xref: /openbmc/qemu/target/arm/tcg/helper-a64.c (revision 0edc2afe0c8197bbcb98f948c609fb74c9b1ffd5)
1 /*
2  *  AArch64 specific helpers
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "gdbstub/helpers.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/cpu-common.h"
32 #include "accel/tcg/cpu-ldst.h"
33 #include "accel/tcg/helper-retaddr.h"
34 #include "accel/tcg/probe.h"
35 #include "exec/target_page.h"
36 #include "exec/tlb-flags.h"
37 #include "qemu/int128.h"
38 #include "qemu/atomic128.h"
39 #include "fpu/softfloat.h"
40 #include <zlib.h> /* for crc32 */
41 #ifdef CONFIG_USER_ONLY
42 #include "user/page-protection.h"
43 #endif
44 #include "vec_internal.h"
45 
46 /* C2.4.7 Multiply and divide */
47 /* special cases for 0 and LLONG_MIN are mandated by the standard */
HELPER(udiv64)48 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
49 {
50     if (den == 0) {
51         return 0;
52     }
53     return num / den;
54 }
55 
HELPER(sdiv64)56 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
57 {
58     if (den == 0) {
59         return 0;
60     }
61     if (num == LLONG_MIN && den == -1) {
62         return LLONG_MIN;
63     }
64     return num / den;
65 }
66 
HELPER(rbit64)67 uint64_t HELPER(rbit64)(uint64_t x)
68 {
69     return revbit64(x);
70 }
71 
HELPER(msr_i_spsel)72 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
73 {
74     update_spsel(env, imm);
75 }
76 
HELPER(msr_set_allint_el1)77 void HELPER(msr_set_allint_el1)(CPUARMState *env)
78 {
79     /* ALLINT update to PSTATE. */
80     if (arm_hcrx_el2_eff(env) & HCRX_TALLINT) {
81         raise_exception_ra(env, EXCP_UDEF,
82                            syn_aa64_sysregtrap(0, 1, 0, 4, 1, 0x1f, 0), 2,
83                            GETPC());
84     }
85 
86     env->pstate |= PSTATE_ALLINT;
87 }
88 
daif_check(CPUARMState * env,uint32_t op,uint32_t imm,uintptr_t ra)89 static void daif_check(CPUARMState *env, uint32_t op,
90                        uint32_t imm, uintptr_t ra)
91 {
92     /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
93     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
94         raise_exception_ra(env, EXCP_UDEF,
95                            syn_aa64_sysregtrap(0, extract32(op, 0, 3),
96                                                extract32(op, 3, 3), 4,
97                                                imm, 0x1f, 0),
98                            exception_target_el(env), ra);
99     }
100 }
101 
HELPER(msr_i_daifset)102 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
103 {
104     daif_check(env, 0x1e, imm, GETPC());
105     env->daif |= (imm << 6) & PSTATE_DAIF;
106     arm_rebuild_hflags(env);
107 }
108 
HELPER(msr_i_daifclear)109 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
110 {
111     daif_check(env, 0x1f, imm, GETPC());
112     env->daif &= ~((imm << 6) & PSTATE_DAIF);
113     arm_rebuild_hflags(env);
114 }
115 
116 /* Convert a softfloat float_relation_ (as returned by
117  * the float*_compare functions) to the correct ARM
118  * NZCV flag state.
119  */
float_rel_to_flags(int res)120 static inline uint32_t float_rel_to_flags(int res)
121 {
122     uint64_t flags;
123     switch (res) {
124     case float_relation_equal:
125         flags = PSTATE_Z | PSTATE_C;
126         break;
127     case float_relation_less:
128         flags = PSTATE_N;
129         break;
130     case float_relation_greater:
131         flags = PSTATE_C;
132         break;
133     case float_relation_unordered:
134     default:
135         flags = PSTATE_C | PSTATE_V;
136         break;
137     }
138     return flags;
139 }
140 
HELPER(vfp_cmph_a64)141 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, float_status *fp_status)
142 {
143     return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
144 }
145 
HELPER(vfp_cmpeh_a64)146 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, float_status *fp_status)
147 {
148     return float_rel_to_flags(float16_compare(x, y, fp_status));
149 }
150 
HELPER(vfp_cmps_a64)151 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, float_status *fp_status)
152 {
153     return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
154 }
155 
HELPER(vfp_cmpes_a64)156 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, float_status *fp_status)
157 {
158     return float_rel_to_flags(float32_compare(x, y, fp_status));
159 }
160 
HELPER(vfp_cmpd_a64)161 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, float_status *fp_status)
162 {
163     return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
164 }
165 
HELPER(vfp_cmped_a64)166 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, float_status *fp_status)
167 {
168     return float_rel_to_flags(float64_compare(x, y, fp_status));
169 }
170 
HELPER(vfp_mulxs)171 float32 HELPER(vfp_mulxs)(float32 a, float32 b, float_status *fpst)
172 {
173     a = float32_squash_input_denormal(a, fpst);
174     b = float32_squash_input_denormal(b, fpst);
175 
176     if ((float32_is_zero(a) && float32_is_infinity(b)) ||
177         (float32_is_infinity(a) && float32_is_zero(b))) {
178         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
179         return make_float32((1U << 30) |
180                             ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
181     }
182     return float32_mul(a, b, fpst);
183 }
184 
HELPER(vfp_mulxd)185 float64 HELPER(vfp_mulxd)(float64 a, float64 b, float_status *fpst)
186 {
187     a = float64_squash_input_denormal(a, fpst);
188     b = float64_squash_input_denormal(b, fpst);
189 
190     if ((float64_is_zero(a) && float64_is_infinity(b)) ||
191         (float64_is_infinity(a) && float64_is_zero(b))) {
192         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
193         return make_float64((1ULL << 62) |
194                             ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
195     }
196     return float64_mul(a, b, fpst);
197 }
198 
199 /* 64bit/double versions of the neon float compare functions */
HELPER(neon_ceq_f64)200 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, float_status *fpst)
201 {
202     return -float64_eq_quiet(a, b, fpst);
203 }
204 
HELPER(neon_cge_f64)205 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, float_status *fpst)
206 {
207     return -float64_le(b, a, fpst);
208 }
209 
HELPER(neon_cgt_f64)210 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, float_status *fpst)
211 {
212     return -float64_lt(b, a, fpst);
213 }
214 
215 /*
216  * Reciprocal step and sqrt step. Note that unlike the A32/T32
217  * versions, these do a fully fused multiply-add or
218  * multiply-add-and-halve.
219  * The FPCR.AH == 1 versions need to avoid flipping the sign of NaN.
220  */
221 #define DO_RECPS(NAME, CTYPE, FLOATTYPE, CHSFN)                         \
222     CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst)            \
223     {                                                                   \
224         a = FLOATTYPE ## _squash_input_denormal(a, fpst);               \
225         b = FLOATTYPE ## _squash_input_denormal(b, fpst);               \
226         a = FLOATTYPE ## _ ## CHSFN(a);                                 \
227         if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
228             (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
229             return FLOATTYPE ## _two;                                   \
230         }                                                               \
231         return FLOATTYPE ## _muladd(a, b, FLOATTYPE ## _two, 0, fpst);  \
232     }
233 
DO_RECPS(recpsf_f16,uint32_t,float16,chs)234 DO_RECPS(recpsf_f16, uint32_t, float16, chs)
235 DO_RECPS(recpsf_f32, float32, float32, chs)
236 DO_RECPS(recpsf_f64, float64, float64, chs)
237 DO_RECPS(recpsf_ah_f16, uint32_t, float16, ah_chs)
238 DO_RECPS(recpsf_ah_f32, float32, float32, ah_chs)
239 DO_RECPS(recpsf_ah_f64, float64, float64, ah_chs)
240 
241 #define DO_RSQRTSF(NAME, CTYPE, FLOATTYPE, CHSFN)                       \
242     CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst)            \
243     {                                                                   \
244         a = FLOATTYPE ## _squash_input_denormal(a, fpst);               \
245         b = FLOATTYPE ## _squash_input_denormal(b, fpst);               \
246         a = FLOATTYPE ## _ ## CHSFN(a);                                 \
247         if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
248             (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
249             return FLOATTYPE ## _one_point_five;                        \
250         }                                                               \
251         return FLOATTYPE ## _muladd_scalbn(a, b, FLOATTYPE ## _three,   \
252                                            -1, 0, fpst);                \
253     }                                                                   \
254 
255 DO_RSQRTSF(rsqrtsf_f16, uint32_t, float16, chs)
256 DO_RSQRTSF(rsqrtsf_f32, float32, float32, chs)
257 DO_RSQRTSF(rsqrtsf_f64, float64, float64, chs)
258 DO_RSQRTSF(rsqrtsf_ah_f16, uint32_t, float16, ah_chs)
259 DO_RSQRTSF(rsqrtsf_ah_f32, float32, float32, ah_chs)
260 DO_RSQRTSF(rsqrtsf_ah_f64, float64, float64, ah_chs)
261 
262 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
263 uint32_t HELPER(frecpx_f16)(uint32_t a, float_status *fpst)
264 {
265     uint16_t val16, sbit;
266     int16_t exp;
267 
268     if (float16_is_any_nan(a)) {
269         float16 nan = a;
270         if (float16_is_signaling_nan(a, fpst)) {
271             float_raise(float_flag_invalid, fpst);
272             if (!fpst->default_nan_mode) {
273                 nan = float16_silence_nan(a, fpst);
274             }
275         }
276         if (fpst->default_nan_mode) {
277             nan = float16_default_nan(fpst);
278         }
279         return nan;
280     }
281 
282     a = float16_squash_input_denormal(a, fpst);
283 
284     val16 = float16_val(a);
285     sbit = 0x8000 & val16;
286     exp = extract32(val16, 10, 5);
287 
288     if (exp == 0) {
289         return make_float16(deposit32(sbit, 10, 5, 0x1e));
290     } else {
291         return make_float16(deposit32(sbit, 10, 5, ~exp));
292     }
293 }
294 
HELPER(frecpx_f32)295 float32 HELPER(frecpx_f32)(float32 a, float_status *fpst)
296 {
297     uint32_t val32, sbit;
298     int32_t exp;
299 
300     if (float32_is_any_nan(a)) {
301         float32 nan = a;
302         if (float32_is_signaling_nan(a, fpst)) {
303             float_raise(float_flag_invalid, fpst);
304             if (!fpst->default_nan_mode) {
305                 nan = float32_silence_nan(a, fpst);
306             }
307         }
308         if (fpst->default_nan_mode) {
309             nan = float32_default_nan(fpst);
310         }
311         return nan;
312     }
313 
314     a = float32_squash_input_denormal(a, fpst);
315 
316     val32 = float32_val(a);
317     sbit = 0x80000000ULL & val32;
318     exp = extract32(val32, 23, 8);
319 
320     if (exp == 0) {
321         return make_float32(sbit | (0xfe << 23));
322     } else {
323         return make_float32(sbit | (~exp & 0xff) << 23);
324     }
325 }
326 
HELPER(frecpx_f64)327 float64 HELPER(frecpx_f64)(float64 a, float_status *fpst)
328 {
329     uint64_t val64, sbit;
330     int64_t exp;
331 
332     if (float64_is_any_nan(a)) {
333         float64 nan = a;
334         if (float64_is_signaling_nan(a, fpst)) {
335             float_raise(float_flag_invalid, fpst);
336             if (!fpst->default_nan_mode) {
337                 nan = float64_silence_nan(a, fpst);
338             }
339         }
340         if (fpst->default_nan_mode) {
341             nan = float64_default_nan(fpst);
342         }
343         return nan;
344     }
345 
346     a = float64_squash_input_denormal(a, fpst);
347 
348     val64 = float64_val(a);
349     sbit = 0x8000000000000000ULL & val64;
350     exp = extract64(float64_val(a), 52, 11);
351 
352     if (exp == 0) {
353         return make_float64(sbit | (0x7feULL << 52));
354     } else {
355         return make_float64(sbit | (~exp & 0x7ffULL) << 52);
356     }
357 }
358 
HELPER(fcvtx_f64_to_f32)359 float32 HELPER(fcvtx_f64_to_f32)(float64 a, float_status *fpst)
360 {
361     float32 r;
362     int old = get_float_rounding_mode(fpst);
363 
364     set_float_rounding_mode(float_round_to_odd, fpst);
365     r = float64_to_float32(a, fpst);
366     set_float_rounding_mode(old, fpst);
367     return r;
368 }
369 
370 /*
371  * AH=1 min/max have some odd special cases:
372  * comparing two zeroes (regardless of sign), (NaN, anything),
373  * or (anything, NaN) should return the second argument (possibly
374  * squashed to zero).
375  * Also, denormal outputs are not squashed to zero regardless of FZ or FZ16.
376  */
377 #define AH_MINMAX_HELPER(NAME, CTYPE, FLOATTYPE, MINMAX)                \
378     CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst)            \
379     {                                                                   \
380         bool save;                                                      \
381         CTYPE r;                                                        \
382         a = FLOATTYPE ## _squash_input_denormal(a, fpst);               \
383         b = FLOATTYPE ## _squash_input_denormal(b, fpst);               \
384         if (FLOATTYPE ## _is_zero(a) && FLOATTYPE ## _is_zero(b)) {     \
385             return b;                                                   \
386         }                                                               \
387         if (FLOATTYPE ## _is_any_nan(a) ||                              \
388             FLOATTYPE ## _is_any_nan(b)) {                              \
389             float_raise(float_flag_invalid, fpst);                      \
390             return b;                                                   \
391         }                                                               \
392         save = get_flush_to_zero(fpst);                                 \
393         set_flush_to_zero(false, fpst);                                 \
394         r = FLOATTYPE ## _ ## MINMAX(a, b, fpst);                       \
395         set_flush_to_zero(save, fpst);                                  \
396         return r;                                                       \
397     }
398 
AH_MINMAX_HELPER(vfp_ah_minh,dh_ctype_f16,float16,min)399 AH_MINMAX_HELPER(vfp_ah_minh, dh_ctype_f16, float16, min)
400 AH_MINMAX_HELPER(vfp_ah_mins, float32, float32, min)
401 AH_MINMAX_HELPER(vfp_ah_mind, float64, float64, min)
402 AH_MINMAX_HELPER(vfp_ah_maxh, dh_ctype_f16, float16, max)
403 AH_MINMAX_HELPER(vfp_ah_maxs, float32, float32, max)
404 AH_MINMAX_HELPER(vfp_ah_maxd, float64, float64, max)
405 AH_MINMAX_HELPER(sme2_ah_fmax_b16, bfloat16, bfloat16, max)
406 AH_MINMAX_HELPER(sme2_ah_fmin_b16, bfloat16, bfloat16, min)
407 
408 /* 64-bit versions of the CRC helpers. Note that although the operation
409  * (and the prototypes of crc32c() and crc32() mean that only the bottom
410  * 32 bits of the accumulator and result are used, we pass and return
411  * uint64_t for convenience of the generated code. Unlike the 32-bit
412  * instruction set versions, val may genuinely have 64 bits of data in it.
413  * The upper bytes of val (above the number specified by 'bytes') must have
414  * been zeroed out by the caller.
415  */
416 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
417 {
418     uint8_t buf[8];
419 
420     stq_le_p(buf, val);
421 
422     /* zlib crc32 converts the accumulator and output to one's complement.  */
423     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
424 }
425 
HELPER(crc32c_64)426 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
427 {
428     uint8_t buf[8];
429 
430     stq_le_p(buf, val);
431 
432     /* Linux crc32c converts the output to one's complement.  */
433     return crc32c(acc, buf, bytes) ^ 0xffffffff;
434 }
435 
436 /*
437  * AdvSIMD half-precision
438  */
439 
440 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
441 
442 #define ADVSIMD_HALFOP(name) \
443 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, float_status *fpst) \
444 { \
445     return float16_ ## name(a, b, fpst);    \
446 }
447 
448 #define ADVSIMD_TWOHALFOP(name)                                         \
449 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b,       \
450                                   float_status *fpst)                   \
451 { \
452     float16  a1, a2, b1, b2;                        \
453     uint32_t r1, r2;                                \
454     a1 = extract32(two_a, 0, 16);                   \
455     a2 = extract32(two_a, 16, 16);                  \
456     b1 = extract32(two_b, 0, 16);                   \
457     b2 = extract32(two_b, 16, 16);                  \
458     r1 = float16_ ## name(a1, b1, fpst);            \
459     r2 = float16_ ## name(a2, b2, fpst);            \
460     return deposit32(r1, 16, 16, r2);               \
461 }
462 
463 ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)464 ADVSIMD_TWOHALFOP(sub)
465 ADVSIMD_TWOHALFOP(mul)
466 ADVSIMD_TWOHALFOP(div)
467 ADVSIMD_TWOHALFOP(min)
468 ADVSIMD_TWOHALFOP(max)
469 ADVSIMD_TWOHALFOP(minnum)
470 ADVSIMD_TWOHALFOP(maxnum)
471 
472 /* Data processing - scalar floating-point and advanced SIMD */
473 static float16 float16_mulx(float16 a, float16 b, float_status *fpst)
474 {
475     a = float16_squash_input_denormal(a, fpst);
476     b = float16_squash_input_denormal(b, fpst);
477 
478     if ((float16_is_zero(a) && float16_is_infinity(b)) ||
479         (float16_is_infinity(a) && float16_is_zero(b))) {
480         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
481         return make_float16((1U << 14) |
482                             ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
483     }
484     return float16_mul(a, b, fpst);
485 }
486 
487 ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)488 ADVSIMD_TWOHALFOP(mulx)
489 
490 /* fused multiply-accumulate */
491 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
492                                  float_status *fpst)
493 {
494     return float16_muladd(a, b, c, 0, fpst);
495 }
496 
HELPER(advsimd_muladd2h)497 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
498                                   uint32_t two_c, float_status *fpst)
499 {
500     float16  a1, a2, b1, b2, c1, c2;
501     uint32_t r1, r2;
502     a1 = extract32(two_a, 0, 16);
503     a2 = extract32(two_a, 16, 16);
504     b1 = extract32(two_b, 0, 16);
505     b2 = extract32(two_b, 16, 16);
506     c1 = extract32(two_c, 0, 16);
507     c2 = extract32(two_c, 16, 16);
508     r1 = float16_muladd(a1, b1, c1, 0, fpst);
509     r2 = float16_muladd(a2, b2, c2, 0, fpst);
510     return deposit32(r1, 16, 16, r2);
511 }
512 
513 /*
514  * Floating point comparisons produce an integer result. Softfloat
515  * routines return float_relation types which we convert to the 0/-1
516  * Neon requires.
517  */
518 
519 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
520 
HELPER(advsimd_ceq_f16)521 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, float_status *fpst)
522 {
523     int compare = float16_compare_quiet(a, b, fpst);
524     return ADVSIMD_CMPRES(compare == float_relation_equal);
525 }
526 
HELPER(advsimd_cge_f16)527 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, float_status *fpst)
528 {
529     int compare = float16_compare(a, b, fpst);
530     return ADVSIMD_CMPRES(compare == float_relation_greater ||
531                           compare == float_relation_equal);
532 }
533 
HELPER(advsimd_cgt_f16)534 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
535 {
536     int compare = float16_compare(a, b, fpst);
537     return ADVSIMD_CMPRES(compare == float_relation_greater);
538 }
539 
HELPER(advsimd_acge_f16)540 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, float_status *fpst)
541 {
542     float16 f0 = float16_abs(a);
543     float16 f1 = float16_abs(b);
544     int compare = float16_compare(f0, f1, fpst);
545     return ADVSIMD_CMPRES(compare == float_relation_greater ||
546                           compare == float_relation_equal);
547 }
548 
HELPER(advsimd_acgt_f16)549 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
550 {
551     float16 f0 = float16_abs(a);
552     float16 f1 = float16_abs(b);
553     int compare = float16_compare(f0, f1, fpst);
554     return ADVSIMD_CMPRES(compare == float_relation_greater);
555 }
556 
557 /* round to integral */
HELPER(advsimd_rinth_exact)558 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, float_status *fp_status)
559 {
560     return float16_round_to_int(x, fp_status);
561 }
562 
HELPER(advsimd_rinth)563 uint32_t HELPER(advsimd_rinth)(uint32_t x, float_status *fp_status)
564 {
565     int old_flags = get_float_exception_flags(fp_status), new_flags;
566     float16 ret;
567 
568     ret = float16_round_to_int(x, fp_status);
569 
570     /* Suppress any inexact exceptions the conversion produced */
571     if (!(old_flags & float_flag_inexact)) {
572         new_flags = get_float_exception_flags(fp_status);
573         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
574     }
575 
576     return ret;
577 }
578 
el_from_spsr(uint32_t spsr)579 static int el_from_spsr(uint32_t spsr)
580 {
581     /* Return the exception level that this SPSR is requesting a return to,
582      * or -1 if it is invalid (an illegal return)
583      */
584     if (spsr & PSTATE_nRW) {
585         switch (spsr & CPSR_M) {
586         case ARM_CPU_MODE_USR:
587             return 0;
588         case ARM_CPU_MODE_HYP:
589             return 2;
590         case ARM_CPU_MODE_FIQ:
591         case ARM_CPU_MODE_IRQ:
592         case ARM_CPU_MODE_SVC:
593         case ARM_CPU_MODE_ABT:
594         case ARM_CPU_MODE_UND:
595         case ARM_CPU_MODE_SYS:
596             return 1;
597         case ARM_CPU_MODE_MON:
598             /* Returning to Mon from AArch64 is never possible,
599              * so this is an illegal return.
600              */
601         default:
602             return -1;
603         }
604     } else {
605         if (extract32(spsr, 1, 1)) {
606             /* Return with reserved M[1] bit set */
607             return -1;
608         }
609         if (extract32(spsr, 0, 4) == 1) {
610             /* return to EL0 with M[0] bit set */
611             return -1;
612         }
613         return extract32(spsr, 2, 2);
614     }
615 }
616 
cpsr_write_from_spsr_elx(CPUARMState * env,uint32_t val)617 static void cpsr_write_from_spsr_elx(CPUARMState *env,
618                                      uint32_t val)
619 {
620     uint32_t mask;
621 
622     /* Save SPSR_ELx.SS into PSTATE. */
623     env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
624     val &= ~PSTATE_SS;
625 
626     /* Move DIT to the correct location for CPSR */
627     if (val & PSTATE_DIT) {
628         val &= ~PSTATE_DIT;
629         val |= CPSR_DIT;
630     }
631 
632     mask = aarch32_cpsr_valid_mask(env->features, \
633         &env_archcpu(env)->isar);
634     cpsr_write(env, val, mask, CPSRWriteRaw);
635 }
636 
HELPER(exception_return)637 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
638 {
639     ARMCPU *cpu = env_archcpu(env);
640     int cur_el = arm_current_el(env);
641     unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
642     uint32_t spsr = env->banked_spsr[spsr_idx];
643     int new_el;
644     bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
645 
646     aarch64_save_sp(env, cur_el);
647 
648     arm_clear_exclusive(env);
649 
650     /* We must squash the PSTATE.SS bit to zero unless both of the
651      * following hold:
652      *  1. debug exceptions are currently disabled
653      *  2. singlestep will be active in the EL we return to
654      * We check 1 here and 2 after we've done the pstate/cpsr write() to
655      * transition to the EL we're going to.
656      */
657     if (arm_generate_debug_exceptions(env)) {
658         spsr &= ~PSTATE_SS;
659     }
660 
661     new_el = el_from_spsr(spsr);
662     if (new_el == -1) {
663         goto illegal_return;
664     }
665     if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
666         /* Disallow return to an EL which is unimplemented or higher
667          * than the current one.
668          */
669         goto illegal_return;
670     }
671 
672     /*
673      * FEAT_RME forbids return from EL3 to a lower exception level
674      * with an invalid security state.
675      * We don't need an explicit check for FEAT_RME here because we enforce
676      * in scr_write() that you can't set the NSE bit without it.
677      */
678     if (cur_el == 3 && new_el < 3 &&
679         (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
680         goto illegal_return;
681     }
682 
683     if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
684         /* Return to an EL which is configured for a different register width */
685         goto illegal_return;
686     }
687 
688     if (!return_to_aa64 && !cpu_isar_feature(aa64_aa32, cpu)) {
689         /* Return to AArch32 when CPU is AArch64-only */
690         goto illegal_return;
691     }
692 
693     if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
694         goto illegal_return;
695     }
696 
697     bql_lock();
698     arm_call_pre_el_change_hook(cpu);
699     bql_unlock();
700 
701     if (!return_to_aa64) {
702         env->aarch64 = false;
703         /* We do a raw CPSR write because aarch64_sync_64_to_32()
704          * will sort the register banks out for us, and we've already
705          * caught all the bad-mode cases in el_from_spsr().
706          */
707         cpsr_write_from_spsr_elx(env, spsr);
708         if (!arm_singlestep_active(env)) {
709             env->pstate &= ~PSTATE_SS;
710         }
711         aarch64_sync_64_to_32(env);
712 
713         if (spsr & CPSR_T) {
714             env->regs[15] = new_pc & ~0x1;
715         } else {
716             env->regs[15] = new_pc & ~0x3;
717         }
718         helper_rebuild_hflags_a32(env, new_el);
719         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
720                       "AArch32 EL%d PC 0x%" PRIx32 "\n",
721                       cur_el, new_el, env->regs[15]);
722     } else {
723         int tbii;
724 
725         env->aarch64 = true;
726         spsr &= aarch64_pstate_valid_mask(&cpu->isar);
727         pstate_write(env, spsr);
728         if (!arm_singlestep_active(env)) {
729             env->pstate &= ~PSTATE_SS;
730         }
731         aarch64_restore_sp(env, new_el);
732         helper_rebuild_hflags_a64(env, new_el);
733 
734         /*
735          * Apply TBI to the exception return address.  We had to delay this
736          * until after we selected the new EL, so that we could select the
737          * correct TBI+TBID bits.  This is made easier by waiting until after
738          * the hflags rebuild, since we can pull the composite TBII field
739          * from there.
740          */
741         tbii = EX_TBFLAG_A64(env->hflags, TBII);
742         if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
743             /* TBI is enabled. */
744             int core_mmu_idx = arm_env_mmu_index(env);
745             if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
746                 new_pc = sextract64(new_pc, 0, 56);
747             } else {
748                 new_pc = extract64(new_pc, 0, 56);
749             }
750         }
751         env->pc = new_pc;
752 
753         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
754                       "AArch64 EL%d PC 0x%" PRIx64 "\n",
755                       cur_el, new_el, env->pc);
756     }
757 
758     /*
759      * Note that cur_el can never be 0.  If new_el is 0, then
760      * el0_a64 is return_to_aa64, else el0_a64 is ignored.
761      */
762     aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
763 
764     bql_lock();
765     arm_call_el_change_hook(cpu);
766     bql_unlock();
767 
768     return;
769 
770 illegal_return:
771     /* Illegal return events of various kinds have architecturally
772      * mandated behaviour:
773      * restore NZCV and DAIF from SPSR_ELx
774      * set PSTATE.IL
775      * restore PC from ELR_ELx
776      * no change to exception level, execution state or stack pointer
777      */
778     env->pstate |= PSTATE_IL;
779     env->pc = new_pc;
780     spsr &= PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT;
781     spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT);
782     pstate_write(env, spsr);
783     if (!arm_singlestep_active(env)) {
784         env->pstate &= ~PSTATE_SS;
785     }
786     helper_rebuild_hflags_a64(env, cur_el);
787     qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
788                   "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
789 }
790 
HELPER(dc_zva)791 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
792 {
793     uintptr_t ra = GETPC();
794 
795     /*
796      * Implement DC ZVA, which zeroes a fixed-length block of memory.
797      * Note that we do not implement the (architecturally mandated)
798      * alignment fault for attempts to use this on Device memory
799      * (which matches the usual QEMU behaviour of not implementing either
800      * alignment faults or any memory attribute handling).
801      */
802     int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
803     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
804     int mmu_idx = arm_env_mmu_index(env);
805     void *mem;
806 
807     /*
808      * Trapless lookup.  In addition to actual invalid page, may
809      * return NULL for I/O, watchpoints, clean pages, etc.
810      */
811     mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
812 
813 #ifndef CONFIG_USER_ONLY
814     if (unlikely(!mem)) {
815         /*
816          * Trap if accessing an invalid page.  DC_ZVA requires that we supply
817          * the original pointer for an invalid page.  But watchpoints require
818          * that we probe the actual space.  So do both.
819          */
820         (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
821         mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
822 
823         if (unlikely(!mem)) {
824             /*
825              * The only remaining reason for mem == NULL is I/O.
826              * Just do a series of byte writes as the architecture demands.
827              */
828             for (int i = 0; i < blocklen; i++) {
829                 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
830             }
831             return;
832         }
833     }
834 #endif
835 
836     set_helper_retaddr(ra);
837     memset(mem, 0, blocklen);
838     clear_helper_retaddr();
839 }
840 
HELPER(unaligned_access)841 void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
842                               uint32_t access_type, uint32_t mmu_idx)
843 {
844     arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
845                                 mmu_idx, GETPC());
846 }
847 
848 /* Memory operations (memset, memmove, memcpy) */
849 
850 /*
851  * Return true if the CPY* and SET* insns can execute; compare
852  * pseudocode CheckMOPSEnabled(), though we refactor it a little.
853  */
mops_enabled(CPUARMState * env)854 static bool mops_enabled(CPUARMState *env)
855 {
856     int el = arm_current_el(env);
857 
858     if (el < 2 &&
859         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
860         !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
861         return false;
862     }
863 
864     if (el == 0) {
865         if (!el_is_in_host(env, 0)) {
866             return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
867         } else {
868             return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
869         }
870     }
871     return true;
872 }
873 
check_mops_enabled(CPUARMState * env,uintptr_t ra)874 static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
875 {
876     if (!mops_enabled(env)) {
877         raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
878                            exception_target_el(env), ra);
879     }
880 }
881 
882 /*
883  * Return the target exception level for an exception due
884  * to mismatched arguments in a FEAT_MOPS copy or set.
885  * Compare pseudocode MismatchedCpySetTargetEL()
886  */
mops_mismatch_exception_target_el(CPUARMState * env)887 static int mops_mismatch_exception_target_el(CPUARMState *env)
888 {
889     int el = arm_current_el(env);
890 
891     if (el > 1) {
892         return el;
893     }
894     if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
895         return 2;
896     }
897     if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
898         return 2;
899     }
900     return 1;
901 }
902 
903 /*
904  * Check whether an M or E instruction was executed with a CF value
905  * indicating the wrong option for this implementation.
906  * Assumes we are always Option A.
907  */
check_mops_wrong_option(CPUARMState * env,uint32_t syndrome,uintptr_t ra)908 static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
909                                     uintptr_t ra)
910 {
911     if (env->CF != 0) {
912         syndrome |= 1 << 17; /* Set the wrong-option bit */
913         raise_exception_ra(env, EXCP_UDEF, syndrome,
914                            mops_mismatch_exception_target_el(env), ra);
915     }
916 }
917 
918 /*
919  * Return the maximum number of bytes we can transfer starting at addr
920  * without crossing a page boundary.
921  */
page_limit(uint64_t addr)922 static uint64_t page_limit(uint64_t addr)
923 {
924     return TARGET_PAGE_ALIGN(addr + 1) - addr;
925 }
926 
927 /*
928  * Return the number of bytes we can copy starting from addr and working
929  * backwards without crossing a page boundary.
930  */
page_limit_rev(uint64_t addr)931 static uint64_t page_limit_rev(uint64_t addr)
932 {
933     return (addr & ~TARGET_PAGE_MASK) + 1;
934 }
935 
936 /*
937  * Perform part of a memory set on an area of guest memory starting at
938  * toaddr (a dirty address) and extending for setsize bytes.
939  *
940  * Returns the number of bytes actually set, which might be less than
941  * setsize; the caller should loop until the whole set has been done.
942  * The caller should ensure that the guest registers are correct
943  * for the possibility that the first byte of the set encounters
944  * an exception or watchpoint. We guarantee not to take any faults
945  * for bytes other than the first.
946  */
set_step(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)947 static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
948                          uint64_t setsize, uint32_t data, int memidx,
949                          uint32_t *mtedesc, uintptr_t ra)
950 {
951     void *mem;
952 
953     setsize = MIN(setsize, page_limit(toaddr));
954     if (*mtedesc) {
955         uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
956         if (mtesize == 0) {
957             /* Trap, or not. All CPU state is up to date */
958             mte_check_fail(env, *mtedesc, toaddr, ra);
959             /* Continue, with no further MTE checks required */
960             *mtedesc = 0;
961         } else {
962             /* Advance to the end, or to the tag mismatch */
963             setsize = MIN(setsize, mtesize);
964         }
965     }
966 
967     toaddr = useronly_clean_ptr(toaddr);
968     /*
969      * Trapless lookup: returns NULL for invalid page, I/O,
970      * watchpoints, clean pages, etc.
971      */
972     mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);
973 
974 #ifndef CONFIG_USER_ONLY
975     if (unlikely(!mem)) {
976         /*
977          * Slow-path: just do one byte write. This will handle the
978          * watchpoint, invalid page, etc handling correctly.
979          * For clean code pages, the next iteration will see
980          * the page dirty and will use the fast path.
981          */
982         cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
983         return 1;
984     }
985 #endif
986     /* Easy case: just memset the host memory */
987     set_helper_retaddr(ra);
988     memset(mem, data, setsize);
989     clear_helper_retaddr();
990     return setsize;
991 }
992 
993 /*
994  * Similar, but setting tags. The architecture requires us to do this
995  * in 16-byte chunks. SETP accesses are not tag checked; they set
996  * the tags.
997  */
set_step_tags(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)998 static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr,
999                               uint64_t setsize, uint32_t data, int memidx,
1000                               uint32_t *mtedesc, uintptr_t ra)
1001 {
1002     void *mem;
1003     uint64_t cleanaddr;
1004 
1005     setsize = MIN(setsize, page_limit(toaddr));
1006 
1007     cleanaddr = useronly_clean_ptr(toaddr);
1008     /*
1009      * Trapless lookup: returns NULL for invalid page, I/O,
1010      * watchpoints, clean pages, etc.
1011      */
1012     mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx);
1013 
1014 #ifndef CONFIG_USER_ONLY
1015     if (unlikely(!mem)) {
1016         /*
1017          * Slow-path: just do one write. This will handle the
1018          * watchpoint, invalid page, etc handling correctly.
1019          * The architecture requires that we do 16 bytes at a time,
1020          * and we know both ptr and size are 16 byte aligned.
1021          * For clean code pages, the next iteration will see
1022          * the page dirty and will use the fast path.
1023          */
1024         uint64_t repldata = data * 0x0101010101010101ULL;
1025         MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx);
1026         cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra);
1027         mte_mops_set_tags(env, toaddr, 16, *mtedesc);
1028         return 16;
1029     }
1030 #endif
1031     /* Easy case: just memset the host memory */
1032     set_helper_retaddr(ra);
1033     memset(mem, data, setsize);
1034     clear_helper_retaddr();
1035     mte_mops_set_tags(env, toaddr, setsize, *mtedesc);
1036     return setsize;
1037 }
1038 
1039 typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
1040                         uint64_t setsize, uint32_t data,
1041                         int memidx, uint32_t *mtedesc, uintptr_t ra);
1042 
1043 /* Extract register numbers from a MOPS exception syndrome value */
mops_destreg(uint32_t syndrome)1044 static int mops_destreg(uint32_t syndrome)
1045 {
1046     return extract32(syndrome, 10, 5);
1047 }
1048 
mops_srcreg(uint32_t syndrome)1049 static int mops_srcreg(uint32_t syndrome)
1050 {
1051     return extract32(syndrome, 5, 5);
1052 }
1053 
mops_sizereg(uint32_t syndrome)1054 static int mops_sizereg(uint32_t syndrome)
1055 {
1056     return extract32(syndrome, 0, 5);
1057 }
1058 
1059 /*
1060  * Return true if TCMA and TBI bits mean we need to do MTE checks.
1061  * We only need to do this once per MOPS insn, not for every page.
1062  */
mte_checks_needed(uint64_t ptr,uint32_t desc)1063 static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
1064 {
1065     int bit55 = extract64(ptr, 55, 1);
1066 
1067     /*
1068      * Note that tbi_check() returns true for "access checked" but
1069      * tcma_check() returns true for "access unchecked".
1070      */
1071     if (!tbi_check(desc, bit55)) {
1072         return false;
1073     }
1074     return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
1075 }
1076 
1077 /* Take an exception if the SETG addr/size are not granule aligned */
check_setg_alignment(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t memidx,uintptr_t ra)1078 static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size,
1079                                  uint32_t memidx, uintptr_t ra)
1080 {
1081     if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) ||
1082         !QEMU_IS_ALIGNED(size, TAG_GRANULE)) {
1083         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
1084                                     memidx, ra);
1085 
1086     }
1087 }
1088 
arm_reg_or_xzr(CPUARMState * env,int reg)1089 static uint64_t arm_reg_or_xzr(CPUARMState *env, int reg)
1090 {
1091     /*
1092      * Runtime equivalent of cpu_reg() -- return the CPU register value,
1093      * for contexts when index 31 means XZR (not SP).
1094      */
1095     return reg == 31 ? 0 : env->xregs[reg];
1096 }
1097 
1098 /*
1099  * For the Memory Set operation, our implementation chooses
1100  * always to use "option A", where we update Xd to the final
1101  * address in the SETP insn, and set Xn to be -(bytes remaining).
1102  * On SETM and SETE insns we only need update Xn.
1103  *
1104  * @env: CPU
1105  * @syndrome: syndrome value for mismatch exceptions
1106  * (also contains the register numbers we need to use)
1107  * @mtedesc: MTE descriptor word
1108  * @stepfn: function which does a single part of the set operation
1109  * @is_setg: true if this is the tag-setting SETG variant
1110  */
do_setp(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1111 static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1112                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1113 {
1114     /* Prologue: we choose to do up to the next page boundary */
1115     int rd = mops_destreg(syndrome);
1116     int rs = mops_srcreg(syndrome);
1117     int rn = mops_sizereg(syndrome);
1118     uint8_t data = arm_reg_or_xzr(env, rs);
1119     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1120     uint64_t toaddr = env->xregs[rd];
1121     uint64_t setsize = env->xregs[rn];
1122     uint64_t stagesetsize, step;
1123 
1124     check_mops_enabled(env, ra);
1125 
1126     if (setsize > INT64_MAX) {
1127         setsize = INT64_MAX;
1128         if (is_setg) {
1129             setsize &= ~0xf;
1130         }
1131     }
1132 
1133     if (unlikely(is_setg)) {
1134         check_setg_alignment(env, toaddr, setsize, memidx, ra);
1135     } else if (!mte_checks_needed(toaddr, mtedesc)) {
1136         mtedesc = 0;
1137     }
1138 
1139     stagesetsize = MIN(setsize, page_limit(toaddr));
1140     while (stagesetsize) {
1141         env->xregs[rd] = toaddr;
1142         env->xregs[rn] = setsize;
1143         step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1144         toaddr += step;
1145         setsize -= step;
1146         stagesetsize -= step;
1147     }
1148     /* Insn completed, so update registers to the Option A format */
1149     env->xregs[rd] = toaddr + setsize;
1150     env->xregs[rn] = -setsize;
1151 
1152     /* Set NZCV = 0000 to indicate we are an Option A implementation */
1153     env->NF = 0;
1154     env->ZF = 1; /* our env->ZF encoding is inverted */
1155     env->CF = 0;
1156     env->VF = 0;
1157 }
1158 
HELPER(setp)1159 void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1160 {
1161     do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
1162 }
1163 
HELPER(setgp)1164 void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1165 {
1166     do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1167 }
1168 
do_setm(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1169 static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1170                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1171 {
1172     /* Main: we choose to do all the full-page chunks */
1173     CPUState *cs = env_cpu(env);
1174     int rd = mops_destreg(syndrome);
1175     int rs = mops_srcreg(syndrome);
1176     int rn = mops_sizereg(syndrome);
1177     uint8_t data = arm_reg_or_xzr(env, rs);
1178     uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1179     uint64_t setsize = -env->xregs[rn];
1180     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1181     uint64_t step, stagesetsize;
1182 
1183     check_mops_enabled(env, ra);
1184 
1185     /*
1186      * We're allowed to NOP out "no data to copy" before the consistency
1187      * checks; we choose to do so.
1188      */
1189     if (env->xregs[rn] == 0) {
1190         return;
1191     }
1192 
1193     check_mops_wrong_option(env, syndrome, ra);
1194 
1195     /*
1196      * Our implementation will work fine even if we have an unaligned
1197      * destination address, and because we update Xn every time around
1198      * the loop below and the return value from stepfn() may be less
1199      * than requested, we might find toaddr is unaligned. So we don't
1200      * have an IMPDEF check for alignment here.
1201      */
1202 
1203     if (unlikely(is_setg)) {
1204         check_setg_alignment(env, toaddr, setsize, memidx, ra);
1205     } else if (!mte_checks_needed(toaddr, mtedesc)) {
1206         mtedesc = 0;
1207     }
1208 
1209     /* Do the actual memset: we leave the last partial page to SETE */
1210     stagesetsize = setsize & TARGET_PAGE_MASK;
1211     while (stagesetsize > 0) {
1212         step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1213         toaddr += step;
1214         setsize -= step;
1215         stagesetsize -= step;
1216         env->xregs[rn] = -setsize;
1217         if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
1218             cpu_loop_exit_restore(cs, ra);
1219         }
1220     }
1221 }
1222 
HELPER(setm)1223 void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1224 {
1225     do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
1226 }
1227 
HELPER(setgm)1228 void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1229 {
1230     do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1231 }
1232 
do_sete(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1233 static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1234                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1235 {
1236     /* Epilogue: do the last partial page */
1237     int rd = mops_destreg(syndrome);
1238     int rs = mops_srcreg(syndrome);
1239     int rn = mops_sizereg(syndrome);
1240     uint8_t data = arm_reg_or_xzr(env, rs);
1241     uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1242     uint64_t setsize = -env->xregs[rn];
1243     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1244     uint64_t step;
1245 
1246     check_mops_enabled(env, ra);
1247 
1248     /*
1249      * We're allowed to NOP out "no data to copy" before the consistency
1250      * checks; we choose to do so.
1251      */
1252     if (setsize == 0) {
1253         return;
1254     }
1255 
1256     check_mops_wrong_option(env, syndrome, ra);
1257 
1258     /*
1259      * Our implementation has no address alignment requirements, but
1260      * we do want to enforce the "less than a page" size requirement,
1261      * so we don't need to have the "check for interrupts" here.
1262      */
1263     if (setsize >= TARGET_PAGE_SIZE) {
1264         raise_exception_ra(env, EXCP_UDEF, syndrome,
1265                            mops_mismatch_exception_target_el(env), ra);
1266     }
1267 
1268     if (unlikely(is_setg)) {
1269         check_setg_alignment(env, toaddr, setsize, memidx, ra);
1270     } else if (!mte_checks_needed(toaddr, mtedesc)) {
1271         mtedesc = 0;
1272     }
1273 
1274     /* Do the actual memset */
1275     while (setsize > 0) {
1276         step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1277         toaddr += step;
1278         setsize -= step;
1279         env->xregs[rn] = -setsize;
1280     }
1281 }
1282 
HELPER(sete)1283 void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1284 {
1285     do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
1286 }
1287 
HELPER(setge)1288 void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1289 {
1290     do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1291 }
1292 
1293 /*
1294  * Perform part of a memory copy from the guest memory at fromaddr
1295  * and extending for copysize bytes, to the guest memory at
1296  * toaddr. Both addresses are dirty.
1297  *
1298  * Returns the number of bytes actually set, which might be less than
1299  * copysize; the caller should loop until the whole copy has been done.
1300  * The caller should ensure that the guest registers are correct
1301  * for the possibility that the first byte of the copy encounters
1302  * an exception or watchpoint. We guarantee not to take any faults
1303  * for bytes other than the first.
1304  */
copy_step(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1305 static uint64_t copy_step(CPUARMState *env, uint64_t toaddr, uint64_t fromaddr,
1306                           uint64_t copysize, int wmemidx, int rmemidx,
1307                           uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1308 {
1309     void *rmem;
1310     void *wmem;
1311 
1312     /* Don't cross a page boundary on either source or destination */
1313     copysize = MIN(copysize, page_limit(toaddr));
1314     copysize = MIN(copysize, page_limit(fromaddr));
1315     /*
1316      * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1317      * or else copy up to but not including the byte with the mismatch.
1318      */
1319     if (*rdesc) {
1320         uint64_t mtesize = mte_mops_probe(env, fromaddr, copysize, *rdesc);
1321         if (mtesize == 0) {
1322             mte_check_fail(env, *rdesc, fromaddr, ra);
1323             *rdesc = 0;
1324         } else {
1325             copysize = MIN(copysize, mtesize);
1326         }
1327     }
1328     if (*wdesc) {
1329         uint64_t mtesize = mte_mops_probe(env, toaddr, copysize, *wdesc);
1330         if (mtesize == 0) {
1331             mte_check_fail(env, *wdesc, toaddr, ra);
1332             *wdesc = 0;
1333         } else {
1334             copysize = MIN(copysize, mtesize);
1335         }
1336     }
1337 
1338     toaddr = useronly_clean_ptr(toaddr);
1339     fromaddr = useronly_clean_ptr(fromaddr);
1340     /* Trapless lookup of whether we can get a host memory pointer */
1341     wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1342     rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1343 
1344 #ifndef CONFIG_USER_ONLY
1345     /*
1346      * If we don't have host memory for both source and dest then just
1347      * do a single byte copy. This will handle watchpoints, invalid pages,
1348      * etc correctly. For clean code pages, the next iteration will see
1349      * the page dirty and will use the fast path.
1350      */
1351     if (unlikely(!rmem || !wmem)) {
1352         uint8_t byte;
1353         if (rmem) {
1354             byte = *(uint8_t *)rmem;
1355         } else {
1356             byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1357         }
1358         if (wmem) {
1359             *(uint8_t *)wmem = byte;
1360         } else {
1361             cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1362         }
1363         return 1;
1364     }
1365 #endif
1366     /* Easy case: just memmove the host memory */
1367     set_helper_retaddr(ra);
1368     memmove(wmem, rmem, copysize);
1369     clear_helper_retaddr();
1370     return copysize;
1371 }
1372 
1373 /*
1374  * Do part of a backwards memory copy. Here toaddr and fromaddr point
1375  * to the *last* byte to be copied.
1376  */
copy_step_rev(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1377 static uint64_t copy_step_rev(CPUARMState *env, uint64_t toaddr,
1378                               uint64_t fromaddr,
1379                               uint64_t copysize, int wmemidx, int rmemidx,
1380                               uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1381 {
1382     void *rmem;
1383     void *wmem;
1384 
1385     /* Don't cross a page boundary on either source or destination */
1386     copysize = MIN(copysize, page_limit_rev(toaddr));
1387     copysize = MIN(copysize, page_limit_rev(fromaddr));
1388 
1389     /*
1390      * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1391      * or else copy up to but not including the byte with the mismatch.
1392      */
1393     if (*rdesc) {
1394         uint64_t mtesize = mte_mops_probe_rev(env, fromaddr, copysize, *rdesc);
1395         if (mtesize == 0) {
1396             mte_check_fail(env, *rdesc, fromaddr, ra);
1397             *rdesc = 0;
1398         } else {
1399             copysize = MIN(copysize, mtesize);
1400         }
1401     }
1402     if (*wdesc) {
1403         uint64_t mtesize = mte_mops_probe_rev(env, toaddr, copysize, *wdesc);
1404         if (mtesize == 0) {
1405             mte_check_fail(env, *wdesc, toaddr, ra);
1406             *wdesc = 0;
1407         } else {
1408             copysize = MIN(copysize, mtesize);
1409         }
1410     }
1411 
1412     toaddr = useronly_clean_ptr(toaddr);
1413     fromaddr = useronly_clean_ptr(fromaddr);
1414     /* Trapless lookup of whether we can get a host memory pointer */
1415     wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1416     rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1417 
1418 #ifndef CONFIG_USER_ONLY
1419     /*
1420      * If we don't have host memory for both source and dest then just
1421      * do a single byte copy. This will handle watchpoints, invalid pages,
1422      * etc correctly. For clean code pages, the next iteration will see
1423      * the page dirty and will use the fast path.
1424      */
1425     if (unlikely(!rmem || !wmem)) {
1426         uint8_t byte;
1427         if (rmem) {
1428             byte = *(uint8_t *)rmem;
1429         } else {
1430             byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1431         }
1432         if (wmem) {
1433             *(uint8_t *)wmem = byte;
1434         } else {
1435             cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1436         }
1437         return 1;
1438     }
1439 #endif
1440     /*
1441      * Easy case: just memmove the host memory. Note that wmem and
1442      * rmem here point to the *last* byte to copy.
1443      */
1444     set_helper_retaddr(ra);
1445     memmove(wmem - (copysize - 1), rmem - (copysize - 1), copysize);
1446     clear_helper_retaddr();
1447     return copysize;
1448 }
1449 
1450 /*
1451  * for the Memory Copy operation, our implementation chooses always
1452  * to use "option A", where we update Xd and Xs to the final addresses
1453  * in the CPYP insn, and then in CPYM and CPYE only need to update Xn.
1454  *
1455  * @env: CPU
1456  * @syndrome: syndrome value for mismatch exceptions
1457  * (also contains the register numbers we need to use)
1458  * @wdesc: MTE descriptor for the writes (destination)
1459  * @rdesc: MTE descriptor for the reads (source)
1460  * @move: true if this is CPY (memmove), false for CPYF (memcpy forwards)
1461  */
do_cpyp(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1462 static void do_cpyp(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1463                     uint32_t rdesc, uint32_t move, uintptr_t ra)
1464 {
1465     int rd = mops_destreg(syndrome);
1466     int rs = mops_srcreg(syndrome);
1467     int rn = mops_sizereg(syndrome);
1468     uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1469     uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1470     bool forwards = true;
1471     uint64_t toaddr = env->xregs[rd];
1472     uint64_t fromaddr = env->xregs[rs];
1473     uint64_t copysize = env->xregs[rn];
1474     uint64_t stagecopysize, step;
1475 
1476     check_mops_enabled(env, ra);
1477 
1478 
1479     if (move) {
1480         /*
1481          * Copy backwards if necessary. The direction for a non-overlapping
1482          * copy is IMPDEF; we choose forwards.
1483          */
1484         if (copysize > 0x007FFFFFFFFFFFFFULL) {
1485             copysize = 0x007FFFFFFFFFFFFFULL;
1486         }
1487         uint64_t fs = extract64(fromaddr, 0, 56);
1488         uint64_t ts = extract64(toaddr, 0, 56);
1489         uint64_t fe = extract64(fromaddr + copysize, 0, 56);
1490 
1491         if (fs < ts && fe > ts) {
1492             forwards = false;
1493         }
1494     } else {
1495         if (copysize > INT64_MAX) {
1496             copysize = INT64_MAX;
1497         }
1498     }
1499 
1500     if (!mte_checks_needed(fromaddr, rdesc)) {
1501         rdesc = 0;
1502     }
1503     if (!mte_checks_needed(toaddr, wdesc)) {
1504         wdesc = 0;
1505     }
1506 
1507     if (forwards) {
1508         stagecopysize = MIN(copysize, page_limit(toaddr));
1509         stagecopysize = MIN(stagecopysize, page_limit(fromaddr));
1510         while (stagecopysize) {
1511             env->xregs[rd] = toaddr;
1512             env->xregs[rs] = fromaddr;
1513             env->xregs[rn] = copysize;
1514             step = copy_step(env, toaddr, fromaddr, stagecopysize,
1515                              wmemidx, rmemidx, &wdesc, &rdesc, ra);
1516             toaddr += step;
1517             fromaddr += step;
1518             copysize -= step;
1519             stagecopysize -= step;
1520         }
1521         /* Insn completed, so update registers to the Option A format */
1522         env->xregs[rd] = toaddr + copysize;
1523         env->xregs[rs] = fromaddr + copysize;
1524         env->xregs[rn] = -copysize;
1525     } else {
1526         /*
1527          * In a reverse copy the to and from addrs in Xs and Xd are the start
1528          * of the range, but it's more convenient for us to work with pointers
1529          * to the last byte being copied.
1530          */
1531         toaddr += copysize - 1;
1532         fromaddr += copysize - 1;
1533         stagecopysize = MIN(copysize, page_limit_rev(toaddr));
1534         stagecopysize = MIN(stagecopysize, page_limit_rev(fromaddr));
1535         while (stagecopysize) {
1536             env->xregs[rn] = copysize;
1537             step = copy_step_rev(env, toaddr, fromaddr, stagecopysize,
1538                                  wmemidx, rmemidx, &wdesc, &rdesc, ra);
1539             copysize -= step;
1540             stagecopysize -= step;
1541             toaddr -= step;
1542             fromaddr -= step;
1543         }
1544         /*
1545          * Insn completed, so update registers to the Option A format.
1546          * For a reverse copy this is no different to the CPYP input format.
1547          */
1548         env->xregs[rn] = copysize;
1549     }
1550 
1551     /* Set NZCV = 0000 to indicate we are an Option A implementation */
1552     env->NF = 0;
1553     env->ZF = 1; /* our env->ZF encoding is inverted */
1554     env->CF = 0;
1555     env->VF = 0;
1556 }
1557 
HELPER(cpyp)1558 void HELPER(cpyp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1559                   uint32_t rdesc)
1560 {
1561     do_cpyp(env, syndrome, wdesc, rdesc, true, GETPC());
1562 }
1563 
HELPER(cpyfp)1564 void HELPER(cpyfp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1565                    uint32_t rdesc)
1566 {
1567     do_cpyp(env, syndrome, wdesc, rdesc, false, GETPC());
1568 }
1569 
do_cpym(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1570 static void do_cpym(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1571                     uint32_t rdesc, uint32_t move, uintptr_t ra)
1572 {
1573     /* Main: we choose to copy until less than a page remaining */
1574     CPUState *cs = env_cpu(env);
1575     int rd = mops_destreg(syndrome);
1576     int rs = mops_srcreg(syndrome);
1577     int rn = mops_sizereg(syndrome);
1578     uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1579     uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1580     bool forwards = true;
1581     uint64_t toaddr, fromaddr, copysize, step;
1582 
1583     check_mops_enabled(env, ra);
1584 
1585     /* We choose to NOP out "no data to copy" before consistency checks */
1586     if (env->xregs[rn] == 0) {
1587         return;
1588     }
1589 
1590     check_mops_wrong_option(env, syndrome, ra);
1591 
1592     if (move) {
1593         forwards = (int64_t)env->xregs[rn] < 0;
1594     }
1595 
1596     if (forwards) {
1597         toaddr = env->xregs[rd] + env->xregs[rn];
1598         fromaddr = env->xregs[rs] + env->xregs[rn];
1599         copysize = -env->xregs[rn];
1600     } else {
1601         copysize = env->xregs[rn];
1602         /* This toaddr and fromaddr point to the *last* byte to copy */
1603         toaddr = env->xregs[rd] + copysize - 1;
1604         fromaddr = env->xregs[rs] + copysize - 1;
1605     }
1606 
1607     if (!mte_checks_needed(fromaddr, rdesc)) {
1608         rdesc = 0;
1609     }
1610     if (!mte_checks_needed(toaddr, wdesc)) {
1611         wdesc = 0;
1612     }
1613 
1614     /* Our implementation has no particular parameter requirements for CPYM */
1615 
1616     /* Do the actual memmove */
1617     if (forwards) {
1618         while (copysize >= TARGET_PAGE_SIZE) {
1619             step = copy_step(env, toaddr, fromaddr, copysize,
1620                              wmemidx, rmemidx, &wdesc, &rdesc, ra);
1621             toaddr += step;
1622             fromaddr += step;
1623             copysize -= step;
1624             env->xregs[rn] = -copysize;
1625             if (copysize >= TARGET_PAGE_SIZE &&
1626                 unlikely(cpu_loop_exit_requested(cs))) {
1627                 cpu_loop_exit_restore(cs, ra);
1628             }
1629         }
1630     } else {
1631         while (copysize >= TARGET_PAGE_SIZE) {
1632             step = copy_step_rev(env, toaddr, fromaddr, copysize,
1633                                  wmemidx, rmemidx, &wdesc, &rdesc, ra);
1634             toaddr -= step;
1635             fromaddr -= step;
1636             copysize -= step;
1637             env->xregs[rn] = copysize;
1638             if (copysize >= TARGET_PAGE_SIZE &&
1639                 unlikely(cpu_loop_exit_requested(cs))) {
1640                 cpu_loop_exit_restore(cs, ra);
1641             }
1642         }
1643     }
1644 }
1645 
HELPER(cpym)1646 void HELPER(cpym)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1647                   uint32_t rdesc)
1648 {
1649     do_cpym(env, syndrome, wdesc, rdesc, true, GETPC());
1650 }
1651 
HELPER(cpyfm)1652 void HELPER(cpyfm)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1653                    uint32_t rdesc)
1654 {
1655     do_cpym(env, syndrome, wdesc, rdesc, false, GETPC());
1656 }
1657 
do_cpye(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1658 static void do_cpye(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1659                     uint32_t rdesc, uint32_t move, uintptr_t ra)
1660 {
1661     /* Epilogue: do the last partial page */
1662     int rd = mops_destreg(syndrome);
1663     int rs = mops_srcreg(syndrome);
1664     int rn = mops_sizereg(syndrome);
1665     uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1666     uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1667     bool forwards = true;
1668     uint64_t toaddr, fromaddr, copysize, step;
1669 
1670     check_mops_enabled(env, ra);
1671 
1672     /* We choose to NOP out "no data to copy" before consistency checks */
1673     if (env->xregs[rn] == 0) {
1674         return;
1675     }
1676 
1677     check_mops_wrong_option(env, syndrome, ra);
1678 
1679     if (move) {
1680         forwards = (int64_t)env->xregs[rn] < 0;
1681     }
1682 
1683     if (forwards) {
1684         toaddr = env->xregs[rd] + env->xregs[rn];
1685         fromaddr = env->xregs[rs] + env->xregs[rn];
1686         copysize = -env->xregs[rn];
1687     } else {
1688         copysize = env->xregs[rn];
1689         /* This toaddr and fromaddr point to the *last* byte to copy */
1690         toaddr = env->xregs[rd] + copysize - 1;
1691         fromaddr = env->xregs[rs] + copysize - 1;
1692     }
1693 
1694     if (!mte_checks_needed(fromaddr, rdesc)) {
1695         rdesc = 0;
1696     }
1697     if (!mte_checks_needed(toaddr, wdesc)) {
1698         wdesc = 0;
1699     }
1700 
1701     /* Check the size; we don't want to have do a check-for-interrupts */
1702     if (copysize >= TARGET_PAGE_SIZE) {
1703         raise_exception_ra(env, EXCP_UDEF, syndrome,
1704                            mops_mismatch_exception_target_el(env), ra);
1705     }
1706 
1707     /* Do the actual memmove */
1708     if (forwards) {
1709         while (copysize > 0) {
1710             step = copy_step(env, toaddr, fromaddr, copysize,
1711                              wmemidx, rmemidx, &wdesc, &rdesc, ra);
1712             toaddr += step;
1713             fromaddr += step;
1714             copysize -= step;
1715             env->xregs[rn] = -copysize;
1716         }
1717     } else {
1718         while (copysize > 0) {
1719             step = copy_step_rev(env, toaddr, fromaddr, copysize,
1720                                  wmemidx, rmemidx, &wdesc, &rdesc, ra);
1721             toaddr -= step;
1722             fromaddr -= step;
1723             copysize -= step;
1724             env->xregs[rn] = copysize;
1725         }
1726     }
1727 }
1728 
HELPER(cpye)1729 void HELPER(cpye)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1730                   uint32_t rdesc)
1731 {
1732     do_cpye(env, syndrome, wdesc, rdesc, true, GETPC());
1733 }
1734 
HELPER(cpyfe)1735 void HELPER(cpyfe)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1736                    uint32_t rdesc)
1737 {
1738     do_cpye(env, syndrome, wdesc, rdesc, false, GETPC());
1739 }
1740 
is_guarded_page(CPUARMState * env,target_ulong addr,uintptr_t ra)1741 static bool is_guarded_page(CPUARMState *env, target_ulong addr, uintptr_t ra)
1742 {
1743 #ifdef CONFIG_USER_ONLY
1744     return page_get_flags(addr) & PAGE_BTI;
1745 #else
1746     CPUTLBEntryFull *full;
1747     void *host;
1748     int mmu_idx = cpu_mmu_index(env_cpu(env), true);
1749     int flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
1750                                   false, &host, &full, ra);
1751 
1752     assert(!(flags & TLB_INVALID_MASK));
1753     return full->extra.arm.guarded;
1754 #endif
1755 }
1756 
HELPER(guarded_page_check)1757 void HELPER(guarded_page_check)(CPUARMState *env)
1758 {
1759     /*
1760      * We have already verified that bti is enabled, and that the
1761      * instruction at PC is not ok for BTYPE.  This is always at
1762      * the beginning of a block, so PC is always up-to-date and
1763      * no unwind is required.
1764      */
1765     if (is_guarded_page(env, env->pc, 0)) {
1766         raise_exception(env, EXCP_UDEF, syn_btitrap(env->btype),
1767                         exception_target_el(env));
1768     }
1769 }
1770 
HELPER(guarded_page_br)1771 void HELPER(guarded_page_br)(CPUARMState *env, target_ulong pc)
1772 {
1773     /*
1774      * We have already checked for branch via x16 and x17.
1775      * What remains for choosing BTYPE is checking for a guarded page.
1776      */
1777     env->btype = is_guarded_page(env, pc, GETPC()) ? 3 : 1;
1778 }
1779