xref: /openbmc/linux/kernel/sys.c (revision 36db6e8484ed455bbb320d89a119378897ae991c)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/kernel/sys.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  #include <linux/export.h>
9  #include <linux/mm.h>
10  #include <linux/mm_inline.h>
11  #include <linux/utsname.h>
12  #include <linux/mman.h>
13  #include <linux/reboot.h>
14  #include <linux/prctl.h>
15  #include <linux/highuid.h>
16  #include <linux/fs.h>
17  #include <linux/kmod.h>
18  #include <linux/ksm.h>
19  #include <linux/perf_event.h>
20  #include <linux/resource.h>
21  #include <linux/kernel.h>
22  #include <linux/workqueue.h>
23  #include <linux/capability.h>
24  #include <linux/device.h>
25  #include <linux/key.h>
26  #include <linux/times.h>
27  #include <linux/posix-timers.h>
28  #include <linux/security.h>
29  #include <linux/random.h>
30  #include <linux/suspend.h>
31  #include <linux/tty.h>
32  #include <linux/signal.h>
33  #include <linux/cn_proc.h>
34  #include <linux/getcpu.h>
35  #include <linux/task_io_accounting_ops.h>
36  #include <linux/seccomp.h>
37  #include <linux/cpu.h>
38  #include <linux/personality.h>
39  #include <linux/ptrace.h>
40  #include <linux/fs_struct.h>
41  #include <linux/file.h>
42  #include <linux/mount.h>
43  #include <linux/gfp.h>
44  #include <linux/syscore_ops.h>
45  #include <linux/version.h>
46  #include <linux/ctype.h>
47  #include <linux/syscall_user_dispatch.h>
48  
49  #include <linux/compat.h>
50  #include <linux/syscalls.h>
51  #include <linux/kprobes.h>
52  #include <linux/user_namespace.h>
53  #include <linux/time_namespace.h>
54  #include <linux/binfmts.h>
55  
56  #include <linux/sched.h>
57  #include <linux/sched/autogroup.h>
58  #include <linux/sched/loadavg.h>
59  #include <linux/sched/stat.h>
60  #include <linux/sched/mm.h>
61  #include <linux/sched/coredump.h>
62  #include <linux/sched/task.h>
63  #include <linux/sched/cputime.h>
64  #include <linux/rcupdate.h>
65  #include <linux/uidgid.h>
66  #include <linux/cred.h>
67  
68  #include <linux/nospec.h>
69  
70  #include <linux/kmsg_dump.h>
71  /* Move somewhere else to avoid recompiling? */
72  #include <generated/utsrelease.h>
73  
74  #include <linux/uaccess.h>
75  #include <asm/io.h>
76  #include <asm/unistd.h>
77  
78  #include "uid16.h"
79  
80  #ifndef SET_UNALIGN_CTL
81  # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
82  #endif
83  #ifndef GET_UNALIGN_CTL
84  # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
85  #endif
86  #ifndef SET_FPEMU_CTL
87  # define SET_FPEMU_CTL(a, b)	(-EINVAL)
88  #endif
89  #ifndef GET_FPEMU_CTL
90  # define GET_FPEMU_CTL(a, b)	(-EINVAL)
91  #endif
92  #ifndef SET_FPEXC_CTL
93  # define SET_FPEXC_CTL(a, b)	(-EINVAL)
94  #endif
95  #ifndef GET_FPEXC_CTL
96  # define GET_FPEXC_CTL(a, b)	(-EINVAL)
97  #endif
98  #ifndef GET_ENDIAN
99  # define GET_ENDIAN(a, b)	(-EINVAL)
100  #endif
101  #ifndef SET_ENDIAN
102  # define SET_ENDIAN(a, b)	(-EINVAL)
103  #endif
104  #ifndef GET_TSC_CTL
105  # define GET_TSC_CTL(a)		(-EINVAL)
106  #endif
107  #ifndef SET_TSC_CTL
108  # define SET_TSC_CTL(a)		(-EINVAL)
109  #endif
110  #ifndef GET_FP_MODE
111  # define GET_FP_MODE(a)		(-EINVAL)
112  #endif
113  #ifndef SET_FP_MODE
114  # define SET_FP_MODE(a,b)	(-EINVAL)
115  #endif
116  #ifndef SVE_SET_VL
117  # define SVE_SET_VL(a)		(-EINVAL)
118  #endif
119  #ifndef SVE_GET_VL
120  # define SVE_GET_VL()		(-EINVAL)
121  #endif
122  #ifndef SME_SET_VL
123  # define SME_SET_VL(a)		(-EINVAL)
124  #endif
125  #ifndef SME_GET_VL
126  # define SME_GET_VL()		(-EINVAL)
127  #endif
128  #ifndef PAC_RESET_KEYS
129  # define PAC_RESET_KEYS(a, b)	(-EINVAL)
130  #endif
131  #ifndef PAC_SET_ENABLED_KEYS
132  # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
133  #endif
134  #ifndef PAC_GET_ENABLED_KEYS
135  # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
136  #endif
137  #ifndef SET_TAGGED_ADDR_CTRL
138  # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
139  #endif
140  #ifndef GET_TAGGED_ADDR_CTRL
141  # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
142  #endif
143  #ifndef RISCV_V_SET_CONTROL
144  # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
145  #endif
146  #ifndef RISCV_V_GET_CONTROL
147  # define RISCV_V_GET_CONTROL()		(-EINVAL)
148  #endif
149  
150  /*
151   * this is where the system-wide overflow UID and GID are defined, for
152   * architectures that now have 32-bit UID/GID but didn't in the past
153   */
154  
155  int overflowuid = DEFAULT_OVERFLOWUID;
156  int overflowgid = DEFAULT_OVERFLOWGID;
157  
158  EXPORT_SYMBOL(overflowuid);
159  EXPORT_SYMBOL(overflowgid);
160  
161  /*
162   * the same as above, but for filesystems which can only store a 16-bit
163   * UID and GID. as such, this is needed on all architectures
164   */
165  
166  int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167  int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
168  
169  EXPORT_SYMBOL(fs_overflowuid);
170  EXPORT_SYMBOL(fs_overflowgid);
171  
172  /*
173   * Returns true if current's euid is same as p's uid or euid,
174   * or has CAP_SYS_NICE to p's user_ns.
175   *
176   * Called with rcu_read_lock, creds are safe
177   */
set_one_prio_perm(struct task_struct * p)178  static bool set_one_prio_perm(struct task_struct *p)
179  {
180  	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
181  
182  	if (uid_eq(pcred->uid,  cred->euid) ||
183  	    uid_eq(pcred->euid, cred->euid))
184  		return true;
185  	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
186  		return true;
187  	return false;
188  }
189  
190  /*
191   * set the priority of a task
192   * - the caller must hold the RCU read lock
193   */
set_one_prio(struct task_struct * p,int niceval,int error)194  static int set_one_prio(struct task_struct *p, int niceval, int error)
195  {
196  	int no_nice;
197  
198  	if (!set_one_prio_perm(p)) {
199  		error = -EPERM;
200  		goto out;
201  	}
202  	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
203  		error = -EACCES;
204  		goto out;
205  	}
206  	no_nice = security_task_setnice(p, niceval);
207  	if (no_nice) {
208  		error = no_nice;
209  		goto out;
210  	}
211  	if (error == -ESRCH)
212  		error = 0;
213  	set_user_nice(p, niceval);
214  out:
215  	return error;
216  }
217  
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)218  SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
219  {
220  	struct task_struct *g, *p;
221  	struct user_struct *user;
222  	const struct cred *cred = current_cred();
223  	int error = -EINVAL;
224  	struct pid *pgrp;
225  	kuid_t uid;
226  
227  	if (which > PRIO_USER || which < PRIO_PROCESS)
228  		goto out;
229  
230  	/* normalize: avoid signed division (rounding problems) */
231  	error = -ESRCH;
232  	if (niceval < MIN_NICE)
233  		niceval = MIN_NICE;
234  	if (niceval > MAX_NICE)
235  		niceval = MAX_NICE;
236  
237  	rcu_read_lock();
238  	switch (which) {
239  	case PRIO_PROCESS:
240  		if (who)
241  			p = find_task_by_vpid(who);
242  		else
243  			p = current;
244  		if (p)
245  			error = set_one_prio(p, niceval, error);
246  		break;
247  	case PRIO_PGRP:
248  		if (who)
249  			pgrp = find_vpid(who);
250  		else
251  			pgrp = task_pgrp(current);
252  		read_lock(&tasklist_lock);
253  		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254  			error = set_one_prio(p, niceval, error);
255  		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256  		read_unlock(&tasklist_lock);
257  		break;
258  	case PRIO_USER:
259  		uid = make_kuid(cred->user_ns, who);
260  		user = cred->user;
261  		if (!who)
262  			uid = cred->uid;
263  		else if (!uid_eq(uid, cred->uid)) {
264  			user = find_user(uid);
265  			if (!user)
266  				goto out_unlock;	/* No processes for this user */
267  		}
268  		for_each_process_thread(g, p) {
269  			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270  				error = set_one_prio(p, niceval, error);
271  		}
272  		if (!uid_eq(uid, cred->uid))
273  			free_uid(user);		/* For find_user() */
274  		break;
275  	}
276  out_unlock:
277  	rcu_read_unlock();
278  out:
279  	return error;
280  }
281  
282  /*
283   * Ugh. To avoid negative return values, "getpriority()" will
284   * not return the normal nice-value, but a negated value that
285   * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286   * to stay compatible.
287   */
SYSCALL_DEFINE2(getpriority,int,which,int,who)288  SYSCALL_DEFINE2(getpriority, int, which, int, who)
289  {
290  	struct task_struct *g, *p;
291  	struct user_struct *user;
292  	const struct cred *cred = current_cred();
293  	long niceval, retval = -ESRCH;
294  	struct pid *pgrp;
295  	kuid_t uid;
296  
297  	if (which > PRIO_USER || which < PRIO_PROCESS)
298  		return -EINVAL;
299  
300  	rcu_read_lock();
301  	switch (which) {
302  	case PRIO_PROCESS:
303  		if (who)
304  			p = find_task_by_vpid(who);
305  		else
306  			p = current;
307  		if (p) {
308  			niceval = nice_to_rlimit(task_nice(p));
309  			if (niceval > retval)
310  				retval = niceval;
311  		}
312  		break;
313  	case PRIO_PGRP:
314  		if (who)
315  			pgrp = find_vpid(who);
316  		else
317  			pgrp = task_pgrp(current);
318  		read_lock(&tasklist_lock);
319  		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320  			niceval = nice_to_rlimit(task_nice(p));
321  			if (niceval > retval)
322  				retval = niceval;
323  		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324  		read_unlock(&tasklist_lock);
325  		break;
326  	case PRIO_USER:
327  		uid = make_kuid(cred->user_ns, who);
328  		user = cred->user;
329  		if (!who)
330  			uid = cred->uid;
331  		else if (!uid_eq(uid, cred->uid)) {
332  			user = find_user(uid);
333  			if (!user)
334  				goto out_unlock;	/* No processes for this user */
335  		}
336  		for_each_process_thread(g, p) {
337  			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338  				niceval = nice_to_rlimit(task_nice(p));
339  				if (niceval > retval)
340  					retval = niceval;
341  			}
342  		}
343  		if (!uid_eq(uid, cred->uid))
344  			free_uid(user);		/* for find_user() */
345  		break;
346  	}
347  out_unlock:
348  	rcu_read_unlock();
349  
350  	return retval;
351  }
352  
353  /*
354   * Unprivileged users may change the real gid to the effective gid
355   * or vice versa.  (BSD-style)
356   *
357   * If you set the real gid at all, or set the effective gid to a value not
358   * equal to the real gid, then the saved gid is set to the new effective gid.
359   *
360   * This makes it possible for a setgid program to completely drop its
361   * privileges, which is often a useful assertion to make when you are doing
362   * a security audit over a program.
363   *
364   * The general idea is that a program which uses just setregid() will be
365   * 100% compatible with BSD.  A program which uses just setgid() will be
366   * 100% compatible with POSIX with saved IDs.
367   *
368   * SMP: There are not races, the GIDs are checked only by filesystem
369   *      operations (as far as semantic preservation is concerned).
370   */
371  #ifdef CONFIG_MULTIUSER
__sys_setregid(gid_t rgid,gid_t egid)372  long __sys_setregid(gid_t rgid, gid_t egid)
373  {
374  	struct user_namespace *ns = current_user_ns();
375  	const struct cred *old;
376  	struct cred *new;
377  	int retval;
378  	kgid_t krgid, kegid;
379  
380  	krgid = make_kgid(ns, rgid);
381  	kegid = make_kgid(ns, egid);
382  
383  	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
384  		return -EINVAL;
385  	if ((egid != (gid_t) -1) && !gid_valid(kegid))
386  		return -EINVAL;
387  
388  	new = prepare_creds();
389  	if (!new)
390  		return -ENOMEM;
391  	old = current_cred();
392  
393  	retval = -EPERM;
394  	if (rgid != (gid_t) -1) {
395  		if (gid_eq(old->gid, krgid) ||
396  		    gid_eq(old->egid, krgid) ||
397  		    ns_capable_setid(old->user_ns, CAP_SETGID))
398  			new->gid = krgid;
399  		else
400  			goto error;
401  	}
402  	if (egid != (gid_t) -1) {
403  		if (gid_eq(old->gid, kegid) ||
404  		    gid_eq(old->egid, kegid) ||
405  		    gid_eq(old->sgid, kegid) ||
406  		    ns_capable_setid(old->user_ns, CAP_SETGID))
407  			new->egid = kegid;
408  		else
409  			goto error;
410  	}
411  
412  	if (rgid != (gid_t) -1 ||
413  	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414  		new->sgid = new->egid;
415  	new->fsgid = new->egid;
416  
417  	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
418  	if (retval < 0)
419  		goto error;
420  
421  	return commit_creds(new);
422  
423  error:
424  	abort_creds(new);
425  	return retval;
426  }
427  
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)428  SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
429  {
430  	return __sys_setregid(rgid, egid);
431  }
432  
433  /*
434   * setgid() is implemented like SysV w/ SAVED_IDS
435   *
436   * SMP: Same implicit races as above.
437   */
__sys_setgid(gid_t gid)438  long __sys_setgid(gid_t gid)
439  {
440  	struct user_namespace *ns = current_user_ns();
441  	const struct cred *old;
442  	struct cred *new;
443  	int retval;
444  	kgid_t kgid;
445  
446  	kgid = make_kgid(ns, gid);
447  	if (!gid_valid(kgid))
448  		return -EINVAL;
449  
450  	new = prepare_creds();
451  	if (!new)
452  		return -ENOMEM;
453  	old = current_cred();
454  
455  	retval = -EPERM;
456  	if (ns_capable_setid(old->user_ns, CAP_SETGID))
457  		new->gid = new->egid = new->sgid = new->fsgid = kgid;
458  	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459  		new->egid = new->fsgid = kgid;
460  	else
461  		goto error;
462  
463  	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
464  	if (retval < 0)
465  		goto error;
466  
467  	return commit_creds(new);
468  
469  error:
470  	abort_creds(new);
471  	return retval;
472  }
473  
SYSCALL_DEFINE1(setgid,gid_t,gid)474  SYSCALL_DEFINE1(setgid, gid_t, gid)
475  {
476  	return __sys_setgid(gid);
477  }
478  
479  /*
480   * change the user struct in a credentials set to match the new UID
481   */
set_user(struct cred * new)482  static int set_user(struct cred *new)
483  {
484  	struct user_struct *new_user;
485  
486  	new_user = alloc_uid(new->uid);
487  	if (!new_user)
488  		return -EAGAIN;
489  
490  	free_uid(new->user);
491  	new->user = new_user;
492  	return 0;
493  }
494  
flag_nproc_exceeded(struct cred * new)495  static void flag_nproc_exceeded(struct cred *new)
496  {
497  	if (new->ucounts == current_ucounts())
498  		return;
499  
500  	/*
501  	 * We don't fail in case of NPROC limit excess here because too many
502  	 * poorly written programs don't check set*uid() return code, assuming
503  	 * it never fails if called by root.  We may still enforce NPROC limit
504  	 * for programs doing set*uid()+execve() by harmlessly deferring the
505  	 * failure to the execve() stage.
506  	 */
507  	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508  			new->user != INIT_USER)
509  		current->flags |= PF_NPROC_EXCEEDED;
510  	else
511  		current->flags &= ~PF_NPROC_EXCEEDED;
512  }
513  
514  /*
515   * Unprivileged users may change the real uid to the effective uid
516   * or vice versa.  (BSD-style)
517   *
518   * If you set the real uid at all, or set the effective uid to a value not
519   * equal to the real uid, then the saved uid is set to the new effective uid.
520   *
521   * This makes it possible for a setuid program to completely drop its
522   * privileges, which is often a useful assertion to make when you are doing
523   * a security audit over a program.
524   *
525   * The general idea is that a program which uses just setreuid() will be
526   * 100% compatible with BSD.  A program which uses just setuid() will be
527   * 100% compatible with POSIX with saved IDs.
528   */
__sys_setreuid(uid_t ruid,uid_t euid)529  long __sys_setreuid(uid_t ruid, uid_t euid)
530  {
531  	struct user_namespace *ns = current_user_ns();
532  	const struct cred *old;
533  	struct cred *new;
534  	int retval;
535  	kuid_t kruid, keuid;
536  
537  	kruid = make_kuid(ns, ruid);
538  	keuid = make_kuid(ns, euid);
539  
540  	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
541  		return -EINVAL;
542  	if ((euid != (uid_t) -1) && !uid_valid(keuid))
543  		return -EINVAL;
544  
545  	new = prepare_creds();
546  	if (!new)
547  		return -ENOMEM;
548  	old = current_cred();
549  
550  	retval = -EPERM;
551  	if (ruid != (uid_t) -1) {
552  		new->uid = kruid;
553  		if (!uid_eq(old->uid, kruid) &&
554  		    !uid_eq(old->euid, kruid) &&
555  		    !ns_capable_setid(old->user_ns, CAP_SETUID))
556  			goto error;
557  	}
558  
559  	if (euid != (uid_t) -1) {
560  		new->euid = keuid;
561  		if (!uid_eq(old->uid, keuid) &&
562  		    !uid_eq(old->euid, keuid) &&
563  		    !uid_eq(old->suid, keuid) &&
564  		    !ns_capable_setid(old->user_ns, CAP_SETUID))
565  			goto error;
566  	}
567  
568  	if (!uid_eq(new->uid, old->uid)) {
569  		retval = set_user(new);
570  		if (retval < 0)
571  			goto error;
572  	}
573  	if (ruid != (uid_t) -1 ||
574  	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575  		new->suid = new->euid;
576  	new->fsuid = new->euid;
577  
578  	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
579  	if (retval < 0)
580  		goto error;
581  
582  	retval = set_cred_ucounts(new);
583  	if (retval < 0)
584  		goto error;
585  
586  	flag_nproc_exceeded(new);
587  	return commit_creds(new);
588  
589  error:
590  	abort_creds(new);
591  	return retval;
592  }
593  
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)594  SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595  {
596  	return __sys_setreuid(ruid, euid);
597  }
598  
599  /*
600   * setuid() is implemented like SysV with SAVED_IDS
601   *
602   * Note that SAVED_ID's is deficient in that a setuid root program
603   * like sendmail, for example, cannot set its uid to be a normal
604   * user and then switch back, because if you're root, setuid() sets
605   * the saved uid too.  If you don't like this, blame the bright people
606   * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
607   * will allow a root program to temporarily drop privileges and be able to
608   * regain them by swapping the real and effective uid.
609   */
__sys_setuid(uid_t uid)610  long __sys_setuid(uid_t uid)
611  {
612  	struct user_namespace *ns = current_user_ns();
613  	const struct cred *old;
614  	struct cred *new;
615  	int retval;
616  	kuid_t kuid;
617  
618  	kuid = make_kuid(ns, uid);
619  	if (!uid_valid(kuid))
620  		return -EINVAL;
621  
622  	new = prepare_creds();
623  	if (!new)
624  		return -ENOMEM;
625  	old = current_cred();
626  
627  	retval = -EPERM;
628  	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629  		new->suid = new->uid = kuid;
630  		if (!uid_eq(kuid, old->uid)) {
631  			retval = set_user(new);
632  			if (retval < 0)
633  				goto error;
634  		}
635  	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
636  		goto error;
637  	}
638  
639  	new->fsuid = new->euid = kuid;
640  
641  	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
642  	if (retval < 0)
643  		goto error;
644  
645  	retval = set_cred_ucounts(new);
646  	if (retval < 0)
647  		goto error;
648  
649  	flag_nproc_exceeded(new);
650  	return commit_creds(new);
651  
652  error:
653  	abort_creds(new);
654  	return retval;
655  }
656  
SYSCALL_DEFINE1(setuid,uid_t,uid)657  SYSCALL_DEFINE1(setuid, uid_t, uid)
658  {
659  	return __sys_setuid(uid);
660  }
661  
662  
663  /*
664   * This function implements a generic ability to update ruid, euid,
665   * and suid.  This allows you to implement the 4.4 compatible seteuid().
666   */
__sys_setresuid(uid_t ruid,uid_t euid,uid_t suid)667  long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
668  {
669  	struct user_namespace *ns = current_user_ns();
670  	const struct cred *old;
671  	struct cred *new;
672  	int retval;
673  	kuid_t kruid, keuid, ksuid;
674  	bool ruid_new, euid_new, suid_new;
675  
676  	kruid = make_kuid(ns, ruid);
677  	keuid = make_kuid(ns, euid);
678  	ksuid = make_kuid(ns, suid);
679  
680  	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
681  		return -EINVAL;
682  
683  	if ((euid != (uid_t) -1) && !uid_valid(keuid))
684  		return -EINVAL;
685  
686  	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
687  		return -EINVAL;
688  
689  	old = current_cred();
690  
691  	/* check for no-op */
692  	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693  	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694  				    uid_eq(keuid, old->fsuid))) &&
695  	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
696  		return 0;
697  
698  	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
699  		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700  	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
701  		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702  	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
703  		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704  	if ((ruid_new || euid_new || suid_new) &&
705  	    !ns_capable_setid(old->user_ns, CAP_SETUID))
706  		return -EPERM;
707  
708  	new = prepare_creds();
709  	if (!new)
710  		return -ENOMEM;
711  
712  	if (ruid != (uid_t) -1) {
713  		new->uid = kruid;
714  		if (!uid_eq(kruid, old->uid)) {
715  			retval = set_user(new);
716  			if (retval < 0)
717  				goto error;
718  		}
719  	}
720  	if (euid != (uid_t) -1)
721  		new->euid = keuid;
722  	if (suid != (uid_t) -1)
723  		new->suid = ksuid;
724  	new->fsuid = new->euid;
725  
726  	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
727  	if (retval < 0)
728  		goto error;
729  
730  	retval = set_cred_ucounts(new);
731  	if (retval < 0)
732  		goto error;
733  
734  	flag_nproc_exceeded(new);
735  	return commit_creds(new);
736  
737  error:
738  	abort_creds(new);
739  	return retval;
740  }
741  
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)742  SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
743  {
744  	return __sys_setresuid(ruid, euid, suid);
745  }
746  
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)747  SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
748  {
749  	const struct cred *cred = current_cred();
750  	int retval;
751  	uid_t ruid, euid, suid;
752  
753  	ruid = from_kuid_munged(cred->user_ns, cred->uid);
754  	euid = from_kuid_munged(cred->user_ns, cred->euid);
755  	suid = from_kuid_munged(cred->user_ns, cred->suid);
756  
757  	retval = put_user(ruid, ruidp);
758  	if (!retval) {
759  		retval = put_user(euid, euidp);
760  		if (!retval)
761  			return put_user(suid, suidp);
762  	}
763  	return retval;
764  }
765  
766  /*
767   * Same as above, but for rgid, egid, sgid.
768   */
__sys_setresgid(gid_t rgid,gid_t egid,gid_t sgid)769  long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
770  {
771  	struct user_namespace *ns = current_user_ns();
772  	const struct cred *old;
773  	struct cred *new;
774  	int retval;
775  	kgid_t krgid, kegid, ksgid;
776  	bool rgid_new, egid_new, sgid_new;
777  
778  	krgid = make_kgid(ns, rgid);
779  	kegid = make_kgid(ns, egid);
780  	ksgid = make_kgid(ns, sgid);
781  
782  	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
783  		return -EINVAL;
784  	if ((egid != (gid_t) -1) && !gid_valid(kegid))
785  		return -EINVAL;
786  	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
787  		return -EINVAL;
788  
789  	old = current_cred();
790  
791  	/* check for no-op */
792  	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793  	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794  				    gid_eq(kegid, old->fsgid))) &&
795  	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
796  		return 0;
797  
798  	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
799  		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800  	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
801  		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802  	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
803  		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804  	if ((rgid_new || egid_new || sgid_new) &&
805  	    !ns_capable_setid(old->user_ns, CAP_SETGID))
806  		return -EPERM;
807  
808  	new = prepare_creds();
809  	if (!new)
810  		return -ENOMEM;
811  
812  	if (rgid != (gid_t) -1)
813  		new->gid = krgid;
814  	if (egid != (gid_t) -1)
815  		new->egid = kegid;
816  	if (sgid != (gid_t) -1)
817  		new->sgid = ksgid;
818  	new->fsgid = new->egid;
819  
820  	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
821  	if (retval < 0)
822  		goto error;
823  
824  	return commit_creds(new);
825  
826  error:
827  	abort_creds(new);
828  	return retval;
829  }
830  
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)831  SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
832  {
833  	return __sys_setresgid(rgid, egid, sgid);
834  }
835  
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)836  SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
837  {
838  	const struct cred *cred = current_cred();
839  	int retval;
840  	gid_t rgid, egid, sgid;
841  
842  	rgid = from_kgid_munged(cred->user_ns, cred->gid);
843  	egid = from_kgid_munged(cred->user_ns, cred->egid);
844  	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
845  
846  	retval = put_user(rgid, rgidp);
847  	if (!retval) {
848  		retval = put_user(egid, egidp);
849  		if (!retval)
850  			retval = put_user(sgid, sgidp);
851  	}
852  
853  	return retval;
854  }
855  
856  
857  /*
858   * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859   * is used for "access()" and for the NFS daemon (letting nfsd stay at
860   * whatever uid it wants to). It normally shadows "euid", except when
861   * explicitly set by setfsuid() or for access..
862   */
__sys_setfsuid(uid_t uid)863  long __sys_setfsuid(uid_t uid)
864  {
865  	const struct cred *old;
866  	struct cred *new;
867  	uid_t old_fsuid;
868  	kuid_t kuid;
869  
870  	old = current_cred();
871  	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
872  
873  	kuid = make_kuid(old->user_ns, uid);
874  	if (!uid_valid(kuid))
875  		return old_fsuid;
876  
877  	new = prepare_creds();
878  	if (!new)
879  		return old_fsuid;
880  
881  	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
882  	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883  	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
884  		if (!uid_eq(kuid, old->fsuid)) {
885  			new->fsuid = kuid;
886  			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
887  				goto change_okay;
888  		}
889  	}
890  
891  	abort_creds(new);
892  	return old_fsuid;
893  
894  change_okay:
895  	commit_creds(new);
896  	return old_fsuid;
897  }
898  
SYSCALL_DEFINE1(setfsuid,uid_t,uid)899  SYSCALL_DEFINE1(setfsuid, uid_t, uid)
900  {
901  	return __sys_setfsuid(uid);
902  }
903  
904  /*
905   * Samma pÃ¥ svenska..
906   */
__sys_setfsgid(gid_t gid)907  long __sys_setfsgid(gid_t gid)
908  {
909  	const struct cred *old;
910  	struct cred *new;
911  	gid_t old_fsgid;
912  	kgid_t kgid;
913  
914  	old = current_cred();
915  	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
916  
917  	kgid = make_kgid(old->user_ns, gid);
918  	if (!gid_valid(kgid))
919  		return old_fsgid;
920  
921  	new = prepare_creds();
922  	if (!new)
923  		return old_fsgid;
924  
925  	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
926  	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927  	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
928  		if (!gid_eq(kgid, old->fsgid)) {
929  			new->fsgid = kgid;
930  			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
931  				goto change_okay;
932  		}
933  	}
934  
935  	abort_creds(new);
936  	return old_fsgid;
937  
938  change_okay:
939  	commit_creds(new);
940  	return old_fsgid;
941  }
942  
SYSCALL_DEFINE1(setfsgid,gid_t,gid)943  SYSCALL_DEFINE1(setfsgid, gid_t, gid)
944  {
945  	return __sys_setfsgid(gid);
946  }
947  #endif /* CONFIG_MULTIUSER */
948  
949  /**
950   * sys_getpid - return the thread group id of the current process
951   *
952   * Note, despite the name, this returns the tgid not the pid.  The tgid and
953   * the pid are identical unless CLONE_THREAD was specified on clone() in
954   * which case the tgid is the same in all threads of the same group.
955   *
956   * This is SMP safe as current->tgid does not change.
957   */
SYSCALL_DEFINE0(getpid)958  SYSCALL_DEFINE0(getpid)
959  {
960  	return task_tgid_vnr(current);
961  }
962  
963  /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)964  SYSCALL_DEFINE0(gettid)
965  {
966  	return task_pid_vnr(current);
967  }
968  
969  /*
970   * Accessing ->real_parent is not SMP-safe, it could
971   * change from under us. However, we can use a stale
972   * value of ->real_parent under rcu_read_lock(), see
973   * release_task()->call_rcu(delayed_put_task_struct).
974   */
SYSCALL_DEFINE0(getppid)975  SYSCALL_DEFINE0(getppid)
976  {
977  	int pid;
978  
979  	rcu_read_lock();
980  	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
981  	rcu_read_unlock();
982  
983  	return pid;
984  }
985  
SYSCALL_DEFINE0(getuid)986  SYSCALL_DEFINE0(getuid)
987  {
988  	/* Only we change this so SMP safe */
989  	return from_kuid_munged(current_user_ns(), current_uid());
990  }
991  
SYSCALL_DEFINE0(geteuid)992  SYSCALL_DEFINE0(geteuid)
993  {
994  	/* Only we change this so SMP safe */
995  	return from_kuid_munged(current_user_ns(), current_euid());
996  }
997  
SYSCALL_DEFINE0(getgid)998  SYSCALL_DEFINE0(getgid)
999  {
1000  	/* Only we change this so SMP safe */
1001  	return from_kgid_munged(current_user_ns(), current_gid());
1002  }
1003  
SYSCALL_DEFINE0(getegid)1004  SYSCALL_DEFINE0(getegid)
1005  {
1006  	/* Only we change this so SMP safe */
1007  	return from_kgid_munged(current_user_ns(), current_egid());
1008  }
1009  
do_sys_times(struct tms * tms)1010  static void do_sys_times(struct tms *tms)
1011  {
1012  	u64 tgutime, tgstime, cutime, cstime;
1013  
1014  	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015  	cutime = current->signal->cutime;
1016  	cstime = current->signal->cstime;
1017  	tms->tms_utime = nsec_to_clock_t(tgutime);
1018  	tms->tms_stime = nsec_to_clock_t(tgstime);
1019  	tms->tms_cutime = nsec_to_clock_t(cutime);
1020  	tms->tms_cstime = nsec_to_clock_t(cstime);
1021  }
1022  
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)1023  SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024  {
1025  	if (tbuf) {
1026  		struct tms tmp;
1027  
1028  		do_sys_times(&tmp);
1029  		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030  			return -EFAULT;
1031  	}
1032  	force_successful_syscall_return();
1033  	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034  }
1035  
1036  #ifdef CONFIG_COMPAT
clock_t_to_compat_clock_t(clock_t x)1037  static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038  {
1039  	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040  }
1041  
COMPAT_SYSCALL_DEFINE1(times,struct compat_tms __user *,tbuf)1042  COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043  {
1044  	if (tbuf) {
1045  		struct tms tms;
1046  		struct compat_tms tmp;
1047  
1048  		do_sys_times(&tms);
1049  		/* Convert our struct tms to the compat version. */
1050  		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051  		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052  		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053  		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054  		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055  			return -EFAULT;
1056  	}
1057  	force_successful_syscall_return();
1058  	return compat_jiffies_to_clock_t(jiffies);
1059  }
1060  #endif
1061  
1062  /*
1063   * This needs some heavy checking ...
1064   * I just haven't the stomach for it. I also don't fully
1065   * understand sessions/pgrp etc. Let somebody who does explain it.
1066   *
1067   * OK, I think I have the protection semantics right.... this is really
1068   * only important on a multi-user system anyway, to make sure one user
1069   * can't send a signal to a process owned by another.  -TYT, 12/12/91
1070   *
1071   * !PF_FORKNOEXEC check to conform completely to POSIX.
1072   */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)1073  SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074  {
1075  	struct task_struct *p;
1076  	struct task_struct *group_leader = current->group_leader;
1077  	struct pid *pgrp;
1078  	int err;
1079  
1080  	if (!pid)
1081  		pid = task_pid_vnr(group_leader);
1082  	if (!pgid)
1083  		pgid = pid;
1084  	if (pgid < 0)
1085  		return -EINVAL;
1086  	rcu_read_lock();
1087  
1088  	/* From this point forward we keep holding onto the tasklist lock
1089  	 * so that our parent does not change from under us. -DaveM
1090  	 */
1091  	write_lock_irq(&tasklist_lock);
1092  
1093  	err = -ESRCH;
1094  	p = find_task_by_vpid(pid);
1095  	if (!p)
1096  		goto out;
1097  
1098  	err = -EINVAL;
1099  	if (!thread_group_leader(p))
1100  		goto out;
1101  
1102  	if (same_thread_group(p->real_parent, group_leader)) {
1103  		err = -EPERM;
1104  		if (task_session(p) != task_session(group_leader))
1105  			goto out;
1106  		err = -EACCES;
1107  		if (!(p->flags & PF_FORKNOEXEC))
1108  			goto out;
1109  	} else {
1110  		err = -ESRCH;
1111  		if (p != group_leader)
1112  			goto out;
1113  	}
1114  
1115  	err = -EPERM;
1116  	if (p->signal->leader)
1117  		goto out;
1118  
1119  	pgrp = task_pid(p);
1120  	if (pgid != pid) {
1121  		struct task_struct *g;
1122  
1123  		pgrp = find_vpid(pgid);
1124  		g = pid_task(pgrp, PIDTYPE_PGID);
1125  		if (!g || task_session(g) != task_session(group_leader))
1126  			goto out;
1127  	}
1128  
1129  	err = security_task_setpgid(p, pgid);
1130  	if (err)
1131  		goto out;
1132  
1133  	if (task_pgrp(p) != pgrp)
1134  		change_pid(p, PIDTYPE_PGID, pgrp);
1135  
1136  	err = 0;
1137  out:
1138  	/* All paths lead to here, thus we are safe. -DaveM */
1139  	write_unlock_irq(&tasklist_lock);
1140  	rcu_read_unlock();
1141  	return err;
1142  }
1143  
do_getpgid(pid_t pid)1144  static int do_getpgid(pid_t pid)
1145  {
1146  	struct task_struct *p;
1147  	struct pid *grp;
1148  	int retval;
1149  
1150  	rcu_read_lock();
1151  	if (!pid)
1152  		grp = task_pgrp(current);
1153  	else {
1154  		retval = -ESRCH;
1155  		p = find_task_by_vpid(pid);
1156  		if (!p)
1157  			goto out;
1158  		grp = task_pgrp(p);
1159  		if (!grp)
1160  			goto out;
1161  
1162  		retval = security_task_getpgid(p);
1163  		if (retval)
1164  			goto out;
1165  	}
1166  	retval = pid_vnr(grp);
1167  out:
1168  	rcu_read_unlock();
1169  	return retval;
1170  }
1171  
SYSCALL_DEFINE1(getpgid,pid_t,pid)1172  SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173  {
1174  	return do_getpgid(pid);
1175  }
1176  
1177  #ifdef __ARCH_WANT_SYS_GETPGRP
1178  
SYSCALL_DEFINE0(getpgrp)1179  SYSCALL_DEFINE0(getpgrp)
1180  {
1181  	return do_getpgid(0);
1182  }
1183  
1184  #endif
1185  
SYSCALL_DEFINE1(getsid,pid_t,pid)1186  SYSCALL_DEFINE1(getsid, pid_t, pid)
1187  {
1188  	struct task_struct *p;
1189  	struct pid *sid;
1190  	int retval;
1191  
1192  	rcu_read_lock();
1193  	if (!pid)
1194  		sid = task_session(current);
1195  	else {
1196  		retval = -ESRCH;
1197  		p = find_task_by_vpid(pid);
1198  		if (!p)
1199  			goto out;
1200  		sid = task_session(p);
1201  		if (!sid)
1202  			goto out;
1203  
1204  		retval = security_task_getsid(p);
1205  		if (retval)
1206  			goto out;
1207  	}
1208  	retval = pid_vnr(sid);
1209  out:
1210  	rcu_read_unlock();
1211  	return retval;
1212  }
1213  
set_special_pids(struct pid * pid)1214  static void set_special_pids(struct pid *pid)
1215  {
1216  	struct task_struct *curr = current->group_leader;
1217  
1218  	if (task_session(curr) != pid)
1219  		change_pid(curr, PIDTYPE_SID, pid);
1220  
1221  	if (task_pgrp(curr) != pid)
1222  		change_pid(curr, PIDTYPE_PGID, pid);
1223  }
1224  
ksys_setsid(void)1225  int ksys_setsid(void)
1226  {
1227  	struct task_struct *group_leader = current->group_leader;
1228  	struct pid *sid = task_pid(group_leader);
1229  	pid_t session = pid_vnr(sid);
1230  	int err = -EPERM;
1231  
1232  	write_lock_irq(&tasklist_lock);
1233  	/* Fail if I am already a session leader */
1234  	if (group_leader->signal->leader)
1235  		goto out;
1236  
1237  	/* Fail if a process group id already exists that equals the
1238  	 * proposed session id.
1239  	 */
1240  	if (pid_task(sid, PIDTYPE_PGID))
1241  		goto out;
1242  
1243  	group_leader->signal->leader = 1;
1244  	set_special_pids(sid);
1245  
1246  	proc_clear_tty(group_leader);
1247  
1248  	err = session;
1249  out:
1250  	write_unlock_irq(&tasklist_lock);
1251  	if (err > 0) {
1252  		proc_sid_connector(group_leader);
1253  		sched_autogroup_create_attach(group_leader);
1254  	}
1255  	return err;
1256  }
1257  
SYSCALL_DEFINE0(setsid)1258  SYSCALL_DEFINE0(setsid)
1259  {
1260  	return ksys_setsid();
1261  }
1262  
1263  DECLARE_RWSEM(uts_sem);
1264  
1265  #ifdef COMPAT_UTS_MACHINE
1266  #define override_architecture(name) \
1267  	(personality(current->personality) == PER_LINUX32 && \
1268  	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269  		      sizeof(COMPAT_UTS_MACHINE)))
1270  #else
1271  #define override_architecture(name)	0
1272  #endif
1273  
1274  /*
1275   * Work around broken programs that cannot handle "Linux 3.0".
1276   * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277   * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278   * 2.6.60.
1279   */
override_release(char __user * release,size_t len)1280  static int override_release(char __user *release, size_t len)
1281  {
1282  	int ret = 0;
1283  
1284  	if (current->personality & UNAME26) {
1285  		const char *rest = UTS_RELEASE;
1286  		char buf[65] = { 0 };
1287  		int ndots = 0;
1288  		unsigned v;
1289  		size_t copy;
1290  
1291  		while (*rest) {
1292  			if (*rest == '.' && ++ndots >= 3)
1293  				break;
1294  			if (!isdigit(*rest) && *rest != '.')
1295  				break;
1296  			rest++;
1297  		}
1298  		v = LINUX_VERSION_PATCHLEVEL + 60;
1299  		copy = clamp_t(size_t, len, 1, sizeof(buf));
1300  		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301  		ret = copy_to_user(release, buf, copy + 1);
1302  	}
1303  	return ret;
1304  }
1305  
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1306  SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307  {
1308  	struct new_utsname tmp;
1309  
1310  	down_read(&uts_sem);
1311  	memcpy(&tmp, utsname(), sizeof(tmp));
1312  	up_read(&uts_sem);
1313  	if (copy_to_user(name, &tmp, sizeof(tmp)))
1314  		return -EFAULT;
1315  
1316  	if (override_release(name->release, sizeof(name->release)))
1317  		return -EFAULT;
1318  	if (override_architecture(name))
1319  		return -EFAULT;
1320  	return 0;
1321  }
1322  
1323  #ifdef __ARCH_WANT_SYS_OLD_UNAME
1324  /*
1325   * Old cruft
1326   */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1327  SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328  {
1329  	struct old_utsname tmp;
1330  
1331  	if (!name)
1332  		return -EFAULT;
1333  
1334  	down_read(&uts_sem);
1335  	memcpy(&tmp, utsname(), sizeof(tmp));
1336  	up_read(&uts_sem);
1337  	if (copy_to_user(name, &tmp, sizeof(tmp)))
1338  		return -EFAULT;
1339  
1340  	if (override_release(name->release, sizeof(name->release)))
1341  		return -EFAULT;
1342  	if (override_architecture(name))
1343  		return -EFAULT;
1344  	return 0;
1345  }
1346  
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1347  SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348  {
1349  	struct oldold_utsname tmp;
1350  
1351  	if (!name)
1352  		return -EFAULT;
1353  
1354  	memset(&tmp, 0, sizeof(tmp));
1355  
1356  	down_read(&uts_sem);
1357  	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358  	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359  	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360  	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361  	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1362  	up_read(&uts_sem);
1363  	if (copy_to_user(name, &tmp, sizeof(tmp)))
1364  		return -EFAULT;
1365  
1366  	if (override_architecture(name))
1367  		return -EFAULT;
1368  	if (override_release(name->release, sizeof(name->release)))
1369  		return -EFAULT;
1370  	return 0;
1371  }
1372  #endif
1373  
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1374  SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375  {
1376  	int errno;
1377  	char tmp[__NEW_UTS_LEN];
1378  
1379  	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380  		return -EPERM;
1381  
1382  	if (len < 0 || len > __NEW_UTS_LEN)
1383  		return -EINVAL;
1384  	errno = -EFAULT;
1385  	if (!copy_from_user(tmp, name, len)) {
1386  		struct new_utsname *u;
1387  
1388  		add_device_randomness(tmp, len);
1389  		down_write(&uts_sem);
1390  		u = utsname();
1391  		memcpy(u->nodename, tmp, len);
1392  		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393  		errno = 0;
1394  		uts_proc_notify(UTS_PROC_HOSTNAME);
1395  		up_write(&uts_sem);
1396  	}
1397  	return errno;
1398  }
1399  
1400  #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401  
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1402  SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403  {
1404  	int i;
1405  	struct new_utsname *u;
1406  	char tmp[__NEW_UTS_LEN + 1];
1407  
1408  	if (len < 0)
1409  		return -EINVAL;
1410  	down_read(&uts_sem);
1411  	u = utsname();
1412  	i = 1 + strlen(u->nodename);
1413  	if (i > len)
1414  		i = len;
1415  	memcpy(tmp, u->nodename, i);
1416  	up_read(&uts_sem);
1417  	if (copy_to_user(name, tmp, i))
1418  		return -EFAULT;
1419  	return 0;
1420  }
1421  
1422  #endif
1423  
1424  /*
1425   * Only setdomainname; getdomainname can be implemented by calling
1426   * uname()
1427   */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1428  SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429  {
1430  	int errno;
1431  	char tmp[__NEW_UTS_LEN];
1432  
1433  	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434  		return -EPERM;
1435  	if (len < 0 || len > __NEW_UTS_LEN)
1436  		return -EINVAL;
1437  
1438  	errno = -EFAULT;
1439  	if (!copy_from_user(tmp, name, len)) {
1440  		struct new_utsname *u;
1441  
1442  		add_device_randomness(tmp, len);
1443  		down_write(&uts_sem);
1444  		u = utsname();
1445  		memcpy(u->domainname, tmp, len);
1446  		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447  		errno = 0;
1448  		uts_proc_notify(UTS_PROC_DOMAINNAME);
1449  		up_write(&uts_sem);
1450  	}
1451  	return errno;
1452  }
1453  
1454  /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1455  static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456  		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1457  {
1458  	struct rlimit *rlim;
1459  	int retval = 0;
1460  
1461  	if (resource >= RLIM_NLIMITS)
1462  		return -EINVAL;
1463  	resource = array_index_nospec(resource, RLIM_NLIMITS);
1464  
1465  	if (new_rlim) {
1466  		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467  			return -EINVAL;
1468  		if (resource == RLIMIT_NOFILE &&
1469  				new_rlim->rlim_max > sysctl_nr_open)
1470  			return -EPERM;
1471  	}
1472  
1473  	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474  	rlim = tsk->signal->rlim + resource;
1475  	task_lock(tsk->group_leader);
1476  	if (new_rlim) {
1477  		/*
1478  		 * Keep the capable check against init_user_ns until cgroups can
1479  		 * contain all limits.
1480  		 */
1481  		if (new_rlim->rlim_max > rlim->rlim_max &&
1482  				!capable(CAP_SYS_RESOURCE))
1483  			retval = -EPERM;
1484  		if (!retval)
1485  			retval = security_task_setrlimit(tsk, resource, new_rlim);
1486  	}
1487  	if (!retval) {
1488  		if (old_rlim)
1489  			*old_rlim = *rlim;
1490  		if (new_rlim)
1491  			*rlim = *new_rlim;
1492  	}
1493  	task_unlock(tsk->group_leader);
1494  
1495  	/*
1496  	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497  	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498  	 * ignores the rlimit.
1499  	 */
1500  	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501  	    new_rlim->rlim_cur != RLIM_INFINITY &&
1502  	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503  		/*
1504  		 * update_rlimit_cpu can fail if the task is exiting, but there
1505  		 * may be other tasks in the thread group that are not exiting,
1506  		 * and they need their cpu timers adjusted.
1507  		 *
1508  		 * The group_leader is the last task to be released, so if we
1509  		 * cannot update_rlimit_cpu on it, then the entire process is
1510  		 * exiting and we do not need to update at all.
1511  		 */
1512  		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513  	}
1514  
1515  	return retval;
1516  }
1517  
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1518  SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519  {
1520  	struct rlimit value;
1521  	int ret;
1522  
1523  	ret = do_prlimit(current, resource, NULL, &value);
1524  	if (!ret)
1525  		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526  
1527  	return ret;
1528  }
1529  
1530  #ifdef CONFIG_COMPAT
1531  
COMPAT_SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1532  COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533  		       struct compat_rlimit __user *, rlim)
1534  {
1535  	struct rlimit r;
1536  	struct compat_rlimit r32;
1537  
1538  	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539  		return -EFAULT;
1540  
1541  	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542  		r.rlim_cur = RLIM_INFINITY;
1543  	else
1544  		r.rlim_cur = r32.rlim_cur;
1545  	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546  		r.rlim_max = RLIM_INFINITY;
1547  	else
1548  		r.rlim_max = r32.rlim_max;
1549  	return do_prlimit(current, resource, &r, NULL);
1550  }
1551  
COMPAT_SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1552  COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553  		       struct compat_rlimit __user *, rlim)
1554  {
1555  	struct rlimit r;
1556  	int ret;
1557  
1558  	ret = do_prlimit(current, resource, NULL, &r);
1559  	if (!ret) {
1560  		struct compat_rlimit r32;
1561  		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562  			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563  		else
1564  			r32.rlim_cur = r.rlim_cur;
1565  		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566  			r32.rlim_max = COMPAT_RLIM_INFINITY;
1567  		else
1568  			r32.rlim_max = r.rlim_max;
1569  
1570  		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571  			return -EFAULT;
1572  	}
1573  	return ret;
1574  }
1575  
1576  #endif
1577  
1578  #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579  
1580  /*
1581   *	Back compatibility for getrlimit. Needed for some apps.
1582   */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1583  SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584  		struct rlimit __user *, rlim)
1585  {
1586  	struct rlimit x;
1587  	if (resource >= RLIM_NLIMITS)
1588  		return -EINVAL;
1589  
1590  	resource = array_index_nospec(resource, RLIM_NLIMITS);
1591  	task_lock(current->group_leader);
1592  	x = current->signal->rlim[resource];
1593  	task_unlock(current->group_leader);
1594  	if (x.rlim_cur > 0x7FFFFFFF)
1595  		x.rlim_cur = 0x7FFFFFFF;
1596  	if (x.rlim_max > 0x7FFFFFFF)
1597  		x.rlim_max = 0x7FFFFFFF;
1598  	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599  }
1600  
1601  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct compat_rlimit __user *,rlim)1602  COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603  		       struct compat_rlimit __user *, rlim)
1604  {
1605  	struct rlimit r;
1606  
1607  	if (resource >= RLIM_NLIMITS)
1608  		return -EINVAL;
1609  
1610  	resource = array_index_nospec(resource, RLIM_NLIMITS);
1611  	task_lock(current->group_leader);
1612  	r = current->signal->rlim[resource];
1613  	task_unlock(current->group_leader);
1614  	if (r.rlim_cur > 0x7FFFFFFF)
1615  		r.rlim_cur = 0x7FFFFFFF;
1616  	if (r.rlim_max > 0x7FFFFFFF)
1617  		r.rlim_max = 0x7FFFFFFF;
1618  
1619  	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620  	    put_user(r.rlim_max, &rlim->rlim_max))
1621  		return -EFAULT;
1622  	return 0;
1623  }
1624  #endif
1625  
1626  #endif
1627  
rlim64_is_infinity(__u64 rlim64)1628  static inline bool rlim64_is_infinity(__u64 rlim64)
1629  {
1630  #if BITS_PER_LONG < 64
1631  	return rlim64 >= ULONG_MAX;
1632  #else
1633  	return rlim64 == RLIM64_INFINITY;
1634  #endif
1635  }
1636  
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1637  static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638  {
1639  	if (rlim->rlim_cur == RLIM_INFINITY)
1640  		rlim64->rlim_cur = RLIM64_INFINITY;
1641  	else
1642  		rlim64->rlim_cur = rlim->rlim_cur;
1643  	if (rlim->rlim_max == RLIM_INFINITY)
1644  		rlim64->rlim_max = RLIM64_INFINITY;
1645  	else
1646  		rlim64->rlim_max = rlim->rlim_max;
1647  }
1648  
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1649  static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650  {
1651  	if (rlim64_is_infinity(rlim64->rlim_cur))
1652  		rlim->rlim_cur = RLIM_INFINITY;
1653  	else
1654  		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655  	if (rlim64_is_infinity(rlim64->rlim_max))
1656  		rlim->rlim_max = RLIM_INFINITY;
1657  	else
1658  		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659  }
1660  
1661  /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task,unsigned int flags)1662  static int check_prlimit_permission(struct task_struct *task,
1663  				    unsigned int flags)
1664  {
1665  	const struct cred *cred = current_cred(), *tcred;
1666  	bool id_match;
1667  
1668  	if (current == task)
1669  		return 0;
1670  
1671  	tcred = __task_cred(task);
1672  	id_match = (uid_eq(cred->uid, tcred->euid) &&
1673  		    uid_eq(cred->uid, tcred->suid) &&
1674  		    uid_eq(cred->uid, tcred->uid)  &&
1675  		    gid_eq(cred->gid, tcred->egid) &&
1676  		    gid_eq(cred->gid, tcred->sgid) &&
1677  		    gid_eq(cred->gid, tcred->gid));
1678  	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679  		return -EPERM;
1680  
1681  	return security_task_prlimit(cred, tcred, flags);
1682  }
1683  
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1684  SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685  		const struct rlimit64 __user *, new_rlim,
1686  		struct rlimit64 __user *, old_rlim)
1687  {
1688  	struct rlimit64 old64, new64;
1689  	struct rlimit old, new;
1690  	struct task_struct *tsk;
1691  	unsigned int checkflags = 0;
1692  	int ret;
1693  
1694  	if (old_rlim)
1695  		checkflags |= LSM_PRLIMIT_READ;
1696  
1697  	if (new_rlim) {
1698  		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699  			return -EFAULT;
1700  		rlim64_to_rlim(&new64, &new);
1701  		checkflags |= LSM_PRLIMIT_WRITE;
1702  	}
1703  
1704  	rcu_read_lock();
1705  	tsk = pid ? find_task_by_vpid(pid) : current;
1706  	if (!tsk) {
1707  		rcu_read_unlock();
1708  		return -ESRCH;
1709  	}
1710  	ret = check_prlimit_permission(tsk, checkflags);
1711  	if (ret) {
1712  		rcu_read_unlock();
1713  		return ret;
1714  	}
1715  	get_task_struct(tsk);
1716  	rcu_read_unlock();
1717  
1718  	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719  			old_rlim ? &old : NULL);
1720  
1721  	if (!ret && old_rlim) {
1722  		rlim_to_rlim64(&old, &old64);
1723  		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724  			ret = -EFAULT;
1725  	}
1726  
1727  	put_task_struct(tsk);
1728  	return ret;
1729  }
1730  
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1731  SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732  {
1733  	struct rlimit new_rlim;
1734  
1735  	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736  		return -EFAULT;
1737  	return do_prlimit(current, resource, &new_rlim, NULL);
1738  }
1739  
1740  /*
1741   * It would make sense to put struct rusage in the task_struct,
1742   * except that would make the task_struct be *really big*.  After
1743   * task_struct gets moved into malloc'ed memory, it would
1744   * make sense to do this.  It will make moving the rest of the information
1745   * a lot simpler!  (Which we're not doing right now because we're not
1746   * measuring them yet).
1747   *
1748   * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749   * races with threads incrementing their own counters.  But since word
1750   * reads are atomic, we either get new values or old values and we don't
1751   * care which for the sums.  We always take the siglock to protect reading
1752   * the c* fields from p->signal from races with exit.c updating those
1753   * fields when reaping, so a sample either gets all the additions of a
1754   * given child after it's reaped, or none so this sample is before reaping.
1755   *
1756   * Locking:
1757   * We need to take the siglock for CHILDEREN, SELF and BOTH
1758   * for  the cases current multithreaded, non-current single threaded
1759   * non-current multithreaded.  Thread traversal is now safe with
1760   * the siglock held.
1761   * Strictly speaking, we donot need to take the siglock if we are current and
1762   * single threaded,  as no one else can take our signal_struct away, no one
1763   * else can  reap the  children to update signal->c* counters, and no one else
1764   * can race with the signal-> fields. If we do not take any lock, the
1765   * signal-> fields could be read out of order while another thread was just
1766   * exiting. So we should  place a read memory barrier when we avoid the lock.
1767   * On the writer side,  write memory barrier is implied in  __exit_signal
1768   * as __exit_signal releases  the siglock spinlock after updating the signal->
1769   * fields. But we don't do this yet to keep things simple.
1770   *
1771   */
1772  
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1773  static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774  {
1775  	r->ru_nvcsw += t->nvcsw;
1776  	r->ru_nivcsw += t->nivcsw;
1777  	r->ru_minflt += t->min_flt;
1778  	r->ru_majflt += t->maj_flt;
1779  	r->ru_inblock += task_io_get_inblock(t);
1780  	r->ru_oublock += task_io_get_oublock(t);
1781  }
1782  
getrusage(struct task_struct * p,int who,struct rusage * r)1783  void getrusage(struct task_struct *p, int who, struct rusage *r)
1784  {
1785  	struct task_struct *t;
1786  	unsigned long flags;
1787  	u64 tgutime, tgstime, utime, stime;
1788  	unsigned long maxrss = 0;
1789  
1790  	memset((char *)r, 0, sizeof (*r));
1791  	utime = stime = 0;
1792  
1793  	if (who == RUSAGE_THREAD) {
1794  		task_cputime_adjusted(current, &utime, &stime);
1795  		accumulate_thread_rusage(p, r);
1796  		maxrss = p->signal->maxrss;
1797  		goto out;
1798  	}
1799  
1800  	if (!lock_task_sighand(p, &flags))
1801  		return;
1802  
1803  	switch (who) {
1804  	case RUSAGE_BOTH:
1805  	case RUSAGE_CHILDREN:
1806  		utime = p->signal->cutime;
1807  		stime = p->signal->cstime;
1808  		r->ru_nvcsw = p->signal->cnvcsw;
1809  		r->ru_nivcsw = p->signal->cnivcsw;
1810  		r->ru_minflt = p->signal->cmin_flt;
1811  		r->ru_majflt = p->signal->cmaj_flt;
1812  		r->ru_inblock = p->signal->cinblock;
1813  		r->ru_oublock = p->signal->coublock;
1814  		maxrss = p->signal->cmaxrss;
1815  
1816  		if (who == RUSAGE_CHILDREN)
1817  			break;
1818  		fallthrough;
1819  
1820  	case RUSAGE_SELF:
1821  		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1822  		utime += tgutime;
1823  		stime += tgstime;
1824  		r->ru_nvcsw += p->signal->nvcsw;
1825  		r->ru_nivcsw += p->signal->nivcsw;
1826  		r->ru_minflt += p->signal->min_flt;
1827  		r->ru_majflt += p->signal->maj_flt;
1828  		r->ru_inblock += p->signal->inblock;
1829  		r->ru_oublock += p->signal->oublock;
1830  		if (maxrss < p->signal->maxrss)
1831  			maxrss = p->signal->maxrss;
1832  		t = p;
1833  		do {
1834  			accumulate_thread_rusage(t, r);
1835  		} while_each_thread(p, t);
1836  		break;
1837  
1838  	default:
1839  		BUG();
1840  	}
1841  	unlock_task_sighand(p, &flags);
1842  
1843  out:
1844  	r->ru_utime = ns_to_kernel_old_timeval(utime);
1845  	r->ru_stime = ns_to_kernel_old_timeval(stime);
1846  
1847  	if (who != RUSAGE_CHILDREN) {
1848  		struct mm_struct *mm = get_task_mm(p);
1849  
1850  		if (mm) {
1851  			setmax_mm_hiwater_rss(&maxrss, mm);
1852  			mmput(mm);
1853  		}
1854  	}
1855  	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1856  }
1857  
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1858  SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1859  {
1860  	struct rusage r;
1861  
1862  	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1863  	    who != RUSAGE_THREAD)
1864  		return -EINVAL;
1865  
1866  	getrusage(current, who, &r);
1867  	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1868  }
1869  
1870  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1871  COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1872  {
1873  	struct rusage r;
1874  
1875  	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876  	    who != RUSAGE_THREAD)
1877  		return -EINVAL;
1878  
1879  	getrusage(current, who, &r);
1880  	return put_compat_rusage(&r, ru);
1881  }
1882  #endif
1883  
SYSCALL_DEFINE1(umask,int,mask)1884  SYSCALL_DEFINE1(umask, int, mask)
1885  {
1886  	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1887  	return mask;
1888  }
1889  
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1890  static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1891  {
1892  	struct fd exe;
1893  	struct inode *inode;
1894  	int err;
1895  
1896  	exe = fdget(fd);
1897  	if (!exe.file)
1898  		return -EBADF;
1899  
1900  	inode = file_inode(exe.file);
1901  
1902  	/*
1903  	 * Because the original mm->exe_file points to executable file, make
1904  	 * sure that this one is executable as well, to avoid breaking an
1905  	 * overall picture.
1906  	 */
1907  	err = -EACCES;
1908  	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1909  		goto exit;
1910  
1911  	err = file_permission(exe.file, MAY_EXEC);
1912  	if (err)
1913  		goto exit;
1914  
1915  	err = replace_mm_exe_file(mm, exe.file);
1916  exit:
1917  	fdput(exe);
1918  	return err;
1919  }
1920  
1921  /*
1922   * Check arithmetic relations of passed addresses.
1923   *
1924   * WARNING: we don't require any capability here so be very careful
1925   * in what is allowed for modification from userspace.
1926   */
validate_prctl_map_addr(struct prctl_mm_map * prctl_map)1927  static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1928  {
1929  	unsigned long mmap_max_addr = TASK_SIZE;
1930  	int error = -EINVAL, i;
1931  
1932  	static const unsigned char offsets[] = {
1933  		offsetof(struct prctl_mm_map, start_code),
1934  		offsetof(struct prctl_mm_map, end_code),
1935  		offsetof(struct prctl_mm_map, start_data),
1936  		offsetof(struct prctl_mm_map, end_data),
1937  		offsetof(struct prctl_mm_map, start_brk),
1938  		offsetof(struct prctl_mm_map, brk),
1939  		offsetof(struct prctl_mm_map, start_stack),
1940  		offsetof(struct prctl_mm_map, arg_start),
1941  		offsetof(struct prctl_mm_map, arg_end),
1942  		offsetof(struct prctl_mm_map, env_start),
1943  		offsetof(struct prctl_mm_map, env_end),
1944  	};
1945  
1946  	/*
1947  	 * Make sure the members are not somewhere outside
1948  	 * of allowed address space.
1949  	 */
1950  	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1951  		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1952  
1953  		if ((unsigned long)val >= mmap_max_addr ||
1954  		    (unsigned long)val < mmap_min_addr)
1955  			goto out;
1956  	}
1957  
1958  	/*
1959  	 * Make sure the pairs are ordered.
1960  	 */
1961  #define __prctl_check_order(__m1, __op, __m2)				\
1962  	((unsigned long)prctl_map->__m1 __op				\
1963  	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1964  	error  = __prctl_check_order(start_code, <, end_code);
1965  	error |= __prctl_check_order(start_data,<=, end_data);
1966  	error |= __prctl_check_order(start_brk, <=, brk);
1967  	error |= __prctl_check_order(arg_start, <=, arg_end);
1968  	error |= __prctl_check_order(env_start, <=, env_end);
1969  	if (error)
1970  		goto out;
1971  #undef __prctl_check_order
1972  
1973  	error = -EINVAL;
1974  
1975  	/*
1976  	 * Neither we should allow to override limits if they set.
1977  	 */
1978  	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1979  			      prctl_map->start_brk, prctl_map->end_data,
1980  			      prctl_map->start_data))
1981  			goto out;
1982  
1983  	error = 0;
1984  out:
1985  	return error;
1986  }
1987  
1988  #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1989  static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1990  {
1991  	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1992  	unsigned long user_auxv[AT_VECTOR_SIZE];
1993  	struct mm_struct *mm = current->mm;
1994  	int error;
1995  
1996  	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1997  	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1998  
1999  	if (opt == PR_SET_MM_MAP_SIZE)
2000  		return put_user((unsigned int)sizeof(prctl_map),
2001  				(unsigned int __user *)addr);
2002  
2003  	if (data_size != sizeof(prctl_map))
2004  		return -EINVAL;
2005  
2006  	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2007  		return -EFAULT;
2008  
2009  	error = validate_prctl_map_addr(&prctl_map);
2010  	if (error)
2011  		return error;
2012  
2013  	if (prctl_map.auxv_size) {
2014  		/*
2015  		 * Someone is trying to cheat the auxv vector.
2016  		 */
2017  		if (!prctl_map.auxv ||
2018  				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2019  			return -EINVAL;
2020  
2021  		memset(user_auxv, 0, sizeof(user_auxv));
2022  		if (copy_from_user(user_auxv,
2023  				   (const void __user *)prctl_map.auxv,
2024  				   prctl_map.auxv_size))
2025  			return -EFAULT;
2026  
2027  		/* Last entry must be AT_NULL as specification requires */
2028  		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2029  		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2030  	}
2031  
2032  	if (prctl_map.exe_fd != (u32)-1) {
2033  		/*
2034  		 * Check if the current user is checkpoint/restore capable.
2035  		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2036  		 * or CAP_CHECKPOINT_RESTORE.
2037  		 * Note that a user with access to ptrace can masquerade an
2038  		 * arbitrary program as any executable, even setuid ones.
2039  		 * This may have implications in the tomoyo subsystem.
2040  		 */
2041  		if (!checkpoint_restore_ns_capable(current_user_ns()))
2042  			return -EPERM;
2043  
2044  		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2045  		if (error)
2046  			return error;
2047  	}
2048  
2049  	/*
2050  	 * arg_lock protects concurrent updates but we still need mmap_lock for
2051  	 * read to exclude races with sys_brk.
2052  	 */
2053  	mmap_read_lock(mm);
2054  
2055  	/*
2056  	 * We don't validate if these members are pointing to
2057  	 * real present VMAs because application may have correspond
2058  	 * VMAs already unmapped and kernel uses these members for statistics
2059  	 * output in procfs mostly, except
2060  	 *
2061  	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2062  	 *    for VMAs when updating these members so anything wrong written
2063  	 *    here cause kernel to swear at userspace program but won't lead
2064  	 *    to any problem in kernel itself
2065  	 */
2066  
2067  	spin_lock(&mm->arg_lock);
2068  	mm->start_code	= prctl_map.start_code;
2069  	mm->end_code	= prctl_map.end_code;
2070  	mm->start_data	= prctl_map.start_data;
2071  	mm->end_data	= prctl_map.end_data;
2072  	mm->start_brk	= prctl_map.start_brk;
2073  	mm->brk		= prctl_map.brk;
2074  	mm->start_stack	= prctl_map.start_stack;
2075  	mm->arg_start	= prctl_map.arg_start;
2076  	mm->arg_end	= prctl_map.arg_end;
2077  	mm->env_start	= prctl_map.env_start;
2078  	mm->env_end	= prctl_map.env_end;
2079  	spin_unlock(&mm->arg_lock);
2080  
2081  	/*
2082  	 * Note this update of @saved_auxv is lockless thus
2083  	 * if someone reads this member in procfs while we're
2084  	 * updating -- it may get partly updated results. It's
2085  	 * known and acceptable trade off: we leave it as is to
2086  	 * not introduce additional locks here making the kernel
2087  	 * more complex.
2088  	 */
2089  	if (prctl_map.auxv_size)
2090  		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2091  
2092  	mmap_read_unlock(mm);
2093  	return 0;
2094  }
2095  #endif /* CONFIG_CHECKPOINT_RESTORE */
2096  
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)2097  static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2098  			  unsigned long len)
2099  {
2100  	/*
2101  	 * This doesn't move the auxiliary vector itself since it's pinned to
2102  	 * mm_struct, but it permits filling the vector with new values.  It's
2103  	 * up to the caller to provide sane values here, otherwise userspace
2104  	 * tools which use this vector might be unhappy.
2105  	 */
2106  	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2107  
2108  	if (len > sizeof(user_auxv))
2109  		return -EINVAL;
2110  
2111  	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2112  		return -EFAULT;
2113  
2114  	/* Make sure the last entry is always AT_NULL */
2115  	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2116  	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2117  
2118  	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2119  
2120  	task_lock(current);
2121  	memcpy(mm->saved_auxv, user_auxv, len);
2122  	task_unlock(current);
2123  
2124  	return 0;
2125  }
2126  
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)2127  static int prctl_set_mm(int opt, unsigned long addr,
2128  			unsigned long arg4, unsigned long arg5)
2129  {
2130  	struct mm_struct *mm = current->mm;
2131  	struct prctl_mm_map prctl_map = {
2132  		.auxv = NULL,
2133  		.auxv_size = 0,
2134  		.exe_fd = -1,
2135  	};
2136  	struct vm_area_struct *vma;
2137  	int error;
2138  
2139  	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2140  			      opt != PR_SET_MM_MAP &&
2141  			      opt != PR_SET_MM_MAP_SIZE)))
2142  		return -EINVAL;
2143  
2144  #ifdef CONFIG_CHECKPOINT_RESTORE
2145  	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2146  		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2147  #endif
2148  
2149  	if (!capable(CAP_SYS_RESOURCE))
2150  		return -EPERM;
2151  
2152  	if (opt == PR_SET_MM_EXE_FILE)
2153  		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2154  
2155  	if (opt == PR_SET_MM_AUXV)
2156  		return prctl_set_auxv(mm, addr, arg4);
2157  
2158  	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2159  		return -EINVAL;
2160  
2161  	error = -EINVAL;
2162  
2163  	/*
2164  	 * arg_lock protects concurrent updates of arg boundaries, we need
2165  	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2166  	 * validation.
2167  	 */
2168  	mmap_read_lock(mm);
2169  	vma = find_vma(mm, addr);
2170  
2171  	spin_lock(&mm->arg_lock);
2172  	prctl_map.start_code	= mm->start_code;
2173  	prctl_map.end_code	= mm->end_code;
2174  	prctl_map.start_data	= mm->start_data;
2175  	prctl_map.end_data	= mm->end_data;
2176  	prctl_map.start_brk	= mm->start_brk;
2177  	prctl_map.brk		= mm->brk;
2178  	prctl_map.start_stack	= mm->start_stack;
2179  	prctl_map.arg_start	= mm->arg_start;
2180  	prctl_map.arg_end	= mm->arg_end;
2181  	prctl_map.env_start	= mm->env_start;
2182  	prctl_map.env_end	= mm->env_end;
2183  
2184  	switch (opt) {
2185  	case PR_SET_MM_START_CODE:
2186  		prctl_map.start_code = addr;
2187  		break;
2188  	case PR_SET_MM_END_CODE:
2189  		prctl_map.end_code = addr;
2190  		break;
2191  	case PR_SET_MM_START_DATA:
2192  		prctl_map.start_data = addr;
2193  		break;
2194  	case PR_SET_MM_END_DATA:
2195  		prctl_map.end_data = addr;
2196  		break;
2197  	case PR_SET_MM_START_STACK:
2198  		prctl_map.start_stack = addr;
2199  		break;
2200  	case PR_SET_MM_START_BRK:
2201  		prctl_map.start_brk = addr;
2202  		break;
2203  	case PR_SET_MM_BRK:
2204  		prctl_map.brk = addr;
2205  		break;
2206  	case PR_SET_MM_ARG_START:
2207  		prctl_map.arg_start = addr;
2208  		break;
2209  	case PR_SET_MM_ARG_END:
2210  		prctl_map.arg_end = addr;
2211  		break;
2212  	case PR_SET_MM_ENV_START:
2213  		prctl_map.env_start = addr;
2214  		break;
2215  	case PR_SET_MM_ENV_END:
2216  		prctl_map.env_end = addr;
2217  		break;
2218  	default:
2219  		goto out;
2220  	}
2221  
2222  	error = validate_prctl_map_addr(&prctl_map);
2223  	if (error)
2224  		goto out;
2225  
2226  	switch (opt) {
2227  	/*
2228  	 * If command line arguments and environment
2229  	 * are placed somewhere else on stack, we can
2230  	 * set them up here, ARG_START/END to setup
2231  	 * command line arguments and ENV_START/END
2232  	 * for environment.
2233  	 */
2234  	case PR_SET_MM_START_STACK:
2235  	case PR_SET_MM_ARG_START:
2236  	case PR_SET_MM_ARG_END:
2237  	case PR_SET_MM_ENV_START:
2238  	case PR_SET_MM_ENV_END:
2239  		if (!vma) {
2240  			error = -EFAULT;
2241  			goto out;
2242  		}
2243  	}
2244  
2245  	mm->start_code	= prctl_map.start_code;
2246  	mm->end_code	= prctl_map.end_code;
2247  	mm->start_data	= prctl_map.start_data;
2248  	mm->end_data	= prctl_map.end_data;
2249  	mm->start_brk	= prctl_map.start_brk;
2250  	mm->brk		= prctl_map.brk;
2251  	mm->start_stack	= prctl_map.start_stack;
2252  	mm->arg_start	= prctl_map.arg_start;
2253  	mm->arg_end	= prctl_map.arg_end;
2254  	mm->env_start	= prctl_map.env_start;
2255  	mm->env_end	= prctl_map.env_end;
2256  
2257  	error = 0;
2258  out:
2259  	spin_unlock(&mm->arg_lock);
2260  	mmap_read_unlock(mm);
2261  	return error;
2262  }
2263  
2264  #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2265  static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2266  {
2267  	return put_user(me->clear_child_tid, tid_addr);
2268  }
2269  #else
prctl_get_tid_address(struct task_struct * me,int __user * __user * tid_addr)2270  static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2271  {
2272  	return -EINVAL;
2273  }
2274  #endif
2275  
propagate_has_child_subreaper(struct task_struct * p,void * data)2276  static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2277  {
2278  	/*
2279  	 * If task has has_child_subreaper - all its descendants
2280  	 * already have these flag too and new descendants will
2281  	 * inherit it on fork, skip them.
2282  	 *
2283  	 * If we've found child_reaper - skip descendants in
2284  	 * it's subtree as they will never get out pidns.
2285  	 */
2286  	if (p->signal->has_child_subreaper ||
2287  	    is_child_reaper(task_pid(p)))
2288  		return 0;
2289  
2290  	p->signal->has_child_subreaper = 1;
2291  	return 1;
2292  }
2293  
arch_prctl_spec_ctrl_get(struct task_struct * t,unsigned long which)2294  int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2295  {
2296  	return -EINVAL;
2297  }
2298  
arch_prctl_spec_ctrl_set(struct task_struct * t,unsigned long which,unsigned long ctrl)2299  int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2300  				    unsigned long ctrl)
2301  {
2302  	return -EINVAL;
2303  }
2304  
2305  #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2306  
2307  #ifdef CONFIG_ANON_VMA_NAME
2308  
2309  #define ANON_VMA_NAME_MAX_LEN		80
2310  #define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2311  
is_valid_name_char(char ch)2312  static inline bool is_valid_name_char(char ch)
2313  {
2314  	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2315  	return ch > 0x1f && ch < 0x7f &&
2316  		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2317  }
2318  
prctl_set_vma(unsigned long opt,unsigned long addr,unsigned long size,unsigned long arg)2319  static int prctl_set_vma(unsigned long opt, unsigned long addr,
2320  			 unsigned long size, unsigned long arg)
2321  {
2322  	struct mm_struct *mm = current->mm;
2323  	const char __user *uname;
2324  	struct anon_vma_name *anon_name = NULL;
2325  	int error;
2326  
2327  	switch (opt) {
2328  	case PR_SET_VMA_ANON_NAME:
2329  		uname = (const char __user *)arg;
2330  		if (uname) {
2331  			char *name, *pch;
2332  
2333  			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2334  			if (IS_ERR(name))
2335  				return PTR_ERR(name);
2336  
2337  			for (pch = name; *pch != '\0'; pch++) {
2338  				if (!is_valid_name_char(*pch)) {
2339  					kfree(name);
2340  					return -EINVAL;
2341  				}
2342  			}
2343  			/* anon_vma has its own copy */
2344  			anon_name = anon_vma_name_alloc(name);
2345  			kfree(name);
2346  			if (!anon_name)
2347  				return -ENOMEM;
2348  
2349  		}
2350  
2351  		mmap_write_lock(mm);
2352  		error = madvise_set_anon_name(mm, addr, size, anon_name);
2353  		mmap_write_unlock(mm);
2354  		anon_vma_name_put(anon_name);
2355  		break;
2356  	default:
2357  		error = -EINVAL;
2358  	}
2359  
2360  	return error;
2361  }
2362  
2363  #else /* CONFIG_ANON_VMA_NAME */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long size,unsigned long arg)2364  static int prctl_set_vma(unsigned long opt, unsigned long start,
2365  			 unsigned long size, unsigned long arg)
2366  {
2367  	return -EINVAL;
2368  }
2369  #endif /* CONFIG_ANON_VMA_NAME */
2370  
get_current_mdwe(void)2371  static inline unsigned long get_current_mdwe(void)
2372  {
2373  	unsigned long ret = 0;
2374  
2375  	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2376  		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2377  	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2378  		ret |= PR_MDWE_NO_INHERIT;
2379  
2380  	return ret;
2381  }
2382  
prctl_set_mdwe(unsigned long bits,unsigned long arg3,unsigned long arg4,unsigned long arg5)2383  static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2384  				 unsigned long arg4, unsigned long arg5)
2385  {
2386  	unsigned long current_bits;
2387  
2388  	if (arg3 || arg4 || arg5)
2389  		return -EINVAL;
2390  
2391  	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2392  		return -EINVAL;
2393  
2394  	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2395  	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2396  		return -EINVAL;
2397  
2398  	/*
2399  	 * EOPNOTSUPP might be more appropriate here in principle, but
2400  	 * existing userspace depends on EINVAL specifically.
2401  	 */
2402  	if (!arch_memory_deny_write_exec_supported())
2403  		return -EINVAL;
2404  
2405  	current_bits = get_current_mdwe();
2406  	if (current_bits && current_bits != bits)
2407  		return -EPERM; /* Cannot unset the flags */
2408  
2409  	if (bits & PR_MDWE_NO_INHERIT)
2410  		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2411  	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2412  		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2413  
2414  	return 0;
2415  }
2416  
prctl_get_mdwe(unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)2417  static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2418  				 unsigned long arg4, unsigned long arg5)
2419  {
2420  	if (arg2 || arg3 || arg4 || arg5)
2421  		return -EINVAL;
2422  	return get_current_mdwe();
2423  }
2424  
prctl_get_auxv(void __user * addr,unsigned long len)2425  static int prctl_get_auxv(void __user *addr, unsigned long len)
2426  {
2427  	struct mm_struct *mm = current->mm;
2428  	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2429  
2430  	if (size && copy_to_user(addr, mm->saved_auxv, size))
2431  		return -EFAULT;
2432  	return sizeof(mm->saved_auxv);
2433  }
2434  
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2435  SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2436  		unsigned long, arg4, unsigned long, arg5)
2437  {
2438  	struct task_struct *me = current;
2439  	unsigned char comm[sizeof(me->comm)];
2440  	long error;
2441  
2442  	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2443  	if (error != -ENOSYS)
2444  		return error;
2445  
2446  	error = 0;
2447  	switch (option) {
2448  	case PR_SET_PDEATHSIG:
2449  		if (!valid_signal(arg2)) {
2450  			error = -EINVAL;
2451  			break;
2452  		}
2453  		me->pdeath_signal = arg2;
2454  		break;
2455  	case PR_GET_PDEATHSIG:
2456  		error = put_user(me->pdeath_signal, (int __user *)arg2);
2457  		break;
2458  	case PR_GET_DUMPABLE:
2459  		error = get_dumpable(me->mm);
2460  		break;
2461  	case PR_SET_DUMPABLE:
2462  		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2463  			error = -EINVAL;
2464  			break;
2465  		}
2466  		set_dumpable(me->mm, arg2);
2467  		break;
2468  
2469  	case PR_SET_UNALIGN:
2470  		error = SET_UNALIGN_CTL(me, arg2);
2471  		break;
2472  	case PR_GET_UNALIGN:
2473  		error = GET_UNALIGN_CTL(me, arg2);
2474  		break;
2475  	case PR_SET_FPEMU:
2476  		error = SET_FPEMU_CTL(me, arg2);
2477  		break;
2478  	case PR_GET_FPEMU:
2479  		error = GET_FPEMU_CTL(me, arg2);
2480  		break;
2481  	case PR_SET_FPEXC:
2482  		error = SET_FPEXC_CTL(me, arg2);
2483  		break;
2484  	case PR_GET_FPEXC:
2485  		error = GET_FPEXC_CTL(me, arg2);
2486  		break;
2487  	case PR_GET_TIMING:
2488  		error = PR_TIMING_STATISTICAL;
2489  		break;
2490  	case PR_SET_TIMING:
2491  		if (arg2 != PR_TIMING_STATISTICAL)
2492  			error = -EINVAL;
2493  		break;
2494  	case PR_SET_NAME:
2495  		comm[sizeof(me->comm) - 1] = 0;
2496  		if (strncpy_from_user(comm, (char __user *)arg2,
2497  				      sizeof(me->comm) - 1) < 0)
2498  			return -EFAULT;
2499  		set_task_comm(me, comm);
2500  		proc_comm_connector(me);
2501  		break;
2502  	case PR_GET_NAME:
2503  		get_task_comm(comm, me);
2504  		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2505  			return -EFAULT;
2506  		break;
2507  	case PR_GET_ENDIAN:
2508  		error = GET_ENDIAN(me, arg2);
2509  		break;
2510  	case PR_SET_ENDIAN:
2511  		error = SET_ENDIAN(me, arg2);
2512  		break;
2513  	case PR_GET_SECCOMP:
2514  		error = prctl_get_seccomp();
2515  		break;
2516  	case PR_SET_SECCOMP:
2517  		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2518  		break;
2519  	case PR_GET_TSC:
2520  		error = GET_TSC_CTL(arg2);
2521  		break;
2522  	case PR_SET_TSC:
2523  		error = SET_TSC_CTL(arg2);
2524  		break;
2525  	case PR_TASK_PERF_EVENTS_DISABLE:
2526  		error = perf_event_task_disable();
2527  		break;
2528  	case PR_TASK_PERF_EVENTS_ENABLE:
2529  		error = perf_event_task_enable();
2530  		break;
2531  	case PR_GET_TIMERSLACK:
2532  		if (current->timer_slack_ns > ULONG_MAX)
2533  			error = ULONG_MAX;
2534  		else
2535  			error = current->timer_slack_ns;
2536  		break;
2537  	case PR_SET_TIMERSLACK:
2538  		if (task_is_realtime(current))
2539  			break;
2540  		if (arg2 <= 0)
2541  			current->timer_slack_ns =
2542  					current->default_timer_slack_ns;
2543  		else
2544  			current->timer_slack_ns = arg2;
2545  		break;
2546  	case PR_MCE_KILL:
2547  		if (arg4 | arg5)
2548  			return -EINVAL;
2549  		switch (arg2) {
2550  		case PR_MCE_KILL_CLEAR:
2551  			if (arg3 != 0)
2552  				return -EINVAL;
2553  			current->flags &= ~PF_MCE_PROCESS;
2554  			break;
2555  		case PR_MCE_KILL_SET:
2556  			current->flags |= PF_MCE_PROCESS;
2557  			if (arg3 == PR_MCE_KILL_EARLY)
2558  				current->flags |= PF_MCE_EARLY;
2559  			else if (arg3 == PR_MCE_KILL_LATE)
2560  				current->flags &= ~PF_MCE_EARLY;
2561  			else if (arg3 == PR_MCE_KILL_DEFAULT)
2562  				current->flags &=
2563  						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2564  			else
2565  				return -EINVAL;
2566  			break;
2567  		default:
2568  			return -EINVAL;
2569  		}
2570  		break;
2571  	case PR_MCE_KILL_GET:
2572  		if (arg2 | arg3 | arg4 | arg5)
2573  			return -EINVAL;
2574  		if (current->flags & PF_MCE_PROCESS)
2575  			error = (current->flags & PF_MCE_EARLY) ?
2576  				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2577  		else
2578  			error = PR_MCE_KILL_DEFAULT;
2579  		break;
2580  	case PR_SET_MM:
2581  		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2582  		break;
2583  	case PR_GET_TID_ADDRESS:
2584  		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2585  		break;
2586  	case PR_SET_CHILD_SUBREAPER:
2587  		me->signal->is_child_subreaper = !!arg2;
2588  		if (!arg2)
2589  			break;
2590  
2591  		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2592  		break;
2593  	case PR_GET_CHILD_SUBREAPER:
2594  		error = put_user(me->signal->is_child_subreaper,
2595  				 (int __user *)arg2);
2596  		break;
2597  	case PR_SET_NO_NEW_PRIVS:
2598  		if (arg2 != 1 || arg3 || arg4 || arg5)
2599  			return -EINVAL;
2600  
2601  		task_set_no_new_privs(current);
2602  		break;
2603  	case PR_GET_NO_NEW_PRIVS:
2604  		if (arg2 || arg3 || arg4 || arg5)
2605  			return -EINVAL;
2606  		return task_no_new_privs(current) ? 1 : 0;
2607  	case PR_GET_THP_DISABLE:
2608  		if (arg2 || arg3 || arg4 || arg5)
2609  			return -EINVAL;
2610  		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2611  		break;
2612  	case PR_SET_THP_DISABLE:
2613  		if (arg3 || arg4 || arg5)
2614  			return -EINVAL;
2615  		if (mmap_write_lock_killable(me->mm))
2616  			return -EINTR;
2617  		if (arg2)
2618  			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2619  		else
2620  			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2621  		mmap_write_unlock(me->mm);
2622  		break;
2623  	case PR_MPX_ENABLE_MANAGEMENT:
2624  	case PR_MPX_DISABLE_MANAGEMENT:
2625  		/* No longer implemented: */
2626  		return -EINVAL;
2627  	case PR_SET_FP_MODE:
2628  		error = SET_FP_MODE(me, arg2);
2629  		break;
2630  	case PR_GET_FP_MODE:
2631  		error = GET_FP_MODE(me);
2632  		break;
2633  	case PR_SVE_SET_VL:
2634  		error = SVE_SET_VL(arg2);
2635  		break;
2636  	case PR_SVE_GET_VL:
2637  		error = SVE_GET_VL();
2638  		break;
2639  	case PR_SME_SET_VL:
2640  		error = SME_SET_VL(arg2);
2641  		break;
2642  	case PR_SME_GET_VL:
2643  		error = SME_GET_VL();
2644  		break;
2645  	case PR_GET_SPECULATION_CTRL:
2646  		if (arg3 || arg4 || arg5)
2647  			return -EINVAL;
2648  		error = arch_prctl_spec_ctrl_get(me, arg2);
2649  		break;
2650  	case PR_SET_SPECULATION_CTRL:
2651  		if (arg4 || arg5)
2652  			return -EINVAL;
2653  		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2654  		break;
2655  	case PR_PAC_RESET_KEYS:
2656  		if (arg3 || arg4 || arg5)
2657  			return -EINVAL;
2658  		error = PAC_RESET_KEYS(me, arg2);
2659  		break;
2660  	case PR_PAC_SET_ENABLED_KEYS:
2661  		if (arg4 || arg5)
2662  			return -EINVAL;
2663  		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2664  		break;
2665  	case PR_PAC_GET_ENABLED_KEYS:
2666  		if (arg2 || arg3 || arg4 || arg5)
2667  			return -EINVAL;
2668  		error = PAC_GET_ENABLED_KEYS(me);
2669  		break;
2670  	case PR_SET_TAGGED_ADDR_CTRL:
2671  		if (arg3 || arg4 || arg5)
2672  			return -EINVAL;
2673  		error = SET_TAGGED_ADDR_CTRL(arg2);
2674  		break;
2675  	case PR_GET_TAGGED_ADDR_CTRL:
2676  		if (arg2 || arg3 || arg4 || arg5)
2677  			return -EINVAL;
2678  		error = GET_TAGGED_ADDR_CTRL();
2679  		break;
2680  	case PR_SET_IO_FLUSHER:
2681  		if (!capable(CAP_SYS_RESOURCE))
2682  			return -EPERM;
2683  
2684  		if (arg3 || arg4 || arg5)
2685  			return -EINVAL;
2686  
2687  		if (arg2 == 1)
2688  			current->flags |= PR_IO_FLUSHER;
2689  		else if (!arg2)
2690  			current->flags &= ~PR_IO_FLUSHER;
2691  		else
2692  			return -EINVAL;
2693  		break;
2694  	case PR_GET_IO_FLUSHER:
2695  		if (!capable(CAP_SYS_RESOURCE))
2696  			return -EPERM;
2697  
2698  		if (arg2 || arg3 || arg4 || arg5)
2699  			return -EINVAL;
2700  
2701  		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2702  		break;
2703  	case PR_SET_SYSCALL_USER_DISPATCH:
2704  		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2705  						  (char __user *) arg5);
2706  		break;
2707  #ifdef CONFIG_SCHED_CORE
2708  	case PR_SCHED_CORE:
2709  		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2710  		break;
2711  #endif
2712  	case PR_SET_MDWE:
2713  		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2714  		break;
2715  	case PR_GET_MDWE:
2716  		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2717  		break;
2718  	case PR_SET_VMA:
2719  		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2720  		break;
2721  	case PR_GET_AUXV:
2722  		if (arg4 || arg5)
2723  			return -EINVAL;
2724  		error = prctl_get_auxv((void __user *)arg2, arg3);
2725  		break;
2726  #ifdef CONFIG_KSM
2727  	case PR_SET_MEMORY_MERGE:
2728  		if (arg3 || arg4 || arg5)
2729  			return -EINVAL;
2730  		if (mmap_write_lock_killable(me->mm))
2731  			return -EINTR;
2732  
2733  		if (arg2)
2734  			error = ksm_enable_merge_any(me->mm);
2735  		else
2736  			error = ksm_disable_merge_any(me->mm);
2737  		mmap_write_unlock(me->mm);
2738  		break;
2739  	case PR_GET_MEMORY_MERGE:
2740  		if (arg2 || arg3 || arg4 || arg5)
2741  			return -EINVAL;
2742  
2743  		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2744  		break;
2745  #endif
2746  	case PR_RISCV_V_SET_CONTROL:
2747  		error = RISCV_V_SET_CONTROL(arg2);
2748  		break;
2749  	case PR_RISCV_V_GET_CONTROL:
2750  		error = RISCV_V_GET_CONTROL();
2751  		break;
2752  	default:
2753  		error = -EINVAL;
2754  		break;
2755  	}
2756  	return error;
2757  }
2758  
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2759  SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2760  		struct getcpu_cache __user *, unused)
2761  {
2762  	int err = 0;
2763  	int cpu = raw_smp_processor_id();
2764  
2765  	if (cpup)
2766  		err |= put_user(cpu, cpup);
2767  	if (nodep)
2768  		err |= put_user(cpu_to_node(cpu), nodep);
2769  	return err ? -EFAULT : 0;
2770  }
2771  
2772  /**
2773   * do_sysinfo - fill in sysinfo struct
2774   * @info: pointer to buffer to fill
2775   */
do_sysinfo(struct sysinfo * info)2776  static int do_sysinfo(struct sysinfo *info)
2777  {
2778  	unsigned long mem_total, sav_total;
2779  	unsigned int mem_unit, bitcount;
2780  	struct timespec64 tp;
2781  
2782  	memset(info, 0, sizeof(struct sysinfo));
2783  
2784  	ktime_get_boottime_ts64(&tp);
2785  	timens_add_boottime(&tp);
2786  	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2787  
2788  	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2789  
2790  	info->procs = nr_threads;
2791  
2792  	si_meminfo(info);
2793  	si_swapinfo(info);
2794  
2795  	/*
2796  	 * If the sum of all the available memory (i.e. ram + swap)
2797  	 * is less than can be stored in a 32 bit unsigned long then
2798  	 * we can be binary compatible with 2.2.x kernels.  If not,
2799  	 * well, in that case 2.2.x was broken anyways...
2800  	 *
2801  	 *  -Erik Andersen <andersee@debian.org>
2802  	 */
2803  
2804  	mem_total = info->totalram + info->totalswap;
2805  	if (mem_total < info->totalram || mem_total < info->totalswap)
2806  		goto out;
2807  	bitcount = 0;
2808  	mem_unit = info->mem_unit;
2809  	while (mem_unit > 1) {
2810  		bitcount++;
2811  		mem_unit >>= 1;
2812  		sav_total = mem_total;
2813  		mem_total <<= 1;
2814  		if (mem_total < sav_total)
2815  			goto out;
2816  	}
2817  
2818  	/*
2819  	 * If mem_total did not overflow, multiply all memory values by
2820  	 * info->mem_unit and set it to 1.  This leaves things compatible
2821  	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2822  	 * kernels...
2823  	 */
2824  
2825  	info->mem_unit = 1;
2826  	info->totalram <<= bitcount;
2827  	info->freeram <<= bitcount;
2828  	info->sharedram <<= bitcount;
2829  	info->bufferram <<= bitcount;
2830  	info->totalswap <<= bitcount;
2831  	info->freeswap <<= bitcount;
2832  	info->totalhigh <<= bitcount;
2833  	info->freehigh <<= bitcount;
2834  
2835  out:
2836  	return 0;
2837  }
2838  
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2839  SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2840  {
2841  	struct sysinfo val;
2842  
2843  	do_sysinfo(&val);
2844  
2845  	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2846  		return -EFAULT;
2847  
2848  	return 0;
2849  }
2850  
2851  #ifdef CONFIG_COMPAT
2852  struct compat_sysinfo {
2853  	s32 uptime;
2854  	u32 loads[3];
2855  	u32 totalram;
2856  	u32 freeram;
2857  	u32 sharedram;
2858  	u32 bufferram;
2859  	u32 totalswap;
2860  	u32 freeswap;
2861  	u16 procs;
2862  	u16 pad;
2863  	u32 totalhigh;
2864  	u32 freehigh;
2865  	u32 mem_unit;
2866  	char _f[20-2*sizeof(u32)-sizeof(int)];
2867  };
2868  
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2869  COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2870  {
2871  	struct sysinfo s;
2872  	struct compat_sysinfo s_32;
2873  
2874  	do_sysinfo(&s);
2875  
2876  	/* Check to see if any memory value is too large for 32-bit and scale
2877  	 *  down if needed
2878  	 */
2879  	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2880  		int bitcount = 0;
2881  
2882  		while (s.mem_unit < PAGE_SIZE) {
2883  			s.mem_unit <<= 1;
2884  			bitcount++;
2885  		}
2886  
2887  		s.totalram >>= bitcount;
2888  		s.freeram >>= bitcount;
2889  		s.sharedram >>= bitcount;
2890  		s.bufferram >>= bitcount;
2891  		s.totalswap >>= bitcount;
2892  		s.freeswap >>= bitcount;
2893  		s.totalhigh >>= bitcount;
2894  		s.freehigh >>= bitcount;
2895  	}
2896  
2897  	memset(&s_32, 0, sizeof(s_32));
2898  	s_32.uptime = s.uptime;
2899  	s_32.loads[0] = s.loads[0];
2900  	s_32.loads[1] = s.loads[1];
2901  	s_32.loads[2] = s.loads[2];
2902  	s_32.totalram = s.totalram;
2903  	s_32.freeram = s.freeram;
2904  	s_32.sharedram = s.sharedram;
2905  	s_32.bufferram = s.bufferram;
2906  	s_32.totalswap = s.totalswap;
2907  	s_32.freeswap = s.freeswap;
2908  	s_32.procs = s.procs;
2909  	s_32.totalhigh = s.totalhigh;
2910  	s_32.freehigh = s.freehigh;
2911  	s_32.mem_unit = s.mem_unit;
2912  	if (copy_to_user(info, &s_32, sizeof(s_32)))
2913  		return -EFAULT;
2914  	return 0;
2915  }
2916  #endif /* CONFIG_COMPAT */
2917