1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/fcntl.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/filelock.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/capability.h>
17 #include <linux/dnotify.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/security.h>
22 #include <linux/ptrace.h>
23 #include <linux/signal.h>
24 #include <linux/rcupdate.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/user_namespace.h>
27 #include <linux/memfd.h>
28 #include <linux/compat.h>
29 #include <linux/mount.h>
30
31 #include <linux/poll.h>
32 #include <asm/siginfo.h>
33 #include <linux/uaccess.h>
34
35 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
36
setfl(int fd,struct file * filp,unsigned int arg)37 static int setfl(int fd, struct file * filp, unsigned int arg)
38 {
39 struct inode * inode = file_inode(filp);
40 int error = 0;
41
42 /*
43 * O_APPEND cannot be cleared if the file is marked as append-only
44 * and the file is open for write.
45 */
46 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
47 return -EPERM;
48
49 /* O_NOATIME can only be set by the owner or superuser */
50 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
51 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode))
52 return -EPERM;
53
54 /* required for strict SunOS emulation */
55 if (O_NONBLOCK != O_NDELAY)
56 if (arg & O_NDELAY)
57 arg |= O_NONBLOCK;
58
59 /* Pipe packetized mode is controlled by O_DIRECT flag */
60 if (!S_ISFIFO(inode->i_mode) &&
61 (arg & O_DIRECT) &&
62 !(filp->f_mode & FMODE_CAN_ODIRECT))
63 return -EINVAL;
64
65 if (filp->f_op->check_flags)
66 error = filp->f_op->check_flags(arg);
67 if (error)
68 return error;
69
70 /*
71 * ->fasync() is responsible for setting the FASYNC bit.
72 */
73 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 if (error < 0)
76 goto out;
77 if (error > 0)
78 error = 0;
79 }
80 spin_lock(&filp->f_lock);
81 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 filp->f_iocb_flags = iocb_flags(filp);
83 spin_unlock(&filp->f_lock);
84
85 out:
86 return error;
87 }
88
__f_setown(struct file * filp,struct pid * pid,enum pid_type type,int force)89 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
90 int force)
91 {
92 write_lock_irq(&filp->f_owner.lock);
93 if (force || !filp->f_owner.pid) {
94 put_pid(filp->f_owner.pid);
95 filp->f_owner.pid = get_pid(pid);
96 filp->f_owner.pid_type = type;
97
98 if (pid) {
99 const struct cred *cred = current_cred();
100 security_file_set_fowner(filp);
101 filp->f_owner.uid = cred->uid;
102 filp->f_owner.euid = cred->euid;
103 }
104 }
105 write_unlock_irq(&filp->f_owner.lock);
106 }
107 EXPORT_SYMBOL(__f_setown);
108
f_setown(struct file * filp,int who,int force)109 int f_setown(struct file *filp, int who, int force)
110 {
111 enum pid_type type;
112 struct pid *pid = NULL;
113 int ret = 0;
114
115 type = PIDTYPE_TGID;
116 if (who < 0) {
117 /* avoid overflow below */
118 if (who == INT_MIN)
119 return -EINVAL;
120
121 type = PIDTYPE_PGID;
122 who = -who;
123 }
124
125 rcu_read_lock();
126 if (who) {
127 pid = find_vpid(who);
128 if (!pid)
129 ret = -ESRCH;
130 }
131
132 if (!ret)
133 __f_setown(filp, pid, type, force);
134 rcu_read_unlock();
135
136 return ret;
137 }
138 EXPORT_SYMBOL(f_setown);
139
f_delown(struct file * filp)140 void f_delown(struct file *filp)
141 {
142 __f_setown(filp, NULL, PIDTYPE_TGID, 1);
143 }
144
f_getown(struct file * filp)145 pid_t f_getown(struct file *filp)
146 {
147 pid_t pid = 0;
148
149 read_lock_irq(&filp->f_owner.lock);
150 rcu_read_lock();
151 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
152 pid = pid_vnr(filp->f_owner.pid);
153 if (filp->f_owner.pid_type == PIDTYPE_PGID)
154 pid = -pid;
155 }
156 rcu_read_unlock();
157 read_unlock_irq(&filp->f_owner.lock);
158 return pid;
159 }
160
f_setown_ex(struct file * filp,unsigned long arg)161 static int f_setown_ex(struct file *filp, unsigned long arg)
162 {
163 struct f_owner_ex __user *owner_p = (void __user *)arg;
164 struct f_owner_ex owner;
165 struct pid *pid;
166 int type;
167 int ret;
168
169 ret = copy_from_user(&owner, owner_p, sizeof(owner));
170 if (ret)
171 return -EFAULT;
172
173 switch (owner.type) {
174 case F_OWNER_TID:
175 type = PIDTYPE_PID;
176 break;
177
178 case F_OWNER_PID:
179 type = PIDTYPE_TGID;
180 break;
181
182 case F_OWNER_PGRP:
183 type = PIDTYPE_PGID;
184 break;
185
186 default:
187 return -EINVAL;
188 }
189
190 rcu_read_lock();
191 pid = find_vpid(owner.pid);
192 if (owner.pid && !pid)
193 ret = -ESRCH;
194 else
195 __f_setown(filp, pid, type, 1);
196 rcu_read_unlock();
197
198 return ret;
199 }
200
f_getown_ex(struct file * filp,unsigned long arg)201 static int f_getown_ex(struct file *filp, unsigned long arg)
202 {
203 struct f_owner_ex __user *owner_p = (void __user *)arg;
204 struct f_owner_ex owner = {};
205 int ret = 0;
206
207 read_lock_irq(&filp->f_owner.lock);
208 rcu_read_lock();
209 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
210 owner.pid = pid_vnr(filp->f_owner.pid);
211 rcu_read_unlock();
212 switch (filp->f_owner.pid_type) {
213 case PIDTYPE_PID:
214 owner.type = F_OWNER_TID;
215 break;
216
217 case PIDTYPE_TGID:
218 owner.type = F_OWNER_PID;
219 break;
220
221 case PIDTYPE_PGID:
222 owner.type = F_OWNER_PGRP;
223 break;
224
225 default:
226 WARN_ON(1);
227 ret = -EINVAL;
228 break;
229 }
230 read_unlock_irq(&filp->f_owner.lock);
231
232 if (!ret) {
233 ret = copy_to_user(owner_p, &owner, sizeof(owner));
234 if (ret)
235 ret = -EFAULT;
236 }
237 return ret;
238 }
239
240 #ifdef CONFIG_CHECKPOINT_RESTORE
f_getowner_uids(struct file * filp,unsigned long arg)241 static int f_getowner_uids(struct file *filp, unsigned long arg)
242 {
243 struct user_namespace *user_ns = current_user_ns();
244 uid_t __user *dst = (void __user *)arg;
245 uid_t src[2];
246 int err;
247
248 read_lock_irq(&filp->f_owner.lock);
249 src[0] = from_kuid(user_ns, filp->f_owner.uid);
250 src[1] = from_kuid(user_ns, filp->f_owner.euid);
251 read_unlock_irq(&filp->f_owner.lock);
252
253 err = put_user(src[0], &dst[0]);
254 err |= put_user(src[1], &dst[1]);
255
256 return err;
257 }
258 #else
f_getowner_uids(struct file * filp,unsigned long arg)259 static int f_getowner_uids(struct file *filp, unsigned long arg)
260 {
261 return -EINVAL;
262 }
263 #endif
264
rw_hint_valid(u64 hint)265 static bool rw_hint_valid(u64 hint)
266 {
267 switch (hint) {
268 case RWH_WRITE_LIFE_NOT_SET:
269 case RWH_WRITE_LIFE_NONE:
270 case RWH_WRITE_LIFE_SHORT:
271 case RWH_WRITE_LIFE_MEDIUM:
272 case RWH_WRITE_LIFE_LONG:
273 case RWH_WRITE_LIFE_EXTREME:
274 return true;
275 default:
276 return false;
277 }
278 }
279
fcntl_rw_hint(struct file * file,unsigned int cmd,unsigned long arg)280 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
281 unsigned long arg)
282 {
283 struct inode *inode = file_inode(file);
284 u64 __user *argp = (u64 __user *)arg;
285 u64 hint;
286
287 switch (cmd) {
288 case F_GET_RW_HINT:
289 hint = inode->i_write_hint;
290 if (copy_to_user(argp, &hint, sizeof(*argp)))
291 return -EFAULT;
292 return 0;
293 case F_SET_RW_HINT:
294 if (copy_from_user(&hint, argp, sizeof(hint)))
295 return -EFAULT;
296 if (!rw_hint_valid(hint))
297 return -EINVAL;
298
299 inode_lock(inode);
300 inode->i_write_hint = hint;
301 inode_unlock(inode);
302 return 0;
303 default:
304 return -EINVAL;
305 }
306 }
307
do_fcntl(int fd,unsigned int cmd,unsigned long arg,struct file * filp)308 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
309 struct file *filp)
310 {
311 void __user *argp = (void __user *)arg;
312 int argi = (int)arg;
313 struct flock flock;
314 long err = -EINVAL;
315
316 switch (cmd) {
317 case F_DUPFD:
318 err = f_dupfd(argi, filp, 0);
319 break;
320 case F_DUPFD_CLOEXEC:
321 err = f_dupfd(argi, filp, O_CLOEXEC);
322 break;
323 case F_GETFD:
324 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
325 break;
326 case F_SETFD:
327 err = 0;
328 set_close_on_exec(fd, argi & FD_CLOEXEC);
329 break;
330 case F_GETFL:
331 err = filp->f_flags;
332 break;
333 case F_SETFL:
334 err = setfl(fd, filp, argi);
335 break;
336 #if BITS_PER_LONG != 32
337 /* 32-bit arches must use fcntl64() */
338 case F_OFD_GETLK:
339 #endif
340 case F_GETLK:
341 if (copy_from_user(&flock, argp, sizeof(flock)))
342 return -EFAULT;
343 err = fcntl_getlk(filp, cmd, &flock);
344 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
345 return -EFAULT;
346 break;
347 #if BITS_PER_LONG != 32
348 /* 32-bit arches must use fcntl64() */
349 case F_OFD_SETLK:
350 case F_OFD_SETLKW:
351 fallthrough;
352 #endif
353 case F_SETLK:
354 case F_SETLKW:
355 if (copy_from_user(&flock, argp, sizeof(flock)))
356 return -EFAULT;
357 err = fcntl_setlk(fd, filp, cmd, &flock);
358 break;
359 case F_GETOWN:
360 /*
361 * XXX If f_owner is a process group, the
362 * negative return value will get converted
363 * into an error. Oops. If we keep the
364 * current syscall conventions, the only way
365 * to fix this will be in libc.
366 */
367 err = f_getown(filp);
368 force_successful_syscall_return();
369 break;
370 case F_SETOWN:
371 err = f_setown(filp, argi, 1);
372 break;
373 case F_GETOWN_EX:
374 err = f_getown_ex(filp, arg);
375 break;
376 case F_SETOWN_EX:
377 err = f_setown_ex(filp, arg);
378 break;
379 case F_GETOWNER_UIDS:
380 err = f_getowner_uids(filp, arg);
381 break;
382 case F_GETSIG:
383 err = filp->f_owner.signum;
384 break;
385 case F_SETSIG:
386 /* arg == 0 restores default behaviour. */
387 if (!valid_signal(argi)) {
388 break;
389 }
390 err = 0;
391 filp->f_owner.signum = argi;
392 break;
393 case F_GETLEASE:
394 err = fcntl_getlease(filp);
395 break;
396 case F_SETLEASE:
397 err = fcntl_setlease(fd, filp, argi);
398 break;
399 case F_NOTIFY:
400 err = fcntl_dirnotify(fd, filp, argi);
401 break;
402 case F_SETPIPE_SZ:
403 case F_GETPIPE_SZ:
404 err = pipe_fcntl(filp, cmd, argi);
405 break;
406 case F_ADD_SEALS:
407 case F_GET_SEALS:
408 err = memfd_fcntl(filp, cmd, argi);
409 break;
410 case F_GET_RW_HINT:
411 case F_SET_RW_HINT:
412 err = fcntl_rw_hint(filp, cmd, arg);
413 break;
414 default:
415 break;
416 }
417 return err;
418 }
419
check_fcntl_cmd(unsigned cmd)420 static int check_fcntl_cmd(unsigned cmd)
421 {
422 switch (cmd) {
423 case F_DUPFD:
424 case F_DUPFD_CLOEXEC:
425 case F_GETFD:
426 case F_SETFD:
427 case F_GETFL:
428 return 1;
429 }
430 return 0;
431 }
432
SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,unsigned long,arg)433 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
434 {
435 struct fd f = fdget_raw(fd);
436 long err = -EBADF;
437
438 if (!f.file)
439 goto out;
440
441 if (unlikely(f.file->f_mode & FMODE_PATH)) {
442 if (!check_fcntl_cmd(cmd))
443 goto out1;
444 }
445
446 err = security_file_fcntl(f.file, cmd, arg);
447 if (!err)
448 err = do_fcntl(fd, cmd, arg, f.file);
449
450 out1:
451 fdput(f);
452 out:
453 return err;
454 }
455
456 #if BITS_PER_LONG == 32
SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,unsigned long,arg)457 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
458 unsigned long, arg)
459 {
460 void __user *argp = (void __user *)arg;
461 struct fd f = fdget_raw(fd);
462 struct flock64 flock;
463 long err = -EBADF;
464
465 if (!f.file)
466 goto out;
467
468 if (unlikely(f.file->f_mode & FMODE_PATH)) {
469 if (!check_fcntl_cmd(cmd))
470 goto out1;
471 }
472
473 err = security_file_fcntl(f.file, cmd, arg);
474 if (err)
475 goto out1;
476
477 switch (cmd) {
478 case F_GETLK64:
479 case F_OFD_GETLK:
480 err = -EFAULT;
481 if (copy_from_user(&flock, argp, sizeof(flock)))
482 break;
483 err = fcntl_getlk64(f.file, cmd, &flock);
484 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
485 err = -EFAULT;
486 break;
487 case F_SETLK64:
488 case F_SETLKW64:
489 case F_OFD_SETLK:
490 case F_OFD_SETLKW:
491 err = -EFAULT;
492 if (copy_from_user(&flock, argp, sizeof(flock)))
493 break;
494 err = fcntl_setlk64(fd, f.file, cmd, &flock);
495 break;
496 default:
497 err = do_fcntl(fd, cmd, arg, f.file);
498 break;
499 }
500 out1:
501 fdput(f);
502 out:
503 return err;
504 }
505 #endif
506
507 #ifdef CONFIG_COMPAT
508 /* careful - don't use anywhere else */
509 #define copy_flock_fields(dst, src) \
510 (dst)->l_type = (src)->l_type; \
511 (dst)->l_whence = (src)->l_whence; \
512 (dst)->l_start = (src)->l_start; \
513 (dst)->l_len = (src)->l_len; \
514 (dst)->l_pid = (src)->l_pid;
515
get_compat_flock(struct flock * kfl,const struct compat_flock __user * ufl)516 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
517 {
518 struct compat_flock fl;
519
520 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
521 return -EFAULT;
522 copy_flock_fields(kfl, &fl);
523 return 0;
524 }
525
get_compat_flock64(struct flock * kfl,const struct compat_flock64 __user * ufl)526 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
527 {
528 struct compat_flock64 fl;
529
530 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
531 return -EFAULT;
532 copy_flock_fields(kfl, &fl);
533 return 0;
534 }
535
put_compat_flock(const struct flock * kfl,struct compat_flock __user * ufl)536 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
537 {
538 struct compat_flock fl;
539
540 memset(&fl, 0, sizeof(struct compat_flock));
541 copy_flock_fields(&fl, kfl);
542 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
543 return -EFAULT;
544 return 0;
545 }
546
put_compat_flock64(const struct flock * kfl,struct compat_flock64 __user * ufl)547 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
548 {
549 struct compat_flock64 fl;
550
551 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
552 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
553
554 memset(&fl, 0, sizeof(struct compat_flock64));
555 copy_flock_fields(&fl, kfl);
556 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
557 return -EFAULT;
558 return 0;
559 }
560 #undef copy_flock_fields
561
562 static unsigned int
convert_fcntl_cmd(unsigned int cmd)563 convert_fcntl_cmd(unsigned int cmd)
564 {
565 switch (cmd) {
566 case F_GETLK64:
567 return F_GETLK;
568 case F_SETLK64:
569 return F_SETLK;
570 case F_SETLKW64:
571 return F_SETLKW;
572 }
573
574 return cmd;
575 }
576
577 /*
578 * GETLK was successful and we need to return the data, but it needs to fit in
579 * the compat structure.
580 * l_start shouldn't be too big, unless the original start + end is greater than
581 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
582 * -EOVERFLOW in that case. l_len could be too big, in which case we just
583 * truncate it, and only allow the app to see that part of the conflicting lock
584 * that might make sense to it anyway
585 */
fixup_compat_flock(struct flock * flock)586 static int fixup_compat_flock(struct flock *flock)
587 {
588 if (flock->l_start > COMPAT_OFF_T_MAX)
589 return -EOVERFLOW;
590 if (flock->l_len > COMPAT_OFF_T_MAX)
591 flock->l_len = COMPAT_OFF_T_MAX;
592 return 0;
593 }
594
do_compat_fcntl64(unsigned int fd,unsigned int cmd,compat_ulong_t arg)595 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
596 compat_ulong_t arg)
597 {
598 struct fd f = fdget_raw(fd);
599 struct flock flock;
600 long err = -EBADF;
601
602 if (!f.file)
603 return err;
604
605 if (unlikely(f.file->f_mode & FMODE_PATH)) {
606 if (!check_fcntl_cmd(cmd))
607 goto out_put;
608 }
609
610 err = security_file_fcntl(f.file, cmd, arg);
611 if (err)
612 goto out_put;
613
614 switch (cmd) {
615 case F_GETLK:
616 err = get_compat_flock(&flock, compat_ptr(arg));
617 if (err)
618 break;
619 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
620 if (err)
621 break;
622 err = fixup_compat_flock(&flock);
623 if (!err)
624 err = put_compat_flock(&flock, compat_ptr(arg));
625 break;
626 case F_GETLK64:
627 case F_OFD_GETLK:
628 err = get_compat_flock64(&flock, compat_ptr(arg));
629 if (err)
630 break;
631 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
632 if (!err)
633 err = put_compat_flock64(&flock, compat_ptr(arg));
634 break;
635 case F_SETLK:
636 case F_SETLKW:
637 err = get_compat_flock(&flock, compat_ptr(arg));
638 if (err)
639 break;
640 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
641 break;
642 case F_SETLK64:
643 case F_SETLKW64:
644 case F_OFD_SETLK:
645 case F_OFD_SETLKW:
646 err = get_compat_flock64(&flock, compat_ptr(arg));
647 if (err)
648 break;
649 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
650 break;
651 default:
652 err = do_fcntl(fd, cmd, arg, f.file);
653 break;
654 }
655 out_put:
656 fdput(f);
657 return err;
658 }
659
COMPAT_SYSCALL_DEFINE3(fcntl64,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)660 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
661 compat_ulong_t, arg)
662 {
663 return do_compat_fcntl64(fd, cmd, arg);
664 }
665
COMPAT_SYSCALL_DEFINE3(fcntl,unsigned int,fd,unsigned int,cmd,compat_ulong_t,arg)666 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
667 compat_ulong_t, arg)
668 {
669 switch (cmd) {
670 case F_GETLK64:
671 case F_SETLK64:
672 case F_SETLKW64:
673 case F_OFD_GETLK:
674 case F_OFD_SETLK:
675 case F_OFD_SETLKW:
676 return -EINVAL;
677 }
678 return do_compat_fcntl64(fd, cmd, arg);
679 }
680 #endif
681
682 /* Table to convert sigio signal codes into poll band bitmaps */
683
684 static const __poll_t band_table[NSIGPOLL] = {
685 EPOLLIN | EPOLLRDNORM, /* POLL_IN */
686 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */
687 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */
688 EPOLLERR, /* POLL_ERR */
689 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */
690 EPOLLHUP | EPOLLERR /* POLL_HUP */
691 };
692
sigio_perm(struct task_struct * p,struct fown_struct * fown,int sig)693 static inline int sigio_perm(struct task_struct *p,
694 struct fown_struct *fown, int sig)
695 {
696 const struct cred *cred;
697 int ret;
698
699 rcu_read_lock();
700 cred = __task_cred(p);
701 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
702 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
703 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
704 !security_file_send_sigiotask(p, fown, sig));
705 rcu_read_unlock();
706 return ret;
707 }
708
send_sigio_to_task(struct task_struct * p,struct fown_struct * fown,int fd,int reason,enum pid_type type)709 static void send_sigio_to_task(struct task_struct *p,
710 struct fown_struct *fown,
711 int fd, int reason, enum pid_type type)
712 {
713 /*
714 * F_SETSIG can change ->signum lockless in parallel, make
715 * sure we read it once and use the same value throughout.
716 */
717 int signum = READ_ONCE(fown->signum);
718
719 if (!sigio_perm(p, fown, signum))
720 return;
721
722 switch (signum) {
723 default: {
724 kernel_siginfo_t si;
725
726 /* Queue a rt signal with the appropriate fd as its
727 value. We use SI_SIGIO as the source, not
728 SI_KERNEL, since kernel signals always get
729 delivered even if we can't queue. Failure to
730 queue in this case _should_ be reported; we fall
731 back to SIGIO in that case. --sct */
732 clear_siginfo(&si);
733 si.si_signo = signum;
734 si.si_errno = 0;
735 si.si_code = reason;
736 /*
737 * Posix definies POLL_IN and friends to be signal
738 * specific si_codes for SIG_POLL. Linux extended
739 * these si_codes to other signals in a way that is
740 * ambiguous if other signals also have signal
741 * specific si_codes. In that case use SI_SIGIO instead
742 * to remove the ambiguity.
743 */
744 if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
745 si.si_code = SI_SIGIO;
746
747 /* Make sure we are called with one of the POLL_*
748 reasons, otherwise we could leak kernel stack into
749 userspace. */
750 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
751 if (reason - POLL_IN >= NSIGPOLL)
752 si.si_band = ~0L;
753 else
754 si.si_band = mangle_poll(band_table[reason - POLL_IN]);
755 si.si_fd = fd;
756 if (!do_send_sig_info(signum, &si, p, type))
757 break;
758 }
759 fallthrough; /* fall back on the old plain SIGIO signal */
760 case 0:
761 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
762 }
763 }
764
send_sigio(struct fown_struct * fown,int fd,int band)765 void send_sigio(struct fown_struct *fown, int fd, int band)
766 {
767 struct task_struct *p;
768 enum pid_type type;
769 unsigned long flags;
770 struct pid *pid;
771
772 read_lock_irqsave(&fown->lock, flags);
773
774 type = fown->pid_type;
775 pid = fown->pid;
776 if (!pid)
777 goto out_unlock_fown;
778
779 if (type <= PIDTYPE_TGID) {
780 rcu_read_lock();
781 p = pid_task(pid, PIDTYPE_PID);
782 if (p)
783 send_sigio_to_task(p, fown, fd, band, type);
784 rcu_read_unlock();
785 } else {
786 read_lock(&tasklist_lock);
787 do_each_pid_task(pid, type, p) {
788 send_sigio_to_task(p, fown, fd, band, type);
789 } while_each_pid_task(pid, type, p);
790 read_unlock(&tasklist_lock);
791 }
792 out_unlock_fown:
793 read_unlock_irqrestore(&fown->lock, flags);
794 }
795
send_sigurg_to_task(struct task_struct * p,struct fown_struct * fown,enum pid_type type)796 static void send_sigurg_to_task(struct task_struct *p,
797 struct fown_struct *fown, enum pid_type type)
798 {
799 if (sigio_perm(p, fown, SIGURG))
800 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
801 }
802
send_sigurg(struct fown_struct * fown)803 int send_sigurg(struct fown_struct *fown)
804 {
805 struct task_struct *p;
806 enum pid_type type;
807 struct pid *pid;
808 unsigned long flags;
809 int ret = 0;
810
811 read_lock_irqsave(&fown->lock, flags);
812
813 type = fown->pid_type;
814 pid = fown->pid;
815 if (!pid)
816 goto out_unlock_fown;
817
818 ret = 1;
819
820 if (type <= PIDTYPE_TGID) {
821 rcu_read_lock();
822 p = pid_task(pid, PIDTYPE_PID);
823 if (p)
824 send_sigurg_to_task(p, fown, type);
825 rcu_read_unlock();
826 } else {
827 read_lock(&tasklist_lock);
828 do_each_pid_task(pid, type, p) {
829 send_sigurg_to_task(p, fown, type);
830 } while_each_pid_task(pid, type, p);
831 read_unlock(&tasklist_lock);
832 }
833 out_unlock_fown:
834 read_unlock_irqrestore(&fown->lock, flags);
835 return ret;
836 }
837
838 static DEFINE_SPINLOCK(fasync_lock);
839 static struct kmem_cache *fasync_cache __read_mostly;
840
fasync_free_rcu(struct rcu_head * head)841 static void fasync_free_rcu(struct rcu_head *head)
842 {
843 kmem_cache_free(fasync_cache,
844 container_of(head, struct fasync_struct, fa_rcu));
845 }
846
847 /*
848 * Remove a fasync entry. If successfully removed, return
849 * positive and clear the FASYNC flag. If no entry exists,
850 * do nothing and return 0.
851 *
852 * NOTE! It is very important that the FASYNC flag always
853 * match the state "is the filp on a fasync list".
854 *
855 */
fasync_remove_entry(struct file * filp,struct fasync_struct ** fapp)856 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
857 {
858 struct fasync_struct *fa, **fp;
859 int result = 0;
860
861 spin_lock(&filp->f_lock);
862 spin_lock(&fasync_lock);
863 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
864 if (fa->fa_file != filp)
865 continue;
866
867 write_lock_irq(&fa->fa_lock);
868 fa->fa_file = NULL;
869 write_unlock_irq(&fa->fa_lock);
870
871 *fp = fa->fa_next;
872 call_rcu(&fa->fa_rcu, fasync_free_rcu);
873 filp->f_flags &= ~FASYNC;
874 result = 1;
875 break;
876 }
877 spin_unlock(&fasync_lock);
878 spin_unlock(&filp->f_lock);
879 return result;
880 }
881
fasync_alloc(void)882 struct fasync_struct *fasync_alloc(void)
883 {
884 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
885 }
886
887 /*
888 * NOTE! This can be used only for unused fasync entries:
889 * entries that actually got inserted on the fasync list
890 * need to be released by rcu - see fasync_remove_entry.
891 */
fasync_free(struct fasync_struct * new)892 void fasync_free(struct fasync_struct *new)
893 {
894 kmem_cache_free(fasync_cache, new);
895 }
896
897 /*
898 * Insert a new entry into the fasync list. Return the pointer to the
899 * old one if we didn't use the new one.
900 *
901 * NOTE! It is very important that the FASYNC flag always
902 * match the state "is the filp on a fasync list".
903 */
fasync_insert_entry(int fd,struct file * filp,struct fasync_struct ** fapp,struct fasync_struct * new)904 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
905 {
906 struct fasync_struct *fa, **fp;
907
908 spin_lock(&filp->f_lock);
909 spin_lock(&fasync_lock);
910 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
911 if (fa->fa_file != filp)
912 continue;
913
914 write_lock_irq(&fa->fa_lock);
915 fa->fa_fd = fd;
916 write_unlock_irq(&fa->fa_lock);
917 goto out;
918 }
919
920 rwlock_init(&new->fa_lock);
921 new->magic = FASYNC_MAGIC;
922 new->fa_file = filp;
923 new->fa_fd = fd;
924 new->fa_next = *fapp;
925 rcu_assign_pointer(*fapp, new);
926 filp->f_flags |= FASYNC;
927
928 out:
929 spin_unlock(&fasync_lock);
930 spin_unlock(&filp->f_lock);
931 return fa;
932 }
933
934 /*
935 * Add a fasync entry. Return negative on error, positive if
936 * added, and zero if did nothing but change an existing one.
937 */
fasync_add_entry(int fd,struct file * filp,struct fasync_struct ** fapp)938 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
939 {
940 struct fasync_struct *new;
941
942 new = fasync_alloc();
943 if (!new)
944 return -ENOMEM;
945
946 /*
947 * fasync_insert_entry() returns the old (update) entry if
948 * it existed.
949 *
950 * So free the (unused) new entry and return 0 to let the
951 * caller know that we didn't add any new fasync entries.
952 */
953 if (fasync_insert_entry(fd, filp, fapp, new)) {
954 fasync_free(new);
955 return 0;
956 }
957
958 return 1;
959 }
960
961 /*
962 * fasync_helper() is used by almost all character device drivers
963 * to set up the fasync queue, and for regular files by the file
964 * lease code. It returns negative on error, 0 if it did no changes
965 * and positive if it added/deleted the entry.
966 */
fasync_helper(int fd,struct file * filp,int on,struct fasync_struct ** fapp)967 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
968 {
969 if (!on)
970 return fasync_remove_entry(filp, fapp);
971 return fasync_add_entry(fd, filp, fapp);
972 }
973
974 EXPORT_SYMBOL(fasync_helper);
975
976 /*
977 * rcu_read_lock() is held
978 */
kill_fasync_rcu(struct fasync_struct * fa,int sig,int band)979 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
980 {
981 while (fa) {
982 struct fown_struct *fown;
983 unsigned long flags;
984
985 if (fa->magic != FASYNC_MAGIC) {
986 printk(KERN_ERR "kill_fasync: bad magic number in "
987 "fasync_struct!\n");
988 return;
989 }
990 read_lock_irqsave(&fa->fa_lock, flags);
991 if (fa->fa_file) {
992 fown = &fa->fa_file->f_owner;
993 /* Don't send SIGURG to processes which have not set a
994 queued signum: SIGURG has its own default signalling
995 mechanism. */
996 if (!(sig == SIGURG && fown->signum == 0))
997 send_sigio(fown, fa->fa_fd, band);
998 }
999 read_unlock_irqrestore(&fa->fa_lock, flags);
1000 fa = rcu_dereference(fa->fa_next);
1001 }
1002 }
1003
kill_fasync(struct fasync_struct ** fp,int sig,int band)1004 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1005 {
1006 /* First a quick test without locking: usually
1007 * the list is empty.
1008 */
1009 if (*fp) {
1010 rcu_read_lock();
1011 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1012 rcu_read_unlock();
1013 }
1014 }
1015 EXPORT_SYMBOL(kill_fasync);
1016
fcntl_init(void)1017 static int __init fcntl_init(void)
1018 {
1019 /*
1020 * Please add new bits here to ensure allocation uniqueness.
1021 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1022 * is defined as O_NONBLOCK on some platforms and not on others.
1023 */
1024 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1025 HWEIGHT32(
1026 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1027 __FMODE_EXEC | __FMODE_NONOTIFY));
1028
1029 fasync_cache = kmem_cache_create("fasync_cache",
1030 sizeof(struct fasync_struct), 0,
1031 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1032 return 0;
1033 }
1034
1035 module_init(fcntl_init)
1036