1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/ksm.h>
23
24 #include <asm/tlb.h>
25 #include <asm/pgalloc.h>
26 #include "internal.h"
27 #include "mm_slot.h"
28
29 enum scan_result {
30 SCAN_FAIL,
31 SCAN_SUCCEED,
32 SCAN_PMD_NULL,
33 SCAN_PMD_NONE,
34 SCAN_PMD_MAPPED,
35 SCAN_EXCEED_NONE_PTE,
36 SCAN_EXCEED_SWAP_PTE,
37 SCAN_EXCEED_SHARED_PTE,
38 SCAN_PTE_NON_PRESENT,
39 SCAN_PTE_UFFD_WP,
40 SCAN_PTE_MAPPED_HUGEPAGE,
41 SCAN_PAGE_RO,
42 SCAN_LACK_REFERENCED_PAGE,
43 SCAN_PAGE_NULL,
44 SCAN_SCAN_ABORT,
45 SCAN_PAGE_COUNT,
46 SCAN_PAGE_LRU,
47 SCAN_PAGE_LOCK,
48 SCAN_PAGE_ANON,
49 SCAN_PAGE_COMPOUND,
50 SCAN_ANY_PROCESS,
51 SCAN_VMA_NULL,
52 SCAN_VMA_CHECK,
53 SCAN_ADDRESS_RANGE,
54 SCAN_DEL_PAGE_LRU,
55 SCAN_ALLOC_HUGE_PAGE_FAIL,
56 SCAN_CGROUP_CHARGE_FAIL,
57 SCAN_TRUNCATED,
58 SCAN_PAGE_HAS_PRIVATE,
59 SCAN_STORE_FAILED,
60 SCAN_COPY_MC,
61 SCAN_PAGE_FILLED,
62 };
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
69
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
80 /*
81 * default collapse hugepages if there is at least one pte mapped like
82 * it would have happened if the vma was large enough during page
83 * fault.
84 *
85 * Note that these are only respected if collapse was initiated by khugepaged.
86 */
87 static unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
90
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
93
94 static struct kmem_cache *mm_slot_cache __read_mostly;
95
96 struct collapse_control {
97 bool is_khugepaged;
98
99 /* Num pages scanned per node */
100 u32 node_load[MAX_NUMNODES];
101
102 /* nodemask for allocation fallback */
103 nodemask_t alloc_nmask;
104 };
105
106 /**
107 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
108 * @slot: hash lookup from mm to mm_slot
109 */
110 struct khugepaged_mm_slot {
111 struct mm_slot slot;
112 };
113
114 /**
115 * struct khugepaged_scan - cursor for scanning
116 * @mm_head: the head of the mm list to scan
117 * @mm_slot: the current mm_slot we are scanning
118 * @address: the next address inside that to be scanned
119 *
120 * There is only the one khugepaged_scan instance of this cursor structure.
121 */
122 struct khugepaged_scan {
123 struct list_head mm_head;
124 struct khugepaged_mm_slot *mm_slot;
125 unsigned long address;
126 };
127
128 static struct khugepaged_scan khugepaged_scan = {
129 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
130 };
131
132 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
134 struct kobj_attribute *attr,
135 char *buf)
136 {
137 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
138 }
139
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
141 struct kobj_attribute *attr,
142 const char *buf, size_t count)
143 {
144 unsigned int msecs;
145 int err;
146
147 err = kstrtouint(buf, 10, &msecs);
148 if (err)
149 return -EINVAL;
150
151 khugepaged_scan_sleep_millisecs = msecs;
152 khugepaged_sleep_expire = 0;
153 wake_up_interruptible(&khugepaged_wait);
154
155 return count;
156 }
157 static struct kobj_attribute scan_sleep_millisecs_attr =
158 __ATTR_RW(scan_sleep_millisecs);
159
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 char *buf)
163 {
164 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
165 }
166
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
168 struct kobj_attribute *attr,
169 const char *buf, size_t count)
170 {
171 unsigned int msecs;
172 int err;
173
174 err = kstrtouint(buf, 10, &msecs);
175 if (err)
176 return -EINVAL;
177
178 khugepaged_alloc_sleep_millisecs = msecs;
179 khugepaged_sleep_expire = 0;
180 wake_up_interruptible(&khugepaged_wait);
181
182 return count;
183 }
184 static struct kobj_attribute alloc_sleep_millisecs_attr =
185 __ATTR_RW(alloc_sleep_millisecs);
186
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)187 static ssize_t pages_to_scan_show(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 char *buf)
190 {
191 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
192 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)193 static ssize_t pages_to_scan_store(struct kobject *kobj,
194 struct kobj_attribute *attr,
195 const char *buf, size_t count)
196 {
197 unsigned int pages;
198 int err;
199
200 err = kstrtouint(buf, 10, &pages);
201 if (err || !pages)
202 return -EINVAL;
203
204 khugepaged_pages_to_scan = pages;
205
206 return count;
207 }
208 static struct kobj_attribute pages_to_scan_attr =
209 __ATTR_RW(pages_to_scan);
210
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)211 static ssize_t pages_collapsed_show(struct kobject *kobj,
212 struct kobj_attribute *attr,
213 char *buf)
214 {
215 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
216 }
217 static struct kobj_attribute pages_collapsed_attr =
218 __ATTR_RO(pages_collapsed);
219
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)220 static ssize_t full_scans_show(struct kobject *kobj,
221 struct kobj_attribute *attr,
222 char *buf)
223 {
224 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
225 }
226 static struct kobj_attribute full_scans_attr =
227 __ATTR_RO(full_scans);
228
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)229 static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231 {
232 return single_hugepage_flag_show(kobj, attr, buf,
233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)235 static ssize_t defrag_store(struct kobject *kobj,
236 struct kobj_attribute *attr,
237 const char *buf, size_t count)
238 {
239 return single_hugepage_flag_store(kobj, attr, buf, count,
240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
241 }
242 static struct kobj_attribute khugepaged_defrag_attr =
243 __ATTR_RW(defrag);
244
245 /*
246 * max_ptes_none controls if khugepaged should collapse hugepages over
247 * any unmapped ptes in turn potentially increasing the memory
248 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
249 * reduce the available free memory in the system as it
250 * runs. Increasing max_ptes_none will instead potentially reduce the
251 * free memory in the system during the khugepaged scan.
252 */
max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)253 static ssize_t max_ptes_none_show(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 char *buf)
256 {
257 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
258 }
max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)259 static ssize_t max_ptes_none_store(struct kobject *kobj,
260 struct kobj_attribute *attr,
261 const char *buf, size_t count)
262 {
263 int err;
264 unsigned long max_ptes_none;
265
266 err = kstrtoul(buf, 10, &max_ptes_none);
267 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
268 return -EINVAL;
269
270 khugepaged_max_ptes_none = max_ptes_none;
271
272 return count;
273 }
274 static struct kobj_attribute khugepaged_max_ptes_none_attr =
275 __ATTR_RW(max_ptes_none);
276
max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)277 static ssize_t max_ptes_swap_show(struct kobject *kobj,
278 struct kobj_attribute *attr,
279 char *buf)
280 {
281 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
282 }
283
max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)284 static ssize_t max_ptes_swap_store(struct kobject *kobj,
285 struct kobj_attribute *attr,
286 const char *buf, size_t count)
287 {
288 int err;
289 unsigned long max_ptes_swap;
290
291 err = kstrtoul(buf, 10, &max_ptes_swap);
292 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
293 return -EINVAL;
294
295 khugepaged_max_ptes_swap = max_ptes_swap;
296
297 return count;
298 }
299
300 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
301 __ATTR_RW(max_ptes_swap);
302
max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)303 static ssize_t max_ptes_shared_show(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 char *buf)
306 {
307 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 }
309
max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)310 static ssize_t max_ptes_shared_store(struct kobject *kobj,
311 struct kobj_attribute *attr,
312 const char *buf, size_t count)
313 {
314 int err;
315 unsigned long max_ptes_shared;
316
317 err = kstrtoul(buf, 10, &max_ptes_shared);
318 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
319 return -EINVAL;
320
321 khugepaged_max_ptes_shared = max_ptes_shared;
322
323 return count;
324 }
325
326 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
327 __ATTR_RW(max_ptes_shared);
328
329 static struct attribute *khugepaged_attr[] = {
330 &khugepaged_defrag_attr.attr,
331 &khugepaged_max_ptes_none_attr.attr,
332 &khugepaged_max_ptes_swap_attr.attr,
333 &khugepaged_max_ptes_shared_attr.attr,
334 &pages_to_scan_attr.attr,
335 &pages_collapsed_attr.attr,
336 &full_scans_attr.attr,
337 &scan_sleep_millisecs_attr.attr,
338 &alloc_sleep_millisecs_attr.attr,
339 NULL,
340 };
341
342 struct attribute_group khugepaged_attr_group = {
343 .attrs = khugepaged_attr,
344 .name = "khugepaged",
345 };
346 #endif /* CONFIG_SYSFS */
347
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)348 int hugepage_madvise(struct vm_area_struct *vma,
349 unsigned long *vm_flags, int advice)
350 {
351 switch (advice) {
352 case MADV_HUGEPAGE:
353 #ifdef CONFIG_S390
354 /*
355 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
356 * can't handle this properly after s390_enable_sie, so we simply
357 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 */
359 if (mm_has_pgste(vma->vm_mm))
360 return 0;
361 #endif
362 *vm_flags &= ~VM_NOHUGEPAGE;
363 *vm_flags |= VM_HUGEPAGE;
364 /*
365 * If the vma become good for khugepaged to scan,
366 * register it here without waiting a page fault that
367 * may not happen any time soon.
368 */
369 khugepaged_enter_vma(vma, *vm_flags);
370 break;
371 case MADV_NOHUGEPAGE:
372 *vm_flags &= ~VM_HUGEPAGE;
373 *vm_flags |= VM_NOHUGEPAGE;
374 /*
375 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
376 * this vma even if we leave the mm registered in khugepaged if
377 * it got registered before VM_NOHUGEPAGE was set.
378 */
379 break;
380 }
381
382 return 0;
383 }
384
khugepaged_init(void)385 int __init khugepaged_init(void)
386 {
387 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
388 sizeof(struct khugepaged_mm_slot),
389 __alignof__(struct khugepaged_mm_slot),
390 0, NULL);
391 if (!mm_slot_cache)
392 return -ENOMEM;
393
394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399 return 0;
400 }
401
khugepaged_destroy(void)402 void __init khugepaged_destroy(void)
403 {
404 kmem_cache_destroy(mm_slot_cache);
405 }
406
hpage_collapse_test_exit(struct mm_struct * mm)407 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
408 {
409 return atomic_read(&mm->mm_users) == 0;
410 }
411
__khugepaged_enter(struct mm_struct * mm)412 void __khugepaged_enter(struct mm_struct *mm)
413 {
414 struct khugepaged_mm_slot *mm_slot;
415 struct mm_slot *slot;
416 int wakeup;
417
418 /* __khugepaged_exit() must not run from under us */
419 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
420 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
421 return;
422
423 mm_slot = mm_slot_alloc(mm_slot_cache);
424 if (!mm_slot)
425 return;
426
427 slot = &mm_slot->slot;
428
429 spin_lock(&khugepaged_mm_lock);
430 mm_slot_insert(mm_slots_hash, mm, slot);
431 /*
432 * Insert just behind the scanning cursor, to let the area settle
433 * down a little.
434 */
435 wakeup = list_empty(&khugepaged_scan.mm_head);
436 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
437 spin_unlock(&khugepaged_mm_lock);
438
439 mmgrab(mm);
440 if (wakeup)
441 wake_up_interruptible(&khugepaged_wait);
442 }
443
khugepaged_enter_vma(struct vm_area_struct * vma,unsigned long vm_flags)444 void khugepaged_enter_vma(struct vm_area_struct *vma,
445 unsigned long vm_flags)
446 {
447 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
448 hugepage_flags_enabled()) {
449 if (hugepage_vma_check(vma, vm_flags, false, false, true))
450 __khugepaged_enter(vma->vm_mm);
451 }
452 }
453
__khugepaged_exit(struct mm_struct * mm)454 void __khugepaged_exit(struct mm_struct *mm)
455 {
456 struct khugepaged_mm_slot *mm_slot;
457 struct mm_slot *slot;
458 int free = 0;
459
460 spin_lock(&khugepaged_mm_lock);
461 slot = mm_slot_lookup(mm_slots_hash, mm);
462 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
463 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
464 hash_del(&slot->hash);
465 list_del(&slot->mm_node);
466 free = 1;
467 }
468 spin_unlock(&khugepaged_mm_lock);
469
470 if (free) {
471 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
472 mm_slot_free(mm_slot_cache, mm_slot);
473 mmdrop(mm);
474 } else if (mm_slot) {
475 /*
476 * This is required to serialize against
477 * hpage_collapse_test_exit() (which is guaranteed to run
478 * under mmap sem read mode). Stop here (after we return all
479 * pagetables will be destroyed) until khugepaged has finished
480 * working on the pagetables under the mmap_lock.
481 */
482 mmap_write_lock(mm);
483 mmap_write_unlock(mm);
484 }
485 }
486
release_pte_folio(struct folio * folio)487 static void release_pte_folio(struct folio *folio)
488 {
489 node_stat_mod_folio(folio,
490 NR_ISOLATED_ANON + folio_is_file_lru(folio),
491 -folio_nr_pages(folio));
492 folio_unlock(folio);
493 folio_putback_lru(folio);
494 }
495
release_pte_page(struct page * page)496 static void release_pte_page(struct page *page)
497 {
498 release_pte_folio(page_folio(page));
499 }
500
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)501 static void release_pte_pages(pte_t *pte, pte_t *_pte,
502 struct list_head *compound_pagelist)
503 {
504 struct folio *folio, *tmp;
505
506 while (--_pte >= pte) {
507 pte_t pteval = ptep_get(_pte);
508 unsigned long pfn;
509
510 if (pte_none(pteval))
511 continue;
512 pfn = pte_pfn(pteval);
513 if (is_zero_pfn(pfn))
514 continue;
515 folio = pfn_folio(pfn);
516 if (folio_test_large(folio))
517 continue;
518 release_pte_folio(folio);
519 }
520
521 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
522 list_del(&folio->lru);
523 release_pte_folio(folio);
524 }
525 }
526
is_refcount_suitable(struct page * page)527 static bool is_refcount_suitable(struct page *page)
528 {
529 int expected_refcount;
530
531 expected_refcount = total_mapcount(page);
532 if (PageSwapCache(page))
533 expected_refcount += compound_nr(page);
534
535 return page_count(page) == expected_refcount;
536 }
537
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct collapse_control * cc,struct list_head * compound_pagelist)538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
539 unsigned long address,
540 pte_t *pte,
541 struct collapse_control *cc,
542 struct list_head *compound_pagelist)
543 {
544 struct page *page = NULL;
545 pte_t *_pte;
546 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
547 bool writable = false;
548
549 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
550 _pte++, address += PAGE_SIZE) {
551 pte_t pteval = ptep_get(_pte);
552 if (pte_none(pteval) || (pte_present(pteval) &&
553 is_zero_pfn(pte_pfn(pteval)))) {
554 ++none_or_zero;
555 if (!userfaultfd_armed(vma) &&
556 (!cc->is_khugepaged ||
557 none_or_zero <= khugepaged_max_ptes_none)) {
558 continue;
559 } else {
560 result = SCAN_EXCEED_NONE_PTE;
561 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
562 goto out;
563 }
564 }
565 if (!pte_present(pteval)) {
566 result = SCAN_PTE_NON_PRESENT;
567 goto out;
568 }
569 if (pte_uffd_wp(pteval)) {
570 result = SCAN_PTE_UFFD_WP;
571 goto out;
572 }
573 page = vm_normal_page(vma, address, pteval);
574 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
575 result = SCAN_PAGE_NULL;
576 goto out;
577 }
578
579 VM_BUG_ON_PAGE(!PageAnon(page), page);
580
581 if (page_mapcount(page) > 1) {
582 ++shared;
583 if (cc->is_khugepaged &&
584 shared > khugepaged_max_ptes_shared) {
585 result = SCAN_EXCEED_SHARED_PTE;
586 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
587 goto out;
588 }
589 }
590
591 if (PageCompound(page)) {
592 struct page *p;
593 page = compound_head(page);
594
595 /*
596 * Check if we have dealt with the compound page
597 * already
598 */
599 list_for_each_entry(p, compound_pagelist, lru) {
600 if (page == p)
601 goto next;
602 }
603 }
604
605 /*
606 * We can do it before isolate_lru_page because the
607 * page can't be freed from under us. NOTE: PG_lock
608 * is needed to serialize against split_huge_page
609 * when invoked from the VM.
610 */
611 if (!trylock_page(page)) {
612 result = SCAN_PAGE_LOCK;
613 goto out;
614 }
615
616 /*
617 * Check if the page has any GUP (or other external) pins.
618 *
619 * The page table that maps the page has been already unlinked
620 * from the page table tree and this process cannot get
621 * an additional pin on the page.
622 *
623 * New pins can come later if the page is shared across fork,
624 * but not from this process. The other process cannot write to
625 * the page, only trigger CoW.
626 */
627 if (!is_refcount_suitable(page)) {
628 unlock_page(page);
629 result = SCAN_PAGE_COUNT;
630 goto out;
631 }
632
633 /*
634 * Isolate the page to avoid collapsing an hugepage
635 * currently in use by the VM.
636 */
637 if (!isolate_lru_page(page)) {
638 unlock_page(page);
639 result = SCAN_DEL_PAGE_LRU;
640 goto out;
641 }
642 mod_node_page_state(page_pgdat(page),
643 NR_ISOLATED_ANON + page_is_file_lru(page),
644 compound_nr(page));
645 VM_BUG_ON_PAGE(!PageLocked(page), page);
646 VM_BUG_ON_PAGE(PageLRU(page), page);
647
648 if (PageCompound(page))
649 list_add_tail(&page->lru, compound_pagelist);
650 next:
651 /*
652 * If collapse was initiated by khugepaged, check that there is
653 * enough young pte to justify collapsing the page
654 */
655 if (cc->is_khugepaged &&
656 (pte_young(pteval) || page_is_young(page) ||
657 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
658 address)))
659 referenced++;
660
661 if (pte_write(pteval))
662 writable = true;
663 }
664
665 if (unlikely(!writable)) {
666 result = SCAN_PAGE_RO;
667 } else if (unlikely(cc->is_khugepaged && !referenced)) {
668 result = SCAN_LACK_REFERENCED_PAGE;
669 } else {
670 result = SCAN_SUCCEED;
671 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
672 referenced, writable, result);
673 return result;
674 }
675 out:
676 release_pte_pages(pte, _pte, compound_pagelist);
677 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
678 referenced, writable, result);
679 return result;
680 }
681
__collapse_huge_page_copy_succeeded(pte_t * pte,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)682 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
683 struct vm_area_struct *vma,
684 unsigned long address,
685 spinlock_t *ptl,
686 struct list_head *compound_pagelist)
687 {
688 struct page *src_page;
689 struct page *tmp;
690 pte_t *_pte;
691 pte_t pteval;
692
693 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
694 _pte++, address += PAGE_SIZE) {
695 pteval = ptep_get(_pte);
696 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
697 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
698 if (is_zero_pfn(pte_pfn(pteval))) {
699 /*
700 * ptl mostly unnecessary.
701 */
702 spin_lock(ptl);
703 ptep_clear(vma->vm_mm, address, _pte);
704 spin_unlock(ptl);
705 ksm_might_unmap_zero_page(vma->vm_mm, pteval);
706 }
707 } else {
708 src_page = pte_page(pteval);
709 if (!PageCompound(src_page))
710 release_pte_page(src_page);
711 /*
712 * ptl mostly unnecessary, but preempt has to
713 * be disabled to update the per-cpu stats
714 * inside page_remove_rmap().
715 */
716 spin_lock(ptl);
717 ptep_clear(vma->vm_mm, address, _pte);
718 page_remove_rmap(src_page, vma, false);
719 spin_unlock(ptl);
720 free_page_and_swap_cache(src_page);
721 }
722 }
723
724 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
725 list_del(&src_page->lru);
726 mod_node_page_state(page_pgdat(src_page),
727 NR_ISOLATED_ANON + page_is_file_lru(src_page),
728 -compound_nr(src_page));
729 unlock_page(src_page);
730 free_swap_cache(src_page);
731 putback_lru_page(src_page);
732 }
733 }
734
__collapse_huge_page_copy_failed(pte_t * pte,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,struct list_head * compound_pagelist)735 static void __collapse_huge_page_copy_failed(pte_t *pte,
736 pmd_t *pmd,
737 pmd_t orig_pmd,
738 struct vm_area_struct *vma,
739 struct list_head *compound_pagelist)
740 {
741 spinlock_t *pmd_ptl;
742
743 /*
744 * Re-establish the PMD to point to the original page table
745 * entry. Restoring PMD needs to be done prior to releasing
746 * pages. Since pages are still isolated and locked here,
747 * acquiring anon_vma_lock_write is unnecessary.
748 */
749 pmd_ptl = pmd_lock(vma->vm_mm, pmd);
750 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
751 spin_unlock(pmd_ptl);
752 /*
753 * Release both raw and compound pages isolated
754 * in __collapse_huge_page_isolate.
755 */
756 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
757 }
758
759 /*
760 * __collapse_huge_page_copy - attempts to copy memory contents from raw
761 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
762 * otherwise restores the original page table and releases isolated raw pages.
763 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
764 *
765 * @pte: starting of the PTEs to copy from
766 * @page: the new hugepage to copy contents to
767 * @pmd: pointer to the new hugepage's PMD
768 * @orig_pmd: the original raw pages' PMD
769 * @vma: the original raw pages' virtual memory area
770 * @address: starting address to copy
771 * @ptl: lock on raw pages' PTEs
772 * @compound_pagelist: list that stores compound pages
773 */
__collapse_huge_page_copy(pte_t * pte,struct page * page,pmd_t * pmd,pmd_t orig_pmd,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)774 static int __collapse_huge_page_copy(pte_t *pte,
775 struct page *page,
776 pmd_t *pmd,
777 pmd_t orig_pmd,
778 struct vm_area_struct *vma,
779 unsigned long address,
780 spinlock_t *ptl,
781 struct list_head *compound_pagelist)
782 {
783 struct page *src_page;
784 pte_t *_pte;
785 pte_t pteval;
786 unsigned long _address;
787 int result = SCAN_SUCCEED;
788
789 /*
790 * Copying pages' contents is subject to memory poison at any iteration.
791 */
792 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
793 _pte++, page++, _address += PAGE_SIZE) {
794 pteval = ptep_get(_pte);
795 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
796 clear_user_highpage(page, _address);
797 continue;
798 }
799 src_page = pte_page(pteval);
800 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
801 result = SCAN_COPY_MC;
802 break;
803 }
804 }
805
806 if (likely(result == SCAN_SUCCEED))
807 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
808 compound_pagelist);
809 else
810 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
811 compound_pagelist);
812
813 return result;
814 }
815
khugepaged_alloc_sleep(void)816 static void khugepaged_alloc_sleep(void)
817 {
818 DEFINE_WAIT(wait);
819
820 add_wait_queue(&khugepaged_wait, &wait);
821 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
822 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
823 remove_wait_queue(&khugepaged_wait, &wait);
824 }
825
826 struct collapse_control khugepaged_collapse_control = {
827 .is_khugepaged = true,
828 };
829
hpage_collapse_scan_abort(int nid,struct collapse_control * cc)830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
831 {
832 int i;
833
834 /*
835 * If node_reclaim_mode is disabled, then no extra effort is made to
836 * allocate memory locally.
837 */
838 if (!node_reclaim_enabled())
839 return false;
840
841 /* If there is a count for this node already, it must be acceptable */
842 if (cc->node_load[nid])
843 return false;
844
845 for (i = 0; i < MAX_NUMNODES; i++) {
846 if (!cc->node_load[i])
847 continue;
848 if (node_distance(nid, i) > node_reclaim_distance)
849 return true;
850 }
851 return false;
852 }
853
854 #define khugepaged_defrag() \
855 (transparent_hugepage_flags & \
856 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
857
858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
860 {
861 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
862 }
863
864 #ifdef CONFIG_NUMA
hpage_collapse_find_target_node(struct collapse_control * cc)865 static int hpage_collapse_find_target_node(struct collapse_control *cc)
866 {
867 int nid, target_node = 0, max_value = 0;
868
869 /* find first node with max normal pages hit */
870 for (nid = 0; nid < MAX_NUMNODES; nid++)
871 if (cc->node_load[nid] > max_value) {
872 max_value = cc->node_load[nid];
873 target_node = nid;
874 }
875
876 for_each_online_node(nid) {
877 if (max_value == cc->node_load[nid])
878 node_set(nid, cc->alloc_nmask);
879 }
880
881 return target_node;
882 }
883 #else
hpage_collapse_find_target_node(struct collapse_control * cc)884 static int hpage_collapse_find_target_node(struct collapse_control *cc)
885 {
886 return 0;
887 }
888 #endif
889
890 /*
891 * If mmap_lock temporarily dropped, revalidate vma
892 * before taking mmap_lock.
893 * Returns enum scan_result value.
894 */
895
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,bool expect_anon,struct vm_area_struct ** vmap,struct collapse_control * cc)896 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
897 bool expect_anon,
898 struct vm_area_struct **vmap,
899 struct collapse_control *cc)
900 {
901 struct vm_area_struct *vma;
902
903 if (unlikely(hpage_collapse_test_exit(mm)))
904 return SCAN_ANY_PROCESS;
905
906 *vmap = vma = find_vma(mm, address);
907 if (!vma)
908 return SCAN_VMA_NULL;
909
910 if (!transhuge_vma_suitable(vma, address))
911 return SCAN_ADDRESS_RANGE;
912 if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
913 cc->is_khugepaged))
914 return SCAN_VMA_CHECK;
915 /*
916 * Anon VMA expected, the address may be unmapped then
917 * remapped to file after khugepaged reaquired the mmap_lock.
918 *
919 * hugepage_vma_check may return true for qualified file
920 * vmas.
921 */
922 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
923 return SCAN_PAGE_ANON;
924 return SCAN_SUCCEED;
925 }
926
find_pmd_or_thp_or_none(struct mm_struct * mm,unsigned long address,pmd_t ** pmd)927 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
928 unsigned long address,
929 pmd_t **pmd)
930 {
931 pmd_t pmde;
932
933 *pmd = mm_find_pmd(mm, address);
934 if (!*pmd)
935 return SCAN_PMD_NULL;
936
937 pmde = pmdp_get_lockless(*pmd);
938 if (pmd_none(pmde))
939 return SCAN_PMD_NONE;
940 if (!pmd_present(pmde))
941 return SCAN_PMD_NULL;
942 if (pmd_trans_huge(pmde))
943 return SCAN_PMD_MAPPED;
944 if (pmd_devmap(pmde))
945 return SCAN_PMD_NULL;
946 if (pmd_bad(pmde))
947 return SCAN_PMD_NULL;
948 return SCAN_SUCCEED;
949 }
950
check_pmd_still_valid(struct mm_struct * mm,unsigned long address,pmd_t * pmd)951 static int check_pmd_still_valid(struct mm_struct *mm,
952 unsigned long address,
953 pmd_t *pmd)
954 {
955 pmd_t *new_pmd;
956 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
957
958 if (result != SCAN_SUCCEED)
959 return result;
960 if (new_pmd != pmd)
961 return SCAN_FAIL;
962 return SCAN_SUCCEED;
963 }
964
965 /*
966 * Bring missing pages in from swap, to complete THP collapse.
967 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
968 *
969 * Called and returns without pte mapped or spinlocks held.
970 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
971 */
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)972 static int __collapse_huge_page_swapin(struct mm_struct *mm,
973 struct vm_area_struct *vma,
974 unsigned long haddr, pmd_t *pmd,
975 int referenced)
976 {
977 int swapped_in = 0;
978 vm_fault_t ret = 0;
979 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
980 int result;
981 pte_t *pte = NULL;
982 spinlock_t *ptl;
983
984 for (address = haddr; address < end; address += PAGE_SIZE) {
985 struct vm_fault vmf = {
986 .vma = vma,
987 .address = address,
988 .pgoff = linear_page_index(vma, address),
989 .flags = FAULT_FLAG_ALLOW_RETRY,
990 .pmd = pmd,
991 };
992
993 if (!pte++) {
994 pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
995 if (!pte) {
996 mmap_read_unlock(mm);
997 result = SCAN_PMD_NULL;
998 goto out;
999 }
1000 }
1001
1002 vmf.orig_pte = ptep_get_lockless(pte);
1003 if (!is_swap_pte(vmf.orig_pte))
1004 continue;
1005
1006 vmf.pte = pte;
1007 vmf.ptl = ptl;
1008 ret = do_swap_page(&vmf);
1009 /* Which unmaps pte (after perhaps re-checking the entry) */
1010 pte = NULL;
1011
1012 /*
1013 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1014 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1015 * we do not retry here and swap entry will remain in pagetable
1016 * resulting in later failure.
1017 */
1018 if (ret & VM_FAULT_RETRY) {
1019 /* Likely, but not guaranteed, that page lock failed */
1020 result = SCAN_PAGE_LOCK;
1021 goto out;
1022 }
1023 if (ret & VM_FAULT_ERROR) {
1024 mmap_read_unlock(mm);
1025 result = SCAN_FAIL;
1026 goto out;
1027 }
1028 swapped_in++;
1029 }
1030
1031 if (pte)
1032 pte_unmap(pte);
1033
1034 /* Drain LRU cache to remove extra pin on the swapped in pages */
1035 if (swapped_in)
1036 lru_add_drain();
1037
1038 result = SCAN_SUCCEED;
1039 out:
1040 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1041 return result;
1042 }
1043
alloc_charge_folio(struct folio ** foliop,struct mm_struct * mm,struct collapse_control * cc)1044 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1045 struct collapse_control *cc)
1046 {
1047 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1048 GFP_TRANSHUGE);
1049 int node = hpage_collapse_find_target_node(cc);
1050 struct folio *folio;
1051
1052 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1053 if (!folio) {
1054 *foliop = NULL;
1055 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1056 return SCAN_ALLOC_HUGE_PAGE_FAIL;
1057 }
1058
1059 count_vm_event(THP_COLLAPSE_ALLOC);
1060 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1061 folio_put(folio);
1062 *foliop = NULL;
1063 return SCAN_CGROUP_CHARGE_FAIL;
1064 }
1065
1066 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1067
1068 *foliop = folio;
1069 return SCAN_SUCCEED;
1070 }
1071
collapse_huge_page(struct mm_struct * mm,unsigned long address,int referenced,int unmapped,struct collapse_control * cc)1072 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1073 int referenced, int unmapped,
1074 struct collapse_control *cc)
1075 {
1076 LIST_HEAD(compound_pagelist);
1077 pmd_t *pmd, _pmd;
1078 pte_t *pte;
1079 pgtable_t pgtable;
1080 struct folio *folio;
1081 struct page *hpage;
1082 spinlock_t *pmd_ptl, *pte_ptl;
1083 int result = SCAN_FAIL;
1084 struct vm_area_struct *vma;
1085 struct mmu_notifier_range range;
1086
1087 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1088
1089 /*
1090 * Before allocating the hugepage, release the mmap_lock read lock.
1091 * The allocation can take potentially a long time if it involves
1092 * sync compaction, and we do not need to hold the mmap_lock during
1093 * that. We will recheck the vma after taking it again in write mode.
1094 */
1095 mmap_read_unlock(mm);
1096
1097 result = alloc_charge_folio(&folio, mm, cc);
1098 hpage = &folio->page;
1099 if (result != SCAN_SUCCEED)
1100 goto out_nolock;
1101
1102 mmap_read_lock(mm);
1103 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1104 if (result != SCAN_SUCCEED) {
1105 mmap_read_unlock(mm);
1106 goto out_nolock;
1107 }
1108
1109 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1110 if (result != SCAN_SUCCEED) {
1111 mmap_read_unlock(mm);
1112 goto out_nolock;
1113 }
1114
1115 if (unmapped) {
1116 /*
1117 * __collapse_huge_page_swapin will return with mmap_lock
1118 * released when it fails. So we jump out_nolock directly in
1119 * that case. Continuing to collapse causes inconsistency.
1120 */
1121 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1122 referenced);
1123 if (result != SCAN_SUCCEED)
1124 goto out_nolock;
1125 }
1126
1127 mmap_read_unlock(mm);
1128 /*
1129 * Prevent all access to pagetables with the exception of
1130 * gup_fast later handled by the ptep_clear_flush and the VM
1131 * handled by the anon_vma lock + PG_lock.
1132 */
1133 mmap_write_lock(mm);
1134 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1135 if (result != SCAN_SUCCEED)
1136 goto out_up_write;
1137 /* check if the pmd is still valid */
1138 result = check_pmd_still_valid(mm, address, pmd);
1139 if (result != SCAN_SUCCEED)
1140 goto out_up_write;
1141
1142 vma_start_write(vma);
1143 anon_vma_lock_write(vma->anon_vma);
1144
1145 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1146 address + HPAGE_PMD_SIZE);
1147 mmu_notifier_invalidate_range_start(&range);
1148
1149 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1150 /*
1151 * This removes any huge TLB entry from the CPU so we won't allow
1152 * huge and small TLB entries for the same virtual address to
1153 * avoid the risk of CPU bugs in that area.
1154 *
1155 * Parallel fast GUP is fine since fast GUP will back off when
1156 * it detects PMD is changed.
1157 */
1158 _pmd = pmdp_collapse_flush(vma, address, pmd);
1159 spin_unlock(pmd_ptl);
1160 mmu_notifier_invalidate_range_end(&range);
1161 tlb_remove_table_sync_one();
1162
1163 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1164 if (pte) {
1165 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1166 &compound_pagelist);
1167 spin_unlock(pte_ptl);
1168 } else {
1169 result = SCAN_PMD_NULL;
1170 }
1171
1172 if (unlikely(result != SCAN_SUCCEED)) {
1173 if (pte)
1174 pte_unmap(pte);
1175 spin_lock(pmd_ptl);
1176 BUG_ON(!pmd_none(*pmd));
1177 /*
1178 * We can only use set_pmd_at when establishing
1179 * hugepmds and never for establishing regular pmds that
1180 * points to regular pagetables. Use pmd_populate for that
1181 */
1182 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1183 spin_unlock(pmd_ptl);
1184 anon_vma_unlock_write(vma->anon_vma);
1185 goto out_up_write;
1186 }
1187
1188 /*
1189 * All pages are isolated and locked so anon_vma rmap
1190 * can't run anymore.
1191 */
1192 anon_vma_unlock_write(vma->anon_vma);
1193
1194 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1195 vma, address, pte_ptl,
1196 &compound_pagelist);
1197 pte_unmap(pte);
1198 if (unlikely(result != SCAN_SUCCEED))
1199 goto out_up_write;
1200
1201 /*
1202 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1203 * copy_huge_page writes become visible before the set_pmd_at()
1204 * write.
1205 */
1206 __folio_mark_uptodate(folio);
1207 pgtable = pmd_pgtable(_pmd);
1208
1209 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1210 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1211
1212 spin_lock(pmd_ptl);
1213 BUG_ON(!pmd_none(*pmd));
1214 folio_add_new_anon_rmap(folio, vma, address);
1215 folio_add_lru_vma(folio, vma);
1216 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1217 set_pmd_at(mm, address, pmd, _pmd);
1218 update_mmu_cache_pmd(vma, address, pmd);
1219 spin_unlock(pmd_ptl);
1220
1221 hpage = NULL;
1222
1223 result = SCAN_SUCCEED;
1224 out_up_write:
1225 mmap_write_unlock(mm);
1226 out_nolock:
1227 if (hpage)
1228 put_page(hpage);
1229 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1230 return result;
1231 }
1232
hpage_collapse_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,bool * mmap_locked,struct collapse_control * cc)1233 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1234 struct vm_area_struct *vma,
1235 unsigned long address, bool *mmap_locked,
1236 struct collapse_control *cc)
1237 {
1238 pmd_t *pmd;
1239 pte_t *pte, *_pte;
1240 int result = SCAN_FAIL, referenced = 0;
1241 int none_or_zero = 0, shared = 0;
1242 struct page *page = NULL;
1243 unsigned long _address;
1244 spinlock_t *ptl;
1245 int node = NUMA_NO_NODE, unmapped = 0;
1246 bool writable = false;
1247
1248 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1249
1250 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1251 if (result != SCAN_SUCCEED)
1252 goto out;
1253
1254 memset(cc->node_load, 0, sizeof(cc->node_load));
1255 nodes_clear(cc->alloc_nmask);
1256 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1257 if (!pte) {
1258 result = SCAN_PMD_NULL;
1259 goto out;
1260 }
1261
1262 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1263 _pte++, _address += PAGE_SIZE) {
1264 pte_t pteval = ptep_get(_pte);
1265 if (is_swap_pte(pteval)) {
1266 ++unmapped;
1267 if (!cc->is_khugepaged ||
1268 unmapped <= khugepaged_max_ptes_swap) {
1269 /*
1270 * Always be strict with uffd-wp
1271 * enabled swap entries. Please see
1272 * comment below for pte_uffd_wp().
1273 */
1274 if (pte_swp_uffd_wp_any(pteval)) {
1275 result = SCAN_PTE_UFFD_WP;
1276 goto out_unmap;
1277 }
1278 continue;
1279 } else {
1280 result = SCAN_EXCEED_SWAP_PTE;
1281 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1282 goto out_unmap;
1283 }
1284 }
1285 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1286 ++none_or_zero;
1287 if (!userfaultfd_armed(vma) &&
1288 (!cc->is_khugepaged ||
1289 none_or_zero <= khugepaged_max_ptes_none)) {
1290 continue;
1291 } else {
1292 result = SCAN_EXCEED_NONE_PTE;
1293 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1294 goto out_unmap;
1295 }
1296 }
1297 if (pte_uffd_wp(pteval)) {
1298 /*
1299 * Don't collapse the page if any of the small
1300 * PTEs are armed with uffd write protection.
1301 * Here we can also mark the new huge pmd as
1302 * write protected if any of the small ones is
1303 * marked but that could bring unknown
1304 * userfault messages that falls outside of
1305 * the registered range. So, just be simple.
1306 */
1307 result = SCAN_PTE_UFFD_WP;
1308 goto out_unmap;
1309 }
1310 if (pte_write(pteval))
1311 writable = true;
1312
1313 page = vm_normal_page(vma, _address, pteval);
1314 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1315 result = SCAN_PAGE_NULL;
1316 goto out_unmap;
1317 }
1318
1319 if (page_mapcount(page) > 1) {
1320 ++shared;
1321 if (cc->is_khugepaged &&
1322 shared > khugepaged_max_ptes_shared) {
1323 result = SCAN_EXCEED_SHARED_PTE;
1324 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1325 goto out_unmap;
1326 }
1327 }
1328
1329 page = compound_head(page);
1330
1331 /*
1332 * Record which node the original page is from and save this
1333 * information to cc->node_load[].
1334 * Khugepaged will allocate hugepage from the node has the max
1335 * hit record.
1336 */
1337 node = page_to_nid(page);
1338 if (hpage_collapse_scan_abort(node, cc)) {
1339 result = SCAN_SCAN_ABORT;
1340 goto out_unmap;
1341 }
1342 cc->node_load[node]++;
1343 if (!PageLRU(page)) {
1344 result = SCAN_PAGE_LRU;
1345 goto out_unmap;
1346 }
1347 if (PageLocked(page)) {
1348 result = SCAN_PAGE_LOCK;
1349 goto out_unmap;
1350 }
1351 if (!PageAnon(page)) {
1352 result = SCAN_PAGE_ANON;
1353 goto out_unmap;
1354 }
1355
1356 /*
1357 * Check if the page has any GUP (or other external) pins.
1358 *
1359 * Here the check may be racy:
1360 * it may see total_mapcount > refcount in some cases?
1361 * But such case is ephemeral we could always retry collapse
1362 * later. However it may report false positive if the page
1363 * has excessive GUP pins (i.e. 512). Anyway the same check
1364 * will be done again later the risk seems low.
1365 */
1366 if (!is_refcount_suitable(page)) {
1367 result = SCAN_PAGE_COUNT;
1368 goto out_unmap;
1369 }
1370
1371 /*
1372 * If collapse was initiated by khugepaged, check that there is
1373 * enough young pte to justify collapsing the page
1374 */
1375 if (cc->is_khugepaged &&
1376 (pte_young(pteval) || page_is_young(page) ||
1377 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1378 address)))
1379 referenced++;
1380 }
1381 if (!writable) {
1382 result = SCAN_PAGE_RO;
1383 } else if (cc->is_khugepaged &&
1384 (!referenced ||
1385 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1386 result = SCAN_LACK_REFERENCED_PAGE;
1387 } else {
1388 result = SCAN_SUCCEED;
1389 }
1390 out_unmap:
1391 pte_unmap_unlock(pte, ptl);
1392 if (result == SCAN_SUCCEED) {
1393 result = collapse_huge_page(mm, address, referenced,
1394 unmapped, cc);
1395 /* collapse_huge_page will return with the mmap_lock released */
1396 *mmap_locked = false;
1397 }
1398 out:
1399 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1400 none_or_zero, result, unmapped);
1401 return result;
1402 }
1403
collect_mm_slot(struct khugepaged_mm_slot * mm_slot)1404 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1405 {
1406 struct mm_slot *slot = &mm_slot->slot;
1407 struct mm_struct *mm = slot->mm;
1408
1409 lockdep_assert_held(&khugepaged_mm_lock);
1410
1411 if (hpage_collapse_test_exit(mm)) {
1412 /* free mm_slot */
1413 hash_del(&slot->hash);
1414 list_del(&slot->mm_node);
1415
1416 /*
1417 * Not strictly needed because the mm exited already.
1418 *
1419 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1420 */
1421
1422 /* khugepaged_mm_lock actually not necessary for the below */
1423 mm_slot_free(mm_slot_cache, mm_slot);
1424 mmdrop(mm);
1425 }
1426 }
1427
1428 #ifdef CONFIG_SHMEM
1429 /* hpage must be locked, and mmap_lock must be held */
set_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct page * hpage)1430 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1431 pmd_t *pmdp, struct page *hpage)
1432 {
1433 struct vm_fault vmf = {
1434 .vma = vma,
1435 .address = addr,
1436 .flags = 0,
1437 .pmd = pmdp,
1438 };
1439
1440 VM_BUG_ON(!PageTransHuge(hpage));
1441 mmap_assert_locked(vma->vm_mm);
1442
1443 if (do_set_pmd(&vmf, hpage))
1444 return SCAN_FAIL;
1445
1446 get_page(hpage);
1447 return SCAN_SUCCEED;
1448 }
1449
1450 /**
1451 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1452 * address haddr.
1453 *
1454 * @mm: process address space where collapse happens
1455 * @addr: THP collapse address
1456 * @install_pmd: If a huge PMD should be installed
1457 *
1458 * This function checks whether all the PTEs in the PMD are pointing to the
1459 * right THP. If so, retract the page table so the THP can refault in with
1460 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1461 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr,bool install_pmd)1462 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1463 bool install_pmd)
1464 {
1465 struct mmu_notifier_range range;
1466 bool notified = false;
1467 unsigned long haddr = addr & HPAGE_PMD_MASK;
1468 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1469 struct page *hpage;
1470 pte_t *start_pte, *pte;
1471 pmd_t *pmd, pgt_pmd;
1472 spinlock_t *pml = NULL, *ptl;
1473 int nr_ptes = 0, result = SCAN_FAIL;
1474 int i;
1475
1476 mmap_assert_locked(mm);
1477
1478 /* First check VMA found, in case page tables are being torn down */
1479 if (!vma || !vma->vm_file ||
1480 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1481 return SCAN_VMA_CHECK;
1482
1483 /* Fast check before locking page if already PMD-mapped */
1484 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1485 if (result == SCAN_PMD_MAPPED)
1486 return result;
1487
1488 /*
1489 * If we are here, we've succeeded in replacing all the native pages
1490 * in the page cache with a single hugepage. If a mm were to fault-in
1491 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1492 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1493 * analogously elide sysfs THP settings here.
1494 */
1495 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1496 return SCAN_VMA_CHECK;
1497
1498 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1499 if (userfaultfd_wp(vma))
1500 return SCAN_PTE_UFFD_WP;
1501
1502 hpage = find_lock_page(vma->vm_file->f_mapping,
1503 linear_page_index(vma, haddr));
1504 if (!hpage)
1505 return SCAN_PAGE_NULL;
1506
1507 if (!PageHead(hpage)) {
1508 result = SCAN_FAIL;
1509 goto drop_hpage;
1510 }
1511
1512 if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1513 result = SCAN_PAGE_COMPOUND;
1514 goto drop_hpage;
1515 }
1516
1517 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1518 switch (result) {
1519 case SCAN_SUCCEED:
1520 break;
1521 case SCAN_PMD_NONE:
1522 /*
1523 * All pte entries have been removed and pmd cleared.
1524 * Skip all the pte checks and just update the pmd mapping.
1525 */
1526 goto maybe_install_pmd;
1527 default:
1528 goto drop_hpage;
1529 }
1530
1531 result = SCAN_FAIL;
1532 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1533 if (!start_pte) /* mmap_lock + page lock should prevent this */
1534 goto drop_hpage;
1535
1536 /* step 1: check all mapped PTEs are to the right huge page */
1537 for (i = 0, addr = haddr, pte = start_pte;
1538 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1539 struct page *page;
1540 pte_t ptent = ptep_get(pte);
1541
1542 /* empty pte, skip */
1543 if (pte_none(ptent))
1544 continue;
1545
1546 /* page swapped out, abort */
1547 if (!pte_present(ptent)) {
1548 result = SCAN_PTE_NON_PRESENT;
1549 goto abort;
1550 }
1551
1552 page = vm_normal_page(vma, addr, ptent);
1553 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1554 page = NULL;
1555 /*
1556 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1557 * page table, but the new page will not be a subpage of hpage.
1558 */
1559 if (hpage + i != page)
1560 goto abort;
1561 }
1562
1563 pte_unmap_unlock(start_pte, ptl);
1564 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1565 haddr, haddr + HPAGE_PMD_SIZE);
1566 mmu_notifier_invalidate_range_start(&range);
1567 notified = true;
1568
1569 /*
1570 * pmd_lock covers a wider range than ptl, and (if split from mm's
1571 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1572 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1573 * inserts a valid as-if-COWed PTE without even looking up page cache.
1574 * So page lock of hpage does not protect from it, so we must not drop
1575 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1576 */
1577 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1578 pml = pmd_lock(mm, pmd);
1579
1580 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1581 if (!start_pte) /* mmap_lock + page lock should prevent this */
1582 goto abort;
1583 if (!pml)
1584 spin_lock(ptl);
1585 else if (ptl != pml)
1586 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1587
1588 /* step 2: clear page table and adjust rmap */
1589 for (i = 0, addr = haddr, pte = start_pte;
1590 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1591 struct page *page;
1592 pte_t ptent = ptep_get(pte);
1593
1594 if (pte_none(ptent))
1595 continue;
1596 /*
1597 * We dropped ptl after the first scan, to do the mmu_notifier:
1598 * page lock stops more PTEs of the hpage being faulted in, but
1599 * does not stop write faults COWing anon copies from existing
1600 * PTEs; and does not stop those being swapped out or migrated.
1601 */
1602 if (!pte_present(ptent)) {
1603 result = SCAN_PTE_NON_PRESENT;
1604 goto abort;
1605 }
1606 page = vm_normal_page(vma, addr, ptent);
1607 if (hpage + i != page)
1608 goto abort;
1609
1610 /*
1611 * Must clear entry, or a racing truncate may re-remove it.
1612 * TLB flush can be left until pmdp_collapse_flush() does it.
1613 * PTE dirty? Shmem page is already dirty; file is read-only.
1614 */
1615 ptep_clear(mm, addr, pte);
1616 page_remove_rmap(page, vma, false);
1617 nr_ptes++;
1618 }
1619
1620 pte_unmap(start_pte);
1621 if (!pml)
1622 spin_unlock(ptl);
1623
1624 /* step 3: set proper refcount and mm_counters. */
1625 if (nr_ptes) {
1626 page_ref_sub(hpage, nr_ptes);
1627 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1628 }
1629
1630 /* step 4: remove empty page table */
1631 if (!pml) {
1632 pml = pmd_lock(mm, pmd);
1633 if (ptl != pml)
1634 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1635 }
1636 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1637 pmdp_get_lockless_sync();
1638 if (ptl != pml)
1639 spin_unlock(ptl);
1640 spin_unlock(pml);
1641
1642 mmu_notifier_invalidate_range_end(&range);
1643
1644 mm_dec_nr_ptes(mm);
1645 page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1646 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1647
1648 maybe_install_pmd:
1649 /* step 5: install pmd entry */
1650 result = install_pmd
1651 ? set_huge_pmd(vma, haddr, pmd, hpage)
1652 : SCAN_SUCCEED;
1653 goto drop_hpage;
1654 abort:
1655 if (nr_ptes) {
1656 flush_tlb_mm(mm);
1657 page_ref_sub(hpage, nr_ptes);
1658 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1659 }
1660 if (start_pte)
1661 pte_unmap_unlock(start_pte, ptl);
1662 if (pml && pml != ptl)
1663 spin_unlock(pml);
1664 if (notified)
1665 mmu_notifier_invalidate_range_end(&range);
1666 drop_hpage:
1667 unlock_page(hpage);
1668 put_page(hpage);
1669 return result;
1670 }
1671
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1672 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1673 {
1674 struct vm_area_struct *vma;
1675
1676 i_mmap_lock_read(mapping);
1677 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1678 struct mmu_notifier_range range;
1679 struct mm_struct *mm;
1680 unsigned long addr;
1681 pmd_t *pmd, pgt_pmd;
1682 spinlock_t *pml;
1683 spinlock_t *ptl;
1684 bool skipped_uffd = false;
1685
1686 /*
1687 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1688 * got written to. These VMAs are likely not worth removing
1689 * page tables from, as PMD-mapping is likely to be split later.
1690 */
1691 if (READ_ONCE(vma->anon_vma))
1692 continue;
1693
1694 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1695 if (addr & ~HPAGE_PMD_MASK ||
1696 vma->vm_end < addr + HPAGE_PMD_SIZE)
1697 continue;
1698
1699 mm = vma->vm_mm;
1700 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1701 continue;
1702
1703 if (hpage_collapse_test_exit(mm))
1704 continue;
1705 /*
1706 * When a vma is registered with uffd-wp, we cannot recycle
1707 * the page table because there may be pte markers installed.
1708 * Other vmas can still have the same file mapped hugely, but
1709 * skip this one: it will always be mapped in small page size
1710 * for uffd-wp registered ranges.
1711 */
1712 if (userfaultfd_wp(vma))
1713 continue;
1714
1715 /* PTEs were notified when unmapped; but now for the PMD? */
1716 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1717 addr, addr + HPAGE_PMD_SIZE);
1718 mmu_notifier_invalidate_range_start(&range);
1719
1720 pml = pmd_lock(mm, pmd);
1721 ptl = pte_lockptr(mm, pmd);
1722 if (ptl != pml)
1723 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1724
1725 /*
1726 * Huge page lock is still held, so normally the page table
1727 * must remain empty; and we have already skipped anon_vma
1728 * and userfaultfd_wp() vmas. But since the mmap_lock is not
1729 * held, it is still possible for a racing userfaultfd_ioctl()
1730 * to have inserted ptes or markers. Now that we hold ptlock,
1731 * repeating the anon_vma check protects from one category,
1732 * and repeating the userfaultfd_wp() check from another.
1733 */
1734 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1735 skipped_uffd = true;
1736 } else {
1737 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1738 pmdp_get_lockless_sync();
1739 }
1740
1741 if (ptl != pml)
1742 spin_unlock(ptl);
1743 spin_unlock(pml);
1744
1745 mmu_notifier_invalidate_range_end(&range);
1746
1747 if (!skipped_uffd) {
1748 mm_dec_nr_ptes(mm);
1749 page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1750 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1751 }
1752 }
1753 i_mmap_unlock_read(mapping);
1754 }
1755
1756 /**
1757 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1758 *
1759 * @mm: process address space where collapse happens
1760 * @addr: virtual collapse start address
1761 * @file: file that collapse on
1762 * @start: collapse start address
1763 * @cc: collapse context and scratchpad
1764 *
1765 * Basic scheme is simple, details are more complex:
1766 * - allocate and lock a new huge page;
1767 * - scan page cache, locking old pages
1768 * + swap/gup in pages if necessary;
1769 * - copy data to new page
1770 * - handle shmem holes
1771 * + re-validate that holes weren't filled by someone else
1772 * + check for userfaultfd
1773 * - finalize updates to the page cache;
1774 * - if replacing succeeds:
1775 * + unlock huge page;
1776 * + free old pages;
1777 * - if replacing failed;
1778 * + unlock old pages
1779 * + unlock and free huge page;
1780 */
collapse_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)1781 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1782 struct file *file, pgoff_t start,
1783 struct collapse_control *cc)
1784 {
1785 struct address_space *mapping = file->f_mapping;
1786 struct page *page;
1787 struct page *tmp, *dst;
1788 struct folio *folio, *new_folio;
1789 pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1790 LIST_HEAD(pagelist);
1791 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1792 int nr_none = 0, result = SCAN_SUCCEED;
1793 bool is_shmem = shmem_file(file);
1794
1795 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1796 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1797
1798 result = alloc_charge_folio(&new_folio, mm, cc);
1799 if (result != SCAN_SUCCEED)
1800 goto out;
1801
1802 __folio_set_locked(new_folio);
1803 if (is_shmem)
1804 __folio_set_swapbacked(new_folio);
1805 new_folio->index = start;
1806 new_folio->mapping = mapping;
1807
1808 /*
1809 * Ensure we have slots for all the pages in the range. This is
1810 * almost certainly a no-op because most of the pages must be present
1811 */
1812 do {
1813 xas_lock_irq(&xas);
1814 xas_create_range(&xas);
1815 if (!xas_error(&xas))
1816 break;
1817 xas_unlock_irq(&xas);
1818 if (!xas_nomem(&xas, GFP_KERNEL)) {
1819 result = SCAN_FAIL;
1820 goto rollback;
1821 }
1822 } while (1);
1823
1824 for (index = start; index < end; index++) {
1825 xas_set(&xas, index);
1826 page = xas_load(&xas);
1827
1828 VM_BUG_ON(index != xas.xa_index);
1829 if (is_shmem) {
1830 if (!page) {
1831 /*
1832 * Stop if extent has been truncated or
1833 * hole-punched, and is now completely
1834 * empty.
1835 */
1836 if (index == start) {
1837 if (!xas_next_entry(&xas, end - 1)) {
1838 result = SCAN_TRUNCATED;
1839 goto xa_locked;
1840 }
1841 }
1842 nr_none++;
1843 continue;
1844 }
1845
1846 if (xa_is_value(page) || !PageUptodate(page)) {
1847 xas_unlock_irq(&xas);
1848 /* swap in or instantiate fallocated page */
1849 if (shmem_get_folio(mapping->host, index,
1850 &folio, SGP_NOALLOC)) {
1851 result = SCAN_FAIL;
1852 goto xa_unlocked;
1853 }
1854 /* drain lru cache to help isolate_lru_page() */
1855 lru_add_drain();
1856 page = folio_file_page(folio, index);
1857 } else if (trylock_page(page)) {
1858 get_page(page);
1859 xas_unlock_irq(&xas);
1860 } else {
1861 result = SCAN_PAGE_LOCK;
1862 goto xa_locked;
1863 }
1864 } else { /* !is_shmem */
1865 if (!page || xa_is_value(page)) {
1866 xas_unlock_irq(&xas);
1867 page_cache_sync_readahead(mapping, &file->f_ra,
1868 file, index,
1869 end - index);
1870 /* drain lru cache to help isolate_lru_page() */
1871 lru_add_drain();
1872 page = find_lock_page(mapping, index);
1873 if (unlikely(page == NULL)) {
1874 result = SCAN_FAIL;
1875 goto xa_unlocked;
1876 }
1877 } else if (PageDirty(page)) {
1878 /*
1879 * khugepaged only works on read-only fd,
1880 * so this page is dirty because it hasn't
1881 * been flushed since first write. There
1882 * won't be new dirty pages.
1883 *
1884 * Trigger async flush here and hope the
1885 * writeback is done when khugepaged
1886 * revisits this page.
1887 *
1888 * This is a one-off situation. We are not
1889 * forcing writeback in loop.
1890 */
1891 xas_unlock_irq(&xas);
1892 filemap_flush(mapping);
1893 result = SCAN_FAIL;
1894 goto xa_unlocked;
1895 } else if (PageWriteback(page)) {
1896 xas_unlock_irq(&xas);
1897 result = SCAN_FAIL;
1898 goto xa_unlocked;
1899 } else if (trylock_page(page)) {
1900 get_page(page);
1901 xas_unlock_irq(&xas);
1902 } else {
1903 result = SCAN_PAGE_LOCK;
1904 goto xa_locked;
1905 }
1906 }
1907
1908 /*
1909 * The page must be locked, so we can drop the i_pages lock
1910 * without racing with truncate.
1911 */
1912 VM_BUG_ON_PAGE(!PageLocked(page), page);
1913
1914 /* make sure the page is up to date */
1915 if (unlikely(!PageUptodate(page))) {
1916 result = SCAN_FAIL;
1917 goto out_unlock;
1918 }
1919
1920 /*
1921 * If file was truncated then extended, or hole-punched, before
1922 * we locked the first page, then a THP might be there already.
1923 * This will be discovered on the first iteration.
1924 */
1925 if (PageTransCompound(page)) {
1926 struct page *head = compound_head(page);
1927
1928 result = compound_order(head) == HPAGE_PMD_ORDER &&
1929 head->index == start
1930 /* Maybe PMD-mapped */
1931 ? SCAN_PTE_MAPPED_HUGEPAGE
1932 : SCAN_PAGE_COMPOUND;
1933 goto out_unlock;
1934 }
1935
1936 folio = page_folio(page);
1937
1938 if (folio_mapping(folio) != mapping) {
1939 result = SCAN_TRUNCATED;
1940 goto out_unlock;
1941 }
1942
1943 if (!is_shmem && (folio_test_dirty(folio) ||
1944 folio_test_writeback(folio))) {
1945 /*
1946 * khugepaged only works on read-only fd, so this
1947 * page is dirty because it hasn't been flushed
1948 * since first write.
1949 */
1950 result = SCAN_FAIL;
1951 goto out_unlock;
1952 }
1953
1954 if (!folio_isolate_lru(folio)) {
1955 result = SCAN_DEL_PAGE_LRU;
1956 goto out_unlock;
1957 }
1958
1959 if (!filemap_release_folio(folio, GFP_KERNEL)) {
1960 result = SCAN_PAGE_HAS_PRIVATE;
1961 folio_putback_lru(folio);
1962 goto out_unlock;
1963 }
1964
1965 if (folio_mapped(folio))
1966 try_to_unmap(folio,
1967 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1968
1969 xas_lock_irq(&xas);
1970
1971 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
1972
1973 /*
1974 * We control three references to the page:
1975 * - we hold a pin on it;
1976 * - one reference from page cache;
1977 * - one from isolate_lru_page;
1978 * If those are the only references, then any new usage of the
1979 * page will have to fetch it from the page cache. That requires
1980 * locking the page to handle truncate, so any new usage will be
1981 * blocked until we unlock page after collapse/during rollback.
1982 */
1983 if (page_count(page) != 3) {
1984 result = SCAN_PAGE_COUNT;
1985 xas_unlock_irq(&xas);
1986 putback_lru_page(page);
1987 goto out_unlock;
1988 }
1989
1990 /*
1991 * Accumulate the pages that are being collapsed.
1992 */
1993 list_add_tail(&page->lru, &pagelist);
1994 continue;
1995 out_unlock:
1996 unlock_page(page);
1997 put_page(page);
1998 goto xa_unlocked;
1999 }
2000
2001 if (!is_shmem) {
2002 filemap_nr_thps_inc(mapping);
2003 /*
2004 * Paired with smp_mb() in do_dentry_open() to ensure
2005 * i_writecount is up to date and the update to nr_thps is
2006 * visible. Ensures the page cache will be truncated if the
2007 * file is opened writable.
2008 */
2009 smp_mb();
2010 if (inode_is_open_for_write(mapping->host)) {
2011 result = SCAN_FAIL;
2012 filemap_nr_thps_dec(mapping);
2013 }
2014 }
2015
2016 xa_locked:
2017 xas_unlock_irq(&xas);
2018 xa_unlocked:
2019
2020 /*
2021 * If collapse is successful, flush must be done now before copying.
2022 * If collapse is unsuccessful, does flush actually need to be done?
2023 * Do it anyway, to clear the state.
2024 */
2025 try_to_unmap_flush();
2026
2027 if (result == SCAN_SUCCEED && nr_none &&
2028 !shmem_charge(mapping->host, nr_none))
2029 result = SCAN_FAIL;
2030 if (result != SCAN_SUCCEED) {
2031 nr_none = 0;
2032 goto rollback;
2033 }
2034
2035 /*
2036 * The old pages are locked, so they won't change anymore.
2037 */
2038 index = start;
2039 dst = folio_page(new_folio, 0);
2040 list_for_each_entry(page, &pagelist, lru) {
2041 while (index < page->index) {
2042 clear_highpage(dst);
2043 index++;
2044 dst++;
2045 }
2046 if (copy_mc_highpage(dst, page) > 0) {
2047 result = SCAN_COPY_MC;
2048 goto rollback;
2049 }
2050 index++;
2051 dst++;
2052 }
2053 while (index < end) {
2054 clear_highpage(dst);
2055 index++;
2056 dst++;
2057 }
2058
2059 if (nr_none) {
2060 struct vm_area_struct *vma;
2061 int nr_none_check = 0;
2062
2063 i_mmap_lock_read(mapping);
2064 xas_lock_irq(&xas);
2065
2066 xas_set(&xas, start);
2067 for (index = start; index < end; index++) {
2068 if (!xas_next(&xas)) {
2069 xas_store(&xas, XA_RETRY_ENTRY);
2070 if (xas_error(&xas)) {
2071 result = SCAN_STORE_FAILED;
2072 goto immap_locked;
2073 }
2074 nr_none_check++;
2075 }
2076 }
2077
2078 if (nr_none != nr_none_check) {
2079 result = SCAN_PAGE_FILLED;
2080 goto immap_locked;
2081 }
2082
2083 /*
2084 * If userspace observed a missing page in a VMA with
2085 * a MODE_MISSING userfaultfd, then it might expect a
2086 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2087 * roll back to avoid suppressing such an event. Since
2088 * wp/minor userfaultfds don't give userspace any
2089 * guarantees that the kernel doesn't fill a missing
2090 * page with a zero page, so they don't matter here.
2091 *
2092 * Any userfaultfds registered after this point will
2093 * not be able to observe any missing pages due to the
2094 * previously inserted retry entries.
2095 */
2096 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2097 if (userfaultfd_missing(vma)) {
2098 result = SCAN_EXCEED_NONE_PTE;
2099 goto immap_locked;
2100 }
2101 }
2102
2103 immap_locked:
2104 i_mmap_unlock_read(mapping);
2105 if (result != SCAN_SUCCEED) {
2106 xas_set(&xas, start);
2107 for (index = start; index < end; index++) {
2108 if (xas_next(&xas) == XA_RETRY_ENTRY)
2109 xas_store(&xas, NULL);
2110 }
2111
2112 xas_unlock_irq(&xas);
2113 goto rollback;
2114 }
2115 } else {
2116 xas_lock_irq(&xas);
2117 }
2118
2119 if (is_shmem)
2120 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2121 else
2122 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2123
2124 if (nr_none) {
2125 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2126 /* nr_none is always 0 for non-shmem. */
2127 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2128 }
2129
2130 /*
2131 * Mark new_folio as uptodate before inserting it into the
2132 * page cache so that it isn't mistaken for an fallocated but
2133 * unwritten page.
2134 */
2135 folio_mark_uptodate(new_folio);
2136 folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2137
2138 if (is_shmem)
2139 folio_mark_dirty(new_folio);
2140 folio_add_lru(new_folio);
2141
2142 /* Join all the small entries into a single multi-index entry. */
2143 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2144 xas_store(&xas, new_folio);
2145 WARN_ON_ONCE(xas_error(&xas));
2146 xas_unlock_irq(&xas);
2147
2148 /*
2149 * Remove pte page tables, so we can re-fault the page as huge.
2150 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2151 */
2152 retract_page_tables(mapping, start);
2153 if (cc && !cc->is_khugepaged)
2154 result = SCAN_PTE_MAPPED_HUGEPAGE;
2155 folio_unlock(new_folio);
2156
2157 /*
2158 * The collapse has succeeded, so free the old pages.
2159 */
2160 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2161 list_del(&page->lru);
2162 page->mapping = NULL;
2163 ClearPageActive(page);
2164 ClearPageUnevictable(page);
2165 unlock_page(page);
2166 folio_put_refs(page_folio(page), 3);
2167 }
2168
2169 goto out;
2170
2171 rollback:
2172 /* Something went wrong: roll back page cache changes */
2173 if (nr_none) {
2174 xas_lock_irq(&xas);
2175 mapping->nrpages -= nr_none;
2176 xas_unlock_irq(&xas);
2177 shmem_uncharge(mapping->host, nr_none);
2178 }
2179
2180 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2181 list_del(&page->lru);
2182 unlock_page(page);
2183 putback_lru_page(page);
2184 put_page(page);
2185 }
2186 /*
2187 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2188 * file only. This undo is not needed unless failure is
2189 * due to SCAN_COPY_MC.
2190 */
2191 if (!is_shmem && result == SCAN_COPY_MC) {
2192 filemap_nr_thps_dec(mapping);
2193 /*
2194 * Paired with smp_mb() in do_dentry_open() to
2195 * ensure the update to nr_thps is visible.
2196 */
2197 smp_mb();
2198 }
2199
2200 new_folio->mapping = NULL;
2201
2202 folio_unlock(new_folio);
2203 folio_put(new_folio);
2204 out:
2205 VM_BUG_ON(!list_empty(&pagelist));
2206 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result);
2207 return result;
2208 }
2209
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2210 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2211 struct file *file, pgoff_t start,
2212 struct collapse_control *cc)
2213 {
2214 struct page *page = NULL;
2215 struct address_space *mapping = file->f_mapping;
2216 XA_STATE(xas, &mapping->i_pages, start);
2217 int present, swap;
2218 int node = NUMA_NO_NODE;
2219 int result = SCAN_SUCCEED;
2220
2221 present = 0;
2222 swap = 0;
2223 memset(cc->node_load, 0, sizeof(cc->node_load));
2224 nodes_clear(cc->alloc_nmask);
2225 rcu_read_lock();
2226 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2227 if (xas_retry(&xas, page))
2228 continue;
2229
2230 if (xa_is_value(page)) {
2231 ++swap;
2232 if (cc->is_khugepaged &&
2233 swap > khugepaged_max_ptes_swap) {
2234 result = SCAN_EXCEED_SWAP_PTE;
2235 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2236 break;
2237 }
2238 continue;
2239 }
2240
2241 /*
2242 * TODO: khugepaged should compact smaller compound pages
2243 * into a PMD sized page
2244 */
2245 if (PageTransCompound(page)) {
2246 struct page *head = compound_head(page);
2247
2248 result = compound_order(head) == HPAGE_PMD_ORDER &&
2249 head->index == start
2250 /* Maybe PMD-mapped */
2251 ? SCAN_PTE_MAPPED_HUGEPAGE
2252 : SCAN_PAGE_COMPOUND;
2253 /*
2254 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2255 * by the caller won't touch the page cache, and so
2256 * it's safe to skip LRU and refcount checks before
2257 * returning.
2258 */
2259 break;
2260 }
2261
2262 node = page_to_nid(page);
2263 if (hpage_collapse_scan_abort(node, cc)) {
2264 result = SCAN_SCAN_ABORT;
2265 break;
2266 }
2267 cc->node_load[node]++;
2268
2269 if (!PageLRU(page)) {
2270 result = SCAN_PAGE_LRU;
2271 break;
2272 }
2273
2274 if (page_count(page) !=
2275 1 + page_mapcount(page) + page_has_private(page)) {
2276 result = SCAN_PAGE_COUNT;
2277 break;
2278 }
2279
2280 /*
2281 * We probably should check if the page is referenced here, but
2282 * nobody would transfer pte_young() to PageReferenced() for us.
2283 * And rmap walk here is just too costly...
2284 */
2285
2286 present++;
2287
2288 if (need_resched()) {
2289 xas_pause(&xas);
2290 cond_resched_rcu();
2291 }
2292 }
2293 rcu_read_unlock();
2294
2295 if (result == SCAN_SUCCEED) {
2296 if (cc->is_khugepaged &&
2297 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2298 result = SCAN_EXCEED_NONE_PTE;
2299 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2300 } else {
2301 result = collapse_file(mm, addr, file, start, cc);
2302 }
2303 }
2304
2305 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2306 return result;
2307 }
2308 #else
hpage_collapse_scan_file(struct mm_struct * mm,unsigned long addr,struct file * file,pgoff_t start,struct collapse_control * cc)2309 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2310 struct file *file, pgoff_t start,
2311 struct collapse_control *cc)
2312 {
2313 BUILD_BUG();
2314 }
2315 #endif
2316
khugepaged_scan_mm_slot(unsigned int pages,int * result,struct collapse_control * cc)2317 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2318 struct collapse_control *cc)
2319 __releases(&khugepaged_mm_lock)
2320 __acquires(&khugepaged_mm_lock)
2321 {
2322 struct vma_iterator vmi;
2323 struct khugepaged_mm_slot *mm_slot;
2324 struct mm_slot *slot;
2325 struct mm_struct *mm;
2326 struct vm_area_struct *vma;
2327 int progress = 0;
2328
2329 VM_BUG_ON(!pages);
2330 lockdep_assert_held(&khugepaged_mm_lock);
2331 *result = SCAN_FAIL;
2332
2333 if (khugepaged_scan.mm_slot) {
2334 mm_slot = khugepaged_scan.mm_slot;
2335 slot = &mm_slot->slot;
2336 } else {
2337 slot = list_entry(khugepaged_scan.mm_head.next,
2338 struct mm_slot, mm_node);
2339 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2340 khugepaged_scan.address = 0;
2341 khugepaged_scan.mm_slot = mm_slot;
2342 }
2343 spin_unlock(&khugepaged_mm_lock);
2344
2345 mm = slot->mm;
2346 /*
2347 * Don't wait for semaphore (to avoid long wait times). Just move to
2348 * the next mm on the list.
2349 */
2350 vma = NULL;
2351 if (unlikely(!mmap_read_trylock(mm)))
2352 goto breakouterloop_mmap_lock;
2353
2354 progress++;
2355 if (unlikely(hpage_collapse_test_exit(mm)))
2356 goto breakouterloop;
2357
2358 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2359 for_each_vma(vmi, vma) {
2360 unsigned long hstart, hend;
2361
2362 cond_resched();
2363 if (unlikely(hpage_collapse_test_exit(mm))) {
2364 progress++;
2365 break;
2366 }
2367 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2368 skip:
2369 progress++;
2370 continue;
2371 }
2372 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2373 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2374 if (khugepaged_scan.address > hend)
2375 goto skip;
2376 if (khugepaged_scan.address < hstart)
2377 khugepaged_scan.address = hstart;
2378 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2379
2380 while (khugepaged_scan.address < hend) {
2381 bool mmap_locked = true;
2382
2383 cond_resched();
2384 if (unlikely(hpage_collapse_test_exit(mm)))
2385 goto breakouterloop;
2386
2387 VM_BUG_ON(khugepaged_scan.address < hstart ||
2388 khugepaged_scan.address + HPAGE_PMD_SIZE >
2389 hend);
2390 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2391 struct file *file = get_file(vma->vm_file);
2392 pgoff_t pgoff = linear_page_index(vma,
2393 khugepaged_scan.address);
2394
2395 mmap_read_unlock(mm);
2396 mmap_locked = false;
2397 *result = hpage_collapse_scan_file(mm,
2398 khugepaged_scan.address, file, pgoff, cc);
2399 fput(file);
2400 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2401 mmap_read_lock(mm);
2402 if (hpage_collapse_test_exit(mm))
2403 goto breakouterloop;
2404 *result = collapse_pte_mapped_thp(mm,
2405 khugepaged_scan.address, false);
2406 if (*result == SCAN_PMD_MAPPED)
2407 *result = SCAN_SUCCEED;
2408 mmap_read_unlock(mm);
2409 }
2410 } else {
2411 *result = hpage_collapse_scan_pmd(mm, vma,
2412 khugepaged_scan.address, &mmap_locked, cc);
2413 }
2414
2415 if (*result == SCAN_SUCCEED)
2416 ++khugepaged_pages_collapsed;
2417
2418 /* move to next address */
2419 khugepaged_scan.address += HPAGE_PMD_SIZE;
2420 progress += HPAGE_PMD_NR;
2421 if (!mmap_locked)
2422 /*
2423 * We released mmap_lock so break loop. Note
2424 * that we drop mmap_lock before all hugepage
2425 * allocations, so if allocation fails, we are
2426 * guaranteed to break here and report the
2427 * correct result back to caller.
2428 */
2429 goto breakouterloop_mmap_lock;
2430 if (progress >= pages)
2431 goto breakouterloop;
2432 }
2433 }
2434 breakouterloop:
2435 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2436 breakouterloop_mmap_lock:
2437
2438 spin_lock(&khugepaged_mm_lock);
2439 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2440 /*
2441 * Release the current mm_slot if this mm is about to die, or
2442 * if we scanned all vmas of this mm.
2443 */
2444 if (hpage_collapse_test_exit(mm) || !vma) {
2445 /*
2446 * Make sure that if mm_users is reaching zero while
2447 * khugepaged runs here, khugepaged_exit will find
2448 * mm_slot not pointing to the exiting mm.
2449 */
2450 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2451 slot = list_entry(slot->mm_node.next,
2452 struct mm_slot, mm_node);
2453 khugepaged_scan.mm_slot =
2454 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2455 khugepaged_scan.address = 0;
2456 } else {
2457 khugepaged_scan.mm_slot = NULL;
2458 khugepaged_full_scans++;
2459 }
2460
2461 collect_mm_slot(mm_slot);
2462 }
2463
2464 return progress;
2465 }
2466
khugepaged_has_work(void)2467 static int khugepaged_has_work(void)
2468 {
2469 return !list_empty(&khugepaged_scan.mm_head) &&
2470 hugepage_flags_enabled();
2471 }
2472
khugepaged_wait_event(void)2473 static int khugepaged_wait_event(void)
2474 {
2475 return !list_empty(&khugepaged_scan.mm_head) ||
2476 kthread_should_stop();
2477 }
2478
khugepaged_do_scan(struct collapse_control * cc)2479 static void khugepaged_do_scan(struct collapse_control *cc)
2480 {
2481 unsigned int progress = 0, pass_through_head = 0;
2482 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2483 bool wait = true;
2484 int result = SCAN_SUCCEED;
2485
2486 lru_add_drain_all();
2487
2488 while (true) {
2489 cond_resched();
2490
2491 if (unlikely(kthread_should_stop() || try_to_freeze()))
2492 break;
2493
2494 spin_lock(&khugepaged_mm_lock);
2495 if (!khugepaged_scan.mm_slot)
2496 pass_through_head++;
2497 if (khugepaged_has_work() &&
2498 pass_through_head < 2)
2499 progress += khugepaged_scan_mm_slot(pages - progress,
2500 &result, cc);
2501 else
2502 progress = pages;
2503 spin_unlock(&khugepaged_mm_lock);
2504
2505 if (progress >= pages)
2506 break;
2507
2508 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2509 /*
2510 * If fail to allocate the first time, try to sleep for
2511 * a while. When hit again, cancel the scan.
2512 */
2513 if (!wait)
2514 break;
2515 wait = false;
2516 khugepaged_alloc_sleep();
2517 }
2518 }
2519 }
2520
khugepaged_should_wakeup(void)2521 static bool khugepaged_should_wakeup(void)
2522 {
2523 return kthread_should_stop() ||
2524 time_after_eq(jiffies, khugepaged_sleep_expire);
2525 }
2526
khugepaged_wait_work(void)2527 static void khugepaged_wait_work(void)
2528 {
2529 if (khugepaged_has_work()) {
2530 const unsigned long scan_sleep_jiffies =
2531 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2532
2533 if (!scan_sleep_jiffies)
2534 return;
2535
2536 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2537 wait_event_freezable_timeout(khugepaged_wait,
2538 khugepaged_should_wakeup(),
2539 scan_sleep_jiffies);
2540 return;
2541 }
2542
2543 if (hugepage_flags_enabled())
2544 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2545 }
2546
khugepaged(void * none)2547 static int khugepaged(void *none)
2548 {
2549 struct khugepaged_mm_slot *mm_slot;
2550
2551 set_freezable();
2552 set_user_nice(current, MAX_NICE);
2553
2554 while (!kthread_should_stop()) {
2555 khugepaged_do_scan(&khugepaged_collapse_control);
2556 khugepaged_wait_work();
2557 }
2558
2559 spin_lock(&khugepaged_mm_lock);
2560 mm_slot = khugepaged_scan.mm_slot;
2561 khugepaged_scan.mm_slot = NULL;
2562 if (mm_slot)
2563 collect_mm_slot(mm_slot);
2564 spin_unlock(&khugepaged_mm_lock);
2565 return 0;
2566 }
2567
set_recommended_min_free_kbytes(void)2568 static void set_recommended_min_free_kbytes(void)
2569 {
2570 struct zone *zone;
2571 int nr_zones = 0;
2572 unsigned long recommended_min;
2573
2574 if (!hugepage_flags_enabled()) {
2575 calculate_min_free_kbytes();
2576 goto update_wmarks;
2577 }
2578
2579 for_each_populated_zone(zone) {
2580 /*
2581 * We don't need to worry about fragmentation of
2582 * ZONE_MOVABLE since it only has movable pages.
2583 */
2584 if (zone_idx(zone) > gfp_zone(GFP_USER))
2585 continue;
2586
2587 nr_zones++;
2588 }
2589
2590 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2591 recommended_min = pageblock_nr_pages * nr_zones * 2;
2592
2593 /*
2594 * Make sure that on average at least two pageblocks are almost free
2595 * of another type, one for a migratetype to fall back to and a
2596 * second to avoid subsequent fallbacks of other types There are 3
2597 * MIGRATE_TYPES we care about.
2598 */
2599 recommended_min += pageblock_nr_pages * nr_zones *
2600 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2601
2602 /* don't ever allow to reserve more than 5% of the lowmem */
2603 recommended_min = min(recommended_min,
2604 (unsigned long) nr_free_buffer_pages() / 20);
2605 recommended_min <<= (PAGE_SHIFT-10);
2606
2607 if (recommended_min > min_free_kbytes) {
2608 if (user_min_free_kbytes >= 0)
2609 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2610 min_free_kbytes, recommended_min);
2611
2612 min_free_kbytes = recommended_min;
2613 }
2614
2615 update_wmarks:
2616 setup_per_zone_wmarks();
2617 }
2618
start_stop_khugepaged(void)2619 int start_stop_khugepaged(void)
2620 {
2621 int err = 0;
2622
2623 mutex_lock(&khugepaged_mutex);
2624 if (hugepage_flags_enabled()) {
2625 if (!khugepaged_thread)
2626 khugepaged_thread = kthread_run(khugepaged, NULL,
2627 "khugepaged");
2628 if (IS_ERR(khugepaged_thread)) {
2629 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2630 err = PTR_ERR(khugepaged_thread);
2631 khugepaged_thread = NULL;
2632 goto fail;
2633 }
2634
2635 if (!list_empty(&khugepaged_scan.mm_head))
2636 wake_up_interruptible(&khugepaged_wait);
2637 } else if (khugepaged_thread) {
2638 kthread_stop(khugepaged_thread);
2639 khugepaged_thread = NULL;
2640 }
2641 set_recommended_min_free_kbytes();
2642 fail:
2643 mutex_unlock(&khugepaged_mutex);
2644 return err;
2645 }
2646
khugepaged_min_free_kbytes_update(void)2647 void khugepaged_min_free_kbytes_update(void)
2648 {
2649 mutex_lock(&khugepaged_mutex);
2650 if (hugepage_flags_enabled() && khugepaged_thread)
2651 set_recommended_min_free_kbytes();
2652 mutex_unlock(&khugepaged_mutex);
2653 }
2654
current_is_khugepaged(void)2655 bool current_is_khugepaged(void)
2656 {
2657 return kthread_func(current) == khugepaged;
2658 }
2659
madvise_collapse_errno(enum scan_result r)2660 static int madvise_collapse_errno(enum scan_result r)
2661 {
2662 /*
2663 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2664 * actionable feedback to caller, so they may take an appropriate
2665 * fallback measure depending on the nature of the failure.
2666 */
2667 switch (r) {
2668 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2669 return -ENOMEM;
2670 case SCAN_CGROUP_CHARGE_FAIL:
2671 case SCAN_EXCEED_NONE_PTE:
2672 return -EBUSY;
2673 /* Resource temporary unavailable - trying again might succeed */
2674 case SCAN_PAGE_COUNT:
2675 case SCAN_PAGE_LOCK:
2676 case SCAN_PAGE_LRU:
2677 case SCAN_DEL_PAGE_LRU:
2678 case SCAN_PAGE_FILLED:
2679 return -EAGAIN;
2680 /*
2681 * Other: Trying again likely not to succeed / error intrinsic to
2682 * specified memory range. khugepaged likely won't be able to collapse
2683 * either.
2684 */
2685 default:
2686 return -EINVAL;
2687 }
2688 }
2689
madvise_collapse(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)2690 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2691 unsigned long start, unsigned long end)
2692 {
2693 struct collapse_control *cc;
2694 struct mm_struct *mm = vma->vm_mm;
2695 unsigned long hstart, hend, addr;
2696 int thps = 0, last_fail = SCAN_FAIL;
2697 bool mmap_locked = true;
2698
2699 BUG_ON(vma->vm_start > start);
2700 BUG_ON(vma->vm_end < end);
2701
2702 *prev = vma;
2703
2704 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2705 return -EINVAL;
2706
2707 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2708 if (!cc)
2709 return -ENOMEM;
2710 cc->is_khugepaged = false;
2711
2712 mmgrab(mm);
2713 lru_add_drain_all();
2714
2715 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2716 hend = end & HPAGE_PMD_MASK;
2717
2718 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2719 int result = SCAN_FAIL;
2720
2721 if (!mmap_locked) {
2722 cond_resched();
2723 mmap_read_lock(mm);
2724 mmap_locked = true;
2725 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2726 cc);
2727 if (result != SCAN_SUCCEED) {
2728 last_fail = result;
2729 goto out_nolock;
2730 }
2731
2732 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2733 }
2734 mmap_assert_locked(mm);
2735 memset(cc->node_load, 0, sizeof(cc->node_load));
2736 nodes_clear(cc->alloc_nmask);
2737 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2738 struct file *file = get_file(vma->vm_file);
2739 pgoff_t pgoff = linear_page_index(vma, addr);
2740
2741 mmap_read_unlock(mm);
2742 mmap_locked = false;
2743 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2744 cc);
2745 fput(file);
2746 } else {
2747 result = hpage_collapse_scan_pmd(mm, vma, addr,
2748 &mmap_locked, cc);
2749 }
2750 if (!mmap_locked)
2751 *prev = NULL; /* Tell caller we dropped mmap_lock */
2752
2753 handle_result:
2754 switch (result) {
2755 case SCAN_SUCCEED:
2756 case SCAN_PMD_MAPPED:
2757 ++thps;
2758 break;
2759 case SCAN_PTE_MAPPED_HUGEPAGE:
2760 BUG_ON(mmap_locked);
2761 BUG_ON(*prev);
2762 mmap_read_lock(mm);
2763 result = collapse_pte_mapped_thp(mm, addr, true);
2764 mmap_read_unlock(mm);
2765 goto handle_result;
2766 /* Whitelisted set of results where continuing OK */
2767 case SCAN_PMD_NULL:
2768 case SCAN_PTE_NON_PRESENT:
2769 case SCAN_PTE_UFFD_WP:
2770 case SCAN_PAGE_RO:
2771 case SCAN_LACK_REFERENCED_PAGE:
2772 case SCAN_PAGE_NULL:
2773 case SCAN_PAGE_COUNT:
2774 case SCAN_PAGE_LOCK:
2775 case SCAN_PAGE_COMPOUND:
2776 case SCAN_PAGE_LRU:
2777 case SCAN_DEL_PAGE_LRU:
2778 last_fail = result;
2779 break;
2780 default:
2781 last_fail = result;
2782 /* Other error, exit */
2783 goto out_maybelock;
2784 }
2785 }
2786
2787 out_maybelock:
2788 /* Caller expects us to hold mmap_lock on return */
2789 if (!mmap_locked)
2790 mmap_read_lock(mm);
2791 out_nolock:
2792 mmap_assert_locked(mm);
2793 mmdrop(mm);
2794 kfree(cc);
2795
2796 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2797 : madvise_collapse_errno(last_fail);
2798 }
2799