1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory bandwidth monitoring and allocation library
4 *
5 * Copyright (C) 2018 Intel Corporation
6 *
7 * Authors:
8 * Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
9 * Fenghua Yu <fenghua.yu@intel.com>
10 */
11 #include "resctrl.h"
12
13 #define UNCORE_IMC "uncore_imc"
14 #define READ_FILE_NAME "events/cas_count_read"
15 #define WRITE_FILE_NAME "events/cas_count_write"
16 #define DYN_PMU_PATH "/sys/bus/event_source/devices"
17 #define SCALE 0.00006103515625
18 #define MAX_IMCS 20
19 #define MAX_TOKENS 5
20 #define READ 0
21 #define WRITE 1
22 #define CON_MON_MBM_LOCAL_BYTES_PATH \
23 "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
24
25 #define CON_MBM_LOCAL_BYTES_PATH \
26 "%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
27
28 #define MON_MBM_LOCAL_BYTES_PATH \
29 "%s/mon_groups/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
30
31 #define MBM_LOCAL_BYTES_PATH \
32 "%s/mon_data/mon_L3_%02d/mbm_local_bytes"
33
34 #define CON_MON_LCC_OCCUP_PATH \
35 "%s/%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"
36
37 #define CON_LCC_OCCUP_PATH \
38 "%s/%s/mon_data/mon_L3_%02d/llc_occupancy"
39
40 #define MON_LCC_OCCUP_PATH \
41 "%s/mon_groups/%s/mon_data/mon_L3_%02d/llc_occupancy"
42
43 #define LCC_OCCUP_PATH \
44 "%s/mon_data/mon_L3_%02d/llc_occupancy"
45
46 struct membw_read_format {
47 __u64 value; /* The value of the event */
48 __u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
49 __u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
50 __u64 id; /* if PERF_FORMAT_ID */
51 };
52
53 struct imc_counter_config {
54 __u32 type;
55 __u64 event;
56 __u64 umask;
57 struct perf_event_attr pe;
58 struct membw_read_format return_value;
59 int fd;
60 };
61
62 static char mbm_total_path[1024];
63 static int imcs;
64 static struct imc_counter_config imc_counters_config[MAX_IMCS][2];
65
membw_initialize_perf_event_attr(int i,int j)66 void membw_initialize_perf_event_attr(int i, int j)
67 {
68 memset(&imc_counters_config[i][j].pe, 0,
69 sizeof(struct perf_event_attr));
70 imc_counters_config[i][j].pe.type = imc_counters_config[i][j].type;
71 imc_counters_config[i][j].pe.size = sizeof(struct perf_event_attr);
72 imc_counters_config[i][j].pe.disabled = 1;
73 imc_counters_config[i][j].pe.inherit = 1;
74 imc_counters_config[i][j].pe.exclude_guest = 0;
75 imc_counters_config[i][j].pe.config =
76 imc_counters_config[i][j].umask << 8 |
77 imc_counters_config[i][j].event;
78 imc_counters_config[i][j].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
79 imc_counters_config[i][j].pe.read_format =
80 PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
81 }
82
membw_ioctl_perf_event_ioc_reset_enable(int i,int j)83 void membw_ioctl_perf_event_ioc_reset_enable(int i, int j)
84 {
85 ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_RESET, 0);
86 ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_ENABLE, 0);
87 }
88
membw_ioctl_perf_event_ioc_disable(int i,int j)89 void membw_ioctl_perf_event_ioc_disable(int i, int j)
90 {
91 ioctl(imc_counters_config[i][j].fd, PERF_EVENT_IOC_DISABLE, 0);
92 }
93
94 /*
95 * get_event_and_umask: Parse config into event and umask
96 * @cas_count_cfg: Config
97 * @count: iMC number
98 * @op: Operation (read/write)
99 */
get_event_and_umask(char * cas_count_cfg,int count,bool op)100 void get_event_and_umask(char *cas_count_cfg, int count, bool op)
101 {
102 char *token[MAX_TOKENS];
103 int i = 0;
104
105 strcat(cas_count_cfg, ",");
106 token[0] = strtok(cas_count_cfg, "=,");
107
108 for (i = 1; i < MAX_TOKENS; i++)
109 token[i] = strtok(NULL, "=,");
110
111 for (i = 0; i < MAX_TOKENS; i++) {
112 if (!token[i])
113 break;
114 if (strcmp(token[i], "event") == 0) {
115 if (op == READ)
116 imc_counters_config[count][READ].event =
117 strtol(token[i + 1], NULL, 16);
118 else
119 imc_counters_config[count][WRITE].event =
120 strtol(token[i + 1], NULL, 16);
121 }
122 if (strcmp(token[i], "umask") == 0) {
123 if (op == READ)
124 imc_counters_config[count][READ].umask =
125 strtol(token[i + 1], NULL, 16);
126 else
127 imc_counters_config[count][WRITE].umask =
128 strtol(token[i + 1], NULL, 16);
129 }
130 }
131 }
132
open_perf_event(int i,int cpu_no,int j)133 static int open_perf_event(int i, int cpu_no, int j)
134 {
135 imc_counters_config[i][j].fd =
136 perf_event_open(&imc_counters_config[i][j].pe, -1, cpu_no, -1,
137 PERF_FLAG_FD_CLOEXEC);
138
139 if (imc_counters_config[i][j].fd == -1) {
140 fprintf(stderr, "Error opening leader %llx\n",
141 imc_counters_config[i][j].pe.config);
142
143 return -1;
144 }
145
146 return 0;
147 }
148
149 /* Get type and config (read and write) of an iMC counter */
read_from_imc_dir(char * imc_dir,int count)150 static int read_from_imc_dir(char *imc_dir, int count)
151 {
152 char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
153 FILE *fp;
154
155 /* Get type of iMC counter */
156 sprintf(imc_counter_type, "%s%s", imc_dir, "type");
157 fp = fopen(imc_counter_type, "r");
158 if (!fp) {
159 ksft_perror("Failed to open iMC counter type file");
160
161 return -1;
162 }
163 if (fscanf(fp, "%u", &imc_counters_config[count][READ].type) <= 0) {
164 ksft_perror("Could not get iMC type");
165 fclose(fp);
166
167 return -1;
168 }
169 fclose(fp);
170
171 imc_counters_config[count][WRITE].type =
172 imc_counters_config[count][READ].type;
173
174 /* Get read config */
175 sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
176 fp = fopen(imc_counter_cfg, "r");
177 if (!fp) {
178 ksft_perror("Failed to open iMC config file");
179
180 return -1;
181 }
182 if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
183 ksft_perror("Could not get iMC cas count read");
184 fclose(fp);
185
186 return -1;
187 }
188 fclose(fp);
189
190 get_event_and_umask(cas_count_cfg, count, READ);
191
192 /* Get write config */
193 sprintf(imc_counter_cfg, "%s%s", imc_dir, WRITE_FILE_NAME);
194 fp = fopen(imc_counter_cfg, "r");
195 if (!fp) {
196 ksft_perror("Failed to open iMC config file");
197
198 return -1;
199 }
200 if (fscanf(fp, "%s", cas_count_cfg) <= 0) {
201 ksft_perror("Could not get iMC cas count write");
202 fclose(fp);
203
204 return -1;
205 }
206 fclose(fp);
207
208 get_event_and_umask(cas_count_cfg, count, WRITE);
209
210 return 0;
211 }
212
213 /*
214 * A system can have 'n' number of iMC (Integrated Memory Controller)
215 * counters, get that 'n'. For each iMC counter get it's type and config.
216 * Also, each counter has two configs, one for read and the other for write.
217 * A config again has two parts, event and umask.
218 * Enumerate all these details into an array of structures.
219 *
220 * Return: >= 0 on success. < 0 on failure.
221 */
num_of_imcs(void)222 static int num_of_imcs(void)
223 {
224 char imc_dir[512], *temp;
225 unsigned int count = 0;
226 struct dirent *ep;
227 int ret;
228 DIR *dp;
229
230 dp = opendir(DYN_PMU_PATH);
231 if (dp) {
232 while ((ep = readdir(dp))) {
233 temp = strstr(ep->d_name, UNCORE_IMC);
234 if (!temp)
235 continue;
236
237 /*
238 * imc counters are named as "uncore_imc_<n>", hence
239 * increment the pointer to point to <n>. Note that
240 * sizeof(UNCORE_IMC) would count for null character as
241 * well and hence the last underscore character in
242 * uncore_imc'_' need not be counted.
243 */
244 temp = temp + sizeof(UNCORE_IMC);
245
246 /*
247 * Some directories under "DYN_PMU_PATH" could have
248 * names like "uncore_imc_free_running", hence, check if
249 * first character is a numerical digit or not.
250 */
251 if (temp[0] >= '0' && temp[0] <= '9') {
252 sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
253 ep->d_name);
254 ret = read_from_imc_dir(imc_dir, count);
255 if (ret) {
256 closedir(dp);
257
258 return ret;
259 }
260 count++;
261 }
262 }
263 closedir(dp);
264 if (count == 0) {
265 ksft_print_msg("Unable to find iMC counters\n");
266
267 return -1;
268 }
269 } else {
270 ksft_perror("Unable to open PMU directory");
271
272 return -1;
273 }
274
275 return count;
276 }
277
initialize_mem_bw_imc(void)278 static int initialize_mem_bw_imc(void)
279 {
280 int imc, j;
281
282 imcs = num_of_imcs();
283 if (imcs <= 0)
284 return imcs;
285
286 /* Initialize perf_event_attr structures for all iMC's */
287 for (imc = 0; imc < imcs; imc++) {
288 for (j = 0; j < 2; j++)
289 membw_initialize_perf_event_attr(imc, j);
290 }
291
292 return 0;
293 }
294
perf_close_imc_mem_bw(void)295 static void perf_close_imc_mem_bw(void)
296 {
297 int mc;
298
299 for (mc = 0; mc < imcs; mc++) {
300 if (imc_counters_config[mc][READ].fd != -1)
301 close(imc_counters_config[mc][READ].fd);
302 if (imc_counters_config[mc][WRITE].fd != -1)
303 close(imc_counters_config[mc][WRITE].fd);
304 }
305 }
306
307 /*
308 * get_mem_bw_imc: Memory band width as reported by iMC counters
309 * @cpu_no: CPU number that the benchmark PID is binded to
310 * @bw_report: Bandwidth report type (reads, writes)
311 *
312 * Memory B/W utilized by a process on a socket can be calculated using
313 * iMC counters. Perf events are used to read these counters.
314 *
315 * Return: = 0 on success. < 0 on failure.
316 */
get_mem_bw_imc(int cpu_no,char * bw_report,float * bw_imc)317 static int get_mem_bw_imc(int cpu_no, char *bw_report, float *bw_imc)
318 {
319 float reads, writes, of_mul_read, of_mul_write;
320 int imc, ret;
321
322 for (imc = 0; imc < imcs; imc++) {
323 imc_counters_config[imc][READ].fd = -1;
324 imc_counters_config[imc][WRITE].fd = -1;
325 }
326
327 /* Start all iMC counters to log values (both read and write) */
328 reads = 0, writes = 0, of_mul_read = 1, of_mul_write = 1;
329 for (imc = 0; imc < imcs; imc++) {
330 ret = open_perf_event(imc, cpu_no, READ);
331 if (ret)
332 goto close_fds;
333 ret = open_perf_event(imc, cpu_no, WRITE);
334 if (ret)
335 goto close_fds;
336
337 membw_ioctl_perf_event_ioc_reset_enable(imc, READ);
338 membw_ioctl_perf_event_ioc_reset_enable(imc, WRITE);
339 }
340
341 sleep(1);
342
343 /* Stop counters after a second to get results (both read and write) */
344 for (imc = 0; imc < imcs; imc++) {
345 membw_ioctl_perf_event_ioc_disable(imc, READ);
346 membw_ioctl_perf_event_ioc_disable(imc, WRITE);
347 }
348
349 /*
350 * Get results which are stored in struct type imc_counter_config
351 * Take over flow into consideration before calculating total b/w
352 */
353 for (imc = 0; imc < imcs; imc++) {
354 struct imc_counter_config *r =
355 &imc_counters_config[imc][READ];
356 struct imc_counter_config *w =
357 &imc_counters_config[imc][WRITE];
358
359 if (read(r->fd, &r->return_value,
360 sizeof(struct membw_read_format)) == -1) {
361 ksft_perror("Couldn't get read b/w through iMC");
362 goto close_fds;
363 }
364
365 if (read(w->fd, &w->return_value,
366 sizeof(struct membw_read_format)) == -1) {
367 ksft_perror("Couldn't get write bw through iMC");
368 goto close_fds;
369 }
370
371 __u64 r_time_enabled = r->return_value.time_enabled;
372 __u64 r_time_running = r->return_value.time_running;
373
374 if (r_time_enabled != r_time_running)
375 of_mul_read = (float)r_time_enabled /
376 (float)r_time_running;
377
378 __u64 w_time_enabled = w->return_value.time_enabled;
379 __u64 w_time_running = w->return_value.time_running;
380
381 if (w_time_enabled != w_time_running)
382 of_mul_write = (float)w_time_enabled /
383 (float)w_time_running;
384 reads += r->return_value.value * of_mul_read * SCALE;
385 writes += w->return_value.value * of_mul_write * SCALE;
386 }
387
388 perf_close_imc_mem_bw();
389
390 if (strcmp(bw_report, "reads") == 0) {
391 *bw_imc = reads;
392 return 0;
393 }
394
395 if (strcmp(bw_report, "writes") == 0) {
396 *bw_imc = writes;
397 return 0;
398 }
399
400 *bw_imc = reads + writes;
401 return 0;
402
403 close_fds:
404 perf_close_imc_mem_bw();
405 return -1;
406 }
407
set_mbm_path(const char * ctrlgrp,const char * mongrp,int resource_id)408 void set_mbm_path(const char *ctrlgrp, const char *mongrp, int resource_id)
409 {
410 if (ctrlgrp && mongrp)
411 sprintf(mbm_total_path, CON_MON_MBM_LOCAL_BYTES_PATH,
412 RESCTRL_PATH, ctrlgrp, mongrp, resource_id);
413 else if (!ctrlgrp && mongrp)
414 sprintf(mbm_total_path, MON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
415 mongrp, resource_id);
416 else if (ctrlgrp && !mongrp)
417 sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
418 ctrlgrp, resource_id);
419 else if (!ctrlgrp && !mongrp)
420 sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
421 resource_id);
422 }
423
424 /*
425 * initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path"
426 * @ctrlgrp: Name of the control monitor group (con_mon grp)
427 * @mongrp: Name of the monitor group (mon grp)
428 * @cpu_no: CPU number that the benchmark PID is binded to
429 * @resctrl_val: Resctrl feature (Eg: mbm, mba.. etc)
430 */
initialize_mem_bw_resctrl(const char * ctrlgrp,const char * mongrp,int cpu_no,char * resctrl_val)431 static void initialize_mem_bw_resctrl(const char *ctrlgrp, const char *mongrp,
432 int cpu_no, char *resctrl_val)
433 {
434 int resource_id;
435
436 if (get_resource_id(cpu_no, &resource_id) < 0) {
437 ksft_print_msg("Could not get resource_id\n");
438 return;
439 }
440
441 if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)))
442 set_mbm_path(ctrlgrp, mongrp, resource_id);
443
444 if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
445 if (ctrlgrp)
446 sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH,
447 RESCTRL_PATH, ctrlgrp, resource_id);
448 else
449 sprintf(mbm_total_path, MBM_LOCAL_BYTES_PATH,
450 RESCTRL_PATH, resource_id);
451 }
452 }
453
454 /*
455 * Get MBM Local bytes as reported by resctrl FS
456 * For MBM,
457 * 1. If con_mon grp and mon grp are given, then read from con_mon grp's mon grp
458 * 2. If only con_mon grp is given, then read from con_mon grp
459 * 3. If both are not given, then read from root con_mon grp
460 * For MBA,
461 * 1. If con_mon grp is given, then read from it
462 * 2. If con_mon grp is not given, then read from root con_mon grp
463 */
get_mem_bw_resctrl(unsigned long * mbm_total)464 static int get_mem_bw_resctrl(unsigned long *mbm_total)
465 {
466 FILE *fp;
467
468 fp = fopen(mbm_total_path, "r");
469 if (!fp) {
470 ksft_perror("Failed to open total bw file");
471
472 return -1;
473 }
474 if (fscanf(fp, "%lu", mbm_total) <= 0) {
475 ksft_perror("Could not get mbm local bytes");
476 fclose(fp);
477
478 return -1;
479 }
480 fclose(fp);
481
482 return 0;
483 }
484
485 pid_t bm_pid, ppid;
486
ctrlc_handler(int signum,siginfo_t * info,void * ptr)487 void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
488 {
489 /* Only kill child after bm_pid is set after fork() */
490 if (bm_pid)
491 kill(bm_pid, SIGKILL);
492 umount_resctrlfs();
493 tests_cleanup();
494 ksft_print_msg("Ending\n\n");
495
496 exit(EXIT_SUCCESS);
497 }
498
499 /*
500 * Register CTRL-C handler for parent, as it has to kill
501 * child process before exiting.
502 */
signal_handler_register(void)503 int signal_handler_register(void)
504 {
505 struct sigaction sigact = {};
506 int ret = 0;
507
508 bm_pid = 0;
509
510 sigact.sa_sigaction = ctrlc_handler;
511 sigemptyset(&sigact.sa_mask);
512 sigact.sa_flags = SA_SIGINFO;
513 if (sigaction(SIGINT, &sigact, NULL) ||
514 sigaction(SIGTERM, &sigact, NULL) ||
515 sigaction(SIGHUP, &sigact, NULL)) {
516 ksft_perror("sigaction");
517 ret = -1;
518 }
519 return ret;
520 }
521
522 /*
523 * Reset signal handler to SIG_DFL.
524 * Non-Value return because the caller should keep
525 * the error code of other path even if sigaction fails.
526 */
signal_handler_unregister(void)527 void signal_handler_unregister(void)
528 {
529 struct sigaction sigact = {};
530
531 sigact.sa_handler = SIG_DFL;
532 sigemptyset(&sigact.sa_mask);
533 if (sigaction(SIGINT, &sigact, NULL) ||
534 sigaction(SIGTERM, &sigact, NULL) ||
535 sigaction(SIGHUP, &sigact, NULL)) {
536 ksft_perror("sigaction");
537 }
538 }
539
540 /*
541 * print_results_bw: the memory bandwidth results are stored in a file
542 * @filename: file that stores the results
543 * @bm_pid: child pid that runs benchmark
544 * @bw_imc: perf imc counter value
545 * @bw_resc: memory bandwidth value
546 *
547 * Return: 0 on success. non-zero on failure.
548 */
print_results_bw(char * filename,int bm_pid,float bw_imc,unsigned long bw_resc)549 static int print_results_bw(char *filename, int bm_pid, float bw_imc,
550 unsigned long bw_resc)
551 {
552 unsigned long diff = fabs(bw_imc - bw_resc);
553 FILE *fp;
554
555 if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
556 printf("Pid: %d \t Mem_BW_iMC: %f \t ", bm_pid, bw_imc);
557 printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
558 } else {
559 fp = fopen(filename, "a");
560 if (!fp) {
561 ksft_perror("Cannot open results file");
562
563 return errno;
564 }
565 if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
566 bm_pid, bw_imc, bw_resc, diff) <= 0) {
567 ksft_print_msg("Could not log results\n");
568 fclose(fp);
569
570 return errno;
571 }
572 fclose(fp);
573 }
574
575 return 0;
576 }
577
set_cmt_path(const char * ctrlgrp,const char * mongrp,char sock_num)578 static void set_cmt_path(const char *ctrlgrp, const char *mongrp, char sock_num)
579 {
580 if (strlen(ctrlgrp) && strlen(mongrp))
581 sprintf(llc_occup_path, CON_MON_LCC_OCCUP_PATH, RESCTRL_PATH,
582 ctrlgrp, mongrp, sock_num);
583 else if (!strlen(ctrlgrp) && strlen(mongrp))
584 sprintf(llc_occup_path, MON_LCC_OCCUP_PATH, RESCTRL_PATH,
585 mongrp, sock_num);
586 else if (strlen(ctrlgrp) && !strlen(mongrp))
587 sprintf(llc_occup_path, CON_LCC_OCCUP_PATH, RESCTRL_PATH,
588 ctrlgrp, sock_num);
589 else if (!strlen(ctrlgrp) && !strlen(mongrp))
590 sprintf(llc_occup_path, LCC_OCCUP_PATH, RESCTRL_PATH, sock_num);
591 }
592
593 /*
594 * initialize_llc_occu_resctrl: Appropriately populate "llc_occup_path"
595 * @ctrlgrp: Name of the control monitor group (con_mon grp)
596 * @mongrp: Name of the monitor group (mon grp)
597 * @cpu_no: CPU number that the benchmark PID is binded to
598 * @resctrl_val: Resctrl feature (Eg: cat, cmt.. etc)
599 */
initialize_llc_occu_resctrl(const char * ctrlgrp,const char * mongrp,int cpu_no,char * resctrl_val)600 static void initialize_llc_occu_resctrl(const char *ctrlgrp, const char *mongrp,
601 int cpu_no, char *resctrl_val)
602 {
603 int resource_id;
604
605 if (get_resource_id(cpu_no, &resource_id) < 0) {
606 ksft_print_msg("Could not get resource_id\n");
607 return;
608 }
609
610 if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
611 set_cmt_path(ctrlgrp, mongrp, resource_id);
612 }
613
614 static int
measure_vals(struct resctrl_val_param * param,unsigned long * bw_resc_start)615 measure_vals(struct resctrl_val_param *param, unsigned long *bw_resc_start)
616 {
617 unsigned long bw_resc, bw_resc_end;
618 float bw_imc;
619 int ret;
620
621 /*
622 * Measure memory bandwidth from resctrl and from
623 * another source which is perf imc value or could
624 * be something else if perf imc event is not available.
625 * Compare the two values to validate resctrl value.
626 * It takes 1sec to measure the data.
627 */
628 ret = get_mem_bw_imc(param->cpu_no, param->bw_report, &bw_imc);
629 if (ret < 0)
630 return ret;
631
632 ret = get_mem_bw_resctrl(&bw_resc_end);
633 if (ret < 0)
634 return ret;
635
636 bw_resc = (bw_resc_end - *bw_resc_start) / MB;
637 ret = print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
638 if (ret)
639 return ret;
640
641 *bw_resc_start = bw_resc_end;
642
643 return 0;
644 }
645
646 /*
647 * run_benchmark - Run a specified benchmark or fill_buf (default benchmark)
648 * in specified signal. Direct benchmark stdio to /dev/null.
649 * @signum: signal number
650 * @info: signal info
651 * @ucontext: user context in signal handling
652 */
run_benchmark(int signum,siginfo_t * info,void * ucontext)653 static void run_benchmark(int signum, siginfo_t *info, void *ucontext)
654 {
655 int operation, ret, memflush;
656 char **benchmark_cmd;
657 size_t span;
658 bool once;
659 FILE *fp;
660
661 benchmark_cmd = info->si_ptr;
662
663 /*
664 * Direct stdio of child to /dev/null, so that only parent writes to
665 * stdio (console)
666 */
667 fp = freopen("/dev/null", "w", stdout);
668 if (!fp) {
669 ksft_perror("Unable to direct benchmark status to /dev/null");
670 PARENT_EXIT();
671 }
672
673 if (strcmp(benchmark_cmd[0], "fill_buf") == 0) {
674 /* Execute default fill_buf benchmark */
675 span = strtoul(benchmark_cmd[1], NULL, 10);
676 memflush = atoi(benchmark_cmd[2]);
677 operation = atoi(benchmark_cmd[3]);
678 if (!strcmp(benchmark_cmd[4], "true")) {
679 once = true;
680 } else if (!strcmp(benchmark_cmd[4], "false")) {
681 once = false;
682 } else {
683 ksft_print_msg("Invalid once parameter\n");
684 PARENT_EXIT();
685 }
686
687 if (run_fill_buf(span, memflush, operation, once))
688 fprintf(stderr, "Error in running fill buffer\n");
689 } else {
690 /* Execute specified benchmark */
691 ret = execvp(benchmark_cmd[0], benchmark_cmd);
692 if (ret)
693 ksft_perror("execvp");
694 }
695
696 fclose(stdout);
697 ksft_print_msg("Unable to run specified benchmark\n");
698 PARENT_EXIT();
699 }
700
701 /*
702 * resctrl_val: execute benchmark and measure memory bandwidth on
703 * the benchmark
704 * @benchmark_cmd: benchmark command and its arguments
705 * @param: parameters passed to resctrl_val()
706 *
707 * Return: 0 on success. non-zero on failure.
708 */
resctrl_val(const char * const * benchmark_cmd,struct resctrl_val_param * param)709 int resctrl_val(const char * const *benchmark_cmd, struct resctrl_val_param *param)
710 {
711 char *resctrl_val = param->resctrl_val;
712 unsigned long bw_resc_start = 0;
713 struct sigaction sigact;
714 int ret = 0, pipefd[2];
715 char pipe_message = 0;
716 union sigval value;
717
718 if (strcmp(param->filename, "") == 0)
719 sprintf(param->filename, "stdio");
720
721 if (!strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR)) ||
722 !strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR))) {
723 ret = validate_bw_report_request(param->bw_report);
724 if (ret)
725 return ret;
726 }
727
728 /*
729 * If benchmark wasn't successfully started by child, then child should
730 * kill parent, so save parent's pid
731 */
732 ppid = getpid();
733
734 if (pipe(pipefd)) {
735 ksft_perror("Unable to create pipe");
736
737 return -1;
738 }
739
740 /*
741 * Fork to start benchmark, save child's pid so that it can be killed
742 * when needed
743 */
744 fflush(stdout);
745 bm_pid = fork();
746 if (bm_pid == -1) {
747 ksft_perror("Unable to fork");
748
749 return -1;
750 }
751
752 if (bm_pid == 0) {
753 /*
754 * Mask all signals except SIGUSR1, parent uses SIGUSR1 to
755 * start benchmark
756 */
757 sigfillset(&sigact.sa_mask);
758 sigdelset(&sigact.sa_mask, SIGUSR1);
759
760 sigact.sa_sigaction = run_benchmark;
761 sigact.sa_flags = SA_SIGINFO;
762
763 /* Register for "SIGUSR1" signal from parent */
764 if (sigaction(SIGUSR1, &sigact, NULL)) {
765 ksft_perror("Can't register child for signal");
766 PARENT_EXIT();
767 }
768
769 /* Tell parent that child is ready */
770 close(pipefd[0]);
771 pipe_message = 1;
772 if (write(pipefd[1], &pipe_message, sizeof(pipe_message)) <
773 sizeof(pipe_message)) {
774 ksft_perror("Failed signaling parent process");
775 close(pipefd[1]);
776 return -1;
777 }
778 close(pipefd[1]);
779
780 /* Suspend child until delivery of "SIGUSR1" from parent */
781 sigsuspend(&sigact.sa_mask);
782
783 ksft_perror("Child is done");
784 PARENT_EXIT();
785 }
786
787 ksft_print_msg("Benchmark PID: %d\n", bm_pid);
788
789 /*
790 * The cast removes constness but nothing mutates benchmark_cmd within
791 * the context of this process. At the receiving process, it becomes
792 * argv, which is mutable, on exec() but that's after fork() so it
793 * doesn't matter for the process running the tests.
794 */
795 value.sival_ptr = (void *)benchmark_cmd;
796
797 /* Taskset benchmark to specified cpu */
798 ret = taskset_benchmark(bm_pid, param->cpu_no);
799 if (ret)
800 goto out;
801
802 /* Write benchmark to specified control&monitoring grp in resctrl FS */
803 ret = write_bm_pid_to_resctrl(bm_pid, param->ctrlgrp, param->mongrp,
804 resctrl_val);
805 if (ret)
806 goto out;
807
808 if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
809 !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
810 ret = initialize_mem_bw_imc();
811 if (ret)
812 goto out;
813
814 initialize_mem_bw_resctrl(param->ctrlgrp, param->mongrp,
815 param->cpu_no, resctrl_val);
816 } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR)))
817 initialize_llc_occu_resctrl(param->ctrlgrp, param->mongrp,
818 param->cpu_no, resctrl_val);
819
820 /* Parent waits for child to be ready. */
821 close(pipefd[1]);
822 while (pipe_message != 1) {
823 if (read(pipefd[0], &pipe_message, sizeof(pipe_message)) <
824 sizeof(pipe_message)) {
825 ksft_perror("Failed reading message from child process");
826 close(pipefd[0]);
827 goto out;
828 }
829 }
830 close(pipefd[0]);
831
832 /* Signal child to start benchmark */
833 if (sigqueue(bm_pid, SIGUSR1, value) == -1) {
834 ksft_perror("sigqueue SIGUSR1 to child");
835 ret = errno;
836 goto out;
837 }
838
839 /* Give benchmark enough time to fully run */
840 sleep(1);
841
842 /* Test runs until the callback setup() tells the test to stop. */
843 while (1) {
844 ret = param->setup(param);
845 if (ret == END_OF_TESTS) {
846 ret = 0;
847 break;
848 }
849 if (ret < 0)
850 break;
851
852 if (!strncmp(resctrl_val, MBM_STR, sizeof(MBM_STR)) ||
853 !strncmp(resctrl_val, MBA_STR, sizeof(MBA_STR))) {
854 ret = measure_vals(param, &bw_resc_start);
855 if (ret)
856 break;
857 } else if (!strncmp(resctrl_val, CMT_STR, sizeof(CMT_STR))) {
858 sleep(1);
859 ret = measure_cache_vals(param, bm_pid);
860 if (ret)
861 break;
862 }
863 }
864
865 out:
866 kill(bm_pid, SIGKILL);
867
868 return ret;
869 }
870