1 /*
2 * Bitops Module
3 *
4 * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
5 *
6 * Mostly inspired by (stolen from) linux/bitmap.h and linux/bitops.h
7 *
8 * This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
9 * See the COPYING.LIB file in the top-level directory.
10 */
11
12 #ifndef BITOPS_H
13 #define BITOPS_H
14
15
16 #include "host-utils.h"
17 #include "atomic.h"
18
19 #define BITS_PER_BYTE CHAR_BIT
20 #define BITS_PER_LONG (sizeof (unsigned long) * BITS_PER_BYTE)
21
22 #define BIT(nr) (1UL << (nr))
23 #define BIT_ULL(nr) (1ULL << (nr))
24 #define BIT_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
25 #define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
26 #define BITS_TO_LONGS(nr) DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
27
28 #define MAKE_64BIT_MASK(shift, length) \
29 (((~0ULL) >> (64 - (length))) << (shift))
30
31 /**
32 * set_bit - Set a bit in memory
33 * @nr: the bit to set
34 * @addr: the address to start counting from
35 */
set_bit(long nr,unsigned long * addr)36 static inline void set_bit(long nr, unsigned long *addr)
37 {
38 unsigned long mask = BIT_MASK(nr);
39 unsigned long *p = addr + BIT_WORD(nr);
40
41 *p |= mask;
42 }
43
44 /**
45 * set_bit_atomic - Set a bit in memory atomically
46 * @nr: the bit to set
47 * @addr: the address to start counting from
48 */
set_bit_atomic(long nr,unsigned long * addr)49 static inline void set_bit_atomic(long nr, unsigned long *addr)
50 {
51 unsigned long mask = BIT_MASK(nr);
52 unsigned long *p = addr + BIT_WORD(nr);
53
54 qatomic_or(p, mask);
55 }
56
57 /**
58 * clear_bit - Clears a bit in memory
59 * @nr: Bit to clear
60 * @addr: Address to start counting from
61 */
clear_bit(long nr,unsigned long * addr)62 static inline void clear_bit(long nr, unsigned long *addr)
63 {
64 unsigned long mask = BIT_MASK(nr);
65 unsigned long *p = addr + BIT_WORD(nr);
66
67 *p &= ~mask;
68 }
69
70 /**
71 * clear_bit_atomic - Clears a bit in memory atomically
72 * @nr: Bit to clear
73 * @addr: Address to start counting from
74 */
clear_bit_atomic(long nr,unsigned long * addr)75 static inline void clear_bit_atomic(long nr, unsigned long *addr)
76 {
77 unsigned long mask = BIT_MASK(nr);
78 unsigned long *p = addr + BIT_WORD(nr);
79
80 return qatomic_and(p, ~mask);
81 }
82
83 /**
84 * change_bit - Toggle a bit in memory
85 * @nr: Bit to change
86 * @addr: Address to start counting from
87 */
change_bit(long nr,unsigned long * addr)88 static inline void change_bit(long nr, unsigned long *addr)
89 {
90 unsigned long mask = BIT_MASK(nr);
91 unsigned long *p = addr + BIT_WORD(nr);
92
93 *p ^= mask;
94 }
95
96 /**
97 * test_and_set_bit - Set a bit and return its old value
98 * @nr: Bit to set
99 * @addr: Address to count from
100 */
test_and_set_bit(long nr,unsigned long * addr)101 static inline int test_and_set_bit(long nr, unsigned long *addr)
102 {
103 unsigned long mask = BIT_MASK(nr);
104 unsigned long *p = addr + BIT_WORD(nr);
105 unsigned long old = *p;
106
107 *p = old | mask;
108 return (old & mask) != 0;
109 }
110
111 /**
112 * test_and_clear_bit - Clear a bit and return its old value
113 * @nr: Bit to clear
114 * @addr: Address to count from
115 */
test_and_clear_bit(long nr,unsigned long * addr)116 static inline int test_and_clear_bit(long nr, unsigned long *addr)
117 {
118 unsigned long mask = BIT_MASK(nr);
119 unsigned long *p = addr + BIT_WORD(nr);
120 unsigned long old = *p;
121
122 *p = old & ~mask;
123 return (old & mask) != 0;
124 }
125
126 /**
127 * test_and_change_bit - Change a bit and return its old value
128 * @nr: Bit to change
129 * @addr: Address to count from
130 */
test_and_change_bit(long nr,unsigned long * addr)131 static inline int test_and_change_bit(long nr, unsigned long *addr)
132 {
133 unsigned long mask = BIT_MASK(nr);
134 unsigned long *p = addr + BIT_WORD(nr);
135 unsigned long old = *p;
136
137 *p = old ^ mask;
138 return (old & mask) != 0;
139 }
140
141 /**
142 * test_bit - Determine whether a bit is set
143 * @nr: bit number to test
144 * @addr: Address to start counting from
145 */
test_bit(long nr,const unsigned long * addr)146 static inline int test_bit(long nr, const unsigned long *addr)
147 {
148 return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
149 }
150
151 /**
152 * find_last_bit - find the last set bit in a memory region
153 * @addr: The address to start the search at
154 * @size: The maximum size to search
155 *
156 * Returns the bit number of the last set bit,
157 * or @size if there is no set bit in the bitmap.
158 */
159 unsigned long find_last_bit(const unsigned long *addr,
160 unsigned long size);
161
162 /**
163 * find_next_bit - find the next set bit in a memory region
164 * @addr: The address to base the search on
165 * @offset: The bitnumber to start searching at
166 * @size: The bitmap size in bits
167 *
168 * Returns the bit number of the next set bit,
169 * or @size if there are no further set bits in the bitmap.
170 */
171 unsigned long find_next_bit(const unsigned long *addr,
172 unsigned long size,
173 unsigned long offset);
174
175 /**
176 * find_next_zero_bit - find the next cleared bit in a memory region
177 * @addr: The address to base the search on
178 * @offset: The bitnumber to start searching at
179 * @size: The bitmap size in bits
180 *
181 * Returns the bit number of the next cleared bit,
182 * or @size if there are no further clear bits in the bitmap.
183 */
184
185 unsigned long find_next_zero_bit(const unsigned long *addr,
186 unsigned long size,
187 unsigned long offset);
188
189 /**
190 * find_first_bit - find the first set bit in a memory region
191 * @addr: The address to start the search at
192 * @size: The maximum size to search
193 *
194 * Returns the bit number of the first set bit,
195 * or @size if there is no set bit in the bitmap.
196 */
find_first_bit(const unsigned long * addr,unsigned long size)197 static inline unsigned long find_first_bit(const unsigned long *addr,
198 unsigned long size)
199 {
200 unsigned long result, tmp;
201
202 for (result = 0; result < size; result += BITS_PER_LONG) {
203 tmp = *addr++;
204 if (tmp) {
205 result += ctzl(tmp);
206 return result < size ? result : size;
207 }
208 }
209 /* Not found */
210 return size;
211 }
212
213 /**
214 * find_first_zero_bit - find the first cleared bit in a memory region
215 * @addr: The address to start the search at
216 * @size: The maximum size to search
217 *
218 * Returns the bit number of the first cleared bit,
219 * or @size if there is no clear bit in the bitmap.
220 */
find_first_zero_bit(const unsigned long * addr,unsigned long size)221 static inline unsigned long find_first_zero_bit(const unsigned long *addr,
222 unsigned long size)
223 {
224 return find_next_zero_bit(addr, size, 0);
225 }
226
227 /**
228 * rol8 - rotate an 8-bit value left
229 * @word: value to rotate
230 * @shift: bits to roll
231 */
rol8(uint8_t word,unsigned int shift)232 static inline uint8_t rol8(uint8_t word, unsigned int shift)
233 {
234 return (word << (shift & 7)) | (word >> (-shift & 7));
235 }
236
237 /**
238 * ror8 - rotate an 8-bit value right
239 * @word: value to rotate
240 * @shift: bits to roll
241 */
ror8(uint8_t word,unsigned int shift)242 static inline uint8_t ror8(uint8_t word, unsigned int shift)
243 {
244 return (word >> (shift & 7)) | (word << (-shift & 7));
245 }
246
247 /**
248 * rol16 - rotate a 16-bit value left
249 * @word: value to rotate
250 * @shift: bits to roll
251 */
rol16(uint16_t word,unsigned int shift)252 static inline uint16_t rol16(uint16_t word, unsigned int shift)
253 {
254 return (word << (shift & 15)) | (word >> (-shift & 15));
255 }
256
257 /**
258 * ror16 - rotate a 16-bit value right
259 * @word: value to rotate
260 * @shift: bits to roll
261 */
ror16(uint16_t word,unsigned int shift)262 static inline uint16_t ror16(uint16_t word, unsigned int shift)
263 {
264 return (word >> (shift & 15)) | (word << (-shift & 15));
265 }
266
267 /**
268 * rol32 - rotate a 32-bit value left
269 * @word: value to rotate
270 * @shift: bits to roll
271 */
rol32(uint32_t word,unsigned int shift)272 static inline uint32_t rol32(uint32_t word, unsigned int shift)
273 {
274 return (word << (shift & 31)) | (word >> (-shift & 31));
275 }
276
277 /**
278 * ror32 - rotate a 32-bit value right
279 * @word: value to rotate
280 * @shift: bits to roll
281 */
ror32(uint32_t word,unsigned int shift)282 static inline uint32_t ror32(uint32_t word, unsigned int shift)
283 {
284 return (word >> (shift & 31)) | (word << (-shift & 31));
285 }
286
287 /**
288 * rol64 - rotate a 64-bit value left
289 * @word: value to rotate
290 * @shift: bits to roll
291 */
rol64(uint64_t word,unsigned int shift)292 static inline uint64_t rol64(uint64_t word, unsigned int shift)
293 {
294 return (word << (shift & 63)) | (word >> (-shift & 63));
295 }
296
297 /**
298 * ror64 - rotate a 64-bit value right
299 * @word: value to rotate
300 * @shift: bits to roll
301 */
ror64(uint64_t word,unsigned int shift)302 static inline uint64_t ror64(uint64_t word, unsigned int shift)
303 {
304 return (word >> (shift & 63)) | (word << (-shift & 63));
305 }
306
307 /**
308 * hswap32 - swap 16-bit halfwords within a 32-bit value
309 * @h: value to swap
310 */
hswap32(uint32_t h)311 static inline uint32_t hswap32(uint32_t h)
312 {
313 return rol32(h, 16);
314 }
315
316 /**
317 * hswap64 - swap 16-bit halfwords within a 64-bit value
318 * @h: value to swap
319 */
hswap64(uint64_t h)320 static inline uint64_t hswap64(uint64_t h)
321 {
322 uint64_t m = 0x0000ffff0000ffffull;
323 h = rol64(h, 32);
324 return ((h & m) << 16) | ((h >> 16) & m);
325 }
326
327 /**
328 * wswap64 - swap 32-bit words within a 64-bit value
329 * @h: value to swap
330 */
wswap64(uint64_t h)331 static inline uint64_t wswap64(uint64_t h)
332 {
333 return rol64(h, 32);
334 }
335
336 /**
337 * extract32:
338 * @value: the value to extract the bit field from
339 * @start: the lowest bit in the bit field (numbered from 0)
340 * @length: the length of the bit field
341 *
342 * Extract from the 32 bit input @value the bit field specified by the
343 * @start and @length parameters, and return it. The bit field must
344 * lie entirely within the 32 bit word. It is valid to request that
345 * all 32 bits are returned (ie @length 32 and @start 0).
346 *
347 * Returns: the value of the bit field extracted from the input value.
348 */
extract32(uint32_t value,int start,int length)349 static inline uint32_t extract32(uint32_t value, int start, int length)
350 {
351 assert(start >= 0 && length > 0 && length <= 32 - start);
352 return (value >> start) & (~0U >> (32 - length));
353 }
354
355 /**
356 * extract8:
357 * @value: the value to extract the bit field from
358 * @start: the lowest bit in the bit field (numbered from 0)
359 * @length: the length of the bit field
360 *
361 * Extract from the 8 bit input @value the bit field specified by the
362 * @start and @length parameters, and return it. The bit field must
363 * lie entirely within the 8 bit word. It is valid to request that
364 * all 8 bits are returned (ie @length 8 and @start 0).
365 *
366 * Returns: the value of the bit field extracted from the input value.
367 */
extract8(uint8_t value,int start,int length)368 static inline uint8_t extract8(uint8_t value, int start, int length)
369 {
370 assert(start >= 0 && length > 0 && length <= 8 - start);
371 return extract32(value, start, length);
372 }
373
374 /**
375 * extract16:
376 * @value: the value to extract the bit field from
377 * @start: the lowest bit in the bit field (numbered from 0)
378 * @length: the length of the bit field
379 *
380 * Extract from the 16 bit input @value the bit field specified by the
381 * @start and @length parameters, and return it. The bit field must
382 * lie entirely within the 16 bit word. It is valid to request that
383 * all 16 bits are returned (ie @length 16 and @start 0).
384 *
385 * Returns: the value of the bit field extracted from the input value.
386 */
extract16(uint16_t value,int start,int length)387 static inline uint16_t extract16(uint16_t value, int start, int length)
388 {
389 assert(start >= 0 && length > 0 && length <= 16 - start);
390 return extract32(value, start, length);
391 }
392
393 /**
394 * extract64:
395 * @value: the value to extract the bit field from
396 * @start: the lowest bit in the bit field (numbered from 0)
397 * @length: the length of the bit field
398 *
399 * Extract from the 64 bit input @value the bit field specified by the
400 * @start and @length parameters, and return it. The bit field must
401 * lie entirely within the 64 bit word. It is valid to request that
402 * all 64 bits are returned (ie @length 64 and @start 0).
403 *
404 * Returns: the value of the bit field extracted from the input value.
405 */
extract64(uint64_t value,int start,int length)406 static inline uint64_t extract64(uint64_t value, int start, int length)
407 {
408 assert(start >= 0 && length > 0 && length <= 64 - start);
409 return (value >> start) & (~0ULL >> (64 - length));
410 }
411
412 /**
413 * sextract32:
414 * @value: the value to extract the bit field from
415 * @start: the lowest bit in the bit field (numbered from 0)
416 * @length: the length of the bit field
417 *
418 * Extract from the 32 bit input @value the bit field specified by the
419 * @start and @length parameters, and return it, sign extended to
420 * an int32_t (ie with the most significant bit of the field propagated
421 * to all the upper bits of the return value). The bit field must lie
422 * entirely within the 32 bit word. It is valid to request that
423 * all 32 bits are returned (ie @length 32 and @start 0).
424 *
425 * Returns: the sign extended value of the bit field extracted from the
426 * input value.
427 */
sextract32(uint32_t value,int start,int length)428 static inline int32_t sextract32(uint32_t value, int start, int length)
429 {
430 assert(start >= 0 && length > 0 && length <= 32 - start);
431 /* Note that this implementation relies on right shift of signed
432 * integers being an arithmetic shift.
433 */
434 return ((int32_t)(value << (32 - length - start))) >> (32 - length);
435 }
436
437 /**
438 * sextract64:
439 * @value: the value to extract the bit field from
440 * @start: the lowest bit in the bit field (numbered from 0)
441 * @length: the length of the bit field
442 *
443 * Extract from the 64 bit input @value the bit field specified by the
444 * @start and @length parameters, and return it, sign extended to
445 * an int64_t (ie with the most significant bit of the field propagated
446 * to all the upper bits of the return value). The bit field must lie
447 * entirely within the 64 bit word. It is valid to request that
448 * all 64 bits are returned (ie @length 64 and @start 0).
449 *
450 * Returns: the sign extended value of the bit field extracted from the
451 * input value.
452 */
sextract64(uint64_t value,int start,int length)453 static inline int64_t sextract64(uint64_t value, int start, int length)
454 {
455 assert(start >= 0 && length > 0 && length <= 64 - start);
456 /* Note that this implementation relies on right shift of signed
457 * integers being an arithmetic shift.
458 */
459 return ((int64_t)(value << (64 - length - start))) >> (64 - length);
460 }
461
462 /**
463 * deposit32:
464 * @value: initial value to insert bit field into
465 * @start: the lowest bit in the bit field (numbered from 0)
466 * @length: the length of the bit field
467 * @fieldval: the value to insert into the bit field
468 *
469 * Deposit @fieldval into the 32 bit @value at the bit field specified
470 * by the @start and @length parameters, and return the modified
471 * @value. Bits of @value outside the bit field are not modified.
472 * Bits of @fieldval above the least significant @length bits are
473 * ignored. The bit field must lie entirely within the 32 bit word.
474 * It is valid to request that all 32 bits are modified (ie @length
475 * 32 and @start 0).
476 *
477 * Returns: the modified @value.
478 */
deposit32(uint32_t value,int start,int length,uint32_t fieldval)479 static inline uint32_t deposit32(uint32_t value, int start, int length,
480 uint32_t fieldval)
481 {
482 uint32_t mask;
483 assert(start >= 0 && length > 0 && length <= 32 - start);
484 mask = (~0U >> (32 - length)) << start;
485 return (value & ~mask) | ((fieldval << start) & mask);
486 }
487
488 /**
489 * deposit64:
490 * @value: initial value to insert bit field into
491 * @start: the lowest bit in the bit field (numbered from 0)
492 * @length: the length of the bit field
493 * @fieldval: the value to insert into the bit field
494 *
495 * Deposit @fieldval into the 64 bit @value at the bit field specified
496 * by the @start and @length parameters, and return the modified
497 * @value. Bits of @value outside the bit field are not modified.
498 * Bits of @fieldval above the least significant @length bits are
499 * ignored. The bit field must lie entirely within the 64 bit word.
500 * It is valid to request that all 64 bits are modified (ie @length
501 * 64 and @start 0).
502 *
503 * Returns: the modified @value.
504 */
deposit64(uint64_t value,int start,int length,uint64_t fieldval)505 static inline uint64_t deposit64(uint64_t value, int start, int length,
506 uint64_t fieldval)
507 {
508 uint64_t mask;
509 assert(start >= 0 && length > 0 && length <= 64 - start);
510 mask = (~0ULL >> (64 - length)) << start;
511 return (value & ~mask) | ((fieldval << start) & mask);
512 }
513
514 /**
515 * half_shuffle32:
516 * @x: 32-bit value (of which only the bottom 16 bits are of interest)
517 *
518 * Given an input value::
519 *
520 * xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP
521 *
522 * return the value where the bottom 16 bits are spread out into
523 * the odd bits in the word, and the even bits are zeroed::
524 *
525 * 0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
526 *
527 * Any bits set in the top half of the input are ignored.
528 *
529 * Returns: the shuffled bits.
530 */
half_shuffle32(uint32_t x)531 static inline uint32_t half_shuffle32(uint32_t x)
532 {
533 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
534 * It ignores any bits set in the top half of the input.
535 */
536 x = ((x & 0xFF00) << 8) | (x & 0x00FF);
537 x = ((x << 4) | x) & 0x0F0F0F0F;
538 x = ((x << 2) | x) & 0x33333333;
539 x = ((x << 1) | x) & 0x55555555;
540 return x;
541 }
542
543 /**
544 * half_shuffle64:
545 * @x: 64-bit value (of which only the bottom 32 bits are of interest)
546 *
547 * Given an input value::
548 *
549 * xxxx xxxx xxxx .... xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
550 *
551 * return the value where the bottom 32 bits are spread out into
552 * the odd bits in the word, and the even bits are zeroed::
553 *
554 * 0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N .... 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f
555 *
556 * Any bits set in the top half of the input are ignored.
557 *
558 * Returns: the shuffled bits.
559 */
half_shuffle64(uint64_t x)560 static inline uint64_t half_shuffle64(uint64_t x)
561 {
562 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
563 * It ignores any bits set in the top half of the input.
564 */
565 x = ((x & 0xFFFF0000ULL) << 16) | (x & 0xFFFF);
566 x = ((x << 8) | x) & 0x00FF00FF00FF00FFULL;
567 x = ((x << 4) | x) & 0x0F0F0F0F0F0F0F0FULL;
568 x = ((x << 2) | x) & 0x3333333333333333ULL;
569 x = ((x << 1) | x) & 0x5555555555555555ULL;
570 return x;
571 }
572
573 /**
574 * half_unshuffle32:
575 * @x: 32-bit value (of which only the odd bits are of interest)
576 *
577 * Given an input value::
578 *
579 * xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP
580 *
581 * return the value where all the odd bits are compressed down
582 * into the low half of the word, and the high half is zeroed::
583 *
584 * 0000 0000 0000 0000 ABCD EFGH IJKL MNOP
585 *
586 * Any even bits set in the input are ignored.
587 *
588 * Returns: the unshuffled bits.
589 */
half_unshuffle32(uint32_t x)590 static inline uint32_t half_unshuffle32(uint32_t x)
591 {
592 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
593 * where it is called an inverse half shuffle.
594 */
595 x &= 0x55555555;
596 x = ((x >> 1) | x) & 0x33333333;
597 x = ((x >> 2) | x) & 0x0F0F0F0F;
598 x = ((x >> 4) | x) & 0x00FF00FF;
599 x = ((x >> 8) | x) & 0x0000FFFF;
600 return x;
601 }
602
603 /**
604 * half_unshuffle64:
605 * @x: 64-bit value (of which only the odd bits are of interest)
606 *
607 * Given an input value::
608 *
609 * xAxB xCxD xExF xGxH xIxJ xKxL xMxN .... xUxV xWxX xYxZ xaxb xcxd xexf
610 *
611 * return the value where all the odd bits are compressed down
612 * into the low half of the word, and the high half is zeroed::
613 *
614 * 0000 0000 0000 .... 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
615 *
616 * Any even bits set in the input are ignored.
617 *
618 * Returns: the unshuffled bits.
619 */
half_unshuffle64(uint64_t x)620 static inline uint64_t half_unshuffle64(uint64_t x)
621 {
622 /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
623 * where it is called an inverse half shuffle.
624 */
625 x &= 0x5555555555555555ULL;
626 x = ((x >> 1) | x) & 0x3333333333333333ULL;
627 x = ((x >> 2) | x) & 0x0F0F0F0F0F0F0F0FULL;
628 x = ((x >> 4) | x) & 0x00FF00FF00FF00FFULL;
629 x = ((x >> 8) | x) & 0x0000FFFF0000FFFFULL;
630 x = ((x >> 16) | x) & 0x00000000FFFFFFFFULL;
631 return x;
632 }
633
634 #endif
635