * Note that the implementation focuses on basic-sampling data entries and, if
1199 * such an entry is not valid, the entire combined-sampling data entry is
1200 * ignored.
1201 *
1202 * The overflow variables counts the number of samples that has been discarded
1203 * due to a perf event overflow.
1204 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1205 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1206 unsigned long long *overflow)
1207 {
1208 struct hws_trailer_entry *te;
1209 struct hws_basic_entry *sample;
1210
1211 te = trailer_entry_ptr((unsigned long)sdbt);
1212 sample = (struct hws_basic_entry *)sdbt;
1213 while ((unsigned long *)sample < (unsigned long *)te) {
1214 /* Check for an empty sample */
1215 if (!sample->def || sample->LS)
1216 break;
1217
1218 /* Update perf event period */
1219 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1220
1221 /* Check whether sample is valid */
1222 if (sample->def == 0x0001) {
1223 /* If an event overflow occurred, the PMU is stopped to
1224 * throttle event delivery. Remaining sample data is
1225 * discarded.
1226 */
1227 if (!*overflow) {
1228 /* Check whether sample is consistent */
1229 if (sample->I == 0 && sample->W == 0) {
1230 /* Deliver sample data to perf */
1231 *overflow = perf_push_sample(event,
1232 sample);
1233 }
1234 } else
1235 /* Count discarded samples */
1236 *overflow += 1;
1237 } else {
1238 debug_sprintf_event(sfdbg, 4,
1239 "%s: Found unknown"
1240 " sampling data entry: te->f %i"
1241 " basic.def %#4x (%p)\n", __func__,
1242 te->header.f, sample->def, sample);
1243 /* Sample slot is not yet written or other record.
1244 *
1245 * This condition can occur if the buffer was reused
1246 * from a combined basic- and diagnostic-sampling.
1247 * If only basic-sampling is then active, entries are
1248 * written into the larger diagnostic entries.
1249 * This is typically the case for sample-data-blocks
1250 * that are not full. Stop processing if the first
1251 * invalid format was detected.
1252 */
1253 if (!te->header.f)
1254 break;
1255 }
1256
1257 /* Reset sample slot and advance to next sample */
1258 sample->def = 0;
1259 sample++;
1260 }
1261 }
1262
1263 /* hw_perf_event_update() - Process sampling buffer
1264 * @event: The perf event
1265 * @flush_all: Flag to also flush partially filled sample-data-blocks
1266 *
1267 * Processes the sampling buffer and create perf event samples.
1268 * The sampling buffer position are retrieved and saved in the TEAR_REG
1269 * register of the specified perf event.
1270 *
1271 * Only full sample-data-blocks are processed. Specify the flush_all flag
1272 * to also walk through partially filled sample-data-blocks.
1273 */
hw_perf_event_update(struct perf_event * event,int flush_all)1274 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1275 {
1276 unsigned long long event_overflow, sampl_overflow, num_sdb;
1277 union hws_trailer_header old, prev, new;
1278 struct hw_perf_event *hwc = &event->hw;
1279 struct hws_trailer_entry *te;
1280 unsigned long *sdbt, sdb;
1281 int done;
1282
1283 /*
1284 * AUX buffer is used when in diagnostic sampling mode.
1285 * No perf events/samples are created.
1286 */
1287 if (SAMPL_DIAG_MODE(&event->hw))
1288 return;
1289
1290 sdbt = (unsigned long *)TEAR_REG(hwc);
1291 done = event_overflow = sampl_overflow = num_sdb = 0;
1292 while (!done) {
1293 /* Get the trailer entry of the sample-data-block */
1294 sdb = (unsigned long)phys_to_virt(*sdbt);
1295 te = trailer_entry_ptr(sdb);
1296
1297 /* Leave loop if no more work to do (block full indicator) */
1298 if (!te->header.f) {
1299 done = 1;
1300 if (!flush_all)
1301 break;
1302 }
1303
1304 /* Check the sample overflow count */
1305 if (te->header.overflow)
1306 /* Account sample overflows and, if a particular limit
1307 * is reached, extend the sampling buffer.
1308 * For details, see sfb_account_overflows().
1309 */
1310 sampl_overflow += te->header.overflow;
1311
1312 /* Timestamps are valid for full sample-data-blocks only */
1313 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx/%#lx "
1314 "overflow %llu timestamp %#llx\n",
1315 __func__, sdb, (unsigned long)sdbt,
1316 te->header.overflow,
1317 (te->header.f) ? trailer_timestamp(te) : 0ULL);
1318
1319 /* Collect all samples from a single sample-data-block and
1320 * flag if an (perf) event overflow happened. If so, the PMU
1321 * is stopped and remaining samples will be discarded.
1322 */
1323 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1324 num_sdb++;
1325
1326 /* Reset trailer (using compare-double-and-swap) */
1327 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1328 do {
1329 old.val = prev.val;
1330 new.val = prev.val;
1331 new.f = 0;
1332 new.a = 1;
1333 new.overflow = 0;
1334 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1335 } while (prev.val != old.val);
1336
1337 /* Advance to next sample-data-block */
1338 sdbt++;
1339 if (is_link_entry(sdbt))
1340 sdbt = get_next_sdbt(sdbt);
1341
1342 /* Update event hardware registers */
1343 TEAR_REG(hwc) = (unsigned long) sdbt;
1344
1345 /* Stop processing sample-data if all samples of the current
1346 * sample-data-block were flushed even if it was not full.
1347 */
1348 if (flush_all && done)
1349 break;
1350 }
1351
1352 /* Account sample overflows in the event hardware structure */
1353 if (sampl_overflow)
1354 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1355 sampl_overflow, 1 + num_sdb);
1356
1357 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1358 * the interrupt rate to an upper limit. Roughly 1000 samples per
1359 * task tick.
1360 * Hitting this limit results in a large number
1361 * of throttled REF_REPORT_THROTTLE entries and the samples
1362 * are dropped.
1363 * Slightly increase the interval to avoid hitting this limit.
1364 */
1365 if (event_overflow) {
1366 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1367 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1368 __func__,
1369 DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1370 }
1371
1372 if (sampl_overflow || event_overflow)
1373 debug_sprintf_event(sfdbg, 4, "%s: "
1374 "overflows: sample %llu event %llu"
1375 " total %llu num_sdb %llu\n",
1376 __func__, sampl_overflow, event_overflow,
1377 OVERFLOW_REG(hwc), num_sdb);
1378 }
1379
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1380 static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1381 unsigned long i)
1382 {
1383 return i % aux->sfb.num_sdb;
1384 }
1385
aux_sdb_num(unsigned long start,unsigned long end)1386 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1387 {
1388 return end >= start ? end - start + 1 : 0;
1389 }
1390
aux_sdb_num_alert(struct aux_buffer * aux)1391 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1392 {
1393 return aux_sdb_num(aux->head, aux->alert_mark);
1394 }
1395
aux_sdb_num_empty(struct aux_buffer * aux)1396 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1397 {
1398 return aux_sdb_num(aux->head, aux->empty_mark);
1399 }
1400
1401 /*
1402 * Get trailer entry by index of SDB.
1403 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1404 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1405 unsigned long index)
1406 {
1407 unsigned long sdb;
1408
1409 index = aux_sdb_index(aux, index);
1410 sdb = aux->sdb_index[index];
1411 return trailer_entry_ptr(sdb);
1412 }
1413
1414 /*
1415 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1416 * disabled. Collect the full SDBs in AUX buffer which have not reached
1417 * the point of alert indicator. And ignore the SDBs which are not
1418 * full.
1419 *
1420 * 1. Scan SDBs to see how much data is there and consume them.
1421 * 2. Remove alert indicator in the buffer.
1422 */
aux_output_end(struct perf_output_handle * handle)1423 static void aux_output_end(struct perf_output_handle *handle)
1424 {
1425 unsigned long i, range_scan, idx;
1426 struct aux_buffer *aux;
1427 struct hws_trailer_entry *te;
1428
1429 aux = perf_get_aux(handle);
1430 if (!aux)
1431 return;
1432
1433 range_scan = aux_sdb_num_alert(aux);
1434 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1435 te = aux_sdb_trailer(aux, idx);
1436 if (!te->header.f)
1437 break;
1438 }
1439 /* i is num of SDBs which are full */
1440 perf_aux_output_end(handle, i << PAGE_SHIFT);
1441
1442 /* Remove alert indicators in the buffer */
1443 te = aux_sdb_trailer(aux, aux->alert_mark);
1444 te->header.a = 0;
1445
1446 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1447 __func__, i, range_scan, aux->head);
1448 }
1449
1450 /*
1451 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1452 * is first added to the CPU or rescheduled again to the CPU. It is called
1453 * with pmu disabled.
1454 *
1455 * 1. Reset the trailer of SDBs to get ready for new data.
1456 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1457 * head(tear/dear).
1458 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1459 static int aux_output_begin(struct perf_output_handle *handle,
1460 struct aux_buffer *aux,
1461 struct cpu_hw_sf *cpuhw)
1462 {
1463 unsigned long range, i, range_scan, idx, head, base, offset;
1464 struct hws_trailer_entry *te;
1465
1466 if (handle->head & ~PAGE_MASK)
1467 return -EINVAL;
1468
1469 aux->head = handle->head >> PAGE_SHIFT;
1470 range = (handle->size + 1) >> PAGE_SHIFT;
1471 if (range <= 1)
1472 return -ENOMEM;
1473
1474 /*
1475 * SDBs between aux->head and aux->empty_mark are already ready
1476 * for new data. range_scan is num of SDBs not within them.
1477 */
1478 debug_sprintf_event(sfdbg, 6,
1479 "%s: range %ld head %ld alert %ld empty %ld\n",
1480 __func__, range, aux->head, aux->alert_mark,
1481 aux->empty_mark);
1482 if (range > aux_sdb_num_empty(aux)) {
1483 range_scan = range - aux_sdb_num_empty(aux);
1484 idx = aux->empty_mark + 1;
1485 for (i = 0; i < range_scan; i++, idx++) {
1486 te = aux_sdb_trailer(aux, idx);
1487 te->header.f = 0;
1488 te->header.a = 0;
1489 te->header.overflow = 0;
1490 }
1491 /* Save the position of empty SDBs */
1492 aux->empty_mark = aux->head + range - 1;
1493 }
1494
1495 /* Set alert indicator */
1496 aux->alert_mark = aux->head + range/2 - 1;
1497 te = aux_sdb_trailer(aux, aux->alert_mark);
1498 te->header.a = 1;
1499
1500 /* Reset hardware buffer head */
1501 head = aux_sdb_index(aux, aux->head);
1502 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1503 offset = head % CPUM_SF_SDB_PER_TABLE;
1504 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1505 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1506
1507 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1508 "index %ld tear %#lx dear %#lx\n", __func__,
1509 aux->head, aux->alert_mark, aux->empty_mark,
1510 head / CPUM_SF_SDB_PER_TABLE,
1511 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1512
1513 return 0;
1514 }
1515
1516 /*
1517 * Set alert indicator on SDB at index @alert_index while sampler is running.
1518 *
1519 * Return true if successfully.
1520 * Return false if full indicator is already set by hardware sampler.
1521 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1522 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1523 unsigned long long *overflow)
1524 {
1525 union hws_trailer_header old, prev, new;
1526 struct hws_trailer_entry *te;
1527
1528 te = aux_sdb_trailer(aux, alert_index);
1529 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1530 do {
1531 old.val = prev.val;
1532 new.val = prev.val;
1533 *overflow = old.overflow;
1534 if (old.f) {
1535 /*
1536 * SDB is already set by hardware.
1537 * Abort and try to set somewhere
1538 * behind.
1539 */
1540 return false;
1541 }
1542 new.a = 1;
1543 new.overflow = 0;
1544 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1545 } while (prev.val != old.val);
1546 return true;
1547 }
1548
1549 /*
1550 * aux_reset_buffer() - Scan and setup SDBs for new samples
1551 * @aux: The AUX buffer to set
1552 * @range: The range of SDBs to scan started from aux->head
1553 * @overflow: Set to overflow count
1554 *
1555 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1556 * marked as empty, check if it is already set full by the hardware sampler.
1557 * If yes, that means new data is already there before we can set an alert
1558 * indicator. Caller should try to set alert indicator to some position behind.
1559 *
1560 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1561 * previously and have already been consumed by user space. Reset these SDBs
1562 * (clear full indicator and alert indicator) for new data.
1563 * If aux->alert_mark fall in this area, just set it. Overflow count is
1564 * recorded while scanning.
1565 *
1566 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1567 * and ready for new samples. So scanning on this area could be skipped.
1568 *
1569 * Return true if alert indicator is set successfully and false if not.
1570 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1571 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1572 unsigned long long *overflow)
1573 {
1574 unsigned long i, range_scan, idx, idx_old;
1575 union hws_trailer_header old, prev, new;
1576 unsigned long long orig_overflow;
1577 struct hws_trailer_entry *te;
1578
1579 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1580 "empty %ld\n", __func__, range, aux->head,
1581 aux->alert_mark, aux->empty_mark);
1582 if (range <= aux_sdb_num_empty(aux))
1583 /*
1584 * No need to scan. All SDBs in range are marked as empty.
1585 * Just set alert indicator. Should check race with hardware
1586 * sampler.
1587 */
1588 return aux_set_alert(aux, aux->alert_mark, overflow);
1589
1590 if (aux->alert_mark <= aux->empty_mark)
1591 /*
1592 * Set alert indicator on empty SDB. Should check race
1593 * with hardware sampler.
1594 */
1595 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1596 return false;
1597
1598 /*
1599 * Scan the SDBs to clear full and alert indicator used previously.
1600 * Start scanning from one SDB behind empty_mark. If the new alert
1601 * indicator fall into this range, set it.
1602 */
1603 range_scan = range - aux_sdb_num_empty(aux);
1604 idx_old = idx = aux->empty_mark + 1;
1605 for (i = 0; i < range_scan; i++, idx++) {
1606 te = aux_sdb_trailer(aux, idx);
1607 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1608 do {
1609 old.val = prev.val;
1610 new.val = prev.val;
1611 orig_overflow = old.overflow;
1612 new.f = 0;
1613 new.overflow = 0;
1614 if (idx == aux->alert_mark)
1615 new.a = 1;
1616 else
1617 new.a = 0;
1618 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1619 } while (prev.val != old.val);
1620 *overflow += orig_overflow;
1621 }
1622
1623 /* Update empty_mark to new position */
1624 aux->empty_mark = aux->head + range - 1;
1625
1626 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1627 "empty %ld\n", __func__, range_scan, idx_old,
1628 idx - 1, aux->empty_mark);
1629 return true;
1630 }
1631
1632 /*
1633 * Measurement alert handler for diagnostic mode sampling.
1634 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1635 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1636 {
1637 struct aux_buffer *aux;
1638 int done = 0;
1639 unsigned long range = 0, size;
1640 unsigned long long overflow = 0;
1641 struct perf_output_handle *handle = &cpuhw->handle;
1642 unsigned long num_sdb;
1643
1644 aux = perf_get_aux(handle);
1645 if (!aux)
1646 return;
1647
1648 /* Inform user space new data arrived */
1649 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1650 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1651 size >> PAGE_SHIFT);
1652 perf_aux_output_end(handle, size);
1653
1654 num_sdb = aux->sfb.num_sdb;
1655 while (!done) {
1656 /* Get an output handle */
1657 aux = perf_aux_output_begin(handle, cpuhw->event);
1658 if (handle->size == 0) {
1659 pr_err("The AUX buffer with %lu pages for the "
1660 "diagnostic-sampling mode is full\n",
1661 num_sdb);
1662 break;
1663 }
1664 if (!aux)
1665 return;
1666
1667 /* Update head and alert_mark to new position */
1668 aux->head = handle->head >> PAGE_SHIFT;
1669 range = (handle->size + 1) >> PAGE_SHIFT;
1670 if (range == 1)
1671 aux->alert_mark = aux->head;
1672 else
1673 aux->alert_mark = aux->head + range/2 - 1;
1674
1675 if (aux_reset_buffer(aux, range, &overflow)) {
1676 if (!overflow) {
1677 done = 1;
1678 break;
1679 }
1680 size = range << PAGE_SHIFT;
1681 perf_aux_output_end(&cpuhw->handle, size);
1682 pr_err("Sample data caused the AUX buffer with %lu "
1683 "pages to overflow\n", aux->sfb.num_sdb);
1684 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1685 "overflow %lld\n", __func__,
1686 aux->head, range, overflow);
1687 } else {
1688 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1689 perf_aux_output_end(&cpuhw->handle, size);
1690 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1691 "already full, try another\n",
1692 __func__,
1693 aux->head, aux->alert_mark);
1694 }
1695 }
1696
1697 if (done)
1698 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1699 "empty %ld\n", __func__, aux->head,
1700 aux->alert_mark, aux->empty_mark);
1701 }
1702
1703 /*
1704 * Callback when freeing AUX buffers.
1705 */
aux_buffer_free(void * data)1706 static void aux_buffer_free(void *data)
1707 {
1708 struct aux_buffer *aux = data;
1709 unsigned long i, num_sdbt;
1710
1711 if (!aux)
1712 return;
1713
1714 /* Free SDBT. SDB is freed by the caller */
1715 num_sdbt = aux->sfb.num_sdbt;
1716 for (i = 0; i < num_sdbt; i++)
1717 free_page(aux->sdbt_index[i]);
1718
1719 kfree(aux->sdbt_index);
1720 kfree(aux->sdb_index);
1721 kfree(aux);
1722
1723 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1724 }
1725
aux_sdb_init(unsigned long sdb)1726 static void aux_sdb_init(unsigned long sdb)
1727 {
1728 struct hws_trailer_entry *te;
1729
1730 te = trailer_entry_ptr(sdb);
1731
1732 /* Save clock base */
1733 te->clock_base = 1;
1734 te->progusage2 = tod_clock_base.tod;
1735 }
1736
1737 /*
1738 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1739 * @event: Event the buffer is setup for, event->cpu == -1 means current
1740 * @pages: Array of pointers to buffer pages passed from perf core
1741 * @nr_pages: Total pages
1742 * @snapshot: Flag for snapshot mode
1743 *
1744 * This is the callback when setup an event using AUX buffer. Perf tool can
1745 * trigger this by an additional mmap() call on the event. Unlike the buffer
1746 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1747 * the task among online cpus when it is a per-thread event.
1748 *
1749 * Return the private AUX buffer structure if success or NULL if fails.
1750 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1751 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1752 int nr_pages, bool snapshot)
1753 {
1754 struct sf_buffer *sfb;
1755 struct aux_buffer *aux;
1756 unsigned long *new, *tail;
1757 int i, n_sdbt;
1758
1759 if (!nr_pages || !pages)
1760 return NULL;
1761
1762 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1763 pr_err("AUX buffer size (%i pages) is larger than the "
1764 "maximum sampling buffer limit\n",
1765 nr_pages);
1766 return NULL;
1767 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1768 pr_err("AUX buffer size (%i pages) is less than the "
1769 "minimum sampling buffer limit\n",
1770 nr_pages);
1771 return NULL;
1772 }
1773
1774 /* Allocate aux_buffer struct for the event */
1775 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1776 if (!aux)
1777 goto no_aux;
1778 sfb = &aux->sfb;
1779
1780 /* Allocate sdbt_index for fast reference */
1781 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1782 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1783 if (!aux->sdbt_index)
1784 goto no_sdbt_index;
1785
1786 /* Allocate sdb_index for fast reference */
1787 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1788 if (!aux->sdb_index)
1789 goto no_sdb_index;
1790
1791 /* Allocate the first SDBT */
1792 sfb->num_sdbt = 0;
1793 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1794 if (!sfb->sdbt)
1795 goto no_sdbt;
1796 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1797 tail = sfb->tail = sfb->sdbt;
1798
1799 /*
1800 * Link the provided pages of AUX buffer to SDBT.
1801 * Allocate SDBT if needed.
1802 */
1803 for (i = 0; i < nr_pages; i++, tail++) {
1804 if (require_table_link(tail)) {
1805 new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1806 if (!new)
1807 goto no_sdbt;
1808 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1809 /* Link current page to tail of chain */
1810 *tail = virt_to_phys(new) + 1;
1811 tail = new;
1812 }
1813 /* Tail is the entry in a SDBT */
1814 *tail = virt_to_phys(pages[i]);
1815 aux->sdb_index[i] = (unsigned long)pages[i];
1816 aux_sdb_init((unsigned long)pages[i]);
1817 }
1818 sfb->num_sdb = nr_pages;
1819
1820 /* Link the last entry in the SDBT to the first SDBT */
1821 *tail = virt_to_phys(sfb->sdbt) + 1;
1822 sfb->tail = tail;
1823
1824 /*
1825 * Initial all SDBs are zeroed. Mark it as empty.
1826 * So there is no need to clear the full indicator
1827 * when this event is first added.
1828 */
1829 aux->empty_mark = sfb->num_sdb - 1;
1830
1831 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1832 sfb->num_sdbt, sfb->num_sdb);
1833
1834 return aux;
1835
1836 no_sdbt:
1837 /* SDBs (AUX buffer pages) are freed by caller */
1838 for (i = 0; i < sfb->num_sdbt; i++)
1839 free_page(aux->sdbt_index[i]);
1840 kfree(aux->sdb_index);
1841 no_sdb_index:
1842 kfree(aux->sdbt_index);
1843 no_sdbt_index:
1844 kfree(aux);
1845 no_aux:
1846 return NULL;
1847 }
1848
cpumsf_pmu_read(struct perf_event * event)1849 static void cpumsf_pmu_read(struct perf_event *event)
1850 {
1851 /* Nothing to do ... updates are interrupt-driven */
1852 }
1853
1854 /* Check if the new sampling period/frequency is appropriate.
1855 *
1856 * Return non-zero on error and zero on passed checks.
1857 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1858 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1859 {
1860 struct hws_qsi_info_block si;
1861 unsigned long rate;
1862 bool do_freq;
1863
1864 memset(&si, 0, sizeof(si));
1865 if (event->cpu == -1) {
1866 if (qsi(&si))
1867 return -ENODEV;
1868 } else {
1869 /* Event is pinned to a particular CPU, retrieve the per-CPU
1870 * sampling structure for accessing the CPU-specific QSI.
1871 */
1872 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1873
1874 si = cpuhw->qsi;
1875 }
1876
1877 do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1878 rate = getrate(do_freq, value, &si);
1879 if (!rate)
1880 return -EINVAL;
1881
1882 event->attr.sample_period = rate;
1883 SAMPL_RATE(&event->hw) = rate;
1884 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1885 debug_sprintf_event(sfdbg, 4, "%s:"
1886 " cpu %d value %#llx period %#llx freq %d\n",
1887 __func__, event->cpu, value,
1888 event->attr.sample_period, do_freq);
1889 return 0;
1890 }
1891
1892 /* Activate sampling control.
1893 * Next call of pmu_enable() starts sampling.
1894 */
cpumsf_pmu_start(struct perf_event * event,int flags)1895 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1896 {
1897 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1898
1899 if (!(event->hw.state & PERF_HES_STOPPED))
1900 return;
1901 perf_pmu_disable(event->pmu);
1902 event->hw.state = 0;
1903 cpuhw->lsctl.cs = 1;
1904 if (SAMPL_DIAG_MODE(&event->hw))
1905 cpuhw->lsctl.cd = 1;
1906 perf_pmu_enable(event->pmu);
1907 }
1908
1909 /* Deactivate sampling control.
1910 * Next call of pmu_enable() stops sampling.
1911 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1912 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1913 {
1914 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1915
1916 if (event->hw.state & PERF_HES_STOPPED)
1917 return;
1918
1919 perf_pmu_disable(event->pmu);
1920 cpuhw->lsctl.cs = 0;
1921 cpuhw->lsctl.cd = 0;
1922 event->hw.state |= PERF_HES_STOPPED;
1923
1924 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1925 /* CPU hotplug off removes SDBs. No samples to extract. */
1926 if (cpuhw->flags & PMU_F_RESERVED)
1927 hw_perf_event_update(event, 1);
1928 event->hw.state |= PERF_HES_UPTODATE;
1929 }
1930 perf_pmu_enable(event->pmu);
1931 }
1932
cpumsf_pmu_add(struct perf_event * event,int flags)1933 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1934 {
1935 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1936 struct aux_buffer *aux;
1937 int err;
1938
1939 if (cpuhw->flags & PMU_F_IN_USE)
1940 return -EAGAIN;
1941
1942 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1943 return -EINVAL;
1944
1945 err = 0;
1946 perf_pmu_disable(event->pmu);
1947
1948 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1949
1950 /* Set up sampling controls. Always program the sampling register
1951 * using the SDB-table start. Reset TEAR_REG event hardware register
1952 * that is used by hw_perf_event_update() to store the sampling buffer
1953 * position after samples have been flushed.
1954 */
1955 cpuhw->lsctl.s = 0;
1956 cpuhw->lsctl.h = 1;
1957 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1958 if (!SAMPL_DIAG_MODE(&event->hw)) {
1959 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1960 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1961 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1962 }
1963
1964 /* Ensure sampling functions are in the disabled state. If disabled,
1965 * switch on sampling enable control. */
1966 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1967 err = -EAGAIN;
1968 goto out;
1969 }
1970 if (SAMPL_DIAG_MODE(&event->hw)) {
1971 aux = perf_aux_output_begin(&cpuhw->handle, event);
1972 if (!aux) {
1973 err = -EINVAL;
1974 goto out;
1975 }
1976 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1977 if (err)
1978 goto out;
1979 cpuhw->lsctl.ed = 1;
1980 }
1981 cpuhw->lsctl.es = 1;
1982
1983 /* Set in_use flag and store event */
1984 cpuhw->event = event;
1985 cpuhw->flags |= PMU_F_IN_USE;
1986
1987 if (flags & PERF_EF_START)
1988 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1989 out:
1990 perf_event_update_userpage(event);
1991 perf_pmu_enable(event->pmu);
1992 return err;
1993 }
1994
cpumsf_pmu_del(struct perf_event * event,int flags)1995 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1996 {
1997 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1998
1999 perf_pmu_disable(event->pmu);
2000 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
2001
2002 cpuhw->lsctl.es = 0;
2003 cpuhw->lsctl.ed = 0;
2004 cpuhw->flags &= ~PMU_F_IN_USE;
2005 cpuhw->event = NULL;
2006
2007 if (SAMPL_DIAG_MODE(&event->hw))
2008 aux_output_end(&cpuhw->handle);
2009 perf_event_update_userpage(event);
2010 perf_pmu_enable(event->pmu);
2011 }
2012
2013 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
2014 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
2015
2016 /* Attribute list for CPU_SF.
2017 *
2018 * The availablitiy depends on the CPU_MF sampling facility authorization
2019 * for basic + diagnositic samples. This is determined at initialization
2020 * time by the sampling facility device driver.
2021 * If the authorization for basic samples is turned off, it should be
2022 * also turned off for diagnostic sampling.
2023 *
2024 * During initialization of the device driver, check the authorization
2025 * level for diagnostic sampling and installs the attribute
2026 * file for diagnostic sampling if necessary.
2027 *
2028 * For now install a placeholder to reference all possible attributes:
2029 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
2030 * Add another entry for the final NULL pointer.
2031 */
2032 enum {
2033 SF_CYCLES_BASIC_ATTR_IDX = 0,
2034 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
2035 SF_CYCLES_ATTR_MAX
2036 };
2037
2038 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
2039 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
2040 };
2041
2042 PMU_FORMAT_ATTR(event, "config:0-63");
2043
2044 static struct attribute *cpumsf_pmu_format_attr[] = {
2045 &format_attr_event.attr,
2046 NULL,
2047 };
2048
2049 static struct attribute_group cpumsf_pmu_events_group = {
2050 .name = "events",
2051 .attrs = cpumsf_pmu_events_attr,
2052 };
2053
2054 static struct attribute_group cpumsf_pmu_format_group = {
2055 .name = "format",
2056 .attrs = cpumsf_pmu_format_attr,
2057 };
2058
2059 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2060 &cpumsf_pmu_events_group,
2061 &cpumsf_pmu_format_group,
2062 NULL,
2063 };
2064
2065 static struct pmu cpumf_sampling = {
2066 .pmu_enable = cpumsf_pmu_enable,
2067 .pmu_disable = cpumsf_pmu_disable,
2068
2069 .event_init = cpumsf_pmu_event_init,
2070 .add = cpumsf_pmu_add,
2071 .del = cpumsf_pmu_del,
2072
2073 .start = cpumsf_pmu_start,
2074 .stop = cpumsf_pmu_stop,
2075 .read = cpumsf_pmu_read,
2076
2077 .attr_groups = cpumsf_pmu_attr_groups,
2078
2079 .setup_aux = aux_buffer_setup,
2080 .free_aux = aux_buffer_free,
2081
2082 .check_period = cpumsf_pmu_check_period,
2083 };
2084
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)2085 static void cpumf_measurement_alert(struct ext_code ext_code,
2086 unsigned int alert, unsigned long unused)
2087 {
2088 struct cpu_hw_sf *cpuhw;
2089
2090 if (!(alert & CPU_MF_INT_SF_MASK))
2091 return;
2092 inc_irq_stat(IRQEXT_CMS);
2093 cpuhw = this_cpu_ptr(&cpu_hw_sf);
2094
2095 /* Measurement alerts are shared and might happen when the PMU
2096 * is not reserved. Ignore these alerts in this case. */
2097 if (!(cpuhw->flags & PMU_F_RESERVED))
2098 return;
2099
2100 /* The processing below must take care of multiple alert events that
2101 * might be indicated concurrently. */
2102
2103 /* Program alert request */
2104 if (alert & CPU_MF_INT_SF_PRA) {
2105 if (cpuhw->flags & PMU_F_IN_USE)
2106 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2107 hw_collect_aux(cpuhw);
2108 else
2109 hw_perf_event_update(cpuhw->event, 0);
2110 else
2111 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2112 }
2113
2114 /* Report measurement alerts only for non-PRA codes */
2115 if (alert != CPU_MF_INT_SF_PRA)
2116 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2117 alert);
2118
2119 /* Sampling authorization change request */
2120 if (alert & CPU_MF_INT_SF_SACA)
2121 qsi(&cpuhw->qsi);
2122
2123 /* Loss of sample data due to high-priority machine activities */
2124 if (alert & CPU_MF_INT_SF_LSDA) {
2125 pr_err("Sample data was lost\n");
2126 cpuhw->flags |= PMU_F_ERR_LSDA;
2127 sf_disable();
2128 }
2129
2130 /* Invalid sampling buffer entry */
2131 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2132 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2133 alert);
2134 cpuhw->flags |= PMU_F_ERR_IBE;
2135 sf_disable();
2136 }
2137 }
2138
cpusf_pmu_setup(unsigned int cpu,int flags)2139 static int cpusf_pmu_setup(unsigned int cpu, int flags)
2140 {
2141 /* Ignore the notification if no events are scheduled on the PMU.
2142 * This might be racy...
2143 */
2144 if (!atomic_read(&num_events))
2145 return 0;
2146
2147 local_irq_disable();
2148 setup_pmc_cpu(&flags);
2149 local_irq_enable();
2150 return 0;
2151 }
2152
s390_pmu_sf_online_cpu(unsigned int cpu)2153 static int s390_pmu_sf_online_cpu(unsigned int cpu)
2154 {
2155 return cpusf_pmu_setup(cpu, PMC_INIT);
2156 }
2157
s390_pmu_sf_offline_cpu(unsigned int cpu)2158 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2159 {
2160 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2161 }
2162
param_get_sfb_size(char * buffer,const struct kernel_param * kp)2163 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2164 {
2165 if (!cpum_sf_avail())
2166 return -ENODEV;
2167 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2168 }
2169
param_set_sfb_size(const char * val,const struct kernel_param * kp)2170 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2171 {
2172 int rc;
2173 unsigned long min, max;
2174
2175 if (!cpum_sf_avail())
2176 return -ENODEV;
2177 if (!val || !strlen(val))
2178 return -EINVAL;
2179
2180 /* Valid parameter values: "min,max" or "max" */
2181 min = CPUM_SF_MIN_SDB;
2182 max = CPUM_SF_MAX_SDB;
2183 if (strchr(val, ','))
2184 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2185 else
2186 rc = kstrtoul(val, 10, &max);
2187
2188 if (min < 2 || min >= max || max > get_num_physpages())
2189 rc = -EINVAL;
2190 if (rc)
2191 return rc;
2192
2193 sfb_set_limits(min, max);
2194 pr_info("The sampling buffer limits have changed to: "
2195 "min %lu max %lu (diag %lu)\n",
2196 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2197 return 0;
2198 }
2199
2200 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2201 static const struct kernel_param_ops param_ops_sfb_size = {
2202 .set = param_set_sfb_size,
2203 .get = param_get_sfb_size,
2204 };
2205
2206 #define RS_INIT_FAILURE_QSI 0x0001
2207 #define RS_INIT_FAILURE_BSDES 0x0002
2208 #define RS_INIT_FAILURE_ALRT 0x0003
2209 #define RS_INIT_FAILURE_PERF 0x0004
pr_cpumsf_err(unsigned int reason)2210 static void __init pr_cpumsf_err(unsigned int reason)
2211 {
2212 pr_err("Sampling facility support for perf is not available: "
2213 "reason %#x\n", reason);
2214 }
2215
init_cpum_sampling_pmu(void)2216 static int __init init_cpum_sampling_pmu(void)
2217 {
2218 struct hws_qsi_info_block si;
2219 int err;
2220
2221 if (!cpum_sf_avail())
2222 return -ENODEV;
2223
2224 memset(&si, 0, sizeof(si));
2225 if (qsi(&si)) {
2226 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2227 return -ENODEV;
2228 }
2229
2230 if (!si.as && !si.ad)
2231 return -ENODEV;
2232
2233 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2234 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2235 return -EINVAL;
2236 }
2237
2238 if (si.ad) {
2239 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2240 /* Sampling of diagnostic data authorized,
2241 * install event into attribute list of PMU device.
2242 */
2243 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2244 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2245 }
2246
2247 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2248 if (!sfdbg) {
2249 pr_err("Registering for s390dbf failed\n");
2250 return -ENOMEM;
2251 }
2252 debug_register_view(sfdbg, &debug_sprintf_view);
2253
2254 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2255 cpumf_measurement_alert);
2256 if (err) {
2257 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2258 debug_unregister(sfdbg);
2259 goto out;
2260 }
2261
2262 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2263 if (err) {
2264 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2265 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2266 cpumf_measurement_alert);
2267 debug_unregister(sfdbg);
2268 goto out;
2269 }
2270
2271 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2272 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2273 out:
2274 return err;
2275 }
2276
2277 arch_initcall(init_cpum_sampling_pmu);
2278 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2279