1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 static DEFINE_PER_CPU(unsigned long, nr_inodes);
71 static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73 static struct kmem_cache *inode_cachep __read_mostly;
74
get_nr_inodes(void)75 static long get_nr_inodes(void)
76 {
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82 }
83
get_nr_inodes_unused(void)84 static inline long get_nr_inodes_unused(void)
85 {
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91 }
92
get_nr_dirty_inodes(void)93 long get_nr_dirty_inodes(void)
94 {
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98 }
99
100 /*
101 * Handle nr_inode sysctl
102 */
103 #ifdef CONFIG_SYSCTL
104 /*
105 * Statistics gathering..
106 */
107 static struct inodes_stat_t inodes_stat;
108
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116
117 static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133 };
134
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 return -ENXIO;
146 }
147
148 /**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(&inode->i_sequence, 0);
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, 0);
175 i_gid_write(inode, 0);
176 atomic_set(&inode->i_writecount, 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193 #endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(&inode->i_dio_count, 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(&mapping->nr_thps, 0);
210 #endif
211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 if (sb->s_iflags & SB_I_STABLE_WRITES)
219 mapping_set_stable_writes(mapping);
220 inode->i_private = NULL;
221 inode->i_mapping = mapping;
222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226
227 #ifdef CONFIG_FSNOTIFY
228 inode->i_fsnotify_mask = 0;
229 #endif
230 inode->i_flctx = NULL;
231
232 if (unlikely(security_inode_alloc(inode)))
233 return -ENOMEM;
234 this_cpu_inc(nr_inodes);
235
236 return 0;
237 }
238 EXPORT_SYMBOL(inode_init_always);
239
free_inode_nonrcu(struct inode * inode)240 void free_inode_nonrcu(struct inode *inode)
241 {
242 kmem_cache_free(inode_cachep, inode);
243 }
244 EXPORT_SYMBOL(free_inode_nonrcu);
245
i_callback(struct rcu_head * head)246 static void i_callback(struct rcu_head *head)
247 {
248 struct inode *inode = container_of(head, struct inode, i_rcu);
249 if (inode->free_inode)
250 inode->free_inode(inode);
251 else
252 free_inode_nonrcu(inode);
253 }
254
alloc_inode(struct super_block * sb)255 static struct inode *alloc_inode(struct super_block *sb)
256 {
257 const struct super_operations *ops = sb->s_op;
258 struct inode *inode;
259
260 if (ops->alloc_inode)
261 inode = ops->alloc_inode(sb);
262 else
263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
264
265 if (!inode)
266 return NULL;
267
268 if (unlikely(inode_init_always(sb, inode))) {
269 if (ops->destroy_inode) {
270 ops->destroy_inode(inode);
271 if (!ops->free_inode)
272 return NULL;
273 }
274 inode->free_inode = ops->free_inode;
275 i_callback(&inode->i_rcu);
276 return NULL;
277 }
278
279 return inode;
280 }
281
__destroy_inode(struct inode * inode)282 void __destroy_inode(struct inode *inode)
283 {
284 BUG_ON(inode_has_buffers(inode));
285 inode_detach_wb(inode);
286 security_inode_free(inode);
287 fsnotify_inode_delete(inode);
288 locks_free_lock_context(inode);
289 if (!inode->i_nlink) {
290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
291 atomic_long_dec(&inode->i_sb->s_remove_count);
292 }
293
294 #ifdef CONFIG_FS_POSIX_ACL
295 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
296 posix_acl_release(inode->i_acl);
297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
298 posix_acl_release(inode->i_default_acl);
299 #endif
300 this_cpu_dec(nr_inodes);
301 }
302 EXPORT_SYMBOL(__destroy_inode);
303
destroy_inode(struct inode * inode)304 static void destroy_inode(struct inode *inode)
305 {
306 const struct super_operations *ops = inode->i_sb->s_op;
307
308 BUG_ON(!list_empty(&inode->i_lru));
309 __destroy_inode(inode);
310 if (ops->destroy_inode) {
311 ops->destroy_inode(inode);
312 if (!ops->free_inode)
313 return;
314 }
315 inode->free_inode = ops->free_inode;
316 call_rcu(&inode->i_rcu, i_callback);
317 }
318
319 /**
320 * drop_nlink - directly drop an inode's link count
321 * @inode: inode
322 *
323 * This is a low-level filesystem helper to replace any
324 * direct filesystem manipulation of i_nlink. In cases
325 * where we are attempting to track writes to the
326 * filesystem, a decrement to zero means an imminent
327 * write when the file is truncated and actually unlinked
328 * on the filesystem.
329 */
drop_nlink(struct inode * inode)330 void drop_nlink(struct inode *inode)
331 {
332 WARN_ON(inode->i_nlink == 0);
333 inode->__i_nlink--;
334 if (!inode->i_nlink)
335 atomic_long_inc(&inode->i_sb->s_remove_count);
336 }
337 EXPORT_SYMBOL(drop_nlink);
338
339 /**
340 * clear_nlink - directly zero an inode's link count
341 * @inode: inode
342 *
343 * This is a low-level filesystem helper to replace any
344 * direct filesystem manipulation of i_nlink. See
345 * drop_nlink() for why we care about i_nlink hitting zero.
346 */
clear_nlink(struct inode * inode)347 void clear_nlink(struct inode *inode)
348 {
349 if (inode->i_nlink) {
350 inode->__i_nlink = 0;
351 atomic_long_inc(&inode->i_sb->s_remove_count);
352 }
353 }
354 EXPORT_SYMBOL(clear_nlink);
355
356 /**
357 * set_nlink - directly set an inode's link count
358 * @inode: inode
359 * @nlink: new nlink (should be non-zero)
360 *
361 * This is a low-level filesystem helper to replace any
362 * direct filesystem manipulation of i_nlink.
363 */
set_nlink(struct inode * inode,unsigned int nlink)364 void set_nlink(struct inode *inode, unsigned int nlink)
365 {
366 if (!nlink) {
367 clear_nlink(inode);
368 } else {
369 /* Yes, some filesystems do change nlink from zero to one */
370 if (inode->i_nlink == 0)
371 atomic_long_dec(&inode->i_sb->s_remove_count);
372
373 inode->__i_nlink = nlink;
374 }
375 }
376 EXPORT_SYMBOL(set_nlink);
377
378 /**
379 * inc_nlink - directly increment an inode's link count
380 * @inode: inode
381 *
382 * This is a low-level filesystem helper to replace any
383 * direct filesystem manipulation of i_nlink. Currently,
384 * it is only here for parity with dec_nlink().
385 */
inc_nlink(struct inode * inode)386 void inc_nlink(struct inode *inode)
387 {
388 if (unlikely(inode->i_nlink == 0)) {
389 WARN_ON(!(inode->i_state & I_LINKABLE));
390 atomic_long_dec(&inode->i_sb->s_remove_count);
391 }
392
393 inode->__i_nlink++;
394 }
395 EXPORT_SYMBOL(inc_nlink);
396
__address_space_init_once(struct address_space * mapping)397 static void __address_space_init_once(struct address_space *mapping)
398 {
399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
400 init_rwsem(&mapping->i_mmap_rwsem);
401 INIT_LIST_HEAD(&mapping->private_list);
402 spin_lock_init(&mapping->private_lock);
403 mapping->i_mmap = RB_ROOT_CACHED;
404 }
405
address_space_init_once(struct address_space * mapping)406 void address_space_init_once(struct address_space *mapping)
407 {
408 memset(mapping, 0, sizeof(*mapping));
409 __address_space_init_once(mapping);
410 }
411 EXPORT_SYMBOL(address_space_init_once);
412
413 /*
414 * These are initializations that only need to be done
415 * once, because the fields are idempotent across use
416 * of the inode, so let the slab aware of that.
417 */
inode_init_once(struct inode * inode)418 void inode_init_once(struct inode *inode)
419 {
420 memset(inode, 0, sizeof(*inode));
421 INIT_HLIST_NODE(&inode->i_hash);
422 INIT_LIST_HEAD(&inode->i_devices);
423 INIT_LIST_HEAD(&inode->i_io_list);
424 INIT_LIST_HEAD(&inode->i_wb_list);
425 INIT_LIST_HEAD(&inode->i_lru);
426 INIT_LIST_HEAD(&inode->i_sb_list);
427 __address_space_init_once(&inode->i_data);
428 i_size_ordered_init(inode);
429 }
430 EXPORT_SYMBOL(inode_init_once);
431
init_once(void * foo)432 static void init_once(void *foo)
433 {
434 struct inode *inode = (struct inode *) foo;
435
436 inode_init_once(inode);
437 }
438
439 /*
440 * inode->i_lock must be held
441 */
__iget(struct inode * inode)442 void __iget(struct inode *inode)
443 {
444 atomic_inc(&inode->i_count);
445 }
446
447 /*
448 * get additional reference to inode; caller must already hold one.
449 */
ihold(struct inode * inode)450 void ihold(struct inode *inode)
451 {
452 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 }
454 EXPORT_SYMBOL(ihold);
455
__inode_add_lru(struct inode * inode,bool rotate)456 static void __inode_add_lru(struct inode *inode, bool rotate)
457 {
458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 return;
460 if (atomic_read(&inode->i_count))
461 return;
462 if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 return;
464 if (!mapping_shrinkable(&inode->i_data))
465 return;
466
467 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
468 this_cpu_inc(nr_unused);
469 else if (rotate)
470 inode->i_state |= I_REFERENCED;
471 }
472
473 /*
474 * Add inode to LRU if needed (inode is unused and clean).
475 *
476 * Needs inode->i_lock held.
477 */
inode_add_lru(struct inode * inode)478 void inode_add_lru(struct inode *inode)
479 {
480 __inode_add_lru(inode, false);
481 }
482
inode_lru_list_del(struct inode * inode)483 static void inode_lru_list_del(struct inode *inode)
484 {
485 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
486 this_cpu_dec(nr_unused);
487 }
488
inode_pin_lru_isolating(struct inode * inode)489 static void inode_pin_lru_isolating(struct inode *inode)
490 {
491 lockdep_assert_held(&inode->i_lock);
492 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
493 inode->i_state |= I_LRU_ISOLATING;
494 }
495
inode_unpin_lru_isolating(struct inode * inode)496 static void inode_unpin_lru_isolating(struct inode *inode)
497 {
498 spin_lock(&inode->i_lock);
499 WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
500 inode->i_state &= ~I_LRU_ISOLATING;
501 smp_mb();
502 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING);
503 spin_unlock(&inode->i_lock);
504 }
505
inode_wait_for_lru_isolating(struct inode * inode)506 static void inode_wait_for_lru_isolating(struct inode *inode)
507 {
508 spin_lock(&inode->i_lock);
509 if (inode->i_state & I_LRU_ISOLATING) {
510 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING);
511 wait_queue_head_t *wqh;
512
513 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING);
514 spin_unlock(&inode->i_lock);
515 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE);
516 spin_lock(&inode->i_lock);
517 WARN_ON(inode->i_state & I_LRU_ISOLATING);
518 }
519 spin_unlock(&inode->i_lock);
520 }
521
522 /**
523 * inode_sb_list_add - add inode to the superblock list of inodes
524 * @inode: inode to add
525 */
inode_sb_list_add(struct inode * inode)526 void inode_sb_list_add(struct inode *inode)
527 {
528 spin_lock(&inode->i_sb->s_inode_list_lock);
529 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
530 spin_unlock(&inode->i_sb->s_inode_list_lock);
531 }
532 EXPORT_SYMBOL_GPL(inode_sb_list_add);
533
inode_sb_list_del(struct inode * inode)534 static inline void inode_sb_list_del(struct inode *inode)
535 {
536 if (!list_empty(&inode->i_sb_list)) {
537 spin_lock(&inode->i_sb->s_inode_list_lock);
538 list_del_init(&inode->i_sb_list);
539 spin_unlock(&inode->i_sb->s_inode_list_lock);
540 }
541 }
542
hash(struct super_block * sb,unsigned long hashval)543 static unsigned long hash(struct super_block *sb, unsigned long hashval)
544 {
545 unsigned long tmp;
546
547 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
548 L1_CACHE_BYTES;
549 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
550 return tmp & i_hash_mask;
551 }
552
553 /**
554 * __insert_inode_hash - hash an inode
555 * @inode: unhashed inode
556 * @hashval: unsigned long value used to locate this object in the
557 * inode_hashtable.
558 *
559 * Add an inode to the inode hash for this superblock.
560 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)561 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
562 {
563 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
564
565 spin_lock(&inode_hash_lock);
566 spin_lock(&inode->i_lock);
567 hlist_add_head_rcu(&inode->i_hash, b);
568 spin_unlock(&inode->i_lock);
569 spin_unlock(&inode_hash_lock);
570 }
571 EXPORT_SYMBOL(__insert_inode_hash);
572
573 /**
574 * __remove_inode_hash - remove an inode from the hash
575 * @inode: inode to unhash
576 *
577 * Remove an inode from the superblock.
578 */
__remove_inode_hash(struct inode * inode)579 void __remove_inode_hash(struct inode *inode)
580 {
581 spin_lock(&inode_hash_lock);
582 spin_lock(&inode->i_lock);
583 hlist_del_init_rcu(&inode->i_hash);
584 spin_unlock(&inode->i_lock);
585 spin_unlock(&inode_hash_lock);
586 }
587 EXPORT_SYMBOL(__remove_inode_hash);
588
dump_mapping(const struct address_space * mapping)589 void dump_mapping(const struct address_space *mapping)
590 {
591 struct inode *host;
592 const struct address_space_operations *a_ops;
593 struct hlist_node *dentry_first;
594 struct dentry *dentry_ptr;
595 struct dentry dentry;
596 char fname[64] = {};
597 unsigned long ino;
598
599 /*
600 * If mapping is an invalid pointer, we don't want to crash
601 * accessing it, so probe everything depending on it carefully.
602 */
603 if (get_kernel_nofault(host, &mapping->host) ||
604 get_kernel_nofault(a_ops, &mapping->a_ops)) {
605 pr_warn("invalid mapping:%px\n", mapping);
606 return;
607 }
608
609 if (!host) {
610 pr_warn("aops:%ps\n", a_ops);
611 return;
612 }
613
614 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
615 get_kernel_nofault(ino, &host->i_ino)) {
616 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
617 return;
618 }
619
620 if (!dentry_first) {
621 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
622 return;
623 }
624
625 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
626 if (get_kernel_nofault(dentry, dentry_ptr)) {
627 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
628 a_ops, ino, dentry_ptr);
629 return;
630 }
631
632 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0)
633 strscpy(fname, "<invalid>", 63);
634 /*
635 * Even if strncpy_from_kernel_nofault() succeeded,
636 * the fname could be unreliable
637 */
638 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
639 a_ops, ino, fname);
640 }
641
clear_inode(struct inode * inode)642 void clear_inode(struct inode *inode)
643 {
644 /*
645 * We have to cycle the i_pages lock here because reclaim can be in the
646 * process of removing the last page (in __filemap_remove_folio())
647 * and we must not free the mapping under it.
648 */
649 xa_lock_irq(&inode->i_data.i_pages);
650 BUG_ON(inode->i_data.nrpages);
651 /*
652 * Almost always, mapping_empty(&inode->i_data) here; but there are
653 * two known and long-standing ways in which nodes may get left behind
654 * (when deep radix-tree node allocation failed partway; or when THP
655 * collapse_file() failed). Until those two known cases are cleaned up,
656 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
657 * nor even WARN_ON(!mapping_empty).
658 */
659 xa_unlock_irq(&inode->i_data.i_pages);
660 BUG_ON(!list_empty(&inode->i_data.private_list));
661 BUG_ON(!(inode->i_state & I_FREEING));
662 BUG_ON(inode->i_state & I_CLEAR);
663 BUG_ON(!list_empty(&inode->i_wb_list));
664 /* don't need i_lock here, no concurrent mods to i_state */
665 inode->i_state = I_FREEING | I_CLEAR;
666 }
667 EXPORT_SYMBOL(clear_inode);
668
669 /*
670 * Free the inode passed in, removing it from the lists it is still connected
671 * to. We remove any pages still attached to the inode and wait for any IO that
672 * is still in progress before finally destroying the inode.
673 *
674 * An inode must already be marked I_FREEING so that we avoid the inode being
675 * moved back onto lists if we race with other code that manipulates the lists
676 * (e.g. writeback_single_inode). The caller is responsible for setting this.
677 *
678 * An inode must already be removed from the LRU list before being evicted from
679 * the cache. This should occur atomically with setting the I_FREEING state
680 * flag, so no inodes here should ever be on the LRU when being evicted.
681 */
evict(struct inode * inode)682 static void evict(struct inode *inode)
683 {
684 const struct super_operations *op = inode->i_sb->s_op;
685
686 BUG_ON(!(inode->i_state & I_FREEING));
687 BUG_ON(!list_empty(&inode->i_lru));
688
689 if (!list_empty(&inode->i_io_list))
690 inode_io_list_del(inode);
691
692 inode_sb_list_del(inode);
693
694 inode_wait_for_lru_isolating(inode);
695
696 /*
697 * Wait for flusher thread to be done with the inode so that filesystem
698 * does not start destroying it while writeback is still running. Since
699 * the inode has I_FREEING set, flusher thread won't start new work on
700 * the inode. We just have to wait for running writeback to finish.
701 */
702 inode_wait_for_writeback(inode);
703
704 if (op->evict_inode) {
705 op->evict_inode(inode);
706 } else {
707 truncate_inode_pages_final(&inode->i_data);
708 clear_inode(inode);
709 }
710 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
711 cd_forget(inode);
712
713 remove_inode_hash(inode);
714
715 spin_lock(&inode->i_lock);
716 wake_up_bit(&inode->i_state, __I_NEW);
717 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
718 spin_unlock(&inode->i_lock);
719
720 destroy_inode(inode);
721 }
722
723 /*
724 * dispose_list - dispose of the contents of a local list
725 * @head: the head of the list to free
726 *
727 * Dispose-list gets a local list with local inodes in it, so it doesn't
728 * need to worry about list corruption and SMP locks.
729 */
dispose_list(struct list_head * head)730 static void dispose_list(struct list_head *head)
731 {
732 while (!list_empty(head)) {
733 struct inode *inode;
734
735 inode = list_first_entry(head, struct inode, i_lru);
736 list_del_init(&inode->i_lru);
737
738 evict(inode);
739 cond_resched();
740 }
741 }
742
743 /**
744 * evict_inodes - evict all evictable inodes for a superblock
745 * @sb: superblock to operate on
746 *
747 * Make sure that no inodes with zero refcount are retained. This is
748 * called by superblock shutdown after having SB_ACTIVE flag removed,
749 * so any inode reaching zero refcount during or after that call will
750 * be immediately evicted.
751 */
evict_inodes(struct super_block * sb)752 void evict_inodes(struct super_block *sb)
753 {
754 struct inode *inode, *next;
755 LIST_HEAD(dispose);
756
757 again:
758 spin_lock(&sb->s_inode_list_lock);
759 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
760 if (atomic_read(&inode->i_count))
761 continue;
762
763 spin_lock(&inode->i_lock);
764 if (atomic_read(&inode->i_count)) {
765 spin_unlock(&inode->i_lock);
766 continue;
767 }
768 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
769 spin_unlock(&inode->i_lock);
770 continue;
771 }
772
773 inode->i_state |= I_FREEING;
774 inode_lru_list_del(inode);
775 spin_unlock(&inode->i_lock);
776 list_add(&inode->i_lru, &dispose);
777
778 /*
779 * We can have a ton of inodes to evict at unmount time given
780 * enough memory, check to see if we need to go to sleep for a
781 * bit so we don't livelock.
782 */
783 if (need_resched()) {
784 spin_unlock(&sb->s_inode_list_lock);
785 cond_resched();
786 dispose_list(&dispose);
787 goto again;
788 }
789 }
790 spin_unlock(&sb->s_inode_list_lock);
791
792 dispose_list(&dispose);
793 }
794 EXPORT_SYMBOL_GPL(evict_inodes);
795
796 /**
797 * invalidate_inodes - attempt to free all inodes on a superblock
798 * @sb: superblock to operate on
799 *
800 * Attempts to free all inodes (including dirty inodes) for a given superblock.
801 */
invalidate_inodes(struct super_block * sb)802 void invalidate_inodes(struct super_block *sb)
803 {
804 struct inode *inode, *next;
805 LIST_HEAD(dispose);
806
807 again:
808 spin_lock(&sb->s_inode_list_lock);
809 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
810 spin_lock(&inode->i_lock);
811 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
812 spin_unlock(&inode->i_lock);
813 continue;
814 }
815 if (atomic_read(&inode->i_count)) {
816 spin_unlock(&inode->i_lock);
817 continue;
818 }
819
820 inode->i_state |= I_FREEING;
821 inode_lru_list_del(inode);
822 spin_unlock(&inode->i_lock);
823 list_add(&inode->i_lru, &dispose);
824 if (need_resched()) {
825 spin_unlock(&sb->s_inode_list_lock);
826 cond_resched();
827 dispose_list(&dispose);
828 goto again;
829 }
830 }
831 spin_unlock(&sb->s_inode_list_lock);
832
833 dispose_list(&dispose);
834 }
835
836 /*
837 * Isolate the inode from the LRU in preparation for freeing it.
838 *
839 * If the inode has the I_REFERENCED flag set, then it means that it has been
840 * used recently - the flag is set in iput_final(). When we encounter such an
841 * inode, clear the flag and move it to the back of the LRU so it gets another
842 * pass through the LRU before it gets reclaimed. This is necessary because of
843 * the fact we are doing lazy LRU updates to minimise lock contention so the
844 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
845 * with this flag set because they are the inodes that are out of order.
846 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)847 static enum lru_status inode_lru_isolate(struct list_head *item,
848 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
849 {
850 struct list_head *freeable = arg;
851 struct inode *inode = container_of(item, struct inode, i_lru);
852
853 /*
854 * We are inverting the lru lock/inode->i_lock here, so use a
855 * trylock. If we fail to get the lock, just skip it.
856 */
857 if (!spin_trylock(&inode->i_lock))
858 return LRU_SKIP;
859
860 /*
861 * Inodes can get referenced, redirtied, or repopulated while
862 * they're already on the LRU, and this can make them
863 * unreclaimable for a while. Remove them lazily here; iput,
864 * sync, or the last page cache deletion will requeue them.
865 */
866 if (atomic_read(&inode->i_count) ||
867 (inode->i_state & ~I_REFERENCED) ||
868 !mapping_shrinkable(&inode->i_data)) {
869 list_lru_isolate(lru, &inode->i_lru);
870 spin_unlock(&inode->i_lock);
871 this_cpu_dec(nr_unused);
872 return LRU_REMOVED;
873 }
874
875 /* Recently referenced inodes get one more pass */
876 if (inode->i_state & I_REFERENCED) {
877 inode->i_state &= ~I_REFERENCED;
878 spin_unlock(&inode->i_lock);
879 return LRU_ROTATE;
880 }
881
882 /*
883 * On highmem systems, mapping_shrinkable() permits dropping
884 * page cache in order to free up struct inodes: lowmem might
885 * be under pressure before the cache inside the highmem zone.
886 */
887 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
888 inode_pin_lru_isolating(inode);
889 spin_unlock(&inode->i_lock);
890 spin_unlock(lru_lock);
891 if (remove_inode_buffers(inode)) {
892 unsigned long reap;
893 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
894 if (current_is_kswapd())
895 __count_vm_events(KSWAPD_INODESTEAL, reap);
896 else
897 __count_vm_events(PGINODESTEAL, reap);
898 mm_account_reclaimed_pages(reap);
899 }
900 inode_unpin_lru_isolating(inode);
901 spin_lock(lru_lock);
902 return LRU_RETRY;
903 }
904
905 WARN_ON(inode->i_state & I_NEW);
906 inode->i_state |= I_FREEING;
907 list_lru_isolate_move(lru, &inode->i_lru, freeable);
908 spin_unlock(&inode->i_lock);
909
910 this_cpu_dec(nr_unused);
911 return LRU_REMOVED;
912 }
913
914 /*
915 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
916 * This is called from the superblock shrinker function with a number of inodes
917 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
918 * then are freed outside inode_lock by dispose_list().
919 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)920 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
921 {
922 LIST_HEAD(freeable);
923 long freed;
924
925 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
926 inode_lru_isolate, &freeable);
927 dispose_list(&freeable);
928 return freed;
929 }
930
931 static void __wait_on_freeing_inode(struct inode *inode);
932 /*
933 * Called with the inode lock held.
934 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)935 static struct inode *find_inode(struct super_block *sb,
936 struct hlist_head *head,
937 int (*test)(struct inode *, void *),
938 void *data)
939 {
940 struct inode *inode = NULL;
941
942 repeat:
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_sb != sb)
945 continue;
946 if (!test(inode, data))
947 continue;
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
951 goto repeat;
952 }
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
956 }
957 __iget(inode);
958 spin_unlock(&inode->i_lock);
959 return inode;
960 }
961 return NULL;
962 }
963
964 /*
965 * find_inode_fast is the fast path version of find_inode, see the comment at
966 * iget_locked for details.
967 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)968 static struct inode *find_inode_fast(struct super_block *sb,
969 struct hlist_head *head, unsigned long ino)
970 {
971 struct inode *inode = NULL;
972
973 repeat:
974 hlist_for_each_entry(inode, head, i_hash) {
975 if (inode->i_ino != ino)
976 continue;
977 if (inode->i_sb != sb)
978 continue;
979 spin_lock(&inode->i_lock);
980 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
981 __wait_on_freeing_inode(inode);
982 goto repeat;
983 }
984 if (unlikely(inode->i_state & I_CREATING)) {
985 spin_unlock(&inode->i_lock);
986 return ERR_PTR(-ESTALE);
987 }
988 __iget(inode);
989 spin_unlock(&inode->i_lock);
990 return inode;
991 }
992 return NULL;
993 }
994
995 /*
996 * Each cpu owns a range of LAST_INO_BATCH numbers.
997 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
998 * to renew the exhausted range.
999 *
1000 * This does not significantly increase overflow rate because every CPU can
1001 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1002 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1003 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1004 * overflow rate by 2x, which does not seem too significant.
1005 *
1006 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1007 * error if st_ino won't fit in target struct field. Use 32bit counter
1008 * here to attempt to avoid that.
1009 */
1010 #define LAST_INO_BATCH 1024
1011 static DEFINE_PER_CPU(unsigned int, last_ino);
1012
get_next_ino(void)1013 unsigned int get_next_ino(void)
1014 {
1015 unsigned int *p = &get_cpu_var(last_ino);
1016 unsigned int res = *p;
1017
1018 #ifdef CONFIG_SMP
1019 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1020 static atomic_t shared_last_ino;
1021 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
1022
1023 res = next - LAST_INO_BATCH;
1024 }
1025 #endif
1026
1027 res++;
1028 /* get_next_ino should not provide a 0 inode number */
1029 if (unlikely(!res))
1030 res++;
1031 *p = res;
1032 put_cpu_var(last_ino);
1033 return res;
1034 }
1035 EXPORT_SYMBOL(get_next_ino);
1036
1037 /**
1038 * new_inode_pseudo - obtain an inode
1039 * @sb: superblock
1040 *
1041 * Allocates a new inode for given superblock.
1042 * Inode wont be chained in superblock s_inodes list
1043 * This means :
1044 * - fs can't be unmount
1045 * - quotas, fsnotify, writeback can't work
1046 */
new_inode_pseudo(struct super_block * sb)1047 struct inode *new_inode_pseudo(struct super_block *sb)
1048 {
1049 struct inode *inode = alloc_inode(sb);
1050
1051 if (inode) {
1052 spin_lock(&inode->i_lock);
1053 inode->i_state = 0;
1054 spin_unlock(&inode->i_lock);
1055 }
1056 return inode;
1057 }
1058
1059 /**
1060 * new_inode - obtain an inode
1061 * @sb: superblock
1062 *
1063 * Allocates a new inode for given superblock. The default gfp_mask
1064 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1065 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1066 * for the page cache are not reclaimable or migratable,
1067 * mapping_set_gfp_mask() must be called with suitable flags on the
1068 * newly created inode's mapping
1069 *
1070 */
new_inode(struct super_block * sb)1071 struct inode *new_inode(struct super_block *sb)
1072 {
1073 struct inode *inode;
1074
1075 inode = new_inode_pseudo(sb);
1076 if (inode)
1077 inode_sb_list_add(inode);
1078 return inode;
1079 }
1080 EXPORT_SYMBOL(new_inode);
1081
1082 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1083 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1084 {
1085 if (S_ISDIR(inode->i_mode)) {
1086 struct file_system_type *type = inode->i_sb->s_type;
1087
1088 /* Set new key only if filesystem hasn't already changed it */
1089 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1090 /*
1091 * ensure nobody is actually holding i_mutex
1092 */
1093 // mutex_destroy(&inode->i_mutex);
1094 init_rwsem(&inode->i_rwsem);
1095 lockdep_set_class(&inode->i_rwsem,
1096 &type->i_mutex_dir_key);
1097 }
1098 }
1099 }
1100 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1101 #endif
1102
1103 /**
1104 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1105 * @inode: new inode to unlock
1106 *
1107 * Called when the inode is fully initialised to clear the new state of the
1108 * inode and wake up anyone waiting for the inode to finish initialisation.
1109 */
unlock_new_inode(struct inode * inode)1110 void unlock_new_inode(struct inode *inode)
1111 {
1112 lockdep_annotate_inode_mutex_key(inode);
1113 spin_lock(&inode->i_lock);
1114 WARN_ON(!(inode->i_state & I_NEW));
1115 inode->i_state &= ~I_NEW & ~I_CREATING;
1116 smp_mb();
1117 wake_up_bit(&inode->i_state, __I_NEW);
1118 spin_unlock(&inode->i_lock);
1119 }
1120 EXPORT_SYMBOL(unlock_new_inode);
1121
discard_new_inode(struct inode * inode)1122 void discard_new_inode(struct inode *inode)
1123 {
1124 lockdep_annotate_inode_mutex_key(inode);
1125 spin_lock(&inode->i_lock);
1126 WARN_ON(!(inode->i_state & I_NEW));
1127 inode->i_state &= ~I_NEW;
1128 smp_mb();
1129 wake_up_bit(&inode->i_state, __I_NEW);
1130 spin_unlock(&inode->i_lock);
1131 iput(inode);
1132 }
1133 EXPORT_SYMBOL(discard_new_inode);
1134
1135 /**
1136 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1137 *
1138 * Lock any non-NULL argument. The caller must make sure that if he is passing
1139 * in two directories, one is not ancestor of the other. Zero, one or two
1140 * objects may be locked by this function.
1141 *
1142 * @inode1: first inode to lock
1143 * @inode2: second inode to lock
1144 * @subclass1: inode lock subclass for the first lock obtained
1145 * @subclass2: inode lock subclass for the second lock obtained
1146 */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1147 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1148 unsigned subclass1, unsigned subclass2)
1149 {
1150 if (!inode1 || !inode2) {
1151 /*
1152 * Make sure @subclass1 will be used for the acquired lock.
1153 * This is not strictly necessary (no current caller cares) but
1154 * let's keep things consistent.
1155 */
1156 if (!inode1)
1157 swap(inode1, inode2);
1158 goto lock;
1159 }
1160
1161 /*
1162 * If one object is directory and the other is not, we must make sure
1163 * to lock directory first as the other object may be its child.
1164 */
1165 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1166 if (inode1 > inode2)
1167 swap(inode1, inode2);
1168 } else if (!S_ISDIR(inode1->i_mode))
1169 swap(inode1, inode2);
1170 lock:
1171 if (inode1)
1172 inode_lock_nested(inode1, subclass1);
1173 if (inode2 && inode2 != inode1)
1174 inode_lock_nested(inode2, subclass2);
1175 }
1176
1177 /**
1178 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1179 *
1180 * Lock any non-NULL argument. Passed objects must not be directories.
1181 * Zero, one or two objects may be locked by this function.
1182 *
1183 * @inode1: first inode to lock
1184 * @inode2: second inode to lock
1185 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1186 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1187 {
1188 if (inode1)
1189 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1190 if (inode2)
1191 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1192 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1193 }
1194 EXPORT_SYMBOL(lock_two_nondirectories);
1195
1196 /**
1197 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1198 * @inode1: first inode to unlock
1199 * @inode2: second inode to unlock
1200 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1201 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1202 {
1203 if (inode1) {
1204 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1205 inode_unlock(inode1);
1206 }
1207 if (inode2 && inode2 != inode1) {
1208 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1209 inode_unlock(inode2);
1210 }
1211 }
1212 EXPORT_SYMBOL(unlock_two_nondirectories);
1213
1214 /**
1215 * inode_insert5 - obtain an inode from a mounted file system
1216 * @inode: pre-allocated inode to use for insert to cache
1217 * @hashval: hash value (usually inode number) to get
1218 * @test: callback used for comparisons between inodes
1219 * @set: callback used to initialize a new struct inode
1220 * @data: opaque data pointer to pass to @test and @set
1221 *
1222 * Search for the inode specified by @hashval and @data in the inode cache,
1223 * and if present it is return it with an increased reference count. This is
1224 * a variant of iget5_locked() for callers that don't want to fail on memory
1225 * allocation of inode.
1226 *
1227 * If the inode is not in cache, insert the pre-allocated inode to cache and
1228 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1229 * to fill it in before unlocking it via unlock_new_inode().
1230 *
1231 * Note both @test and @set are called with the inode_hash_lock held, so can't
1232 * sleep.
1233 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1234 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1235 int (*test)(struct inode *, void *),
1236 int (*set)(struct inode *, void *), void *data)
1237 {
1238 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1239 struct inode *old;
1240
1241 again:
1242 spin_lock(&inode_hash_lock);
1243 old = find_inode(inode->i_sb, head, test, data);
1244 if (unlikely(old)) {
1245 /*
1246 * Uhhuh, somebody else created the same inode under us.
1247 * Use the old inode instead of the preallocated one.
1248 */
1249 spin_unlock(&inode_hash_lock);
1250 if (IS_ERR(old))
1251 return NULL;
1252 wait_on_inode(old);
1253 if (unlikely(inode_unhashed(old))) {
1254 iput(old);
1255 goto again;
1256 }
1257 return old;
1258 }
1259
1260 if (set && unlikely(set(inode, data))) {
1261 inode = NULL;
1262 goto unlock;
1263 }
1264
1265 /*
1266 * Return the locked inode with I_NEW set, the
1267 * caller is responsible for filling in the contents
1268 */
1269 spin_lock(&inode->i_lock);
1270 inode->i_state |= I_NEW;
1271 hlist_add_head_rcu(&inode->i_hash, head);
1272 spin_unlock(&inode->i_lock);
1273
1274 /*
1275 * Add inode to the sb list if it's not already. It has I_NEW at this
1276 * point, so it should be safe to test i_sb_list locklessly.
1277 */
1278 if (list_empty(&inode->i_sb_list))
1279 inode_sb_list_add(inode);
1280 unlock:
1281 spin_unlock(&inode_hash_lock);
1282
1283 return inode;
1284 }
1285 EXPORT_SYMBOL(inode_insert5);
1286
1287 /**
1288 * iget5_locked - obtain an inode from a mounted file system
1289 * @sb: super block of file system
1290 * @hashval: hash value (usually inode number) to get
1291 * @test: callback used for comparisons between inodes
1292 * @set: callback used to initialize a new struct inode
1293 * @data: opaque data pointer to pass to @test and @set
1294 *
1295 * Search for the inode specified by @hashval and @data in the inode cache,
1296 * and if present it is return it with an increased reference count. This is
1297 * a generalized version of iget_locked() for file systems where the inode
1298 * number is not sufficient for unique identification of an inode.
1299 *
1300 * If the inode is not in cache, allocate a new inode and return it locked,
1301 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1302 * before unlocking it via unlock_new_inode().
1303 *
1304 * Note both @test and @set are called with the inode_hash_lock held, so can't
1305 * sleep.
1306 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1307 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1308 int (*test)(struct inode *, void *),
1309 int (*set)(struct inode *, void *), void *data)
1310 {
1311 struct inode *inode = ilookup5(sb, hashval, test, data);
1312
1313 if (!inode) {
1314 struct inode *new = alloc_inode(sb);
1315
1316 if (new) {
1317 new->i_state = 0;
1318 inode = inode_insert5(new, hashval, test, set, data);
1319 if (unlikely(inode != new))
1320 destroy_inode(new);
1321 }
1322 }
1323 return inode;
1324 }
1325 EXPORT_SYMBOL(iget5_locked);
1326
1327 /**
1328 * iget_locked - obtain an inode from a mounted file system
1329 * @sb: super block of file system
1330 * @ino: inode number to get
1331 *
1332 * Search for the inode specified by @ino in the inode cache and if present
1333 * return it with an increased reference count. This is for file systems
1334 * where the inode number is sufficient for unique identification of an inode.
1335 *
1336 * If the inode is not in cache, allocate a new inode and return it locked,
1337 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1338 * before unlocking it via unlock_new_inode().
1339 */
iget_locked(struct super_block * sb,unsigned long ino)1340 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1341 {
1342 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1343 struct inode *inode;
1344 again:
1345 spin_lock(&inode_hash_lock);
1346 inode = find_inode_fast(sb, head, ino);
1347 spin_unlock(&inode_hash_lock);
1348 if (inode) {
1349 if (IS_ERR(inode))
1350 return NULL;
1351 wait_on_inode(inode);
1352 if (unlikely(inode_unhashed(inode))) {
1353 iput(inode);
1354 goto again;
1355 }
1356 return inode;
1357 }
1358
1359 inode = alloc_inode(sb);
1360 if (inode) {
1361 struct inode *old;
1362
1363 spin_lock(&inode_hash_lock);
1364 /* We released the lock, so.. */
1365 old = find_inode_fast(sb, head, ino);
1366 if (!old) {
1367 inode->i_ino = ino;
1368 spin_lock(&inode->i_lock);
1369 inode->i_state = I_NEW;
1370 hlist_add_head_rcu(&inode->i_hash, head);
1371 spin_unlock(&inode->i_lock);
1372 inode_sb_list_add(inode);
1373 spin_unlock(&inode_hash_lock);
1374
1375 /* Return the locked inode with I_NEW set, the
1376 * caller is responsible for filling in the contents
1377 */
1378 return inode;
1379 }
1380
1381 /*
1382 * Uhhuh, somebody else created the same inode under
1383 * us. Use the old inode instead of the one we just
1384 * allocated.
1385 */
1386 spin_unlock(&inode_hash_lock);
1387 destroy_inode(inode);
1388 if (IS_ERR(old))
1389 return NULL;
1390 inode = old;
1391 wait_on_inode(inode);
1392 if (unlikely(inode_unhashed(inode))) {
1393 iput(inode);
1394 goto again;
1395 }
1396 }
1397 return inode;
1398 }
1399 EXPORT_SYMBOL(iget_locked);
1400
1401 /*
1402 * search the inode cache for a matching inode number.
1403 * If we find one, then the inode number we are trying to
1404 * allocate is not unique and so we should not use it.
1405 *
1406 * Returns 1 if the inode number is unique, 0 if it is not.
1407 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1408 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1409 {
1410 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1411 struct inode *inode;
1412
1413 hlist_for_each_entry_rcu(inode, b, i_hash) {
1414 if (inode->i_ino == ino && inode->i_sb == sb)
1415 return 0;
1416 }
1417 return 1;
1418 }
1419
1420 /**
1421 * iunique - get a unique inode number
1422 * @sb: superblock
1423 * @max_reserved: highest reserved inode number
1424 *
1425 * Obtain an inode number that is unique on the system for a given
1426 * superblock. This is used by file systems that have no natural
1427 * permanent inode numbering system. An inode number is returned that
1428 * is higher than the reserved limit but unique.
1429 *
1430 * BUGS:
1431 * With a large number of inodes live on the file system this function
1432 * currently becomes quite slow.
1433 */
iunique(struct super_block * sb,ino_t max_reserved)1434 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1435 {
1436 /*
1437 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1438 * error if st_ino won't fit in target struct field. Use 32bit counter
1439 * here to attempt to avoid that.
1440 */
1441 static DEFINE_SPINLOCK(iunique_lock);
1442 static unsigned int counter;
1443 ino_t res;
1444
1445 rcu_read_lock();
1446 spin_lock(&iunique_lock);
1447 do {
1448 if (counter <= max_reserved)
1449 counter = max_reserved + 1;
1450 res = counter++;
1451 } while (!test_inode_iunique(sb, res));
1452 spin_unlock(&iunique_lock);
1453 rcu_read_unlock();
1454
1455 return res;
1456 }
1457 EXPORT_SYMBOL(iunique);
1458
igrab(struct inode * inode)1459 struct inode *igrab(struct inode *inode)
1460 {
1461 spin_lock(&inode->i_lock);
1462 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1463 __iget(inode);
1464 spin_unlock(&inode->i_lock);
1465 } else {
1466 spin_unlock(&inode->i_lock);
1467 /*
1468 * Handle the case where s_op->clear_inode is not been
1469 * called yet, and somebody is calling igrab
1470 * while the inode is getting freed.
1471 */
1472 inode = NULL;
1473 }
1474 return inode;
1475 }
1476 EXPORT_SYMBOL(igrab);
1477
1478 /**
1479 * ilookup5_nowait - search for an inode in the inode cache
1480 * @sb: super block of file system to search
1481 * @hashval: hash value (usually inode number) to search for
1482 * @test: callback used for comparisons between inodes
1483 * @data: opaque data pointer to pass to @test
1484 *
1485 * Search for the inode specified by @hashval and @data in the inode cache.
1486 * If the inode is in the cache, the inode is returned with an incremented
1487 * reference count.
1488 *
1489 * Note: I_NEW is not waited upon so you have to be very careful what you do
1490 * with the returned inode. You probably should be using ilookup5() instead.
1491 *
1492 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1493 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1494 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1495 int (*test)(struct inode *, void *), void *data)
1496 {
1497 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1498 struct inode *inode;
1499
1500 spin_lock(&inode_hash_lock);
1501 inode = find_inode(sb, head, test, data);
1502 spin_unlock(&inode_hash_lock);
1503
1504 return IS_ERR(inode) ? NULL : inode;
1505 }
1506 EXPORT_SYMBOL(ilookup5_nowait);
1507
1508 /**
1509 * ilookup5 - search for an inode in the inode cache
1510 * @sb: super block of file system to search
1511 * @hashval: hash value (usually inode number) to search for
1512 * @test: callback used for comparisons between inodes
1513 * @data: opaque data pointer to pass to @test
1514 *
1515 * Search for the inode specified by @hashval and @data in the inode cache,
1516 * and if the inode is in the cache, return the inode with an incremented
1517 * reference count. Waits on I_NEW before returning the inode.
1518 * returned with an incremented reference count.
1519 *
1520 * This is a generalized version of ilookup() for file systems where the
1521 * inode number is not sufficient for unique identification of an inode.
1522 *
1523 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1524 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1525 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1526 int (*test)(struct inode *, void *), void *data)
1527 {
1528 struct inode *inode;
1529 again:
1530 inode = ilookup5_nowait(sb, hashval, test, data);
1531 if (inode) {
1532 wait_on_inode(inode);
1533 if (unlikely(inode_unhashed(inode))) {
1534 iput(inode);
1535 goto again;
1536 }
1537 }
1538 return inode;
1539 }
1540 EXPORT_SYMBOL(ilookup5);
1541
1542 /**
1543 * ilookup - search for an inode in the inode cache
1544 * @sb: super block of file system to search
1545 * @ino: inode number to search for
1546 *
1547 * Search for the inode @ino in the inode cache, and if the inode is in the
1548 * cache, the inode is returned with an incremented reference count.
1549 */
ilookup(struct super_block * sb,unsigned long ino)1550 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1551 {
1552 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1553 struct inode *inode;
1554 again:
1555 spin_lock(&inode_hash_lock);
1556 inode = find_inode_fast(sb, head, ino);
1557 spin_unlock(&inode_hash_lock);
1558
1559 if (inode) {
1560 if (IS_ERR(inode))
1561 return NULL;
1562 wait_on_inode(inode);
1563 if (unlikely(inode_unhashed(inode))) {
1564 iput(inode);
1565 goto again;
1566 }
1567 }
1568 return inode;
1569 }
1570 EXPORT_SYMBOL(ilookup);
1571
1572 /**
1573 * find_inode_nowait - find an inode in the inode cache
1574 * @sb: super block of file system to search
1575 * @hashval: hash value (usually inode number) to search for
1576 * @match: callback used for comparisons between inodes
1577 * @data: opaque data pointer to pass to @match
1578 *
1579 * Search for the inode specified by @hashval and @data in the inode
1580 * cache, where the helper function @match will return 0 if the inode
1581 * does not match, 1 if the inode does match, and -1 if the search
1582 * should be stopped. The @match function must be responsible for
1583 * taking the i_lock spin_lock and checking i_state for an inode being
1584 * freed or being initialized, and incrementing the reference count
1585 * before returning 1. It also must not sleep, since it is called with
1586 * the inode_hash_lock spinlock held.
1587 *
1588 * This is a even more generalized version of ilookup5() when the
1589 * function must never block --- find_inode() can block in
1590 * __wait_on_freeing_inode() --- or when the caller can not increment
1591 * the reference count because the resulting iput() might cause an
1592 * inode eviction. The tradeoff is that the @match funtion must be
1593 * very carefully implemented.
1594 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1595 struct inode *find_inode_nowait(struct super_block *sb,
1596 unsigned long hashval,
1597 int (*match)(struct inode *, unsigned long,
1598 void *),
1599 void *data)
1600 {
1601 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1602 struct inode *inode, *ret_inode = NULL;
1603 int mval;
1604
1605 spin_lock(&inode_hash_lock);
1606 hlist_for_each_entry(inode, head, i_hash) {
1607 if (inode->i_sb != sb)
1608 continue;
1609 mval = match(inode, hashval, data);
1610 if (mval == 0)
1611 continue;
1612 if (mval == 1)
1613 ret_inode = inode;
1614 goto out;
1615 }
1616 out:
1617 spin_unlock(&inode_hash_lock);
1618 return ret_inode;
1619 }
1620 EXPORT_SYMBOL(find_inode_nowait);
1621
1622 /**
1623 * find_inode_rcu - find an inode in the inode cache
1624 * @sb: Super block of file system to search
1625 * @hashval: Key to hash
1626 * @test: Function to test match on an inode
1627 * @data: Data for test function
1628 *
1629 * Search for the inode specified by @hashval and @data in the inode cache,
1630 * where the helper function @test will return 0 if the inode does not match
1631 * and 1 if it does. The @test function must be responsible for taking the
1632 * i_lock spin_lock and checking i_state for an inode being freed or being
1633 * initialized.
1634 *
1635 * If successful, this will return the inode for which the @test function
1636 * returned 1 and NULL otherwise.
1637 *
1638 * The @test function is not permitted to take a ref on any inode presented.
1639 * It is also not permitted to sleep.
1640 *
1641 * The caller must hold the RCU read lock.
1642 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1643 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1644 int (*test)(struct inode *, void *), void *data)
1645 {
1646 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1647 struct inode *inode;
1648
1649 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1650 "suspicious find_inode_rcu() usage");
1651
1652 hlist_for_each_entry_rcu(inode, head, i_hash) {
1653 if (inode->i_sb == sb &&
1654 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1655 test(inode, data))
1656 return inode;
1657 }
1658 return NULL;
1659 }
1660 EXPORT_SYMBOL(find_inode_rcu);
1661
1662 /**
1663 * find_inode_by_ino_rcu - Find an inode in the inode cache
1664 * @sb: Super block of file system to search
1665 * @ino: The inode number to match
1666 *
1667 * Search for the inode specified by @hashval and @data in the inode cache,
1668 * where the helper function @test will return 0 if the inode does not match
1669 * and 1 if it does. The @test function must be responsible for taking the
1670 * i_lock spin_lock and checking i_state for an inode being freed or being
1671 * initialized.
1672 *
1673 * If successful, this will return the inode for which the @test function
1674 * returned 1 and NULL otherwise.
1675 *
1676 * The @test function is not permitted to take a ref on any inode presented.
1677 * It is also not permitted to sleep.
1678 *
1679 * The caller must hold the RCU read lock.
1680 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1681 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1682 unsigned long ino)
1683 {
1684 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1685 struct inode *inode;
1686
1687 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1688 "suspicious find_inode_by_ino_rcu() usage");
1689
1690 hlist_for_each_entry_rcu(inode, head, i_hash) {
1691 if (inode->i_ino == ino &&
1692 inode->i_sb == sb &&
1693 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1694 return inode;
1695 }
1696 return NULL;
1697 }
1698 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1699
insert_inode_locked(struct inode * inode)1700 int insert_inode_locked(struct inode *inode)
1701 {
1702 struct super_block *sb = inode->i_sb;
1703 ino_t ino = inode->i_ino;
1704 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1705
1706 while (1) {
1707 struct inode *old = NULL;
1708 spin_lock(&inode_hash_lock);
1709 hlist_for_each_entry(old, head, i_hash) {
1710 if (old->i_ino != ino)
1711 continue;
1712 if (old->i_sb != sb)
1713 continue;
1714 spin_lock(&old->i_lock);
1715 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1716 spin_unlock(&old->i_lock);
1717 continue;
1718 }
1719 break;
1720 }
1721 if (likely(!old)) {
1722 spin_lock(&inode->i_lock);
1723 inode->i_state |= I_NEW | I_CREATING;
1724 hlist_add_head_rcu(&inode->i_hash, head);
1725 spin_unlock(&inode->i_lock);
1726 spin_unlock(&inode_hash_lock);
1727 return 0;
1728 }
1729 if (unlikely(old->i_state & I_CREATING)) {
1730 spin_unlock(&old->i_lock);
1731 spin_unlock(&inode_hash_lock);
1732 return -EBUSY;
1733 }
1734 __iget(old);
1735 spin_unlock(&old->i_lock);
1736 spin_unlock(&inode_hash_lock);
1737 wait_on_inode(old);
1738 if (unlikely(!inode_unhashed(old))) {
1739 iput(old);
1740 return -EBUSY;
1741 }
1742 iput(old);
1743 }
1744 }
1745 EXPORT_SYMBOL(insert_inode_locked);
1746
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1747 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1748 int (*test)(struct inode *, void *), void *data)
1749 {
1750 struct inode *old;
1751
1752 inode->i_state |= I_CREATING;
1753 old = inode_insert5(inode, hashval, test, NULL, data);
1754
1755 if (old != inode) {
1756 iput(old);
1757 return -EBUSY;
1758 }
1759 return 0;
1760 }
1761 EXPORT_SYMBOL(insert_inode_locked4);
1762
1763
generic_delete_inode(struct inode * inode)1764 int generic_delete_inode(struct inode *inode)
1765 {
1766 return 1;
1767 }
1768 EXPORT_SYMBOL(generic_delete_inode);
1769
1770 /*
1771 * Called when we're dropping the last reference
1772 * to an inode.
1773 *
1774 * Call the FS "drop_inode()" function, defaulting to
1775 * the legacy UNIX filesystem behaviour. If it tells
1776 * us to evict inode, do so. Otherwise, retain inode
1777 * in cache if fs is alive, sync and evict if fs is
1778 * shutting down.
1779 */
iput_final(struct inode * inode)1780 static void iput_final(struct inode *inode)
1781 {
1782 struct super_block *sb = inode->i_sb;
1783 const struct super_operations *op = inode->i_sb->s_op;
1784 unsigned long state;
1785 int drop;
1786
1787 WARN_ON(inode->i_state & I_NEW);
1788
1789 if (op->drop_inode)
1790 drop = op->drop_inode(inode);
1791 else
1792 drop = generic_drop_inode(inode);
1793
1794 if (!drop &&
1795 !(inode->i_state & I_DONTCACHE) &&
1796 (sb->s_flags & SB_ACTIVE)) {
1797 __inode_add_lru(inode, true);
1798 spin_unlock(&inode->i_lock);
1799 return;
1800 }
1801
1802 state = inode->i_state;
1803 if (!drop) {
1804 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1805 spin_unlock(&inode->i_lock);
1806
1807 write_inode_now(inode, 1);
1808
1809 spin_lock(&inode->i_lock);
1810 state = inode->i_state;
1811 WARN_ON(state & I_NEW);
1812 state &= ~I_WILL_FREE;
1813 }
1814
1815 WRITE_ONCE(inode->i_state, state | I_FREEING);
1816 if (!list_empty(&inode->i_lru))
1817 inode_lru_list_del(inode);
1818 spin_unlock(&inode->i_lock);
1819
1820 evict(inode);
1821 }
1822
1823 /**
1824 * iput - put an inode
1825 * @inode: inode to put
1826 *
1827 * Puts an inode, dropping its usage count. If the inode use count hits
1828 * zero, the inode is then freed and may also be destroyed.
1829 *
1830 * Consequently, iput() can sleep.
1831 */
iput(struct inode * inode)1832 void iput(struct inode *inode)
1833 {
1834 if (!inode)
1835 return;
1836 BUG_ON(inode->i_state & I_CLEAR);
1837 retry:
1838 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1839 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1840 atomic_inc(&inode->i_count);
1841 spin_unlock(&inode->i_lock);
1842 trace_writeback_lazytime_iput(inode);
1843 mark_inode_dirty_sync(inode);
1844 goto retry;
1845 }
1846 iput_final(inode);
1847 }
1848 }
1849 EXPORT_SYMBOL(iput);
1850
1851 #ifdef CONFIG_BLOCK
1852 /**
1853 * bmap - find a block number in a file
1854 * @inode: inode owning the block number being requested
1855 * @block: pointer containing the block to find
1856 *
1857 * Replaces the value in ``*block`` with the block number on the device holding
1858 * corresponding to the requested block number in the file.
1859 * That is, asked for block 4 of inode 1 the function will replace the
1860 * 4 in ``*block``, with disk block relative to the disk start that holds that
1861 * block of the file.
1862 *
1863 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1864 * hole, returns 0 and ``*block`` is also set to 0.
1865 */
bmap(struct inode * inode,sector_t * block)1866 int bmap(struct inode *inode, sector_t *block)
1867 {
1868 if (!inode->i_mapping->a_ops->bmap)
1869 return -EINVAL;
1870
1871 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1872 return 0;
1873 }
1874 EXPORT_SYMBOL(bmap);
1875 #endif
1876
1877 /*
1878 * With relative atime, only update atime if the previous atime is
1879 * earlier than or equal to either the ctime or mtime,
1880 * or if at least a day has passed since the last atime update.
1881 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1882 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1883 struct timespec64 now)
1884 {
1885 struct timespec64 ctime;
1886
1887 if (!(mnt->mnt_flags & MNT_RELATIME))
1888 return 1;
1889 /*
1890 * Is mtime younger than or equal to atime? If yes, update atime:
1891 */
1892 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1893 return 1;
1894 /*
1895 * Is ctime younger than or equal to atime? If yes, update atime:
1896 */
1897 ctime = inode_get_ctime(inode);
1898 if (timespec64_compare(&ctime, &inode->i_atime) >= 0)
1899 return 1;
1900
1901 /*
1902 * Is the previous atime value older than a day? If yes,
1903 * update atime:
1904 */
1905 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1906 return 1;
1907 /*
1908 * Good, we can skip the atime update:
1909 */
1910 return 0;
1911 }
1912
1913 /**
1914 * inode_update_timestamps - update the timestamps on the inode
1915 * @inode: inode to be updated
1916 * @flags: S_* flags that needed to be updated
1917 *
1918 * The update_time function is called when an inode's timestamps need to be
1919 * updated for a read or write operation. This function handles updating the
1920 * actual timestamps. It's up to the caller to ensure that the inode is marked
1921 * dirty appropriately.
1922 *
1923 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1924 * attempt to update all three of them. S_ATIME updates can be handled
1925 * independently of the rest.
1926 *
1927 * Returns a set of S_* flags indicating which values changed.
1928 */
inode_update_timestamps(struct inode * inode,int flags)1929 int inode_update_timestamps(struct inode *inode, int flags)
1930 {
1931 int updated = 0;
1932 struct timespec64 now;
1933
1934 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1935 struct timespec64 ctime = inode_get_ctime(inode);
1936
1937 now = inode_set_ctime_current(inode);
1938 if (!timespec64_equal(&now, &ctime))
1939 updated |= S_CTIME;
1940 if (!timespec64_equal(&now, &inode->i_mtime)) {
1941 inode->i_mtime = now;
1942 updated |= S_MTIME;
1943 }
1944 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1945 updated |= S_VERSION;
1946 } else {
1947 now = current_time(inode);
1948 }
1949
1950 if (flags & S_ATIME) {
1951 if (!timespec64_equal(&now, &inode->i_atime)) {
1952 inode->i_atime = now;
1953 updated |= S_ATIME;
1954 }
1955 }
1956 return updated;
1957 }
1958 EXPORT_SYMBOL(inode_update_timestamps);
1959
1960 /**
1961 * generic_update_time - update the timestamps on the inode
1962 * @inode: inode to be updated
1963 * @flags: S_* flags that needed to be updated
1964 *
1965 * The update_time function is called when an inode's timestamps need to be
1966 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1967 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1968 * updates can be handled done independently of the rest.
1969 *
1970 * Returns a S_* mask indicating which fields were updated.
1971 */
generic_update_time(struct inode * inode,int flags)1972 int generic_update_time(struct inode *inode, int flags)
1973 {
1974 int updated = inode_update_timestamps(inode, flags);
1975 int dirty_flags = 0;
1976
1977 if (updated & (S_ATIME|S_MTIME|S_CTIME))
1978 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1979 if (updated & S_VERSION)
1980 dirty_flags |= I_DIRTY_SYNC;
1981 __mark_inode_dirty(inode, dirty_flags);
1982 return updated;
1983 }
1984 EXPORT_SYMBOL(generic_update_time);
1985
1986 /*
1987 * This does the actual work of updating an inodes time or version. Must have
1988 * had called mnt_want_write() before calling this.
1989 */
inode_update_time(struct inode * inode,int flags)1990 int inode_update_time(struct inode *inode, int flags)
1991 {
1992 if (inode->i_op->update_time)
1993 return inode->i_op->update_time(inode, flags);
1994 generic_update_time(inode, flags);
1995 return 0;
1996 }
1997 EXPORT_SYMBOL(inode_update_time);
1998
1999 /**
2000 * atime_needs_update - update the access time
2001 * @path: the &struct path to update
2002 * @inode: inode to update
2003 *
2004 * Update the accessed time on an inode and mark it for writeback.
2005 * This function automatically handles read only file systems and media,
2006 * as well as the "noatime" flag and inode specific "noatime" markers.
2007 */
atime_needs_update(const struct path * path,struct inode * inode)2008 bool atime_needs_update(const struct path *path, struct inode *inode)
2009 {
2010 struct vfsmount *mnt = path->mnt;
2011 struct timespec64 now;
2012
2013 if (inode->i_flags & S_NOATIME)
2014 return false;
2015
2016 /* Atime updates will likely cause i_uid and i_gid to be written
2017 * back improprely if their true value is unknown to the vfs.
2018 */
2019 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
2020 return false;
2021
2022 if (IS_NOATIME(inode))
2023 return false;
2024 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2025 return false;
2026
2027 if (mnt->mnt_flags & MNT_NOATIME)
2028 return false;
2029 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2030 return false;
2031
2032 now = current_time(inode);
2033
2034 if (!relatime_need_update(mnt, inode, now))
2035 return false;
2036
2037 if (timespec64_equal(&inode->i_atime, &now))
2038 return false;
2039
2040 return true;
2041 }
2042
touch_atime(const struct path * path)2043 void touch_atime(const struct path *path)
2044 {
2045 struct vfsmount *mnt = path->mnt;
2046 struct inode *inode = d_inode(path->dentry);
2047
2048 if (!atime_needs_update(path, inode))
2049 return;
2050
2051 if (!sb_start_write_trylock(inode->i_sb))
2052 return;
2053
2054 if (__mnt_want_write(mnt) != 0)
2055 goto skip_update;
2056 /*
2057 * File systems can error out when updating inodes if they need to
2058 * allocate new space to modify an inode (such is the case for
2059 * Btrfs), but since we touch atime while walking down the path we
2060 * really don't care if we failed to update the atime of the file,
2061 * so just ignore the return value.
2062 * We may also fail on filesystems that have the ability to make parts
2063 * of the fs read only, e.g. subvolumes in Btrfs.
2064 */
2065 inode_update_time(inode, S_ATIME);
2066 __mnt_drop_write(mnt);
2067 skip_update:
2068 sb_end_write(inode->i_sb);
2069 }
2070 EXPORT_SYMBOL(touch_atime);
2071
2072 /*
2073 * Return mask of changes for notify_change() that need to be done as a
2074 * response to write or truncate. Return 0 if nothing has to be changed.
2075 * Negative value on error (change should be denied).
2076 */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2077 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2078 struct dentry *dentry)
2079 {
2080 struct inode *inode = d_inode(dentry);
2081 int mask = 0;
2082 int ret;
2083
2084 if (IS_NOSEC(inode))
2085 return 0;
2086
2087 mask = setattr_should_drop_suidgid(idmap, inode);
2088 ret = security_inode_need_killpriv(dentry);
2089 if (ret < 0)
2090 return ret;
2091 if (ret)
2092 mask |= ATTR_KILL_PRIV;
2093 return mask;
2094 }
2095
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2096 static int __remove_privs(struct mnt_idmap *idmap,
2097 struct dentry *dentry, int kill)
2098 {
2099 struct iattr newattrs;
2100
2101 newattrs.ia_valid = ATTR_FORCE | kill;
2102 /*
2103 * Note we call this on write, so notify_change will not
2104 * encounter any conflicting delegations:
2105 */
2106 return notify_change(idmap, dentry, &newattrs, NULL);
2107 }
2108
__file_remove_privs(struct file * file,unsigned int flags)2109 static int __file_remove_privs(struct file *file, unsigned int flags)
2110 {
2111 struct dentry *dentry = file_dentry(file);
2112 struct inode *inode = file_inode(file);
2113 int error = 0;
2114 int kill;
2115
2116 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2117 return 0;
2118
2119 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2120 if (kill < 0)
2121 return kill;
2122
2123 if (kill) {
2124 if (flags & IOCB_NOWAIT)
2125 return -EAGAIN;
2126
2127 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2128 }
2129
2130 if (!error)
2131 inode_has_no_xattr(inode);
2132 return error;
2133 }
2134
2135 /**
2136 * file_remove_privs - remove special file privileges (suid, capabilities)
2137 * @file: file to remove privileges from
2138 *
2139 * When file is modified by a write or truncation ensure that special
2140 * file privileges are removed.
2141 *
2142 * Return: 0 on success, negative errno on failure.
2143 */
file_remove_privs(struct file * file)2144 int file_remove_privs(struct file *file)
2145 {
2146 return __file_remove_privs(file, 0);
2147 }
2148 EXPORT_SYMBOL(file_remove_privs);
2149
inode_needs_update_time(struct inode * inode)2150 static int inode_needs_update_time(struct inode *inode)
2151 {
2152 int sync_it = 0;
2153 struct timespec64 now = current_time(inode);
2154 struct timespec64 ctime;
2155
2156 /* First try to exhaust all avenues to not sync */
2157 if (IS_NOCMTIME(inode))
2158 return 0;
2159
2160 if (!timespec64_equal(&inode->i_mtime, &now))
2161 sync_it = S_MTIME;
2162
2163 ctime = inode_get_ctime(inode);
2164 if (!timespec64_equal(&ctime, &now))
2165 sync_it |= S_CTIME;
2166
2167 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2168 sync_it |= S_VERSION;
2169
2170 return sync_it;
2171 }
2172
__file_update_time(struct file * file,int sync_mode)2173 static int __file_update_time(struct file *file, int sync_mode)
2174 {
2175 int ret = 0;
2176 struct inode *inode = file_inode(file);
2177
2178 /* try to update time settings */
2179 if (!__mnt_want_write_file(file)) {
2180 ret = inode_update_time(inode, sync_mode);
2181 __mnt_drop_write_file(file);
2182 }
2183
2184 return ret;
2185 }
2186
2187 /**
2188 * file_update_time - update mtime and ctime time
2189 * @file: file accessed
2190 *
2191 * Update the mtime and ctime members of an inode and mark the inode for
2192 * writeback. Note that this function is meant exclusively for usage in
2193 * the file write path of filesystems, and filesystems may choose to
2194 * explicitly ignore updates via this function with the _NOCMTIME inode
2195 * flag, e.g. for network filesystem where these imestamps are handled
2196 * by the server. This can return an error for file systems who need to
2197 * allocate space in order to update an inode.
2198 *
2199 * Return: 0 on success, negative errno on failure.
2200 */
file_update_time(struct file * file)2201 int file_update_time(struct file *file)
2202 {
2203 int ret;
2204 struct inode *inode = file_inode(file);
2205
2206 ret = inode_needs_update_time(inode);
2207 if (ret <= 0)
2208 return ret;
2209
2210 return __file_update_time(file, ret);
2211 }
2212 EXPORT_SYMBOL(file_update_time);
2213
2214 /**
2215 * file_modified_flags - handle mandated vfs changes when modifying a file
2216 * @file: file that was modified
2217 * @flags: kiocb flags
2218 *
2219 * When file has been modified ensure that special
2220 * file privileges are removed and time settings are updated.
2221 *
2222 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2223 * time settings will not be updated. It will return -EAGAIN.
2224 *
2225 * Context: Caller must hold the file's inode lock.
2226 *
2227 * Return: 0 on success, negative errno on failure.
2228 */
file_modified_flags(struct file * file,int flags)2229 static int file_modified_flags(struct file *file, int flags)
2230 {
2231 int ret;
2232 struct inode *inode = file_inode(file);
2233
2234 /*
2235 * Clear the security bits if the process is not being run by root.
2236 * This keeps people from modifying setuid and setgid binaries.
2237 */
2238 ret = __file_remove_privs(file, flags);
2239 if (ret)
2240 return ret;
2241
2242 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2243 return 0;
2244
2245 ret = inode_needs_update_time(inode);
2246 if (ret <= 0)
2247 return ret;
2248 if (flags & IOCB_NOWAIT)
2249 return -EAGAIN;
2250
2251 return __file_update_time(file, ret);
2252 }
2253
2254 /**
2255 * file_modified - handle mandated vfs changes when modifying a file
2256 * @file: file that was modified
2257 *
2258 * When file has been modified ensure that special
2259 * file privileges are removed and time settings are updated.
2260 *
2261 * Context: Caller must hold the file's inode lock.
2262 *
2263 * Return: 0 on success, negative errno on failure.
2264 */
file_modified(struct file * file)2265 int file_modified(struct file *file)
2266 {
2267 return file_modified_flags(file, 0);
2268 }
2269 EXPORT_SYMBOL(file_modified);
2270
2271 /**
2272 * kiocb_modified - handle mandated vfs changes when modifying a file
2273 * @iocb: iocb that was modified
2274 *
2275 * When file has been modified ensure that special
2276 * file privileges are removed and time settings are updated.
2277 *
2278 * Context: Caller must hold the file's inode lock.
2279 *
2280 * Return: 0 on success, negative errno on failure.
2281 */
kiocb_modified(struct kiocb * iocb)2282 int kiocb_modified(struct kiocb *iocb)
2283 {
2284 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2285 }
2286 EXPORT_SYMBOL_GPL(kiocb_modified);
2287
inode_needs_sync(struct inode * inode)2288 int inode_needs_sync(struct inode *inode)
2289 {
2290 if (IS_SYNC(inode))
2291 return 1;
2292 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2293 return 1;
2294 return 0;
2295 }
2296 EXPORT_SYMBOL(inode_needs_sync);
2297
2298 /*
2299 * If we try to find an inode in the inode hash while it is being
2300 * deleted, we have to wait until the filesystem completes its
2301 * deletion before reporting that it isn't found. This function waits
2302 * until the deletion _might_ have completed. Callers are responsible
2303 * to recheck inode state.
2304 *
2305 * It doesn't matter if I_NEW is not set initially, a call to
2306 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2307 * will DTRT.
2308 */
__wait_on_freeing_inode(struct inode * inode)2309 static void __wait_on_freeing_inode(struct inode *inode)
2310 {
2311 wait_queue_head_t *wq;
2312 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2313 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2314 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2315 spin_unlock(&inode->i_lock);
2316 spin_unlock(&inode_hash_lock);
2317 schedule();
2318 finish_wait(wq, &wait.wq_entry);
2319 spin_lock(&inode_hash_lock);
2320 }
2321
2322 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2323 static int __init set_ihash_entries(char *str)
2324 {
2325 if (!str)
2326 return 0;
2327 ihash_entries = simple_strtoul(str, &str, 0);
2328 return 1;
2329 }
2330 __setup("ihash_entries=", set_ihash_entries);
2331
2332 /*
2333 * Initialize the waitqueues and inode hash table.
2334 */
inode_init_early(void)2335 void __init inode_init_early(void)
2336 {
2337 /* If hashes are distributed across NUMA nodes, defer
2338 * hash allocation until vmalloc space is available.
2339 */
2340 if (hashdist)
2341 return;
2342
2343 inode_hashtable =
2344 alloc_large_system_hash("Inode-cache",
2345 sizeof(struct hlist_head),
2346 ihash_entries,
2347 14,
2348 HASH_EARLY | HASH_ZERO,
2349 &i_hash_shift,
2350 &i_hash_mask,
2351 0,
2352 0);
2353 }
2354
inode_init(void)2355 void __init inode_init(void)
2356 {
2357 /* inode slab cache */
2358 inode_cachep = kmem_cache_create("inode_cache",
2359 sizeof(struct inode),
2360 0,
2361 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2362 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2363 init_once);
2364
2365 /* Hash may have been set up in inode_init_early */
2366 if (!hashdist)
2367 return;
2368
2369 inode_hashtable =
2370 alloc_large_system_hash("Inode-cache",
2371 sizeof(struct hlist_head),
2372 ihash_entries,
2373 14,
2374 HASH_ZERO,
2375 &i_hash_shift,
2376 &i_hash_mask,
2377 0,
2378 0);
2379 }
2380
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2381 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2382 {
2383 inode->i_mode = mode;
2384 if (S_ISCHR(mode)) {
2385 inode->i_fop = &def_chr_fops;
2386 inode->i_rdev = rdev;
2387 } else if (S_ISBLK(mode)) {
2388 if (IS_ENABLED(CONFIG_BLOCK))
2389 inode->i_fop = &def_blk_fops;
2390 inode->i_rdev = rdev;
2391 } else if (S_ISFIFO(mode))
2392 inode->i_fop = &pipefifo_fops;
2393 else if (S_ISSOCK(mode))
2394 ; /* leave it no_open_fops */
2395 else
2396 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2397 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2398 inode->i_ino);
2399 }
2400 EXPORT_SYMBOL(init_special_inode);
2401
2402 /**
2403 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2404 * @idmap: idmap of the mount the inode was created from
2405 * @inode: New inode
2406 * @dir: Directory inode
2407 * @mode: mode of the new inode
2408 *
2409 * If the inode has been created through an idmapped mount the idmap of
2410 * the vfsmount must be passed through @idmap. This function will then take
2411 * care to map the inode according to @idmap before checking permissions
2412 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2413 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2414 */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2415 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2416 const struct inode *dir, umode_t mode)
2417 {
2418 inode_fsuid_set(inode, idmap);
2419 if (dir && dir->i_mode & S_ISGID) {
2420 inode->i_gid = dir->i_gid;
2421
2422 /* Directories are special, and always inherit S_ISGID */
2423 if (S_ISDIR(mode))
2424 mode |= S_ISGID;
2425 } else
2426 inode_fsgid_set(inode, idmap);
2427 inode->i_mode = mode;
2428 }
2429 EXPORT_SYMBOL(inode_init_owner);
2430
2431 /**
2432 * inode_owner_or_capable - check current task permissions to inode
2433 * @idmap: idmap of the mount the inode was found from
2434 * @inode: inode being checked
2435 *
2436 * Return true if current either has CAP_FOWNER in a namespace with the
2437 * inode owner uid mapped, or owns the file.
2438 *
2439 * If the inode has been found through an idmapped mount the idmap of
2440 * the vfsmount must be passed through @idmap. This function will then take
2441 * care to map the inode according to @idmap before checking permissions.
2442 * On non-idmapped mounts or if permission checking is to be performed on the
2443 * raw inode simply passs @nop_mnt_idmap.
2444 */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2445 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2446 const struct inode *inode)
2447 {
2448 vfsuid_t vfsuid;
2449 struct user_namespace *ns;
2450
2451 vfsuid = i_uid_into_vfsuid(idmap, inode);
2452 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2453 return true;
2454
2455 ns = current_user_ns();
2456 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2457 return true;
2458 return false;
2459 }
2460 EXPORT_SYMBOL(inode_owner_or_capable);
2461
2462 /*
2463 * Direct i/o helper functions
2464 */
__inode_dio_wait(struct inode * inode)2465 static void __inode_dio_wait(struct inode *inode)
2466 {
2467 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2468 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2469
2470 do {
2471 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2472 if (atomic_read(&inode->i_dio_count))
2473 schedule();
2474 } while (atomic_read(&inode->i_dio_count));
2475 finish_wait(wq, &q.wq_entry);
2476 }
2477
2478 /**
2479 * inode_dio_wait - wait for outstanding DIO requests to finish
2480 * @inode: inode to wait for
2481 *
2482 * Waits for all pending direct I/O requests to finish so that we can
2483 * proceed with a truncate or equivalent operation.
2484 *
2485 * Must be called under a lock that serializes taking new references
2486 * to i_dio_count, usually by inode->i_mutex.
2487 */
inode_dio_wait(struct inode * inode)2488 void inode_dio_wait(struct inode *inode)
2489 {
2490 if (atomic_read(&inode->i_dio_count))
2491 __inode_dio_wait(inode);
2492 }
2493 EXPORT_SYMBOL(inode_dio_wait);
2494
2495 /*
2496 * inode_set_flags - atomically set some inode flags
2497 *
2498 * Note: the caller should be holding i_mutex, or else be sure that
2499 * they have exclusive access to the inode structure (i.e., while the
2500 * inode is being instantiated). The reason for the cmpxchg() loop
2501 * --- which wouldn't be necessary if all code paths which modify
2502 * i_flags actually followed this rule, is that there is at least one
2503 * code path which doesn't today so we use cmpxchg() out of an abundance
2504 * of caution.
2505 *
2506 * In the long run, i_mutex is overkill, and we should probably look
2507 * at using the i_lock spinlock to protect i_flags, and then make sure
2508 * it is so documented in include/linux/fs.h and that all code follows
2509 * the locking convention!!
2510 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2511 void inode_set_flags(struct inode *inode, unsigned int flags,
2512 unsigned int mask)
2513 {
2514 WARN_ON_ONCE(flags & ~mask);
2515 set_mask_bits(&inode->i_flags, mask, flags);
2516 }
2517 EXPORT_SYMBOL(inode_set_flags);
2518
inode_nohighmem(struct inode * inode)2519 void inode_nohighmem(struct inode *inode)
2520 {
2521 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2522 }
2523 EXPORT_SYMBOL(inode_nohighmem);
2524
2525 /**
2526 * timestamp_truncate - Truncate timespec to a granularity
2527 * @t: Timespec
2528 * @inode: inode being updated
2529 *
2530 * Truncate a timespec to the granularity supported by the fs
2531 * containing the inode. Always rounds down. gran must
2532 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2533 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2534 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2535 {
2536 struct super_block *sb = inode->i_sb;
2537 unsigned int gran = sb->s_time_gran;
2538
2539 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2540 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2541 t.tv_nsec = 0;
2542
2543 /* Avoid division in the common cases 1 ns and 1 s. */
2544 if (gran == 1)
2545 ; /* nothing */
2546 else if (gran == NSEC_PER_SEC)
2547 t.tv_nsec = 0;
2548 else if (gran > 1 && gran < NSEC_PER_SEC)
2549 t.tv_nsec -= t.tv_nsec % gran;
2550 else
2551 WARN(1, "invalid file time granularity: %u", gran);
2552 return t;
2553 }
2554 EXPORT_SYMBOL(timestamp_truncate);
2555
2556 /**
2557 * current_time - Return FS time
2558 * @inode: inode.
2559 *
2560 * Return the current time truncated to the time granularity supported by
2561 * the fs.
2562 *
2563 * Note that inode and inode->sb cannot be NULL.
2564 * Otherwise, the function warns and returns time without truncation.
2565 */
current_time(struct inode * inode)2566 struct timespec64 current_time(struct inode *inode)
2567 {
2568 struct timespec64 now;
2569
2570 ktime_get_coarse_real_ts64(&now);
2571 return timestamp_truncate(now, inode);
2572 }
2573 EXPORT_SYMBOL(current_time);
2574
2575 /**
2576 * inode_set_ctime_current - set the ctime to current_time
2577 * @inode: inode
2578 *
2579 * Set the inode->i_ctime to the current value for the inode. Returns
2580 * the current value that was assigned to i_ctime.
2581 */
inode_set_ctime_current(struct inode * inode)2582 struct timespec64 inode_set_ctime_current(struct inode *inode)
2583 {
2584 struct timespec64 now = current_time(inode);
2585
2586 inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2587 return now;
2588 }
2589 EXPORT_SYMBOL(inode_set_ctime_current);
2590
2591 /**
2592 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2593 * @idmap: idmap of the mount @inode was found from
2594 * @inode: inode to check
2595 * @vfsgid: the new/current vfsgid of @inode
2596 *
2597 * Check wether @vfsgid is in the caller's group list or if the caller is
2598 * privileged with CAP_FSETID over @inode. This can be used to determine
2599 * whether the setgid bit can be kept or must be dropped.
2600 *
2601 * Return: true if the caller is sufficiently privileged, false if not.
2602 */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2603 bool in_group_or_capable(struct mnt_idmap *idmap,
2604 const struct inode *inode, vfsgid_t vfsgid)
2605 {
2606 if (vfsgid_in_group_p(vfsgid))
2607 return true;
2608 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2609 return true;
2610 return false;
2611 }
2612
2613 /**
2614 * mode_strip_sgid - handle the sgid bit for non-directories
2615 * @idmap: idmap of the mount the inode was created from
2616 * @dir: parent directory inode
2617 * @mode: mode of the file to be created in @dir
2618 *
2619 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2620 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2621 * either in the group of the parent directory or they have CAP_FSETID
2622 * in their user namespace and are privileged over the parent directory.
2623 * In all other cases, strip the S_ISGID bit from @mode.
2624 *
2625 * Return: the new mode to use for the file
2626 */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2627 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2628 const struct inode *dir, umode_t mode)
2629 {
2630 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2631 return mode;
2632 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2633 return mode;
2634 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2635 return mode;
2636 return mode & ~S_ISGID;
2637 }
2638 EXPORT_SYMBOL(mode_strip_sgid);
2639